Recommended Citation
Published in Proceedings of the 1998 IEEE International Conference on Control Applications, Volume 1, September 1, 1998, pages 293-297.
NOTE: At the time of publication, the author Xiao-Hua Yu was not yet affiliated with Cal Poly.
The definitive version is available at https://doi.org/10.1109/CCA.1998.728427.
Abstract
The choice of network dimension is a fundamental issue in the design of artificial neural networks. A larger neural network is powerful for solving problems while a smaller neural network is always advantageous in real-time environment where speed is crucial. In this paper, a network pruning algorithm with embedded gradient-conjugate training is investigated and applied to the identification of a large flexible space structure. Computer simulation results show that this approach can dramatically reduce the size of neural network while maintaining compatible identification accuracy.
Disciplines
Electrical and Computer Engineering
Copyright
1998 IEEE.
Publisher statement
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
URL: https://digitalcommons.calpoly.edu/eeng_fac/114