Recommended Citation
Published in Proceedings of the 1996 IEEE Symposium and Workshop on Engineering of Computer-Based Systems: Friedrichshafen, March 11, 1996, pages 420-426.
NOTE: At the time of publication, the author Franz Kurfess was affiliated with the New Jersey Institute of Technology. Currently, August 2008, he is Professor of Computer Science at California Polytechnic State University - San Luis Obispo .
The definitive version is available at https://doi.org/10.1109/ECBS.1996.494569.
Abstract
This paper describes some experiments based on the use of neural networks for assistance in the quality assessment of programs, especially in connection with the reengineering of legacy systems. We use Kohonen networks, or self-organizing maps, for the categorization of programs: programs with similar features are grouped together in a two-dimensional neighbourhood, whereas dissimilar programs are located far apart. Backpropagation networks are used for generalization purposes: based on a set of example programs whose relevant aspects have already been assessed, we would like to obtain an extrapolation of these assessments to new programs. The basis for these investigation is an intermediate representation of programs in the form of various dependency graphs, capturing the essentials of the programs. Previously, a set of metrics has been developed to perform an assessment of programs on the basis of this intermediate representation. It is not always clear, however, which parameters of the intermediate representation are relevant for a particular metric. The categorization and generalization capabilities of neural networks are employed to improve or verify the selection of parameters, and might even initiate the development of additional metrics
Disciplines
Computer Sciences
Copyright
1996 IEEE.
Publisher statement
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
URL: https://digitalcommons.calpoly.edu/csse_fac/5