Department - Author 1

Computer Engineering Department

Degree Name - Author 1

BS in Computer Engineering

Date

6-2015

Primary Advisor

Hugh Smith

Abstract/Summary

For many years, freshmen Computer Engineering students at California Polytechnic State University have taken a course that introduces them to the “processes of electronics manufacturing. They are lectured on concepts such as CAD/CAM design, Design for Manufacture (DFM), documentation requirements, prototyping and production planning”. The laboratory portion of the course allows students to “use hands-on techniques to solidify knowledge of project planning, soldering, automation, hand tool usage and production methods” by manufacturing their own power supply, starting with aluminum sheets, a bag of components, and and an unassembled printed circuit board (PCB).

While the project is popular among students, department faculty see the need for modernization to keep up with today’s emerging technical education tools. With the proliferation of easy-to-use development boards and prototyping software, such as the Arduino and Fritzing, people who aren’t pursuing degrees can easily master basic microcontroller programming and PCB design. With this in mind, Dr. Smith is testing a course that has the potential to fill this new role. In previous quarters, students have taken this optional elective to build and program an animated stuffed animal. They have been using the Arduino environment and a custom shield that interfaces with the servo motors. In collaboration with Dr. Smith, we have expanded the course by adding custom printed circuit board (PCB) design for each student, as well as allowing for the replacement of the Arduino+shield with a standalone breadboard prototype.

My responsibilities included researching methods of transitioning the project to a breadboard prototype followed by a student-designed printed circuit board (PCB). This involved compiling hardware requirements to operate an ATmega328p microcontroller separate from the Arduino board. I also created breadboard and PCB reference designs using the Fritzing prototyping software environment. Following my reference design, I created a set of instructions that leads students through the process, starting with a bag of parts and a breadboard, through the creation of a breadboard prototype, and culminating in a custom-designed PCB.

COinS