College - Author 1

College of Agriculture, Food and Environmental Sciences

Department - Author 1

BioResource and Agricultural Engineering Department

Degree Name - Author 1

BS in BioResource and Agricultural Engineering

Date

6-2016

Primary Advisor

Art MacCarley

Abstract/Summary

This project takes two bifilar tesla coils and uses them to find a % efficiency of power transfer as distances between the coils decrease. The reason this experiment is being conducted is to find possible implications for wireless charging of vehicles using similar style coils. This project conducted experiments on 60 Hz, 400 Hz, and 1 kHz frequencies for a small input signal. The general conclusion is that as the frequency increases more power can be transferred and higher efficiency of power transfer is seen. This project also concluded that it could be possible to get higher efficiency at a greater distance with a higher input power frequency. There would of course be tradeoffs for achieving a certain charge time, but this project is concerned in the possibility of a greater gap being used so that charging could be done on a wide variety of vehicle applications. These applications would range from public transport, domestic, or freight.

Share

COinS