Date of Award

7-2019

Degree Name

MS in Aerospace Engineering

Department/Program

Aerospace Engineering

Advisor

Amelia Greig

Abstract

The need for micropropulsion solutions for spacecraft has been steadily increasing as scientific payloads require higher accuracy maneuvers and as the use of small form-factor spacecraft such as CubeSats becomes more common. Of the technologies used for this purpose, electrospray thrusters offer performance that make them an ideal choice. Electrosprays offer high accuracy impulse bits at low power and high efficiency, and have low volume requirements. Design choice reasoning and preliminary testing results are presented for two electrospray thruster designs. The first thruster, named the Demonstration thruster, is operated in atmospheric conditions and serves as a highly visible example of the basic concepts of electrospray technology applied to micropropulsion. It features a single capillary needle emitter and the acetone propellant flow is driven actively by a syringe pump. The second thruster, named the Research thruster, is operated in the vacuum environment and is designed for modularity for its expected use in future research efforts. Propellant flow is also driven actively using a syringe pump. Initial configuration of the Research thruster is a linear array of five capillary needle emitters, though testing is conducted with only one emitter in this thesis. Tests using un-doped glycerol and sodium iodide doped glycerol (20% by weight) are conducted for the Research thruster. Both thruster designs use stainless steel 18 gauge blunt dispensing needles (0.038 in / 0.965 mm ID) as their emitters. Applied voltage to the emitter(s) relative to the grounded extractor is swept from 2100 V to 3700 V for the Demonstration thruster testing and from 4000 V to 4500 V for the Research thruster. Currents incident on a collection plate downstream of the emission plume and on the extractors of the thrusters were measured directly with a pico-ammeter. Measurements made during testing of the Demonstration thruster are inconsistent due to charge loss as propellant travels through the air, though currents as high as 5.1x10-9 A on the collection plate and 2x10-7 A on the extractor are recorded. Currents for Research thruster testing using un-doped glycerol were measured as high as 4.9x10-8 A on the collection plate and 5x10-9 A on the extractor, showing an interception rate as high as 17%. Currents using sodium iodide doped glycerol were measured as high as 7x10-7 A on the collection plate. Discussion is given for the visual qualities of cone-jet emission for all testing. Keywords:

Share

COinS