DOI: https://doi.org/10.15368/theses.2013.235
Available at: https://digitalcommons.calpoly.edu/theses/1302
Date of Award
12-2013
Degree Name
MS in Computer Science
Department/Program
Computer Science
Advisor
Zoë Wood
Abstract
This paper presents a robust and artist driven method for fracturing a surface polyhedral mesh via fracture maps. A fracture map is an undirected simple graph with nodes representing positions in UV-space and fracture lines along the surface of a mesh. Fracture maps allow artists to concisely and rapidly define, edit, and apply fracture patterns onto the surface of their mesh.
The method projects a fracture map onto a polyhedral surface and splits its triangles accordingly. The polyhedral mesh is then segmented based on fracture lines to produce a set of independent surfaces called fracture components, containing the visible surface of each fractured mesh fragment. Subsequently, we utilize a Voronoi-based approximation of the input polyhedral mesh’s medial axis to derive a hidden surface for each fragment. The result is a new watertight polyhedral mesh representing the full fracture component.
Results are aquired after a delay sufficiently brief for interactive design. As the size of the input mesh increases, the computation time has shown to grow linearly. A large mesh of 41,000 triangles requires approximately 3.4 seconds to perform a complete fracture of a complex pattern. For a wide variety of practices, the resulting fractures allows users to provide realistic feedback upon the application of extraneous forces.