Date of Award

8-2014

Degree Name

MS in Polymers and Coatings

Department

Chemistry & Biochemistry

Advisor

Shanju Zhang

Abstract

Conjugated polymer based electronics, a type of flexible electronic devices, can be produced from solution by traditional printing and coating processes in a roll-to-roll format such as papers and graphic films. This shows great promise for the emerging energy generation and conversion. The device performance of polymer electronics is largely dependent of crystalline structures and morphology of photoactive layers. However, the solution crystallization kinetics of conjugated polymers in the presence of electron acceptor nanoparticles has not been fully understood yet. In this study, solution crystallization kinetics of poly (3-hexylthiophene) in the presence of carbon nanotubes and graphene oxide has been investigated by using UV-visible absorption spectroscopy and transmission electron microscope. Various kinetics parameters such as crystallization temperature, polymer solution concentration and nanoparticle loading will be discussed. The crystallization rate law and fold surface free energy will be addressed by using polymer crystallization theory of heterogeneous nucleation. This fundamental study will provide a foundation of fabricating high efficiency polymer based electronics.