Abstract

Intelligent and adaptive material systems and structures have become very important in engineering applications. The basic characteristic of these systems is the ability to adapt to the environmental conditions. A new class of materials with promising applications in structural and mechanical systems is shape memory alloy (SMA). The mechanical behavior of shape memory alloys in particular shows a strong dependence on temperature. This property provides opportunities for the utilization of SMAs in actuators or energy dissipation devices. However, the behavior of systems containing shape memory components under random excitation has not yet been addressed in the literature. Such a study is important to verify the feasibility of using SMAs in structural systems. In this work a nondeterministic study of the dynamic behavior of a single-degree-of-freedom (SDOF) mechanical system, having a Nitinol spring as a restoring force element is presented. The SMA spring is characterized using a one-dimensional phenomenological constitutive model based on the classical Devonshire theory. Response statistics for zero mean random vibration of the SDOF under a wide range of temperature is obtained. Furthermore, nonzero mean analysis of these systems is carried out.

Disciplines

Civil and Environmental Engineering

Share

COinS
 

URL: http://digitalcommons.calpoly.edu/ceng_dean/8

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.