Date of Award


Degree Name

MS in Aerospace Engineering


Aerospace Engineering


Dr. David Marshall


The Goldschmied Propulsor is a concept that was introduced in mid 1950's by Fabio Goldschmied. The concept combines boundary layer suction and boundary layer ingestion technologies to reduce drag and increase propulsor efficiency. The most recent testing, done in 1982, left questions concerning the validity of the results. To answer these questions a 38.5in Goldschmied Propulsor was constructed and tested in Cal Poly's 3x4ft wind tunnel. The focus of their wind tunnel investigation was to replicate Goldschmied's original testing and increase the knowledge base on the subject. The goal of this research was to create a computational fluid dynamics (CFD) model to help visualize the flow phenomenon and see how well CFD was able to replicate Cal Poly’s wind tunnel results. CFD cases were run to get a comparison of the computational model and the wind tunnel results. For the straight tunnel geometry for the 0.385” slot and cusp A we found a body, pressure and friction drag, fan off CD of 0.0526 and a fan on at 500 Pascals with a CD of 0.0545. This is similar to the wind tunnel results but because of large errors in measuring overall drag we are not able to directly compare to the wind tunnel results. Overall we see that the trends match, mainly that the fan does not decrease the total pressure drag. This was a result of poor geometry and high fan speeds needed for attachment. The tested geometry is less than ideal and has a long way to go before it is of a shape that would have the potential to reduce the pressure drag as much as Goldschmied claimed. Future efforts should be put forth optimizing the aft body to reduce the low pressure in front of the slot and improving aft entrance of the slot to allow for a smoother flow.