Date of Award

8-2012

Degree Name

MS in Aerospace Engineering

Department/Program

Aerospace Engineering

Advisor

Eric Mehiel

Abstract

The design process of unmanned ISR systems has typically driven in the direction of increasing system mass to increase stabilization performance and imagery quality. However, through the use of new sensor and processor technology high performance stabilization feedback is being made available for control on new small and low mass stabilized platforms that can be placed on small UAVs. This project develops and implements a LOS stabilization controller design, typically seen on larger gimbals, onto a new small stabilized gimbal, the Tigereye, and demonstrates the application on several small UAV aircraft. The Tigereye gimbal is a new 2lb, 2-axis, gimbal intended to provided high performance closed loop LOS stabilization through the utilization of inertial rate gyro, electronic video stabilization, and host platform state information. Ground and flight tests results of the LOS stabilization controller on the Tigereye gimbal have shown stabilization performance improvements over legacy systems. However, system characteristics identified in testing still limit stabilization performance, these include: host system vibration, gimbal joint friction and backlash, joint actuation compliance, payload CG asymmetry, and gyro noise and drift. The control system design has been highly modularized in anticipation of future algorithm and hardware upgrades to address the remaining issues and extend the system's capabilities.

Share

COinS