Date of Award

3-2021

Degree Name

MS in Aerospace Engineering

Department/Program

Aerospace Engineering

College

College of Engineering

Advisor

Aaron Drake

Advisor Department

Aerospace Engineering

Advisor College

College of Engineering

Abstract

The use of infrared thermography for boundary layer detection was evaluated for use in the Cal Poly Low Speed Wind Tunnel (LSWT) and recommendations for the successful use of this technique were developed. In cooperation with Joby Aviation, an infinite wing model was designed, manufactured and tested for use in the LSWT. The wing was designed around a custom airfoil profile specific for this project, where the nearly-flat pressure gradient at a zero pitch angle would delay the chordwise onset of boundary layer transition. Steady-state, RANS numerical simulations predicted the onset of transition to occur at 0.75 x/c for the design Reynolds Number condition of 6.25x105. The wing was manufactured from 3D printed aluminum, with a wall thickness of 0.125 inches and a chord length of 13.78 inches. Two central rows of static pressure taps were used, each with 12 functional chordwise locations. The taps were able to generate strong correlation to the numerically predicted pressure coefficient distribution.

The use of an infrared camera visualized and confirmed the presence of boundary layer transition at the chordline location anticipated by the early simulations. To do so, the model was pre-heated such that the differential cooling properties of laminar and turbulent flow would generate a clear temperature gradient on the surface correlating to boundary layer transition. Adjustment of the model’s pitch angle demonstrated a change in the onset location of boundary layer transition during the infrared testing. The change of onset location was seen to move forward along the chordline as the aerodynamic angle of attack was increased. Testing with a Preston Tube system allowed for the interpolation of local skin friction coefficient values at each static tap location. Application of both laminar and turbulent empirical assumptions, when compared to numerical expectations, allowed for the qualitative assessment of boundary layer transition onset. Overall, the wing model developed for this research proved capable of producing quality and repetitive results for the experimental goals it was designed to meet. The model will next be used in continued tests which will further explore the use of infrared thermography.

Share

COinS