Date of Award


Degree Name

MS in Civil and Environmental Engineering


Civil and Environmental Engineering


College of Engineering


Rebekah Oulton

Advisor Department

Civil and Environmental Engineering

Advisor College

College of Engineering


This study evaluates soil properties that impact the effectiveness of soil aquifer treatment (SAT) as a polishing step to the remove two classes of ECs from wastewater effluent: pharmaceuticals and personal care products (PPCPs), and engineering nanomaterials (ENMs). In recent years, it has been determined that elevated levels of emerging contaminants (ECs) are being released into the environment with wastewater effluent. ECs are proven to cause adverse environmental and health effects as a result of long-term exposure. It is important to evaluate sustainable solutions to improve the current methods of wastewater treatment to address these ECs.

Soil aquifer treatment (SAT) is a sustainable, cost effect treatment alternative to advanced treatment at a wastewater treatment plant. SAT replenishes local groundwater supplies while allowing for indirect potable reuse, if contaminants of concern such as ECs can be effectively removed from the water. Since wastewater effluent can contain a variety of contaminants with myriad physical and chemical properties, understanding the potential of the aquifer itself to provide EC removal is a key step in establishing SAT as a viable treatment alternative. Peer-reviewed research studies were analyzed to determine the soil properties that affect the fate and transport of ECs in the aquifer environment. The data was complied to produce recommendations for an effective SAT site.

Physical and chemical properties of the soil facilitate contaminant removal as the groundwater flows through the aquifer. This study determined that removal of ECs from effluent had a correlation with (1) high clay content, (2) small Darcy Velocity, (3) high soil organic matter content, and (4) low sand content. Based on the 6 peer-reviewed research studies reviewed, the removal of nanomaterials is affected by clay content and sand content, but not soil organic matter content. Conversely, the removal of PPCPs is affected by clay content and soil organic mater content, but not sand content. It can be concluded that two different removal mechanisms facilitate the removal of nanomaterials versus PPCPs; physical removal for nanomaterials and chemical removal (sorption) for PPCPs. Clay facilitates the removal of both contaminants. The small soil diameter of clay forms smaller pores in the soil media. This causes increased pore straining, while also restricting the flow through the soil, which increases the contact time between the soil particle and the ECs. Additionally, clay has a large surface area, which increases surface interactions, such as sorption, of the EC to the surface of the clay particle.