In the present paper the eikonal equation is considered in the form of a second order, nonlinear ordinary differential equation with harmonic excitation due to internal wave. The harmonic excitation is taken imperfect, i.e. there is a random phase modulation due to Gaussian white noise. The amplitude and wavelength of the acoustic wave are used as the principle signal characteristics in bifurcation analysis. The regions of instability, identified using the bifurcation diagrams, examined through phase diagrams and Poincare maps. The effect of stochastic nature in addition to chaotic one of internal waves is demonstrated by means of comparison of the numerical data obtained for perfectly periodic excitation. Preliminary analysis shows very strong dependence on noise intensity at some values of amplitude and wave length of internal wave.


Mechanical Engineering



URL: https://digitalcommons.calpoly.edu/provost_schol/52