Artificial neural networks with such characteristics as learning, graceful degradation, and speed inherent to parallel distributed architectures might provide a flexible and cost solution to the real time control of robotics systems. In this investigation artificial neural networks are presented for the coordinate transformation mapping of a two-axis robot modeled with Fischertechnik physical modeling components. The results indicate that artificial neural systems could be utilized for practical situations and that extended research in these neural structures could provide adaptive architectures for dynamic robotics control.


Industrial Engineering | Manufacturing



URL: https://digitalcommons.calpoly.edu/ime_fac/18