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ABSTRACT

Identifying and Reducing Variability, Improving Scaffold Morphology, and Investigating
Alternative Materials for the Blood Vessel Mimic Lab Electrospinning Process

Evan M. Dowey

The work of the Cal Poly Tissue Engineering lisprimarily focused on thiabrication,
characterization, and i mprovement of ABI oo
constructs used to evaluate cellular response to vascular medical devices. Currently, cells
are grown onto fibrous, porous tubes made using-fouse electrispinning process

from PLGA, a biocompatible epolymer. The adhesion and proliferation of cells in a

BVM is reliant on the micrescale structure of the PLGA scaffold, and as such it is of

great importance for the electrospinning process to consisteatluge scaffolds of

similar morphologiesAdditionally, it has been shown that cell proliferation increases

with scaffolds of smaller fibers and potéan the current electrospinning protocol can
produce Finally, the Tissue Engineering Lab has interesésting devices in more

tortuous BVM bioreactor designs, however the use of relatively rigid PLGA scaffolds has
severely limited the ability to construct more complicated vagsainetries

Theoverall goal of this thesis was to improve fabrication aratadtterization of
eledrospun polymer scaffolds for BVM use. The spediims of this thesis were:ta)
Improve scaffold characterization by comparing two techrsfprefiber diameter
measurement anchplementinga techniqge for pore area measureme2jtRedu@
scaffold fiber diameter and pore area by investigating humidity and solvent caimposi
electrospinning parametef®). Reduce process variability by developing a mpecsic
electrospinning protoco#t) Improve scaffold consistency and use hgerstanding and
reducing PLGA scaffold shrinkage. Blentify and evaluate more flexible polymers as
potential alternatives for electrospun BVM scaffolds

In order to accomplish these aims, firgyasral BVM and outside literature images were
taken andevaluated with current and prospective fiber diameter techniques, and with 2
prospective pore area techniques to characterize accuracy and consistency of each
method.It was found that the prospective fiber diameter measurement technique was not
superior 6 the current method. The techniqueselopedor pore areaneasurement

were found to produce results that differed significantly from each other and from the
published value for a given imageext, changes to environmental and solution
composition paraeters were made with the hopes of reducing fiber diameter and pore
area of electrospun PLGA scaffol@hanges in relative humidity did not appear to
significantly affect scaffold fiber diameter while chang@solvent compositign
specifically the use adcetoneresulted in fibes significantly smaller than those regularly
achieved in the BVM lakiNext, ®veral sources of variabiliip the electrospinning



protocolwere identified and subsequently altered to improve consistenaysabdity.
Specifically, this includededefining the precision with which PLGA mass was
measuredrepositioning electrical equipment to reduce the effect of stray electrostatic
forces on the polymer solution jeiitempting to control the temperature and humidity
inside the ectrospinning enclosure, and improving the ease with which scaffolds are
removed from their mandrels through alternative mandrel surface treatineadslition

to overall process variabilityhé issue of scaffold shrinkage during BVM use was
investigatedand two possible treatmenexposure to either ethanol or elevated
temperaturesyere proposetlased on previous electrospinning literature results. Each
wastested for their effectiveness in mitigating shrinklgeugh exposure to BVM
setupmimicking conditions It was found that both treatments reduced scaffold shrinkage
compared to control samples when exposed to BVM saiugcking conditions.

Finally, 3 flexible polymers were selected and electrospun to compare against typical
PLGA results and to ecwluct a kink radius test as a metric for measuring flexibility as it
pertains to the proposed BVM lab applicatitirwasconcluded thatwo types of
thermoplastic polyurethane (tPU) were not acceptable electrospinning materials for use in
the BVM lab. Addtionally, while polycaprolactone (PCL) could be successfully
electrospun it could not undergo the amount bending required for more tortuous BVM
bioreactor designs without kinking.

Overall, the work in thishesisprovided insight into multiple scaffolcharacterization
techniquesreduced overall electrospinning variability in the fabrication and use of

PLGA scaffolds, and defined processing parameters that have been shown to yield
scaffolds with smaller morphological features than all prior Tissue Eaginmg Lab

work. By creating bettermore effectivescaffolds, researchers in the Tissue Engineering
Lab can more accurately mimic the structure and properties of native blood vigssgls

in turn, will result in BVM cell responses that more closelyem@mble thabf native tissue.
Creating consistent and appropriate BVMs will then lead to impactful contributions to the
existing body of tissue engineering research and to better preclinical device testing.

Keywords: electrospinning, scaffold, PLGA,lpmer, fiber diameter, pore area,
variability, shrinkage, flexible, blood vessel mimic, tissue engineering
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1. INTRODUCTION

1.1 General Overview

The focus of this thesis was to improve upon the processes for fabricating and
characterizing electrospun scaffolds for use in the Cal Poly Tissue Engineering Lab as
substrates for blood vessel mimic (BVM) constructs. BD\8vke used as a form of pre
clinical intravascular medical device testing, and are central to the research done in the
Tissue Engineering Lab. Several previous theses have been published on tbk topic
electrospinning, and this work is intended to build upon those to further improve the
electrospinning process in the BVM lab. This work includes standardizing, improving,
and expanding upon the current characterization techniques for electrospurdscaffol
improving scaffoldcharacteristicby reducing average fiber diameter and pore size,
reducing or eliminating sources of variability in the electrospinning process, investigating
and reducing scaffold shrinkagevitro, and exploring options for flexi polymer
systems to replace PLGA for use in more complex BVM designs, each of which will be

covered indepth in the following chapters.

The following introduction sections provide relevant background information and
research concerning the history aetevancy of the BVM system, the role of the
scaffold in tissue engineering and in BVMs specifically, and the process of
electrospinning and how various processing parameters and solvent properties can impact

scaffold properties and morphology. This is présd alongside a summary of previous



Tissue Engineering Lab electrospinning theses to provide a basis for understanding and

interpreting the rationale, methods, and results provided in this thesis.

1.2BVM Overview

The Tissue Engineering Lab at Cal Poly feesiits research into the field of
tissue engineering, specifically to create structures that resemble human blood vessels, or
BVMs. In general, tissue engineering can be defined as the deliberate combination of
cells, a scaffold on which to affix and graells, and a biologically stimulating
environment to create functional tissues for the purposes of repairing, sustaining, or
augmenting existing bodily tissuiesn this way, researchers and tissue engineers hope to
access the natural tissgenerating and maintaining ability of cells and biological

systems by providinthem with a favorable environment in which to floufish

Tissue engineering sommonlyconducted to alleviate the problefasing more
traditional treatment options such as receiving donor tissue (allografts), autografts, and
medical devices. The most evident and recurring issue with using donor tissue to treat
currentlyailing patients is a chronic shortage of donors anevamrincreasing waitlist of
patients in need; As of July 2011710,000 patients are listed on the national transplant
waiting list, while only 33,611 transplants were performed in the previoud y&here
also existstheevgyr r esent problem of tissue rejectio
immune response to foreign bodies. Autologous tissue transplants also present several
limitations: If a patient is suffering fromgenetic ailment then the transplanted tissue
will have similar defects, limiting the effectiveness of the procedure. Secondly, the act of

2



removing tissue to be grafted elsewhere takes a toll on the patient, especially if they are
already ailing from theicurrent condition. In the case of coronary bypass, for example,
sections of blood vessel are removed from healthier portions of the body such as the
arms, legs, or chest, causing some amount of injury in those locations and withdrawing
from the finite suply of potential donor tissue in the patient that may be needed in case
of a subsequent procedfireBy fabricating tissue from cells that have been grown and

expanded in a laboratory setting, the physical burden on the paagriielessened.

The BVM labat Cal Polyfocuses on the 3 main aspects of tissue engineering in
sone capacity, by experimenting with various types of cells, scaffold fabrication
techniques, and biologically stimulating environments to produce the most viable blood

vesselmimicking structures.

While many institutions take part in tissue engineering research and development
for the purposes of eventually developing a construct that can be implanted into a patient,
the Cal Poly BVM lab is focused on continually improvingm@awitro blood vessel
construct. This is done for the purposes of measuring cellular respoinse exposed to
medical devices for the purposes of-phaical device testing. These peéinical trials
are performed prior to animahsed testing to reduce the high costs anddity

sometimes associated with animal test reults

The BVM model consists of human umbilical veirdethelial cells (HUVEC),

humanumbilical arterysmooth muscle cells-UASMC), or a combination of HUVECs



andHUASMCs cultured onto a polymeric scaffold. This scaffold is most commonly
fabricated from a poly(lactico-glycolic acid) copolymer via aim-house electrospinning
process. Electrospinning creates a randomly arranged fibrous, porous structure onto
which the cells can adhere. The cell proliferation and growth occurs in a bioreactor

designed within the BVM lab (Figure and?2).

Figure 1. Typical BVM bioreactor design. The electrospun scaffold is suspended in the middle o
chamber (A) and connected to luminal inlet (B) and outlet (C) ports, and adjacent to the extralu
outlet port (D). Media flows from the rexsvoir (E) into a peristaltic pump (F) and through the scaffo

either luminally (through B and C) or transmurally (through B and D)



Figure 2. An electrospun PLGA scaffold (top) sutured onto sterilizable fittings that interface with the
luminal ports on the BVM chamber. The lower image shows a BVM chamber with scaffold in place before

attachment to the mediaservoir and peristaltic puhp

Currently the Tissue Engineering Lab utilizes rigid, straigatied tubular
scaffolds for BVM setups, however flexible scaffold material such as ePagBden
used for more complex vessel paths in the®agthapter 6 of this thesis will discuss this
matter in greater detail.he next sections of this chapter will overview the role of the
scaffold in tissue engineering, as well as the materials commonly used to form scaffolds

and their desired properties.



1.3 Tissue Engineering Overview

As stated earlier, a large portion of tissengineering involves the use of a
scaffold on which researchers grow cells. This combination of cells and scaffold, a
construct is exposed to an environment that facilitates cell growth and proliferation. This
environment can be provided in a laborateejting orin vivoto take advantage of the
natural facilitation of biologic processé@sThis scaffolds typically fabricated and/or
processed into a shape like that of the tissue being grown (the shape of a tube for a blood
vessel, for instance), and is designed such that the characteristics of the scaffold most
closely mimic those of native tissue; Idgadcaffolds fabricated using engineering
materials would act identically as native extracellular matrices in terms of chemical and
mechanical properties, however this is rarely the case. Identifying and implementing
these desired attributes in an engieéescaffold is one of the key hurdles in creating

consistently successful tissue constructs.

1.3.1Desired Scaffold Characteristics

Any scaffold that is used for a tissue engineering application is made of one or
more biomaterials, broadly defined as any simgleombination of synthetic and natural
materials that are used to treat, augment, or replace tissues and functions in the
body1%1 Specifically, these materials must fulfill several stringent requirements with
regards to mechanical behavidegradationphysical morphologyand others such as
biocompatibilityand processability to successfuliyegrate with the body and to be a

realistic option for a tissue engineering scaffold.



1.3.1.1Mechanical Behavior

Biomaterials used for tissue engineering scaffolds must having mechanical
strengths and stiffness close or equal to that of the native tissue¢heypkacing once
they are in scaffold form. Because scaffolds must nearly always exist as porous
structurestheir mechanical behavior can be more difficult to predict. Materials that are
too weak or too compliant may fail before the body can bolsterpbace it with native
tissue, however some compliance is required especially when mimicking soft tissues like
blood vesselé. The vast majority of tissue engineering scaffolds are made from
polymers, and as such the mechanical properties can be alteregblym@rizing
different constituent materials to yield a blend that utilizegerties of its components,
like the many different types of PLGA, a biomaterialpmymer of poly(lactic acid)
(PLA) and poly(glycolic acid) (PGAS. Flexible polymers such as polycapicitzne,
polyurethane, and collagen are often used to form such scaffolds, and are employed in

applications like tissue engineered blood vessels, neural structures, dfid'skin

1.3.1.2Degradation

Devices and materials that are implanted within the body face harsh, unforgiving
conditions that can cause significalggradation over time; extreme pH, fatigue,
electrolytic bodily fluids, and bodily immune response can all lead to degradéfion
This can be detrimental to deeis that are intended to live with the patient for the rest of
their life, however tissue engineering applications take advantage of this phenomenon by
designing materials to degrade over a time period similar to the time required for the

body to replacetiwith native tissu&. For instance, poly(lactic acid) (PLA) and



poly(glycolic acid) (PGA) are often combined to form poly(lactieglycolic acid)

(PLGA) of vaiious molecular ratios. While PLA resists water uptake and hydrolysis due

to its hydrophobicity and the crystalline nature of PGA limits the access of water to most
the polymer backbone, PLGA exhibits a more hydrophilic nature than PLA, and
experiences a slinp drop in maximum crystallinity compared to PGA with increasing

PLA content. In this way, varying the relative amounts of constituent material in PLGA

will result in a wide range of degradation times when used in bodily conditions
Biodegradable polymers can be sourced directly from or be derived from natural sources
and include polymers such as collagen, elastin, polyhydroxyalkanoates, and cellulose, or
canbef or med synt het i ccagrdagtone)(PEL), PLAJRGA,gndpnaryy ( U

otherg*,

1.3.1.3Morphology

In addition to matching the mechanical performance of a nasisee, scaffolds
must also replicate an environment favorable to cell adhesion and proliferation. This is
primarily done by processing the material in such a way that features on theanic
nanascale form sites at which cells can adhere, commonbutir the formation of
pores. Pores are created in attempts to simulate the natraliyring extracellular

matrix (ECM) that suounds and houses cells (Figujé3



L

us types of native human EM, including fibrosarcoma cancer cells (red) on a collagen

Figure 3. Vario
(blue) matix (top left), elastin ECM of an aorta (top right), several types of porcine small intestinal

submucosa ECM (bottom left), and a fibrin ECM mesh with attached human leukocyte (bottoffi Fght)

The synthetic material expanded polytetrafluoroethylene (eP@&ftbeused as
a nondegradable biomaterial for vascular tissue engineering due to its microscopic

morphology of nodes connected by strands of fiber that provide poreslls to inhabit

(Figure j.



Figure 4. SEM image of ePTFE at 1000x magnification, showing solid nodes connected by fibrous

materiatC.

In addition to obtainingre-manufactured ePTFE for research, it is possible to
fabricate porous scaffolds with-mouse techniques, such as electrospinning. A
significant amount of research has been done on tailoring the morphology of electrospun
polymeric scaffolds, specificgllthe size and shape of pores and fibers, to best
accommodate cells during seeding and cuttif® A holistic understanding of the
interplay between polymer and solvent properties and processing parameters is necessary
to properly tailor the resulting properties of a scaffold fabricatdwumse; a background
on polymer science and its pertinence ec#bspinning specifically will be covered in

detail in the following sections.
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1.4 Polymer Science Overview

Polymers as a materials class have significant physical and chemical diversity and
can be precisely tailored for countless applicafibri® match the mechanical properties
of the many flexibldissues in the body when designing implantable biomedical
solutions, polymers are frequently considered for {targy implantable applicatioffs*,
Additionally, polymers are utilized for their ability to be reliably broken down in the
presence of a biological environment, allowing for their use in temporary, degradable
implants in which the polymeristructure is naturally replaced by biologic
materiaf®414%48 |n tissue enigeering applications, polymers are typically used as a
scaffold on which cells are grown and proliferated. This synthetic substrate acts as a
replacement for the natural extracellular matrix (ECM), a complex network of natural

materials that provide physil and chemical stimulus for cells throughout the

bOd}ZS’33’49 53.

While the requirement of being formed in a porous or otherwise Haicking
geometry is one primary requirement for most polymeric biomaterials, several others
exist as well: Polymers must endureeriization process, the constant contact with a
corrosive, aqueous environment, the elevated temperature of the body, and must retain its
mechanical properties throughout the duration of its useful life. Typical sterilization
processes include autoclaedectron beam, ethylene oxide (Bt&xposure, and gamma
radiation, all of which can cause some polymers to melt, deteriorate, or embrittle to the
point of uselessne¥s>®. Additionally, the processing of a material into a porous structure

can cause changes in mechanical and chemical properties that roassiokeredvhen
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choosing anaterial for a tissue engineering applicatiorr. &ample, according to CES

Bioengineering EduPaackat er i al s

sel ection

softwar e, t

exists as a range between 1.25 and 2.85 GPa, while PTFE exhibits values Between

and0.552 GP¥. However, in a previous Tissue Engering lab thesis it was discovered

t hat

el

ectrospun

PLGA

scaff ol

ds

and

ePTFE

13.251 MPa and 7.801 MPa, respectively, much lower than the published values in CES.

This may be attributed to the fibrous, porouscture of the material, yielding most

measurements of cross sectional area inaccurate withimbitontent taken into account.

In addition to mechanical behavior, other properties inherent to the polymer

structure such as glass transition temperatugent@y change or be expressed differently

once processed or exposed to bodily conditions. Simply put, the glass transition of an

amor phous or

Agl assyo

energy to move past each other, andxhe | k

pol ymer

materi al
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Polymer chains and the atoms that make them up experience localized movement,
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between molecules (Figurg®s®®
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. B A Osciliatory motion {vibrations):
Cccurs within a “cage” formed by
“ nearest neighbours. Thisis “solid-
' : ‘ i Moaclecules jumps to new positions.
‘ This is “liguid-like” motion andis
. ‘ ‘ associated with large free volume.

like” motion and is associated with
small free volume.
Figure 5. Simplified model of molecules in an amorphous arrangement. Green atoms represent those which

Transiational motion {diffusion}:

can only exhibit oscillatory motion, while the blue atom hasgportunity to move to a new location

relative to other atoms due to a higher free voffme

Theglass transition temperature represents the point at which the molecules
contain enough thermal energy to oscillate in such a way that can move from their
previous local focus of oscillation and occupy a new space, moving relative to other
molecules to deo. The movement of an entire chain would not be energetically
favorable even above the glass transition temperature, and so the movement of individual
atoms occurs by rotations in small portions of the aiihe energy required to rotate a
chain at a particular atomic bond is dictated by the presdrmdky molecules and side
groups attached to the backbone; This explains why the glass transition temperature of
polystyrene, which contains a large aromatic ring, is much highethbaof PLA, PGA,

or PLGA (116 T compared to 560, 3540, and 5665 °C, respectively’’ 62,

The existence of a glass transition is important for tissue engineering not only
because it signifies a point at which amorphous polymers transition from relatively rigid

and glassy to flexible and rubbery, but also because the effective glass transition
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temperature can change due togassing. There have been multiple publishsthnces

of electrospinning resulting in a depressgadmpared to a bulk sample of the sample
materiaf>%4 Additionally, literature suggests that the processing of polymers into fibers
and thin films depresses the gdgmansition temperature significantly. Polymer chains at
a surface have greater latent free volume and thus a lqyeerdTthe formation of films
and fibers drastically increases the surface-tra@lume ratio, such that the overalj T

of the structurés lowered as well with decreasing fiber diameter or film thickii®és

This can drastically change the mechanical properties of a matatsabifik Ty exists
closely above the working temperature for an application that requires a thin film or
micro-/nanofibrous structurel'he depression of glass transition temperature of PLGA
due to electrospinning has been shown to cause shrinkage irsfdwaffiolds prepared

for various tissue engineering research efforts and has been experienced in the BVM

|ab63,64,68,69

For the past 8 years the polymer of choice for blood vessel scaffolds in the Cal
Poly BVM lab has been poly(lact@o-glycolic acid) (PLGA$S%"t PLGA, along with its
constituent mateais, is frequently used in biodegradable biomedical implant
applications. The BVM lab had previously obtained scaffolds of expanded
polytetrafluorethylene (ePTFE), however due to their high cost and mismatched
mechanical properties with native vessels léeri@ative material that couloke fabricated
and tailored irhouse was consideretf. PLGA was selected due to its favorable
biocompatibility and degradation, as well as mechanical properties similar to those of

native vessels and evidence of adequate endaiticell attachmerif. PLGA is used as a
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biomaterial for severdissue engineeringesearctapplications including cartilage, bone,
and blood vesssl " It hasalsobeen apmved by the FDA for use in several biomedical

implants and drug products like suture reinforcement, skin grafts, and bon& pfugs

PLGA is synthesized via ringpening cepolymerizationof the cyclic dimers
lactide and glycolid€. The Cal Poly BVM lab specifically uses a 75:25 ratio of lactide

and glycolide that is a random copolymer with both L anddiide isomer groups

(Figure 6.
O
\H\O 5 Sn(Oct), O
G SR ) i P ST
O
lactide (LA) glycolide (GA) poly(lactide-co-glycolide) (PLGA)

Figure 6. Simplified PLGA copolymerization reaction featuriagclic dimers of LA and GA and

respective PLGA monomers. Sn(Qdy Tin(Il) 2-ethylhexanoate, a polymerization catal§st

PGA is a highly crystalline polymer whereas poly(D,L lactic acid) (PDLLA,
polymer constructed of both PLA isomers) is fully amorphous; when copolymerized the
resulting PLGA exhibits a sharp droprimtaximum crystallinity as PLA content increases,
such that 75:25 PLGA is fully amorphous. The ability to tailor both crystallinity and
hydrophobicity/philicity based on the relative amounts of PLA and PGA allows one to

alter the degradation properties of®A to fit degradation timelines of less than 1

15



month, between 1 and 6 months, and beyond 6 m3rither addition to degradation
characteristics, the impact of relative polymer composition on solution parameters and on
solvent compatibility all must be considered when selecting the appsopriate polymer

for electrospinning; the following section discusses the eftédcteveral electrospinning
parameters including those dictated by polymer and solution propantibe

electrospinning process

1.5 Electrospinning Overview

Electrospinnings a polymer processing technique that uses electrostatic forces to
draw out polymer fibers and deposit them on a conductive surface. The most common
implementation of this idea is achieved by dissolving said polymer in an appropriate
solvent, however soenstudies have shown success in electrospinning from a polymer
melt®, The polymer solution is then expelled from the syringe through a conductive
needle charged via a high voltage power supply and gbioteards a grounded

conductive collecting surface located some distance &waythe needle tip (Figure .7)
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Collection Target
Electric Field

Polymer Solution
Jet Initiation

7\

A [ [ |

$ X - (] | { |
9_‘ NV A ()

High Voltage
Power Supply

Rotation

Figure 7. Diagram of a general model of an electrospinning setup. The collection target rotates and

translates t@nsure even, random coverage of polymer fibers

Electrospinning is possible due to the combination of electrostatic forces and
surface tension working on the polymer solution. As the solution is expeabiectfie
syringe a bead forms at the tip of the needle. This bead is held together by surface
tension, however once the power supply is engaged the polymer serves as a conduit to
complete the open circuit and the electrostatic forces deform the beadatoa
coné?84, Electrostatic forces overcome those of surface tensioe critical voltage is
reachedat which point a jet of solution erupts from the Taylor cone and tremetsds

the groundedollector (Figure 8
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Convective flow

77y

Zone of transition between
liquid and solid

Ohmic flow

e = Taylor cone
Spinning tip |

sor-kv
Geometry of cone ks governed
by the ratio of surface tension
to electrostatic repulsion

Target

SLOW ACCELERATION RAPID ACCELERATION

Figure 8. Formation and journey of a polymer jet beginning at the needle tip and depositing on a

grounded surfaéa

As the solution travels towards the collector it elongates and becomes thinner,
beginningthe formation of micro/nanofibers. The mechanism by which these blegis
to formis the phenomenon of ohmic flow, in which the bulk of the polymer jet contains
charges which are attracted to the grounded mandrel. However, as the jet thins and
charges ngrate to the surface of the jet after initial elongatitie charges begin to repel
one another; this is a transition in current flow regime from offlowe to convective

flow (Figure 9¥°.
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Figure 9. Transition from ohmic to convective flow in an elongating polymer jet. Negative charges initially

distributed throughout the solution travel to the surface of thé jet

The distribution of forces onto the surface of the jet induces what is referred as
bending instability, in which the repulsion of like charges causes the jet to whip and

elongate ta much greater degree (Figure®0

Endof sraight
segment
Onset of furst
bending instability

!
1 Trajectoryof an
1 element of the path
!
)

Half angle of i

envelope cone

Onget of s2cond
bending instsbility

Onset of third !
bendinginstability !

2

Axis of straight ’: _"
]
|

segment, extended

Figure 10. Visualization of bending instabilities experienced during electrospinning (left) and a picture of a

polymerexperience bending instability during electrospinning (rit§i§t)
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