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ABSTRACT 

Identifying and Reducing Variability, Improving Scaffold Morphology, and Investigating 

Alternative Materials for the Blood Vessel Mimic Lab Electrospinning Process 

Evan M. Dowey 

The work of the Cal Poly Tissue Engineering Lab is primarily focused on the fabrication, 

characterization, and improvement of ñBlood Vessel Mimicsò (BVMs), tissue engineered 

constructs used to evaluate cellular response to vascular medical devices. Currently, cells 

are grown onto fibrous, porous tubes made using an in-house electrospinning process 

from PLGA, a biocompatible co-polymer. The adhesion and proliferation of cells in a 

BVM is reliant on the micro-scale structure of the PLGA scaffold, and as such it is of 

great importance for the electrospinning process to consistently produce scaffolds of 

similar morphologies. Additionally, it has been shown that cell proliferation increases 

with scaffolds of smaller fibers and pores than the current electrospinning protocol can 

produce. Finally, the Tissue Engineering Lab has interest in testing devices in more 

tortuous BVM bioreactor designs, however the use of relatively rigid PLGA scaffolds has 

severely limited the ability to construct more complicated vessel geometries. 

The overall goal of this thesis was to improve fabrication and characterization of 

electrospun polymer scaffolds for BVM use.  The specific aims of this thesis were to: 1) 

Improve scaffold characterization by comparing two techniques for fiber diameter 

measurement and implementing a technique for pore area measurement. 2) Reduce 

scaffold fiber diameter and pore area by investigating humidity and solvent composition 

electrospinning parameters. 3) Reduce process variability by developing a more specific 

electrospinning protocol. 4) Improve scaffold consistency and use by understanding and 

reducing PLGA scaffold shrinkage. 5) Identify and evaluate more flexible polymers as 

potential alternatives for electrospun BVM scaffolds.  

In order to accomplish these aims, first, several BVM and outside literature images were 

taken and evaluated with current and prospective fiber diameter techniques, and with 2 

prospective pore area techniques to characterize accuracy and consistency of each 

method. It was found that the prospective fiber diameter measurement technique was not 

superior to the current method. The techniques developed for pore area measurement 

were found to produce results that differed significantly from each other and from the 

published value for a given image. Next, changes to environmental and solution 

composition parameters were made with the hopes of reducing fiber diameter and pore 

area of electrospun PLGA scaffolds. Changes in relative humidity did not appear to 

significantly affect scaffold fiber diameter while changes to solvent composition, 

specifically the use of acetone, resulted in fibers significantly smaller than those regularly 

achieved in the BVM lab. Next, several sources of variability in the electrospinning 



v 

 

protocol were identified and subsequently altered to improve consistency and usability. 

Specifically, this included redefining the precision with which PLGA mass was 

measured, repositioning electrical equipment to reduce the effect of stray electrostatic 

forces on the polymer solution jet, attempting to control the temperature and humidity 

inside the electrospinning enclosure, and improving the ease with which scaffolds are 

removed from their mandrels through alternative mandrel surface treatments. In addition 

to overall process variability, the issue of scaffold shrinkage during BVM use was 

investigated and two possible treatments, exposure to either ethanol or elevated 

temperatures, were proposed based on previous electrospinning literature results. Each 

was tested for their effectiveness in mitigating shrinkage through exposure to BVM 

setup-mimicking conditions. It was found that both treatments reduced scaffold shrinkage 

compared to control samples when exposed to BVM setup-mimicking conditions. 

Finally, 3 flexible polymers were selected and electrospun to compare against typical 

PLGA results and to conduct a kink radius test as a metric for measuring flexibility as it 

pertains to the proposed BVM lab application. It was concluded that two types of 

thermoplastic polyurethane (tPU) were not acceptable electrospinning materials for use in 

the BVM lab. Additionally, while polycaprolactone (PCL) could be successfully 

electrospun it could not undergo the amount bending required for more tortuous BVM 

bioreactor designs without kinking.  

Overall, the work in this thesis provided insight into multiple scaffold characterization 

techniques, reduced overall electrospinning variability in the fabrication and use of 

PLGA scaffolds, and defined processing parameters that have been shown to yield 

scaffolds with smaller morphological features than all prior Tissue Engineering Lab 

work. By creating better, more effective scaffolds, researchers in the Tissue Engineering 

Lab can more accurately mimic the structure and properties of native blood vessels; this, 

in turn, will result in BVM cell responses that more closely resemble that of native tissue. 

Creating consistent and appropriate BVMs will then lead to impactful contributions to the 

existing body of tissue engineering research and to better preclinical device testing. 

 

 

 

 

 

Keywords: electrospinning, scaffold, PLGA, polymer, fiber diameter, pore area, 

variability, shrinkage, flexible, blood vessel mimic, tissue engineering  
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1. INTRODUCTION 

1. Line 1 

1.1 General Overview 

The focus of this thesis was to improve upon the processes for fabricating and 

characterizing electrospun scaffolds for use in the Cal Poly Tissue Engineering Lab as 

substrates for blood vessel mimic (BVM) constructs. BVMs are used as a form of pre-

clinical intravascular medical device testing, and are central to the research done in the 

Tissue Engineering Lab. Several previous theses have been published on the topic of 

electrospinning, and this work is intended to build upon those to further improve the 

electrospinning process in the BVM lab. This work includes standardizing, improving, 

and expanding upon the current characterization techniques for electrospun scaffolds, 

improving scaffold characteristics by reducing average fiber diameter and pore size, 

reducing or eliminating sources of variability in the electrospinning process, investigating 

and reducing scaffold shrinkage in vitro, and exploring options for flexible polymer 

systems to replace PLGA for use in more complex BVM designs, each of which will be 

covered in-depth in the following chapters. 

 

The following introduction sections provide relevant background information and 

research concerning the history and relevancy of the BVM system, the role of the 

scaffold in tissue engineering and in BVMs specifically, and the process of 

electrospinning and how various processing parameters and solvent properties can impact 

scaffold properties and morphology. This is presented alongside a summary of previous 
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Tissue Engineering Lab electrospinning theses to provide a basis for understanding and 

interpreting the rationale, methods, and results provided in this thesis. 

 

1.2 BVM Overview 

The Tissue Engineering Lab at Cal Poly focuses its research into the field of 

tissue engineering, specifically to create structures that resemble human blood vessels, or 

BVMs. In general, tissue engineering can be defined as the deliberate combination of 

cells, a scaffold on which to affix and grow cells, and a biologically stimulating 

environment to create functional tissues for the purposes of repairing, sustaining, or 

augmenting existing bodily tissues1. In this way, researchers and tissue engineers hope to 

access the natural tissue-generating and maintaining ability of cells and biological 

systems by providing them with a favorable environment in which to flourish2.  

 

Tissue engineering is commonly conducted to alleviate the problems facing more 

traditional treatment options such as receiving donor tissue (allografts), autografts, and 

medical devices. The most evident and recurring issue with using donor tissue to treat 

currently-ailing patients is a chronic shortage of donors and an ever-increasing waitlist of 

patients in need; As of July 2017, 110,000 patients are listed on the national transplant 

waiting list, while only 33,611 transplants were performed in the previous year3.  There 

also exists the ever-present problem of tissue rejection and navigating the patientôs 

immune response to foreign bodies. Autologous tissue transplants also present several 

limitations: If a patient is suffering from a genetic ailment then the transplanted tissue 

will have similar defects, limiting the effectiveness of the procedure. Secondly, the act of 
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removing tissue to be grafted elsewhere takes a toll on the patient, especially if they are 

already ailing from their current condition. In the case of coronary bypass, for example, 

sections of blood vessel are removed from healthier portions of the body such as the 

arms, legs, or chest, causing some amount of injury in those locations and withdrawing 

from the finite supply of potential donor tissue in the patient that may be needed in case 

of a subsequent procedure4,5. By fabricating tissue from cells that have been grown and 

expanded in a laboratory setting, the physical burden on the patient may be lessened.  

 

The BVM lab at Cal Poly focuses on the 3 main aspects of tissue engineering in 

some capacity, by experimenting with various types of cells, scaffold fabrication 

techniques, and biologically stimulating environments to produce the most viable blood 

vessel-mimicking structures.  

 

While many institutions take part in tissue engineering research and development 

for the purposes of eventually developing a construct that can be implanted into a patient, 

the Cal Poly BVM lab is focused on continually improving an in vitro blood vessel 

construct. This is done for the purposes of measuring cellular responses when exposed to 

medical devices for the purposes of pre-clinical device testing. These pre-clinical trials 

are performed prior to animal-based testing to reduce the high costs and variability 

sometimes associated with animal test results6. 

 

The BVM model consists of human umbilical vein endothelial cells (HUVEC), 

human umbilical artery smooth muscle cells (HUASMC), or a combination of HUVECs 
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and HUASMCs cultured onto a polymeric scaffold. This scaffold is most commonly 

fabricated from a poly(lactic-co-glycolic acid) copolymer via an in-house electrospinning 

process. Electrospinning creates a randomly arranged fibrous, porous structure onto 

which the cells can adhere. The cell proliferation and growth occurs in a bioreactor 

designed within the BVM lab (Figure 1 and 2). 

 

 

Figure 1. Typical BVM bioreactor design. The electrospun scaffold is suspended in the middle of the 

chamber (A) and connected to luminal inlet (B) and outlet (C) ports, and adjacent to the extraluminal 

outlet port (D). Media flows from the reservoir (E) into a peristaltic pump (F) and through the scaffold, 

either luminally (through B and C) or transmurally (through B and D)7. 
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Figure 2. An electrospun PLGA scaffold (top) sutured onto sterilizable fittings that interface with the 

luminal ports on the BVM chamber. The lower image shows a BVM chamber with scaffold in place before 

attachment to the media reservoir and peristaltic pump8. 

 

Currently the Tissue Engineering Lab utilizes rigid, straight-walled tubular 

scaffolds for BVM setups, however flexible scaffold material such as ePTFE has been 

used for more complex vessel paths in the past8,9. Chapter 6 of this thesis will discuss this 

matter in greater detail. The next sections of this chapter will overview the role of the 

scaffold in tissue engineering, as well as the materials commonly used to form scaffolds 

and their desired properties. 
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1.3 Tissue Engineering Overview 

As stated earlier, a large portion of tissue engineering involves the use of a 

scaffold on which researchers grow cells. This combination of cells and scaffold, a 

construct, is exposed to an environment that facilitates cell growth and proliferation. This 

environment can be provided in a laboratory setting or in vivo to take advantage of the 

natural facilitation of biologic processes10. This scaffold is typically fabricated and/or 

processed into a shape like that of the tissue being grown (the shape of a tube for a blood 

vessel, for instance), and is designed such that the characteristics of the scaffold most 

closely mimic those of native tissue; Ideally scaffolds fabricated using engineering 

materials would act identically as native extracellular matrices in terms of chemical and 

mechanical properties, however this is rarely the case. Identifying and implementing 

these desired attributes in an engineered scaffold is one of the key hurdles in creating 

consistently successful tissue constructs. 

 

1.3.1 Desired Scaffold Characteristics 

Any scaffold that is used for a tissue engineering application is made of one or 

more biomaterials, broadly defined as any single or combination of synthetic and natural 

materials that are used to treat, augment, or replace tissues and functions in the 

body1,10,11. Specifically, these materials must fulfill several stringent requirements with 

regards to mechanical behavior, degradation, physical morphology, and others such as 

biocompatibility and processability to successfully integrate with the body and to be a 

realistic option for a tissue engineering scaffold. 
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1.3.1.1 Mechanical Behavior 

Biomaterials used for tissue engineering scaffolds must having mechanical 

strengths and stiffness close or equal to that of the native tissue they are replacing once 

they are in scaffold form. Because scaffolds must nearly always exist as porous 

structures, their mechanical behavior can be more difficult to predict. Materials that are 

too weak or too compliant may fail before the body can bolster or replace it with native 

tissue, however some compliance is required especially when mimicking soft tissues like 

blood vessels12. The vast majority of tissue engineering scaffolds are made from 

polymers, and as such the mechanical properties can be altered by co-polymerizing 

different constituent materials to yield a blend that utilizes properties of its components, 

like the many different types of PLGA, a biomaterial co-polymer of poly(lactic acid) 

(PLA) and poly(glycolic acid) (PGA)13. Flexible polymers such as polycaprolactone, 

polyurethane, and collagen are often used to form such scaffolds, and are employed in 

applications like tissue engineered blood vessels, neural structures, and skin14ï21.  

 

1.3.1.2 Degradation 

Devices and materials that are implanted within the body face harsh, unforgiving 

conditions that can cause significant degradation over time; extreme pH, fatigue, 

electrolytic bodily fluids, and bodily immune response can all lead to degradation22,23. 

This can be detrimental to devices that are intended to live with the patient for the rest of 

their life, however tissue engineering applications take advantage of this phenomenon by 

designing materials to degrade over a time period similar to the time required for the 

body to replace it with native tissue24. For instance, poly(lactic acid) (PLA) and 
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poly(glycolic acid) (PGA) are often combined to form poly(lactic-co-glycolic acid) 

(PLGA) of various molecular ratios. While PLA resists water uptake and hydrolysis due 

to its hydrophobicity and the crystalline nature of PGA limits the access of water to most 

the polymer backbone, PLGA exhibits a more hydrophilic nature than PLA, and 

experiences a sharp drop in maximum crystallinity compared to PGA with increasing 

PLA content. In this way, varying the relative amounts of constituent material in PLGA 

will result in a wide range of degradation times when used in bodily conditions24. 

Biodegradable polymers can be sourced directly from or be derived from natural sources 

and include polymers such as collagen, elastin, polyhydroxyalkanoates, and cellulose, or 

can be formed synthetically, including poly(Ů-caprolactone) (PCL), PLA, PGA, and many 

others24. 

 

1.3.1.3 Morphology 

In addition to matching the mechanical performance of a native tissue, scaffolds 

must also replicate an environment favorable to cell adhesion and proliferation. This is 

primarily done by processing the material in such a way that features on the micro- or 

nano-scale form sites at which cells can adhere, commonly through the formation of 

pores. Pores are created in attempts to simulate the naturally-occurring extracellular 

matrix (ECM) that surrounds and houses cells (Figure 3)25.  
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Figure 3. Various types of native human ECM, including fibrosarcoma cancer cells (red) on a collagen 

(blue) matrix (top left), elastin ECM of an aorta (top right), several types of porcine small intestinal 

submucosa ECM (bottom left), and a fibrin ECM mesh with attached human leukocyte (bottom right)26ï29. 

 

The synthetic material expanded polytetrafluoroethylene (ePTFE) can be used as 

a non-degradable biomaterial for vascular tissue engineering due to its microscopic 

morphology of nodes connected by strands of fiber that provide pores for cells to inhabit 

(Figure 4). 
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Figure 4. SEM image of ePTFE at 1000x magnification, showing solid nodes connected by fibrous 

material30. 

 

In addition to obtaining pre-manufactured ePTFE for research, it is possible to 

fabricate porous scaffolds with in-house techniques, such as electrospinning. A 

significant amount of research has been done on tailoring the morphology of electrospun 

polymeric scaffolds, specifically the size and shape of pores and fibers, to best 

accommodate cells during seeding and culture31ï40. A holistic understanding of the 

interplay between polymer and solvent properties and processing parameters is necessary 

to properly tailor the resulting properties of a scaffold fabricated in-house; a background 

on polymer science and its pertinence to electrospinning specifically will be covered in 

detail in the following sections. 
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1.4 Polymer Science Overview 

Polymers as a materials class have significant physical and chemical diversity and 

can be precisely tailored for countless applications41. To match the mechanical properties 

of the many flexible tissues in the body when designing implantable biomedical 

solutions, polymers are frequently considered for long-term implantable applications42ï45. 

Additionally, polymers are utilized for their ability to be reliably broken down in the 

presence of a biological environment, allowing for their use in temporary, degradable 

implants in which the polymeric structure is naturally replaced by biologic 

material20,41,46ï48. In tissue engineering applications, polymers are typically used as a 

scaffold on which cells are grown and proliferated. This synthetic substrate acts as a 

replacement for the natural extracellular matrix (ECM), a complex network of natural 

materials that provide physical and chemical stimulus for cells throughout the 

body25,33,49ï53. 

 

While the requirement of being formed in a porous or otherwise ECM-mimicking 

geometry is one primary requirement for most polymeric biomaterials, several others 

exist as well: Polymers must endure a sterilization process, the constant contact with a 

corrosive, aqueous environment, the elevated temperature of the body, and must retain its 

mechanical properties throughout the duration of its useful life. Typical sterilization 

processes include autoclave, electron beam, ethylene oxide (EtO) exposure, and gamma 

radiation, all of which can cause some polymers to melt, deteriorate, or embrittle to the 

point of uselessness54ï56. Additionally, the processing of a material into a porous structure 

can cause changes in mechanical and chemical properties that must be considered when 
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choosing a material for a tissue engineering application. For example, according to CES 

Bioengineering EduPack materials selection software, the Youngôs modulus for PLGA 

exists as a range between 1.25 and 2.85 GPa, while PTFE exhibits values between 0.4 

and 0.552 GPa57. However, in a previous Tissue Engineering lab thesis it was discovered 

that electrospun PLGA scaffolds and ePTFE tubing exhibited Youngôs modulus values of 

13.251 MPa and 7.801 MPa, respectively, much lower than the published values in CES. 

This may be attributed to the fibrous, porous structure of the material, yielding most 

measurements of cross sectional area inaccurate without void content taken into account. 

 

In addition to mechanical behavior, other properties inherent to the polymer 

structure such as glass transition temperature (Tg) may change or be expressed differently 

once processed or exposed to bodily conditions. Simply put, the glass transition of an 

amorphous or ñglassyò polymer is the point at which the molecular chains have sufficient 

energy to move past each other, and the bulk material exhibits a ñrubberyò behavior. 

Polymer chains and the atoms that make them up experience localized movement, 

oscillations due to their thermal energy, that create a certain amount of ñfree volumeò 

between molecules (Figure 5)58,59. 

 



13 

 

 
Figure 5. Simplified model of molecules in an amorphous arrangement. Green atoms represent those which 

can only exhibit oscillatory motion, while the blue atom has an opportunity to move to a new location 

relative to other atoms due to a higher free volume59. 

 

The glass transition temperature represents the point at which the molecules 

contain enough thermal energy to oscillate in such a way that can move from their 

previous local focus of oscillation and occupy a new space, moving relative to other 

molecules to do so. The movement of an entire chain would not be energetically 

favorable even above the glass transition temperature, and so the movement of individual 

atoms occurs by rotations in small portions of the chain60. The energy required to rotate a 

chain at a particular atomic bond is dictated by the presence of bulky molecules and side 

groups attached to the backbone; This explains why the glass transition temperature of 

polystyrene, which contains a large aromatic ring, is much higher than that of PLA, PGA, 

or PLGA (116 °C compared to 50-60, 35-40, and 50-55 °C, respectively)60ï62.  

 

The existence of a glass transition is important for tissue engineering not only 

because it signifies a point at which amorphous polymers transition from relatively rigid 

and glassy to flexible and rubbery, but also because the effective glass transition 
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temperature can change due to processing. There have been multiple published instances 

of electrospinning resulting in a depressed Tg compared to a bulk sample of the sample 

material63,64. Additionally, literature suggests that the processing of polymers into fibers 

and thin films depresses the glass transition temperature significantly. Polymer chains at 

a surface have greater latent free volume and thus a lower Tg and the formation of films 

and fibers drastically increases the surface area-to-volume ratio, such that the overall Tg 

of the structure is lowered as well with decreasing fiber diameter or film thickness65ï67. 

This can drastically change the mechanical properties of a material if its bulk Tg exists 

closely above the working temperature for an application that requires a thin film or 

micro-/nanofibrous structure. The depression of glass transition temperature of PLGA 

due to electrospinning has been shown to cause shrinkage in fibrous scaffolds prepared 

for various tissue engineering research efforts and has been experienced in the BVM 

lab63,64,68,69. 

 

For the past 8 years the polymer of choice for blood vessel scaffolds in the Cal 

Poly BVM lab has been poly(lactic-co-glycolic acid) (PLGA)6,70,71. PLGA, along with its 

constituent materials, is frequently used in biodegradable biomedical implant 

applications. The BVM lab had previously obtained scaffolds of expanded 

polytetrafluorethylene (ePTFE), however due to their high cost and mismatched 

mechanical properties with native vessels an alternative material that could be fabricated 

and tailored in-house was considered7,70. PLGA was selected due to its favorable 

biocompatibility and degradation, as well as mechanical properties similar to those of 

native vessels and evidence of adequate endothelial cell attachment70. PLGA is used as a 
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biomaterial for several tissue engineering research applications including cartilage, bone, 

and blood vessels72,73. It has also been approved by the FDA for use in several biomedical 

implants and drug products like suture reinforcement, skin grafts, and bone plugs74ï76. 

 

PLGA is synthesized via ring-opening co-polymerization of the cyclic dimers 

lactide and glycolide77. The Cal Poly BVM lab specifically uses a 75:25 ratio of lactide 

and glycolide that is a random copolymer with both L and D lactide isomer groups 

(Figure 6). 

 

Figure 6. Simplified PLGA copolymerization reaction featuring cyclic dimers of LA and GA and 

respective PLGA monomers. Sn(Oct)2 is Tin(II) 2-ethylhexanoate, a polymerization catalyst78. 

 

PGA is a highly crystalline polymer whereas poly(D,L lactic acid) (PDLLA, 

polymer constructed of both PLA isomers) is fully amorphous; when copolymerized the 

resulting PLGA exhibits a sharp drop in maximum crystallinity as PLA content increases, 

such that 75:25 PLGA is fully amorphous. The ability to tailor both crystallinity and 

hydrophobicity/philicity based on the relative amounts of PLA and PGA allows one to 

alter the degradation properties of PLGA to fit degradation timelines of less than 1 
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month, between 1 and 6 months, and beyond 6 months50,79. In addition to degradation 

characteristics, the impact of relative polymer composition on solution parameters and on 

solvent compatibility all must be considered when selecting the most appropriate polymer 

for electrospinning; the following section discusses the effects of several electrospinning 

parameters including those dictated by polymer and solution properties on the 

electrospinning process. 

 

1.5 Electrospinning Overview 

Electrospinning is a polymer processing technique that uses electrostatic forces to 

draw out polymer fibers and deposit them on a conductive surface. The most common 

implementation of this idea is achieved by dissolving said polymer in an appropriate 

solvent, however some studies have shown success in electrospinning from a polymer 

melt80. The polymer solution is then expelled from the syringe through a conductive 

needle charged via a high voltage power supply and pointed towards a grounded 

conductive collecting surface located some distance away from the needle tip (Figure 7).  
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Figure 7. Diagram of a general model of an electrospinning setup. The collection target rotates and 

translates to ensure even, random coverage of polymer fibers81. 

 

Electrospinning is possible due to the combination of electrostatic forces and 

surface tension working on the polymer solution. As the solution is expelled from the 

syringe, a bead forms at the tip of the needle. This bead is held together by surface 

tension, however once the power supply is engaged the polymer serves as a conduit to 

complete the open circuit and the electrostatic forces deform the bead into a Taylor 

cone82ï84. Electrostatic forces overcome those of surface tension once critical voltage is 

reached, at which point a jet of solution erupts from the Taylor cone and travels towards 

the grounded collector (Figure 8). 
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Figure 8. Formation and journey of a polymer jet beginning at the needle tip and depositing on a 

grounded surface85. 

 

As the solution travels towards the collector it elongates and becomes thinner, 

beginning the formation of micro/nanofibers. The mechanism by which these fibers begin 

to form is the phenomenon of ohmic flow, in which the bulk of the polymer jet contains 

charges which are attracted to the grounded mandrel. However, as the jet thins and 

charges migrate to the surface of the jet after initial elongation, the charges begin to repel 

one another; this is a transition in current flow regime from ohmic flow to convective 

flow (Figure 9)86. 
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Figure 9. Transition from ohmic to convective flow in an elongating polymer jet. Negative charges initially 

distributed throughout the solution travel to the surface of the jet87. 

 

The distribution of forces onto the surface of the jet induces what is referred as 

bending instability, in which the repulsion of like charges causes the jet to whip and 

elongate to a much greater degree (Figure 10)88. 

 
 

Figure 10. Visualization of bending instabilities experienced during electrospinning (left) and a picture of a 

polymer experience bending instability during electrospinning (right)88,89. 

 




















































































































































































































































































































































































































































































































































































































