Reduction of Uranium by Bacterial Products

Adesanya A. Akinleye1, Sharon Bone2, John Bargar2
1 York College, City University of New York, Jamaica NY 11451
2 SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025

Background

The Old Rifle Mill Processing site at Rifle, CO, contains uranium contaminated groundwater. Uranium contamination is one of the most common problems at Department of Energy legacy sites. Anaerobic bacteria and their metabolic byproducts can catalyze the reduction of uranium. Reduced uranium [U(IV)], which is found in naturally reduced zones, is insoluble and less mobile than oxidized uranium [U(VI)]. Understanding the oxidation/reduction pathways will allow us to better predict the fate and transport of uranium.

Methods

Creating Aquifer Settings & Conditions in Vials
1) Artificial Groundwater & Blended Roots (Biomass) from Rifle, CO were added to each vial

```
Artificial Groundwater + Biomass
```

2) Each vial was sparged with a mixture of carbon dioxide and nitrogen gas displacing oxygen to create an anaerobic environment

```
O2 + CO2 + N2
```

3) To kill bacteria, some vials were autoclaved with heat and pressure (130°C, 103kPa) for 30 minutes.

```
Heat & Pressure
```

4) Reagents (uranium, sulfide and iron(II) were added to the vials in different combinations and concentrations then were incubated on a shaker for 7-11 days to react.

```
Biomass samples were collected using vacuum filtration. X-ray absorption spectroscopy (XAS) was then used to determine the oxidation state of uranium in the solid phase.
```

```
Aqueous samples were removed from each vial. Uranium concentration was measured using inductively coupled plasma mass spectrometry (ICP-MS)
```

Motivation & Question

Metal reducing and sulfate reducing bacteria release sulfide [S²-] and ferrous [Fe²+] ions as products of their metabolic activities.

These ions can reduce uranium [U(VI)], but bicarbonate ions [HCO3⁻] slows down the reaction in the environment.

Despite the presence of bicarbonate we want to know in the absence of microbes, if plant biomass in the environment enhances U(VI) reduction by Fe²+ and S²-?

Data and Results

At the end of the incubation period, vials that were not autoclaved and contained Uranium turned black in color.

Conclusions and Future Directions

ICP-MS data suggests that the products of microbial respiration Fe²+ and S²- in a sterile solution does not enhance the removal of aqueous uranium in biomass suspension. Sterile samples with 10 μM U added show no difference amongst each other, however among the sterile samples with 50 μM of U, sulfide shows a greater change in U. Uranium I-IV edge XAS was used to assess whether U(VI) was reduced during the reaction. U(VI) spectra have a shoulder at 20,944eV, whereas U(VI) spectra do not. XAS show that U(VI) is still present and sorbed by the biomass. This can be seen by comparing the boxed region of the andersonite [U(VI) standard] and uraninite [U(IV) standard] spectra. The area highlighted by the boxed shoulder region shows that there is a mixture of both U(VI) and U(IV) in all of the biomass samples. Non-sterile samples seem to have a steeper slope at the boxed region suggesting they have more U(IV).

Acknowledgements

We acknowledge the DOE BES program for supporting this project through NSE PAP 1001.

References


