Monoclinic FeCl$_2$·2H$_2$O orders antiferromagnetically at $T_N=23$ K, and the magnetic structure consists of two sublattices of FeCl$_2$-chains lying along the c-axis. The coupling along the chains is ferromagnetic with weak antiferromagnetic coupling between chains. Application of an external magnetic field along the easy axis (a) induces phase transitions at $H_1=39$ kOe and at $H_2=46$ kOe.

We report the observation of the three phases using the Mössbauer effect in a single crystal of FeCl$_2$·2H$_2$O cut parallel to the c-axis and placed at 32° to the γ ray beam and magnetic field H_0 so that H_0 was parallel to the easy axis a. The results may be summarized as follows: (1) For $H_0<H_1$ we observe two superposed spectra with equal intensities due to the external field adding and subtracting to the hyperfine field in the spin down and spin up sublattices respectively; (2) For $H_1<H_0<H_2$ the relative intensities of the spin up to spin down spectra are roughly 3:1. (3) For $H_2<H_0$, only one spectrum is observed. These observations are consistent with the antiferromagnetic \rightarrow ferrimagnetic \rightarrow paramagnetic model of Narath from susceptibility measurements.

Supported by the Organization of American States.

Supported by the National Science Foundation.