Rifle and Shotgun Recoil Test System

A Senior Project

presented to

the Faculty of the Department of Mechanical Engineering

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Mechanical Engineering

by

Benjamin Canfield-Hershkowitz

Trevor Foster

William Meijer

December 2013

© 2013 Benjamin Canfield-Hershkowitz, Trevor Foster, and William Meijer
Statement of Disclaimer

Since this project is a result of a class assignment, it has been graded and accepted as fulfillment of the course requirements. Acceptance does not imply technical accuracy or reliability. Any use of information in this report is done at the risk of the user. These risks may include catastrophic failure of the device or infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the project.
Abstract

This project for Weatherby, Inc. requires a simple device to test the recoil force of their shotguns and rifles to determine the effectiveness of recoil suppression methods. A bench mounted device that secures the gun and records firing data to a portable computer was created. This project was completed for the Senior Project requirement for a Bachelors of Science in Mechanical Engineering from California Polytechnic State University, San Luis Obispo. The completed prototype was successful in measuring the recoil force and energy for Weatherby’s rifles. The recoil energy from the prototype differed from the calculated theoretical recoil energy with a small enough percent error to be deemed accurate. The differences between these values are lower than the margin of error for all measurements.
Table of Contents

Abstract .. iii
Table of Contents ... iv
List of Figures .. vi
List of Tables .. vii
1. Introduction: .. 1
2. Background: .. 3
3. Specifications: ... 5
4. Design Procedure: ... 6
 4.1 Method of Approach ... 6
 4.2 Ideation .. 6
 4.3 Analysis ... 6
 4.4 The Build ... 7
 4.5 Timeline .. 7
 4.6 Management Plan .. 7
5. Concept Design Development .. 8
 5.1 Ideation .. 8
 5.2 Top Designs ... 8
 5.3 Concept Selection .. 9
 5.4 Prototype ... 11
 5.5 Analysis ... 11
 5.6 Testing .. 11
6. Final Design .. 13
 6.1 Design Description .. 13
 6.2 Analysis Results .. 14
 6.2.1 Force analysis ... 14
 6.2.2 Sensor Selection ... 17
 6.2.3 Program Operation ... 18
 6.3 Cost Analysis ... 20
7. Product Realization ... 20
List of Figures

Figure 1 - Current Table Rifle Rest ... 1
Figure 2 - Top design choice of a single rail solid base system 10
Figure 3 - Final Design Isometric View .. 13
Figure 4 - Program Screen ... 19
Figure 5 - Export plot of sample data ... 19
Figure 6 - Machining .. 21
Figure 7 - Final system displayed at the Senior Project Expo 22
Figure 8 - Experimental test results from final system 24
Figure 9 - Sample Force and Time Graph ... 28
Figure 10 - QFD House of Quality ... 29
Figure 11 - Design possibility showing a rifle mounted on one of the sliding rails 30
Figure 12 - Design drawing illustrating a mount without the rails, such as a leather rest... 30
Figure 13 - Side view of foam prototype showing each component 31
Figure 14 - Top view of the foam prototype model .. 31
Figure 15 - Basic dimensions and schematic of top system design 32
Figure 16 - Dimensions for basic deflection analysis .. 33
Figure 17 - Winter 2013 Gantt Chart ... 34
Figure 18 - Spring 2013 Gantt Chart ... 35
Figure 19 - Fall 2013 Gantt Chart ... 36
Figure 20 - Recoil Force and Acceleration for Weatherby .25-06 37
Figure 21 - Recoil Force and Acceleration for Weatherby 300 Magnum 37
Figure 22 - Experimental data from final system for Weatherby 338, 1st shot 38
Figure 23 - Experimental data from final system for Weatherby 338, 2nd shot 38
Figure 24 - Experimental data from final system for 300 Weatherby Magnum 39
Figure 25 - Final Design Isometric View Solid Model 46
Figure 26 - Final Design modeled as if testing .. 47
Figure 27 - Mechanical Drawing Overview .. 48
Figure 28 - Mechanical Drawing Main Base .. 49
Figure 29 - Mechanical Drawing Front Catch .. 50
Figure 30 - Mechanical Drawing Spacer Block .. 51
Figure 31 - Mechanical Drawing Sensor Mount .. 52
Figure 32 - Mechanical Drawing Slot Sleds .. 53
Figure 33 - Mechanical Drawing Slot Sled Guides .. 54
List of Tables
Table 1 - Decision matrix comparing the top 6 design ideas .. 10
Table 2 - Values from Force Analysis .. 17
Table 3 - Experimental and Theoretical Recoil Energies ... 25
Table 4 - Estimated Cost Bill of Materials ... 67
Table 5 - Actual Cost Bill of Materials ... 67
Table 6 - Cost Overview ... 70
1. Introduction:

The main goal of this project was to create a simple device that can be used to measure the recoil force of Weatherby’s products. This device will be used by Weatherby to determine the effect of different calibers, powder charges, bullet masses, rifle masses, butt pads, muzzle brakes, or any other recoil suppression methods.

Weatherby, Inc. is a rifle and shotgun manufacturer located in Paso Robles, CA. The company was founded in 1945 and is best known for their Mark V bolt action rifles. The company also produces high velocity hunting ammunition. In order to remain competitive, Weatherby needs an accurate method for measuring the recoil force of their rifles, shotguns and ammunition. Currently no commercial product has been located for testing their guns, so no methods are being employed; however, it appears that other firearm manufactures have this data, so custom systems exist.

The system will mount on a bench, either at Weatherby’s range or at local gun ranges, and should be able to be used without much training. Weatherby currently produces the Accubrake™, a muzzle brake that redirects combustion gasses to the side of the rifle to reduce recoil; however, only empirical data exists to support the claim that it actually reduces the recoil force. The project will produce quantitative values to substantiate these claims. Also, as the designer of long guns, Weatherby would benefit from having quantified data regarding felt recoil of future rifles and how they compare to current and competitors’ products.

The Weatherby range is located at their manufacturing site and has technology to measure muzzle velocity as well as sonically determine precise bullet location at the end of the range. The current rifle rest, shown below in Figure 1, allows a rifle to be placed in the support so that some of the recoil force is absorbed by the system. This allows one shooter to fire many rifles for testing purposes without suffering discomfort from the recoil.

![Figure 1 - Current Table Rifle Rest](image)
The final system comprises a similar rest, but also fully constrains the rifle so it can be fired without a shooter having to hold gun. Also, a force sensor leading to a laptop is located behind the rifle to record the recoil data.

This report includes a detailed design of the final system with engineering drawings, a three-dimensional computer model, bill of materials and cost information. Manufacturing and testing data is also reported for the final prototype. Multiple concepts were ideated which are outlined in the Concept Design section. This report also includes a Gantt chart of deadlines for each individual aspect of this project to showcase the iterative process and project timeline.

The system was built at the California Polytechnic State University machine shops with material ordered from off site. Testing of the design with live rounds was conducted at Weatherby’s on site range. The project was finished in less than one year and was presented at the Senior Project Expo on Thursday, November 21, 2013.

Through this project, the team hopes to gain a more hands on approach to the design and manufacturing of products. This project will tie together all the information learned from prior mechanical engineering coursework at Cal Poly, and will allow us to learn valuable lessons which can be used throughout our engineering career such as: the formal design process, time management, design of machinery, and teamwork. All these are excellent opportunities for professional growth as engineers, and will make each members of the team a valuable asset to any company.
2. Background:

There are many factors that can be measured when firing a rifle or shotgun. The impulse or momentum of the gun and the force felt by the shooter can be measured. The momentum of an object is the product of its mass and velocity and also can be calculated by the change in force over time. The recoil force felt by the shooter has two components: “acceleration of the projectile itself… and the second component is associated with the acceleration of the gases created by the combustion of the gunpowder propellant” (Hall 2008). The force created by the acceleration of the projectile can be calculated using conservation of momentum, however, the force due to the combustion gas acceleration cannot be accurately calculated. The force felt by the shooter is the combination of these two forces and thus has to be measured instead of calculated.

The amount of ‘kick’ or push against the shooter is determined by the peak force. The area under the force versus time graph is proportional to the momentum, and the momentum caused by the projectile acceleration cannot be changed without changing the gun or projectile. Thus, the peak force can be decreased by increasing the amount of time the gun is recoiling. The use of a soft butt pad against the shoulder can absorb some recoil but it also increases the time over which the force is acting. The second component can be reduced by directing the expanding gasses perpendicular to the bullet’s path. For our system, there must be a way to determine the effect that adding a butt pad or muzzle brake has on the force felt by the shooter.

In this search for similar products, the project team has have been unsuccessful in locating any commercially available recoil testing systems; however, there have been a few devices created for research purposes. One system suspends the firearm of known mass from two known lengths of rope. When the cartridge is fired, the firearm recoils backwards in an arc. By measuring the change in vertical height, it is possible to determine the energy of the blast by conservation of energy. This method is inadequate because it can only calculate momentum instead of the peak force. Also, by hanging the rifle in the air, possible control issues arise during firing and could lead to possible safety hazards.

Another system uses a bearing surface that supports the butt of the gun and another that supports the gun from beneath the hand guard (Lee, Joon-Ho, et al.). The rear of the firearm is then placed against a force transducer. This method has the advantage of positively locating the firearm so that it can only slide directly backwards. Also, the sensor allows the user to measure energy, time, and force data. This method also requires the user to account for the weight of the bearing and clamping fixtures if absolute numbers are required.

These two methods are adequate for comparing the effects of one firearm to another, but they may be inadequate for yielding true force values. It remains unclear whether the system can account for the additional inertia present from the bearings.

The force sensor and measuring equipment is an important factor in the design. A sample force versus time graph was located and appears to show a refresh rate of between 1kHz and 100kHz. The total area under the graph and peak force is also an important measurement, thus the force sensor must take enough samples throughout the duration of the shot to produce a smooth curve. The graph shows that the shortest shot recoil time appears to be less than 0.01
seconds. The graph of a sample output can be found in Appendix A. As shown in Appendix A, if 100 samples of a shot are required, then a 10,000Hz sensor is required. After testing at the Weatherby facility, it was found that the Weatherby .300 Magnum and Weatherby .25-06 had recoil times of roughly .008 seconds each. With this fast recoil time, a sensor of 25kHz to 50kHz is necessary. The sensor selection can be seen in Section 6.3.2 of this report.

Referencing the quality function deployment (QFD) document, shown Appendix B, informs the team of important aspects of the design. Using the QFD, it shows that a force sensor that can connect to a laptop is a top design requirement. Also of importance is the use of a suitable material and a design that will accommodate different guns without lifting off the table. As seen in this report, the final design includes all of these factors and appears to be a more than adequate system for testing recoil forces.
3. Specifications:

The objective of this project was to create a recoil force test apparatus for use by Weatherby, Inc. for the purpose of determining the effect of various recoil suppression systems. More specific requirements are outlined below:

- Test peak recoil force of fired rifle and shotgun
 - Rifle highest priority. Future design of shotgun test fixture is possible
- Export data to portable device, such as a laptop
 - Graph of Force vs. Time required
 - Peak force displayed
 - Resolution of 1 ft-lb
- Design can use modified stock to test, but testing unmodified rifles is ideal
- System must be portable.
 - Must be able to be carried to different gun ranges in small personal vehicles
 - Must be able to mount to different range tables
 - Should not require outside power other than laptop (battery operated)
- Must be able to handle loads of largest Weatherby round.
4. Design Procedure:

4.1 Method of Approach

As a general idea of the method of approach, the team followed the set of design guidelines which were illustrated to us in Cal Poly’s mechanical engineering design classes. The design process starts with a need, which has already been presented, as this project is in response to a specific need. This report documents the exact problem definition as well as the entirety of the project. The problem definition intends to accurately state the problem corresponding to the need in such a way that it provides guidelines, but with minimal restrictions. With the problem clearly defined the next step is ideation. In this process, the team brainstormed many different ideas that tried to solve the problem. The goal was to not be limited to any one solution and come up with as many ideas as possible. From there, the list of designs was compared with basic analysis and the top six designs were selected. To choose a top design candidate, a weighted decision matrix was utilized to analyze and evaluate the six solutions. Once the top design was chosen, the team began the detailed design process, which can be seen in this report. Engineering design of each component was completed in order to be confident that the system performs as expected. This step included making detailed drawings of all parts, a three-dimensional model, force analysis, sensor analysis, and bill of materials with cost estimates. This work went through a critical design review by the team’s project advisor and was approved by Weatherby before the manufacturing process began.

Throughout the entire design process, significant milestones such as the selection of a final design were dependent on the approval of Weatherby and the project advisor. To reiterate, this is a general idea of the method of approach that was taken. More details on the individual aspects of this project will be discussed in the sections to follow, as well as a timeline of events.

4.2 Ideation

As seen in the overview section, one important step in the design process is ideation. Since most of the team is already very familiar with the mechanics of rifles and shotguns when they are fired, the team understands the basics of this project and how to solve the problem. With that being said, more detailed research going beyond what is discussed above was required. This research included analyzing current firearms data that can be found online as well as taking data from the shooting range at Weatherby. The team studied the motion of the firearm when discharged as well as the potential forces that the discharge creates on the firearm.

4.3 Analysis

Once all of the designs created during the ideation phase were compared against the design requirements, the top six designs were chosen for a detailed analysis. Reference Appendix C for the concept analysis data and procedure. These designs were narrowed to the final design using weighted decision matrix that can be seen in the Concept Design section. From this, the final design was selected and engineering design and analysis was performed and can be seen in the Final Design section. This analysis was performed to make sure that the design will be safe
and able to accurately measure the recoil force of rifles and shotguns for an extended amount of
time without failure. This design was modeled in a computer aided design (CAD) program in
order to help with the analysis and to give a better idea of how the system was to be machined.
The team has attempted use everything at their disposal to accurately analyze the systems and
determined that they have provided a safe solution for measuring the recoil force.

4.4 The Build

Once the design was approved through a critical design review, parts were ordered and
the build began. William Meijer was be the member that will be heading the build, as he has
numerous years of experience as both a machinist and welder. The Cal Poly machine shops have
every machine and tool that will be needed and the team was able to conduct the build on
campus. Since firearms are not allowed on campus, the team required a stock to use while
building the system to accurately dimension and test the system and the corresponding fixtures
that may be incorporated.

Testing of the apparatus with conservation of momentum can only be measured when no
muzzle break is used. Using bullet mass, bullet velocity, and rifle mass, kinetic energy can be
calculated which can be compared to the output from the system. This procedure is one method
to ensure the system is accurate, and a more detailed discussion of this verification can be seen in
Section 6.5.

4.5 Timeline

The Senior Design Project class sequence at Cal Poly has a set schedule proposed for this
project that spanned from January, 2013 until the Senior Project Expo which was held November
21, 2013. This schedule was created so that no aspect of this project was overlooked, and that the
project was carried out in an organized fashion.

A Gantt chart was created in an effort to ensure the timely completion of the project
through the completion of key project milestones. The chart is broken up into the three quarters
where the team has worked in Winter 2013 and into Spring 2013 and Fall 2013. The team was
not able to meet during summer quarter, so no milestones were planned. Summer work is not
required for the competition of the project on schedule. The Gantt chart is located in Appendix F.

4.6 Management Plan

In order to successfully function as a team, some members were responsible for certain
aspects of the project. Benjamin Canfield-Hershkowitz was responsible for planning team
meetings and submitting project updates to Doctor Noori. Ben was also responsible for the
analyzing the force sensor and other required equipment to accurately measure the recoil force.
William Meijer, as stated above, was in charge of the build and was the point of contact with
Greg King at Weatherby, Inc. Wil was also responsible for the CAD model and part drawings.
Trevor Foster was responsible for organizing the engineering analysis and design to ensure each
step was finished according to the time frame.
5. Concept Design Development

5.1 Ideation

Ideation is the process of creating as many solutions to the problem without regard, at first, to feasibility or practicality. During the beginning of this phase the team segregated so that many independent ideas were created. Then, the team reconvened and combined similar proposals to reduce the list of concepts. Brainstorming was done together as well so that an active discussion could aid in generating ideas. Top concepts were selected that fit with the customer specifications and could be manufactured with available tools. Since the scope of this project was somewhat constrained as to what type of device can be used, most of the devices have similar qualities; however, there are key factors which set theses designs apart from one another.

5.2 Top Designs

Described below are the top concept design ideas for this project. The illustrations of each design variation can be seen in Appendix C.

- **Solid base with 2 rails**: This design incorporates a solid aluminum base for the fixture. This solid base will allow for enough weight on its own to withstand the upward force that the discharge of the firearm could create on the frame. This design also incorporates two separate sets of linear precision rails. The front rail is secured to the gun with straps and moves when fired. The rear rail is secured to the stock of the gun and also moves when fired. These rails would allow for the gun to slide freely in a controlled linear manner into the force sensor located at the rear of the device. The force sensor would be inset into the rear panel for deflection purposes.

- **Solid base with 1 rail**: This design is much like the solid base with 2 rails, except it only has one rail to slide the rear of the gun into the force sensor. With only having one rail, the front of the gun would not have to be mounted down and could sit on a leather rest. To prevent the gun from leaving the device, it could be loosely constrained by a Teflon loop or other restraining device to prevent the gun from lifting up and out of the device when discharged.

- **Frame base with 2 rails**: Like the solid base with 2 rails, this design would incorporate two sets of precision rails to accurately transfer the discharge force into the force sensor, while accurately locating the firearm as well. However, this design incorporates a frame that would be made of steel tubing, rather than a solid piece of aluminum. The frame would have locations where weights could be added to hold down the system while in use.
• **Frame base with 1 rail:** This system is the same as the solid base with 1 rail, but with a frame base instead of a solid base. This system would also use a loose constraint on the front of the gun to ensure it would never lift off the device but would not reduce the force of the recoil.

• **Hanging pendulum:** This system is one in which instead of the gun sliding on rails into the force sensor, it would swing into the force sensor by means of two pendulums. The gun would ultimately act as a hanging pendulum, and when fired, the system would swing backwards into the force sensor. This system would require a frame to be built up in order to hang the gun, and would potentially require weights such as those described in the previous frame designs.

• **Spring deflection:** This system is much like that of the solid base designs; however, instead of a force sensor with a digital readout, the maximum recoil force would be measured by means of a spring(s). The recoil would compress a spring, and would incorporate a distance gauge to measure the distance that the spring was deflected, which would be calibrated to the spring(s) to read out force.

5.3 Concept Selection

A decision matrix was used to select the best performing design. The categories of the decision matrix are: safety, cost, accuracy, weight, set up, life, damage, manufacturability, and versatility; these categories were weighted from 1 to 5 depending on importance. The safety category was of the utmost importance and evaluated aspects of the designs that keep the rifle pointed down range and keeping the rifle from misfiring and ensuring it never separated from the device during firing. The cost was important due to customer request about keeping costs as low as possible. The accuracy of the device focused upon measuring the recoil force from the firearm; since this is the overall purpose of the project it also received the highest weight of 5. The overall weight and set up time received weights of 3 and 2, respectively; these were focused on because a requirement was that the device be portable. The life of the device category was added because this device must operate without service or labor by the original senior project team. Since some of the firearms being tested cost many thousands of dollars, the device must not damage the gun and thus the damage category received a high weight of 4. Manufacturability of this project is relatively important due to the fact that we would like to be able to easily manufacture this system so that adequate testing time is available. The versatility of the machine regarded its ability to accept shotguns and different makes of rifles; however, the customer was more focused upon making the device work for rifles first and thus versatility of working with shotguns was not of high importance.
Table 1 - Decision matrix comparing the top 6 design ideas

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight</th>
<th>Solid Base 2 rails</th>
<th>Solid Base 1 rail</th>
<th>Base Frame with weights 2 rails</th>
<th>Base Frame with weights 1 rail</th>
<th>Hanging pendulum</th>
<th>Spring Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Cost</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Accuracy</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Weight</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Set up</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Life</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Damage</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Versatility</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>233</td>
<td>245</td>
<td>224</td>
<td>236</td>
<td>165</td>
<td>187</td>
</tr>
</tbody>
</table>

After evaluating all top concepts in the weighted decision matrix, the **Solid Base with 1 Rail** was the top selection.

Figure 2 - Top design choice of a single rail solid base system

This device was selected because the solid base is strong enough for the application and is easier to manufacture. When compared to the frame base, the solid base is simpler and will be
easier to set up. The safety is similar to all top 4 designs because the gun is secured in the rear and sits in a deep grooved leather pad at the front that keeps the barrel pointed down range. The inclusion of a strap over the leather rest to prevent the gun from flying away is also included, which is important in both the safety and damage category. Since the only constraint is at the rear of the rifle, it could be adapted to shotguns so the versatility score is high. Also, with the inclusion of only 1 rail bearing the parts that could need servicing are reduced. Also, when compared to either of the two rail systems, the one rail proves to have less moving mass, which will lead to more accurate force results. This chosen system meets all the objectives required of the product. The recoil force will be recorded with the force sensor which will be exported to a laptop. The system attaches to an unmodified stock of both rifles and shotguns and the analysis uses values expected from the largest Weatherby round. The solid base is slightly harder to transport than the frame base because it does not have the removable weights, however, the system will still be light enough for a single person to carry.

5.4 Prototype
A prototype of the type design was created. The prototype was constructed out of medium density foam and is a good basis for the actual system that we hope to create. Appendix D shows the prototype model with a corresponding stock.

5.5 Analysis
A basic analysis was performed for the top concept design to check that the maximum deflection that the rear of the system will encounter will not be too large. All other forces that occur on the system will be negligible in comparison the rear recoil force, and since the system will be made out of either steel or aluminum, the resulting stresses will be of little importance. Based on the prototype, basic predicted dimensions were taken and the rear of the system was modeled as a cantilever beam with an intermediate load, providing for a simple analysis that can be seen in Appendix E. This analysis proved that the deflection of the beam at the sensor will be approximately less than 0.05 inches.

5.6 Testing
Testing of the device is necessary to ensure that the system is producing accurate results. Several different methods were employed to check the force and energy readings of our system. The force sensor was professionally calibrated by Piezotronics to ensure that it will accurately read force data. The area beneath the force versus time plot is the impulse energy of the impact. This energy should be constant for one rifle, except for when there is an inclusion of a muzzle brake. Because of this characteristic of impact, we should be able to fire the rifle with various butt pads and continue to measure the same recoil energy.

From the desired force vs. time data, the force can be converted to an acceleration using the known rifle mass. The acceleration vs. time data can then be integrated to give the maximum velocity. That velocity can be then be input into the kinetic energy equation to find the total recoil energy.
The recoil energy can then be compared to the theoretical values we received from Mr. King at Weatherby, which were calculated using the theoretical kinetic energy equation. These values were determined by accurately measuring the muzzle velocity, the mass of each bullet, the charge weight and the gun weight. For more information on the testing and design verification, see the Design Verification section.
6. Final Design

The final design of this system is much like the final concept design; however, after analyzing the concept design, several key changes were made to improve the system. This section will show the details of the final design in every aspect.

6.1 Design Description

As seen in Figure 3, the final design is a simple, yet effective system for measuring recoil force. The rifle will sit on shooting bags as shown, and will be strapped down by Velcro straps. The shooting bags sit on moveable sleds that will allow the shooter to get the correct position of the rifle. This final design, unlike the concept design, incorporates two shooting bags instead of having the rear of the stock on a linear precision rail. It was determined that the friction force from the rear shoot bag is negligible due to the light weight of the rifle and the recoil force is much larger. The butt of the gun is placed against a piece of HDPE plastic that is secured in place with Velcro. This is to ensure that that the sensor is able to utilize the damping of the entire butt pad and measure the force that the shooter will actually feel. The plastic piece also provides a flat surface to contact the force sensor, which is located directly behind the mold and is attached to the back plate of the system. The flat surface will make sure that the force sensor does not encounter a bending moment, which could harm the sensor.
The back plate of the system is screwed onto the base plate using high strength grade 8 steel bolts, and provides a rigid surface for an accurate recoil force reading. Located on the front of the system is an aluminum piece, called the table catch. This table catch is incorporated in order to apply a reactant force against the recoil force on the shooting table, which will keep the system on the table. Since there is minimal upwards force, the weight of the system should be enough force to keep the system from lifting upwards, but for safety reasons a Velcro strap has been added to ensure that the rifle stays on the testing system. The rifle will be fired from a distance using either a hydraulic trigger mechanism or a trigger hook and the force sensor system will record the recoil force and be able to be read from a laptop. The use of an external trigger-pulling device will not only guarantee safety for the shooter, but will also allow for a more accurate force reading.

The detailed part descriptions and part drawings can be seen further in this report, as well as a detailed description of the program for recording the recoil data. Three dimensional solid modeling using SolidWorks can be found in Appendix I.

6.2 Analysis Results

This system is overall a simple system when it comes to force analysis and calculations. The main analysis contains calculations for safety factors and deflections from the recoil force. However, this system also required much analysis for the necessary force sensor. This section contains both the force analysis and the sensor analysis.

6.2.1 Force analysis

A major part of this project has to do with the issue of safety, as this system will be supporting firearms and will be undergoing large forces. Using Engineering Equation Solver (EES), every major component that could be a source of failure was analyzed. Knowledge from previous design courses, as well as Shigley’s Mechanical Design book (Budynas et al. 2011), allowed for the analysis of these components. The biggest potential safety hazard is the back plate of the system, where the butt of the stock meets the force sensor. Rifles are designed to shoot accurately, which means that the rifles primary motion is in the direction of the barrel axis. This system is designed to record the backwards recoil force along this axis using the force sensor, meaning that the back plate of the system is going to be experiencing most of the force from the discharge; hence, the safety of the back plate is of utmost importance. The front of the rifle stock may “kick” upwards; however, this force is not substantial enough to be of any concern, as it will not overcome the weight of the system. Furthermore, the design includes a Velcro strap that will prevent the gun from becoming dislodged from the testing machine.

As stated above, the back plate experiences most of the recoil force and thus must be secured to the horizontal support. Calculations were completed in EES to show that bolting these two parts together is substantial enough to prevent failure. While welding the two pieces together was discussed, since the bolts are adequate, no calculations were required.
A program was written in EES to find all of the safety factors, forces, and other relevant values, shown below. This was done so that the dimensions and other variables of the system could be easily changed and the results can quickly be observed. Using this EES program, calculations were done to find the following:

- Deflection of the back plate at the sensor, δ_{Back}
- Weight of the System, W_{System}
- Infinite life safety factor using Goodman criteria, n_f
- Number of expected cycles, N
- Yielding safety factor for the screws, n_{yield}
- Load safety factor of screws, n_{load}
- Fatigue safety factor for screws, n_f, screws
- Design factor for bolted joints loaded in shear, n_d

These calculations were based on 6061 T6 Aluminum base and back, two SAE Grade 8, ¾"-16 UNF screws in the back plate, estimated recoil force from a Weatherby .460 of 3200lbf, and estimated weights of the front and back rifle rests. The front table catch is very similar to the back plate, but it is much shorter, as it just needs to hook around the front of a table. Analysis was not completed for the table catch because it is the same design as the back plate but less than half the height. Thus, the moments are diminished at the front and the critical failure location is the back plate.

Below are the detailed descriptions and reasons for finding each of the components listed earlier. The equations for each calculation can be seen in the EES program in Appendix G, and the resulting values can be seen in Table 2.

Deflection of the back plate at the sensor, δ_{Back}:
In order to find the deflection of the back plate, the back plate was modeled as a solid cantilever beam with an intermediate load for simplification. This assumption is fine for analysis because in the actual system, the two steel screws strengthen the back further, resulting in a smaller deflection. Also, since this back plate is not seeing a static load, a Dynamic Load Factor of 2.0 was taken into account.

Weight of the System, W_{System}:
The weight of the system was estimated from the sled base, back plate, and table catch volumes along with the unit weight of aluminum, and from an estimation of the rifle rest and the liner rail. This estimation is slightly higher than the actual system, because the actual system will have material removed in the manufacturing process.
Infinite life safety factor using Goodman criteria, n_f:
Using the Modified Goodman and Langer Failure Criteria, the fatigue factor of safety was found. Since the system does not undergo opposing forces, the amplitude and midrange stresses were set equal to half of the maximum stress, which took into account the dynamic load factor of 2.0. The modified endurance limit was found for a machined surface finish, the correct size factor, pure bending, and a reliability of 99.99%.

Number of expected cycles, N:
Although the infinite life safety factor was found, the expected number of life cycles was found as well, just to be safe. This calculation was done using the same modified endurance strength as the infinite life and a fatigue strength fraction of 0.9.

Yielding safety factor for the screws, n_{yield}:
The yielding safety factor is for statically loaded tension joints with preload. The screws in this system see mainly shear forces; however, this calculation was done so that on the off chance that the screws experience tension, the system will not fail. Since this calculation is also for static loads, the dynamic load factor of 2.0 was taken into account.

Load safety factor of screws, n_{load}:
This load safety factor is to guard against joint separation. This safety factor is calculated to be sure that the base, spacer, and back plate do not separate due to the recoil force. This calculation uses variables from the yielding safety factor, but does not take into account the proof strength or tensile stress area of the bolt.

Fatigue safety factor for screws, $n_{f,bolt}$:
Much like the fatigue safety factor for the back plate, the Goodman equation was used to find the fatigue safety factor of the screws as well. This equation is also used for bolts in tension, but it still applies to this problem. The dynamic load factor was also taken into account for this calculation.

Design factor for bolted joints loaded in shear, n_d:
For each of the previous safety factor calculations for the screws, the assumption was that the screw was loaded in tension. For this design factor, n_d, the bolt is assumed to be in shear, which is a better representation of the system. This safety factor was found for the worst case, in which the bolt threads extend into the shear plane. Using the maximum anticipated recoil force with the dynamic load factor, the design factor was obtained.
Table 2- Values from Force Analysis

<table>
<thead>
<tr>
<th>δ_{back} (in)</th>
<th>0.0054</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_{system} (lbs)</td>
<td>33.99</td>
</tr>
<tr>
<td>n_f</td>
<td>3.373</td>
</tr>
<tr>
<td>N (cycles)</td>
<td>3.11E+09</td>
</tr>
<tr>
<td>n_{Yield}</td>
<td>1.279</td>
</tr>
<tr>
<td>n_{Load}</td>
<td>7.807</td>
</tr>
<tr>
<td>$n_{f,\text{screws}}$</td>
<td>2.091</td>
</tr>
<tr>
<td>n_d</td>
<td>7.595</td>
</tr>
</tbody>
</table>

The deflection of the back plate is small enough to not be noticed and the cycles until failure will withstand 100,000 cycles a day for 85 years. All the safety factors are larger than 1 and thus the system will not fail.

6.2.2 Sensor Selection

The team conducted preliminary testing of Weatherby’s rifles to determine an estimate of max recoil force the sensor would need to record. To gather this data, the team checked out equipment from the Cal Poly Mechanical Department and tested rifles at the Weatherby range in Paso Robles, CA. The team used a PCB load cell, signal conditioner, USB data acquisition system, and software package which allowed recording at 98 kHz. Tests were completed using a Weatherby .25-06 Rifle and a Weatherby 300 Magnum and the data gathered using the borrowed equipment is shown in Appendix G. The data acquired for the .25-06 rifle appeared to be accurate but the force of the 300 Magnum overloaded the sensor above 1040 lb for 174 and 206 data points for the first and second test, respectively. This equates to 1.8 and 2.1 milliseconds, respectively. The sensor overload notwithstanding, the borrowed equipment performed in a fashion the team hopes to recreate with the final design. However, in an effort to reduce costs as much as possible, a less vigorous system will be specified and purchased.

To estimate the peak force for the 300 Magnum, a parabolic curve fit to the data was created to estimate the overloaded data points. The region just before the sensor overload was sampled, and repeated across the overloaded points. The curve fit very nearly intersected with the real data points after the overloaded region and thus was assumed to be a good fit. The estimated peak force for the .460 Weatherby Magnum was assumed to be double to triple the peak force for the 300 Magnum. Thus, a sensor that could read over 3600 lbs was deemed necessary, and with a safety margin, a 5000 lb load cell was purchased.

To determine the slowest refresh rate for the USB data acquisition unit that will still yield accurate results, a Matlab program was created that would artificially reduce the number of data points. The program is shown in Appendix L. This was done to simulate the scenario of a lower refresh rate system and was used to simulate refresh rates of 50 kHz, 25 kHz, 10 kHz, 5 kHz, 1 kHz, 500 Hz and 250 Hz. By comparing the graph of the force vs. time, the recoil energy, and peak force for all refresh rates, a sensor package that could attain 25 kHz to 50 kHz was deemed
to be necessary. Refresh rates lower than 25 kHz affected the peak recoil force and recoil energy and thus are not adequate for this project.

A data acquisition unit’s resolution is rated by bits, which represent the maximum number of unique values it can record. For example, a 2-bit digital value can represent 4 numbers and for a load cell that reads 0 to 5000 pounds, it would be divided into 4 pieces. This yields a resolution of ±1250 pounds. For our system to have the resolution desired, a 14-bit system will be used. This will yield a resolution of $5000/(2^{14})$ or 0.3 pounds.

The accuracy of the system is affected by the load cell and data acquisition unit. The load cell sensitivity is 0.9720mV/lb with 0.3% nonlinearity over the full 5000lb scale and 1% uncertainty. The data acquisition unit absolute accuracy is $±3.66\text{mV}$ over the full range of $±5\text{V}$. Thus, for a reading of 5000 pounds, the sensor would have an accuracy of $<±50$ lbs and the data acquisition unit would be $±3.66\text{mV}$, for a total uncertainty of $±54$lbs. However, for a reading of 1000 pounds, the total uncertainty would be $±14$lbs. This uncertainty may seem large, but it makes up a very small percentage of the total force, enough so that it can be considered negligible. This will not noticeably affect the recoil energy calculations.

The chosen data acquisition unit (DAQ) is a Measurement Computing Corporation USB-1408FS, a PCB 208C05 load cell, a PCB 428A21 signal conditioner, and a program are used to gather the data on a computer. The program was written in C# using the MCC provided libraries, which can be used to read data from the DAQ. The program analyzes the data, producing a graph of force vs. time, recoil energy and peak force. The program can then output the data to excel for storage. The program has a graphical user interface and automatically computes the required values for Weatherby.

6.2.3 Program Operation

The software was written in C#. This language was chosen due to the operating system, and MCC DAQ Company provided examples and functions in this language as well. The first draft of the Matlab code that analyzed and plotted the peak force and recoil energy is shown in Appendix K.

Figure 4 shows the initial screen of the program. The rifle details allow the user to select a rifle where the mass is already known by the program. If any additional mass is added, such as a scope, it can be inputted as well. If a new rifle is being testing, the user can input the rifle name and weight for the test. Once the user is ready, they will press the “Start” button. The program will wait for the trigger, which can be set by the user. Once the trigger force is surpassed, the program will record a set amount of time before and after the trigger and illustrate a graph of the data as well as display the peak force and recoil energy. The user is then able to export the plot to a PDF file and the data to a CSV file for later inspection. Figure 5 shows an exported graph of a test run conducted at Weatherby’s range, however, the range of force values shown is off by a factor of 1000 due to programming errors. These errors have been corrected.
Figure 4 - Program Screen

Figure 5 - Export plot of sample data
6.3 Cost Analysis
The finalized design required many individual parts as well as raw material for machining. The load cell and signal conditioner are PCB Piezotronics equipment. The data acquisition unit is from Measurement Computing. The screws and unfinished aluminum were purchased from McMaster Carr, and the other components were purchased from varying locations. The total cost of all materials was estimated to be $1608.92 before tax/shipping and final cost was estimated to be $1747.27. This estimate does not include a laptop computer as Weatherby will be providing a system for the test apparatus. The final cost of materials was $1624.39 before tax/shipping and final cost was $1802.37. This is $55.11 over the estimated cost due to unforeseen components such as poster and presentation supplies. Appendix M shows the bill of materials with the estimated and final costs.

7. Product Realization
The team completed the machining and manufacturing of the final system primarily in the machine shops on the Cal Poly campus. Manual mills and lathes as well as CNC mills were the primary equipment used to machine the aluminum. Other hand tools and necessary tools were also used as needed. The machining took place throughout the Spring and Fall 2013 quarters, and was completed by all members in the group. Each aluminum piece needed to be machined down from the purchased stock sizes. The base plate took the longest to machine, which is why the entire rear half of the base plate was milled on a CNC mill with the help of Manufacturing Engineering student Trevor Heglund. The CNC mill was also used on the front table catch in order to remove material quickly. All other pieces were primarily machined on manual mills, with the exception of the pegs for the sliders, which were turned and faced on a manual lathe. All pieces received a surface finish, which was created with an orbital sander. All edges were smoothed with a polishing wheel to reduce risk of injury.
The shooting bags that sit on the sleds were attached by industrial strength Velcro. Velcro was also used to attach the DAQ unit to the signal conditioner for ease of transportation, and Velcro straps were used to secure the firearm to the testing system.

While manufacturing the system, a different method of attaching a butt spacer was decided. Instead of encasing the butt of the gun with a HDPE mold, we created an adjustable holster out of Velcro straps to secure a butt spacer to the rear of the firearm. A piece of HDPE was used for the butt spacer, and slots were milled out in the spacer to attach the holster. The holster was sewn into place by Ben in order to secure the adjustable straps to the spacer.

The spacer was welded to the base plate. This spacer allows the heads of the fasteners to be recessed into the base plate, without having an excessively thick piece of aluminum for the base.
Figure 7 - Final system displayed at the Senior Project Expo
8. Design Verification

The purpose of this project was to create a system that can accurately measure the recoil force of rifles and shotguns so that different ammunitions, muzzle brakes, and butt pads can be compared for their effect on the felt recoil by the shooter. As the purpose states, this project needs to be accurate. In order to validate the accuracy of the system, the team has come up with a design verification plan.

The theoretical recoil energy for the discharge of a gun with no muzzle brake can be calculated using the following formula

\[R.E. = \frac{1}{2} M_g V_g^2 \]

Where
- \(M_g \) = mass of the firearm (lbm)
- \(V_g \) = velocity of the recoiling firearm, which can be calculated from the equation

\[V_g = \frac{W_e V_e + (Chg. Wt) V_e f}{7000 W_f} \]

Where
- \(W_e \) = weight of ejected projectile (bullet or shot and wad) in grains
- \(V_e \) = Velocity of the projectile in ft/s
- Chg. Wt = charge weight (grains of powder)
- \(f \) = conversion factor for propellant gases
 - High powered rifles – \(f=1.75 \)
 - Shotguns (average length barrel) - \(f= 1.5 \)
 - Shotguns (long barrel) - \(f=1.25 \)
 - Pistols and revolvers – \(f=1.5 \)
- \(W_f \) = weight of firearm in lbs

Each variable in this equation can be measured at Weatherby’s facility. Weatherby has actually created an excel program that calculates theoretical energies for most of their guns, and the energies can be compared to the experimental recoil energy. The experimental recoil energy can be calculated from the force vs. time data using the same equation as the theoretical energy

\[R.E. = \frac{1}{2} M_g V_g^2 \]
However, in this case the velocity is found from the data. The data gives a force vs. time graph. Dividing the force by the mass of the gun will give the gun’s acceleration, and then integrating the acceleration data will yield the velocity of the gun.

\[
\text{Acceleration} = \frac{\text{Force}}{m_g}
\]

\[
\int \frac{\text{Force}}{m_g} \, dt = V_g
\]

The program automatically calculates the recoil energy from the data using the above equations, and it can then be compared to the theoretical energy for that given rifle.

Since the discharge of a firearm is created by expanding gases, the discharge is not the same every time. This means that the theoretical energy for a given firearm is only an estimate, and cannot be precisely calculated, hence for the verification of the theoretical energies against the experimental energies, the team would like to be within 20% of the theoretical energies.

8.1 Testing

As stated above, adequate testing was necessary to determine if this system is accurate. Testing was conducted at Weatherby’s range, and proved that the system is safe and records recoil energy.

![Recoil Force Plot](image)

Figure 8 - Experimental test results from final system
More experimental plots from two separate rifles that were tested on the final system can be seen in Appendix G.

During the testing of the final system, the weights of the guns were approximated; therefore the calculated recoil energies were also approximations. However, PCB Piezotronics calibrated the load cell before it was shipped to us, therefore we are confident that the force readings are accurate. See Appendix N for load cell specification and calibration sheets. Greg King at Weatherby expressed that the recoil energies seemed to be accurate, but these values could not be proven to be completely accurate due to the issues stated above. Further testing will be conducted by Weatherby during the initial phases of use of this prototype to ensure the recoil energies are consistent with theoretical values. Prior testing on a very similar system proved that this method of recording recoil force and calculating recoil energies for different firearms was accurate, and the results can be seen below in Table 3

<table>
<thead>
<tr>
<th>Rifle</th>
<th>Recoil Energy (ft-lb)</th>
<th>Test</th>
<th>Theoretical</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 Weatherby Mag 1</td>
<td>43.90</td>
<td>46.88</td>
<td>6.57%</td>
<td></td>
</tr>
<tr>
<td>300 Weatherby Mag 2</td>
<td>43.90</td>
<td>44.86</td>
<td>2.17%</td>
<td></td>
</tr>
<tr>
<td>Weatherby .25-06 1</td>
<td>19.92</td>
<td>18.51</td>
<td>7.34%</td>
<td></td>
</tr>
<tr>
<td>Weatherby .25-06 2</td>
<td>19.92</td>
<td>20.03</td>
<td>0.53%</td>
<td></td>
</tr>
</tbody>
</table>
9. Conclusion
The designed system meets all specifications and was thoroughly analyzed. The team is confident that the engineering analysis performed ensures the test apparatus is safe for using with live rounds. Moreover, the data acquisition is of high enough quality to produce accurate results, and will provide Weatherby with a system that can accurately measure recoil force and recoil energy. We believe that this system is a great solution to our specified need and with this system, Weatherby will be able to accurately test recoil forces and recoil energies for various rifles and shotguns in order to compare and quantify various recoil suppression methods.

10. Acknowledgements
The team would like to take this opportunity to thank their advisor, Dr. Noori, for his guidance throughout the project. For assistance in understanding and purchasing force sensors, the team would like to thank both Professor Peter Schuster and Professor Charles Birdsong. Also, PCB Piezotronics application engineers for answering multiple questions about load cells and being a valuable resource for all aspects of the set up. Likewise, Measurement Computing for explaining how data acquisition units function and help in selecting an appropriate product. Finally, the team would like to thank Weatherby and Greg King for the opportunity to work on this project.
11. References:

<http://randywakeman.com/Benelli_Beretta_Browning_Remington_Recoil.htm>
Appendix:

A - Sample Output Graph

Figure 9 – Sample Force and Time Graph

This graph is an illustration of the desired force vs. time output graph that we hope to acquire from our recoil test system. This graph was found without any information about the sensor or system used to test but the resolution and output are features desired from our system.
B - Quality Function Development

The QFD is a method to determine the most important engineering requirements. From the Percentage of Total line, it shows that the Force Sensor is the most important, with the USB Data Acquisition and Material selection next. Focus should also be placed on the fixture, the table clamps and proof load firing to determine accuracy.
C - Concept Design Ideas

Figure 11 - Design possibility showing a rifle mounted on one of the sliding rails

Figure 12 - Design drawing illustrating a mount without the rails, such as a leather rest
Figure 13 - Side view of foam prototype showing each component

Figure 14 - Top view of the foam prototype model
Figure 15 - Basic dimensions and schematic of top system design
The concept analysis models the back plate as a cantilever beam. This simplification is used so the analysis is simple and results in a basic understanding of how to design the complete system.

Estimated Recoil Force: $F_R = 2000\text{lb}$

Dynamic Load Factor: $k_{\text{dynamic}} = 2$

Length to Sensor: $L_{\text{sensor}} = 6\text{ inch}$

Total Length of Beam $L_{\text{total}} = 9\text{ inches}$

Thickness of Plate: $t = 1\text{ inch}$

$E_A I = 1.04 \times 10^7 \text{ lbf/in}^2$

$\frac{1}{12} \text{Width} \times t = \frac{1}{12} \times 4 \times 1$

$l = 4/12$

Max Deflection for Intermediate Load

$\delta_{\text{back}} = \frac{F_R k_{\text{dynamic}} L_{\text{sensor}}^2}{6EI} \left(L_{\text{sensor}} - 3 L_{\text{total}} \right)$

$\delta_{\text{back}} = \frac{(2000\text{lb})(2)(6\text{in}^2)}{(6)(1.04E7)\left(\frac{4}{12}\right)} \left(6 - 3(9) \right)$

$\delta_{\text{back}} = -0.0485\text{ inch}$
Figure 17 – Winter 2013 Gantt Chart
<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Winter 2013</td>
<td>52 days</td>
<td>Wed 1/9/13</td>
<td>Fri 3/22/13</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Spring 2013</td>
<td>49 days</td>
<td>Tue 4/2/13</td>
<td>Fri 6/7/13</td>
</tr>
<tr>
<td>18</td>
<td>Critical Design Report</td>
<td>23 days</td>
<td>Tue 4/2/13</td>
<td>Thu 5/2/13</td>
</tr>
<tr>
<td>19</td>
<td>Engineering Analysis</td>
<td>9 days</td>
<td>Tue 4/2/13</td>
<td>Fri 4/12/13</td>
</tr>
<tr>
<td>20</td>
<td>Drawing & CAD</td>
<td>9 days</td>
<td>Tue 4/2/13</td>
<td>Fri 4/12/13</td>
</tr>
<tr>
<td>21</td>
<td>BOM</td>
<td>9 days</td>
<td>Tue 4/2/13</td>
<td>Fri 4/12/13</td>
</tr>
<tr>
<td>22</td>
<td>Critical Design Report</td>
<td>13 days</td>
<td>Mon 4/15/13</td>
<td>Wed 5/1/13</td>
</tr>
<tr>
<td>23</td>
<td>Critical Design Review</td>
<td>0 days</td>
<td>Thu 5/2/13</td>
<td>Thu 5/2/13</td>
</tr>
<tr>
<td>24</td>
<td>Order Parts</td>
<td>5 days</td>
<td>Mon 5/6/13</td>
<td>Fri 5/10/13</td>
</tr>
<tr>
<td>25</td>
<td>Design of Test Experiment</td>
<td>13 days</td>
<td>Mon 5/6/13</td>
<td>Wed 5/22/13</td>
</tr>
<tr>
<td>26</td>
<td>Manufacturing and Test Review</td>
<td>0 days</td>
<td>Thu 5/23/13</td>
<td>Thu 5/23/13</td>
</tr>
<tr>
<td>27</td>
<td>Begin Manufacturing</td>
<td>10 days</td>
<td>Mon 5/27/13</td>
<td>Fri 6/7/13</td>
</tr>
<tr>
<td>28</td>
<td>End of Quarter Report</td>
<td>0 days</td>
<td>Thu 6/6/13</td>
<td>Thu 6/6/13</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Summer 2013</td>
<td>56 days</td>
<td>Fri 7/5/13</td>
<td>Fri 9/20/13</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Fall 2013</td>
<td>56 days</td>
<td>Mon 9/23/13</td>
<td>Mon 12/9/13</td>
</tr>
</tbody>
</table>

Project: ME428 Group 20 Gantt

Date: Thu 2/28/13

Figure 18 - Spring 2013 Gantt Chart
<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Winter 2013</td>
<td>52 days</td>
<td>Wed 1/9/13</td>
<td>Fri 3/22/13</td>
</tr>
<tr>
<td>16</td>
<td>Manufacturing</td>
<td>44 days</td>
<td>Mon 9/23/13</td>
<td>Thu 11/21/13</td>
</tr>
<tr>
<td>17</td>
<td>Spring 2013</td>
<td>49 days</td>
<td>Tue 4/2/13</td>
<td>Fri 6/7/13</td>
</tr>
<tr>
<td>29</td>
<td>Fall 2013</td>
<td>56 days</td>
<td>Mon 9/23/13</td>
<td>Mon 12/9/13</td>
</tr>
<tr>
<td>30</td>
<td>Summer 2013</td>
<td>56 days</td>
<td>Fri 7/5/13</td>
<td>Fri 9/20/13</td>
</tr>
<tr>
<td>33</td>
<td>Senior Exit Exam</td>
<td>0 days</td>
<td>Tue 10/15/13</td>
<td>Tue 10/15/13</td>
</tr>
<tr>
<td>36</td>
<td>Hardware & Assembly Demo</td>
<td>0 days</td>
<td>Mon 10/21/13</td>
<td>Mon 10/21/13</td>
</tr>
<tr>
<td>37</td>
<td>Senior Project Expo</td>
<td>0 days</td>
<td>Thu 11/21/13</td>
<td>Thu 11/21/13</td>
</tr>
<tr>
<td>38</td>
<td>Final Report</td>
<td>38 days</td>
<td>Tue 10/15/13</td>
<td>Thu 12/5/13</td>
</tr>
<tr>
<td>39</td>
<td>Final Project Due</td>
<td>0 days</td>
<td>Fri 12/6/13</td>
<td>Fri 12/6/13</td>
</tr>
<tr>
<td>40</td>
<td>Upload project to DigitalCommons</td>
<td>0 days</td>
<td>Mon 12/9/13</td>
<td>Mon 12/9/13</td>
</tr>
</tbody>
</table>

Figure 19 - Fall 2013 Gantt Chart

Project: ME428 Group 20 Gantt C
Date: Thu 2/28/13

- **Task**
- **External Milestone**
- **Manual Summary Rollup**
- **Inactive Task**
- **Manual Summary**
- **Split**
- **Inactive Milestone**
- **Start-only**
- **Summary**
- **Inactive Summary**
- **Finish-only**
- **Project Summary**
- **Manual Task**
- **Deadline**
- **External Tasks**
- **Duration-only**
- **Progress**
Figure 20 - Recoil Force and Acceleration for Weatherby .25-06

Figure 21 - Recoil Force and Acceleration for Weatherby 300 Magnum
Figure 22 - Experimental data from final system for Weatherby 338, first shot

Figure 23 - Experimental data from final system for Weatherby 338, second shot
Figure 24 - Experimental data from final system for 300 Weatherby Magnum
H - EES Program for Force Analysis

Senior Project Rifle Recoil System Design
Trevor Foster, Benjamin Cantfield-Hers zkowitz, Wil Meijer
For: Weatherby
April 30, 2013
Cal Poly San Luis Obispo

Input Values

\[W_{\text{rifle}} = 9.25 \text{ lbf} \] INPUT weight of rifle
\[W_{\text{front rest}} = 6 \text{ lbf} \] Weight of front rest
\[W_{\text{back rest}} = 5 \text{ lbf} \] Weight of back rest
\[W_{\text{rail}} = 3 \text{ lbf} \] Weight of linear rail?
\[F_{\text{Recoil}} = 3200 \text{ lbf} \] Estimated maximum recoil force from .460
\[H_{\text{Sensor}} = 4 \text{ in} + t_{\text{Spacer}} \] Measured height of sensor from the top of the base

Sled Dimensions

\[H_{\text{Total}} = t_{\text{Base}} + t_{\text{Spacer}} + h_{\text{Back}} \] Total height from table top to the top of the back
\[h_{\text{Back}} = 8 \text{ in} \] Just the back plate (including the spacer)
\[t_{\text{Back}} = 3 \text{ in} \] Thickness of back plate
\[W_{\text{Width Back}} = 4 \text{ in} \] Back plate width, make sure it is easy to get around
\[t_{\text{Base}} = 0.5 \text{ in} \] Sled base thickness
\[L_{\text{Base}} = 36 \text{ in} \] Total length, same as the one at Weatherby (3 ft)
\[W_{\text{Width Base}} = 6 \text{ in} \] Width of the sled base
\[h_{\text{Height TC}} = 3 \text{ in} \] Table catch height, separate from the thickness
\[W_{\text{Width TC}} = 6 \text{ in} \] Width of the table catch
\[t_{\text{TC}} = 3 \text{ in} \] Table catch thickness, will mount with the same screws as back plate

Unit Weight, \(\text{lb/min} \) = 0.008 From Shigley, Table A-5

\[W_{\text{Base}} = \text{Unit Weight, lbf} \cdot L_{\text{Base}} \cdot W_{\text{Width Base}} \cdot t_{\text{Base}} \] Sled weight without the slot cutouts
\[W_{\text{BackP}} = \text{Unit Weight, lbf} \cdot h_{\text{Back}} \cdot W_{\text{Width Back}} \cdot t_{\text{Back}} \] Weight of solid back plate, no screws, spacer included

Finding Center of gravity/mass

\[X_{\text{Back CG}} = \frac{t_{\text{Back}}}{2} \]

\[X_{\text{Base CG}} = \frac{L_{\text{Base}}}{2} \]
\[
\bar{x}_{\text{Bed}} = \frac{W_{\text{Base}} \cdot x_{\text{Base,CG}} + W_{\text{Back}} \cdot x_{\text{Back,CG}}}{W_{\text{Back}} + W_{\text{Base}}}
\]

\[
W_{\text{Bed}} = W_{\text{Back}} + W_{\text{Base}}
\]

\[
y_{\text{Back,CG}} = \frac{h_{\text{Back}}}{2}
\]

\[
y_{\text{Base,CG}} = \frac{h_{\text{Base}}}{2}
\]

\[
\bar{y}_{\text{Bed}} = \frac{W_{\text{Base}} \cdot y_{\text{Base,CG}} + W_{\text{Back}} \cdot y_{\text{Back,CG}}}{W_{\text{Back}} + W_{\text{Base}}}
\]

\[
W_{\text{Base,catch}} = \text{height}_{\text{TC}} \cdot \text{Width}_{\text{TC}} \cdot t_{\text{TC}} \cdot \text{UnitWeight}_{\text{Al}} \quad \text{Table catch weight, without screws}
\]

System Dimensions

\[
x_{\text{BackRest}} = t_{\text{Back}} + 6 \quad \text{[in]} \quad \text{From FBD, distance to center of back rest from far edge of back plate}
\]

\[
x_{\text{FrontRest}} = 30 \quad \text{[in]} \quad \text{From FBD, distance to center of front rest from far edge of back plate}
\]

\[
x_{\text{Rail}} = x_{\text{BackRest}} \quad \text{Center of rail from far edge of back plate}
\]

\[
\bar{x}_{\text{System}} = \frac{W_{\text{Base}} \cdot x_{\text{Base,CG}} + W_{\text{Back}} \cdot x_{\text{Back,CG}} + \left[W_{\text{Rail}} + W_{\text{BackRest}} + \frac{W_{\text{Base}}}{2} \right] \cdot x_{\text{BackRest}} + \left[W_{\text{FrontRest}} + \frac{W_{\text{Base}}}{2} \right] \cdot x_{\text{FrontRest}}}{W_{\text{Base}} + W_{\text{FrontRest}} + W_{\text{BackRest}} + W_{\text{Rail}} + W_{\text{Back}} + W_{\text{Base}} + \ldots}
\]

\[
W_{\text{Back,catch}}
\]

System COM

\[
W_{\text{System}} = W_{\text{FrontRest}} + W_{\text{BackRest}} + W_{\text{Rail}} + W_{\text{Back}} + W_{\text{Base}} \quad \text{Weight of system, no screws added}
\]

Deflection of Back Piece

\[
E_{\text{Al}} = 1.04 \times 10^7 \quad \text{[lb/in}^2]\quad \text{Shigley Table A-5}
\]

\[
l_{\text{Back}} = \frac{1}{12} \cdot \text{Width}_{\text{Back}} \cdot t_{\text{Back}}^3 \quad \text{Total inertia including spacer, without screws, assuming welded}
\]

\[
\delta_{\text{Back}} = F_{\text{Resid}} \cdot 2 \cdot \frac{H_{\text{Sensor}}^2}{6 \cdot E_{\text{Al}} \cdot l_{\text{Back}}} \cdot \left[H_{\text{Sensor}} - 3 \cdot h_{\text{Back}} \right] \quad \text{Cantilever beam with intermediate load}
\]

Safety and Reliability

Infinite Life

\[
n_r = \frac{1}{\frac{\sigma_a}{S_a} + \frac{\sigma_m}{S_m}} \quad \text{Goodman Failure criteria}
\]

\[
S_{\text{ut}} = 42000 \quad \text{[lb/in}^2]\quad \text{For 6061 T6 Aluminum}
\]
Dynamic Load Factor = 2
Since this is a very fast impulse and not a static load, need dynamic load factor

$$\sigma_{max} = \text{Dynamic Load Factor} \cdot \frac{F_{frcal}}{H_{sensor}} \cdot \frac{t_{back}}{2}$$
Maximum bending moment

$$\sigma_s = \frac{\sigma_{max}}{2}$$

$$\sigma_m = \sigma_s$$

$$S_{u'} = 0.5 \cdot S_{ul}$$

$$S_u = k_2 \cdot k_5 \cdot k_6 \cdot k_7 \cdot k_8 \cdot k_9 \cdot S_{u'}$$
Need all the k's

$$k_9 = 2.7 \cdot \left[\frac{S_{ul}}{1000}\right]^{0.265}$$
Surface factor, machined, Shigley Table 6-2

$$d_b = 0.808 \sqrt{\text{Width}_{back}}$$
Equivalent diameter, Shigley size factor EQ 6-20

$$k_b = 0.91 \cdot d_b^{-0.157} \quad \text{for } 2 < d_b < 10 \text{ in}$$

$$k_c = 1 \quad \text{bending}$$

$$k_d = 1 \quad \text{normal temperature}$$

$$k_s = 0.702 \quad 99.99\% \text{ Reliability}$$

$$k_l = 1 \quad \text{no miscellaneous effects}$$

Life Cycles

$$\sigma_{rev} = \frac{\sigma_s}{1 - \frac{\sigma_m}{S_{ul}}}$$

$$f = 0.9 \quad \text{fatigue strength fraction}$$

$$a = \left[f \cdot S_{ul} \right]^2$$

$$b = -\frac{1}{3} \log \left[f \cdot \frac{S_{ul}}{S_b} \right]$$

$$N = \left[\frac{\sigma_{rev}}{a} \right]^{1/3} \quad \# \text{ of expected cycles}$$

Screw Analysis

$$t_{spcr} = 1 \quad [\text{in}] \quad \text{spacer in back plate between base and back plate}$$

$$d = \frac{3}{4} \quad [\text{in}] \quad \text{Nominal diameter of screws}$$
\[E_{\text{screw}} = 3 \times 10^7 \text{ [psi]} \]
Steel.

\[A_d = \pi \cdot \frac{d^2}{4} \text{ Nominal area of unthreaded portion} \]

\[l = h + \frac{d}{2} \text{ grip length} \]

\[h = t_{\text{base}} + t_{\text{shoulder}} \text{ intermediate region} \]

\[l_t = l - l_d \text{ length of threaded portion of grip} \]

\[l_d = L_{\text{screw}} - l_{\text{threads}} \text{ length of unthreaded portion of grip} \]

\[l_{\text{threads}} = 2 \cdot d + 1 / 4 \text{ Length of threads} \]

\[A_t = 0.663_{\text{ steel}} \]

1 in UNF 12 TPI

\[A_t = 0.625_{\text{ steel}} \]

1 in UNF 12 TPI

\[A_t = 0.373 \text{ [in]}^2 \] 3/4 in UNF 12 TPI

\[A_t = 0.361 \text{ [in]}^2 \] 3/4 in UNF 12 TPI

\[k_{\text{screw}} = A_d \cdot A_t \left(\frac{E_{\text{screw}}}{A_d \cdot l_t + A_t \cdot l_d} \right) \text{ Screw stiffness} \]

\[L_{\text{screw}} = 2.75 \text{ [in]} \text{ total length. Try 2.75 or 3} \]

\[K_m = E_{\text{screw}} \cdot d \cdot A_{\text{stiff}} \cdot \exp \left(B_{\text{stiff}} \cdot \frac{d}{l_t} \right) \text{ Material stiffness, all aluminum} \]

\[A_{\text{stiff}} = 0.7967 \text{ From Table 8-8} \]

\[B_{\text{stiff}} = 0.63816 \text{ From Table 8-8} \]

\[C = \frac{k_{\text{screw}}}{k_{\text{screw}} + K_m} \text{ Stiffness constant} \]

\[S_p = 120000 \text{ [ksi]} \text{ Proof strength for SAE grade 8, medium-carbon alloy, Q&T, Shigley Table 8-9} \]

\[n_t = 0.577 \cdot 2 \cdot A_t \cdot \frac{S_p}{F_{\text{thread}}} \cdot \text{Dynamic Load Factor} \text{ Design factor for bolted joints loaded in shear, bolt threads extend into shear plane} \]

\[F_t = 0.75 \cdot A_t \cdot S_p \text{ Preload} \]

\[t_{\text{shear}} = F_{\text{thread}} \cdot \frac{\text{Dynamic Load Factor}}{2 \cdot A_t} \text{ Shear stress per bolt} \]

Yielding Safety Factor
Fatigue

\[n_{\text{load}} = \frac{S_p \cdot A_i - F_i}{C \cdot F_{\text{Recoil}} \cdot \text{Dynamic Load Factor}} \]

load factor guarding against joint separation

\[n_{\text{yield}} = \frac{S_p \cdot A_i}{C \cdot F_{\text{Recoil}} \cdot \text{Dynamic Load Factor} + F_i} \]

yielding factor of safety

\[\sigma_{\text{a,screw}} = \frac{C \cdot F_{\text{Recoil}} \cdot \text{Dynamic Load Factor} - A_i}{2} \]

\[\sigma_{\text{m,screw}} = \frac{C \cdot F_{\text{Recoil}} \cdot \text{Dynamic Load Factor} + F_i}{2 \cdot A_i} \]

\[\sigma_{\text{l,screw}} = \sigma_{\text{m,screw}} - \sigma_{\text{a,screw}} \]

\[n_{\text{l,screw}} = \frac{S_{\text{a,max}} \cdot \sigma_{\text{l,screw}} - \sigma_{\text{l,screw}} \cdot (S_{\text{m,l,screw}} + S_{\text{m,screw}})}{\sigma_{\text{a,screw}} \cdot (S_{\text{m,l,screw}} + S_{\text{m,screw}})} \]

Goodman fatigue safety factor

\[S_{\text{a,screw}} = 23200 \text{ [ksi]} \]

\[S_{\text{m,screw}} = 150000 \text{ [ksi]} \]

SOLUTION

Unit Settings: Eng F, psia, mass, deg

- \(a = 124842 \text{ [in]} \)
- \(A_d = 0.4418 \text{ [m^2]} \)
- \(A_{\text{oh}} = 0.7867 \text{ [m^2]} \)
- \(b = -0.173 \text{ [m]} \)
- \(C = 0.4479 \text{ [m]} \)
- \(d = 0.75 \text{ [in]} \)
- \(\text{Dynamic Load Factor} = 2 \)
- \(E_{\text{oh}} = 1.040 \times 10^7 \text{ [lb/ft^2]} \)
- \(E_{\text{screw}} = 3.000 \times 10^7 \text{ [psi]} \)
- \(f = 0.9 \)
- \(F_{\text{Recoil}} = 3200 \text{ [lb]} \)
- \(h = 1.5 \text{ [in]} \)
- \(h_{\text{back}} = 8 \text{ [in]} \)
- \(H_{\text{oh}} = 9.5 \text{ [in]} \)
- \(l_{\text{back}} = 9 \text{ [in]} \)
- \(k_a = 1.003 \)
- \(k_b = 1 \)
- \(k_c = 1 \)
- \(k_{\text{OH}} = 6.508 \times 10^6 \text{ [lb/ft]} \)
- \(L_{\text{base}} = 36 \text{ [in]} \)
- \(L_{\text{oh}} = 1.75 \text{ [in]} \)
- \(L_{\text{screw}} = 2.75 \text{ [in]} \)
- \(L_{\text{oh}} = 1.75 \text{ [in]} \)
- \(L_{\text{oh}} = 3843 \text{ [psi]} \)
- \(\sigma_{\text{oh}} = 2667 \text{ [psi]} \)
- \(\sigma_{\text{max}} = 5333 \text{ [psi]} \)
- \(N = 3.113 \times 10^9 \text{ [cycles]} \)
- \(N_{\text{oh}} = 3.373 \)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{scREW}</td>
<td>93843 [psi]</td>
</tr>
<tr>
<td>S_v</td>
<td>11445 [psi]</td>
</tr>
<tr>
<td>S_b</td>
<td>23200 [psi]</td>
</tr>
<tr>
<td>S_h</td>
<td>42000 [lb/in]</td>
</tr>
<tr>
<td>f_{taper}</td>
<td>8117 [psi]</td>
</tr>
<tr>
<td>t_{base}</td>
<td>0.5 [in]</td>
</tr>
<tr>
<td>t_{rc}</td>
<td>3 [in]</td>
</tr>
<tr>
<td>WidthBack</td>
<td>4 [in]</td>
</tr>
<tr>
<td>WidthTC</td>
<td>6 [in]</td>
</tr>
<tr>
<td>WidthRear</td>
<td>6 [lb]</td>
</tr>
<tr>
<td>WidthFront</td>
<td>6 [lb]</td>
</tr>
<tr>
<td>Wtotal</td>
<td>8.25 [lb]</td>
</tr>
<tr>
<td>WSystem</td>
<td>33.99 [lb]</td>
</tr>
<tr>
<td>XBackRear</td>
<td>9 [in]</td>
</tr>
<tr>
<td>XStabd</td>
<td>10.24 [in]</td>
</tr>
<tr>
<td>XBase, CG</td>
<td>18 [in]</td>
</tr>
<tr>
<td>Xfail</td>
<td>9 [in]</td>
</tr>
<tr>
<td>YStabd</td>
<td>2.015 [in]</td>
</tr>
<tr>
<td>q_{rev}</td>
<td>2847 [psi]</td>
</tr>
<tr>
<td>S_v</td>
<td>21000 [psi]</td>
</tr>
<tr>
<td>S_b</td>
<td>120000 [psi]</td>
</tr>
<tr>
<td>SubscREW</td>
<td>150000 [psi]</td>
</tr>
<tr>
<td>t_{back}</td>
<td>3 [in]</td>
</tr>
<tr>
<td>tupper</td>
<td>1 [in]</td>
</tr>
<tr>
<td>UnitWeight, At</td>
<td>0.098 [lb/in^2]</td>
</tr>
<tr>
<td>WidthBase</td>
<td>6 [in]</td>
</tr>
<tr>
<td>Wbase</td>
<td>9.408 [lb]</td>
</tr>
<tr>
<td>WBase</td>
<td>10.58 [lb]</td>
</tr>
<tr>
<td>Wfail</td>
<td>3 [lb]</td>
</tr>
<tr>
<td>Wfailster</td>
<td>19.99 [lb]</td>
</tr>
<tr>
<td>WSystem, robust</td>
<td>5.292 [lb]</td>
</tr>
<tr>
<td>XBack, CG</td>
<td>1.5 [in]</td>
</tr>
<tr>
<td>XSystem</td>
<td>16.89 [in]</td>
</tr>
<tr>
<td>XFrontRear</td>
<td>30 [in]</td>
</tr>
<tr>
<td>YBack, CG</td>
<td>4 [in]</td>
</tr>
<tr>
<td>YBase, CG</td>
<td>0.25 [in]</td>
</tr>
</tbody>
</table>

No unit problems were detected.
I - Detailed Drawings and Solid Modelling

Figure 25 - Final Design Isometric View Solid Model
Figure 26 - Final Design modeled in testing configuration
Figure 27 - Mechanical Drawing Overview
QTY: 1

Figure 28 - Mechanical Drawing Main Base
Figure 29 - Mechanical Drawing Front Catch
Figure 30 - Mechanical Drawing Spacer Block
Figure 31 - Mechanical Drawing Sensor Mount
Figure 32 - Mechanical Drawing Slot Sleds
Figure 33 - Mechanical Drawing Slot Sled Guides
Mechanical drawings

Figure 15. Circuit board (top) and enclosure dimensions
Specifications

All specifications are subject to change without notice. Typical for 25°C unless otherwise specified. Specifications in italic text are guaranteed by design.

Analog input

Table 1. Analog input specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D converter type</td>
<td></td>
<td>Successive approximation type</td>
</tr>
<tr>
<td>Input voltage range for linear operation</td>
<td>CHx to GND</td>
<td>Single-ended mode: ±10 V max</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Differential mode: −10 V min, +20 V max</td>
</tr>
<tr>
<td>Absolute maximum input voltage</td>
<td>CHx to GND</td>
<td>+28 V max</td>
</tr>
<tr>
<td>Input impedance</td>
<td></td>
<td>722 kΩ</td>
</tr>
<tr>
<td>Input current (Note 1)</td>
<td>V_in = +10 V</td>
<td>70 μA typ</td>
</tr>
<tr>
<td></td>
<td>V_in = 0 V</td>
<td>−12 μA typ</td>
</tr>
<tr>
<td></td>
<td>V_in = −10 V</td>
<td>−94 μA typ</td>
</tr>
<tr>
<td>Number of channels</td>
<td></td>
<td>8 single-ended or 4 differential, software-selectable</td>
</tr>
<tr>
<td>Input ranges</td>
<td>Single-ended</td>
<td>±10 V, G=2</td>
</tr>
<tr>
<td></td>
<td>Differential</td>
<td>±20 V, G=1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±10 V, G=2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±5 V, G=4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±4 V, G=5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±2.5 V, G=8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±2.0 V, G=10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±1.25 V, G=16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±1.0 V, G=20</td>
</tr>
<tr>
<td>Throughput (Note 2)</td>
<td>Software-paced</td>
<td>250 S/s typ, PC-dependent</td>
</tr>
<tr>
<td></td>
<td>Continuous scan</td>
<td>0.014 S/s to 48 kS/s</td>
</tr>
<tr>
<td>Channel gain queue</td>
<td></td>
<td>Software selectable. 8 elements in SE mode, 4 elements in DIFF mode. One gain element per channel. Elements must be unique and listed in ascending order.</td>
</tr>
<tr>
<td>Resolution (Note 3)</td>
<td>Differential</td>
<td>14 bits, no missing codes</td>
</tr>
<tr>
<td></td>
<td>Single-ended</td>
<td>13 bits</td>
</tr>
<tr>
<td>Integral linearity error</td>
<td></td>
<td>±2 LSB typ</td>
</tr>
<tr>
<td>Differential linearity error</td>
<td></td>
<td>±0.5 LSB typ</td>
</tr>
<tr>
<td>Absolute accuracy long term drift (Note 4)</td>
<td>±20 V range</td>
<td>±3 LSB typ (Δt = 1000 hrs)</td>
</tr>
<tr>
<td></td>
<td>±4 V range</td>
<td>±6 LSB typ (Δt = 1000 hrs)</td>
</tr>
<tr>
<td></td>
<td>±1 V range</td>
<td>±8 LSB typ (Δt = 1000 hrs)</td>
</tr>
<tr>
<td>Trigger source</td>
<td></td>
<td>External digital: TRIG_IN Software-selectable</td>
</tr>
</tbody>
</table>

Note 1: Input current is a function of applied voltage on the analog input channels. For a given input voltage, V_in, the input leakage is approximately equal to (8.181 * V_in – 12) μA.

Note 2: Maximum throughput when scanning is machine dependent.

Note 3: The ADS7871 converter only returns 13 bits (0 to 8,192 codes) in single-ended mode.

Note 4: Extrapolating the long term drift accuracy specifications will provide the approximate long term drift of the intermediate input ranges.
Accuracy

Table 2. Accuracy, differential mode

<table>
<thead>
<tr>
<th>Range</th>
<th>Absolute Accuracy 25 °C (±mV)</th>
<th>Absolute Accuracy 0 °C to 50°C (±mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>±20 V</td>
<td>10.98</td>
<td>49.08</td>
</tr>
<tr>
<td>±10 V</td>
<td>7.32</td>
<td>33.42</td>
</tr>
<tr>
<td>±5 V</td>
<td>3.66</td>
<td>20.76</td>
</tr>
<tr>
<td>±4 V</td>
<td>2.92</td>
<td>19.02</td>
</tr>
<tr>
<td>±2.5 V</td>
<td>1.83</td>
<td>14.97</td>
</tr>
<tr>
<td>±2 V</td>
<td>1.70</td>
<td>14.29</td>
</tr>
<tr>
<td>±1.25 V</td>
<td>1.21</td>
<td>12.18</td>
</tr>
<tr>
<td>±1 V</td>
<td>1.09</td>
<td>11.63</td>
</tr>
</tbody>
</table>

Table 3. Accuracy, single-ended mode

<table>
<thead>
<tr>
<th>Range</th>
<th>Absolute Accuracy 25 °C (±mV)</th>
<th>Absolute Accuracy 0 °C to 50°C (±mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10 V</td>
<td>10.98</td>
<td>49.08</td>
</tr>
</tbody>
</table>

Noise performance

Table 4. Noise performance, differential mode

<table>
<thead>
<tr>
<th>Range</th>
<th>Typical counts</th>
<th>Least significant bit\text{\footnotesize{rms}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>±20 V</td>
<td>8</td>
<td>1.21</td>
</tr>
<tr>
<td>±10 V</td>
<td>8</td>
<td>1.21</td>
</tr>
<tr>
<td>±5 V</td>
<td>9</td>
<td>1.36</td>
</tr>
<tr>
<td>±4 V</td>
<td>10</td>
<td>1.51</td>
</tr>
<tr>
<td>±2.5 V</td>
<td>12</td>
<td>1.81</td>
</tr>
<tr>
<td>±2 V</td>
<td>14</td>
<td>2.12</td>
</tr>
<tr>
<td>±1.25 V</td>
<td>18</td>
<td>2.72</td>
</tr>
<tr>
<td>±1 V</td>
<td>22</td>
<td>3.33</td>
</tr>
</tbody>
</table>

Table 5. Noise performance, single-ended mode

<table>
<thead>
<tr>
<th>Range</th>
<th>Typical Counts</th>
<th>LSB\text{\footnotesize{rms}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10 V</td>
<td>8.0</td>
<td>1.21</td>
</tr>
</tbody>
</table>

Analog output

Table 6. Analog output specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td></td>
<td>12-bits, 1 in 4,096</td>
</tr>
<tr>
<td>Output range</td>
<td></td>
<td>0 V to 5.0 V</td>
</tr>
<tr>
<td>Number of channels</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Throughput (Note 5)</td>
<td>Software paced</td>
<td>250 S/s single channel typ, PC dependent</td>
</tr>
<tr>
<td></td>
<td>Hardware paced, per channel</td>
<td>50 kS/s max</td>
</tr>
<tr>
<td>Power on and reset voltage</td>
<td>0 V, ±20 mV typ; initializes to 000h code</td>
<td></td>
</tr>
<tr>
<td>Output drive</td>
<td>Each D/A OUT</td>
<td>5 mA, sourcing</td>
</tr>
<tr>
<td>Slew rate</td>
<td></td>
<td>0.8 V/µs typ</td>
</tr>
</tbody>
</table>

Note 5: Maximum throughput when scanning is machine dependent.
<table>
<thead>
<tr>
<th>Performance</th>
<th>ENGLISH</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (+15%)</td>
<td>1 mV/lb</td>
<td>224.82 mV/N</td>
</tr>
<tr>
<td>Measurement Range (Compress)</td>
<td>5000 lb</td>
<td>22.24 kN</td>
</tr>
<tr>
<td>Measurement Range (Tension)</td>
<td>500 lb</td>
<td>2.22 kN</td>
</tr>
<tr>
<td>Maximum Static Force (Compress)</td>
<td>6000 lb</td>
<td>35.59 kN</td>
</tr>
<tr>
<td>Maximum Static Force (Tension)</td>
<td>500 lb</td>
<td>2.22 kN</td>
</tr>
<tr>
<td>Broadband Resolution (1 kHz to 100 kHz)</td>
<td>0.055 mV-µs</td>
<td>0.222 N-µs</td>
</tr>
<tr>
<td>Low Frequency Response (-5%)</td>
<td>0.0005 Hz</td>
<td>0.0003 Hz</td>
</tr>
<tr>
<td>Upper Frequency Limit</td>
<td>36 kHz</td>
<td>36 kHz</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>±1% FS</td>
<td>±1% FS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range</td>
<td>-85°F to +250°F</td>
<td>-54°C to +121°C</td>
</tr>
<tr>
<td>Temperature Coefficient of Sensitivity</td>
<td>±0.05 %/°F</td>
<td>±0.09 %/°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge Time Constant (at room temp)</td>
<td>2200 sec</td>
<td>2200 sec</td>
</tr>
<tr>
<td>Excitation Voltage</td>
<td>20 to 30 VDC</td>
<td>20 to 30 VDC</td>
</tr>
<tr>
<td>Constant Current Excitation</td>
<td>2 to 20 mA</td>
<td>2 to 20 mA</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>≤100 Ohm</td>
<td>≤100 Ohm</td>
</tr>
<tr>
<td>Output Bias Voltage</td>
<td>5 to 14 VDC</td>
<td>8 to 14 VDC</td>
</tr>
<tr>
<td>Spectral Noise (1 Hz)</td>
<td>0.00168 kV/NHz</td>
<td>0.00750 N/NHz</td>
</tr>
<tr>
<td>Spectral Noise (10 Hz)</td>
<td>0.00112 kV/NHz</td>
<td>0.00501 N/NHz</td>
</tr>
<tr>
<td>Spectral Noise (100 Hz)</td>
<td>0.00045 kV/NHz</td>
<td>0.00205 N/NHz</td>
</tr>
<tr>
<td>Spectral Noise (1000 Hz)</td>
<td>0.000133 kV/NHz</td>
<td>0.000592 N/NHz</td>
</tr>
<tr>
<td>Output Polarity (Compression)</td>
<td>Positive</td>
<td>Positive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness</td>
<td>6 lb/in²</td>
<td>0.063 kN/m²</td>
</tr>
<tr>
<td>Size (Hex x Height x Sensing Surface)</td>
<td>0.625 in x 0.625 in</td>
<td>15.88 mm x 15.88 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.8 oz</td>
<td>22.7 gm</td>
</tr>
<tr>
<td>Housing Material</td>
<td>Stainless Steel</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Sealing</td>
<td>Hermetic</td>
<td>Hermetic</td>
</tr>
<tr>
<td>Electrical Connector</td>
<td>10-32 Coaxial Jack</td>
<td>10-32 Coaxial Jack</td>
</tr>
<tr>
<td>Electrical Connection Position</td>
<td>Side</td>
<td>Side</td>
</tr>
<tr>
<td>Mounting Thread</td>
<td>10-32 Female</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Mounting Torque (Recommended)</td>
<td>16 to 20 lb</td>
<td>131 to 226 N-cm</td>
</tr>
</tbody>
</table>

Optional Versions:
- N - Negative Output Polarity
- W - Water Resistant Cable

Notes:
1. Typical.
2. Calculated from discharge time constant.
3. Estimated using rigid body dynamics calculations.
5. See PCB Declaration of Conformance PS023 for details.

Supplied Accessories:
- 080A81 Thread Locker (1)
- 001BC5 Mounting Stud (10-32 to 10-32) (2)
- 004A03 Impact Cap (1)
- M081A62 Mounting stud, 10-32 to M6 x 1, BeCu with shoulder (2)

Spec Number: 8369

All specifications are at room temperature unless otherwise specified.
In the interest of constant product improvement, we reserve the right to change specifications without notice.
ICP® is a registered trademark of PCB group, Inc.
<table>
<thead>
<tr>
<th>Performance</th>
<th>ENGLISH</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channels</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Voltage Gain (±1%)</td>
<td><0.1 Hz</td>
<td>1.1</td>
</tr>
<tr>
<td>Low Frequency Response (±5%)</td>
<td>>10kHz</td>
<td>>10kHz</td>
</tr>
<tr>
<td>High Frequency Response (±5%)</td>
<td>>1000kHz</td>
<td>>1000kHz</td>
</tr>
<tr>
<td>Fault/Alarm Monitor/Meter</td>
<td>26 V FS</td>
<td>24 V FS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range</td>
<td>32°C to 120°C</td>
<td>0°C to 50°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Required (Standard)</td>
<td>DC power</td>
<td>DC power</td>
</tr>
<tr>
<td>Excitation Voltage (To Sensor)</td>
<td>25 to 27 VDC</td>
<td>25 to 27 VDC</td>
</tr>
<tr>
<td>DC Offset (Maximum)</td>
<td><20 mV</td>
<td><20 mV</td>
</tr>
<tr>
<td>DC Power</td>
<td>+32 to 38 VDC</td>
<td>+32 to 38 VDC</td>
</tr>
<tr>
<td>DC Current Excitation (To Sensor)</td>
<td>0.12 amps</td>
<td>0.12 amps</td>
</tr>
<tr>
<td>Discharge Time Constant (0 to ±50%)</td>
<td>10 sec</td>
<td>10 sec</td>
</tr>
<tr>
<td>Spectral Noise (1 Hz)</td>
<td>0.71 µV/Hz</td>
<td>-123 dB</td>
</tr>
<tr>
<td>Spectral Noise (10 Hz)</td>
<td>0.09 µV/Hz</td>
<td>-142 dB</td>
</tr>
<tr>
<td>Spectral Noise (100 Hz)</td>
<td>0.05 µV/Hz</td>
<td>-147 dB</td>
</tr>
<tr>
<td>Spectral Noise (1 kHz)</td>
<td>0.04 µV/Hz</td>
<td>-148 dB</td>
</tr>
<tr>
<td>Spectral Noise (10 kHz)</td>
<td>0.03 µV/Hz</td>
<td>-150 dB</td>
</tr>
<tr>
<td>Broadband Electrical Noise (1 to 10kHz)</td>
<td>3.25 µV</td>
<td>-110 dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Connector (Input, sensor)</td>
<td>BNC Jack</td>
<td>BNC Jack</td>
</tr>
<tr>
<td>Electrical Connector (Output)</td>
<td>BNC Jack</td>
<td>BNC Jack</td>
</tr>
<tr>
<td>Electrical Connector (DC Power Input)</td>
<td>DIN Jack</td>
<td>DIN Jack</td>
</tr>
<tr>
<td>Size (Height x Width x Length)</td>
<td>6.3 in x 2.4 in x 11 cm x 6.1 cm x 28 cm</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>1.51 lb</td>
<td>685 gm</td>
</tr>
</tbody>
</table>

Notes

1. Provided by supplied external DC power supply.
2. User adjustable, factory set at 4 mA (± 0.5 mA). One control adjusts all channels.
3. With >1 M Ohm input impedance of readout device.
4. Tyrolyl;
5. See PCB Declaration of Conformance PS024 for details. A low impedance connection from case to earth ground is required to maintain CE compliance.

Supplied Accessories

- 017AXX Power Cord ()
- 488804NC Power Converter ()

CE

All specifications are at room temperature unless otherwise specified.

In the interest of constant product improvement, we reserve the right to change specifications without notice.

ICP® is a registered trademark of PCB group, Inc.
K - Matlab Analysis Code

%%Rifle Recoil Force Calculation
%%Calculates Recoil Energy and Graphs Force and Energy vs Time

%%
close all
clear all
c1c

%% Load our Data
load test1_2506
load test2_2506
load test1_300wbymag
load test2_300wbymag

%% system constants
m_rifle_2506= 8.25/32.174
m_rifle_300wbymag= 9.25/32.174

%% determine acceleration from force data
test1_2506(:,3)= test1_2506(:,2)/m_rifle_2506;
test2_2506(:,3)= test2_2506(:,2)/m_rifle_2506;
max_force1= max(test2_2506(:,3)) %and max force
test1_300wbymag(:,3)= test1_300wbymag(:,2)/m_rifle_300wbymag;
test2_300wbymag(:,3)= test2_300wbymag(:,2)/m_rifle_300wbymag;

%% Plot data
hold on
% 25-06
plot(test1_2506(:,1),test1_2506(:,2), 'b') %force1 vs time
plot(test2_2506(:,1),test2_2506(:,3), 'b') %accel1 vs time
plot(test2_2506(:,1),test2_2506(:,2), 'r') %force2 vs time
plot(test1_2506(:,1),test1_2506(:,3), 'r') %accel2 vs time

% 300wby mag
figure(2)
hold on
plot(test1_300wbymag(:,1),test1_300wbymag(:,2), 'r') %force3 vs time
plot(test1_300wbymag(:,1),test1_300wbymag(:,3), 'r') %accel3 vs time
plot(test2_300wbymag(:,1),test2_300wbymag(:,2), 'b') %force4 vs time
plot(test2_300wbymag(:,1),test2_300wbymag(:,3), 'b') %accel4 vs time

% plot(test1_300wbymag(:,1),test1_300wbymag(:,2),'g')
% plot(test2_300wbymag(:,1),test2_300wbymag(:,2),'k')

xlabel('time(seconds)')
ylabel('force(pounds)')

legend('test 1 25-06','test 2 25-06','test 1 300 wby mag','test 2 300 wby mag')

%% Calculate Integrals
% figure(2)
% Area11 = trapz(test1_2506(:,1),test1_2506(:,2)) %area under force1 vs. time
Area11= trapz(test1_2506(:,1),test1_2506(:,3)) %area under accel1 vs. time
% Area12 = trapz(test2_2506(:,1),test2_2506(:,2)) %area under force2 vs. time
Area112= trapz(test2_2506(:,1),test2_2506(:,3)) %area under accel2 vs. time
Area3001 = trapz(test1_300wbymag(:,1),test1_300wbymag(:,3))
Area3002 = trapz(test2_300wbymag(:,1),test2_300wbymag(:,3))

Area111 = trapz(test2_2506(:,1),test2_2506(:,2))
Area112 = trapz(test2_300wbymag(:,1),test2_300wbymag(:,2))
Area21 = trapz(test1_300wbymag(:,1),test1_300wbymag(:,2))
Area22 = trapz(test2_300wbymag(:,1),test2_300wbymag(:,2))

% 300 wby mag
RecoilEnergy1 = 0.5*m_rifle_2506*Area111*Area111
RecoilEnergy2 = 0.5*m_rifle_2506*Area1112*Area1112
RecoilEnergy300wbymag1 = 0.5*m_rifle_300wbymag*Area3001*Area3001
RecoilEnergy300wbymag2 = 0.5*m_rifle_300wbymag*Area3002*Area3002

% And calculating recoil energy based on .5mv^2
L - Matlab Sensor Code

%%% Rifle Recoil Project
%%% Effective Sensor Rate Reduction for Sensor Selection
close all
clear all
clc

%%% Load our Data
load test1_2506
load test2_2506
load wby300corrected

%%% Begin for loop
%%% n values change the effective Hz of sensor
n=[200];
%%% s values change the start point for recording. (initial was 200ms before %trigger)
s=1;

for k = 1:length(n) %Run for all values of n
%%% Extrapolate Data As If Recorded at Lower Refresh Rates
%%% Create variable name based on n, each iteration is saved as new variable
%%% Saves w/ end of s (shortened) from s (start), by n, to the end.
eval(['test1_2506s_' num2str(n(k)) '(:,1)=test1_2506(s:n(k):end, 1)']);
eval(['test1_2506s_' num2str(n(k)) '(:,2)=test1_2506(s:n(k):end, 2)']);
eval(['test2_2506s_' num2str(n(k)) '(:,1)=test2_2506(s:n(k):end, 1)']);
eval(['test2_2506s_' num2str(n(k)) '(:,2)=test2_2506(s:n(k):end, 2)']);
eval(['WBY300Cor1s_' num2str(n(k)) '(:,1)=WBY300Cor1(s:n(k):end, 1)']);
eval(['WBY300Cor1s_' num2str(n(k)) '(:,2)=WBY300Cor1(s:n(k):end, 2)']);
eval(['WBY300Cor2s_' num2str(n(k)) '(:,1)=WBY300Cor2(s:n(k):end, 1)']);
eval(['WBY300Cor2s_' num2str(n(k)) '(:,2)=WBY300Cor2(s:n(k):end, 2)']);

%%% System constants
m_rifle_2506= 8.25/32.174;
m_rifle_300wbymag= 9.25/32.174;

%%% Determine acceleration from force data
eval(['test1_2506s_' num2str(n(k)) '(:,3)=test1_2506s_' num2str(n(k)) '(:,2)/m_rifle_2506']);
eval(['test2_2506s_' num2str(n(k)) '(:,3)=test2_2506s_' num2str(n(k)) '(:,2)/m_rifle_2506']);
eval(['MaxForce1_' num2str(n(k)) ']=max(test1_2506s_' num2str(n(k)) '(:,3))'); %Max Force 25-06 test 1
eval(['MaxForce2_' num2str(n(k)) ']=max(test2_2506s_' num2str(n(k)) '(:,3))');
eval(['WBY300Cor1s_' num2str(n(k)) '(:,3)=WBY300Cor1s_' num2str(n(k)) '(:,2)/m_rifle_2506']);
eval(['WBY300Cor2s_' num2str(n(k)) '(:,3)=WBY300Cor2s_' num2str(n(k)) '(:,2)/m_rifle_2506']);
eval(['MaxForce3_' num2str(n(k)) ']=max(WBY300Cor1s_' num2str(n(k)) '(:,3))'); %Max force 300wby test 1
eval(['MaxForce4_' num2str(n(k)) ']=max(WBY300Cor2s_' num2str(n(k)) '(:,3))');

%%% Calculate Integrals (To Get Velocity)
eval(['Vel2506_1_' num2str(n(k)) ']=trapz(test1_2506s_' num2str(n(k)) '(:,1),test1_2506s_' num2str(n(k)) '(:,3))'); %area under accell vs. time
eval(['Vel2506_2_ num2str(n(k)) =trapz(test2_2506s_ num2str(n(k)) (:,1),test2_2506s_ num2str(n(k)) (:,3))']); %area under accel2 vs. time

eval(['Vel300_1_ num2str(n(k)) =trapz(WBY300Cor1s_ num2str(n(k)) (:,1),WBY300Cor1s_ num2str(n(k)) (:,3))']); %area under accel1 vs. time
eval(['Vel300_2_ num2str(n(k)) =trapz(WBY300Cor2s_ num2str(n(k)) (:,1),WBY300Cor2s_ num2str(n(k)) (:,3))']); %area under accel2 vs. time

%% And calculating recoil energy based on .5mv^2
eval(['RecoilEnergy2506_1_ num2str(n(k)) =0.5*m_rifle_2506*(Vel2506_1_ num2str(n(k)) ')^2']);
eval(['RecoilEnergy2506_2_ num2str(n(k)) =0.5*m_rifle_2506*(Vel2506_2_ num2str(n(k)) ')^2']);

eval(['RecoilEnergy300_1_ num2str(n(k)) =0.5*m_rifle_300wbymag*(Vel300_1_ num2str(n(k)) ')^2']);
eval(['RecoilEnergy300_2_ num2str(n(k)) =0.5*m_rifle_300wbymag*(Vel300_2_ num2str(n(k)) ')^2']);

%% Output Variable
%Output Hz
eval(['hz_ num2str(n(k)) =96.153/n(k)']);
eval(['all_ num2str(n(k)) =[n(k),hz_ num2str(n(k)),MaxForce1_ num2str(n(k)) ,MaxForce2_ num2str(n(k)) ,MaxForce3_ num2str(n(k)) ,MaxForce4_ ... num2str(n(k)),RecoilEnergy2506_1_ num2str(n(k)),RecoilEnergy2506_2_ ... num2str(n(k)) ,RecoilEnergy300_1_ num2str(n(k)),RecoilEnergy300_2_ num2str(n(k))]']);

%% Graph Comparison
figure (1)
hold on
% 25-06
eval(['x1 = test1_2506s_ num2str(n(k)) (:,1)']);
eval(['y1 = test1_2506s_ num2str(n(k)) (:,2)']);
eval(['z1 = test1_2506s_ num2str(n(k)) (:,3)']);
eval(['x2 = test2_2506s_ num2str(n(k)) (:,1)']);
eval(['y2 = test2_2506s_ num2str(n(k)) (:,2)']);
eval(['z2 = test2_2506s_ num2str(n(k)) (:,3)']);

plot(x1,y1, 'b') %force1 vs time
plot(x1,z1, 'b') %accel1 vs time
plot(x2,y2, 'r') %force2 vs time
plot(x2,z2, 'r') %accel2 vs time
xlabel('time(seconds)')
ylabel('force(pounds)')

% 300wbymag
eval(['x3 = WBY300Cor1s_ num2str(n(k)) (:,1)']);
eval(['y3 = WBY300Cor1s_ num2str(n(k)) (:,2)']);
eval(['z3 = WBY300Cor1s_ num2str(n(k)) (:,3)']);
eval(['x4 = WBY300Cor2s_ num2str(n(k)) (:,1)']);
eval(['y4 = WBY300Cor2s_ num2str(n(k)) (:,2)']);
eval(['z4 = WBY300Cor2s_ num2str(n(k)) (:,3)']);

figure(2)
hold on
plot(x3,y3, 'b') \hspace{1em} \text{force4 vs time}
plot(x3,z3, 'b') \hspace{1em} \text{accel4 vs time}
plot(x4,y4, 'r') \hspace{1em} \text{force4 vs time}
plot(x4,z4, 'r') \hspace{1em} \text{accel4 vs time}

xlabel('time(seconds)')
ylabel('force(pounds)')

clear x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4
k=k+1;
clc
end

disp(['Program Complete. Data started at ' num2str(s)])
Table 4 – Estimated Cost Bill of Materials

<table>
<thead>
<tr>
<th>Category</th>
<th>Part Description</th>
<th>Purpose</th>
<th>Dealer</th>
<th>Part Number</th>
<th>Price ($)</th>
<th>Quantity</th>
<th>Total ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasteners</td>
<td>Grade 8 Alloy Steel Hex Head Cap Screw Zinc Yellow Ptd, 3/4"-16 Thrd, 3" L, Fully Thrd</td>
<td>Back Plate Fasteners</td>
<td>McMaster</td>
<td>92620A875</td>
<td>7.87</td>
<td>4</td>
<td>31.48</td>
</tr>
<tr>
<td></td>
<td>Grade 8 Coated Alloy Steel Hex Head Cap Screw 3/4"-16 Thread, 4" Length</td>
<td>Table Catch Fasteners</td>
<td>McMaster</td>
<td>91286A514</td>
<td>4.24</td>
<td>4</td>
<td>16.96</td>
</tr>
<tr>
<td>Washers/Nuts</td>
<td>3/4 in. Zinc-Plated Nuts, Washers and Lock Washers (4-Pieces)</td>
<td>Table Catch Fasteners</td>
<td>Home Depot</td>
<td>00694</td>
<td>4.86</td>
<td>1</td>
<td>4.86</td>
</tr>
<tr>
<td>Aluminum</td>
<td>6061 Aluminum 1/2"x6"x3ft</td>
<td>Base</td>
<td>McMaster</td>
<td>8975K221</td>
<td>68.31</td>
<td>1</td>
<td>68.31</td>
</tr>
<tr>
<td></td>
<td>6061 Aluminum Anodized 1.25" Dia x 1' Rod</td>
<td>Sleds</td>
<td>McMaster</td>
<td>8974K161</td>
<td>9.95</td>
<td>1</td>
<td>9.95</td>
</tr>
<tr>
<td></td>
<td>6061 Aluminum 3"x4"x12"</td>
<td>Back Plate, Spacer</td>
<td>McMaster</td>
<td>8975K327</td>
<td>93.65</td>
<td>1</td>
<td>93.65</td>
</tr>
<tr>
<td></td>
<td>6061 Aluminum 3"x3"x6"</td>
<td>Table Catch</td>
<td>McMaster</td>
<td>8975K564</td>
<td>44.12</td>
<td>1</td>
<td>44.12</td>
</tr>
<tr>
<td></td>
<td>Multipurpose Aluminum (Alloy 6061) 1/2" Thick, 5" Width, 1' Length</td>
<td>Adjustable Sleds</td>
<td>McMaster</td>
<td>8975K436</td>
<td>21.94</td>
<td>1</td>
<td>21.94</td>
</tr>
<tr>
<td>Butt pad</td>
<td>Impact-Resistant UHMW Polyethylene Sheet 5" Thick, 12" X 12" (3-4 Attachments)</td>
<td>Butt pad</td>
<td>McMaster</td>
<td>8752K987</td>
<td>178.47</td>
<td>1</td>
<td>178.47</td>
</tr>
<tr>
<td></td>
<td>Allen Company Shoot’N Bag, Filled Set</td>
<td>Front and Rear rests</td>
<td>Amazon</td>
<td>B001GXJJ84</td>
<td>24.18</td>
<td>1</td>
<td>24.18</td>
</tr>
<tr>
<td></td>
<td>Velcro Velstretch Strap 1 X 27-Inch, 2 Pack, Black</td>
<td>Straps</td>
<td>Amazon</td>
<td>90441</td>
<td>7.00</td>
<td>1</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td>Hydraulic Trigger Release</td>
<td>Firing</td>
<td>Weatherby Provided System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>PCB 208C05</td>
<td>Force Sensor</td>
<td>PCB</td>
<td>208C05</td>
<td>400.00</td>
<td>1</td>
<td>400.00</td>
</tr>
<tr>
<td></td>
<td>PCB 428A21</td>
<td>Conditioner</td>
<td>PCB</td>
<td>428A21</td>
<td>410.00</td>
<td>1</td>
<td>410.00</td>
</tr>
<tr>
<td></td>
<td>General purpose coaxial cable, white FEP jacket, 3-ft, BNC plug to BNC plug</td>
<td>BNC-Wire</td>
<td>PCB</td>
<td>002T03</td>
<td>10.00</td>
<td>1</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>PCB 002C05</td>
<td>Force cable</td>
<td>PCB</td>
<td>002C05</td>
<td>39.00</td>
<td>1</td>
<td>39.00</td>
</tr>
<tr>
<td></td>
<td>MC USB-1408FS</td>
<td>DAQ Unit</td>
<td>MC DAQ</td>
<td>USB-1408FS-Plus</td>
<td>249.00</td>
<td>1</td>
<td>249.00</td>
</tr>
<tr>
<td></td>
<td>Laptop Computer</td>
<td>Data Analysis</td>
<td>Weatherby Provided System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parts Subtotal (No Shipping/Tax) ($) 1608.92

Table 5 - Actual Cost Bill of Materials
<table>
<thead>
<tr>
<th>Category</th>
<th>Part Description</th>
<th>Purpose</th>
<th>Dealer</th>
<th>Part Number</th>
<th>Price ($)</th>
<th>Quantity</th>
<th>Total ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasteners</td>
<td>Grade 8 Alloy Steel Hex Head Cap Screw Zinc Yellow Pltd, 3/4"-16 Thrd, 3" L, Fully Thrd</td>
<td>Back Plate Fasteners</td>
<td>McMaster</td>
<td>92620A875</td>
<td>7.87</td>
<td>4</td>
<td>31.48</td>
</tr>
<tr>
<td></td>
<td>Grade 8 Coated Alloy Steel Hex Head Cap Screw 3/4"-16 Thread, 4" Length</td>
<td>Table Catch Fasteners</td>
<td>McMaster</td>
<td>91286A514</td>
<td>4.24</td>
<td>4</td>
<td>16.96</td>
</tr>
<tr>
<td>Washers/Nuts</td>
<td>3/4 in. Zinc-Plated Nuts, Washers and Lock Washers (4-Pieces)</td>
<td>Table Catch Fasteners</td>
<td>Fastenal</td>
<td></td>
<td>11.31</td>
<td>1</td>
<td>11.31</td>
</tr>
<tr>
<td>Aluminum</td>
<td>6061 Aluminum1/2"x6"x3ft</td>
<td>Base</td>
<td>McMaster</td>
<td>8975K221</td>
<td>68.31</td>
<td>1</td>
<td>68.31</td>
</tr>
<tr>
<td></td>
<td>6061 Aluminum Anodized 1.25" Dia x 1' Rod</td>
<td>Sleds</td>
<td>McMaster</td>
<td>8974K161</td>
<td>9.95</td>
<td>1</td>
<td>9.95</td>
</tr>
<tr>
<td></td>
<td>6061 Aluminum 3"x4"x12"</td>
<td>Back Plate, Spacer</td>
<td>McMaster</td>
<td>8975K327</td>
<td>93.65</td>
<td>1</td>
<td>93.65</td>
</tr>
<tr>
<td></td>
<td>6061 Aluminum 3"x3"x6"</td>
<td>Table Catch</td>
<td>McMaster</td>
<td>8975K564</td>
<td>44.12</td>
<td>1</td>
<td>44.12</td>
</tr>
<tr>
<td></td>
<td>Multipurpose Aluminum (Alloy 6061) 1/2" Thick, 5" Width, 1' Length</td>
<td>Adjustable Sleds</td>
<td>McMaster</td>
<td>8975K436</td>
<td>21.94</td>
<td>1</td>
<td>21.94</td>
</tr>
<tr>
<td>Butt pad</td>
<td>Impact-Resistant UHMW Polyethylene Sheet 5" Thick, 12" X 12" (3-4 Attachments)</td>
<td>Butt pad</td>
<td>McMaster</td>
<td>8752K987</td>
<td>178.47</td>
<td>1</td>
<td>178.47</td>
</tr>
<tr>
<td></td>
<td>Caldwell Deadshot Shooting Bag Combo, Filled Set</td>
<td>Front and Rear rests</td>
<td>Amazon</td>
<td></td>
<td>24.99</td>
<td>1</td>
<td>24.99</td>
</tr>
<tr>
<td></td>
<td>Velcro Velstretch Strap 1 X 27-Inch, 2 Pack, Black</td>
<td>Straps</td>
<td>Amazon</td>
<td></td>
<td>4.10</td>
<td>2</td>
<td>8.20</td>
</tr>
<tr>
<td></td>
<td>Hydraulic Trigger Release</td>
<td>Firing</td>
<td>Weatherby</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>PCB 208C05</td>
<td>Force Sensor</td>
<td>PCB</td>
<td>208C05</td>
<td>369.00</td>
<td>1</td>
<td>369.00</td>
</tr>
<tr>
<td></td>
<td>PCB 428A21</td>
<td>Conditioner</td>
<td>PCB</td>
<td>428A21</td>
<td>360.00</td>
<td>1</td>
<td>360.00</td>
</tr>
<tr>
<td></td>
<td>General purpose coaxial cable, white FEP jacket, 3-ft, BNC plug to BNC plug</td>
<td>BNC-Wire</td>
<td>PCB</td>
<td>002T03</td>
<td>28.80</td>
<td>1</td>
<td>28.80</td>
</tr>
<tr>
<td></td>
<td>PCB 002C05</td>
<td>Force cable</td>
<td>PCB</td>
<td>002C05</td>
<td>35.10</td>
<td>1</td>
<td>35.10</td>
</tr>
<tr>
<td></td>
<td>MC USB-1408FS-Plus</td>
<td>DAQ Unit</td>
<td>MC DAQ</td>
<td>USB-1408FS-Plus</td>
<td>249.00</td>
<td>1</td>
<td>249.00</td>
</tr>
<tr>
<td></td>
<td>Laptop Computer</td>
<td>Data Analysis</td>
<td>Weatherby</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional Parts</td>
<td>Straps</td>
<td>Home Depot</td>
<td></td>
<td>5.36</td>
<td>2</td>
<td>10.73</td>
</tr>
<tr>
<td></td>
<td>Velcro Straps 2" x 36" 2 pack</td>
<td></td>
<td>Home Depot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Quantity</td>
<td>Price</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velcro Straps 2" x 4"</td>
<td>Straps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washers</td>
<td>Home Depot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine Screws</td>
<td>Sleds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNC to BNC</td>
<td>DAQ Set Up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foam Board</td>
<td>Poster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting Spray</td>
<td>Poster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube Rolls to Protect Poster</td>
<td>Poster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needles (to sew velcro)</td>
<td>Firing Set Up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNC to Wire</td>
<td>DAQ Set Up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parts Subtotal (No Shipping/Tax) ($) | 1624.39
Table 6 - Cost Overview

Estimated Cost

<table>
<thead>
<tr>
<th>Dealer</th>
<th>Price ($)</th>
<th>Tax ($)</th>
<th>Shipping ($)</th>
<th>Total ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McMaster</td>
<td>$464.88</td>
<td>$35.12</td>
<td>$26.00</td>
<td>$526.00</td>
</tr>
<tr>
<td>Home Depot</td>
<td>$4.86</td>
<td>$0.36</td>
<td>$0.00</td>
<td>$5.22</td>
</tr>
<tr>
<td>Amazon</td>
<td>$31.18</td>
<td>$2.49</td>
<td>$0.00</td>
<td>$33.67</td>
</tr>
<tr>
<td>PCB</td>
<td>$859.00</td>
<td>$64.43</td>
<td>$0.00</td>
<td>$923.43</td>
</tr>
<tr>
<td>MC DAQ</td>
<td>$249.00</td>
<td>$0.00</td>
<td>$9.95</td>
<td>$258.95</td>
</tr>
<tr>
<td>Grand Total ($)</td>
<td></td>
<td></td>
<td></td>
<td>$1,747.27</td>
</tr>
</tbody>
</table>

Actual Cost

<table>
<thead>
<tr>
<th>Dealer</th>
<th>Price ($)</th>
<th>Tax ($)</th>
<th>Shipping ($)</th>
<th>Total ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McMaster</td>
<td>$464.88</td>
<td>$35.12</td>
<td>$26.00</td>
<td>$526.00</td>
</tr>
<tr>
<td>Estimated. No invoice received by team for McMaster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home Depot</td>
<td>$23.03</td>
<td>$1.83</td>
<td>$0.00</td>
<td>$24.86</td>
</tr>
<tr>
<td>Amazon</td>
<td>$33.19</td>
<td>$2.66</td>
<td>$0.00</td>
<td>$35.85</td>
</tr>
<tr>
<td>PCB</td>
<td>$792.90</td>
<td>$59.47</td>
<td>$11.85</td>
<td>$864.22</td>
</tr>
<tr>
<td>MC DAQ</td>
<td>$249.00</td>
<td>$20.72</td>
<td>$9.95</td>
<td>$279.67</td>
</tr>
<tr>
<td>Other Merchants</td>
<td>$61.39</td>
<td>$4.91</td>
<td>$5.47</td>
<td>$71.77</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$1,624.39</td>
<td>$124.71</td>
<td>$53.27</td>
<td></td>
</tr>
<tr>
<td>Grand Total ($)</td>
<td></td>
<td></td>
<td></td>
<td>$1,802.37</td>
</tr>
<tr>
<td>Overage</td>
<td></td>
<td></td>
<td></td>
<td>$55.11</td>
</tr>
</tbody>
</table>
Model Number: 482A21
Serial Number: 6381
Description: Signal Conditioner
Manufacturer: PCB

Calibration Data
Temperature: 75 °F (24 °C) Humidity: 50%

<table>
<thead>
<tr>
<th>Channel</th>
<th>Volts</th>
<th>Current (mA)</th>
<th>Gain X1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.8</td>
<td>3.99</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Condition of Unit
As Found: n/a
As Left: New unit, in tolerance

Notes
1. Calibration is N.I.S.T. traceable through PCB control number QC-214.
2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc.
3. Calibration is performed in compliance with ISO 9001, ISO 10012-1, ANSI/NCSL Z540.3 and ISO 17025.
4. Measurement uncertainty (95% confidence level with a coverage factor of 2) for the sensitivity reading is +/- 0.2%.
5. See Manufacturer’s Specification Sheet for a detailed listing of performance specifications.

Technician: Travis Davis
Date: 08/21/13

Due Date:

PCB PIEZOTRONICS™
Headquarters: 3425 Walden Avenue, Depew, NY 14043
 Calibration Performed at 10869 Highway 903, Halifax, NC 27839
 TEL: 888-684-0013 FAX: 716-685-3880 www.pcb.com
CALIBRATION CERTIFICATE

Model: 208C95
Serial #: I-W39012
Description: Force Sensor
Type: ICP
Sensitivity*: 0.9720 mV/LBF
0.2185 mV/N
Linearity*: 0.3% FS
Uncertainty**: +/- 1%

Bias: 10.19 VDC
* Zero based; least-squares straight line.
** Measurement uncertainty represented using a coverage factor of k=2 which provides a level of confidence of approximately 99 %.

Condition of Unit:
As Found: Not applicable
As Left: In tolerance; new unit

TEST DATA

<table>
<thead>
<tr>
<th>INPUT (LBF)</th>
<th>OUTPUT (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>551</td>
</tr>
<tr>
<td>2000</td>
<td>1960</td>
</tr>
<tr>
<td>3000</td>
<td>2928</td>
</tr>
<tr>
<td>4000</td>
<td>3891</td>
</tr>
<tr>
<td>5000</td>
<td>4844</td>
</tr>
</tbody>
</table>

Notes:
1. Standard calibration is supplied in compression mode.
2. Station # 41
3. This sensor is torque to 20 m-lbs prior to calibration.
4. Calibration is traceable to NIST and is accredited to ISO 17025 and ANSHI/CSI. Z540.3.
5. NIST traceability through PCB control # NCD14.
6. This certificate may not be reproduced, except in full, without written approval from PCB Piezotronics, Inc.

PCB PIEZOTRONICS
Tel: 858-684-0013 Fax: 714-680-2006 Email: sales@pcb.com
Headquarters: 5420 Walden Avenue, Oxnard, NY 14043
Manufacturing and Calibration Facility: 1089 Hwy 903, Haltex, NC 27839
ISO 9001 CERTIFIED