Fe^1+ AND **Fe**^2+ HYPERFINE FIELDS IN **MgO** AND **CaO**

J. CHAPPERT* and R. B. FRANKEL
National Magnet Laboratory†, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

and

N. A. BLUM
NASA Electronics Research Center, Cambridge, Massachusetts, USA

Received 15 June 1967

Hyperfine interactions have been measured for Fe**^1+** and Fe**^2+** in MgO and CaO. The core polarization fields per spin moment are -127 kOe/μ_B for both Fe**^1+** and Fe**^2+**.

Multiple charge states have been observed in the Mössbauer spectra of 57Co-doped MgO [1, 2] and CaO [2] crystals. In this letter we report the observation of magnetic field-induced hyperfine structure in Fe**^1+** and Fe**^2+** in MgO and CaO. From the measured hyperfine fields, we derive the core polarization fields, using calculated values for the orbital contribution to the hyperfine interaction in the crystal-field split ground state. We also present evidence for paramagnetic relaxation effects in Fe**^2+** in MgO in small external fields, which may be related to the zero-field splitting of the Fe**^2+** line into a doublet at 14ºK [3].

The ground term of the ferrous ion is 3d^6, 5D which is split in a cubic crystalline field into a lower orbital triplet (5T^2_g) and an upper orbital doublet (5E_g). The triplet is further split by spin-orbit coupling so that at 4.2ºK, only a triply degenerate state (effective S' = 1) is populated. The degeneracy of this state is lifted by a linear Zeeman interaction with an applied magnetic field. In Fe**^1+**, the ground term is 3d^7, 4F which splits in a cubic crystalline field into two orbitally degenerate triplets and an orbital singlet with an orbital triplet lying lowest. The spin-orbit coupling leaves a Kramers' doublet lowest.

The experimental spectra at 4.2ºK and different external magnetic fields, H_O, show that the Fe**^1+** splitting increases while the Fe**^2+** splitting decreases.

*On leave from the Centre d'Etudes Nucléaires, Grenoble, Supported by CEA, France.
†Supported by the U.S. Air Force Office of Scientific Research.
decreases with \(H_0 \). From these splittings we measure the actual field at the nucleus \(H_n \), where

\[
H_n = H_{hf} B_S \left(\frac{\mu_B H_0}{k_B T} \right) + H_0. \tag{1}
\]

\(B_S \) is the Brillouin function for a spin \(S \) and \(H_{hf}^B \) is the saturation hyperfine field. From the data at large \(T = 1 \), we find that \(H_{hf}^B = +20 \text{ kOe} \) and \(-120 \text{ kOe} \) for \(\text{Fe}^{1+} \) and \(\text{Fe}^{2+} \) respectively. The solid curves in fig. 1 are from eq. (1) and the above values of \(H_{hf}^B \). In the case of \(\text{Fe}^{2+} \), \(S^+ = \frac{3}{2}, g = 3.426 \) [4], the hyperfine structure appears for anomalously small values of \(H_0 \) and the deviation of the data from the theoretical curve indicates slow paramagnetic relaxation effects.

For \(\text{Fe}^{1+} \) \((S^+ = \frac{1}{2}, g = 4.15) \) [5] the deviation at the highest fields may reflect a field dependence of \(H_{hf}^B \) due to mixing of the ground and higher levels by the applied magnetic field.

The hyperfine field at the nucleus may be written as a sum of core polarization, orbital and dipolar contributions. In terms of the electronic state

\[
H_{hf}^B = H_{hf}^c S (S_z^2) + 2 \beta H_{orb} \langle r^{-3} \rangle \langle L_z \rangle +
\]

\[
\frac{1}{2} H_{hf}^s \beta^s k^s \langle r^{-3} \rangle [3 (\langle L_z \rangle^2 - \langle L \rangle^2)] \langle S_z \rangle, \tag{2}
\]

where \(H_{hf}^c \) is the core polarization field per spin moment, \(k \) is the orbital reduction factor, and the expectation values refer to the \(L = 2 \), \(S = 2 \) basis for \(\text{Fe}^{2+} \) and the \(L = 3, S = \frac{3}{2} \) basis for \(\text{Fe}^{1+} \). The cubic site symmetry allows the calculation of the second and third terms of the second member of eq. (2) [6] and extraction of \(H_{hf}^c \) from the measured \(H_{hf}^B \), using calculated values of \(\langle r^{-3} \rangle \) [7] and \(k \) values from EPR measurements [4,5] \(^*\); the second and third terms are \(+254 \) and \(+6 \text{ kOe} \) for \(\text{Fe}^{2+} \) and \(+231 \) and \(0 \text{ kOe} \) for \(\text{Fe}^{1+} \), giving \(H_{hf}^c = -123 \text{ kOe} \mu_B \beta H_0 \) for both \(\text{Fe}^{1+} \) and \(\text{Fe}^{2+} \). The core polarization fields derived are in reasonably good agreement with the systematics of core polarization fields in the 3d transition metal ions [9].

The hyperfine spectrum in \(\text{Fe}^{2+} \) in MgO begins to appear at \(H_0 \approx 250 \text{ Oe} \) and is fully developed at \(H_0 \approx 800 \text{ Oe} \) for these fields and at

\(^*\) We note, however, that the \(k \) value (from EPR) appropriate to the moment is not necessarily the same as the \(k \) value appropriate to the hyperfine interaction because the former involves the expectation value of \(r^{-3} L_z \) while the latter involves the expectation value of \(r^{-3} L_z \) [8] similar to the \(k \) value appropriate to spin-orbit coupling. The effect of increasing \(k \) on \(H_{hf}^c/2S \) may be calculated by noting that \(\frac{H_{hf}^c}{2S} \) (in eq. (2)) is proportional to \(k \). Thus for \(\text{Fe}^{2+} \), a 10% increase in \(k \) makes \(H_{hf}^c/2S = -133 \text{ kOe}/\mu_B \).

4.2°K, all three levels of the ground triplet are populated and the spectrum is the superposition of the spectra for ions in each level. The \(S^+_z = 0 \) level has a zero hyperfine interaction while the \(S^+_z = 1 \) levels have hyperfine interactions which are equal in magnitude and opposite in sign. In the limit of long relaxation time and external fields just large enough to quench the off-diagonal elements of the hyperfine interaction, we expect and observe a spectrum consisting of a single line superposed on a four line hyperfine spectrum with a splitting corresponding to \(H_{hf}^c \) and with relative intensities 3:1:4:1:3.

In CaO similar measurements give \(H_{hf}^c = +28 \text{ kOe} \) and \(-235 \text{ kOe} \) for \(\text{Fe}^{1+} \) and \(\text{Fe}^{2+} \), respectively. Slow relaxation effects in external fields were observed for \(\text{Fe}^{2+} \), but the deviations from eq. (1) were not as large as for \(\text{Fe}^{2+} \) in MgO. The high value of \(H_{hf}^c \) for \(\text{Fe}^{2+} \) in CaO results from a smaller orbital contribution in CaO than in MgO \((H_{orb} = +145 \text{ kOe} \) in CaO, if we assume that \(H_{hf}^c \) is the same for CaO and MgO). Then we calculate from eq. (2) that \(k = 0.5 \) in CaO \((k \approx 0.8 \text{ in MgO}) \) [4] in substantial agreement with the EPR measurements of Shuskus [10]. A smaller value of \(k \) is generally associated with a higher degree of covalency in the ion-ligand bonds [7]. However, the isomer shifts in \(\text{Fe}^{2+} \) in MgO [1] and CaO [2] indicate less covalency in CaO. The smaller \(k \) value in CaO may therefore be due to a dynamical Jahn-Teller effect. As Ham [11] has discussed, such an effect can drastically reduce the value of \(k \).

We are pleased to thank M. Blume, J. G. Dash, A. J. Freeman, P. S. Ham, A. Missetich, D. N. Pipkorn, H. C. Praddaude and H. H. Wickman for stimulating discussions.