Hybrid probabilistic programs
Alex Dekhtyar, V.S. Subrahmanian

Abstract
The precise probability of a compound event (e.g., $e_1 \lor (\neg e_2, e_1 \land \neg e_2)$) depends upon the known relationships (e.g. independence, mutual exclusion, ignorance of any relationship, etc.) between the primitive events that constitute the compound event. To date, most research on probabilistic logic programming has assumed that we are ignorant of the relationship between primitive events. Likewise, most research in AI (e.g. Bayesian approaches) has assumed that primitive events are independent. In this paper, we propose a hybrid probabilistic logic programming language in which the user can explicitly associate, with any given probabilistic strategy, a conjunction and disjunction operator, and then write programs using these operators. We describe the syntax of hybrid probabilistic programs, and develop a model theory and fixpoint theory for such programs. Last, but not least, we develop three alternative procedures to answer queries, each of which is guaranteed to be sound and complete.

1. Introduction
Although there has now been considerable work in the area of quantitative logic programming by many different authors [2,14,32,38,19], there has been relatively little work in the area of probabilistic logic programming [22,21,25–27]. The reason for this is that while connectives in multivalued logics can be interpreted in terms of the lattice’s LUB (for disjunction) and GLB (for conjunction) operators, the same is not true in the case of probabilities. In particular, there is no single “formula” for computing the probability of a complex event ($e_1 \land \neg e_2$) where e_1, e_2 are primitive events. For instance:
1. If e_1, e_2 are independent, then $\text{Prob}(e_1 \land e_2) = \text{Prob}(e_1) \times \text{Prob}(e_2)$.
2. If we are ignorant about the relationship between e_1, e_2, then all we can say [25] is that $\text{Prob}(e_1 \land e_2)$ lies in the interval:

$$[\max(0, \text{Prob}(e_1) + \text{Prob}(e_2) - 1), \min(\text{Prob}(e_1), \text{Prob}(e_2))]$$

This formula was first established by Boole [6] and forms the basis for many existing probabilistic logic treatments [13,28,25–27]. Ng and Subrahmanian [25] shows how these expressions are derived using a linear program, as does Zaniolo et al. [39].

3. If we know that e_1, e_2 are mutually exclusive, then $\text{Prob}(e_1 \land e_2) = 0$.
4. If we know that event e_1 implies event e_2 (called positive correlation), then $\text{Prob}(e_1 \land e_2) = \text{Prob}(e_1)$.

The above list represents a small fraction of relationships between events, each leading to different possible probabilities for complex events such as $(e_1 \land e_2)$. The same holds for disjunctive events as well.

In most previous efforts, probabilistic logic programming has assumed a fixed probabilistic strategy [22,21,25–27], such as (i) ignorance of the dependencies between events, or (ii) independence between events. (There are some exceptions to this, such as [35,21].) However, an end user writing a probabilistic logic program should have the flexibility to write rules that reflect his/her specific knowledge about dependencies between events. For instance, the user should be able to express statements such as the two given below, that allow the user to explicitly articulate the probabilistic dependencies between events.

- “If the probability that the chairman of company C sells his stock and retires is over 85% and we are ignorant of the dependencies between these two events, then conclude that the stock in company C will drop, with probability between 40% and 90%”.
- “If the chairman of company C sells his stock and the chairman retires, and the retirement implies sale of stock (e.g. in an employee owned company), then conclude that the stock in company C will drop, with probability between 5% and 20%”.

Both rules above refer to the same two events, viz. sale of stock by the chairman, and retirement of the chairman. However, the first rules specifies what to conclude if we are ignorant of the relationship between these two events, while the second explicitly encodes specific knowledge about the dependencies between events. The rules lead to very different conclusions.

In this paper, we make the following contributions:

1. First, we define a general axiomatic notion of a probabilistic strategy. We show how a number of well known probabilistic strategies are special cases of our definition.
2. We then define the concept of a hybrid probabilistic program (hp-program). If the user selects a set of probabilistic strategies i_1, \ldots, i_k for use in an hp-program (s/he may select these in any way, as long as these selections satisfy the axioms defining probabilistic strategies), then this automatically defines a set of conjunction and disjunction connectives.
3. Subsequently, we define a fixpoint semantics for hp-programs, a model theoretic semantics for hp-programs, and a proof procedure, and prove that the fixpoint theory, model theory, and proof theory all lead to equivalent characterizations. This applies to any selection of probabilistic strategies made by the user, as long as these selections satisfy the axioms defining probabilistic strategies.
2. Probabilistic strategies (p-strategies)

In this section, we provide an axiomatic definition of probabilistic strategies (p-strategies). Intuitively, a p-strategy will specify different ways of computing probabilities of complex events, based on knowledge that the user may have about dependencies between the primitive events involved.

As we have already seen in Section 1 through the ignorance strategy, the probability of a compound event may be an interval, rather than a point, even if point probabilities are known for the primitive events involved. This was first shown by Boole [6] in 1854 and later used in Refs. [25,27]. Both Refs. [25,39] describe the derivation of this expression by solving a linear program.

Thus, p-strategies will be defined on intervals – points, in any case, are special cases of intervals. Let $C[0,1]$ denote the set of all closed intervals of $[0,1]$. There are two natural orderings on $C[0,1]$.

- If $[a,b] \subseteq C[0,1], [c,d] \subseteq C[0,1]$ then we write $[a,b] \leq [c,d]$ if $a \leq c$ and $b \leq d$. According to this ordering on closed intervals, if an event e is assigned an interval $[a,b]$, and an event e' is assigned an interval $[c,d]$ such that $[a,b] \leq [c,d]$, then in fact it is more likely that event e' will occur, as its probability is “closer” to 1. Lakshmanan and Sadri [22] introduced a similar ordering on pairs of intervals.
- Alternatively, we could use an inclusion ordering on intervals. Thus, if an event e is assigned an interval $[a,b]$, and an event e' is assigned an interval $[c,d]$ such that $[a,b] \subseteq [c,d]$, then our knowledge about event e is more precise than our knowledge about event e'.

Both these orderings will be used in this paper, for somewhat different purposes. Throughout this paper, given a set X, we will use the notation 2^X to denote the power set of X. Thus, $2^{C[0,1]}$ denotes the powerset of $C[0,1]$. It is easy to see that 2^X is always a complete lattice under the ordering of inclusion.

A probabilistic strategy, defined below, is a pair of functions that satisfy certain axioms.

1 The basic intuition is this. Let p_1, \ldots, p_n be some arbitrary, but fixed set of propositional symbols. Let w_1, \ldots, w_k ($k = 2^n$) be all subsets of $\{q_1, \ldots, q_n\}$. Each w_i denotes a possible world, or Herbrand interpretations. Suppose we know that formulas F_1, \ldots, F_m constructed out of the above symbols have probabilities p_1, \ldots, p_n respectively. Boole [6] argues that the world is certain, and it is our beliefs about the world that are uncertain. Therefore, if z_i denotes the probability that world w_i is in fact the true state of the real world, then for each F_i we know that $\Sigma_{w_i, \text{satisfies } F_i} z_i = p_i$. If we denote this equality by Eq_i, then we have a set of constraints Eq_1, \ldots, Eq_m. To find a probability for a given formula F, we must minimize (to get a lower bound) and maximize (to get an upper bound) the expression $\Sigma_{w_i, \text{satisfies } F_i} z_i$. It is easily proved that the optimal value of the minimization may differ from the optimal value of the maximization, and hence, even if we know the precise probabilities of some basic events, we may not be able to provide a point probability for a conjunctive event.
Definition 1. A probabilistic strategy (p-strategy) is a pair of functions: $\rho = (c, d)$, such that:

1. $c : C[0, 1] \times C[0, 1] \rightarrow C[0, 1]$ is called a probabilistic composition function satisfying the following axioms:

 (a) **Commutativity:** $c([a_1, b_1], [a_2, b_2]) = c([a_2, b_2], [a_1, b_1])$.

 (b) **Associativity:** $c(c([a_1, b_1], [a_2, b_2]), [a_3, b_3]) = c([a_1, b_1], c([a_2, b_2], [a_3, b_3]))$.

 (c) **Inclusion Monotonicity:** $c([a_1, b_1], [a_2, b_2]) \subseteq c([a_3, b_3], [a_2, b_2])$ if $[a_1, b_1] \subseteq [a_3, b_3]$.

 (d) **Separation:** There exist two functions $c^1, c^2 : [0, 1] \times [0, 1] \rightarrow [0, 1]$ such that $c([a, b], [c, d]) = [c^1(a, c), c^2(b, d)]$.

2. $d : C[0, 1] \rightarrow 2^{C[0, 1] \times C[0, 1]}$ is called a probabilistic decomposition function.

A few comments on the axioms above are in order. The function c above is a composition function that generates a new interval from two input intervals. If the two input intervals denote the probabilities of two different events, and if we know that the p-strategy used is $\rho = (c, d)$, then the new interval should represent the probability of a compound event. This explains the commutativity and associativity axioms, as $p(e_1 \land e_2) = p(e_2 \land e_1)$ and $p((e_1 \land e_2) \land e_3) = p(e_1 \land (e_2 \land e_3))$ (where e_1, e_2 and e_3 are some events).

To explain the axiom of inclusion monotonicity we shall recall that the smaller the probability interval is, the more precise information about the probability of an event we have. Based on this, the claim of the axiom of inclusion monotonicity is that the probability of a compound event is known more precisely when the probabilities of the simple events are known more precisely. Throughout the rest of the paper, when we speak of the axiom of monotonicity, we refer to this axiom.

Finally, the separation axiom states that the lower bound of the interval returned by any composition function must depend only on the lower bounds of the arguments of the function, and likewise, the upper bound of the resulting interval must depend only on the upper bounds of the arguments. This is a reasonable assumption, as our interval probabilities are intended to extend the point probabilities. As we know, if precise probabilities of two events are known, the probability of their combination depends only on these probabilities and on the relationship between the events, i.e., it is really a function of two arguments. We will write $c = [c^1, c^2]$ to express the fact that composition function c computes lower bounds according to function c^1 and upper bounds according to function c^2.

In the rest of the paper we will consider another property of composition functions: continuity.

Definition 2. A composition function $c = [c^1, c^2]$ is called **continuous** iff both c^1 and c^2 are continuous in both their arguments. Similarly, a p-strategy $\rho = (c, d)$ is continuous iff c is continuous.

All the p-strategies considered in this paper will be continuous.

The decomposition function d takes an interval as input, and returns as output, a set of pairs of intervals. For now, there is no “connection” that ties c and d together: this will be made later through the concept of coherence (Definition 4). P-strategies are of two types, depending upon whether they satisfy certain extra axioms.
Definition 3. Conjunctive and disjunctive p-strategies

A p-strategy \(\langle c, d \rangle \) is called a **conjunctive p-strategy** if it satisfies the following axioms:

1. **Bottomline:** It is always the case that \(c([a_1, b_1], [a_2, b_2]) \cap \leq \min(a_1, a_2, \min(b_1, b_2)). \)
2. **Identity:** \(c([a, b], [1, 1]) = [a, b] \).
3. **Annihilator:** \(c([a, b], [0, 0]) = [0, 0] \).

A p-strategy \(\langle c, d \rangle \) is called a **disjunctive p-strategy** if \(c \) satisfies the following axioms:

1. **Bottomline:** \([\max(a_1, a_2), \max(b_1, b_2)] \leq c([a_1, b_1], [a_2, b_2]). \)
2. **Identity:** \(c([a, b], [0, 0]) = [a, b] \).
3. **Annihilator:** \(c([a, b], [1, 1]) = [1, 1] \).

While we have already used the inclusion ordering on \(C[0, 1] \) to define inclusion monotonicity, the **Bottomline** axiom uses the \(\leq \) ordering. The **Bottomline** axiom establishes (in accordance with probability theory) that the probability of a conjunction of two events cannot exceed the probability of either of them and similarly that the probability of a disjunction of two events cannot be smaller than the probability of either of the events. The axioms of **Annihilator** and **Identity** deal with borderline cases (i.e. with conjunctions and disjunctions of an arbitrary event with an absolutely certain or impossible event).

Intuitively, a composition function determines, given the probability ranges of two events, the probability range of their (either **and**- or **or**-) composition. A decomposition function may be thought of as the inverse of composition: given the probability range of the result (**and**/**or**- composition of two events) it returns the set of all possible pairs of initial probabilistic ranges for the two events. To ensure that this holds we need the following definition:

Definition 4. A p-strategy \(\langle c, d \rangle \) is called **coherent** if

\[
(\forall [a, b] \in C[0, 1]) \cap (\langle [a_1, b_1], [a_2, b_2] \rangle \in d([a, b])) \cap \text{iff} \quad c([a_1, b_1], [a_2, b_2]) = [a, b].
\]

Throughout the rest of this paper, we will use the expression p-strategy to refer to coherent p-strategies, i.e. only coherent p-strategies will be considered. Before investigating the properties of p-strategies, we present some simple examples below.

2.1. **Examples of p-strategies**

In this section, we will present examples of various probabilistic assumptions that have been used extensively in reasoning with uncertainty. In particular, we show how the definition of a p-strategy is rich enough to capture these assumptions.

2.1.1. **Independence**

The strategy of independence may be described as the conjunctive p-strategy \(\text{inc} = \langle c_{\text{inc}}, d_{\text{inc}} \rangle \) and the disjunctive p-strategy \(\text{ind} = \langle c_{\text{ind}}, d_{\text{ind}} \rangle \), where:

- The conjunctive p-strategy \(\text{inc} = \langle c_{\text{inc}}, d_{\text{inc}} \rangle \) is given by:
 \[
c_{\text{inc}}([a_1, b_1], [a_2, b_2]) = [a_1a_2, b_1b_2].
\]
 \[
d_{\text{inc}}(a, b) = \{([a_1, b_1], [a_2, b_2])| (a_1a_2 = a \text{ and } b_1b_2 = b)\}.
\]
• The disjunctive p-strategy \(ind = (c_{ind}, d_{ind}) \) is given by:
\[
c_{ind}([a_1, b_1], [a_2, b_2]) = [a_1 + a_2 - a_1 a_2, b_1 + b_2 - b_1 b_2] \cap \\
d_{ind}([a, b]) \text{ contains } ([a_1, b_1], [a_2, b_2]) \subseteq C[0, 1] \times C[0, 1] \cap \\
\text{iff} \\
a_1 + a_2 - a_1 a_2 = a \text{ and } b_1 + b_2 - b_1 b_2 = b
\]

\[\]

2.1.2. Ignorance

When nothing is known about the relationship between the events we are forced to use p-strategies that reflect ignorance \([6, 13, 28, 25, 27, 20, 22]\). \(igc = (c_{igc}, d_{igc}) \) below is a conjunctive ignorance strategy, while \(igd = (c_{igd}, d_{igd}) \) is a disjunctive ignorance strategy.

• Conjunctive ignorance p-strategy
\(igc = (c_{igc}, d_{igc}) \), where
\[
c_{igc}([a_1, b_1], [a_2, b_2]) = [\max(0, a_1 + a_2 - 1), \min(b_1, b_2)] \cap \\
d_{igc}([a, b]) \text{ contains } ([a_1, b_1], [a_2, b_2]) \cap \\
\text{iff} \\
\text{if } a = 0 \text{ then } a_1 + a_2 \leq 1 \\
\text{if } a > 0 \text{ then } a_1 + a_2 - 1 = a \\
(b = b_1 \text{ and } b_2 \geq b_1) \text{ or } (b = b_2 \text{ and } b_1 \geq b_2) \cap \]

• Disjunctive ignorance p-strategy
\(igd = (c_{igd}, d_{igd}) \), where
\[
c_{igd}([a_1, b_1], [a_2, b_2]) = [\max(a_1, a_2), \min(1, b_1 + b_2)] \cap \\
d_{igd}([a, b]) \text{ contains } ([a_1, b_1], [a_2, b_2]) \cap \\
\text{iff} \\
(a = a_1 \text{ and } a_2 \leq a_1) \text{ or } (a = a_2 \text{ and } a_1 \leq a_2) \cap \\
\text{if } b = 1 \text{ then } b_1 + b_2 \geq 1 \\
\text{if } b < 1 \text{ then } b_1 + b_2 = b
\]

Sometimes we will use \(ig \) instead of \(igc \) or \(igd \) whenever it is clear from the context whether a conjunctive or disjunctive strategy is under consideration.
2.1.3. Positive correlation

Sometimes we know that the fact that event e_1 has happened implies that some event e_2 also had to happen (e.g., one would assume that “Jon rides a bus” would imply “Jon bought a ticket”). Below are conjunctive and disjunctive strategies for this case.

- **Conjunctive p-strategy**

 \[pcc = \langle c_{pcc}, d_{pcc} \rangle, \text{ where} \]

 \[c_{pcc}([a_1, b_1], [a_2, b_2]) = [\min(a_1, a_2), \min(b_1, b_2)] \cap \]

 \[d_{pcc}([a, b]) = \{([a_1, b_1], [a_2, b_2])\} \cap \]

 iff \[(a = a_1 \text{ and } a_2 \geq a_1) \text{ or } (a = a_2 \text{ and } a_1 \geq a_2) \cap \]

 and \[(b = b_1 \text{ and } b_2 \geq b_1) \text{ or } (b = b_2 \text{ and } b_1 \geq b_2) \cap \]

- **Disjunctive p-strategy**

 \[pcd = \langle c_{pcd}, d_{pcd} \rangle, \text{ where} \]

 \[c_{pcd}([a_1, b_1], [a_2, b_2]) = [\max(a_1, a_2), \max(b_1, b_2)] \cap \]

 \[d_{pcd}([a, b]) = \{([a_1, b_1], [a_2, b_2])\} \cap \]

 iff \[(a = a_1 \text{ and } a_2 \leq a_1) \text{ or } (a = a_2 \text{ and } a_1 \leq a_2) \cap \]

 and \[(b = b_1 \text{ and } b_2 \leq b_1) \text{ or } (b = b_2 \text{ and } b_1 \leq b_2) \cap \]

2.1.4. Negative correlation

Sometimes, the fact that event e_1 took place means that event e_2 could not possibly happen. For example, if “Jon came by bus” did happen, then “Jon came by train” did not. In this case we know that both events could not possibly happen together, therefore there is no conjunction p-strategy for negative correlation. However, it does make sense to ask what is the probability that one of the events took place. Below is the disjunctive p-strategy for that.

\[ncd = \langle c_{ncd}, d_{ncd} \rangle, \]

where \[c_{ncd}([a_1, b_1], [a_2, b_2]) = [\min(1, a_1 + a_2), \min(1, b_1 + b_2)] \cap \]
\[d_{ncl}(\langle a, b \rangle) = \{(\langle a_1, b_1 \rangle, [a_2, b_2])\} \cap \]

such that:

- if \(a = 1 \) then \(a_1 + a_2 \geq 1 \)
- if \(a < 1 \) then \(a_1 + a_2 = a \)
- if \(b = 1 \) then \(b_1 + b_2 \geq 1 \)
- if \(b < 1 \) then \(b_1 + b_2 = a \)

2.2. Validity of examples

The following result, which is immediately verifiable from the definitions, asserts that the seven p-strategies described here are all coherent.

Proposition 5. inc, igc and pcc are continuous conjunctive coherent p-strategies. Similarly, ind, igd, pcd and ncd are continuous disjunctive coherent p-strategies.

The proof of this proposition can be found in Appendix A.

2.3. Properties of p-strategies

In this section, we define various aspects of p-strategies that will play a key role in the definition of our fixpoint semantics and our model theory. First, we need the following very simple property.

Claim 6. Let \(\rho = (c, d) \cap \) be a coherent p-strategy. Then a pair \(\langle [a_1, b_1], [a_2, b_2] \rangle \in d([a, b]) \) iff \(\langle [a_2, b_2], [a_1, b_1] \rangle \in d([a, b]) \).

Proof. By commutativity of composition function if \(c([a_1, b_1], [a_2, b_2]) = \cap [a, b] \) then \(c([a_2, b_2], [a_1, b_1]) = [a, b] \). Since \(\rho \) is a coherent p-strategy, both \(\langle [a_1, b_1], [a_2, b_2] \rangle \) and \(\langle [a_2, b_2], [a_1, b_1] \rangle \) are in \(d([a, b]) \). \(\square \)

The simple claim above merely assures us that if \(\langle [a_1, b_1], [a_2, b_2] \rangle \in d([a, b]) \), then so is \(\langle [a_2, b_2], [a_1, b_1] \rangle \).

Claim 7. Let \(\rho = (c_\rho, d_\rho) \cap \) be a coherent disjunctive or conjunctive p-strategy. Then:

1. \(c_\rho([0, 1], [0, 1]) = [0, 1] \).
2. More generally \((\forall x, y \in [0, 1])(\exists z \in [0, 1])(c_\rho([x, 1], [y, 1]) = [z, 1] \cap (\forall x, y \in [0, 1])(\exists z \in [0, 1]c_\rho([0, x], [0, y]) = [0, z]) \).

Proof.

- \(\exists_\rho \) is a conjunctive p-strategy.

\((\forall x, y \in [0, 1])(\exists z \in [0, 1])(c_\rho([x, 1], [y, 1]) = [z, 1]) \).

We know that by the axiom of Identity for conjunctive p-strategies, \(c_\rho([x, 1], [1, 1]) = [x, 1] \). Since \(y \in [0, 1], [1, 1] \subseteq [y, 1] \). Therefore, by the axiom
of monotonicity we get \(c_\rho([x, 1], [1, 1]) = [x, 1] \subseteq c_\rho([x, 1], [y, 1]) \subseteq [0, 1] \).
From this it is clear that the upper bound of the interval for \(c_\rho([x, 1], [y, 1]) \) will be 1, which means that \(c_\rho([x, 1], [y, 1]) = [z, 1] \) for some \(z \in [0, 1] \).

2. \((\forall x, y \in [0, 1]) (\exists \bar{z} \in [0, 1]) (c_\rho([0,x],[0,y]) = [0,z]) \).

We know that the axiom of Annihilator for conjunctive p-strategies, \(c_\rho([0,x],[0,0]) = [0,0] \). Since \(y \in [0,1], [0,0] \subseteq [0,y] \). Therefore, by the axiom of monotonicity we get \(c_\rho([0,x],[0,0]) = [0,0] \subseteq c_\rho([0,x],[0,y]) \subseteq [0,1] \).
From this it is clear that the lower bound of the interval for \(c_\rho([0,x],[0,y]) \) will be 0, which means that \(c_\rho([0,x],[0,y]) = [0,z] \) for some \(z \in [0,1] \).

\(\bar{x}_\rho \) is a disjunctive p-strategy.

1. \((\forall x, y \in [0,1])(\exists \bar{z} \in [0,1])(c_\rho([x,1],[y,1]) = [z,1]) \).

We know that be the axiom of Annihilator for disjunctive p-strategies, \(c_\rho([x,1],[1,1]) = [1,1] \). Since \(y \in [0,1], [1,1] \subseteq [y,1] \). Therefore, by the axiom of monotonicity we get \(c_\rho([x,1],[1,1]) = [1,1] \subseteq c_\rho([x,1],[y,1]) \subseteq [0,1] \).
From this it is clear that the upper bound of the interval for \(c_\rho([x,1],[y,1]) \) will be 1, which means that \(c_\rho([x,1],[y,1]) = [z,1] \) for some \(z \in [0,1] \).

2. \((\forall x, y \in [0,1])(\exists \bar{z} \in [0,1])(c_\rho([0,x],[0,y]) = [0,z]) \).

We know that be the axiom of Identity for disjunctive p-strategies, \(c_\rho([0,x],[0,0]) = [0,x] \). Since \(y \in [0,1], [0,0] \subseteq [0,y] \). Therefore, by the axiom of monotonicity we get \(c_\rho([0,x],[0,0]) = [0,x] \subseteq c_\rho([0,x],[0,y]) \subseteq [0,1] \).
From this it is clear that the lower bound of the interval for \(c_\rho([0,x],[0,y]) \) will be 0, which means that \(c_\rho([0,x],[0,y]) = [0,z] \) for some \(z \in [0,1] \). \(\square \)

Given a pair \([a, b]\), the projection set of decomposition function \(d \) w.r.t. \([a, b]\) is the set of all \([a', b']\)'s such that \([a', b']\) can be composed with some \([a''], b''\] via the composition function \(c \) to yield \([a, b]\).

Definition 8. Let \(\rho = (c, d) \). The “decomposition projection set” \(\pi D \) is defined to be:

\[
\pi D_\rho([a, b]) = \{ [a', b'] \in C[0, 1] | (\exists [a'', b'']) \in C[0, 1] (\langle [a', b'], [a'', b''] \rangle \in d([a, b])) \}.
\]

Intuitively speaking, projection functions are used as follows: suppose we know that the probability of (say) some compound event \((e_1 \land \bar{e}_2)\) lies in the interval \([a, b]\), when \(\land \) is computed w.r.t. some conjunctive p-strategy \(\rho = (c, d) \). In this case, \(\pi D_\rho([a, b]) \) specifies the set of all possible probability intervals for \(e_1 \) (and likewise for \(e_2 \)) that could have led to \((e_1 \land \bar{e}_2)\)'s probability interval being \([a, b]\). In other words, in order for \((e_1 \land \bar{e}_2)\)'s probability interval to be \([a, b]\), \(e_1 \)'s probability interval must have been an element in \(\pi D_\rho([a, b]) \), but we do not know which one.

As shown in Ref. [26], even when we consider probabilities only under the ignorance assumption, obtaining tight bounds requires solving a linear program. When this is generalized to arbitrary p-strategies, we may need to solve nonlinear systems of constraints in order to infer tight bounds for the probabilities of simple/complex events. To avoid this computationally expensive step, we propose using a sound (w.r.t. the model theory which we propose in this paper) approximation.

\(e_1 \)'s probability may be as low as the smallest point in \(\bigcup_{[x,y] \in \pi D_\rho([a,b])} [x,y] \), or as large as the largest member of \(\bigcup_{[x,y] \in \pi D_\rho([a,b])} [x,y] \). This yields an interval for \(e_1 \)'s probability, and motivates the following definition of “maximal interval” that soundly approximates an interval for \(e_1 \)'s probability.
Definition 9. Let $\rho = \langle c, d \rangle$ be a p-strategy. A “maximal interval” md for $d([a, b])$ is defined as

$$md_{\rho}([a, b]) = \left\{ \min_{[a', b'] \subseteq \pi D_{\rho}([a, b])} (a'), \max_{[a', b'] \subseteq \pi D_{\rho}([a, b])} (b') \right\}$$

When computing probabilities of primitive events from known probabilities of more complex events, we need to be able to compute “maximal intervals” efficiently. The following theorem gives us a constant time method to compute “maximal intervals” w.r.t. conjunctive and disjunctive p-strategies.

Theorem 10. Suppose $\rho = \langle c, d \rangle \cap is any conjunctive coherent p-strategy and $\rho' = \langle c', d' \rangle$ is any disjunctive coherent p-strategy. Then:
1. $(\forall [a, b] \in C[0, 1])(md_{\rho}([a, b]) = [a, 1])$.
2. $(\forall [a, b] \in C[0, 1])(md_{\rho'}([a, b]) = [0, b])$.

Proof.
1. Let $md_{\rho}([a, b]) = [a', b']$. Since ρ is conjunctive strategy, $c_{\rho}([a, b], [1, 1]) = [a, b] \cap (Identity)$, and since ρ is coherent, $[1, 1] \in \pi D_{\rho}([a, b])$. Since $b' = \cap \max_{[a, b] \in \pi D_{\rho}([a, b])} (b)$, and $[1, 1] \in \pi D_{\rho}([a, b])$, $b' = 1$.
2. Since $c_{\rho}([a, b], [1, 1]) = [a, b] \cap (Identity)$, and since ρ is coherent, $[a, b] \in \pi D_{\rho}([a, b])$. By the bottomline axiom, $(\forall [a, b] \in \pi D_{\rho}([a, b]))(a \leq \hat{a})$. Since $[a, b] \in \pi D_{\rho}([a, b])$, $a = \cap \min_{[a, b] \in \pi D_{\rho}([a, b])}(\hat{a})$, and therefore, $a' = a$.
3. Let $md_{\rho'}([a, b]) = [a', b']$. Since ρ' is disjunctive strategy, $c_{\rho'}([a, b], [0, 0]) = [a, b] \cap (Identity)$, and since ρ' is coherent, $[0, 0] \in \pi D_{\rho'}([a, b])$. Therefore, since $a' = \min_{[a, b] \in \pi D_{\rho'}([a, b])}(\hat{a})$, and $[0, 0] \in \pi D_{\rho'}([a, b])$, $a' = 0$.
4. Since $c_{\rho'}([a, b], [0, 0]) = [a, b] \cap (Identity)$, and since ρ' is coherent, $[a, b] \in \pi D_{\rho'}([a, b])$. By the bottomline axiom, $(\forall [a, b] \in \pi D_{\rho'}([a, b]))(b \geq \hat{b})$. Since $[a, b] \in \pi D_{\rho'}([a, b])$, $b = \cap \max_{[a, b] \in \pi D_{\rho'}([a, b])}(\hat{b})$, and therefore, $b' = b$.

2.4. Other p-strategies

A natural question that the reader may ask is what p-strategies exist, in addition to those that we have presented above. We present a couple of other example p-strategies below that are hybrids of the ones presented earlier, and then we have a technical discussion about how other p-strategies may be constructed. For the purposes of simplicity, we will only discuss composition functions, because decomposition functions can be derived from composition functions using the definition of coherence.

Example 11 (Mixed-Ignorance-Independence Strategies). Consider a situation where a user considers two events e_1, e_2 whose probabilities are known to be in the ranges $[a_1, b_1], [a_2, b_2]$ respectively. The user in question is not sure if e_1, e_2 are independent, but thinks they might be. As a consequence, he wants the resulting range to be obtained by tightening the range that the ignorance strategy would have returned, by taking his feeling that events e_1, e_2 may be independent into account. He could do this in many ways.

Pessimistic Mixed Strategy: The user may define a pessimistic conjunction strategy c_{pes} such that $c_{pes}([a_1, b_1], [a_2, b_2])$ is computed as follows.
1. Compute \([a, b] = c_{\text{ind}}([a_1, b_1], [a_2, b_2])\) and \([a', b'] = c_{\text{inc}}([a_1, b_1], [a_2, b_2])\).

2. Let \(c_{\text{pes}}([a_1, b_1], [a_2, b_2]) = \min(a, a'), \min(b, b')\).

This function can be verified to be a conjunctive p-strategy by modifying the proof of Proposition 5 appropriately. In fact, \(c_{\text{pes}}([a_1, b_1], [a_2, b_2])\) can be directly computed to be \(\max(0, a_1 + a_2 - 1, b_1 b_2)\).

The intuition is that the user is not sure whether the events \(e_1, e_2\) whose conjunction is being considered are independent or not. He chooses to be cautious, and decides to use the smallest values returned for the lower and upper bounds. This approach may be justified in applications where we need to be biased towards assuming lower probabilities of events.

Optimistic Mixed Strategy: On the other hand, the user may tend to assume higher probabilities for complex events, e.g. in the cases of failures between components of a physical system where independence is suspected, but not known, a user may choose to believe higher probabilities of failure. In a sense, the user is optimistic that the probability that the complex event happens is larger than the pessimistic approach above might suggest. Here, he may use the following optimistic conjunction strategy \(c_{\text{opt}}([a_1, b_1], [a_2, b_2])\):

1. Compute \([a, b] = c_{\text{ind}}([a_1, b_1], [a_2, b_2])\) and \([a', b'] = c_{\text{inc}}([a_1, b_1], [a_2, b_2])\).
2. Let \(c_{\text{opt}}([a_1, b_1], [a_2, b_2]) = \max(a, a'), \max(b, b')\).

Here too, \(c_{\text{opt}}([a_1, b_1], [a_2, b_2])\) can be directly computed to be \(\min(a_1 a_2, \min(b_1, b_2))\).

Example 12 (Generalized Mixed Strategies). The reader may have already noted that the “code” given above to merge independence and ignorance according to pessimistic or optimistic approaches can be generalized to merge arbitrary p-strategies, both for conjunction and disjunction. For example, suppose we have two conjunctive p-strategies \(\rho_1, \rho_2\). If

\[
\begin{align*}
c_{\rho_1}([a_1, b_1], [a_2, b_2]) &= [a, b] \cap \\
c_{\rho_2}([a_1, b_1], [a_2, b_2]) &= [a', b'] \cap
\end{align*}
\]

then we may define a pessimistic mix, \(c_{\text{pes}}^{\rho_1, \rho_2}\), and an optimistic mix, \(c_{\text{opt}}^{\rho_1, \rho_2}\), as follows:

\[
\begin{align*}
c_{\text{pes}}^{\rho_1, \rho_2}([a_1, b_1], [a_2, b_2]) &= \min(a, a'), \min(b, b') \\
c_{\text{opt}}^{\rho_1, \rho_2}([a_1, b_1], [a_2, b_2]) &= \max(a, a'), \max(b, b')
\end{align*}
\]

In fact, it is easy to verify that for all \([a_1, b_1], [a_2, b_2]\),

\[
c_{\text{pes}}^{\rho_1, \rho_2}([a_1, b_1], [a_2, b_2]) \leq c_{\text{opt}}^{\rho_1, \rho_2}([a_1, b_1], [a_2, b_2]).
\]

Thus, the pessimistic mix of two p-strategies always tends to produce lower probabilities than the optimistic mix, justifying their names.

In addition to the above mixing strategies that allow us to define a set of new p-strategies, we provide below, some general guidance on how yet other p-strategies may be constructed.

Suppose \(\chi\) is an associative and commutative function (of which there are many!) which takes two intervals \([a_1, b_1], [a_2, b_2]\) as input, and produces an output interval \([a, b]\). For \(\chi\) to be the composition part of a conjunctive p-strategy, \(\chi\) must satisfy the Bottom Line and Inclusion Monotonicity axioms as well as the Annihilator and Identity axioms. Out of these four, Bottom Line and Inclusion Monotonicity jointly impose very strong restrictions on which \(\chi\)’s can be used in p-strategies.
Suppose \([a_1, b_1] \subseteq [a_3, b_3]\), and \([a_2, b_2] \cap\) is any subinterval of \([0, 1]\). Let \([a, b] = \chi([a_1, b_1], [a_2, b_2])\) and \([a', b'] = \chi([a_3, b_3], [a_2, b_2])\). It is easy to see that:

\[
\begin{align*}
& a_3 \leq a_1 \\
& b_1 \leq b_3 \\
& a' \leq a \\
& b \leq b' \\
& a \leq a_1 \\
& b \leq b_1 \\
& a' \leq a_3 \\
& b' \leq b_3
\end{align*}
\]

The first two conditions follow as \([a_1, b_1] \subseteq [a_3, b_3]\). The third and fourth inequalities follow because Inclusion Monotonicity tells us that \([a, b] \subseteq [a', b']\). The last four inequalities follow from the Bottom Line axiom which tells us that
\([a, b] \leq [a_1, b_1]\) and \([a', b'] \leq [a_3, b_3]\). Fig. 1 shows the relationships between these values diagrammatically. An edge from \(x\) to \(x'\) means \(x\) is less than or equal to \(x'\).

In addition, the axiom of identity says that when \([a_2, b_2] = [1, 1]\) then \(\chi([a_1, b_1], [a_2, b_2]) = [a_1, b_1]\) and \(\chi([a_3, b_3], [a_2, b_2]) = [a_3, b_3]\). Diagrammatically, this means that the top row and the bottom row in Fig. 1 must coincide when \([a_2, b_2] = [1, 1]\). Similarly, when \([a_2, b_2] = [0, 0]\), the bottom row collapses to one point, viz. 0 because \(a', a, b, b'\) are all set to 0 by the Annihilator Axiom.

Thus, to define a function \(\chi\) in such a way that it is the composition function of a p-strategy, the reader must ensure that the diagram associated with \(\chi\) looks like that shown in Fig. 1, and exhibits the extremal properties mentioned in the previous paragraph when \([a_2, b_2] = [1, 1]\) or \([a_2, b_2] = [0, 0]\).

3. Syntax of hp-programs

In hybrid probabilistic programs, we assume the existence of an arbitrary, but fixed set of conjunctive and disjunctive p-strategies. The programmer may augment this set with new strategies when s/he needs new ones for their application. The following definition says that each conjunction strategy has an associated conjunction connective, and each disjunction strategy has an associated disjunction connective.

Definition 13. Let \(\mathcal{CNJ}\) be a finite set of conjunctive p-strategies and \(\mathcal{DJ}\) be a finite set of disjunctive p-strategies. Let \(\mathcal{P}\) denote \(\mathcal{CNJ} \cup \mathcal{DJ}\).
• Let $\rho \in \mathcal{CN}$. Connective \land_ρ is called an ρ-annotated conjunction.
• Let $\rho \in \mathcal{DI}$. Connective \lor_ρ is called an ρ-annotated disjunction.

Let L be a language generated by finitely many constant and predicate symbols. Let B_L denote the set of constant symbols (atoms) in L. We assume that L has no ordinary function symbols, but it may contain annotation function symbols for a fixed family of functions. The interpretation of these function symbols is given in Definition 15 below.

Hybrid basic formulas, defined below, are either conjunctions of atoms, or disjunctions of atoms (but not mixes of both) w.r.t. a single connective.

Definition 14. Let ρ be a conjunctive p-strategy, ρ^\lor be a disjunctive p-strategy, and A_1, \ldots, A_k be atoms. Then

$$A_1 \land_\rho A_2 \land_\rho \cdots \land_\rho A_k$$

and

$$A_1 \lor_\rho A_2 \lor_\rho \cdots \lor_\rho A_k$$

are called hybrid basic formulas. Suppose $bf_\rho(B_L)$ denotes the set of all ground hybrid basic formulas for the \lor_ρ and \land_ρ connectives. Let $bf_\rho(B_L) = \cup_{\rho \in \mathcal{R}} bf_\rho(B_L)$. Similarly, $bf_{\in \mathcal{R}} \rho(B_L) = \cup_{\rho \in \mathcal{R}} bf_\rho(B_L)$ and $bf_{\in \mathcal{R}} \rho(B_L) = \cup_{\rho \in \mathcal{R}} bf_\rho(B_L)$.

For instance, returning to our stock example, the formulas (ch-sells-stock (C) \lor_{igl} ch-retires(C)) and (price-drop(C) \land_{inc} stable(C)) are basic formulas involving the ignorance and independence p-strategies. However, (price-drop(C) \land_{inc} stable(C) \land_{ind} price-drop(D)) is not a basic formula, as it involves two different p-strategies. In order to proceed further we have to define a notion of annotation. Definitions 15–17 below were introduced in Ref. [26].

Now we can state how we want to interpret the annotation function symbols:

Definition 15. An annotation function f of arity n is a total function $f : [0, 1]^n \rightarrow [0, 1]$. Let $\mathcal{F}[0, 1]$ denote an arbitrary, but fixed set of annotation functions of arity n and let $\mathcal{F}[0, 1]$ denote $\cup_{n=0}^{\infty} \mathcal{F}[0, 1]$.

We assume that associated with each annotation function is a body of software code computing that function, that is guaranteed to terminate on all inputs.²

We also assume that all variable symbols from L are partitioned into two classes. We will call one class object variable symbols and this class will contain the regular first order logic variable symbols. The second class of variable symbols, annotation variables will contain variable symbols that can range over the interval $[0, 1]$. These variables can appear only inside annotation items, which are defined below:

Definition 16. An annotation item δ is one of the following:
• a constant in the $[0, 1]$ interval,

² We do not formally define computable functions over the real numbers because the theory of computability over real numbers is now well understood [5] and the reader may refer to such treatments for a detailed technical analysis of this issue.
• an annotation variable symbol from \(L \),
• let \(f \) be an annotation function symbol from \(L \) of arity \(n \) and let \(\delta_1, \ldots, \delta_n \) be annotation items. Then \(f(\delta_1, \ldots, \delta_n) \) is also an annotation item.

Definition 17. Let \(\delta_1 \) and \(\delta_2 \) be annotation items. Then \([\delta_1, \delta_2]\) is called an annotation or an annotation term.

When \(\delta_1, \delta_2 \) are both constants, then the annotation term \([\delta_1, \delta_2]\) denotes an interval. Otherwise, it denotes a set of intervals, obtained by instantiating \(\delta_1, \delta_2 \) in different ways. Following the terminology introduced in Ref. [26] if an annotation term has no annotation variables in it, we call it a \(c \)-annotation. Otherwise it will be called a \(v \)-annotation.

Example 18. \([0, 1]\) and \([0.3, 0.6]\) are \(c \)-annotations. \([V_1, 1]\) and \([0.5 \cap V_1, V_1]\) are \(v \)-annotations.

Let \(B_L \) denote the Herbrand base of \(L \). Since \(L \) contains no first-order logic function symbols, \(B_L \) is finite.

Definition 19. A hybrid probabilistic annotated basic formula (hp-annotated basic formula) is an expression of the form \(B : \mu \) where \(B \) is a hybrid basic formula and \(\mu \) is an annotation.

Informally speaking, \(B : \mu \) may be read as “The probability of \(B \) occurring lies in the interval \(\mu \)”. For example, the annotated basic formula \((\text{ch-sells-stock}(C) \lor \mu \text{ch-retires}(C)) : [0.4, 0.9]\) may be read as: “The probability that the chairman sells stock or the chairman retires lies in the 40–90% interval, assuming (no knowledge) ignorance of the relationship between these two primitive events”.

In this paper, hybrid probabilistic annotated basic formulas are the basic syntactic objects that merge together, probabilistic reasoning and logical reasoning. For example, if \((a \land \mu b) : [0.5, 0.7]\) is a hybrid probabilistic annotated basic formula, this formula says that “If we assume that we have no knowledge of the dependencies or lack thereof between events \(a \) and \(b \), then the probability that both events \(a \) and \(b \) occur lies between 0.5 and 0.7 inclusive”. In general, the hybrid probabilistic annotated basic formula \((a \land \rho b) : [0.5, 0.7]\) says that “If we assume that our knowledge of the dependency between \(a \) and \(b \) is given by the probabilistic-strategy \(\rho \), then the probability that both events \(a \) and \(b \) occur lies between 0.5 and 0.7 inclusive”. Similar rationales can be given for disjunctive basic formulas.

Hybrid rules may now be constructed from hybrid annotated formulas as follows.

Definition 20. Let \(B_0, B_1, \ldots, B_k \) be hybrid basic formulas. Let \(\mu_0, \mu_1, \ldots, \mu_k \) be annotations, such that every annotation variable (if any) occurring in \(\mu_0 \) also occurs in at least one of \(\mu_1, \ldots, \mu_k \). A hybrid probabilistic clause (hp-clause) is a construction of the form:

\[
B_0 : \mu_0 \leftarrow B_1 : \mu_1 \land \cdots \land B_k : \mu_k.
\]
Informally speaking, the above rule is read: “If the probability of B_1 falls in the interval μ_1 and \cdots the probability of B_k falls within the interval μ_k, then the probability of B_0 falls within the interval μ_0.” Intuitively a basic formula is a statement about probabilities of events. The conjunction in the body of an hp-clause, on the other hand defines a conjunction of such statements, but does not itself represent an event.

Notice that the definition above contains a requirement that every annotation variable that appears in the annotation for the head of the clause also appears in one or more annotations for the body of the hp-clause. Therefore:

Example 21.
- $A : [V_1, V_1] \leftarrow$ is not an hp-clause.
- $A : [V_1, V_2] \leftarrow (B \wedge_{\text{ind}} C) : [0, V_1] \wedge D : [V_2, 1]$ is an hp-clause.

Definition 22. A hybrid probabilistic program (hp-program) over set \mathcal{S} of p-strategies is a finite set of hp-clauses involving only connectives from \mathcal{S}.

For example, the following four clauses constitute a simple hp-program using the p-strategies of **ignorance** and **independence**.

STOCK PROGRAM

```
price-drop(C) : [0.4, 0.9] \leftarrow (\text{ch-sells-stock}(C) \lor_{\text{ind}} \text{ch-retires}(C)) : [0.6, 1].
price-drop(C) : [0.5, 1] \leftarrow (\text{strike}(C) \lor_{\text{ind}} \text{accident}(C)) : [0.3, 1].
buy-stock(C) : [0.7, 1] \leftarrow (\text{price-drop}(C) \land_{\text{inc}} \text{stable}(C)) : [0.3, 1].
sell-stock(C) : [0.5, 1] \leftarrow (\text{price-drop}(C) \land_{\text{inc}} \text{unstable}(C)) : [0.4, 1]; \wedge\wedge
                  \quad \text{have-stock}(C) : [1, 1].
stable(c) : [0.8, 1] \leftarrow .
strike(c) : [0.4, 0.5] \leftarrow .
unstable(C) : [V_1, V_2] \leftarrow \text{stable}(C) : [1 - V_2, 1 - V_1].
```

The program above is a very simple example of a market decision making program. The first two rules tell us when to expect that the stock of company C will drop. According to the first rule, it will drop with probability between 40% and 90% if the probability that CEO of the company will sell the stock or that he will retire whether more than 60%. We use the **ignorance** assumption here, because we do not know if there is any connection between the two events. In fact, for different companies the **correlation** may range from the two being independent, to one being a consequence of the other. The **ignorance** assumption here gives us a “lowest common denominator” in terms of the relationship between the two events.

The second rule states that if the probability that the company’s employees will go on strike or that an accident happens on the premises of the company is over 30%, then the probability that the stock of the company will drop is at least 50%. It is more or less safe to assume that the causes for strikes and for accidents to occur are completely different, therefore, the two events are independent of each other.

The next two rules deal with decision-making. The third rule of the program, says that we should buy stock of company C if its price drops, but (and) the company is
generally known to be stable. We want to assume that our knowledge of the stability of company C is independent of the price drop under consideration, therefore, the conjunction of the two events is made under the assumption of independence. The fourth rule provides an alternative to the third by declaring that if the price drops and there is a high probability that the company is unstable, the stock has to be sold. For this rule to fire, however, we need one more condition: one can sell stock of company C only if one owns this stock. This is why we must know for sure (i.e. with probability 100%) that we own this stock if we want to sell it.

Two facts that follow describe our current knowledge of situation, expressed probabilistically. The first fact states that company C is stable with probability more than 80%. The second fact states that the probability of a strike for this company is between 40% and 50%.

Finally the last rule can be used to establish the connection between the information about the stability of company C and its non-stability. Indeed, if we assume that each company is either stable or unstable (a reasonable assumption for our example), then, if we know that the probability that company C is stable is p, the probability that C is unstable (i.e., not stable) than would have to be $1 - p$. We extend this simple observation to the notion of probabilistic intervals to obtain that if C is stable with probability between $V1$ and $V2$ then it is unstable with probability between $1 - V2$ and $1 - V1$.

Example 23. Let us consider a rule of the form

$$c : \mu \leftarrow (a \land_{inc} b) : \mu_1 \land (a \land_{pce} b) : \mu_2.$$

A rule of this sort may be read as “If $(a \land b)$’s probability lies in the interval μ_1 when a, b are assumed to be independent, and if $(a \land b)$’s probability lies in the interval μ_2 when a, b are assumed to be positively correlated, then c’s probability lies in the interval μ”. This rule contains no inconsistency as stated above. Rather, such a rule might reflect some doubt on the part of the author of the rule about the precise relationship between a and b – are they independent? Or are they positively correlated?

Example 24. Continuing the stock example, we provide here the rules that formalize the situation described in Section 1.

$$\text{price-drop}(C) : [0.4, 0.9] \leftarrow (\text{ch-sells-stock}(C) \land_{ge} \text{ch-retires}(C)) : [0.85, 1].$$

$$\text{price-drop}(C) : [0.05, 0.2] \leftarrow (\text{ch-sells-stock}(C) \land_{pce} \text{ch-retires}(C)) : [1, 1].$$

The first rule states that if the CEO of the company C sells the stock, retires with probability over 85% and we are ignorant about the relationship between the two events, then the probability that the stock of company C drops is 40–90%. The second rule states that if the CEO retires and sells stock, but we know that the former entails the latter, then the probability that the stock of the company will drop is only 5–20%.

Before proceeding to define the declarative semantics of hp-programs, a comment on the use of p-strategies in hp-programs is in order. A programmer may not know the dependences between events (is there no dependency? are the events independent?)
are they positively correlated? etc.). In such cases, he can write rules such as those shown in Example 24 in which he explicitly articulates inferences he is willing to make based on different possible event dependencies – the two rules in Example 24 do not require the programmer to know the dependency between the chairman selling stock and retiring, but only specify the inferences he is willing to make in these two eventualities. If he wishes to infer correlations between events, he may use classical statistical correlation methods [30].

If P is an hp-program, then we will write $\text{ground}(P)$ to represent the set of all ground instances of the rules from P.

4. Declarative semantics of hp-programs

Having completed the definition of the syntax of hp-programs, we are now in a position to develop the declarative semantics of such programs. We will first develop a fixpoint semantics of hp-programs, followed by a model theoretic semantics, and show that the two are essentially equivalent characterizations of hp-programs. Later, in Section 5, we will provide a proof procedure for hp-programs.

4.1. Fixpoint semantics

As usual, suppose we have a logical language L consisting of variable symbols, constant symbols, function symbols, and predicate symbols, and let B_L denote the Herbrand base of this language. An atomic function, defined below, merely assigns closed intervals to ground atoms.

Definition 25. A function $f : B_L \rightarrow C[0, 1]$ is called an atomic formula function or atomic function.

It is easy to see that the set of all atomic functions is a complete lattice. This is because if (X, \subseteq) is any complete lattice, then the set of all functions of the type $2^X \rightarrow 2^X$ is a complete lattice also under the pointwise ordering $f \sqsubseteq g$ iff $(\forall x \in X)f(x) \subseteq g(x)$.

Though atomic functions do not, by themselves, make assignments to basic formulas, they may be extended to do so.

Before proceeding further we first introduce some notation for “splitting” a complex formula into two parts.

Definition 26. Let $F = F_1 \ast \cdots \ast \ast \ast F_n$, $G = G_1 \ast \cdots \ast \ast \ast G_k$, $H = H_1 \ast \cdots \ast \ast \ast H_m$ where $\ast \in \{\wedge, \vee\}$. We write $G \oplus H = F$ (or $H \oplus G$ if the p-strategy ρ is irrelevant) iff:
1. $\{G_1, \ldots, G_k\} \cup \{H_1, \ldots, H_m\} = \{F_1, \ldots, F_n\}$ and
2. $\{G_1, \ldots, G_k\} \cap \{H_1, \ldots, H_m\} = \emptyset$.
3. $k > 0$ and $m > 0$.

Definition 27. A hybrid formula function is a function $h_f : \text{bhf}(B_L) \rightarrow C[0, 1]$ which satisfies the following properties:
1. **Commutativity.** If $F = G_1 \oplus \rho G_2$ then $h(F) = h(G_1 \ast \rho G_2)$.

2. **Composition.** If $F = G_1 \oplus \rho G_2$ then $h(F) \subseteq c_\rho(h(G_1), h(G_2))$.

3. **Decomposition.** For any basic formula F, $h(F) \subseteq md_\rho(h(F \ast \rho G)) \cap \text{for all } \rho \in \mathcal{F}$ and $G \in \text{bf}_\mathcal{F}(B_L)$.

Given an atomic function f and a **hybrid formula function** h we say that h is **based on** f **iff** $(\forall A \in B_L)(f(A) = h(A))$. Sometimes we will use notation h_f to represent the fact that h is based on f.

From the first condition it follows that $h(F) = h(F')$ for any F and F' which are permutations of one another. This property of models allows us, in fact not to distinguish between the formulas and the sets of atoms they are composed of together with a strategy attached. The second condition states that the probability of a complex formula is bounded by the probabilities of its subformulas. Conversely, the third condition bounds the probability of a subformula by the probability of a formula it is a part of. Clearly, for each atomic function f there exists an entire family of hybrid formula functions based on it. This corresponds to our intuition that the knowledge of the probabilities of atomic events does not necessarily allow us to uniquely compute the exact probabilities of complex events. In fact, it is possible to express the fact that we possess specific knowledge of a probability of some complex event. The only requirements we put forth onto the hybrid formula functions is that they provide **consistent and maximally tight** information about the probability intervals associated with both atomic and complex events.

As mentioned above, each atomic function f produces a family of hybrid formula functions h_f based on it. We let $h[f]$ denote the set of all hybrid formula functions based on atomic function f. Let $\mathcal{H} \mathcal{F} \mathcal{F}$ denote the set of all hybrid formula functions generated by some arbitrary but fixed set of p-strategies. The \leq-ordering on atomic functions may be extended to basic formulas in the obvious way: $h_1 \leq h_2 \text{ iff } (\forall F \in \text{bf}_\mathcal{F}(B_L))h_1(F) \supseteq h_2(F)$.

We would like to see if there exists any relationship between the orders on atomic and hybrid formula functions. Let f and g be two atomic functions and let $f \leq g$. One would want to see if the statement $(\forall h \in h[f])(\forall h' \in h[g])(h \leq h')$ will hold. As it happens this statement is not true and the following simple example demonstrates it.

Example 28. Let $B_L = \{a, b\}$. We define the functions f and g as follows:

\[
\begin{align*}
f(a) &= [0.4, 0.8], \\
g(a) &= [0.6, 0.6], \\
f(b) &= [0.5, 0.7], \\
g(b) &= [0.6, 0.6].
\end{align*}
\]

Clearly $f \leq g$. Now we consider two hybrid formula functions $h \in h[f]$ and $h' \in h[g]$ defined on formula $a \wedge_{\text{inc}} b$ as follows:

\[
\begin{align*}
h(a \wedge_{\text{inc}} b) &= [0.4, 0.4] \\
h'(a \wedge_{\text{inc}} b) &= [0.36, 0.36]
\end{align*}
\]

We can see that both h and h' satisfy the **Composition** and **Decomposition** properties of the hybrid formula functions:

\[
\begin{align*}
h(a \wedge_{\text{inc}} b) &= [0.4, 0.4] \subseteq c_{\text{inc}}(h(a), h(b)) = c_{\text{inc}}([0.4, 0.8], [0.5, 0.7]) = [0.2, 0.56], \\
h(a) &= [0.4, 0.8] \subseteq md_{\text{inc}}(h(a \wedge_{\text{inc}} b)) = md_{\text{inc}}([0.4, 0.4]) = [0.4, 1], \\
h(b) &= [0.5, 0.7] \subseteq md_{\text{inc}}(h(a \wedge_{\text{inc}} b)) = md_{\text{inc}}([0.4, 0.4]) = [0.4, 1], \\
h'(a \wedge_{\text{inc}} b) &= [0.36, 0.36] \subseteq c_{\text{inc}}(h(a), h(b)) = c_{\text{inc}}([0.6, 0.6], [0.6, 0.6]) = [0.36, 0.36].
\end{align*}
\]
\[h'(a) = [0.6, 0.6] \subseteq md_{inc}(h(a \land_{inc} b)) = md_{inc}([0.36, 0.36]) = [0.36, 1]. \]
\[h(b) = [0.6, 0.6] \subseteq md_{inc}(h(a \land_{inc} b)) = md_{inc}([0.36, 0.36]) = [0.36, 1]. \]
As \(h(a \land_{inc} b) \not\subseteq h'(a \land_{inc} b) \) it is clear that \(h \not\subseteq h' \).

In fact, the example above suggests, that even a weaker statement, \((\forall h \in h'[f])(\exists k \in h[|g|])(h \leq h')\) does not hold. To show that, it is enough to notice that in this example \(h[|g|] = \{h'\} \). The example above suggests that if there is a relationship between the orders of atomic and hybrid functions, this relationship is more subtle. The following theorem establishes this relationship.

Theorem 29. Let \(f, g \) be two atomic functions and let \(f \leq g \). Then
\[(\exists k \in h[|f|])(\forall k' \in h[|g|])(h \leq k').\]

Proof. Consider the function \(h \in h[|f|] \) defined as follows: \(h(F \ast_p G) = c_p(h(F), h(G)) \).
We will show that \((\forall h' \in h[|g|])(h \leq h')\).

Let us consider an arbitrary by fixed function \(h' \in h[|g|] \). We prove that \(h \leq h' \) by induction on the size of basic formula \(F \). If \(F \) is an atom, then \(h(F) = f(F) \cap g(F) = h'(F) \). Now, let \(F = G \ast_p h \) and let \(h(G) \leq h'(G) \) and \(h(H) \leq h'(H) \). By definition of \(h \), \(h(F) = c_p(h(G), h(H)) \). As we know that \(c_p \) is **monotonic** we get, \(c_p(h(G), h(H)) \leq c_p(h'(G), h'(H)) \). But since \(h' \) is a formula function, it satisfies **Composition** and **Commutativity** and hence \(h'(F) = h'(G \ast_p H) \subseteq c_p(h'(G), h'(H)) \). From the above inequalities we get: \(h(F) = \cap c_p(h(G), h(H)) \leq c_p(h'(G), h'(H)) \leq h'(F) \) which is the desired result.

In order to define the iterations of \(T \) operator later in the paper, we need the following theorem.

Theorem 30. Let \(\mathcal{I} \) contain only continuous \(p \)-strategies. Let \(H = h_1, h_2, \ldots \) be an infinite sequence of fully defined hybrid formula functions over \(bf_{\mathcal{I}}(B_L) \), such that \(h_1 \leq h_{i+1} \) (we can call this an ascending sequence). \(H \) has a **least upper bound**, i.e., there exists such hybrid formula function \(h^{\ast} \) such that \((\forall i)(h_i \leq h^{\ast})\) and for any other function \(h \) which is an upper bound of \(H \), \(h \leq h^{\ast} \).

Proof. Let \(F \) be some hybrid basic formula. If \(h \) is a formula function we will write \(h(F) = [h_1(F), h_2(F)] \). We know that the sequence \(H^1 = h_1(F), h_2^1(F), \ldots \) is ascending and bounded (at least by 1). Therefore, by a well-known property of the sequences of real numbers, \(H^1 \) has a limit \(x_F = \lim_{i \rightarrow \infty} h_i^1(F) \). By the same property, the descending sequence \(H^2 = h_1^2(F), h_2^2(F), \ldots \) (bounded by 0) has a limit \(y_F = \lim_{i \rightarrow \infty} h_i^2(F) \). Since all \(h_i \) are fully defined, \(x_F \leq y_F \). Now we define a function \(h^{\ast} \) as \(h^{\ast}(F) = [\lim_{i \rightarrow \infty} h_i^1(F), \lim_{i \rightarrow \infty} h_i^2(F)] \). To prove the desired result it suffices to show that (i) \(h^{\ast} \) is an upper bound, (ii) \(h^{\ast} \) is the least upper bound and (iii) \(h^{\ast} \) is a valid hybrid formula function.

- \(h^{\ast} \) is an upper bound of \(H \). We know that the limit of an ascending sequence is greater than or equal to any member of the sequence. Similarly, the limit of a descending sequence is less than or equal to any member of the sequence. But then, for any basic formula \(F \), it is true that \((\forall i)h^i(F) = [\lim_{i \rightarrow \infty} h_i^1(F), \lim_{i \rightarrow \infty} h_i^2(F)] \subset [h_1(F), h_2(F)] = h_1(F) \). From this it directly follows that \((\forall i)\cap
(\(h_i \leq h^*\)), i.e., \(h^\omega\) is an upper bound of \(H\).

- \(h^\omega\) is the least upper bound of \(H\). Let \(h\) an upper bound of \(H\), i.e., let \((\forall i)(h_i \leq h)\). Let \(F\) be some basic formula. Let us compare \(h^1(F)\) and \(h^1(F)\). We know that \(h^1(F) = \lim_{i \to \infty} h_i(F)\). We also know that \((\forall i)(h_i(F) \leq h^1(F))\). Then, by the property of real sequences, \(\lim_{i \to \infty} h_i(F) \leq h(F)\). Similarly, we can establish that \(h^2(F) \leq \lim_{i \to \infty} h_i(F)\). From these two inequalities we see that \(h(F) \subseteq h^*(F)\), i.e., \(h^\omega \subseteq h\).

- \(h^\omega\) is a valid hybrid formula function. To show this we have to prove that \(h^\omega\) satisfies the Commutativity, Composition and Decomposition.

First we show that \(h^\omega\) satisfies the Commutativity property. Let \(F\) be some basic formula and let \(G\) and \(G^\prime\) be basic formulas such that \(F = G \oplus_\rho G^\prime\) for some \(p\)-strategy \(\rho\). Since all functions \(h_i\) are valid hybrid formula functions, they all satisfy the Commutativity postulate, i.e., \((\forall i)(h_i(F) = h_i(G \ast_\rho G^\prime))\), where \(* \in \{\wedge, \vee\}\) depending on whether \(\rho\) is conjunctive or disjunctive. Then, the sequences \(h_1(F), h_2(F), \ldots\) and \(h_1(G \ast_\rho G^\prime), h_2(G \ast_\rho G^\prime), \ldots\) coincide and therefore the limits of the lower and upper bound sequences are the same as well, i.e. \(\lim_{i \to \infty} (h_i^1(F)) = \lim_{i \to \infty} (h_i^1(G \ast_\rho G^\prime))\) and \(\lim_{i \to \infty} (h_i^2(F)) = \lim_{i \to \infty} (h_i^2(G \ast_\rho G^\prime))\).

However, since \(h^*(F) = \lim_{i \to \infty} (h_i^1(F))\), \(\lim_{i \to \infty} (h_i^2(F))\) (and \(h^*(G \ast_\rho G^\prime)\)), we get \(h^*(F) = h^*(G \ast_\rho G^\prime)\).

Now we proceed to show that \(h^\omega\) satisfies the Composition postulate. Let \(F\) be some basic formula and let \(F = G \ast_\rho G^\prime\). We need to show that \(h^*(F) \subseteq c_\rho(h^*(G), h^*(G^\prime))\).

Remember that \(c_\rho\) satisfies the axiom of Separation, i.e., \(c_\rho = \langle c_\rho, c_\rho^\omega \rangle\).

First, we show that \(c_\rho^1(h^1(G), h^1(G^\prime)) \leq h^1(F)\). By a similar argument we will then be able to establish that \(h^2(F) \leq c_\rho(h^*(G), h^*(G^\prime))\). The two statements will give us the desired result.

To show \(c_\rho^1(h^1(G), h^1(G^\prime)) \leq h^1(F)\), let us first note that \(h^1(F) = \lim_{i \to \infty} h_i^1(F) = \lim_{i \to \infty} c_\rho^1(h_i^1(G), h_i^1(G^\prime))\). We know this because, since all \(h_i\) satisfy the Composition axiom – hence \((\forall i)(h_i^1(F) \geq h_i^1(G), h_i^1(G^\prime))\), and therefore the sequence \(h_i^1(F), h_i^2(F), \ldots\) dominates \(\{\}\) the sequence \(c_\rho^1(h_i^1(G), h_i^1(G^\prime))\), \(c_\rho^1(h_i^2(G), h_i^2(G^\prime))\), \ldots\) Then, the limit of the former sequence has to be greater than or equal to the limit of the latter.

As we know that \(c_\rho\) is a continuous \(p\)-strategy, \(c_\rho^1\) is continuous in both arguments. Therefore \(\lim_{i \to \infty} c_\rho^1(h_i^1(G), h_i^1(G^\prime)) = c_\rho^1(\lim_{i \to \infty} h_i^1(G), \lim_{i \to \infty} h_i^1(G^\prime))\).

But we know that \(c_\rho^1(h^1(G), h^1(G^\prime)) = c_\rho^1(\lim_{i \to \infty} h_i^1(G), \lim_{i \to \infty} h_i^1(G^\prime))\). Therefore, \(c_\rho^1(h^1(G), h^1(G^\prime)) \leq h^1(F)\).

As mentioned above, by a similar argument we can show that \(c_\rho^2(h^2(G), h^2(G^\prime)) \geq h^2(F)\). From these two inequalities it follows that \(h^*(F) \subseteq c_\rho(h^*(G), h^*(G^\prime))\).

Now we prove that \(h^\omega\) satisfies the Decomposition postulate. We have to consider two cases. Let \(H = F \wedge_\rho G\). The proof for \(H = F \vee_\rho G\) will be similar. By definition of \(md_\rho, md_\rho(h(H)) = [h^1(H), 1]\) for all formula functions \(h\). As \(md_\rho\) and \(md_\rho(h(H))\) we will denote the upper and the lower bounds of the \(md_\rho(h(H))\) interval.

Now we consider the sequences \(h_1^1(F), h_2^1(F), \ldots\) and \(md_\rho^1(h_1(H)), md_\rho^1(h_2(H)), \ldots\).

\[I.e. \ (\forall i)(h_i^1(F) \geq c_\rho^1(h_i^1(G), h_i^1(G^\prime))).\]
As all h s are formula functions, they satisfy the Decomposition postulate, i.e.,
$(\forall i)(h_i(F) \subseteq m_{\rho}(h_i(H)))$. Therefore, the sequence $h_1(F), h_2(F), \ldots$ dominates the sequence $m_{\rho}(h_1(H)), m_{\rho}(h_2(H)), \ldots$. Therefore, $\lim_{i \to \infty} m_{\rho}(h_i(H)) \leq \lim_{i \to \infty} h_i(F)$.

But as mentioned earlier, $(\forall i)(m_{\rho}(h_i(H)) = h_i(H))$. Therefore $\lim_{i \to \infty} m_{\rho}(h_i(H)) \subseteq \lim_{i \to \infty} h_i(F)$. From the latter equality we establish that $\lim_{i \to \infty} h_i(F) \subseteq h^*(F)$. But we know that $\lim_{i \to \infty} h_i(F) = h^1(F)$ and similarly $\lim_{i \to \infty} h^1(F) = h^2(F)$, which therefore yields $h^2(F) \leq h^1(F)$. Finally, we notice that $m_{\rho}(h^*(H)) = h^1(F)$, i.e., $m_{\rho}(h^*(H)) \leq h^1(F)$. As we know that $m_{\rho}(h^*(H)) = 1$ and $h^*(F) \leq 1$, we get the desired: $h^*(F) = [h^1(F), h^2(F)] = [\lim m_{\rho}(h^*(H)), \lim m_{\rho}(h^*(H))] = m_{\rho}(h^*(H))$, proving that h^*

satisfies Decomposition and therefore proving the statement of the theorem.

We will borrow the notation from lattice theory and denote the function $h^* = \text{lub}(H)$ described in the proof above as $\sqcup h \in H$.

Given any h-program P, we wish to associate with P, an operator T_P that maps hybrid formula functions to hybrid formula functions. We do this by first defining a (similar) intermediate operator S_P that is used subsequently to define T_P.

Definition 31. Let P be a hybrid probabilistic program. Operator $S_P : \mathcal{H} \mathcal{F} \mathcal{F} \to \cap \mathcal{H} \mathcal{F} \mathcal{F}$ is defined as follows (where F is a basic formula):

$$S_P(h)(F) = \cap M,$$

where $M = \{ \mu| \sigma| F : \mu \leftarrow F_1 : \mu_1 \land \ldots \land F_n : \mu_n \}$ is a ground instance of some clause in P; σ is a ground substitution of annotation variables and $(\forall j \leq n)h(F_j) \subseteq \mu_j \sigma \}$ if $M = \emptyset S_P(h)(F) = [0, 1]$.

The operator S_P is very simple. Given $h \in \mathcal{H} \mathcal{F} \mathcal{F}$ and a basic formula F, it proceeds as follows: (i) First, it finds all ground instances of rules in P such that the head of the rule instance is of the form $F : \mu$ and such that for each $F_j : \mu_j$ in the body, $h(F_j) \subseteq \mu_j$, i.e. h says that F_j’s probability does in fact lie within the interval μ_j.

(ii) It then takes the intersection of the intervals associated with the heads of all rules identified in the preceding step. Note that in the above definition, it is entirely possible that $S_P(h)(F)$ could be the empty set. In this case, there is an intuitive inconsistency, because the formula function $S_P(h)$ is saying that F’s probability lies in the empty set. However, this is absurd, as the empty set cannot contain anything. This will be discussed in further detail in Section 4.2.

Example 32. Consider our stock example. Let h assign the following values to the atoms:

$h(ch$-sells-stock(c)) = [0.8, 0.8]$
$h(ch$-retires(c)) = [0.1, 0.1]$
$h(strike(c)) = [0.4, 0.5]$
$h(price$-drop(c)) = [0.7, 0.9]$
$h(stable(c)) = [0.5, 0.6]$

Assume that for all other ground atoms A, $h(A) = [0, 1]$.

Now, suppose we want to compute $S_P(h)(price$-drop(c)). There are two ground rule instances with price-drop(c) as their head in the set of all groundizations of rules in P:
price-drop(c):[0.4, 0.9] ← (ch-sells-stock(c) ∨ _ig ch-retires(c)): [0.6, 1].
price-drop(c):[0.5, 1] ← (strike(c) ∨ _ind accident(c)): [0.3, 1].

First we compute
- \(h((\text{strike(c) } \lor \text{accident(c)})) = c_{\text{ind}}(h(\text{strike(c)}), \text{accident(c)}) = c_{\text{ind}} ([0.4, 0.5], [0.1]) \)
 \(= [\min(1, 0.4 + 0 - 0.4 \cdot 0), \min(1, 0.5 + 1 - 0.5 \cdot 1)] = [0.4, 1] \subseteq [0.3, 1]. \)
- \(h((\text{ch-sells-stock(c) } \lor \text{ch-retires(c)})) = c_{\text{ig}}(\text{ch-sells-stock(c)}, \text{ch-retires(c)}) = [\max(0.8, 0.1), \min(1, 0.8 + 0.9)] = [0.8, 0.9] \subseteq [0.6, 1]. \)

Since both rules will fire, \(M = \{ [0.4, 0.9], [0.5, 1] \} \) and therefore, \(S_p(h(\text{price-drop(c)})) = [0.4, 0.9] \cap [0.5, 1] = [0.5, 0.9]. \)

However, the \(S_p \) operator is not quite “right”. The reason is that in order to determine \(F \)’s probability, it is not enough to merely look for rule instances whose head is identical to \(F \). For instance, \(F \) might be \((p \land_q q) \). The probability of \((p \land_q q) \) may certainly be influenced by rules with head \(p : \mu \) because such rules may impose additional restrictions on \(p \)’s probability – and hence on \((p \land_q q) \)’s probability. Thus, \(S_p \), by itself, does not allow us to accurately infer the probability associated with a formula \(F \). \(S_p \) needs to be augmented appropriately in order to do so. However, before defining \(T_p \), we present a simple monotonicity property of \(S_p \). Note that \(S_p \) is monotonic regardless of what \(p \)-strategies appear in \(P \).

Lemma 33. \(S_p \) is monotonic, i.e., if \(h_1, h_2 \) are two formula functions and \(h_1 \leq h_2 \), then \(S_p(h_1) \leq S_p(h_2) \).

Proof. Let \(F \) be a hybrid basic formula. We have \(h_1(F) \leq h_2(F) \). By definition of \(S_p \), \(S_p(h_1)(F) = \cap M_1 \),

\[
M_1 = \{ \mu | F : \mu \leftarrow F_1 : \mu_1 \land \cdots \land F_n : \mu_n \text{ is a ground instance of some clause in } P : (\forall j \leq n) h_1(F_j) \subseteq \mu_j \} .
\]

Since \(h_1(F_j) \subseteq \mu_j \) can be rewritten as \(\mu_j \leq h_1(F_j) \), using transitivity of \(\leq \), we obtain that for any ground instance \(F : \mu \leftarrow F_1 : \mu_1 \land \cdots \land F_n : \mu_n \) of a rule of program \(P \), such that \(\mu \in M_1, \mu \in M_2 \), where

\[
M_2 = \{ \mu | F : \mu \leftarrow F_1 : \mu_1 \land \cdots \land F_n : \mu_n \text{ is a ground instance of some clause in } P : (\forall j \leq n) h_2(F_j) \subseteq \mu_j \} \cap
\]

and therefore, \(M_1 \subseteq M_2 \). Therefore, \(S_p(h_2)(F) = \cap M_1 = (\cap M_1) \cap (M_2 - M_1) \cap S_p(h_1)(F) \cap (M_2 - M_1) \subseteq S_p(h_1)(F) \) i.e., \(S_p(h_1)(F) \leq S_p(h_2)(F) \).

Let us now define the \(T_p \) operator. Intuitively, the \(T_p \) operator builds on top of the \(S_p \) operator because the probability interval assignments made by the \(S_p \) operator to some formulas may allow us to derive sharper bounds for other formulas. However, these sharper bounds may not be found by the \(S_p \) operator. The \(T_p \) operator defined below takes such derivations into account.

Definition 34. Let \(P \) be a hybrid probabilistic program. We inductively define operator \(T_p : \mathcal{H} \rightarrow \mathcal{H} \) as follows:
1. Let F be an atomic formula.
 - if $S_p(h)(F) = \emptyset$ then $T_P(h)(F) = \emptyset$.
 - if $S_P(h)(F) \neq \emptyset$, then let
 \[
 M = \{ \langle \mu, \rho \rangle \mid (F \ast \rho G) : \mu \leftarrow F_1 : \mu_1 \land \cdots \land F_n : \mu_n, \}
 \]
 where $\ast \in \{ \lor, \land \}$ and σ is a ground substitution of the annotation variables and $i \in \mathcal{S}$ and $(\forall j \leq n) h(F_j) \subseteq \mu_j$. We define
 \[
 T_P(h)(F) = (\cap \{ m_d(\mu) \mid \langle \mu, \sigma \rangle \in M \}) \cap S_P(h)(F) \cap
 \]
 2. (Not atomic) Let $F = F_1 \ast \cdots \ast F_n$. Let $M' = \{ \langle \mu, i \rangle \mid D_1 \ast \cdots \ast D_k : \mu \leftarrow \mu_1 \land \cdots \land E_m : \mu_m \in \text{ground}(P); \ (\forall 1 \leq j \leq m) h(E_j) \subseteq \mu_j; \ \{ F_1, \ldots, F_n \} \cap \{ D_1, \ldots, D_k \}, n < k \}$. Then:
 \[
 T_P(h)(F) = S_P(h)(F) \cap (\cap \{ c_P(T_P(h)(G), T_P(h)(H)) \mid G \oplus H = F \}) \cap
 (\cap \{ m_d(\mu) \mid \langle \mu, i \rangle \in M' \}.
 \]
 The intuition underlying the T_P operator is as follows: (i) Consider an atomic formula F: if $S_P(h)(F) = \emptyset$, then this means that an inconsistency (to be made more formal in Section 4.2) has occurred. For instance, if we have an hp-program containing two facts $a : [0, 0] \land a : [1, 1]$, then whatever h we pick, $S_P(h)(a) = \emptyset$, reflecting the (in this case flagrant) inconsistency in P. Thus, $T_P(h)$ must also assign \emptyset to F. If $S_P(h)(F) \neq \emptyset$, then it may be the case that $S_P(h)$ has assigned too “wide” an interval to F, because it ignores rules that are “associated” with F. As F is atomic, there might be rules whose bodies are satisfied by h, which include F in its head. We must find all such rules, and “split” the rule head into its F part, and the non-F part, say G. Clearly, the rule head must be of the form $(F \ast \rho G)$ where \ast is either \lor or \land. As the rule’s body is satisfied by h, it means that the head of this rule, viz. $(F \ast \rho G)$ has probability in the interval μ. The rule in question thus allows us to conclude that F’s probability ranges anywhere in $m_d(\mu)$ which is the “maximal interval” associated with F w.r.t. the connective \ast. We repeat this for each rule with F as part of the head.

 (ii) When F is not a ground atom, there can be three sources of bounds on F’s probability interval. The first source taken care of by the S_P operator are the rules with F as their head. The second source consists of information that can be inductively obtained by computing T_P for every pair G, H of formulas such that $G \oplus H = F$ (notice that we require both G and H to be non-empty), and using c_P to combine these values. Finally, some heads of the rules of the program may contain F as the proper subset. The probability range of F from each of such rules is determined by the m_d function. Combining (intersecting) the ranges obtained from all three sources we obtain the final value of T_P operator.

 It should also be pointed out, that while the T_P operator is defined to be the intersection of many possible intervals, there are at most two intervals which will actually affect the final value of $T_P(h)$ for any particular formula F (one interval to provide the lower bound and one interval to provide the upper bound of $T_P(h)(F)$). Because of this, one can see that while the number of intervals to be intersected to obtain $T_P(h)(F)$ according to the definition above can be large, there is a simple nondeterministic algorithm that would perform this computation. This algorithm would guess how the two relevant intervals are obtained, and will only perform computations to produce these two intervals. This suggests that the problem of computing T_P
is NP-complete – however, a detailed study of complexity issues in hybrid probabilistic programs is beyond the scope of this paper.

The following example demonstrates how \(T_p \) is computed.

Example 35. Let us consider the stock program \(P \) and the formula function \(h \) from the previous example. Suppose we want to compute \(T_p(h)(\text{price-drop}(c) \land_{\text{pcc}} \text{buy-stock}(c)) \) (i.e., the probability of the fact that the drop in price of stocks will result in purchases of new stock of company \(c \)).

It is easy to see that \(T_p(h)(\text{price-drop}(c) \land_{\text{pcc}} \text{buy-stock}(c)) = c_{\text{pcc}}(T_p(h)(\text{price-drop}(c)), T_p(h)(\text{buy-stock}(c))) \), as the heads of all rules in \(P \) are atomic.

\(T_p(h)(\text{price-drop}(c)) = S_p(h)(\text{price-drop}(c)) = [0.5, 0.9] \cap (\text{see Example 3}). \)

To find the latter we consider the following ground rule in \(P \):

\[
\text{buy-stock}(c) : [0.7, 1] \leftarrow (\text{price-drop}(c) \land_{\text{inc}} \text{stable}(c)) : [0.3, 1].
\]

Recall from Example 3 that \(h(\text{price-drop}(c)) = [0.7, 0.9] \cap [0.5, 0.6] \). Then, \(h((\text{price-drop}(c) \land_{\text{inc}} \text{stable}(c))) = c_{\text{inc}}(h(\text{price-drop}(c)), h(\text{stable}(c))) = c_{\text{inc}}([0.7, 0.9], [0.5, 0.6]) = [0.7 \ast 0.5, 0.9 \ast 0.6] = [0.35, 0.54] \subseteq [0.3, 1] \),

which entails that \(S_p(h)(\text{buy-stock}(c))) = [0.7, 1] \cap [0.3, 1] \).

Finally, \(T_p(h)(\text{price-drop}(c) \land_{\text{pcc}} \text{buy-stock}(c)) = c_{\text{pcc}}(T_p(h)(\text{price-drop}(c)), T_p(h)(\text{buy-stock}(c))) \) = \([\min(0.5, 0.9), \min(0.9, 1)] = [0.5, 0.7] \).

Let us consider another example:

Example 36. In this example we will consider a simple knowledge-base about the possible sales of three items: \(a, b \) and \(c \). The unary predicate \(s(X) \) is to be interpreted as “item \(X \) has been sold”. Suppose the program \(P \) looks as follows:

\[
s(a) \lor_{\text{ind}} s(b) \lor_{\text{ind}} s(c) : [0.4, 0.6] \leftarrow .
\]

\[
s(a) \land_{\text{ge}} s(b) : [0, 0.5] \leftarrow .
\]

\[
s(a) \land_{\text{inc}} s(c) : [\min\left(\frac{W}{2} + 0.1, \frac{W}{2}\right), \frac{W}{2}] \leftarrow s(c) : [V, W]
\]

\[
s(c) : [0, 0.3] \leftarrow .
\]

The first rule of the program states that the probability that at least one of the three items had been sold under the assumption of independence between possible sales is between 40% and 50%. The second rule states that the probability that both items \(a \) and \(b \) have been sold computed under assumption of of ignorance about the relationship of possible sales will be not more than 50%. The fourth rule just states that the probability that item \(c \) had been sold is no more than 30%.

Finally, the third rule of the program, states that if we know that the probability that item \(c \) had been sold is in the range \([V, W] \), then the probability that both items \(a \) and \(c \) have been sold, considered under the assumption of independence between possible sales, will be not more than \(W/2 \) and no less than the minimum of \(V/2 + 0.1 \) and \(W/2 \).

Now let us look at how we can compute the \(T_p \) operator for this program. Let us take \(h(F) = [0, 1] \) (for all basic formulas \(F \) (i.e. our \(h \) is the bottom function \(\bot \)).

In this example we will be tracing all atomic formulas \((s(a), s(b) \text{and} s(c)) \) as well as a few more complex formulas, such as \(s(a) \lor_{\text{ind}} s(c), s(a) \land_{\text{ge}} s(b) \text{and} s(a) \land_{\text{inc}} s(c) \).

First we have to compute \(S_p(h) \). Clearly, we have the following:

\[
S_p(h)(s(a)) = S_p(h)(s(b)) = [0, 1] \cap [0, 1]
\]
\[S_P(h)(s(c)) = [0, 0.3] \cap \\
S_P(h)(s(a) \lor_{\text{ind}} s(c)) = [0, 1] \cap \\
S_P(h)(s(a) \land_{\text{gc}} s(b)) = [0, 0.5] \cap \\
S_P(h)(s(a) \land_{\text{inc}} s(c)) = [0.1, 0.5] \cap \\
\]

Every \(S_P(h) \) computation except for the last one is straightforward, since for each formula there is either only one rule (with an empty body) in the program that has it as its head, or there are no such rules at all. In the first case, the probability interval from the head of the rule gets to be the value of \(S_P(h) \), in the second case, it will be \([0, 1]\).

The last computation requires more effort. Indeed, the third rule of our program is not ground (because of the variable annotation), therefore it will produce more than one ground instance. However, there will be only one ground instance of this rule which will have the body, “satisfied” by \(h \):

\[s(a) \land_{\text{inc}} s(c) : [0.1, 0.5] \leftarrow s(c) : [0, 1] \quad (1) \cap \\
\]
since \(h(s(c)) = [0, 1] \) (we also point out that \(\min(0.2 + 0.1, 0.5) = 0.2 + 0.1 = 0.3 \)). Therefore, \([0.1, 0.5] \cap \) will be the value of \(S_P(h)(s(c)) \).

- **Now let us compute the values of the \(T_P \) operator.**
 1. \(T_P(h)(s(a)) \). \(s(a) \) appears in the heads of 3 rules of interest: first and second rules of the program and in the ground instance of the third rule shown above (1). This means that

\[
T_P(h)(s(a)) = m_{\text{ind}}([0.4, 0.6]) \cap m_{\text{gc}}([0, 0.5]) \cap m_{\text{inc}}([0.1, 0.5]) \cap \\
= [0, 0.6] \cap [0, 1] \cap [0.1, 1] = [0.1, 0.6] \cap \\
\]

2. \(T_P(h)(s(b)) \). \(s(b) \) appears in the heads of first two rules of the program. Therefore:

\[
T_P(h)(s(b)) = m_{\text{ind}}([0.4, 0.6]) \cap m_{\text{gc}}([0, 0.5]) = [0, 0.6] \cap [0, 1] = [0, 0.6] \cap \\
\]

3. \(T_P(h)(s(c)) \). \(s(c) \), besides constituting the head of the fourth rule of the program, is also a part of the heads of the first rule the program and rule (1). Applying the definition of the \(T_P \) operator here we obtain:

\[
T_P(h)(s(c)) = S_P(h)(s(c)) \cap m_{\text{ind}}([0.4, 0.6]) \cap m_{\text{inc}}([0.1, 0.5]) \cap \\
= [0, 0.3] \cap [0, 0.6] \cap [0.1, 0.5] = [0, 0.3] \cap \\
\]

4. \(T_P(h)(s(a) \lor_{\text{ind}} s(c)) \). \(s(a) \lor_{\text{ind}} s(c) \) appears as a part of the head of the first rule of the program. By definition of \(T_P \) operator:

\[
T_P(h)(s(a) \lor_{\text{ind}} s(c)) = m_{\text{ind}}([0.4, 0.6]) \cap c_{\text{ind}}(T_P(h)(s(a)), T_P(h)(s(c))) \cap \\
= [0, 0.6] \cap c_{\text{ind}}([0.1, 0.6], [0.1, 0.5]) \cap \\
= [0, 0.6] \cap [0.1 + 0.1 - 0.1 \cdot 0.1, 0.6 + 0.5 - 0.6 \cdot 0.5] = [0, 0.6] \cap [0.19, 0.8] \cap \\
= [0.19, 0.6] \cap \\
\]

5. \(T_P(h)(s(a) \land_{\text{gc}} s(b)) \).
\[T_P(h)(s(a) \land_{igc} s(b)) = S_P(h)(s(a) \land_{igc} s(b)) \cap c_{igc}(T_P(h)(s(a)), T_P(h)(s(b))) \cap \\
= [0, 0.5] \cap c_{igc}([0.1, 0.6], [0, 0.6]) \cap \\
= [0.0.5] \cap [\max(0, 0.1 + 0, -1), \min(0.6, 0.6)] = [0, 0.5] \cap [0, 0.6] = [0, 0.5] \cap \\
6. \ T_P(h)(s(a) \land_{inc} s(c)). \\
\]

\[T_P(h)(s(a) \land_{inc} s(c)) = S_P(h)(s(a) \land_{inc} s(c)) \cap c_{inc}(T_P(h)(s(a)), T_P(h)(s(c))) \cap \\
= [0.1, 0.5] \cap c_{inc}([0.1, 0.6], [0.1, 0.3]) = [0.1, 0.5] \cap [0.1 \cdot 0.1, 0.6 \cdot 0.3] \cap \\
= [0.1, 0.5] \cap [0.01, 0.18] = [0.1, 0.18] \cap \\
\]

It follows immediately from the definition of the \(T_P \) operator that, for any program \(P \), formula function \(h \) and formula \(F \), \(T_P(h)(F) \subseteq S_P(h)(F) \). The following result says that regardless of which p-strategies are considered in \(P \), the \(T_P \) operator is guaranteed to be monotonic.

Theorem 37. \(T_P \) is monotonic, i.e., if \(h_1, h_2 \) are two formula functions and \(h_1 \leq h_2 \) then, \(T_P(h_1) \leq T_P(h_2) \).

Proof. Let \(F \) be a hybrid basic formula. We proceed by induction on \(\text{rank}(F) \), i.e. number of atoms in the formula.

\[\bullet \text{F is an atomic formula. We have } h_1(F) \leq h_2(F). \text{ Let us assume that both } S_P(h_1)(F) \cap \text{and } S_P(h_2)(F) \cap \text{ are non-empty. (Otherwise, we must have } S_P(h_2)(F) = \emptyset \text{ which implies } T_P(h_2)(F) = \emptyset \text{ and therefore, it must be the case that } T_P(h_2)(F) \subsetneq T_P(h_1)(F)). \text{ By lemma } S_P(h_1)(F) \leq S_P(h_2)(F). \text{ Let us consider} \]

\[M_1 = \{ \mu | (F * \rho, G) : \mu \leftarrow F_1 : \mu_1 \land \cdots \land F_n : \mu_n \text{ where } * \in \{ \lor, \land \} \text{ and } \rho \in \mathcal{S} \text{ and } (\forall j \leq n) h_1(F_j) \subseteq \mu_j \}. \]

Since \(h_1(F_j) \subseteq \mu_j \) can be rewritten as \(\mu_j \leq h_1(F_j) \), using transitivity of \(\leq \), we obtain that for any ground instance \(F : \mu \leftarrow F_1 : \mu_1 \land \cdots \land F_n : \mu_n \) of a rule of program \(P \), such that \(\mu \in M_1, \mu \in M_2 \), where

\[M_2 = \{ \mu | (F * \rho, G) : \mu \leftarrow F_1 : \mu_1 \land \cdots \land F_n : \mu_n \text{ is a ground instance of some clause in } F : (\forall j \leq n) h_2(F_j) \subseteq \mu_j \}. \]

Therefore, \(M_1 \subseteq M_2 \). But this means that \(M_1 = \{ md(\mu) \mu \in M_1 \} \subseteq M_2 = \{ md(\mu) \mu \in M_2 \} \). Then \(M_1 \subseteq \cap M_1 \), i.e., \(M_1 \subseteq M_2 \). Since \(T_P(h_1)(F) = S_P(h_1)(F) \cap (\cap M_1), T_P(h_2)(F) = S_P(h_2)(F) \cap (\cap M_2), S_P(h_1)(F) \leq S_P(h_2)(F) \cap (\cap M_2), S_P(h_1)(F) \leq S_P(h_2)(F) \cap (\cap M_2) \), we obtain that

\[T_P(h_1)(F) \leq T_P(h_2)(F). \]

\[\bullet \text{Let the theorem hold for all basic hybrid formulas of ranks less than } k. \text{ Let } \text{rank}(F) = k \text{ and } F = F_1 \lor_\rho \cdots \lor_\rho F_n \text{ or } F = F_1 \land_\rho \cdots \land_\rho F_n. \text{ From Lemma 1 we know that } S_P(h_1)(F) \leq S_P(h_2)(F). \text{ Let } G, H \text{ be such formulas, that } G \lor H = F. \text{ By the induction hypothesis, (since } \text{rank}(G) < k \text{ and } \text{rank}(H) < k, \text{ we have } T_P(h_1)(G) \leq T_P(h_2)(G) \cap \text{and } T_P(h_1)(H) \cap \leq T_P(h_2)(H), \text{ therefore, by monotonicity axiom for p-strategies (applied twice) we have:} \]

\[c_\rho(T_P(h_2)(G), T_P(h_2)(H)) \subseteq c_\rho(T_P(h_1)(G), T_P(h_1)(H)). \]
i.e.

\[c_\rho(T_p(h_1)(G), T_p(h_1)(H)) \leq c_\rho(T_p(h_2)(G), T_p(h_2)(H)). \]

From this it follows that

\[(\cap \{ c_\rho(T_p(h_1)(G), T_p(h_1)(H)) | G \oplus H = F \}) \cap \\
\leq (\cap \{ c_\rho(T_p(h_2)(G), T_p(h_2)(H)) | G \oplus H = F \}) \cap \\
\]

Finally, let \(M_1 = \{ D_1 _ *_\rho \cdots *_\rho D_k : \mu \leftarrow E_1 : \mu_1 \land \cdots \land E_m : \mu_m \in \text{ground}(P) \} \cap \\
(\forall 1 \leq j \leq m) h_j(E_j) \subseteq \mu_j; \{ F_1, \ldots, F_n \} \subseteq \{ D_1, \ldots, D_k \}, n < k \}\) and \(M_2 = \{ D_1 _ *_\rho \cdots *_\rho D_k : \mu \leftarrow E_1 : \mu_1 \land \cdots \land E_m : \mu_m \in \text{ground}(P) \} \cap \\
(\forall 1 \leq j \leq m) h_j(E_j) \subseteq \mu_j; \{ F_1, \ldots, F_n \} \cap \\
\subseteq \{ D_1, \ldots, D_k \}, n < k \}. \) Let \(M_1' = \mu D: \mu \leftarrow \text{Body} \in M_1 \) and \(M_2' = \mu D: \mu \leftarrow \text{Body} \in M_2 \).

Since \(h_1 \leq h_2 \), we can claim that if some ground instance \(C \in M_1 \), \(C \) also is in \(M_2 \), i.e., \(M_1 \subseteq M_2 \). Therefore \(\cap \{ \mu \mid \mu \in M_1' \} \subseteq \cap \{ \mu \mid \mu \in M_1 \} \), i.e., \(\cap \{ \mu \mid \mu \in M_1' \} \cap \\
\leq (\cap \{ \mu \mid \mu \in M_2' \} \). \)

Combining the established results into one, using the formula for \(T_p(h)(F) \) we obtain the desired \(T_p(h_1)(F) \leq T_p(h_2)(F) \). \(\Box \)

Again, note that the above result applies regardless of what set of \(p \)-strategies occur in program \(P \). It is easy to see now that we may define the iterations of \(T_p \) as:

Definition 38.

1. \(T_p^0 = h \wedge \) where \(\bot \wedge \) is the atomic function that assigns \([0,1] \cap \) to all ground formulas \(F \).
2. \(T_p^n = T_p(T_p^{-1}) \cap \) where \(z \) is a successor ordinal whose predecessor is denoted by \(z - 1 \).
3. \(T_p^\gamma = \cup \{ T_p^\alpha | z < \gamma \} \), where \(\gamma \) is limit ordinal.

In Ref. [9] it was established that if all clauses in \(P \) have only constant annotations then \(\text{lfp}(T_p) = T_p^n \), where \(\text{lfp}(T_p) \) is the least fixed point of \(T_p \). This, however, turns out to not be the case when \(P \) has clauses with variable annotations. The following example is from Ref. [25].

Example 39 [25]. Consider the program

\[
A : [0, V/2] \leftarrow A : [0, V] \cap \\

B : [0, 0] \leftarrow A : [0, 0] \cap \\
\]

The second rule of the program states that if the probability of \(A \) is known to be \([0, 0]\) then the probability of \(B \) is also \([0, 0]\). The first rule of the program states that if we know that the probability of \(A \) lies between 0 and some \(V \), we should conclude that the probability of \(A \) lies in fact in the bottom half \(([0, V/2]) \) of the interval \([0, V]\).

Since \(T_p^0(A) = [0, 1] \), after the first iteration \(T_p^1(A) = [0, 0.5] \). At each subsequent iteration, we will get the interval assigned to \(A \) narrow by half. A \(T_p^\omega \) assigns \(A \) the intersection of all \(T_p^l, l < \omega \), it will assign \([0, 0]\) interval to \(A \). Then \(T_p^{\omega+1} \) will finally assign \([0, 0]\) to \(B \).

Example 40. Let us return to the two rule HPP in Example 24

\[
\text{price-drop(C)} : [0.4, 0.9] \leftarrow (\text{ch-sells-stock(C)} \land_{\text{igg}} \text{ch-retires(C)} : [0.85, 1]. \\
\text{price-drop(C)} : [0.05, 0.2] \leftarrow (\text{ch-sells-stock(C)} \land_{\text{gpc}} \text{ch-retires(C)} : [1, 1].
\]
Suppose we have in addition, the two facts:

\[\text{ch-sells-stock(IBM)} : [1, 1] \rightarrow . \]
\[\text{ch-retires(IBM)} : [0.9, 1] \rightarrow . \]

In this case, the assignment made by \(T_p^p \) to price-drop(IBM) is [0.4, 0.9] as the first rule of the program will fire and the second – won’t.

Example 41. Now, if in addition to the two rules from Examples 24 and 40 we add one fact

\[(\text{ch-sells-stock(IBM)} \land \text{ch-retires(IBM)}) : [1, 1] \rightarrow . \]

\(T_p^p(\text{price-drop(IBM)}) \) will be equal to \(\emptyset \). Indeed, the fact above makes the second rule fire immediately. Also, decomposing this fact we obtain \(T_p^p(\text{ch-sells-stock(IBM)}) \cap [1, 1] \land T_p^p(\text{ch-retires(IBM)}) = [1, 1] \cap \emptyset \), which is sufficient to make the first rule fire. Intersecting \([0.4, 0.9] \cap [0.05, 0.2] \cap \emptyset \) leads to the assignment of \(\emptyset \cap \emptyset \) to \(T_p^p(\text{price-drop(IBM)}) \).

Definition 42. A hybrid probabilistic program \(P \) is said to satisfy the fixpoint reachability condition iff

\[(\forall F \in bf_{/\mathcal{L}}(L))(\exists n < \omega)(\muFP(T_p)(F) = T_p^n(F)). \]

Intuitively, if an hp-program \(P \) satisfies the fixpoint reachability condition, then this means that for every formula \(F \), if \(\mu \geq \muFP(T_p)(F) \), then this means that there is a finitely long justification of this fact.

4.2. Probabilistic model theory

We are now ready to define a logical model theory for hp-programs. For this purpose, hybrid basic formula functions will play the role of an “interpretation”. The key inductive definition of satisfaction is given below.

Definition 43. **Satisfaction.** Let \(h \) be hybrid basic formula function, \(F \in bf_{/\mathcal{L}}(B_L) \), \(\mu \in \mathcal{C}[0, 1] \). We say that

- \(h \models_F : \mu \) iff \(h(F) \subseteq \mu \).
- \(h \models F_1 : \mu_1 \land \cdots \land F_n : \mu_n \) iff \((\forall 1 \leq j \leq n) h \models F_j : \mu_j \).
- \(h \models F : \mu \leftarrow F_1 : \mu_1 \land \cdots \land F_n : \mu_n \) iff either \(h \models F : \mu \) or \(h \not\models F_1 : \mu_1 \land \cdots \land F_n : \mu_n \).
- \(h \models (\exists x)(F : \mu) \) iff \(h \models F(t/x) : \mu \) for some ground term \(t \).
- \(h \models (\forall x)(F : \mu) \) iff \(h \models F(t/x) : \mu \) for every ground term \(t \).

A formula function \(h \) is called a **model** of an hp-program \(P \ (h \models P) \) iff \((\forall p \in P)(h \models p) \). As usual, we say that \(F : \mu \) is a **consequence** of \(P \) iff for every model \(h \) of \(P \), it is the case that \(h(F) \subseteq \mu \).

Recall, from Section 4.1, that we can have cases where a hybrid formula function, \(h \), could assign \(\emptyset \) to some formula. When \(h(F) = \emptyset \), \(h \) is “saying” that \(F \)’s probability lies in the empty set. This corresponds to an inconsistency because, by definition, nothing is in the empty set.

Definition 44. Formula function \(h \) is called **fully defined** iff

\[\forall(F \in bf_{/\mathcal{L}}(B_L))(h(F) \neq \emptyset). \]
The following important result fully ties together, the fixpoint theory associated with hp-programs, and the model theoretical characterization of hp-programs, regardless of which p-strategies occur in the hp-program being considered.

Theorem 45. Let P be any hp-program. Then:
1. h is a model of P iff $T_p(h) \leq h$.
2. P has a model iff $\text{lfp}(T_p)$ is fully defined.
3. If $\text{lfp}(T_p)$ is fully defined, then it is the least model of P, and $F : \mu$ is a logical consequence of P iff $\text{lfp}(T_p)(F) \subseteq \mu$.

Proof.

(1) **Claim 1.** $T_p(h) \leq h \Rightarrow h \models P$.

Let $F \in \text{bf}_{\phi}(B_L)$.

Let $P' = \{p \in \text{ground}(P) | p \text{ is of form } F : \mu \leftarrow F_1 : \mu_1 \land \cdots \land F_n : \mu_n\}$.

Two cases are possible. If $P' = \emptyset$ then P has no rules with F in the head and therefore $h \models P^\circ \text{by def.}$

Let $P' \neq \emptyset$.

Consider a rule $p' \in P'$. p' is of the form $F : \mu \leftarrow F_1 : \mu_1 \land \cdots \land F_n : \mu_n$. Two cases are possible.

- $(\forall 1 \leq j \leq n)(\mu_j \leq h(F_j))$. In this case, we know that $h \models F_1 : \mu_1 \land \cdots \land F_n : \mu_n$. We have to show that $h \models F : \mu$, i.e. $h(F) \subseteq \mu$.

By our assumption, $T_p(h)(F) \leq h(F)$, i.e., $h(F) \subseteq T_p(h)(F)$. By definition of T_p and S_p operators, it is always the case that $T_p(h)(F) \subseteq S_p(h)(F)$. We now show that $S_p(h)(F) \subseteq \mu$.

By definition, $S_p(h)(F) = \bigcap \mathcal{F}$ where $\mathcal{F} = \{\mu | F : \mu \leftarrow F_1 : \mu_1 \land \cdots \land F_n : \mu_n \text{ is a ground instance of a rule in } P; (\forall 1 \leq j \leq n)(\mu_j \leq h(F_j))\}$. We know that $p' : \mu \in \mathcal{F}$, therefore, $S_p(h)(F) \subseteq \mu$, which implies that $T_p(h)(F) \subseteq \mu$. Combining together we obtain: $h(F) \subseteq T_p(h)(F) \subseteq S_p(h)(F) \subseteq \mu$ which implies $h \models F : \mu$, therefore, $h \models p'$.

- $(\exists 1 \leq j \leq n)(h(F_j) \nleq \mu_j) \cap$ in this case $h \models F_j : \mu_j$, therefore, $h \nmodels F_1 : \mu_1 \land \cdots \land F_n : \mu_n$, and therefore, $h \models p'$.

This proves the first claim.

Claim 2. $h \models P \Rightarrow T_p(h) \leq h$.

Let $F \in \text{bf}_{\phi}(B_L)$. We prove the claim by induction on $\text{rank}(F)$.

- **Base Case.** $\text{rank}(F) = 0$, i.e., F is atomic. Let $F : \mu_1 \leftarrow \ldots$.

- \ldots

- $F : \mu_k \leftarrow \ldots$

- $(F *_{p_1} G_1) : v_1 \leftarrow \ldots$

- \ldots

- $(F *_{p_m} G_1) : v_m \leftarrow \ldots$

be the list of all rules from program P that contain F in the head, such that, h satisfies their bodies.
By definition of T_P, $T_P(h)(F) = \mu_1 \mu_2 \cdots \mu_k \ \text{md}_{\rho_1}(v_1) \cap \cdots \cap \text{md}_{\rho_m}(v_m)$.

Since h satisfies all the bodies of these rules, h must also satisfy all the heads, i.e., $(\forall 1 \leq j \leq k)(h(F) \subseteq \mu_j)$ and $(\forall 1 \leq j \leq l)(h(F \ast_{\rho_j} G) \subseteq v_j)$. From first set of inequalities we obtain: $h(F) \subseteq \mu_1 \mu_2 \cdots \mu_k$.

From second set of inequalities: $h(F \ast_{\rho_j} G) = c_{\rho_j}(h(F), G)$ and therefore $h(F) \subseteq \text{md}_{\rho_j}(v_j)$. This leads to $h(F) \subseteq \text{md}_{\rho_1}(v_1) \cap \cdots \cap \text{md}_{\rho_m}(v_m)$, which combined with previous result gives us desired $h(F) \subseteq T_P(h)(F)$ i.e., $T_P(h)(F) \leq h(F)$.

Induction Step. Let our claim hold for all basic formulas of rank less than k. Let $rank(F) = k$ and $F = A_1 \ast_{\rho} \cdots \ast_{\rho} A_k$.

Let

$$F : \mu_1 \leftarrow \ldots$$

$$\ldots$$

$$F : \mu_k \leftarrow \ldots$$

be all the rules with F as the head, such that h satisfies their bodies. We must therefore, conclude that for each of these rules h satisfies its head, i.e., $h(F) \subseteq \mu_1 \mu_2 \cdots \mu_k = S_P(h)(F)$.

Let now G and H be basic formulas such that $G \oplus H = F$. By definition, $rank(G) < k$ and $rank(H) < k$, therefore, by the induction hypothesis, $h(G) \subseteq T_P(h(G))$ and $h(H) \subseteq T_P(h(H))$. Since $G \oplus H = F$, $G \ast_{\rho} H \equiv F$ and therefore $h(F) = h(G \ast_{\rho} H) \subseteq c_{\rho}(h(G), h(H)) \subseteq c_{\rho}(T_P(h)(G), T_P(h)(H)) \cap (the\ \text{the\ inequality\ is\ due\ to\ monotonicity\ property\ of\ composition\ function})$. Therefore we conclude that

$$h(F) \subseteq (\cap \{c_{\rho}(T_P(h)(G), T_P(h)(H)) | G \oplus H = F\}) \cap$$

Now, let

$$(F \ast_{\rho} D_1) : v_1 \leftarrow \ldots$$

$$\ldots$$

$$(F \ast_{\rho} D_s) : v_s \leftarrow \ldots$$

be all the ground instances of rules in P such that h satisfies their bodies and F is a part of their heads. Since $h \models P$, $h \models (F \ast_{\rho} D_1) : v_1, \ldots, h \models (F \ast_{\rho} D_s) : v_s$, i.e., $(\forall 1 \leq j \leq s)(h(F \ast_{\rho} D_j) \subseteq v_j)$. But we know that $h(F \ast_{\rho} D_j) \subseteq c_{\rho}(h(F), h(D_j)) \subseteq v_j$. For this to be true it must be the case that $h(F) \subseteq \text{md}_{\rho_j}(v_j)$. Therefore, $h(F) \subseteq \text{md}_{\rho_j}(v_1) \cap \cdots \cap \text{md}_{\rho_j}(v_s)$.

Combining the three inequalities together we obtain:

$$h(h) \subseteq S_P(F) \cap (\cap \{c_{\rho}(T_P(h)(G), T_P(h)(H)) | G \oplus H = F\})$$

$$\cap (\cap \{\text{md}_{\rho}(v_1) \cap \cdots \cap \text{md}_{\rho}(v_s)\}) = T_P(h)(F)$$

which proves the theorem.

(2) Let $lfp(T_P)$ be fully defined. Since we know that $T_P(lfp(T_P)) = lfp(T_P)$, it is also the case that $T_P(lfp(T_P)) \leq lfp(T_P)$. According to part 1 of this theorem, $lfp(T_P)$ is a model of P.

Assume now that P has a model h. By definition of a model, h is fully defined. We know that $T_P(h) \leq h$. By construction of $lfp(T_P)$, and because of the monotonicity
of T_P operator $lfp(T_P) \subseteq T_P(h)$. Therefore $lfp(T_P) \subseteq h$. This means that for all basic formulas F, $h(F) \subseteq lfp(T_P)(F)$. Since h is fully defined, $lfp(T_P)$ has to be fully defined too.

(3) Part 3 of this theorem is a direct corollary of Part 2 and Theorem 2. □

The second result above links consistency of P programs with the fully defined property of $lfp(T_P)$. An integer i such that either S_{i} or T_{i} are not fully defined, then T_{i}^{w} cannot be fully defined either, and hence, P would not have a model.

5. Proof procedure

At this stage, we have provided a complete description of the logical consequences of an hp-program P. In this section, we develop three query processing procedures.

- The first query processing procedure (Section 5.2), termed hp-resolution, builds upon previous approaches of Ng and Subrahmanian [26] by first requiring that programs P be compiled to a new set, $CL(P)$. Queries are then processed by a process akin to linear input resolution, with the difference that clauses from $CL(P)$ may be considered input clauses. This process suffers from the major flaw that usually, construction of $CL(P)$, which is based on computation of $lfp(T_P)$, is prohibitively expensive. Because of that, two more refutation procedures have been introduced.

- The second procedure (Section 5.3), termed HR_P-refutations, is more pragmatic. Rather than requiring a compilation step, when a query Q is posed, HR_P refutations allow relevant parts of the $CL(P)$ to be dynamically constructed. This has two advantages over hp-refutations. First, hp-refutations often “lose” right at the beginning, as the compilation process may take a tremendous amount of time and space. This does not happen with HR_P-refutations. Second, HR_P-refutations only need a small part of $CL(P)$, not all of it, and this small part may be constructed as needed.

- The third procedure (Section 5.4), expands upon HR_P, to use tabling, as initially introduced in logic programming by Tamaki and Sato [36]. This procedure assumes caches (or tables) are bounded a priori in size – a situation certainly true in practical implementations where tables cannot grow in an unbounded fashion. Furthermore, table management in probabilistic logic programs is much more complicated than in ordinary logic programming for many reasons. First, a query does not merely have a set of answers. Rather, a query has associated answer substitutions, each of which has an associated probability range. As computation proceeds, these ranges may get refined or sharpened – something that does not happen in classical logic program tables. Second, caches in our framework may contain basic formulas with associated probabilities. Such caches implicitly contain probability ranges for basic formulas implied by the cached formulas, as well as basic formulas that imply the cached formulas. A third difference between our work and classical logic program tabling is that there are often many ways to update a table in the case of probabilistic logic programs. We define cache update strategies, and show several different such strategies. We show how HR_P-refutations may be extended with arbitrary cache update strategies.
Unlike classical resolution, when dealing with annotated conjunctions and disjunctions, unifiers may not be unique, as noted by Ng and Subrahmanian [25]. Before proceeding to describe our different notions of resolution, we summarize observation of [25] below as it is necessary for the further development of our proof procedures.

5.1. Unification in HPPs

As rules of clauses in hp-programs may contain annotated basic formulas, any notion of unification must be able to handle unification of annotated basic formulas. In this section, we recapitulate from Ref. [25, pp. 175–179] how this may be done. The contents of this subsection are not new contributions.

Definition 46.
- Θ is a unifier of annotated conjunctions
 $C_1 \equiv A_1 \land \cdots \land A_{n_1}$ and $C_2 \equiv B_1 \land \cdots \land B_{n_2}$ iff $\rho, \rho' \in \mathcal{G} \cup \mathcal{N} \mathcal{J}$ and $\rho = \rho'$ and
 \[\{A_k \Theta | 1 \leq k \leq n_1\} = \{B_k \Theta | 1 \leq k \leq n_2\} \]

- Θ is a unifier of annotated disjunctions
 $D_1 \equiv A_1 \lor \cdots \lor A_{n_1}$ and $D_2 \equiv B_1 \lor \cdots \lor B_{n_2}$ iff $\rho, \rho' \in \mathcal{D} \mathcal{J} \mathcal{F} \mathcal{J}$ and $\rho = \rho'$ and
 \[\{A_k \Theta | 1 \leq k \leq n_1\} = \{B_k \Theta | 1 \leq k \leq n_2\} \]

In order to proceed we need to define a notion of maximally general unifier.

Definition 47. Let $U(C_1, C_2)$ denote the set of all unifiers of C_1 and C_2. Let $\Theta_1, \Theta_2 \in U(C_1, C_2)$.
1. $\Theta_1 \leq \Theta_2$ iff there exists a substitution γ, such that $\Theta_1 = \Theta_2 \gamma$.
2. $\Theta_1 \equiv \Theta_2$ iff $\Theta_1 \leq \Theta_2$ and $\Theta_2 \leq \Theta_1$.
3. Let $[\Theta] = \{\Theta' \in U(C_1, C_2) | \Theta \equiv \Theta'\}$.
4. $[\Theta_1] \leq [\Theta_2]$ iff there exists such γ that $[\Theta_1] = [\Theta_2 \gamma]$.
5. $[\Theta_1] < [\Theta_2]$ iff $[\Theta_1] \leq [\Theta_2]$ and $[\Theta_2] \neq [\Theta_1]$.

From the above definition, it is easy to see that \equiv is an equivalence relation on elements of $U(C_1, C_2)$ and \leq is a partial order on $\{[\Theta] | \Theta \in U(C_1, C_2)\}$. We can define a notion of maximally general unifier.

Definition 48. $\Theta \in U(C_1, C_2)$ is a maximally general unifier (max-gu) of C_1 and C_2 iff there is no such other unifier $\Theta' \in U(C_1, C_2)$ that $[\Theta] \leq [\Theta']$.

The proof of the following result is quite complex and is given in Ref. [25, Lemma 12, pp. 176–179].

Lemma 49 (25, Lemma 12, pp. 176–179). If two basic formulas are unifiable then they have a max-gu (not necessarily unique).

5.2. hp-Resolution

In general, in the presence of basic formulas, just “straight” resolution is not sufficient for query processing. The reason is that to establish a basic formula, e.g.
(p \land q) : \mu$, we might need to separately prove $p : \mu_1$ and $q : \mu_2$ and then combine
μ_1, μ_2 using the composition function associated with p-strategy ρ. There are two
ways to do this: (i) allow resolution not against hp-clauses in P, but against hp-clauses
in an expanded version of P, or (ii) introduce, in addition to resolution, new rules
of inference corresponding the the “expansion” steps alluded above. Both cases are
equivalently from the point of view of completeness. In this section we discuss the former procedure, while the latter one will be described in detail in the next
section.
First, we add to P all “tautologies”. Any formula of the form $F : [0, 1]$ is a tautology
as F’s probability certainly lies in the $[0, 1]$ interval.

Definition 50. Let P be an hp-program. Then $REDUN(P)$ is defined as

$REDUN(P) = P \cup \{A : [0, 1] \leftarrow A \in B_2\}.$

In addition to the above tautologies, we need to “merge” rules together and/or infer “implied” rules. For example, if one rule has $F_1 : \mu_1$ in the head, and another
has $F_2 : \mu_2$ in the head, and these are unifiable via max-gu Θ, then these two rules
may jointly provide some information on the probability of $(F_1 \land \gamma F_2)$ where ρ is
some p-strategy. Likewise, if $(F_1 \ast \rho F_2) : \mu' \in$ is in the head of some rule, then this rule
certainly provides some information about F_1’s probability, and F_2’s probability. The
closure of P, defined below, expands the rules in P by performing such merges and/or
inferences.

Definition 51. Let P be an hp-program. Then $CL(P)$ (closure of P) is defined as follows

- $CL^0(P) = REDUN(P)$.

 1. For each pair of clauses $F_1 : \mu_1 \leftarrow Body_1$ and $F_2 : \mu_2 \leftarrow Body_2 \in CL^j(P)$,
such that their heads F_1 and F_2 are unifiable via max-gu Θ add clause $(F_1 : \mu_1 \land F_2 : \mu_2 \leftarrow Body_1 \land Body_2) \Theta$ to $CL^{j+1}(P)$.

 2. For each clause $F_1 \ast \rho F_2 : \mu \leftarrow Body \in CL^j(P)$ add the following two clauses
to $CL^{j+1}(P)$:

 - $F_1 : md_\rho(\mu) \leftarrow Body$
 - $F_2 : md_\rho(\mu) \leftarrow Body$

 3. For each two clauses $(A_1 \ast \rho \cdot \cdot \cdot \ast \rho A_k) : \mu_1 \leftarrow Body_1$ and $(B_1 \ast \rho \cdot \cdot \cdot \ast \rho B_l) : \mu_2 \leftarrow Body_2 \in CL^j(P)$, $k > 1, l \geq 1$, add the clause $(A_1 \ast \rho \cdot \cdot \cdot \ast \rho A_k \ast \rho B_1 \ast \rho \cdot \cdot \cdot \ast \rho B_l) : c_\rho(\mu_1, \mu_2) \leftarrow Body_1 \land Body_2$
to $CL^{j+1}(P)$.

 4. if A and B are atoms, and $CL^j(P) \cap$ contains clauses $A : \mu_1 \leftarrow Body_1$ and
$B : \mu_2 \leftarrow Body_2$, add

 - $(A \ast \rho B) : c_\rho(\mu_1, \mu_2) \leftarrow Body_1 \land Body_2$

for each $\rho \in \mathcal{C} \cup \mathcal{N} \cup \mathcal{D} \cup \mathcal{S} \cup \mathcal{F}$ to $CL^{j+1}(P)$.

- $CL(P) = \bigcup_{j \geq 0} CL^j(P) \cap$

The following result says that the above steps are all sound. No new rule is produced
that was not already a logical consequence of P.

Lemma 52. For every clause $C \in \text{CL}(P)$, $P \models C$.

Proof. Let C be a clause in $\text{CL}(P)$. Then $C \in \text{CL}'(P)(P)$ for some integer $j \geq 0$. We proceed by induction on j.

- Base Case.
 1. $C \in P$. Then by definition of \models, $P \models C$.
 2. $C \in P$, $C \in \text{REDUN}(P)$. In this case C is of the form $A : [0, 1] \leftarrow$, and A is a ground instance of an atom. Let h be a formula function, such that $h \models P$. It is always the case that $h(C) \subseteq [0, 1]$, which yields $h \models C$.

- Induction Step.
 Assume that for each clause $C \in \text{CL}'(P)$, $P \models C$. Let $C \in \text{CL}'(P) - \text{CL}(P)$. As $C \in \text{CL}'(P) - \text{CL}(P)$, C must have been inserted into $\text{CL}'(P)$ by the means of one of the cases 1–4 from Definition 26. We have to consider each case separately.
 1. Suppose C was inserted by the means of case 1. Then there exist such clauses $C_1 \equiv F_1 : \mu_1 \leftarrow \text{Body}_1$ and $C_2 \equiv F_2 : \mu_2 \leftarrow \text{Body}_2$, such that, $C_1 \in \text{CL}(P), C_2 \in \text{CL}(P), F_1$ and F_2 are unifiable via max-gu Θ, and

$$C \equiv (F_1 : \mu_1 \ \mu_2 \leftarrow \text{Body}_1 \land \text{Body}_2) \Theta.$$

We need to show that $P \models C$. Suppose h is a model of P, i.e., $h \models P$, and C_γ is a ground instance of C, such that $h \models (\text{Body}_1 \land \text{Body}_2) \Theta_\gamma$. By the induction hypothesis, $h \models C_1$ and $h \models C_2$, therefore, $h \models C_1 \Theta_\gamma$ and $h \models C_2 \Theta_\gamma$. As $h \models \text{Body}_1 \Theta_\gamma$, we conclude that $h(F_1 \Theta_\gamma) \subseteq \mu_1$. Likewise we can conclude that $h(F_2 \Theta_\gamma) \subseteq \mu_2$.

But since Θ is a max-gu of F_1 and F_2, $F_1 \Theta_\gamma = F_2 \Theta_\gamma$, and therefore $h(F_1 \Theta_\gamma) \subseteq \mu_1, \mu_2$, i.e., $h \models F_1 \Theta_\gamma : \mu_1 \ \mu_2$.

 2. Suppose C was inserted by the means of case 2. Then there exists such a clause $C_1 \equiv (F_1 \ *_p F_2) : \mu \leftarrow \text{Body} \in \text{CL}'(P)$, that either

$$C \equiv F_1 : \text{md}_p(\mu) \leftarrow \text{Body}$$

or

$$C \equiv F_2 : \text{md}_p(\mu) \leftarrow \text{Body}.$$

We will consider the former case, the latter case is symmetric. We need to show that $P \models C$. Let C_γ be a ground instance of C and let $h \models P$ and $h \models \text{Body}_\gamma$. By induction hypothesis, $h \models C_1$ and therefore, $h((F_1 \ *_p F_2)_\gamma) \subseteq \mu$. By the definitions of md_p and h, this yields $h(F_1) \subseteq \text{md}_p(\mu)$, i.e., $h \models F_1 : \text{md}_p(\mu)$.

3. Let C be inserted by the means of case 3. In this case, $\text{CL}'(P)$ will contain two clauses,

$$C_1 \equiv (A_1 \ *_p \cdots \ *_p A_k) : \mu_1 \leftarrow \text{Body}_1$$

and

$$C_2 \equiv (B_1 \ *_p \cdots \ *_p B_l) : \mu_2 \leftarrow \text{Body}_2,$$

such that, $k > 1, l \geq 1$, and

$$C \equiv (A_1 \ *_p \cdots \ *_p A_k \ *_p B_1 \ *_p \cdots \ *_p B_l) : c_p(\mu_1, \mu_2) \leftarrow \text{Body}_1 \land \text{Body}_2.$$

We need to show $P \models C$. Let C_γ be a ground instance of C and let $h \models P$ and $h \models (\text{Body}_1 \land \text{Body}_2)_\gamma$. By induction hypothesis, $h \models C_1$ and $h \models C_2$, and therefore, $h \models C_1 \gamma$ and $h \models C_2 \gamma$. Since $h \models \text{Body}_1 \gamma$ and $h \models \text{Body}_2 \gamma$, we have $h \models (A_1 \ *_p \cdots \ *_p A_k)_\gamma : \mu_1$ and $h \models (B_1 \ *_p \cdots \ *_p B_l)_\gamma : \mu_2$, i.e., $h((A_1 \ *_p \cdots \ *_p A_k) \gamma) \subseteq \mu_1$, and $h((B_1 \ *_p \cdots \ *_p B_l) \gamma) \subseteq \mu_2$. But then,
\[h((A_1 \ast_p \cdots \ast_p A_k \ast_p B_1 \ast_p \cdots \ast_p B_l)) \cap \\
= c_p(h((A_1 \ast_p \cdots \ast_p A_k)), h((B_1 \ast_p \cdots \ast_p B_l))) \subseteq c_p(\mu_1, \mu_2), \]
which means \(h \models C. \)

4. Finally, let \(C \) be inserted in \(\text{CL}^{i+1}(P) \) by the means of case 4. Then, \(\text{CL}^i(P) \) will contain 2 clauses, \(C_1 \equiv A : \mu_1 \leftarrow \text{Body}_1 \) and \(C_2 \equiv B : \mu_2 \leftarrow \text{Body}_2 \), such that both \(A \) and \(B \) are atomic, and
\[C \equiv (A \ast_p B) : c_p(\mu_1, \mu_2) \leftarrow \text{Body}_1 \land \text{Body}_2 \]
for some p-strategy \(\rho \).

We have to show \(P \models C \). Let \(C' \) be a ground instance of \(C \) and let \(h \models P \) and \(h \models (\text{Body}_1 \land \text{Body}_2)' \). By induction hypothesis, \(h \models C_1 \) and \(h \models C_2 \), therefore, \(h \models C_1' \) and \(h \models C_2' \). Since \(h \models \text{Body}_1' \) and \(h \models \text{Body}_2' \), we obtain \(h \models A' : \mu_1 \) and \(h \models B' : \mu_2 \), i.e. \(h(A') \subseteq \mu_1 \) and \(h(B') \subseteq \mu_2 \). Hence, \(h((A \ast_p B)) \cap \\
= c_p(h(A'), h(B')) \subseteq c_p(\mu_1, \mu_2) \), which means that \(h \models C' \) and therefore \(h \models C. \)

We now present a refutation procedure for query processing.

Definition 53. A query is a formula of the form \(\exists(F_1 : \mu_1 \land \cdots \land F_n : \mu_n) \), where \((\forall 1 \leq i \leq n) (F_i \in b f_p(B_L)) \). \(F_i \)s need not be ground.

Definition 54. Suppose \(C \equiv G : \lambda \leftarrow G_1 : \lambda_1 \land \cdots \land G_m : \lambda_m \in \text{CL}(P) \) and \(Q \equiv \exists(F_1 : \mu_1 \land \cdots \land F_n : \mu_n) \) is a query. Let \(C \) and \(Q \) be standardized apart. Let also \(G \) and \(F_i \) be unifiable for some \(1 \leq i \leq n \). Then
\[\exists((F_1 : \mu_1 \land \cdots \land F_{i-1} : \mu_{i-1} \land G_1 : \lambda_1 \land \cdots \land G_m : \lambda_m \land F_{i+1} : \mu_{i+1} \land \cdots \land F_n : \mu_n) \Theta) \cap \\
\]
is an hp-resolvent of \(C \) and \(Q \) iff:
1. \(\Theta \) is a max-gu of \(G \) and \(F_i \)
2. \(\lambda \Theta \) and \(\mu_i \Theta \) are ground and \(\lambda \Theta \subseteq \mu_i \Theta \)
If \(\Theta \) is a unifier but not necessarily a max-gu, we call the resolvent an unrestricted hp-resolvent.

Definition 55. Let \(Q \equiv \exists(F_1 : \mu_1 \land \cdots \land F_n : \mu_n) \) be an initial query, and \(P \) an hp-program. An hp-deduction of \(Q \) from \(P \) is a sequence \((Q_1, C_1, \Theta_1) \land \cdots \land (Q_r, C_r, \Theta_r) \land \cdots \land Q_{i+1} \) where, \(Q = Q_1 \), for all \(i \geq 1 \), \(C_i \) is a renamed version of a clause in \(\text{CL}(P) \) and \(Q_{i+1} \) is an hp-resolvent of \(Q_i \) and \(C_i \) via max-gu \(\Theta_i \).

If the \(\Theta_i \)’s are not restricted to be max-gu’s, we call the resulting sequence an unrestricted hp-deduction.

Definition 56. Let \(Q \equiv \exists(F_1 : \mu_1 \land \cdots \land F_n : \mu_n) \) be an initial query, and \(P \) an hp-program. An hp-refutation of \(Q \) from \(P \) is a finite hp-deduction \((Q_1, C_1, \Theta_1) \land \cdots \land (Q_r, C_r, \Theta_r) \) where, the hp-resolvent of \(Q_i \) and \(C_i \) via \(\Theta_i \) is the empty query. \(\Theta_1 \land \cdots \land \Theta_r \) is called the computed answer substitution.

We are now in a position to state the soundness and completeness of hp-resolution.
Theorem 57. (Soundness of hp-refutation) Let P be an hp-program and Q be an initial query. If there exists an hp-refutation of $Q \equiv \exists(F_1 : \mu_1 \land \cdots \land F_n : \mu_n)$ from P with the answer substitution Θ then $P \models \forall((F_1 : \mu_1 \land \cdots \land F_n : \mu_n)\Theta)$.

Proof. Let $\langle Q_1, C_1, \Theta_1 \rangle \ldots \langle Q_n, C_n, \Theta_n \rangle$ be our hp-refutation. We proceed by induction on n.

Base case: $n = 1$
In this case $Q_1 \equiv F_1 : \mu_1$, $C_1 \equiv G_1 : v_1 \leftarrow \in \text{CL}(P)$, $F_1\Theta_1 = G_1\Theta_1$ and $v_1 \subseteq \mu_1$. Let $h \models P$. By the previous lemma, $h \models C_1$. Therefore, $h \models \forall((G_1 : v_1)\Theta_1)$. But, since $F_1\Theta_1 = G_1\Theta_1$ and $v_1 \subseteq \mu_1$, we get $h \models \forall(F_1 : \mu_1)\Theta_1$.

Induction Step.
Suppose the theorem holds for any hp-refutation $\langle Q_2, C_2, \Theta_2 \rangle \ldots \langle Q_n, C_n, \Theta_n \rangle$.

Consider an hp-refutation $\langle Q_1, C_1, \Theta_1 \rangle, \langle Q_2, C_2, \Theta_2 \rangle \ldots \langle Q_n, C_n, \Theta_n \rangle$. Let $h \models P$. Let $Q_1 \equiv (F_1 : \mu_1 \land \cdots \land F_m : \mu_m)$ and $C_1 \equiv G : v \leftarrow \text{Body}$ be (a renamed version of) a clause in $\text{CL}(P)$, such that for some $1 \leq i \leq m$, $F_i\Theta_1 = G\Theta_1$ and $v \subseteq \mu_i$. Then, $Q_2 \equiv (F_1 \land \cdots \land F_{i-1} : \mu_{i-1} \land \text{Body} \land F_{i+1} : \mu_{i+1} \land \cdots \land F_m : \mu_m)\Theta_1$. By induction hypothesis, $h \models \forall((Q_2, \Theta_2 \ldots \Theta_n)$, i.e. $h \models \forall(F_1 : \mu_1 \land \cdots \land F_{i-1} : \mu_{i-1} \land \text{Body} \land F_{i+1} : \mu_{i+1} \land \cdots \land F_m : \mu_m)\Theta_1(\Theta_2 \ldots \Theta_n)$). Therefore, $h \models \forall(F_1 : \mu_1 \land \cdots \land F_{i-1} : \mu_{i-1} \land F_{i+1} : \mu_{i+1} \land \cdots \land F_m : \mu_m)\Theta_1(\Theta_2 \ldots \Theta_n)$. Since also $h \models C_1$, we obtain $h \models \forall((G\Theta_1 \ldots \Theta_n) : v)$. Since $v \subseteq \mu_i$, we obtain $h \models \forall((F_i\Theta_1 \ldots \Theta_n) : \mu_i)$, i.e. $h \models \forall((F_i : \mu_i)\Theta_1 \ldots \Theta_n)$. Combining with $h \models \forall(F_1 : \mu_1 \land \cdots \land F_{i-1} : \mu_{i-1} \land F_{i+1} : \mu_{i+1} \land \cdots \land F_m : \mu_m)\Theta_1(\Theta_2 \ldots \Theta_n)$ we get the desired: $h \models \forall(Q_1\Theta_1 \ldots \Theta_n)$, i.e., $h \models \forall(Q_1\Theta)$.

In order to prove completeness theorem we have to establish first a number of facts. The following two lemmas can be proved by a straightforward application of mgu and lifting lemmas for classical logic programming in Ref. [24]. Mirror image proofs are given in Ref. [25].

Lemma 58 (Max-gu Lemma). Let Q be a query that has an unrestricted hp-refutation from an hp-program P. Then, Q has an hp-refutation of the same length and if $\Theta_1, \ldots, \Theta_m$ are the unifiers form the unrestricted hp-refutation, and $\Theta_1^\gamma, \ldots, \Theta_m^\gamma$ are the max-gu’s from the hp-refutation, then, for some γ $\Theta_1 \cdots \Theta_m = \Theta_1^\gamma \cdots \Theta_m^\gamma$.

Lemma 59 (Lifting Lemma). Let P be an hp-program, Q be a query, Θ be a substitution. Let $Q\Theta$ have an hp-refutation from P. Then Q has an hp-refutation from P of the same length. Also, if $\Theta_1, \ldots, \Theta_m$ are the max-gu’s from the refutation of $Q\Theta$ and $\Theta_1^\gamma, \ldots, \Theta_m^\gamma$ are the max-gu’s from the refutation of Q then, for some substitution γ: $\Theta\Theta_1 \ldots \Theta_m = \Theta_1^\gamma \cdots \Theta_m^\gamma$.

Now we can prove completeness theorem.

Theorem 60 (Completeness of hp-refutation). Let P be a consistent hp-program which satisfies the fixpoint reachability condition (see Definition 42) and Q' be a query. Then, if $P \models \exists(Q')$ then there exists an hp-refutation of Q' from P.
Proof. Since $P \models \exists Q'$, there exists such a ground substitution Θ that $P \models Q' \Theta$. Let $Q \equiv Q' \Theta$. We will prove that Q has an hp-refutation from P. By Lifting Lemma, Q^\cap will also have a refutation from P.

Let $Q \equiv F_i : \mu_1 \land \cdots \land F_m : \mu_m$. Since $P \models Q$, it must be the case that $P \models F_i : \mu_i$, $1 \leq i \leq m$. □

Claim 1. Let $F : \mu$ and $G : v$ be ground annotated formulas which have hp-refutations from P. Then, so does $F : \mu \land G : v$.

Proof. Let $(F : \mu, C_1, \Theta_1) \ldots (Q^i_j, C_i, \Theta_i) \cap$ be the hp-refutation for $F : \mu$. Let $(G : v, D_1, \Gamma_1) \ldots (Q^k_j, D_k, \Gamma_k)$ be the hp-refutation for $G : v$. Then, as $F : \mu$ and $G : v$ are ground, the following will be the hp-refutation for $F : \mu \land G : v$:

$(F : \mu \land G : v, C_1, \Theta_1), (Q^2_i \land G : v, C_2, \Theta_2) \ldots (Q^i_j \land G : v, C_i, \Theta_i), (G : v, D_1, \Gamma_1) \ldots (Q^k_j, D_k, \Gamma_k) \cap$

This completes the proof of Claim 1. □

Now all we have to prove is:

Claim 2. Let $P \models \exists F' : \mu$. Then there exists a refutation of $F' : \mu$ from P.

Proof. Since $P \models F' : \mu$, there exists a ground substitution θ such that $P \models F' : \mu \theta$. Let $F = F' \theta$. We show that $F : \mu$ has an hp-refutation from P, and by lifting lemma so will $F' : \mu$.

Since $P \models F : \mu$, by Theorem 3, $T_p^\theta(F) \subseteq \mu$. By definition of T_p^θ, there exists such an $\alpha \leq \omega$ that $T_p^\theta(F) \subseteq \mu$. Consider the smallest such integer. We now proceed by induction on α.

Base Case: $\alpha = 0$. By definition of T_p, $T_p^\theta(F) = [0, 1]$. Therefore, $\mu = [0, 1]$. If F is atomic, then, since F is ground, a clause

$C \equiv F : [0, 1] \leftarrow \cap$

is in REDUN(P), and therefore it is in CL(P). Then, $(F : \mu, C, e)$ (e is the empty substitution) is the hp-refutation for $F : \mu$.

Let $F \equiv (A_1 \ast_p A_2 \ast_p \cdots \ast_p A_n)$, where each A_i is atomic. Then, a set of clauses

$C_i \equiv A_j : [0, 1] \leftarrow \cap$

is in REDUN(P) and therefore each of these clauses is in CL(P). By definition of CL(P) and because for any p-strategy $\rho c_\rho([0, 1], [0, 1]) = [0, 1]$, CL($P$) (and therefore CL($P$)) will contain the clause

$C \equiv (A_1 \ast_p A_2 \ast_p \cdots \ast_p A_n) : [0, 1] \leftarrow \cap$

(In fact we can argue that the above clause will be contained in CL$_{log}(n)$. Then the refutation for $F : \mu$ will be $(F : \mu, C, e)$ (e is the empty substitution).

Induction Step. Assume that for any formula $G : \mu$ such that $T_p^{\alpha-1} \models G : \mu$, there exists a refutation ξ of $G : \mu$ from P. We prove the claim by induction on the structure of F.

Base Case. F is atomic.
Let $M' = \{ \mu | G : \mu \leftarrow Body \in P; T_{\rho}^{x-1} \models Body \}$, where G is unifiable with F. We notice that $S_p(T_{\rho}^{x-1})(F) = \cap \{ \mu | \mu \in M' \}$.

Let $M'' = \{ \mu'' | (G \ast_\rho H) : \mu'' \leftarrow Body \in P; T_{\rho}^{x-1} \models Body \}$, where G is unifiable with F.

We have, by definition of T_{ρ}^{x} ($x > 0$):

$$T_{\rho}^{x}(F) = S_p(T_{\rho}^{x-1})(F) \cap (\cap \{ md(\mu'') | \mu'' \in M'' \}) \subseteq \mu.$$

Two cases are possible.

1. $|M' \cup M''| = 1$.

Assume $M'' \neq \emptyset$. Then, there is a unique rule $C' : G : \mu' \leftarrow Body \in P$, s.t., G unifies with F, $T_{\rho}^{x-1} \models Body$, and $S_p(T_{\rho}^{x-1})(F) = \mu'$. (Notice that $C' \in P$ implies $C' \in CL(P)$). Let Θ' be the max-gu for G and F.

By induction hypothesis, there exists an hp-refutation $\langle Body, C_1, \Theta_1 \rangle \cap \ldots \langle Q_k, C_k, \Theta_k \rangle$ for $Body$. Then

$$\langle F : \mu, C', \Theta' \rangle, \langle Body, C_1, \Theta_1 \rangle \ldots \langle Q_k, C_k, \Theta_k \rangle \cap$$

is the refutation for $F : \mu$.

Assume now that $M'' = \emptyset$. Then there is a unique rule $C' : (G \ast_\rho H) : \mu' \leftarrow Body \in P$, s.t., G unifies with F via max-gu Θ', $T_{\rho}^{x-1} \models Body$ and $T_{\rho}(T_{\rho}^{x-1})(F) = md_p(\mu')$. Since $C' \in P$, $C' \in CL^0(P)$ and therefore the following clause $C'' \equiv G : md_p(\mu') \leftarrow Body$ is in $CL^1(P)$. By the induction hypothesis, there exists an hp-refutation for $Body : \langle Body, C_1, \Theta_1 \rangle \ldots \langle Q_k, C_k, \Theta_k \rangle$. Then

$$\langle F : \mu, C'', \Theta' \rangle, \langle Body, C_1, \Theta_1 \rangle \ldots \langle Q_k, C_k, \Theta_k \rangle \cap$$

is the refutation for $F : \mu$.

2. $|M' \cup M''| > 1$.

Let $\mathcal{C}' = \{ G : \mu' \leftarrow Body \in P; T_{\rho}^{x-1} \models Body \}$, where G is unifiable with F, and $M' = \{ \mu | G : \mu' \leftarrow Body \in \mathcal{C}' \}$.

Let also $\mathcal{C}'' = \{ (D \ast_\rho H) : \mu'' \leftarrow Body \in P; T_{\rho}^{x-1} \models Body \}$, where D is unifiable with F and $M'' = \{ \mu'' | (D \ast_\rho H) : \mu'' \leftarrow Body \in \mathcal{C}'' \}$.

Since all clauses from \mathcal{C}'' are in P, they are also in $CL^0(P)$. Let

$$G_1 : \mu_1^{(1)} \leftarrow Body_1^{(1)}$$

$$\ldots$$

$$G_s : \mu_s^{(s)} \leftarrow Body_s^{(s)}$$

be all clauses in \mathcal{C}'. Since they are in $CL^0(P)$, we can claim that the clause

$$C_1 \equiv G_1 \Theta^{(1)} : \mu_1^{(1)} \ldots \mu_s^{(s)} \leftarrow Body_1^{(1)} \wedge \ldots \wedge Body_s^{(s)}$$

will be in $CL^1(P)$ (actually, it will already be in $CL^{\log_2(s)}(P)$) where $\Theta^{(s)}$ is the max-gu of G_1, \ldots, G_s (such a substitution must exist since we know that each of G_j is unifiable with F).

Let

$$(D_1 \ast_\rho H_1) : \mu_1'' \leftarrow Body_1^{(1)}$$

$$\ldots$$

$$(D_r \ast_\rho H_r) : \mu_r'' \leftarrow Body_r^{(s)}$$
be all clauses in \mathcal{C}'. Since $\mathcal{C}' \subseteq P$, every clause in \mathcal{C}' is also in $\text{CL}^0(P)$. Therefore, the following set of clauses:

\[D_1 : \text{md}_{\rho_1}(\mu''_1) \leftarrow \text{Body}_{1}^{''} \]

\[\ldots \]

\[D_r : \text{md}_{\rho_r}(\mu''_r) \leftarrow \text{Body}_{r}^{''} \]

will be a subset of $\text{CL}^1(P)$. Then, we can claim that $\text{CL}^1(P) \cap \text{CL}^\rho(P)$ will contain the following clause:

\[C_2 \equiv D_1 \Theta'' \cap \ldots \cap D_r \Theta'' \]

where Θ'' is the max-gu for D_1, \ldots, D_r.

Let $l = \max(r, s)$. Since both $C_1 \in \text{CL}^l(P)$ and $C_2 \in \text{CL}^l(P)$, the following clause

\[C \equiv G_1 \Theta''_1 \cap \mu''_1 \cap \text{md}_{\rho_1}(\mu''_1) \cap \ldots \cap \text{md}_{\rho_s}(\mu''_s) \]

\[\leftarrow \text{Body}_1'' \cap \ldots \cap \text{Body}_r'' \cap \text{Body}_s'' \cap \ldots \cap \text{Body}_r'' \]

(where Θ''_1 is the max-gu of $G_1 \Theta''$ and $D_1 \Theta''$) will be in $\text{CL}^{l+1}(P)$ and therefore, in $\text{CL}(P)$.

Notice that $\mu''_1 \cap \ldots \cap \mu''_s \cap \text{md}_{\rho_1}(\mu''_1) \cap \ldots \cap \text{md}_{\rho_s}(\mu''_s) = T_{\rho}^P(F) \subseteq \mu$. Also, by induction hypothesis, each $\text{Body}_j'' \cap \text{Body}_j''$ has an hp-refutation, therefore by Claim 1 of the theorem, their conjunction has an hp-refutation.

Let $\langle Q_1, C_1, \Theta_1 \rangle, \ldots, \langle Q_2, C_2, \Theta_2 \rangle$ be such an hp-refutation. Then the following is an hp-refutation for $F : \mu$:

\[\langle F : \mu, C, \Gamma \rangle, \langle Q_1, C_1, \Theta_1 \rangle, \ldots, \langle Q_2, C_2, \Theta_2 \rangle \]

where Γ is the max-gu of F and $G_1 \Theta''_1$.

Induction Step. Assume that the theorem holds for every formula of size less than k and let $F = A_1 \ast_{\rho_1} \ast_{\rho_k} A_k$, where A_1, \ldots, A_k are atomic.

Let $\mathcal{C}_1 = \{ G : \mu' \leftarrow \text{Body} \in P[T_{\rho}^{P-1}] \models \text{Body}, \text{ where } G \text{ is unifiable with } F \}$, and $M_1 = \{ \mu' | G : \mu' \leftarrow \text{Body} \in \mathcal{C}_2 \}$. Let $\mathcal{C}_2 = \{ (D \ast_{\rho} E) : \mu'' \leftarrow \text{Body} \in \mathcal{C}_2 \}$, where D is unifiable with $F \cap \text{Body} \in \mathcal{C}_2$.

Let $\mathcal{C}_1 = \{ G_1 : \mu''_1 \leftarrow \text{Body}_1'' \}$

\[\ldots \]

$G_s : \mu''_s \leftarrow \text{Body}_s''$ be all clauses in \mathcal{C}_1. Since they are in $\text{CL}^0(P)$, we can claim that the clause

\[C_1^F = G_1 \Theta''_1 \cap \ldots \cap \text{Body}_1'' \leftarrow \text{Body}_1'' \cap \ldots \cap \text{Body}_s'' \]

will be in $\text{CL}^1(P)$ (actually, it will already be in $\text{CL}^\rho(P)$) where Θ''_1 is the max-gu of G_1, \ldots, G_s (such a substitution must exist since we know that each of G_j is unifiable with F).

Let $\langle D_1 \ast_{\rho_1} E_1 \rangle : \mu''_1 \leftarrow \text{Body}_1''$
\[(E_r \ast \rho, E_r) : \mu''_r \leftarrow Body''_r \]

be all clauses in \(\mathcal{C}_2 \). Since \(\mathcal{C}_2 \subseteq P \), every clause in \(\mathcal{C}_2 \) is also in \(\text{CL}^0(P) \). Therefore, the following set of clauses:

\[D_1 : md_{\rho_1}(\mu''_1) \leftarrow Body''_1 \]

\[\ldots \]

\[D_r : md_{\rho_r}(\mu''_r) \leftarrow Body''_r \]

will be a subset of \(\text{CL}^1(P) \). Then, we can claim that \(\text{CL}'(P) \) (or even \(\text{CL}^{log^1(r)}(P) \)) will contain the following clause:

\[C^F_1 \equiv D_1(\Theta''_1) \cap \ldots \cap D_r(\Theta''_r) \leftarrow Body''_1 \land \ldots \land Body''_r \]

where \(\Theta'' \) is the max-gu for \(D_1, \ldots, D_r \).

Now, consider any pair of basic formulas \(H \) and \(I \) such that \(H \oplus I = F \). Since \(F \equiv (H * \rho, I) \), we must conclude that \(T^\rho_p(F) = T^\rho_p(H * \rho, I) = c_\rho(T^\rho_p(H), T^\rho_p(I)). \) By our assumption \(T^\rho_p(F) \subseteq \mu \) therefore, \(c_\rho(T^\rho_p(H), T^\rho_p(I)) \subseteq \mu \). Let \(v' = T^\rho_p(H), v'' = T^\rho_p(I). \)

We can now say that \(T^\rho_p \models H : v_1 \) and \(T^\rho_p \models I : v_2 \), such that \(c_\rho(v_1, v_2) \subseteq \mu \).

By the induction hypothesis, there exist hp-refutations for \(H : v' \) and \(I : v'' \). Let

\[\langle H : v', C^H_1, \Theta^H_1 \rangle \langle Q^H_2, C^H_2, \Theta^H_2 \rangle \ldots \langle Q^H_u, C^H_u, \Theta^H_u \rangle \]

and

\[\langle I : v'', C^I_1, \Theta^I_1 \rangle \langle Q^I_2, C^I_2, \Theta^I_2 \rangle \ldots \langle Q^I_u, C^I_u, \Theta^I_u \rangle \]

be these respective hp-refutations. Let us look at the clauses \(C^H_i \) and \(C^I_i \). These clauses have to be of a (respective) form:

\[C^H_1 \equiv H'' \models \lambda' \leftarrow Body'' \]

where, \(\lambda' \subseteq v', T^\rho_p \models Body'' \), \(H'' \) is uninifiable with \(H \), and

\[C^I_1 \equiv I'' \models \lambda'' \leftarrow Body'' \]

where, \(\lambda'' \subseteq v'', T^\rho_p \models Body'' \), \(I'' \) is uninifiable with \(I \).

By definition of hp-refutation, both \(C^H_1 \) and \(C^I_1 \) are in \(\text{CL}(P) \). Let \(w \) be the smallest integer such that both \(C^i_1 \in \text{CL}^w(P) \) and \(C^H_1 \in \text{CL}^{w+1}(P) \). Then we can claim that \(\text{CL}^{w+1}(P) \) will contain the following clause:

\[C^{H \ast \rho, I}_1 \equiv (H' \ast \rho, I') : c_\rho(\lambda', \lambda'') \leftarrow Body' \land Body'' \]

Since both \(Body' \land Body'' \) have hp-refutations, so does \(Body' \land Body'' \). In fact, we know that \(\langle Q^H_1, C^H_1, \Theta^H_1 \rangle \ldots \langle Q^H_u, C^H_u, \Theta^H_u \rangle \rangle \) is an hp-refutation for \(Body' \) and \(\langle Q^I_1, C^I_1, \Theta^I_1 \rangle \ldots \langle Q^I_u, C^I_u, \Theta^I_u \rangle \rangle \) is an hp-refutation for \(Body'' \). Therefore, the following will be an hp-refutation for \((H' \ast \rho, I') : c_\rho(\lambda', \lambda'') : \)

\[\langle (H' \ast \rho, I') : c_\rho(\lambda', \lambda''), C^{H \ast \rho, I}_1, \Theta \rangle, \langle Body' \land Body'', C^H_1, \Theta^H_1 \rangle \ldots \]

\[\langle Q^H_1 \land Body'', C^H_1, \Theta^H_1 \rangle, \langle Body'', C^I_1, \Theta^I_1 \rangle \ldots \langle Q^I_u, C^I_u, \Theta^I_u \rangle \rangle. \]
Let now $\mathcal{H}_I \{ \langle H_1, I_1 \rangle, \ldots, \langle H_m, I_m \rangle \}$ be all possible pairs of basic formulas such that for each $\langle H, I \rangle \in \mathcal{H}_I \ H \oplus I = F$. By applying the reasoning above we will conclude that for each pair $\langle H_j, I_j \rangle$ $CL(P)$ contains a clause

$$C_j \equiv \langle H'_j \ast_r I'_j \rangle : \lambda_j \leftarrow \text{Body}_j$$

that $\lambda_j \subseteq \mu$, $\langle H'_j \ast_r I'_j \rangle$ is unifiable with F and H_j is unifiable with H_j' and I_j is unifiable with I_j'. Let $q = \max \{ q_1, \ldots, q_m \}$, where $(\forall 1 \leq j \leq m) \ (C_j \in CL^q(P)$ and $C_j \in CL^q(P))$. Then $CL^{q+1}(P)$ will contain the clause

$$C^q \equiv F \Theta^q_3 \colon \lambda_1 \cdots \lambda_m \leftarrow (\text{Body}_1 \land \cdots \land \text{Body}_m) \Theta^q_3,$$

where Θ^q_3 is the max-gu of $(H_1 \ast_r I_1), \ldots, (H_m \ast_r I_m)$. Since all $\text{Body}_1, \ldots, \text{Body}_m$ have hp-refutations, so does $\text{Body}_1 \land \cdots \land \text{Body}_m$ (and therefore $\text{Body}_1 \land \cdots \land \text{Body}_m \Theta^q_3$). Now we can combine clauses C^q_1, C^q_2 and C^q_3 together into:

$$C^q \equiv F \Theta^q_3 \colon \mu \mu^\mu \lambda \leftarrow \text{Body}_1 \land \text{Body}_2 \land \text{Body}_3,$$

where Θ^q_3 is a max-gu of the heads of C^q_1, C^q_2 and C^q_3, μ, μ^μ and λ are probability ranges of C^q_1, C^q_2 and C^q_3 respectively and Body_1, Body_2 and Body_3 are their respective bodies. It is clear that (i) $\mu \mu^\mu \lambda \subseteq \mu$ and (ii) $C^q \in CL(P)$. We also know that there exists an hp-refutation $\langle \text{Body}_1 \land \text{Body}_2 \land \text{Body}_3, \Theta^q_1 \rangle, \ldots, \langle Q^B_{\Theta^q_1}, C^B_{\Theta^q_1}, \Theta^B_{\Theta^q_1} \rangle$ of $\text{Body}_1 \land \text{Body}_2 \land \text{Body}_3$. Then the following is an hp-refutation for $F : \mu$:

$$\langle F : \mu, C^q, \Theta \rangle, \langle \text{Body}_1 \land \text{Body}_2 \land \text{Body}_3, C^B_1, \Theta^B_1 \rangle, \ldots, \langle Q^B_{\Theta^B_1}, C^B_{\Theta^B_1}, \Theta^B_{\Theta^B_1} \rangle,$$

where Θ is a max-gu unifier of F and the head of C^q. This completes the proof of the completeness theorem. □

It is important to note that the above theorem only holds when P satisfies the fix-point reachability condition. Past work on annotated logics [25] make this assumption, and as this paper generalizes [25,19], it is not possible to remove this assumption.

The hp-refutation paradigm extends a proof procedure developed in Ref. [25] for probabilistic logic programs under the ignorance assumption. In particular, Items (4) and (5) in the definition of $CL(P)$ given in Definition 51 do not occur in the proof procedure in Ref. [25]. The need for these two rules derives directly from the use of arbitrary p-strategies. This causes the proof procedure of Ref. [25] to be much simpler (and easier to implement) than that given in this paper.

5.3. HR_p refutations for HP-programs

Note that the hp-refutation procedure assumes that $CL(P)$ has been constructed prior to processing a query. In practice, this is an extremely expensive process, both in terms of time taken to construct $CL(P)$, and in terms of space requirements. Even for propositional programs it is easy to see that $CL(P)$ can contain exponentially many clauses. Thus, constructing $CL(P)$ before construction of a refutation is attempted, is often completely infeasible in practice. To avoid this a priori computation of $CL(P)$, we provide a new procedure that allows that part of $CL(P)$ needed in a refutation to be dynamically computed on an “as-needed” basis. The HR_p
refutation framework described here avoids the construction of \(CL(P) \). In the definition below, anytime a formula \((F \ast \rho, G)\) is written it is assumed that \(\ast \in \{\land, \lor\} \) and if \(\ast = \land \) then \(\rho \in \mathcal{C}\mathcal{O}\mathcal{N}\) and if \(\ast = \lor \) then \(\rho \in \mathcal{D}\mathcal{J}\mathcal{J} \).

Definition 61. Let \(P \) be an hp-program. We define a formal system \(HR_p \) as follows:

1. Axioms of \(HR_p \) include all clauses from \(P \) and all clauses of the form:
 \[A : [0, 1] \leftarrow \neg \text{ where } A \in B_L. \]
2. *Inference Rules.* There are 5 inference rule schemes in \(HR_p \).
 - **A – Composition:** Let \(A_1, A_2 \in B_L \)
 \[
 \frac{A_1 : \mu_1 \leftarrow Body_1 \quad A_2 : \mu_2 \leftarrow Body_2}{(A_1 \ast \rho A_2) : c_\rho(\mu_1, \mu_2) \leftarrow Body_1 \land Body_2}.
 \]
 - **F – Composition:** Let \(A_1, \ldots, A_k, B_1, \ldots, B_k \in B_L \)
 \[
 \frac{A_1 \ast \rho \cdots \ast \rho A_k : \mu_1 \leftarrow Body_1 \quad (B_1 \ast \rho \cdots \ast \rho B_1) : \mu_2 \leftarrow Body_2}{(A_1 \ast \rho \cdots \ast \rho A_k \ast \rho B_1 \ast \rho \cdots \ast \rho B_1) : c_\rho(\mu_1, \mu_2) \leftarrow Body_1 \land Body_2}.
 \]
 - **Decomposition:**
 \[
 \begin{align*}
 L – Decomposition & \quad R – Decomposition \\
 (F \ast \rho, G) : \mu \leftarrow Body & \quad (F \ast \rho, G) : \mu \leftarrow Body \\
 F : md_\rho(\mu) \leftarrow Body & \quad G : md_\rho(\mu) \leftarrow Body
 \end{align*}
 \]
 - **Clarification:**
 \[
 \frac{F_1 : \mu_1 \leftarrow Body_1 \quad F_2 : \mu_2 \leftarrow Body_2}{(F_1 : \mu_1 \quad \mu_2 \leftarrow Body_1 \land Body_2) \Theta}
 \]
 if \(F_1 \) and \(F_2 \) are unfiable via max-gu \(\Theta \)
 - **Exchange:** Let \(A_1, \ldots, A_k \in B_L \), and let \(B_1, \ldots, B_k \) be a **permutation** of \(A_1, \ldots, A_k \)
 \[
 \frac{A_1 \ast \rho \cdots \ast \rho A_k : \mu \leftarrow Body \quad (B_1 \ast \rho \cdots \ast \rho B_k) : \mu \leftarrow Body}{(B_1 \ast \rho \cdots \ast \rho B_k) : \mu \leftarrow Body}
 \]

3. A finite sequence \(C_1 \ldots C_r \) of hp-clauses is called an **HR_p-derivation** iff each clause \(C_j \) is either an axiom or can be constructed from one or more previous of \(C_1 \ldots C_{j-1} \) by applying one of the inference rule schemes to them. We call clause \(C_r \) the result of the \(HR_p \)-derivation.

4. An hp-clause \(C \) is derivable in \(HR_p \) iff there exists such an **HR_p-derivation** \(C_1, \ldots C_r \) that \(C_r = C \). We denote it by \(P \vdash C \).

The following theorems tell us that the system of axioms and inference rules describing \(HR_p \) precisely captures the closure, \(CL(P) \), of \(P \).

Theorem 62 (Soundness of \(HR_p \) w.r.t \(CL(P)(P) \)). For each hp-clause \(C \), if \(P \vdash C \) then \(C \in CL(P) \).

Proof. We notice first that the set of all axioms of \(HR_p \) is exactly \(P \cup REDUN(P) = CL^0(P) \). Next we notice that the first 4 inference rule schemes precisely match the 4 rules used to add new hp-rules to \(CL(P) \). Finally, the last inference rule scheme (Exchange) does not create a new basic formula, it just rearranges the order of atoms in it. \(\square \)
Theorem 63 (Completeness of HR_P w.r.t. $CL(P)$). For each hp-clause C, if $C \in CL(P)$ then $P \vdash C$.

Proof. If $C \in CL(P) \cap$ then there exists such an integer n that $CCL^n(P) \cap$ and $C \in CL^{n-1}(P)$. We prove the theorem using induction on n.

In the base case, $n = 0$ and we know that $CL^0(P) = P \cup REDUN(P)$. As it was noticed in the previous theorem, this set is exactly the set of all axioms of HR_P, therefore, C is an axiom of HR_P.

On the induction step, we consider a clause C added to $CL^n(P)$. By Definition 26 C was added to $CL^n(P)$ by one of four rules. Since these rules match exactly the four inference rules of HR_P and by induction hypothesis for every clause $C' \in CL^{n-1}(P)$ we know that $P \vdash_{HR_P} C'$, we can obtain the proof of C in HR_P by application of a matching rule to the same clauses. □

Definition 64 (HR_P-refutations). Let $Q \equiv \exists (F_1 : \mu_1 \land \cdots \land F_n : \mu_n)$ be an initial query, and P an hp-program. An hp-refutation via HR_P of Q from P is a finite sequence $(Q_1, C_1, \Theta_1) \cdots (Q_r, C_r, \Theta_r)$ where,

- $Q_i = Q$
- Q_i is empty
- $P \vdash C_i$ for all $1 \leq i \leq r$
- Q_{i+1} is an hp-resolvent of Q_i and C_i with max-gu Θ_i, for all $1 \leq i < r$.

The following results tell us that hp-refutations using HR_P are both sound and complete and, thus, constitute the first sound and complete proof procedure for probabilistic logic programs (including those in Ref. [26]) that do not require the construction of a program closure. Here is a simple example of HR_P-refutations.

Example 65 (HR_P refutations). Consider the HP-program P given by:

- $a : [1,1] \leftarrow (b \land_{ind} c \land_{ind} d) : [0.25,1] \land f : [0.5,0.9]$.
- $e : [1,1] \leftarrow (b \land_{ind} c \land_{ind} d) : [0.25,1] \land f : [0.5,1]$.
- $(f \land_{ind} g) : [0.7,0.8] \leftarrow b : [1,1]$.
- $(f \lor_{inf} g) : [0.7,0.9] \leftarrow \neg$.
- $b : [1,1] \leftarrow (c \land_{ind} d) : [0.3,1]$.
- $c : [0.6,1] \leftarrow d : [0.5,1]$.

A refutation of the query $Q = a[0.9,1] \land e : [1,1]$ is given by:

- $Q_1 = Q = a[0.9,1] \land e : [1,1]$.
- $P \vdash C_1 = a : [1,1] \leftarrow (b \land_{ind} c \land_{ind} d) : [0.25,1] \land f : [0.5,0.9]$.
- $Q_2 = (b \land_{ind} c \land_{ind} d) : [0.25,1] \land f : [0.5,0.9] \land e : [1,1]$.
- $P \vdash C_2 = (b \land_{ind} c \land_{ind} d) : [0.3,1] \leftarrow (c \land_{ind} d) : [0.3,1]$.
- $Q_3 = (c \land_{ind} d) : [0.3,1] \land f : [0.5,0.9] \land e : [1,1]$.
- $P \vdash C_3 = (c \land_{ind} d) : [0.3,1]$.
- $Q_4 = f : [0.5,0.9] \land e : [1,1]$.
- $P \vdash C_4 = f : [0.7,0.9] \leftarrow b : [1,1]$.
- $Q_5 = b : [1,1] \land e : [1,1]$.
- $P \vdash C_5 = b : [1,1] \leftarrow (c \land_{ind} d) : [0.3,1]$.
- $Q_6 = (c \land_{ind} d) : [0.3,1] \land e : [1,1]$.
- $P \vdash C_6 = (c \land_{ind} d) : [0.3,1]$.
\[Q_7 = e : [1, 1] \cap \]
\[P \supset C_7 = e : [1, 1] \leftarrow (b \land \text{ind} c \land \text{ind} d) : [0.25, 1] \land f : [0.5, 0.1]. \]
\[Q_8 = (b \land \text{ind} c \land \text{ind} d) : [0.25, 1] \land f : [0.5, 0.1]. \]
\[P \vdash C_8 = (b \land \text{ind} c \land \text{ind} d) : [0.3, 1] \leftarrow (c \land \text{ind} d) : [0.3, 1]. \]
\[Q_9 = (c \land \text{ind} d) : [0.3, 1] \land f : [0.5, 0.1]. \]
\[P \vdash C_9 = (c \land \text{ind} d) : [0.3, 1] \leftarrow \]
\[Q_{10} = f : [0.5, 0.1]. \]
\[P \vdash C_{10f} : [0.7, 0.9] \leftarrow b : [1, 1]. \]
\[Q_{11} = b : [1, 1], \]
\[P \supset C_{11} = b : [1, 1] \leftarrow (c \land \text{ind} d) : [0.3, 1]. \]
\[Q_{12} = (c \land \text{ind} d) : [0.3, 1]. \]
\[P \vdash C_{12} = (c \land \text{ind} d) : [0.3, 1] \leftarrow \]
\[Q_{13} = \square. \]

Here is another example of an \(\text{HR}_p \) refutation, for a program that contains variable annotations.

Example 66. Let us consider the program from Example 36. For convenience we repeat \(P \) below:
\[
\begin{align*}
 & s(a) \land \text{ind} s(b) \land \text{ind} s(c) : [0.4, 0.6] \leftarrow. \\
 & s(a) \land \text{inc} s(b) : [0, 0.5] \leftarrow . \\
 & s(a) \land \text{inc} s(c) : \left[\min\left(\frac{V}{2} + 0.1, \frac{W}{2}\right), \frac{W}{2} \right] \leftarrow s(c) : [V, W] \\
 & s(c) : [0, 0.3] \leftarrow .
\end{align*}
\]

Let us now look at how the refutation of the query \(Q = (s(a) \land \text{inc} s(c)) : [0.15, 0.15] \cap \) will proceed:
\[
\begin{align*}
 & Q_1 = Q' = (s(a) \land \text{inc} s(c)) : [0.15, 0.15] \cap \\
 & P \vdash C_1 = s(a) \land \text{inc} s(c) : [0.15, 0.15] \leftarrow s(c) : [0.15, 0.3] \cap \\
 & Q_2 = s(c) : [0.15, 0.3] \cap \\
 & P \vdash C_2 = s(c) : [0.15, 0.3] \leftarrow s(c) : [0.1, 0.3] \cap \\
 & Q_3 = s(c) : [0.1, 0.3] \cap \\
 & P \vdash C_3 = s(c) : [0.1, 0.3] \leftarrow s(c) : [0, 0.6] \cap \\
 & Q_4 = s(c) : [0, 0.6] \cap \\
 & P \supset C_4 = s(c) : [0, 0.3] \leftarrow. \\
 & Q_5 = \square.
\end{align*}
\]

Here is how the derivations of \(C_1, C_2 \) and \(C_3 \) are done:
- Rule \(C_1 = s(a) \land \text{inc} s(c) : [0.15, 0.15] \leftarrow s(c) : [0.15, 0.3] \) is a ground instance of the rule
\[
s(a) \land \text{inc} s(c) : \left[\min\left(\frac{V}{2} + 0.1, \frac{W}{2}\right), \frac{W}{2} \right] \leftarrow s(c) : [V, W] \cap
\]
with \(V = 0.15 \) and \(W = 0.3 \left(\min\left(\frac{0.15}{2} + 0.1, \frac{0.3}{2}\right) = \frac{0.3}{2} = 0.15\right). \)
- \(C_2 = s(c) : [0.15, 0.3] \leftarrow s(c) : [0.1, 0.3] \cap \) is derived as follows:
 \(C_2' = s(a) \land \text{inc} s(c) : [0.15, 0.15] \leftarrow s(c) : [0.1, 0.3] \) is a ground instance of the rule
\[
s(a) \land \text{inc} s(c) : \left[\min\left(\frac{V}{2} + 0.1, \frac{W}{2}\right), \frac{W}{2} \right] \leftarrow s(c) : [V, W] \cap
\]
with \(V = 0.15 \) and \(W = 0.3 \). Applying the inference rule of \(R\text{-Decomposition} \) to \(C_2' \)
we obtain \(C_2'' = s(c) : [0.15, 1] \leftarrow s(c) : [0.1, 0.3] \). Combining \(C_2'' \) with the rule
$C_2^c = s(c) : [0, 0.3] \leftarrow . \in P$ using the inference rule of Clarification we obtain C_2 as $[0, 0.3] \cap [0.15, 1] = [0.15, 0.3]$.

- The derivation of $C_3 = s(c) : [0.1, 0.3] \leftarrow s(c) : [0, 0.6]$ is similar to the derivation of C_2:

\[C_3^c = s(a) \land_{inc} s(c) : [0.1, 0.3] \leftarrow s(c) : [0, 0.6] \] is a ground instance of the rule

\[s(a) \land_{inc} s(c) : \left[\min \left(\frac{V}{2} + 0.1, \frac{W}{2} \right) \right] \leftarrow s(c) : [V, W], \]

where $V = 0$ and $W = 0.6$ ($\min\left(\frac{0}{2} + 0.1, \frac{0.6}{2} \right) = 0 + 0.1 = 0.1$). Applying the inference rule of R-Decomposition to C_3^c we obtain the rule $C_3^\prime = s(c) : [0.1, 1] \leftarrow \cap s(c) : [0, 0.6]$. Combining C_3^\prime with $C_3 = s(c) : [0, 0.3] \leftarrow \in P$ using the inference rule of Clarification we obtain C_3 as $[0, 0.3] \cap [0.1, 1] = [0.1, 0.3]$.

The soundness and completeness of HR_P-refutations follow immediately from the soundness and completeness theorems for HP-refutation and soundness and completeness theorems for HR_P w.r.t. $CL(P)$.

Theorem 67 (Soundness of HR_P-Refutations). Let P be an hp-program, and Q be an initial query. If there exists an hp-refutation via HR_P of $Q \equiv \exists (F_1 : \mu_1 \land \cdots \land F_n : \mu_n) \land$ from P with the answer substitution Θ then $P \models \forall ((F_1 : \mu_1 \land \cdots \land F_n : \mu_n) \Theta)$.

Proof. Suppose $\langle Q_1, C_1, \Theta_1 \rangle, \ldots, \langle Q_r, C_r, \Theta_r \rangle \cap$ is an HR_P refutation of Q. Let $C = \{ C_i | C_i \not\in P \}$. By bullet (3) in the definition of HR_P-refutations, it follows that $P \models C_i$ for all $C_i \in C$. By Theorem 62, we know each such C_i is in $CL(P)$, and hence, $\langle Q_1, C_1, \Theta_1 \rangle, \ldots, \langle Q_r, C_r, \Theta_r \rangle$ is an hp-refutation. By the soundness of hp-refutation (Theorem 57), the result follows. □

Theorem 68 (Completeness of HR_P-Refutations). Let P be a consistent hp-program which satisfies the fixpoint reachability conditions and $Q_0 \cap$ be a query. Then, if $P \models \exists (Q)$ then there exists an hp-refutation of $Q_0 \cap$ from P via HR_P.

Proof. By the completeness of hp-refutations (Theorem 60), it follows that there exists an hp-refutation of Q from P. Suppose $\langle Q_1, C_1, \Theta_1 \rangle, \ldots, \langle Q_r, C_r, \Theta_r \rangle$ is such an hp-refutation. Then, by definition of hp-refutations, each C_i is in $CL(P)$. But then, by Theorem 63, each C_i is either in P, or is such that $P \models C_i$, and hence, $\langle Q_1, C_1, \Theta_1 \rangle, \ldots, \langle Q_r, C_r, \Theta_r \rangle$ is also an HR_P refutation. □

Before concluding this section, we briefly reiterate that HR_P refutations avoid compile-time construction of $CL(P) \cap$ an expensive and time/space consuming process.

5.4. B-Cache

We are now ready to study efficient tabled query processing techniques for HPPs. In this section, we will first define caches and bounded caches. Intuitively, a cache contains formulas with established probability ranges. As resolution based processing of a query occurs, we will gain information about certain basic formulas. These will need to be “added” to the cache. For this purpose, we will define in this section,
a family of *updating strategies* and introduce several example strategies. Later, in Section 5.5, we will show how to use these tables and table update strategies hand in hand with the resolution based proof procedure.

5.4.1. Definitions

Definition 69. A cache is a finite set of annotated basic formulas. If \(b \) is an integer, a bounded \(b \)-cache is a finite set of annotated basic formulas containing at most \(b \) atoms each.

Basically a \(b \)-cache is a collection of hybrid probabilistic basic formulas, where each formula’s length is bounded by a constant \(b \). Note that a \(b \)-cache may be considered to be a hybrid probabilistic logic program all of whose clauses are “facts”.

Definition 70. Let \(T \) be a \(b \)-cache, \(F \) be a basic formula (not necessarily ground). By \(T[F] \) we denote the set of all such pairs \(\{ \langle \mu, \Theta \rangle \} \), where \(\Theta \) is a substitution for \(F \) and \(\mu \subseteq [0, 1] \) is the smallest interval such that \(T \models \forall (F \Theta : \mu) \).

Intuitively \(T[F] \) represents what the \(b \)-cache \(T \) “thinks” about the possible probability ranges of instances of \(F \). Note that if \(F \) is ground, then \(\{ \mu \langle \mu, \Theta \rangle \in T[F] \} \) is a singleton set. Without loss of generality we will abuse notation in this case and write \(T[F] = \mu \).

5.4.2. B-Cache Update strategies

We fix an integer \(b > 0 \), a logical language \(L \) as defined in Lloyd [24], and a set \(\mathcal{S} \) of \(p \)-strategies. Let \(\mathcal{T}[b, L, \mathcal{S}] \) denote the set of all possible \(b \)-caches over \(bf_{b}(B_{L}) \). Whenever \(b, L \) and \(\mathcal{S} \) are clear from the context we may use \(\mathcal{T} \) instead of \(\mathcal{T}[b, L, \mathcal{S}] \).

We are interested in developing a resolution-based query processing procedure that is irredudant in the sense that it does not “re-infer” facts that it has already inferred. In the case of classical logic programs, caches and their utilization are relatively simple: caches contain facts; when performing resolution on an atom \(A \) in the query, we check to see if \(A \) is subsumed by the cache (Tamaki and Sato [36]). An alternative approach is due to Warren et al. who check the cache for variants of \(A \) [10,8]. However, in the case of probabilistic logic programs, \(b \)-caches are somewhat more complicated.

As the resolution triggered by a query proceeds, more and more information is being established and any time new information is obtained, we want to insert it into our \(b \)-ache. However simple addition of a new basic formula to \(T \) is not enough, because as we add new probabilistic information – we might be able to update the probability intervals for some other basic formulas already in \(T \). Also, the way such an update can be defined is not unique – in fact, there is a variety of possible “intuitive” updates.

Rather than defining a specific update procedure, we first proceed by defining a notion of an *update strategy* – a function that takes a \(b \)-cache and a basic formula as input, and returns a new “improved” \(b \)-cache. We will establish a number of basic properties of any update strategy. Later we will define a number of specific update strategies that are “natural” or “intuitive”.
In the definition below $CN(S)$, where S is a set of hp-formulas denotes the set of all logical consequences of S.

Definition 71. A function $f : \mathcal{T} \times bf_{\mathcal{B}_L} \times C[0,1] \rightarrow \mathcal{T}$ is called a b-cache update strategy iff it satisfies the following conditions:
1. $$(\forall T \in \mathcal{T})(\forall F \in bf_{\mathcal{B}_L})(\forall \mu \in C[0,1])CN(T) \subseteq CN(f(T,F,\mu)) \setminus CN(T \cup \{F : \mu\}).$$
2. $$(\forall T \in \mathcal{T})(\forall F \in bf_{\mathcal{B}_L})(\forall \mu, v \in C[0,1])f(f(T,F,\mu), G, v) \setminus f(f(T,G,v), F, \mu).$$
3. $$(\forall T \in \mathcal{T})(\forall F \in bf_{\mathcal{B}_L})(\forall \mu \in C[0,1])f(f(T,F,\mu), F, \mu) = f(T,F,\mu).$$

We will use the \uplus operator to denote b-cache update functions. When more than one update function is considered, we will use the \uplus_f notation and annotate F with μ. (So, $f(T,F,\mu) = T \uplus_f F : \mu$).

Clause (1) in the above definition says that an update of a b-cache (i) should not decrease the amount of information that is contained in, or that can be deduced from the b-cache, but at the same time (ii) may not increase the content of the table “unreasonably”. Notice that b-caches, by their very definition, automatically pose certain restrictions on how complete the update is – if the length of an updating formula is greater than b – the formula itself cannot be stored in the b-cache.

Clause (2) of the above definition says that the order in which we apply the update operator f should not matter. Updating a table T with $F : \mu$ first and then $G : v$ should be the same as doing it the other way around.

Finally, Clause (3) states that “redundant” updates should not change the b-cache.

Definition 72. Let P be an hp-program and T be a b-cache. We say that T is sound w.r.t. $P (P \models T)$ iff for each formula $F : \mu \in T$, $P \models F : \mu$.

Lemma 73 (soundness of b-cache update). Let P be an hp-program, T be a b-cache and F be a basic formula. Let f be any b-cache update strategy. Then if $P \models T$ and $P \models F : \mu$ then also $P \models T \uplus_f \{F : \mu\}$.

Proof. Let $F^\uplus_f : \mu' \in T \uplus_f F : \mu$. Two cases are possible.
1. $F^\uplus_f : \mu' \in T$. In this case, since $P \models T$, it has to be $P \models F^\uplus_f : \mu'$.
2. $F^\uplus_f : \mu' \in T$. We know that $T \uplus_f F : \mu \models F^\uplus_f : \mu'$, hence $F^\uplus_f : \mu' \in CN(T \uplus_f F : \mu)$. We also know that $CN(T \uplus_f F : \mu) \subseteq CN(T \cup \{F : \mu\})$, therefore, we can obtain that $T \cup \{F : \mu\} \models F^\uplus_f : \mu'$. But, $P \models T$ and $P \models F : \mu$ implies that $P \models T \cup \{F : \mu\}$. Combining the obtained results together we get $P \models F^\uplus_f : \mu'$. □

In order to simplify notation we define an update of a b-cache with a finite set of formulas as follows:
Definition 74. Let $S = \{F_1 : \mu_1, \ldots, F_n : \mu_n\}$ be a finite set of annotated basic formulas and u a b-cache update strategy. We define
$$T \uplus_u S = (\ldots (T \uplus_u F_1 : \mu) \uplus_u \ldots) \uplus_u F_n : \mu_n).$$

The order in which we write F_is is irrelevant as by the second property of the b-cache update strategy (commutativity), the result of updating a b-cache with a sequence of basic formulas does not depend on the order of formulas. (Second property establishes it for a sequence of 2 basic formulas. It is easily extended onto the case of sequences of 3 or more formulas).

As the reader may notice, there are numerous functions that satisfy the definition of an update strategy. Some of these are intuitively “more complete” than others. The following definition captures this informal notion.

Definition 75. Let u and w be two b-cache update strategies. We say that u is more complete than w (denoted $u \succeq w$) if $(\forall T \in \mathcal{T})(\forall F \in b_{f_j}(B_L))(\forall \mu \in \mathcal{C}[0, 1]) \cap CN(T \uplus_w F : \mu) \subseteq CN(T \uplus_u F : \mu).

Two update strategies u and w are equivalent if both $u \succeq w$ and $w \succeq u$.

An update strategy u is maximally complete if $(\forall w)(u \succeq w)$.

As we have pointed out earlier, Clause (3) of the definition of a b-cache update strategy postulates that no change in b-cache should occur when an update is repeated. However, this is not the only possible redundant update. The following proposition tells us how b-cache update strategies handle some other redundant updates:

Proposition 76. For any b-cache T, and b-cache update strategy f, any basic formula F and any interval $\mu \in \mathcal{C}[0, 1] \cap$ the following holds: if $T \models F : \mu$ then $CN(T) = \cap CN(T \uplus_f F : \mu)$.

Proof. Since $T \models F : \mu$, $CN(T) = CN(T \cup \{F : \mu\})$. Since $CN(T \uplus_f F : \mu) \subseteq CN(T \uplus \{F : \mu\}) \cap$ and $CN(T) \subseteq CN(T \uplus_f F : \mu)$ we obtain the desired equality. □

5.4.3. Examples of update strategies

In this section, we will provide examples of a number of different update strategies, and show how these strategies are related to one another w.r.t. the “more complete” relationship.

The first kind of update strategy we consider is a relatively simple “atomic update”.

Definition 77 (Atomic Updates). Let T be a b-cache and A be an atomic (not necessarily ground) formula. An atomic update of T by $A : \mu$, denoted $T \uplus_{at} \{A : \mu\}$ is defined as follows:
1. If T has no atomic formulas that unify with $A : \mu$, then $T \uplus_{at} \{A : \mu\} = T \cup \{A : \mu \leftarrow\}$
2. Otherwise we proceed in a number of steps:
 (a) If there is a formula $A : v$ in T, we replace it with $A : \mu \leftarrow v$.
 (b) For all B, such that $B : v \in T$ and $A \Theta = B$ for some substitution Θ, we replace $B : v$ with $B : \mu$.

(c) Let $B = \{ v \mid B : v \in T \land (\exists \Theta)B\Theta = A \}$. We add $A : \mu \cap (\cap \in \mathcal{B} \{v\})$ to T.

(d) For each B such that $B : v \in T$ and $A\Theta_1 = B\Theta_2$ for some substitutions Θ_1 and Θ_2 we add $A\Theta_1 : \mu \cap v$ to T.

(e) If no clause for A had been added to T on previous steps, we add $A : \mu$ to T.

An atomic update is not a “complete” b-cache update per se, but it will be at the core of a number of updates that we consider further. Informally, we can describe this process as follows: we check to see if T contains any formulas unifiable with A. If not, we just add $A : \mu$ to T. Otherwise, we look for formulas in T which have probabilities that can affect the probability of A, or vice versa (see example). Then we update probability ranges for all such formulas.

Example 78. Suppose our b-cache $T = \{p(a, Y) : [0.4, 0.7], p(b, Y) : [0.6, 0.9], p(X, a) : [0.5, 1]\}$. Below we show the results of $T \uplus_{at} A$ for a number of given atoms (we consider variables in all the formulas to be standardized apart).

<table>
<thead>
<tr>
<th>A</th>
<th>$T \uplus_{at} A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(X, Y) : [0.5, 0.95] \cap$</td>
<td>${p(a, Y) : [0.5, 0.7], p(b, Y) : [0.6, 0.9], p(X, a) : [0.5, 0.95]}$</td>
</tr>
<tr>
<td>$p(a, a) : [0.3, 0.6] \cap$</td>
<td>${p(a, Y) : [0.4, 0.7], p(b, Y) : [0.6, 0.9], p(X, a) : [0.3, 0.6], p(a, a) : [0.4, 0.6]}$</td>
</tr>
<tr>
<td>$p(b, Z) : [0.4, 0.8] \cap$</td>
<td>${p(a, Y) : [0.4, 0.7], p(b, Y) : [0.6, 0.8], p(X, a) : [0.4, 0.8], p(b, a) : [0.5, 0.8]}$</td>
</tr>
</tbody>
</table>

Atomic updates do not update annotated basic formulas that are not atomic, and hence the cache that results from an atomic update may not be maximally complete, i.e. it may be the case that $T \cup \{p : \mu\} \models G : \mu'$, but $(T \uplus_{at} F : \mu) \models G : \mu''$ for a non-atomic G. An alternative update strategy that propagates such updates is given below.

Definition 79 (Propagated Atomic Update – pat). Let T be a b-cache, F be a basic formula. A Propagated Atomic Update strategy (pat) is defined as follows:

1. F is atomic. $T \uplus_{pat} F : \mu = T \uplus_{at} F : \mu$.
2. Let $F = (F_1 \ast_p \cdots \ast_p F_m)$. $T \uplus_{pat} F : \mu = (\ldots (T \uplus_{at} F_i : md_p(\mu)) \uplus_{at} \ldots) \uplus_{at} F_m : md_p(\mu))$.

The Propagated Atomic Update strategy extends atomic updates onto complex formulas.

Among the advantages of this strategy are its relative simplicity and the fact that it works for any bound b on a b-cache. However it is a rather weak strategy in the sense that because every updating formula gets broken into the atoms that constitute it, some information about the probability ranges of associated formulas is lost, i.e. it is not maximally complete. The following example demonstrates this fact.

Example 80. Let $T = \emptyset$ and $F = (p(a) \land_{inc} q(a)) : [0.3, 0.6]$. By definition $T' = T \uplus_{pat} F = \{q(a) : [0.3, 1], p(a) : [0.3, 1]\}$. Now we have $T'[p(a) \land_{inc} q(a)] \cap \{0.3 \ast \cap 0.3, 1\} = [0.09, 1] \supseteq [0.3, 0.6]$. However, if the bound b is greater than 1,
we could try to store F itself in T', and preserve information about its probability range.

The above example suggests how the PAT strategy can be modified to be able to be more complete.

Definition 81 (Elementary b-cache update). Let T be a b-cache, F be a basic formula. We define an elementary b-cache update strategy (denoted \cup_{eb} as follows):

1. **Case 1.** $|F| = 1$. (F is atomic). $T \cup_{eb} \{ F : \mu \} = T \cup_{at} \{ F : \mu \}$.

2. **Case 2.** $1 < |F| \leq b$. Let $F = F_1 \ast \cdots \ast F_m$. We proceed in a number of steps.

 (a) Let $T' = T \cup_{pat} F : \mu$.

 (b) Let $\{ \langle v_1, \Theta_1 \rangle, \ldots, \langle v_k, \Theta_k \rangle \} \subseteq T'[F]$ be all pairs from $T'[F]$, s.t., $v \not\subseteq \mu$. We proceed in steps. Let $T^0 = T'$. Consider $T^i (0 \leq i < k)$ constructed. We now construct T^{i+1}.
 - If $F\Theta_{i+1} : v \in T^i$, we replace it with $F : \mu \subseteq v$ and declare the new b-cache to be the result of an update operation, i.e., $T^{i+1} = (T^i - \{ F\Theta_{i+1} : v \}) \cup \{ F\Theta_{i+1} : \mu \subseteq v \}$.
 - If $F\Theta_{i+1} : v \in T^i$, we declare $T^{i+1} = T^i \cup \{ F\Theta_{i+1} : \mu \subseteq v \}$.
 (c) Now we declare $T \cup_{eb} F : \mu = T^k$.

3. **Case 3.** $|F| > b$. Let $F = F_1 \ast \cdots \ast F_m$. Let B_1, B_2, \ldots, B_k be all subformulas of F of size b. Then $T \cup_{eb} \{ F : \mu \} = (T \cup_{pat} F) \cup_{eb} B_1 : \mu d_1(\mu) \cup_{eb} \cdots \cup_{eb} B_k : \mu d_k(\mu)$.

It is easy to notice that

Proposition 82. (i) $(\forall b > 0)eb \supseteq pat$ (ii) $e1 \equiv pat$.

Proof. (i) Let F be a basic formula and $\mu \in C[0, 1]$. Three cases are possible:

- F is atomic. In this case by definition of eb $T \cup_{eb} F : \mu = \cap T \cup_{at} F : \mu = \cap T \cup_{pat} F : \mu$.
- $1 < |F| \leq b$. In this case $T \cup_{eb} F : \mu$ is computed starting from $T' = T \cup_{pat} F : \mu$ via a series of iterations which modify/add information about formulas unifiable with F. This means that for all basic formulas G not unifiable with F and for all intervals $v \in C[0, 1]$, if $G : v \in CN(T')$ (i.e., $T' \models G : v$) then $G : v \in CN(T \cup_{eb} F : \mu) \cap (i.e., T \cup_{eb} F : \mu \models G : v)$.

Let now H be a basic formula unifiable with F and let $T' \models H : v$. This means that there exists a substitution Θ such that $\langle v, \Theta \rangle \in T'[F]$ and $H = F\Theta$. But then, by definition of elementary b-cache update strategy, $T \cup_{eb} F : \mu$ will contain formula $F\Theta : \mu \subseteq v = H : \mu \subseteq v$. Clearly, $\mu \subseteq v$ and therefore, $\{ H : \mu \subseteq v \} \cap \models H : v$, i.e., $T \cup_{eb} F : \mu \models H : v$.

From the above we imply that $CN(T \cup_{pat} F : \mu) \subseteq CN(T \cup_{eb} F : \mu)$.

- $|F| > b$.

Let S be the set of all subformulas of F of size b. By definition of the elementary b-cache update we get:

$$T \cup_{eb} F : \mu = (T \cup_{pat} F : \mu) \cup_{eb} S.$$

But by definition of an update strategy we get $CN(T \cup_{pat} F : \mu) \subseteq CN((T \cup_{pat} F : \mu) \cup_{eb} S = CN(S).$
(ii) To prove that $e_1 \equiv pat$ we first note that for any formula F one of two possible cases holds:

1. F is atomic. In this case $T \models e_1 F : \mu = T \models pat F : \mu$ by definition.
2. F is not atomic. In this case $|F| > 1$. Let $F = A_1 \ast \ldots \ast A_k$. By definition of elementary b-cache update $T \models e_1 F : \mu = (\ldots (T \models pat F : \mu) \models e_1 A_1 : md_\rho(\mu) \ldots \models e_1 A_k : md_\rho(\mu)) \models (\text{the latter equality holds, since all } A_i \text{ are atomic}).$ Since $(\forall 1 \leq i \leq k)F : \mu \models A_i : md_\rho(\mu)$ we conclude that $CN((T \models pat F : \mu) \models A_1 : md_\rho(\mu)) \subseteq CN(T \models pat F : \mu).$ On the other hand, by definition of an update strategy, we know that the reverse $CN((T \models pat F : \mu) \models A_1 : md_\rho(\mu)) \supseteq CN(T \models pat F : \mu)$ is true. Therefore $CN((T \models pat F : \mu) \models A_1 : md_\rho(\mu)) = CN(T \models pat F : \mu)$ which implies that

$$(\ldots (T \models pat F : \mu) \models A_1 : md_\rho(\mu) \ldots \models A_k : md_\rho(\mu)) \equiv T \models pat F : \mu.$$

Elementary updates allow us to capture more information about the updating formula, but these updates still allow for the loss of information as is shown in the following example.

Example 83. Let $T = \emptyset$ and $F = (A \land_{inc} B \land_{inc} C) : [0.4, 0.6] \cap (A, B, C \text{ are ground atoms})$. Let $T' = T \models e_3 F$. By definition above $T' \models (A \land_{inc} B \land_{inc} C) : \emptyset \models (A, B : [0.4, 1], C : [0.4, 1])$. We notice that $T'[(A \land_{inc} B)] = [0.16, 1]$. However, it is clear that $F \models (A \land_{inc} B) : [0.4, 1]$.

The following strategy is more complete than elementary b-cache updates, but is also more difficult to compute.

Definition 84 (Full b-cache update). Let T be a b-cache, F be a basic formula. We define a full b-cache update strategy (denoted $\models th$) as follows:

1. **Case 1.** $|F| = 1$ (i.e., F is atomic). $T \models th F : \mu = T \models th F : \mu$.
2. **Case 2.** Let $F \equiv F_1 \ast \ldots \ast F_m, m \leq b$. Let B_1, \ldots, B_k be all the subformulas of F of size $< m$. We declare $T \models th F : \mu = T \models th F : \mu \models ch B_1 : md_\rho(\mu) \models ch \ldots \models ch B_k : md_\rho(\mu)$.
3. **Case 3.** $|F| > b$. Let $F = F_1 \ast \ldots \ast F_m$. Let B_1, B_2, \ldots, B_k be all subformulas of F of size $\leq b$. Then $T \models th F : \mu = (T \models pat F) \models ch B_1 : md_\rho(\mu) \models ch \ldots \models ch B_k : md_\rho(\mu)$.

The following result tells us that the full b-cache update strategy is more complete than the elementary b-cache update strategy.

Proposition 85. (i) $(\forall b > 0)fb \supseteq eb$ (ii) $f_1 \equiv e_1 \equiv pat$ update strategy.

Proof. (i) Let $b > 0$, $T \in \mathcal{F}$, $F \in bf_{\rho'}(B_k)$ and $\mu \in C[0, 1]$. Three cases are possible:

1. $|F| = 1$ (i.e., F is atomic). In this case $T \models th F : \mu = T \models th F : \mu = T \models ch F : \mu$.
2. $1 < |F| \leq b$. Let $B_1 \ldots B_k$ be all proper subformulas of F. Then $T \models th F : \mu = T \models ch F : \mu \models ch B_1 : md_\rho(\mu) \models ch \ldots \models ch B_k : md_\rho(\mu)$. Then, by definition of an update strategy, $CN(T \models ch F : \mu) \subseteq CN(T \models th F : \mu)$.
3. $|F| > b$. Let $S_B = \{B_1 \ldots B_k\}$ be all subformulas of F; let $S_G = \{G_1, \ldots, G_s\}$ be all subformulas of F of size strictly less than b and $S_H = \{H_1, \ldots, H_r\}$ be all subformulas of F of size of exactly b. Clearly $S_B = S_H \cup S_G$.

Using the commutativity property of b-cache update strategies we can obtain the following:

$$T \cup_{eb} F : \mu = \left((T \cup_{pat} F : \mu) \cup_{eb} B_1 : md_p(\mu) \cup_{eb} \ldots \cup_{eb} B_k : md_p(\mu) \right) \cap (T \cup_{pat} F) \cup_{eb} S_H \cup_{eb} S_G = T \cup_{eb} F : \mu \cup_{eb} S_G.$$

From this we immediately conclude $CN(T \cup_{eb} F : \mu) \subseteq CN(T \cup_{eb} F : \mu)$.

(ii) Same as the proof of part (ii) of Proposition 82.

As the reader may easily notice from the definitions, implementing atomic updates is easy, however, PAT is more efficient than the elementary b-cache strategies eb, which get less efficient as b gets larger – and finally, implementing the full b-cache strategies is hardest of all, with the efficiency of these updates degrading as b increases. This will become apparent from the examples shown in the next section.

5.5. Proof procedure for HP-programs with b-cache

In the previous section, we presented a query refutation procedure for hybrid probabilistic programs. We now modify that refutation procedure for the case of query resolution from an hp-program with b-cache.

Informally the desired resolution procedure works as follows. Initially we have query Q, program P, a b-cache update strategy u and our b-cache T is (initially) empty. On each resolution step, we select a basic formula $F : \mu$ from current query and perform a lookup for the probability range of this formula in our current b-cache. To do this we have to compute $T[F]$. Once $T[F]$ is computed we compare it to μ. In case $T[F] \subseteq \mu$ we consider the current resolution step done. Otherwise, we use refutation procedure described above to perform one resolution step. If we decide that this resolution step resulted in proving new basic formula, we use b-cache update strategy u to update the current b-cache with one or more newly proven formulas.

Definition 86. Let $Q \equiv \exists (F_1 : \mu_1 \land \ldots \land F_n : \mu_n)$ be an initial query to hp-program P. A b-cache supported initial query \hat{Q} is defined as follows: Let $F_{i_1} : \mu_{i_1} \ldots F_{i_n} : \mu_{i_n}$ be an arbitrary permutation of $F_1 : \mu_1 \ldots F_n : \mu_n$. Then $\hat{Q} \equiv (F_{i_1} : \mu_{i_1}, \ldots, (F_{i_n} : \mu_{i_n}, \emptyset))$

Any initial b-cache supported query is a b-cache supported query.

It is clear from the definition above that one query to P of size n can generate $n!$ different b-cache supported queries.

Definition 87. We define a b-cache supported resolvent and a b-cache update procedure simultaneously. Let P be an hp-program, T - a b-cache and u - a b-cache update strategy. Let $\hat{Q} \equiv \langle (G_1 : \mu_1, S_1), \ldots, (G_m : \mu_m, S_m) \rangle$, where for each $1 \leq i \leq m$, S_p is a set (possibly empty) of annotated basic formulas (not necessarily ground). Two cases have to be considered:

1. There exists $\langle \mu, \emptyset \rangle \in T[G_1]$, such that, $\mu \subseteq \mu_1$. Let $C \equiv G_1 \Theta : \mu \leftarrow$. Then $\hat{Q} \equiv \langle (G_2 : \mu_2, S_2 \emptyset), \ldots, (G_m : \mu_m, S_m \emptyset) \rangle \cap$ is a b-cache supported resolvent of \hat{Q} and C.

2. There is no $\langle \mu', \emptyset' \rangle \in T[G_1]$, such that, $\mu' \subseteq \mu_1$. In this case, let $C \equiv G : \lambda \leftarrow F_1 : \lambda_1 \land \ldots \land F_n : \lambda_n$, G_1 unifies with G via max-gu Θ and $\lambda \subseteq \mu_1$.

A b-cache update procedure ϕ_u for this case can be defined as follows:

$$\phi_u(\hat{Q}, T, C, \Theta) = T \cup_{eb} S_1 \Theta.$$
Let $F_{i_1} : \lambda_{i_1} \ldots F_{i_n} : \lambda_{i_n}$ be any arbitrary permutation of $F_1 : \lambda_1 \land \ldots \land F_n : \lambda_n$. We define a b-cache supported resolvent of Q, C and T to be:

$$\hat{Q}^\circ \equiv \langle (F_{i_1} \Theta : \lambda_{i_1}, \emptyset), \ldots, (F_{i_n} \Theta : \lambda_{i_n}, S_1 \cup \{G_1 \Theta\}), (G_2 \Theta : \mu_2, S_2 \Theta), \ldots, (G_m \Theta : \mu_m, S_m \Theta) \rangle.$$

A b-cache update procedure for this case is defined as follows:

(a) Body of C is empty.

$$\phi_u(\hat{Q}, T, C, \Theta) = T \uplus_u G_i \Theta : \lambda \uplus_u S_i \Theta.$$

(b) Body of C is not empty.

$$\phi_u(\hat{Q}, T, C, \Theta) = T.$$

Definition 88. Let P be an hp-program, Q – a query and u – a b-cache update strategy. A b-cache supported refutation of Q from P via HR_P is a finite sequence

$$\langle \hat{Q}_1, C_1, \Theta_1, T_1 \rangle \ldots \langle \hat{Q}_r, C_r, \Theta_r, T_r \rangle,$$

where

- \hat{Q}_1 is b-cache supported initial version of Q.
- $T_1 = \emptyset$. 1
- \hat{Q}_r is empty.
- for each $1 \leq i \leq r$ either $P \vdash C_i$ or $T_i \vdash C_i$.
- for each $1 \leq i < r$, \hat{Q}_{i+1} is a b-cache supported resolvent of \hat{Q}_i and C_i with max-gu Θ_i.
- for each $1 \leq i < r$, $T_{i+1} = \phi_u(\hat{Q}_i, T_i, C_i, \Theta_i) \cap$

Example 89 (2-cache supported hp-refutation with elementary update strategy). Let us return to the hp-program shown in Example 65 and the query considered there. We present below, a refutation using a 2-cache (i.e. $b = 2$) using the strategy e2, i.e. elementary 2-cache update. The reader will notice that using this strategy cuts the number of steps in the resolution by 3 steps, leading to an over 20% reduction in the length of a proof. Note that had we used a different update strategy, the reduction may have been different.

1. $Q_1 = \langle (a : [0.9, 1], \emptyset), (e : [1, 1], \emptyset) \rangle \cap$

 $T_1 = \emptyset; P \supset C_1 = a : [1, 1] \leftarrow (b \land c \land d) : [0.25, 1] \land f : [0.5, 0.9].$

2. $Q_2 = \langle ((b \land c \land d) : [0.25, 1], \emptyset), (f : [0.5, 0.9], \{a : [1, 1]\}), (e : [1, 1], \emptyset) \rangle \cap$

 $T_2 = \emptyset; P \supset C_2 = (b \land c \land d) : [0.3, 1] \leftarrow (c \land d) : [0.3, 1].$

3. $Q_3 = \langle ((c \land d) : [0.3, 1],$

 $\{b \land c \land d) : [0.3, 1]\}, (f : [0.5, 0.9], \{a : [1, 1]\}), (e : [1, 1], \emptyset) \rangle \cap$

 $T_3 = \emptyset; P \supset C_3 = (c \land d) : [0.3, 1] \leftarrow$

4. $Q_4 = \langle (f : [0.5, 0.9], \{a : [1, 1]\}), (e : [1, 1], \emptyset) \rangle \cap$

 $T_4 = (T_3 \uplus_e (c \land d) : [0.3, 1]) \uplus_e (b \land c \land d) : [0.3, 1] = c : [0.3, 1],$

 $d : [0.3, 1], b : [0.3, 1], (c \land d) : [0.3, 1], (b \land c) : [0.3, 1], (b \land d) : [0.3, 1]) \cap$

 $P \supset C_4 = f : [0.7, 0.9] \leftarrow b : [1, 1].$

5. $Q_5 = \langle (b : [1, 1], f : [0.7, 0.9], a : [1, 1]), (e : [1, 1], \emptyset) \rangle \cap$

 $T_5 = T_4; T[b] = [0.3, 1] \not\subset [1, 1];$

 $P \supset C_5 = b : [1, 1] \leftarrow (c \land d) : [0.3, 1].$
6. \(Q_6 = \langle (c \wedge_d d) : [0.3, 1], \{ b : [1, 1], f : [0.7, 0.9], a : [1, 1] \}, (e : [1, 1], \emptyset) \rangle \cap T_6 = T_5 = T_6 \cap (c \wedge_d d) = [0.3, 1] \subseteq [0.3, 1] \cap \\
7. \(Q_7 = \langle (e : [1, 1], \emptyset) \rangle \cap T_7 = T_6 \cup_2e (c \wedge_d d) : [0.3, 1] \cup_2e \{ b : [1, 1], f : [0.7, 0.9], a : [1, 1] \} = \{ c : [0.3, 1], d : [0.3, 1], b : [1, 1], (c \wedge_d d) : [0.3, 1], \\
\{ b \wedge c \} : [0.3, 1], \{ b \wedge_d d \} : [0.3, 1], f : [0.7, 0.9], a : [1, 1] \} \cap P \ni C_7 : e : [1, 1] \iff \{ b \wedge c \wedge_d d \} : [0.25, 1] \wedge f : [0.5, 0.1]. \\
8. \(Q_8 = \langle (b \wedge c \wedge_d d) : [0.25, 1], \emptyset, (f : [0.5, 0.1], \{ e : [1, 1] \}) \rangle \cap T_8 = T_7 : T_8 (b \wedge c \wedge_d d) : [0.3, 1] \subseteq [0.25, 1] \cap \\
9. \(Q_9 = \langle (f : [0.5, 0.1], \{ e : [1, 1] \}) \rangle \cap T_9 = T_8 = T_7 : T_9 f : [0.7, 0.9] \subseteq [0.5, 0.9] \cap \\
10. \(Q_{10} = \square \)

The following two important results state that irrespective of which update strategy is used, \(b \)-cache supported hp-refutations are guaranteed to be sound and complete. (Completeness assumes that the program \(P \) is consistent). The proofs are straightforward, as we know that \(HR_P \) is sound and complete, and the \(b \)-cache supported hp-refutation via \(HR_P \) is just its conservative extension.

Theorem 90 (Soundness of \(b \)-cache supported hp-refutation via \(HR_P \)). Let \(P \) be an \(hp \)-program, \(Q \) be an initial query, and \(\emptyset \) be any update strategy. If there exists a \(b \)-cache supported refutation via \(HR_P \) of \(Q \equiv \exists(F_1 : \mu_1 \wedge \cdots \wedge F_n : \mu_n) \) from \(P \) with the answer substitution \(\Theta \) then \(P \models \forall((F_1 : \mu_1 \wedge \cdots \wedge F_n : \mu_n) \Theta) \).

Proof. Suppose
\[
\langle Q_1, C_1, \Theta_1, T_1 \rangle \cdots \langle Q_r, C_r, \Theta_r, T_r \rangle \cap
\]
is a \(b \)-cache supported hp-refutation of \(Q \) w.r.t. \(HR_P \). We proceed by induction on \(r \).

Base Case \(r = 1 \). In this case, as \(T_1 = \emptyset \), it is immediate that \(\langle Q_1, C_1, \Theta_1 \rangle \) is an \(HR_P \)-refutation of \(Q \) and the result follows immediately by the soundness theorem for \(HR_P \)-refutations.

Inductive Case \(r + 1 \). Consider the \(b \)-cache supported refutation
\[
\langle Q_2, C_2, \Theta_2, T_2 \rangle \cdots \langle Q_r, C_r, \Theta_r, T_r \rangle \cap
\]
– it is easy to see that this may be viewed as a \(b \)-cache supported refutation of \(Q_r \) from \(P \cup T_2 \). Hence, by the inductive hypothesis, \((P \cup T_2) \models (\forall)Q_2\Theta'' \) where \(\Theta'' = \Theta_2 \cdots \Theta_r \). But \(T_2 \) only contains \(\phi_u(Q_1, T_1, C_1, \Theta_1) \) and as \(u \) is a \(b \)-cache supported update policy, it follows that \(CN((P \cup T_2)) \ni \exists \Theta''(\phi_u(Q_1, T_1, C_1, \Theta_1)) \) – hence, \(\phi_u(Q_1, T_1, C_1, \Theta_1) \models (P \cup T_2) \) and we are done. \(\square \)

Theorem 91 (Completeness of \(b \)-cache supported hp-refutation). Let \(P \) be a consistent \(hp \)-program which satisfies the fixpoint reachability conditions let \(Q' \) be a query, and \(\sqcup \) be any update strategy. Then, if \(P \models \exists(Q') \) then there exists a \(b \)-cache supported hp-refutation of \(Q' \) from \(P \) via \(HR_P \).

Proof. The proof is immediately obtained from the fact that every \(HR_P \)-refutation is a \(b \)-cache supported refutation – to see why, observe that the fourth bullet in the definition of a \(b \)-cache supported refutation requires either \(P \vdash C_i \) or \(T \vdash C_i \). The first
case is the same as for HR_P refutations, and thus, every HR_P-refutation is a b-cache supported refutation. As HR_P-refutations are complete, so are b-cache supported refutations.

Though we have not implemented the proof procedures described in this paper, two proof procedures for hybrid probabilistic programs have been implemented since the initial version of this paper was circulated. The first implementation, by Terrence Swift at the University of Maryland, uses the XSB system [29] to implement a large fragment of HPPs. The second is an implementation of a somewhat different fragment of HPPs by Stoffel at the University of Neuchatel in Switzerland. Stoffel in particular, has also suggested some performance-enhancing optimizations to the methods described here.

6. Related work and conclusions

Logic knowledge bases have been extended to handle fuzzy modes of uncertainty since the early 1970s with the advent of the MYCIN and Prospector systems [12]. Shapiro was one of the first to develop results in fuzzy logic programming [32]. Baldwin [2] was one of the first to introduce *evidential* logic programming and a language called FRIL. Van Emden [38] was the first to provide formal semantical foundations for logic programs that was later extended by Subrahmanian [34] and then completely generalized in a succession of papers by Blair and Subrahmanian [4], and Fitting [14], Ginsberg [15], and applied to databases by Kifer and Li [18] and Kifer and Subrahmanian [19]. *All the above works did not obey the laws of probability.*

The first works in the area of probabilistic logic programming were due to Ng and Subrahmanian who, in a series of papers [25,27], developed techniques for probabilistic logic programming under the assumption of *ignorance*. Their work built upon earlier work on probabilistic logics due to Fagin and Halpern [13] and Nilsson [28].

In contrast, Kiessling and his group [16,37,31] have developed a framework called DUCK for reasoning with uncertainty. They provide an elegant logical axiomatic theory for uncertain reasoning in the presence of rules, and using the independence assumption.

Perhaps the most significant related work is the elegant recent work of Lakshmanan’s group [22,21,23,33]. Lakshmanan’s group [23,33] have been developing a parametric framework to represent varied probabilistic strategies in logic programs. This work, which was developed slightly ahead and independently of this paper\(^4\), can express some of what we try to express here, though there is no support for basic formulas in the heads of rules, and hence there is also no need for decomposition functions. However, by a rather complex translation that significantly increases the size of a program, and by introducing specially programmed functions, they can express some hp-programs with atoms (not basic formulas!) in the heads in their syntax. Thus, the two approaches share a common intersection, but neither appears to subsume the other.

\(^4\) Actually, the first paper that allows different conjunction and disjunction strategies to be incorporated into logic programs was [35].
In addition, Lakshmanan and his colleagues complement our results with elegant query optimization results. Developing such results in the general setting of hp-programs remains a significant challenge, and will need to build upon the foundation laid by them in that arena. In contrast, our work offers a variety of cache-based query processing algorithms that complement their query optimization work, and merging the two offers much promise because query processing and optimization using materialized views (which is what a cache is) is well known to be very useful in enhancing performance [1].

There has been a substantial body of work on probabilistic extensions of relational databases, which we do not discuss here as their relation to logic programming is not immediate. For the sake of completeness, such works include [3,7,11,17,20]. In particular, [20], among other things, introduces a set of operations on data which compute probabilities of compound events based on probabilities of simple events and the assumptions about the connections between the events. Our current work extends the framework of Ref. [20] onto logic programming by adding a notion of a “decomposition” function, which guides the computation of the probabilities of simple events based on the probability of the compound event.

In sum, our paper’s goal was to provide a flexible probabilistic logic programming framework. Past approaches to logic programming with probabilities assumed that knowledge about all events in the real world represented by propositional symbols or predicate symbols took one single form – either we assumed ignorance of all dependencies between such events (e.g. [25]) or we assumed independence (e.g. in most AI expert systems). In practice however, a probabilistic logic programming system must be flexible enough to allow the logic programmer to explicitly specify any domain specific knowledge he has about dependences (or lack thereof) between events. Our approach allows this, through the use of syntactic connectives that represent generalized conjunction/disjunction strategies. We have provided a formal model theoretic and fixpoint semantics for such hp-programs and shown that they are equivalent. We have further proposed three alternative execution paradigms for hp-programs.

In future work, we plan to build an hybrid probabilistic deductive database system that incorporates many of the ideas proposed in this paper. This system will be built on top of our ProbView [20] probabilistic relational database system. We hope to use this implementation, when complete, to experiment with different probabilistic query evaluation algorithms such as those described here, as well as probabilistic query optimization techniques that we hope to develop in the future. In addition, we are working on temporal-probabilistic extensions of the HPP paradigm.

Acknowledgements

This work was supported by the Army Research Office under Grants DAAH-04-95-10174, DAAH-04-96-10297, and DAAH04-96-1-0398, by the Army Research Laboratory under contract number DAAL01-97-K0135, by an NSF Young Investigator award IRI-93-57756, and by an award from Lockheed Martin Advanced Technology Labs. We would like to thank the anonymous reviewers for pointing out a bug in an earlier version of the paper and for a number of useful comments.
Appendix A. Proof of Proposition 1

In this section we provide the complete proof of Proposition 5, which states that all strategies defined in Section 2.1 are indeed coherent, conjunctive or disjunctive p-strategies.

Proposition 5 inc, igc and pcc are continuous conjunctive coherent p-strategies. Similarly, ind, igd, pcd and ncd are continuous disjunctive coherent p-strategies.

Proof. First we notice that all the composition functions under consideration satisfy the axiom of Separation. Indeed in the definition of every composition function $\text{c}_{\text{inc}}, \text{c}_{\text{igc}}, \text{c}_{\text{pcc}}, \text{c}_{\text{ind}}, \text{c}_{\text{igd}}, \text{c}_{\text{pcd}}, \text{c}_{\text{ncd}}$ the lower bound of the result is dependent only on the lower bounds of the arguments and similarly, the upper bound of the result depends only on the upper bounds of the arguments. Also, we notice that all composition functions mentioned above are continuous as all the functions that compute their lower and upper bounds are continuous in both arguments. Now, we prove the rest of the axioms for each individual strategy.

- inc is a conjunctive coherent p-strategy.

 $\circ \text{inc}$ is a conjunctive p-strategy.

 1. **Commutativity.** $\text{c}_{\text{inc}}([a_1, b_1], [a_2, b_2]) = [a_1 a_2, b_1 b_2] = [a_2 a_1, b_2 b_1] = \text{c}_{\text{inc}} ([a_2, b_2], [a_1, b_1]).$

 2. **Associativity.** $\text{c}_{\text{inc}}(\text{c}_{\text{inc}}([a_1, b_1], [a_2, b_2]), [a_3, b_3]) = \text{c}_{\text{inc}}([a_1 a_2, b_1 b_2], [a_3, b_3]) = \cap [a_1 a_2 a_3, b_1 b_2 b_3] \sqsubseteq [a_1 (a_2 a_3), b_1 (b_2 b_3)] = \text{c}_{\text{inc}}([a_1 b_1], [a_2 a_3 b_2 b_3]) = \text{c}_{\text{inc}}(\text{c}_{\text{inc}}([a_1, b_1]), \text{c}_{\text{inc}}([a_2, b_2], [a_3, b_3])).$

 3. **Inclusion Monotonicity.** Let $[a_1, b_1] \subseteq [a_3, b_3]$, i.e. $a_1 \geq a_3 \geq 0$ and $0 \leq b_1 \leq b_3$.

 $\text{c}_{\text{inc}}([a_1, b_1], [a_2, b_2]) = [a_1 a_2, b_1 b_2].$

 $\text{c}_{\text{inc}}([a_2, b_2], [a_3, b_3]) = [a_2 a_3, b_2 b_3].$

 $a_1 \geq a_3 \geq 0$ implies $a_1 a_2 \geq a_3 a_2$; $0 \leq b_1 \leq b_3$ implies $b_1 b_2 \leq b_3 b_2$, which in turn, means that $[a_1 a_2, b_1 b_2] \subseteq [a_2 a_3, b_2 b_3].$

 4. **Bottomline.** $\text{c}_{\text{inc}}([a_1, b_1], [a_2, b_2]) = [a_1 a_2, b_1 b_2]$. Since $0 \leq a_1, a_2 \leq 1$, $a_1 a_2 \leq a_1$ and $a_1 a_2 \leq a_2$. i.e. $a_1 a_2 \leq \min(a_1, a_2).$

 $\text{c}_{\text{inc}}([a_1, b_1], [a_2, b_2]) = [a_1 a_2, b_1 b_2].$

 Similarly, since $0 \leq b_1, b_2 \leq 1$, $b_1 b_2 \leq \min(b_1, b_2).$

 This implies $[a_1 a_2, b_1 b_2] \subseteq \min([a_1, a_2], \min([b_1, b_2]).$

 5. **Identity.** $\text{c}_{\text{inc}}([a, b], [1, 1]) = [a \cdot 1, b \cdot 1] = [a, b]$. Similarly, $\text{c}_{\text{inc}}([a, b], [0, 0]) = [0, 0].$

 6. **Annihilator.** $\text{c}_{\text{inc}}([a, b], [0, 0]) = [0, 0]$.

$\circ \text{inc}$ is a coherent p-strategy.

We know that $d_{\text{inc}}([a, b]) = \langle ([a_1, b_1], [a_2, b_2]) | a_1 a_2, b_1 b_2 = [a, b] \rangle$, i.e., $\forall [a_1, b_1], [a_2, b_2] \in d_{\text{inc}}([a, b]) \text{iff } c_{\text{inc}}([a_1, b_1], [a_2, b_2]) = [a, b]$, which means that inc is a coherent p-strategy.

- igc is a conjunctive coherent p-strategy.

$\circ \text{igc}$ is a conjunctive p-strategy.

Let us establish that igc satisfies the axioms of conjunctive p-strategy.

1. **Commutativity.** $\text{c}_{\text{igc}}([a_1, b_1], [a_2, b_2]) = \text{max}(0, a_1 + a_2 - 1, \text{min}(b_1, b_2)) \sqsubseteq \text{max}(a_1, a_2) = \text{c}_{\text{igc}}([a_2, b_2], [a_1, b_1]).$

2. **Associativity.** $\text{c}_{\text{igc}}([a_1, b_1], [a_2, b_2], [a_3, b_3]) = \text{c}_{\text{igc}}(\text{c}_{\text{igc}}([a_1, b_1], [a_2, b_2]), [a_3, b_3]) = \text{c}_{\text{igc}}(\max(0, a_1 + a_2 - 1, \text{min}(b_1, b_2)), [a_3, b_3]).$
\[
\begin{align*}
&\{\max(0, \max(0, a_1 + a_2 - 1) + a_3 - 1), \min(\min(b_1, b_2), b_3)\} = \cap \\
&\{\max(0, a_1 + a_2 - 1, \min(b_1, b_2))\} = \max(0, a_1 + a_2 + a_3 - 1) \cap \\
&\min(b_1, \min(b_2, b_3)) = c_{\text{ige}}([a_1, b_1], c_{\text{ige}}([a_2, b_2], [a_3, b_3])).
\end{align*}
\]

3. **Inclusion Monotonicity.** Let \([a_1, b_1] \subseteq [a_3, b_3]\), i.e. \(a_1 \geq a_3 \geq 0\) and \(0 \leq b_1 \leq b_3\).

\[
c_{\text{ige}}([a_1, b_1], [a_2, b_2]) = \{\max(0, a_1 + a_2 - 1), \min(b_1, b_2)\}.
\]

Since \(a_1 \geq a_3 \geq 0\), \(a_1 + a_2 - 1 \geq a_3 + a_2 - 1\), i.e., \(\max(0, a_1 + a_2 - 1) \cap \max(0, a_3 + a_2 - 1)\).

Since \(0 \leq b_1 \leq b_3\), \(\min(b_1, b_2) \leq \min(b_1, b_2)\). From this we obtain \(c_{\text{ige}}([a_1, b_1], [a_2, b_2]) = [\max(0, a_1 + a_2 - 1), \min(b_1, b_2)] \subseteq [\max(0, a_3 + a_2 - 1), \min(b_3, b_2)] = c_{\text{ige}}([a_3, b_3], [a_2, b_2]).\)

4. **Bottomline.** \(c_{\text{ige}}([a_1, b_1], [a_2, b_2]) = [\max(0, a_1 + a_2 - 1), \min(b_1, b_2)]\).

Clearly, \(0 \leq \min(a_1, a_2)\). Also since \(a_2 \leq 1\), \(a_1 + a_2 - 1 \leq a_1\). Similarly, since \(a_1 \leq 1\), \(a_1 + a_2 - 1 \leq a_2\). The two inequalities allow us to deduce that \(a_1 + a_2 - 1 \leq \min(a_1, a_2)\) and, therefore, \(\max(0, a_1 + a_2 - 1) \leq \min(a_1, a_2)\).

From this we obtain \(\max(0, a_1 + a_2 - 1), \min(b_1, b_2) \cap \subseteq \min(a_1, a_2), \min(b_1, b_2)\).

5. **Identity.** \(c_{\text{ige}}([a, b], [1, 1]) = [\max(0, a + 1 - 1), \min(b, 1)] = \cap [\max(0, a), \min(b, 1)] = [a, b].\)

6. **Annihilator.** \(c_{\text{ige}}([a, b], [0, 0]) = [\max(0, a + 0 - 1), \min(b, 0)] = [0, 0].\)

\(\text{ige}\) is a coherent p-strategy. Let \([a, b], [a_1, b_1], [a_2, b_2] \in C[0, 1]\).

Let \(\langle [a_1, b_1], [a_2, b_2] \rangle \in d_{\text{ige}}([a, b])\). We consider the following two possibilities for the relationships between \(a, a_1\) and \(a_2\):

- \(a = 0\) and \(a_1 + a_2 \leq 1\). In this case \(\max(0, a_1 + a_2 - 1) = 0 = a\).
- \(a > 0\) and \(a_1 + a_2 - 1 = a\).

As far as the relationships between \(b, b_1\) and \(b_2\) are concerned, by definition of \(d_{\text{ige}}, b = b_1\) if \(b_1 \leq b_2\) an \(b = b_2\) if \(b_2 \leq b_1\), which means that \(b = \min(b_1, b_2)\).

Combining our results together we obtain: \(c_{\text{ige}}([a_1, b_1], [a_2, b_2]) \cap \max(0, a_1 + a_2 - 1), \min(b_1, b_2)\) = [a, b].

Let \(c_{\text{ige}}([a_1, b_1], [a_2, b_2]) = [a, b]\). Then, we know that \([a, b] = \cap [\max(0, a_1 + a_2 - 1), \min(b_1, b_2)]\). This means that if \(a = 0\), \(\max(0, a_1 + a_2 - 1) = 0\), i.e., \(a_1 + a_2 \leq 1\) and if \(a > 0\) then \(a = a_1 + a_2 - 1\).

Similarly, \(b = \min(b_1, b_2)\) implies \(b = b_1\) when \(b_1 \leq b_2\) and \(b = b_2\) when \(b_2 \leq b_1\).

This means that by definition of \(d_{\text{ige}} \langle [a_1, b_1], [a_2, b_2] \rangle = d_{\text{ige}}([a, b])\).

\(\text{pce}\) is a conjunctive coherent p-strategy.

\(\text{pce}\) is a conjunctive p-strategy.

Let us establish that \(\text{pce}\) satisfies the axioms of conjunctive p-strategy.

1. **Commutativity.** \(c_{\text{pce}}([a_1, b_1], [a_2, b_2]) = [\min(a_1, a_2), \min(b_1, b_2)] = \cap [\min(a_2, a_1), \min(b_2, b_1)] = c_{\text{pce}}([a_2, b_2], [a_1, b_1]) \cap \min(b_2, b_1)

2. **Associativity.** \(c_{\text{pce}}(c_{\text{pce}}([a_1, b_1], [a_2, b_2]), [a_3, b_3]) = c_{\text{pce}}([\min(a_1, a_2), \min(b_1, b_2)], [a_3, b_3]) = \min(\min(a_1, a_2), \min(b_1, b_2)), b_3) = \cap [\min(a_1, a_2, a_3), \min(b_1, b_2, b_3)] = c_{\text{pce}}([a_1, b_1], c_{\text{pce}}([a_2, b_2], [a_3, b_3]))

3. **Inclusion Monotonicity.** Let \([a_1, b_1] \subseteq [a_3, b_3]\), i.e. \(a_1 \geq a_3 \geq 0\) and \(0 \leq b_1 \leq b_3\).
\[c_{pc}[a_1, b_1], [a_2, b_2]) = [\min(a_1, a_2), \min(b_1, b_2)]. \]

\[c_{pc}(a_3, b_3), [a_2, b_2]) = [\min(a_3, a_2), \min(b_3, b_2)]. \]

Since \(a_1 \geq a_3 \geq 0 \), \(\min(a_1, a_2) \geq \min(a_3, a_3) \); since \(0 \leq b_1 \leq b_3, \) \(\min(b_1, b_2) \leq \min(b_1, b_2) \). This implies \(\min(a_1, a_2), \min(b_1, b_2) \in [\min(a_3, a_3), \min(b_3, b_2)] \).

4. **Bottomline.** \(c_{pc}(a, b), [1, 1]) = [\min(a, 1), \min(b, 1)] = [a, b]. \)

5. **Annihilator.** \(c_{pc}(a, b), [0, 0]) = [\min(a, 0), \min(b, 0)] = [0, 0]. \)

\(\circ \) \(p_{cc} \) is a coherent p-strategy.

Let \([a, b], [a_1, b_1], [a_2, b_2] \in C[0, 1]. \)

Let \(\langle [a_1, b_1], [a_2, b_2] \rangle \in d_{pc}(a, b) \). Then either \(a = a_1 \) and \(a_2 \geq a_1 \) or \(a = a_2 \) and \(a_1 \geq a_2 \). In either case \(a = \min(a_1, a_2). \)

Similarly, since either \(b = b_1 \) and \(b_2 \geq b_1 \) or \(b = b_2 \) and \(b_1 \geq b_2 \), we get \(b = \min(b_1, b_2). \)

Therefore \(c_{pc}(a_1, b_1), [a_2, b_2]) = [\min(a_1, a_2), \min(b_1, b_2)] = [a, b]. \)

Let \(c_{pc}(a_1, b_1), [a_2, b_2]) = [a, b]. \) Then \(a = \min(a_1, a_2) \) and \(b = \min(b_1, b_2). \)

This means that either \(a = a_1 \) and \(a_2 \geq a_1 \) or \(a = a_2 \) and \(a_1 \geq a_2 \) and similarly, either \(b = b_1 \) and \(b_2 \geq b_1 \) or \(b = b_2 \) and \(b_1 \geq b_2 \). But this means that \(\langle [a_1, b_1], [a_2, b_2] \rangle \in d_{pc}(a, b) \).

- **ind** is a disjunctive coherent p-strategy.

\(\circ \) **ind** is a disjunctive p-strategy.

Let us establish that **ind** satisfies the axioms of **disjunctive** p-strategy.

1. **Commutativity.** \(c_{ind}(a_1, b_1), [a_2, b_2]) = [a_1 + a_2 - a_1a_2, b_1 + b_2 - b_1b_2] = [a_2 + a_1 - a_2a_1, b_1 + b_2 - b_1b_2] = c_{ind}(a_2, b_2), [a_1, b_1]). \)

2. **Associativity.** \(c_{ind}(c_{ind}(a_1, b_1), [a_2, b_2], [a_3, b_3]) = c_{ind}(a_1 + a_2 - a_1a_2, b_1 + b_2 - b_1b_2, [a_3, b_3]) = [a_1 + a_2 - a_1a_2 + a_3 - (a_1 + a_2 - a_1a_2)a_3b_1 + b_2 - b_1b_2 + b_3 - (b_1 + b_2 - b_1b_2)b_3] = [a_1 + a_2 - a_1a_2 - a_3a_3 + a_3b_1 + b_2 - b_1b_2 - b_1b_2b_3] = [a_1 + a_2 - a_1a_2 - a_3a_3 + a_3b_1 + b_2 - b_1b_2 - b_1b_2b_3]. \)

3. **Inclusion Monotonicity.** \(c_{ind}(a_1, b_1), [a_2, b_2]) = [a_1 + a_2 - a_1a_2, b_1 + b_2 - b_1b_2]. \)

Since \(a_1 \geq a_3 \geq 0 \), we have \(a_1 - a_1a_2 = a_1(1 - a_2) \geq a_3(1 - a_2) = a_3 - a_3a_2 \)

and therefore \(a_1 + a_2 - a_1a_2 \geq a_3 + a_2 - a_3a_2. \)

Similarly, since \(0 \leq b_1 \leq b_3 \), we have \(b_1 - b_1b_2 = b_1(1 - b_2) \leq b_3(1 - b_3) = b_3 - b_3b_2 \) which in turn implies that \(b_1 + b_2 - b_1b_2 \leq b_3 + b_2 - b_3b_2. \)

From this it follows that \([a_1 + a_2 - a_1a_2, b_1 + b_2 - b_1b_2] \leq [a_3 + a_2 - a_3a_2, b_3 + b_2 - b_3b_2]. \)

4. **Bottomline.** \(c_{ind}(a_1, b_1), [a_2, b_2]) = [a_1 + a_2 - a_1a_2, b_1 + b_2 - b_1b_2]. \)

We have to show that \(a_1 + a_2 - a_1a_2 \geq \max(a_1, a_2) \) and \(b_1 + b_2 - b_1b_2 \geq \max(b_1, b_2). \)

Indeed, since \(0 \leq a_1, a_2 \leq 1, a_2 - a_1a_2 \geq 0 \) and \(a_1 - a_1a_2 \geq 0. \) Therefore, \(a_1 + (a_2 - a_1a_2) \geq a_1 + 0 \) and \(a_2 + (a_1 - a_1a_2) \geq a_2 + 0 \) i.e. \(a_1 + a_2 - a_1a_2 \geq 0 \)
Similarly, since \(0 \leq b_1, b_2 \leq 1\), \(b_2 - b_1, b_2 \geq 0\) and \(b_1 - b_1 b_2 \geq 0\). Therefore, \(b_1 + (b_2 - b_1) b_2 \geq b_1 + 0\) and \(b_2 + (b_1 - b_1) b_2 \geq b_2 + 0\), i.e. \(b_1 + b_2 - b_1 b_2 \geq \max(b_1, b_2)\).

5. **Identity.** \(c_{\text{ind}}([a, b], [0, 0]) = [a + 0 - a \cap b, 0 + 0 - b \cap 0] = [a, b]\).

6. **Annihilator.** \(c_{\text{ind}}([a, b], [1, 1]) = [a + 1 - a \cap 1, b + 1 - b \cap 1] = [1, 1]\).

\(\circ \cap \text{ind} \) is a coherent p-strategy.

Let \([a, b], [a_1, b_1], [a_2, b_2] \in C[0, 1]\).

Let \(\langle [a_1, b_1], [a_2, b_2] \rangle \in d_{\text{ind}}([a, b])\). Then \(a + a_2 = a_1 a_2 = a_1 b_2 = b\), which means that \(c_{\text{ind}}([a_1, b_1], [a_2, b_2]) = [a_1 + a_2 - a_1 a_2, b_1 + b_2 - b_1 b_2] = [a, b]\).

Let \(c_{\text{ind}}([a_1, b_1], [a_2, b_2]) = [a, b], c_{\text{ind}}([a_1, b_1], [a_2, b_2]) = [a_1 + a_2 - a_1 a_2, b_1 + b_2 - b_1 b_2], \) which means that \(a = a_1 + a_2 - a_1 a_2\) and \(b = b_1 + b_2 - b_1 b_2\).

Therefore, \(\langle [a_1, b_1], [a_2, b_2] \rangle \in d_{\text{ind}}([a, b])\).

• \(\text{igd}\) is a disjunctive coherent p-strategy.

\(\circ \cap \text{igd}\) is a disjunctive p-strategy.

Let us establish that \(\text{igd}\) satisfies the axioms of disjunctive p-strategy.

1. **Commutativity.** \(c_{\text{igd}}([a_1, b_1], [a_2, b_2]) = [\max(a_1, a_2), \min(b_1, b_2)] \cap [\max(a_2, a_1), \min(b_2, b_1)] = [\max(a_1, a_2), \min(b_2, b_1)] = c_{\text{igd}}([a_2, b_2], [a_1, b_1])\).

2. **Associativity.** \(c_{\text{igd}}(c_{\text{igd}}([a_1, b_1], [a_2, b_2]), [a_3, b_3]) = c_{\text{igd}}(c_{\text{igd}}([a_1, b_1], [a_2, b_2]), [a_3, b_3]) = \min(\min(a_1, a_2), \min(a_3, b_3)) = \min(\min(a_1, a_2), \min(b_3, b_3)) = \min(\min(a_2, a_3), \min(b_1, b_2)) \cap [\min(a_1, a_2), \min(b_3, b_3)] = \min(\min(a_2, a_3), \min(b_1, b_2)) \cap [\min(a_1, a_2), \min(b_3, b_3)] = [\min(a_1, a_2), \min(b_3, b_3)]\).

3. **Inclusion Monotonicity.**

Let \([a_1, b_1] \subseteq [a_3, b_3]\), i.e. \(a_1 \geq a_3 \geq 0\) and \(0 \leq b_1 \leq b_3\).

\(c_{\text{igd}}([a_1, b_1], [a_2, b_2]) = [\max(a_1, a_2), \min(b_1, b_2)]\).

\(c_{\text{igd}}([a_3, b_3], [a_2, b_2]) = [\max(a_3, a_2), \min(b_3, b_2)]\).

Since \(a_1 \geq a_3 \geq 0\) we have \(\max(a_1, a_2) \geq \max(a_3, a_2)\). Since \(0 \leq b_1 \leq b_3\) we have \(\min(1, b_1 + b_2) \leq \min(1, b_3 + b_2)\).

This implies \([\max(a_1, a_2), \min(b_1 + b_2)] \subseteq [\max(a_3, a_2), \min(b_3 + b_2)]\).

4. **Bottomline.** \(c_{\text{igd}}([a_1, b_1], [a_2, b_2]) = [\max(a_1, a_2), \min(b_1, b_2)]\).

We have to show that \(\min(1, b_1 + b_2) \geq \max(b_1, b_2)\). This is clearly so, since, \(b_1, b_2 \leq 1\), i.e. \(\max(b_1, b_2) \leq 1\), and \(b_1, b_2 \geq 0\), i.e., \(b_1 \leq b_2\) and \(b_2 \leq b_1 + b_2\), which makes \(\max(b_1, b_2) \leq b_1 + b_2\), therefore yielding the desired result.

5. **Identity.** \(c_{\text{igd}}([a, b], [0, 0]) = [\max(a, 0), \min(b, 0)] = [a, b]\).

6. **Annihilator.** \(c_{\text{igd}}([a, b], [1, 1]) = [\max(a, 1), \min(b + 1)] = [1, 1]\).

\(\circ \cap \text{igd} \) is a coherent p-strategy.

Let \([a, b], [a_1, b_1], [a_2, b_2] \in C[0, 1]\).

Let \(\langle [a_1, b_1], [a_2, b_2] \rangle \in d_{\text{igd}}([a, b])\).

Then either \(a = a_1\) and \(a_2 \leq a_1\) or \(a = a_2\) and \(a_1 \leq a_2\). In either case \(a = \max(a_1, a_2)\).

Also, either we have \(b = 1\) and \(b_1 + b_2 \geq 1\) or \(b < 1\) and \(b_1 + b_2 = b\). In either case \(b = \min(1, b_1 + b_2)\).

But then, we get \(c_{\text{igd}}([a_1, b_1], [a_2, b_2]) = [\max(a_1, a_2), \min(1, b_1 + b_2)] = [a, b]\).

Let \(c_{\text{igd}}([a_1, b_1], [a_2, b_2]) = [a, b]\).

In this case \(a = \max(a_1, a_2)\) and \(b = \min(1, b_1 + b_2)\). This means that either \(a = a_1\) and \(a_2 \leq a_1\) or \(a = a_2\) and \(a_1 \leq a_2\) and also either \(b = 1\) and \(b_1 + b_2 \geq 1\) or \(b < 1\) and \(b_1 + b_2 = b\).
But then, $<[a_1, b_1], [a_2, b_2]> \in d_{\text{isc}}([a, b])$.

- pcd is a disjunctive coherent p-strategy.
- $\text{o} \circ \text{pcd}$ is a disjunctive p-strategy.

Let us establish that pcd satisfies the axioms of disjunctive p-strategy.

1. **Commutativity.** $c_{\text{pcd}}([a_1, b_1], [a_2, b_2]) = [\max(a_1, a_2), \max(b_1, b_2)]$.

2. **Associativity.** $c_{\text{pcd}}(c_{\text{pcd}}([a_1, b_1], [a_2, b_2]), [a_3, b_3]) = c_{\text{pcd}}(\max(a_1, a_2), \max(b_1, b_2), a_3, b_3), [a_3, b_3]) = [\max(\max(a_1, a_2, a_3), \max(b_1, b_2, b_3), b_3]]$.

3. **Inclusion Monotonicity.**

Let $[a_1, b_1] \subseteq [a_3, b_3]$, i.e. $a_1 \geq a_3 \geq 0$ and $0 \leq b_1 \leq b_3$.

$c_{\text{pcd}}([a_1, b_1], [a_2, b_2]) = [\max(a_1, a_2), \max(b_1, b_2)]$.

$c_{\text{pcd}}([a_1, b_1], [a_2, b_2]) = [\max(\max(a_1, a_2), a_3), \max(b_1, b_2)]$.

Since $a_1 \geq a_3 \geq 0$ we have $\max(a_1, a_2) \geq \max(a_3, a_2)$. Similarly, since $0 \leq b_1 \leq b_3$, we have $\max(b_1, b_2) \leq \max(b_3, b_2)$.

This implies $[\max(a_1, a_2), \max(b_1, b_2)] \leq [\max(a_3, a_2), \max(b_3, b_2)]$.

4. **Bottomline.** $c_{\text{pcd}}([a_1, b_1], [a_2, b_2]) = [\max(a_1, a_2), \max(b_1, b_2)]$.

5. **Identity.** $c_{\text{pcd}}([a, b], [0, 0]) = [\max(a, 0), \max(b, 0)] = [a, b]$.

6. **Annihilator.** $c_{\text{pcd}}([a, b], [1, 1]) = [\max(a, 1), \max(b, 1)] = [a, a]$.

$\text{o} \circ \text{pcd}$ is a coherent p-strategy.

Let $[a, b], [a_1, b_1], [a_2, b_2] \in C[0, 1]$.

Let $<[a_1, b_1], [a_2, b_2]> \in d_{\text{pcd}}([a, b])$. Then either $a = a_1$ and $a_1 \geq a_2$ or $a = a_2$ and $a_2 \geq a_1$. In either case $a = \max(\max(a_1, a_2), a_1)$. Similarly, we have either $b = b_1$ and $b_1 \geq b_2$ or $b = b_2$ and $b_2 \geq b_1$. In either case $b = \max(b_1, b_2)$.

Therefore $c_{\text{pcd}}([a_1, b_1], [a_2, b_2]) = \max(a_1, a_2), \max(b_1, b_2) = [a, b]$.

Let $c_{\text{pcd}}([a_1, b_1], [a_2, b_2]) = [a, b]$.

In this case $a = \max(\max(a_1, a_2) \cap b = \max(b_1, b_2)$.

This means that either $a = a_1$ and $a_1 \geq a_2$ or $a = a_2$ and $a_2 \geq a_1$ and also either $b = b_1$ and $b_1 \geq b_2$ or $b = b_2$ and $b_2 \geq b_1$.

Therefore, $<[a_1, b_1], [a_2, b_2]> \in d_{\text{pcd}}([a, b])$.

- ncd is a disjunctive coherent p-strategy.
- $\text{o} \circ \text{ncd}$ is a disjunctive p-strategy.

Let us establish that ncd satisfies the axioms of disjunctive p-strategy.

1. **Commutativity.** $c_{\text{ncd}}([a_1, b_1], [a_2, b_2]) = [\min(1, a_1 + a_2), \min(1, b_1 + b_2)]$.

2. **Associativity.** $c_{\text{ncd}}(c_{\text{ncd}}([a_1, b_1], [a_2, b_2]), [a_3, b_3]) = c_{\text{ncd}}([\min(1, a_1 + a_2), \min(1, b_1 + b_2), [a_3, b_3])] = [\min(1, \min(a_1 + a_2 + a_3), \min(1, b_1 + b_2 + b_3)] = [\min(1, a_1 + a_2 + a_3), \min(1, b_1 + b_2 + b_3)]$.

3. **Inclusion Monotonicity.**

Let $[a_1, b_1] \subseteq [a_3, b_3]$, i.e. $a_1 \geq a_3 \geq 0$ and $0 \leq b_1 \leq b_3$.

$c_{\text{ncd}}([a_1, b_1], [a_2, b_2]) = [\min(1, a_1 + a_2), \min(1, b_1 + b_2)]$.

$c_{\text{ncd}}([a_1, b_1], [a_2, b_2]) = [\min(1, a_1 + a_2), \min(1, b_1 + b_2)]$.

Since $a_1 \geq a_3 \geq 0$ we have $a_1 + a_2 \geq a_3 + a_2$ and therefore, $\min(1, a_1 + a_2) \geq \min(1, a_3 + a_2)$. Similarly, since $0 \leq b_1 \leq b_3$, we have $\min(1, b_1 + b_2) \leq \min(1, b_3 + b_2)$.

This implies \([\min(1, a_1 + a_2), \min(1, b_1 + b_2)] \subseteq [\min(1, a_3 + a_2), \min(1, b_3 + b_2)].\)

4. **Bottomline.** \(c_{ncd}([a_1, b_1], [a_2, b_2]) = [\min(1, a_1 + a_2), \min(1, b_1 + b_2)].\)

We need to show \(\min(1, a_1 + a_2) \geq \max(a_1, a_2)\) and \(\min(1, b_1 + b_2) \geq \max(b_1, b_2).\)

Since, \(a_1, a_2 \leq 1,\) we can get \(\max(a_1, a_2) \leq 1,\) and since \(a_1, a_2 \geq 0,\) we have \(a_1 \leq a_1 + a_2\) and \(a_2 \leq a_1 + a_2,\) which makes \(\max(a_1, a_2) \leq a_1 + a_2.\)

Similarly, since, \(b_1, b_2 \leq 1,\) we can get \(\max(b_1, b_2) \leq 1,\) and since \(b_1, b_2 \geq 0,\) we have \(b_1 \leq b_1 + b_2\) and \(b_2 \leq b_1 + b_2,\) which makes \(\max(b_1, b_2) \leq b_1 + b_2,\) therefore yielding the desired result.

5. **Identity.** \(c_{ncd}([a, b], [0, 0]) = [\max(a, 0), \max(b, 0)] = [a, b].\)

6. **Annihilator.** \(c_{ncd}([a, b], [1, 1]) = [\max(a, 1), \max(b, 1)] = [1, 1].\)

\(\circ\)\(\text{ncd}\) is a **coherent** p-strategy.

Let \([a, b], [a_1, b_1], [a_2, b_2] \in C[0, 1].\)

Let \([a_1, b_1], [a_2, b_2] \in d_{ncd}([a, b]).\) Then we know that either \(a = 1\) and \(a_1 + a_2 \geq 1\) or \(a < 1\) and \(a_1 + a_2 = a.\) This implies \(a = \min(1, a_1 + a_2).\)

Similarly, either \(b = 1\) and \(b_1 + b_2 \geq 1\) or \(b < 1\) and \(b_1 + b_2 = b,\) which, in turn implies \(b = \min(1, b_1 + b_2).\)

From this it follows that \(c_{ncd}([a_1, b_1], [a_2, b_2]) = [\min(1, a_1 + a_2), \min(1, b_1 + b_2)] = [a, b].\)

Let \(c_{ncd}([a_1, b_1], [a_2, b_2]) = [a, b].\) Then \(a = \min(1, a_1 + a_2)\) and \(b = \min(1, b_1 + b_2).\) This means that if \(a = 1\) then \(a_1 + a_2 \geq 1\) and if \(a < 1\) then \(a_1 + a_2 = a.\) Similarly, we get: if \(b = 1\) then \(b_1 + b_2 \geq 1\) and if \(b < 1\) then \(b_1 + b_2 = b.\)

From this we infer \([a_1, b_1], [a_2, b_2] \in d_{ncd}([a, b]).\)

References

[23] V.S. Lakshmanan, N. Shiri, A parametric approach with deductive databases with uncertainty, IEEE Trans. on Knowledge and Data Eng., accepted for publication.

