Efficient Single-Heterojunction Al$_{0.27}$Ga$_{0.73}$As/GaAs p-i-n Photodiodes with 22-GHz Bandwidths

Abstract—We report on the design, fabrication, testing, and modeling of single-heterojunction Al$_{0.27}$Ga$_{0.73}$As/GaAs p-i-n photodiodes for

Manuscript received July 3, 1990; revised February 1, 1991. The review of this brief was arranged by Associate Editor G. Craford.

C. Johnsen, S. Sloan, D. Braun, M. Zurakowski, M. Lightner, F. Kellert, and G. Patterson are with the Microwave Technology Division, Hewlett-Packard Company, Santa Rosa, CA 95403.

J. L. Russell was with the Microwave Technology Division, Hewlett-Packard Company, Santa Rosa, CA 95403. He is now with the Department of Electrical Engineering, Ohio State University, Columbus, OH 43210.

R. Koo is with the Signal Analysis Division, Hewlett-Packard Company, Rohnert Park, CA 94928.

D. Derickson and J. Bowers are with the Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106.

IEEE Log Number 9100806.
I. Introduction

GaAs has been recognized for at least 30 years as an excellent candidate for near-infrared photodiodes [1]. Although 3-dB bandwidths \(f_{\text{3dB}} \) greater than 110 GHz have been achieved with Schottky barriers deposited on GaAs [2]–[5], considerable research continues on p-i-n photodiodes fabricated in GaAs. Results for some previously reported homojunction (HJ), single-heterojunction (SHJ), and double-heterojunction (DHJ) AlGaAs/GaAs p-i-n’s are included in Table I.

The purpose of this brief is to demonstrate that simple AlGaAs/GaAs p-i-n photodiodes can easily satisfy the exacting specifications on leakage current, reliability, efficiency, reflectivity, and bandwidth required in high-performance optical receivers. In particular, we report on the growth, fabrication, testing, and modeling on SHJ \(\text{Al}_{0.3}\text{Ga}_{0.7}\text{As}/\text{GaAs} \) p-i-n photodiodes with \(f_{\text{3dB}} \sim 22 \text{ GHz} \) and external quantum efficiency \(\eta \approx 73\% \).

II. Experimental Approach

Our p-i-n photodiode is illustrated schematically in Fig. 1. The combination of a GaAs intrinsic layer, or i layer, and an \(\text{Al}_{0.3}\text{Ga}_{0.7}\text{As} \):Be window layer allows for wavelength coverage between 700 and 870 nm. We use a mesa structure with an active area of \(\approx 1100 \mu\text{m}^2 \). The thickness of the GaAs i layer (see Fig. 1) is chosen to be 2 \(\mu\text{m} \) based on design rules [15] that should successfully balance capacitance, quantum efficiency, and photocarrier transit time. With a fully depleted 2-\(\mu\text{m} \) layer, we calculate \(\sim 68 \text{ fF of capacitance and } \sim 85\% \text{ quantum efficiency at 850 nm.} \)

The epitaxial layers are grown by molecular beam epitaxy on n'-GaAs substrates in the following order: a 0.05-\(\mu\text{m} \) GaAs:Si buffer layer (n-type, \(\sim 2 \times 10^{18} \text{ cm}^{-3} \)), a 2.0-\(\mu\text{m} \) GaAs i layer (undoped p-type, \(<10^5 \text{ cm}^{-3} \)) and a 1-\(\mu\text{m} \) \(\text{Al}_{0.3}\text{Ga}_{0.7}\text{As} \):Be window layer (p-type, \(2 \times 10^{18} \text{ cm}^{-3} \)). As shown in Fig. 1, photodiodes are fabricated by etching mesa structures and passivating the sidewalls with polyimide [16]. Using vias in the polyimide, bond pads are plated up from ring-shaped Ti/Pt/Ag/Au metallization. The photodiodes include a single-layer silicon nitride antireflection coating. The silicon nitride coating is specified as 115 ± 5 nm thick with a refractive index at 850 nm of 1.85 ± 0.02.

All dc and high-frequency measurements are reported at 5-V reverse bias. Reflected optical power is measured with a swept modulation frequency technique that has been described previously [17]. Bandwidths are measured by illuminating packaged photodetectors with 1-ps pulses from a 80-MHz mode-locked 850-nm dye laser. The resultant photocurrent is viewed on a Hewlett-Packard spectrum analyzer.

III. Results

For a sample of 239 photodiodes, the average leakage current is 86 ± 46 pA, corresponding to a mean leakage current density of \(8 \times 10^{-7} \text{ A/cm}^2 \). Since the stability of this leakage current is critical for optical receivers, our photodiodes have been subjected to high-temperature operating life reliability tests at 175°C and 5-V reverse bias. In a sample of 40 photodiodes, we observed no failures (defined as a doubling of the leakage current) after 1000 h.

At 1 MHz, the photodiodes have a typical measured capacitance of 98 ± 6 fF, higher than the calculated value by \(\sim 30 \text{ fF} \). The optimum response is represented by a junction capacitance \(C_J = 98 \text{ fF} \), a depletion region capacitance \(C_R = 98 \text{ fF} \), and a series resistance \(R_S = 100 \Omega \), and series resistance \(R_L = 50 \Omega \). As shown in the inset of Fig. 3, the transit time of the photodiode is represented by a triangular current pulse with a 20-ps duration. Following procedures reported by Wang [18] and Parker [13], the response of the circuit to the current pulse is calculated by SPICE computer simulation. The results are included in Fig. 2 for a range of series resistance values: 0.5 \(\leq R_L \leq 25 \Omega \). A series resistance \(R_L = 10 \Omega \) provides good agreement between the model and measured data.

We conclude that our photodiode bandwidth is limited by both the photocarrier transit time and the series resistance \(R_L \). In addition, our analysis neglects that a fraction of the photocarriers are...
todiodes are now being used in commercial optical receivers. Typically, a photodiode measures 100 fF of capacitance, 90 pA of leakage current, 73% external quantum efficiency, <2% reflectivity, and a 22-GHz bandwidth. A transit time of ~10 ps ensures a reasonable simulation of the bandwidth data. These photodiodes are now being used in commercial optical receivers.

Fig. 2. Spectrum analyzer measurement of photodiode bandwidth. High-frequency circuit simulations of the photodiode are shown as solid lines for: R_s = 0.5, 10, and 25 Ω.

Fig. 3. Photodiode circuit model used for high-frequency circuit simulations. The inset shows a triangular current pulse of 20-ps duration.

generated in the bottom n+ GaAs layer (see Fig. 1). Apparently, the diffusion length of these photocarriers is sufficiently short to support our measured bandwidth of ~22 GHz. For ultimate bandwidth performance, however, one of the DHJ designs referenced in Table I should be employed.

V. SUMMARY

In summary, we have manufactured SHJ Al_0.27Ga_0.73As/GaAs p-i-n photodiodes. The photodiodes were grown by MBE and fabricated as mesa structures. At 5-V reverse bias and 850 nm, we typically measure 100 fF of capacitance, 90 pA of leakage current, 73% external quantum efficiency, <2% reflectivity, and 22-GHz bandwidths. A transit time of ~20 ps and a series resistance of 10 Ω give a reasonable simulation of the bandwidth data. These photodiodes are now being used in commercial optical receivers.

ACKNOWLEDGMENT

The authors gratefully acknowledge fabrication work by M. Stone, C. Conner, and M. Planting, and helpful conversations with K. Chan, S. Y. Wang, R. Bray, and C. Stolte.

REFERENCES