Below 67.3 K MnF₂ is a uniaxial antiferromagnet with spins aligned along the c axis. At helium temperatures and in applied magnetic fields H_o greater than 93 kOe along the c axis, the spins flop into the basal plane. Ferrous ions may be grown substitutionally in single crystals of MnF₂. Because of the greater single-ion anisotropy of Fe²⁺ as compared with that of Mn²⁺, the spin-flop field H_{sf} increases with iron concentration and is 105 kOe for 1% Fe:MnF₂.

Hyperfine interactions in Fe²⁺-doped MnF₂ at 4.2 K and zero applied field have been reported by Wertheim et al., who found that the saturation magnetic hyperfine field at 57Fe nuclei H_{hf} in Fe:MnF₂ is 227.5 kOe. In this paper we report Mössbauer measurements of hyperfine interactions in single crystals of Fe-doped MnF₂ at 4.2 K and in external magnetic fields above and below the spin-flop transition. From the change in the magnetic hyperfine field in going through the spin flop, we derive a value for $g_\perp = 2.13$ is derived, in good agreement with theory.

II. EXPERIMENTAL RESULTS

Single crystals of Fe²⁺-doped MnF₂ were grown from a melt of MnF₂ and isotopically enriched FeF₂ by Optovac, Inc. The single crystals were oriented and thin (6–10 mil) slices were cut perpendicular to the c axis. Mössbauer spectra were taken in a conventional constant-acceleration spectrometer operating in the normalized mode. Measurements for $H_o < 75$ kOe were made in a superconducting solenoid. Spectra at higher fields were obtained using a Bitter solenoid.

At $T=4.2$ K and $H_o=0$ and for γ rays propagating parallel to the c axis, we observe a spectrum consisting of three lines ($\Delta m=0$ lines are forbidden and the two inner lines are superimposed) which yields the magnetic hyperfine field $H_{hf} = 228$ kOe || c and the electric quadrupole splitting parameters $V_{zz}(\perp c) = -2.80$ mm/sec and $\eta = 0.5$. For $H_o || c$ but less than H_{sf} we observe a spectrum which is the superposition of spectra corresponding to the two sublattices, one with an effective field at the nucleus $H_n = H_{hf} + H_o$ and the other with $H_n = H_{hf} - H_o$. For H_o greater than H_{sf}, the spectrum changes dramatically due to the appearance of the $\Delta m=0$ lines and may be interpreted in terms of the magnetic field at the nucleus $H_n = H_o + H_{hf}$, with $H_o || c$ and $H_{hf} \perp c$ (Fig. 1). In MnF₂, there are two crystallographic sites for the transition-metal ions, oriented at 90° with respect to each other and with equivalent orthorhombic symmetry. The principal axes
of the electric field gradient V_{zz} for Fe$^{+\ +}$ in these sites are [110] for one sublattice and [110] for the other. If the spins flop to a [100] direction, the angle between V_{zz} and the magnetic hyperfine field is the same for both sites and we expect a simple six-line spectrum. If the spins flop to a [110] direction, then for one site $V_{zz} \parallel H_{hf}$ and for the other site $V_{zz} \perp H_{hf}$ and we expect a superposition of two spectra. Furthermore, because of the orthorhombic local symmetry, H_{hf} should not be the same for both sites. The superposition of two spectra is in fact expected for the spins lying in any direction other than [100]. From comparisons of the observed spectrum (Fig. 1) with calculated spectra, we hypothesize a two-domain model, in which one domain has spins oriented along [100], and the other domain has spins not oriented along [100], but probably [110]. We then have three superimposed spectra all with $V_{zz} = -2.8$ mm/sec and $\eta = 0.5$ and with $H_{hf} = -320$ kOe for spins along [100] and $H_{hf} = -340$ kOe for spins along [110] $\perp V_{zz}$, and -260 kOe for spins along [110] $\parallel V_{zz}$.

III. DISCUSSION

The magnetic hyperfine field at the nucleus in Fe$^{+\ +}$ in MnF$_2$ may be written

$$H_{hf} = H_c + H_L + H_D$$

where H_c is the core polarization term, H_L is the orbital contribution term, and H_D is the dipolar term. The value of H_{hf} above the spin flop depends on the direction of the spins on the basal plane. In going through the spin flop H_c does not change and so the difference between H_{hf}^c and H_{hf}^s is due to changes in the values of H_L and H_D. Therefore,

$$\Delta H_{hf} = H_{hf}^s - H_{hf}^c = \Delta H_D + \Delta H_L.$$

ΔH_D for Fe$^{+\ +}$ in MnF$_2$ is estimated using the wave function for the ground state of Fe$^{+\ +}$ in MnF$_2$ given by Johnson and Ingalls. When the spins flop to the [100] direction, we obtain $\Delta H_D = +30$ kOe. Since $\Delta H_{hf} = -320 + 228 = -92$ kOe, we obtain $\Delta H_L = -122$ kOe. When the spins flop to the [110] direction we have two values of H_{hf} corresponding to the two orientations relative to V_{zz}. For $H_{hf} || V_{zz}$ we calculate $\Delta H_D = +78$ and then get $\Delta H_L = -110$. For $H_{hf} \perp V_{zz}$ we calculate $\Delta H_D = 0$ and get $\Delta H_L = -112$. ΔH_L is related to the g factors by the expression

$$\Delta H_L = 2\beta(\gamma^2)S(g_{||} - g_{\parallel}),$$

where $g_{||}$ is the component of the gyromagnetic factor in the direction of H_{hf} in the flopped phase (i.e., $\perp c$) and g_{\parallel} is that $|| c$. From our data we obtain $g_{||} - g_{\parallel} = +0.13 \pm 0.01$ for the three different cases. $g_{||}$ for Fe$^{+\ +}$ in MnF$_2$ has been measured by far-infrared spectroscopy giving $g_{||} = 2.30$, hence $g_{\parallel} = g_{||} = 2.17$. These values for g may be compared with values calculated using crystal-field theory and parameters obtained from optical and Mössbauer experiments. These parameters include the spin-orbit coupling and the crystal-field splittings. We calculate $g_{||} - g_{\parallel} = +0.16$ for spins parallel to V_{zz} and $g_{||} - g_{\parallel} = +0.15$ for spins perpendicular to V_{zz} in good agreement with the experimental results.

* Visiting scientist, Francis Bitter National Magnet Laboratory, MIT, Cambridge, Mass. 02139.
† Present address: Applied Physics Laboratory, Johns Hopkins University, Silver Spring, Md.
‡ Supported by the U.S. Air Force Office of Scientific Research.
ΔH_D is proportional to the iron magnetic moment which does not change when the spins flop at low temperature.
\[T. Bernstein, A. Missetich, and B. Lax (unpublished). \]