sustain'ability

n., meeting the needs of the present without compromising the ability of future generations to meet their own needs.
sustain'a-bil'ity n., meeting the needs of the present without compromising the ability of future generations to meet their own needs (from the 1987 Report of the Brundtland Commission)

Front Cover Photos (clockwise)
Solar Panels. The new photovoltaic energy system on the rooftop of the Engineering West building was installed at no expense to Cal Poly. SunEdison owns, operates, and maintains the system, which provides enough energy to power twenty US homes annually. Photo courtesy of Cheryl Mollan

Organic Farm. Agricultural Science major Maria Barrera inspects the chard crop at the Cal Poly Organic Farm--11 acres for vegetable and fruit production, all of which are CCOF Certified Organic. Photo courtesy of Hunter Francis

Thailand. Cal Poly's Engineers without Borders team members, Meghann Chell and Patricia Compas, investigating water source in Mae Nam Khun, Thailand. The team partnered with the northern hill tribe community to improve drinking water quality through appropriate technology. Photo courtesy of Stephen Forbes

Back Cover Photos (clockwise)
Heidelberg Press. Graphic Communication students Rhiannon Merritt, Shane Anderson, Cindy Feng, Theresa Block, Matt Hensch, Janice Go and Jeremy Koeppen hold "process-free" printing plates in front of Cal Poly's new Heidelberg Speedmaster printing press. The industry is working to adopt more sustainable practices such as reducing waste and eliminating chemicals from its printing processes. The four-color press was donated in January 2007 by Heidelberg USA. Photo courtesy of Brian Lawler

Pier. The close proximity of the pier at Avila Beach to the Cal Poly campus allows for routine class and research use of the facility. The pier is home to the Center for Coastal Marine Sciences marine field station. Student Jessi Kershner and faculty member Nikki Adams deploy sensors to measure ultraviolet radiation in the water column. Photo courtesy of College of Science and Mathematics.

Solar House. Cal Poly's award-winning Solar Decathlon house is illuminated during the competition on the National Mall. The Cal Poly entry was under the direction of Architecture Professors Robert Peña and Sandra Stannard and Mechanical Engineering Professor Jesse Maddren. Photo courtesy of College of Architecture and Environmental Design Archive: Ray Ladd/Josef Kasperovich

Students on Hill. Exploring Cal Poly's back country on foot is one aspect of bioregional study in UNIV 330 Cal Poly Land: Nature, Technology and Society. Photo courtesy of Steven Marx

The 2007-2009 Cal Poly Catalog
Copies of the Catalog may be purchased at El Corral Bookstore on the Cal Poly campus or at the Cal Poly Downtown store located at 959 Higuera Street in San Luis Obispo. To order by mail, please call 805-756-0144 or 800-367-0771 toll free in California. You may fax your order to 805-756-5320 (after ascertaining shipping/handling) or order on the web at www.elcorralbookstore.com. The Catalog is also available on the web at http://www.calpoly.edu/~acadprog in downloadable format.

The Catalog is prepared in the office of the Vice Provost for Academic Programs and Undergraduate Education, W. David Conn. The Academic Programs Analyst is Mary Whiteford, and Catalog Editor, Kay Jensen. Special thanks to: Shirley Howell, for cover design, and Noel Soliz, Office of State Publishing.

Changes in Rules and Policies
Although every effort has been made to assure the accuracy of the information in this catalog, students and others who use this catalog should note that laws, rules, and policies change from time to time and that these changes may alter the information contained in this publication. Changes may come in the form of statutes enacted by the Legislature, rules and policies adopted by the Board of Trustees of the CSU, by the Chancellor or designee of the CSU, or by the President or designee of the campus. It is not possible in a publication of this size to include all of the rules, policies and other information that pertain to students, the institution, and the California State University. More current or complete information may be obtained from the appropriate department, school, or administrative office.

Nothing in this catalog shall be construed as, operate as, or have the effect of an abridgment or a limitation of any rights, powers, or privileges of the Board of Trustees of the California State University, the Chancellor of the CSU, or the President of the campus. The Trustees, the Chancellor, and the President are authorized by law to adopt, amend, or repeal rules and policies which apply to students. This catalog does not constitute a contract or the terms and conditions of a contract between the student and the institution or the CSU. The relationship of the student to the institution is one governed by statute, rules, and policy adopted by the Legislature, the Trustees, the Chancellor, the President and their duly authorized designees.
Table of Contents

Welcome to Cal Poly
- Mission Statement 6
- Learning Objectives 6
- Quick Facts .. 7
- Academic Calendar 8
- Guide to Using the Catalog.......................... 10
- Academic Programs 12
- Accreditation ... 15

Rights and Responsibilities of Individuals 16
- Statement on Diversity 16
- Policies on the Rights of Individuals 16
- Non-discrimination Policy 16
- Academic Freedom 17
- Student Academic Rights &Responsibilities 17
- Use and Release of Student Information 18
- Responsible Use of Information Technology Resources.. 18
- E-Mail – An Official Means of Communication to Students .. 18
- Accessibility of Cal Poly Electronic and Information Technology Resources 18

Academic Resources and Support Services
- Academic Advising 19
- Biotechnology Programs 19
- Center for Teaching and Learning 20
- Computing at Cal Poly 20
- Endowed Chairs and Professors 20
- Health Careers–Preprofessional Preparation 20
- International Education and Programs 20
- International Student Programs and Services ... 23
- Library Services 23
- PREFACE .. 24
- Research and Project Involvement 24
- Service Learning and Civic Engagement 24
- Sustainability Practices 25
- University Honors Program 25
- University Studies 25
- Writing Skills Program 25
- Alumni Association 26
- Cal Poly Corporation 26
- Performing Arts Center 26
- University Advancement 26
- University Police 26

Student Affairs
- Associated Students, Inc. 28
- Career Services 30
- Dean of Students 31
- Disability Resource Center 31
- Health and Counseling Services 31
- Housing and Residential Life 32
- Office of Student Rights and Responsibilities ... 33
- Parent Program 33
- Student Academic Services 33
- Student Life and Leadership 34
- Testing Services 35

Undergraduate Admissions
- Cal Poly’s Admission Requirements 37
- CSU Eligibility Requirements 37
- Freshman Requirements 37
- Transfer Requirements 38

Application Procedures
- Test Requirements 39
- Cal Poly Application Filing Periods 39

Other Information
- Returning Students 40
- International (Foreign) Student – General Admission Requirements 40
- Consistency with State Regulations 41

Fees, Expenses and Financial Aid
- Fees and Expenses 42
 - Registration Fees Per Quarter 42
 - Refund of Fees Including Nonresident Tuition 42
 - Fees and Debts Owed to the University 42
 - Credit Cards 43
 - Student Fee Waivers 43
 - Procedure for Establishment of a Student Body Fee .. 43

Financial Aid
- Typical Student Expenses 44
- Cancellation of Registration or Withdrawal from the Institution and Financial Aid 44
- University Scholarships 44
- Grants .. 45
- Employment .. 45
- Loans ... 46

Academic Requirements and Policies
- Academic Placement 47
 - English Placement Test (EPT) 47
 - Entry Level Mathematics (ELM) Exam 47
 - Cal Poly Mathematics Placement Exam (MAPE) 48
 - Evaluation of Transfer Credit 49
- Other Academic Credit 49

General Requirements – Bachelor's Degree
- Choice of Catalog 52
- General Graduation Requirements 53
- Graduation Writing Requirement 54
- Senior Project .. 54
- Other Information 55
- Academic Minors 55
- Academic Honors 55
- Blended BS/MS Programs 55
- Change of Major 55
- Course Substitution 55
- Double Majors .. 55
- Graduate Credit Taken by Undergraduates 56
- Second Bachelor's Degree 56
- Student Classification 56

General Education (GE)
- U.S. Cultural Pluralism (USCP) 61

Registration
- Enrollment Policy 62
- Class Attendance 62
College of Engineering .. 176
Aerospace Engineering ... 185
Biomedical and General Engineering 188
Civil and Environmental Engineering 192
Computer Engineering ... 197
Computer Science .. 199
Electrical Engineering ... 204
Industrial and Manufacturing Engineering 208
Materials Engineering ... 213
Mechanical Engineering .. 215

College of Liberal Arts .. 218
Art and Design ... 220
Communication Studies ... 223
English ... 225
Ethnic Studies ... 228
Graphic Communication ... 230
History ... 233
Humanities ... 235
Journalism ... 236
Liberal Studies ... 237
Modern Languages and Literatures 239
Music ... 241
Philosophy .. 243
Political Science ... 245
Psychology and Child Development 248
Social Sciences ... 253
Theatre and Dance ... 256
Western Intellectual Tradition 258
Women's Studies ... 259

College of Science and Mathematics 260
Biological Sciences .. 264
Chemistry and Biochemistry 270
Kinesiology ... 274
Mathematics .. 278
Physics ... 281
Statistics ... 284

Continuing Education .. 286
Intercollegiate Athletics Department 288

Courses ... 289

The California State University 472
University Administration, Faculty and Staff 474

Appendix

Higher Education Act (HEA) 502
Privacy Rights of Students in Education Records 502
Completion/Graduation Rates 502
Equity in Athletics Disclosure Act (EADA) 502
Campus Security Report (Clery Act) 502
Institutional and Financial Assistance Information 502
Campus Smoking Policy ... 503
Career Placement ... 503
Military Selective Services Act 503
Determination of Residence for Nonresident Tuition Purposes ... 503
Use of Social Security Number 504
Student Conduct ... 504
Immigration Requirements for Licensure 505
Average Support Cost of Education 505

Index .. 506

Campus Map .. Inside Back Cover
Welcome to Cal Poly

A Message from President Baker

As Cal Poly embarks upon its second century, we are firmly committed to the values and traditions that distinguished our first century, while continually improving our programs to be sure our students are educated to respond thoughtfully to the complex and challenging needs of society.

Undergraduate Emphasis: As a predominantly undergraduate university, Cal Poly is known nationally for the quality of its baccalaureate degree programs in a variety of disciplines. We also offer outstanding masters degree programs.

Residential Campus: Cal Poly is a residential campus. Our students find that the campus environment affords them time, resources and settings in which to discover values and interests—whether in the classroom, clubs, residence halls, or other extracurricular activities.

Polytechnic Mission: At Cal Poly, we recognize that the liberal arts and sciences provide a critical and indispensable foundation for education in all academic disciplines and for the broader life of the University, as a living and learning community. At the same time, from its inception, Cal Poly has given particular emphasis to instruction in polytechnic disciplines. We provide opportunities for students in all programs to become familiar with the worlds of science and technology. We also prepare many of our graduates for careers in applied, scientific and technological fields.

Information Technology to Support Teaching and Learning: Cal Poly is a leader in the use of information technology to enhance teaching and learning. Students and faculty have access to Internet resources, to course information, to library resources and to advanced software tools 24 hours a day. The Internet also permits us to offer courses to students temporarily off campus for various reasons and to provide continuing education for practicing professionals.

Educational Philosophy: Cal Poly is committed to excellence in teaching and learning. In all disciplines we seek to provide a student-centered, learner-focused education, facilitated by a low student-teacher ratio in classes conducted primarily by full-time, regular faculty. The phrase, "Learn by Doing," also captures an essential quality of a Cal Poly education. At Cal Poly, classroom instruction is complemented by practical, "hands-on" learning in the laboratory, the studio and out in the field.

Diversity: As a campus we welcome a diversity of ideas and cultures and we encourage international and multi-cultural education in order to prepare students for successful participation and competition in a diverse world and a global workforce. We believe that diversity of our students, faculty, and staff enlivens and enriches the University educational environment.

Cal Poly has at its core an educational philosophy that will sustain us far into the future. Of course, these values alone do not constitute our greatest strength. That strength rests in the quality of the students, faculty, staff, alumni, and friends—who make up, and who, indeed, are the University.

Warren J. Baker
President

2007-2009 Cal Poly Catalog
Mission Statement

Cal Poly fosters teaching, scholarship, and service in a learn-by-doing environment where students and faculty are partners in discovery. As a polytechnic university, Cal Poly promotes the application of theory to practice. As a comprehensive institution, Cal Poly provides a balanced education in the arts, sciences, and technology, while encouraging cross-disciplinary and co-curricular experiences. As an academic community, Cal Poly values free inquiry, cultural and intellectual diversity, mutual respect, civic engagement, and social and environmental responsibility.

Learning Objectives

All students who complete an undergraduate or graduate program at Cal Poly should be able to:

- Think critically and creatively
- Communicate effectively
- Demonstrate expertise in a scholarly discipline and understand that discipline in relation to the larger world of the arts, sciences, and technology
- Work productively as individuals and in groups
- Use their knowledge and skills to make a positive contribution to society
- Make reasoned decisions based on an understanding of ethics, a respect for diversity, and an awareness of issues related to sustainability
- Engage in lifelong learning
Quick Facts

BASICS
- **Name:** California Polytechnic State University, known as Cal Poly
- **President:** Warren J. Baker
- **Location:** San Luis Obispo - about 230 miles south of San Francisco, 200 miles north of Los Angeles, 10 miles from the Pacific Ocean
- **Affiliation:** Part of the 23-campus California State University System
- **Guiding philosophy:** "Learn by Doing"
- **Terms:** Four 11-week quarters per year
- **Size:** 6,051 acres, plus 3,200-acre Swanton Pacific Ranch and 500-acre Valencia Property in Santa Cruz County

COLLEGES
- College of Agriculture, Food and Environmental Science
- College of Architecture and Environmental Design
- Orfalea College of Business
- College of Education
- College of Engineering
- College of Liberal Arts
- College of Science and Mathematics

ACADEMICS
- **Accreditation:** Cal Poly is fully accredited by the Western Association of Schools and Colleges (WASC). 26 academic programs are accredited by discipline-related accrediting agencies.
- **Programs offered:** 65 bachelor's, 26 master's, 1 doctorate of education in association with UC Santa Barbara, 65 minors, 14 credentials

STUDENT BODY
- **Profile:** Cal Poly attracts many of California's best students, and admission is highly competitive. The university receives more than 35,000 applications a year.
- **Enrollment:**
 - Undergraduate: 17,777
 - Post-Baccalaureate: 145
 - Graduate: 800
 - Total: 18,722
- **Stats:** men, 56.3%; women, 43.7%; non-white, 23.3%
- **Average Age:** 21
- **Placement:** 92-96% of graduates are employed full time or attend graduate school within one year after graduation.

FACULTY
- **Faculty (including part-time):** about 1,203
- **Student-faculty ratio:** 19 to 1

HISTORY
- **Founded as:** Vocational high school
- **Founding legislation signed:** March 8, 1901
- **First day of class:** October 1, 1903
- **First bachelor's degree awarded:** May 28, 1942
Academic Calendar 2007–2009

Please note: This is not intended to be construed as an employee work calendar.

SUMMER TERM 2007

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 21</td>
<td>Beginning of university year</td>
</tr>
<tr>
<td>Thursday</td>
<td>Beginning of summer term – classes begin</td>
</tr>
<tr>
<td>July 2</td>
<td>Last day to obtain ePermission number and add a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to drop a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to select or change to CR/NC</td>
</tr>
<tr>
<td>July 4</td>
<td>Academic holiday – Independence Day</td>
</tr>
<tr>
<td>July 5</td>
<td>End of second week of instruction</td>
</tr>
<tr>
<td>July 12</td>
<td>End of third week of instruction – Census date</td>
</tr>
<tr>
<td>August 9</td>
<td>End of seventh week of instruction</td>
</tr>
<tr>
<td>August 28</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>August 29–31</td>
<td>Final examination period</td>
</tr>
<tr>
<td>August 31</td>
<td>End of summer term</td>
</tr>
<tr>
<td>September 1–9</td>
<td>Academic holiday</td>
</tr>
</tbody>
</table>

FALL TERM 2007

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 10</td>
<td>Beginning of fall term (faculty only)</td>
</tr>
<tr>
<td>September 17</td>
<td>Fall term classes begin</td>
</tr>
<tr>
<td>September 26</td>
<td>Last day to obtain ePermission number and add a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to drop a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to select or change to CR/NC</td>
</tr>
<tr>
<td>September 28</td>
<td>End of second week of instruction</td>
</tr>
<tr>
<td>October 5</td>
<td>End of third week of instruction – Census date</td>
</tr>
<tr>
<td>November 2</td>
<td>End of seventh week of instruction</td>
</tr>
<tr>
<td>November 12</td>
<td>Academic holiday – Veterans’ Day observed</td>
</tr>
<tr>
<td>November 21–25</td>
<td>Academic holiday – Thanksgiving</td>
</tr>
<tr>
<td>November 30</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>December 3–7</td>
<td>Final examination period</td>
</tr>
<tr>
<td>December 8</td>
<td>Mid-Year Commencement</td>
</tr>
<tr>
<td>December 9– January 6</td>
<td>End of fall term</td>
</tr>
<tr>
<td></td>
<td>Academic holiday</td>
</tr>
</tbody>
</table>

WINTER TERM 2008

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 7</td>
<td>Beginning of winter term – classes begin</td>
</tr>
<tr>
<td>January 16</td>
<td>Last day to obtain ePermission number and add a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to drop a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to select or change to CR/NC</td>
</tr>
<tr>
<td>January 18</td>
<td>End of second week of instruction</td>
</tr>
<tr>
<td>January 21</td>
<td>Academic holiday – Martin Luther King, Jr.’s Birthday observed</td>
</tr>
<tr>
<td>January 28</td>
<td>End of third week of instruction – Census date</td>
</tr>
<tr>
<td>February 15, Friday</td>
<td>Academic holiday – George Washington’s Birthday observed</td>
</tr>
<tr>
<td>February 26</td>
<td>End of seventh week of instruction</td>
</tr>
<tr>
<td>March 14</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>March 17–21</td>
<td>Final examination period</td>
</tr>
<tr>
<td>March 24</td>
<td>*Evaluation Day, end of winter term</td>
</tr>
<tr>
<td>March 25–30</td>
<td>Academic holiday</td>
</tr>
</tbody>
</table>

SPRING TERM 2008

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 31</td>
<td>Academic holiday – Cesar Chavez’s Birthday</td>
</tr>
<tr>
<td>April 1, Tuesday</td>
<td>Beginning of spring term – classes begin</td>
</tr>
<tr>
<td>April 10</td>
<td>Last day to obtain ePermission number and add a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to drop a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to select or change to CR/NC</td>
</tr>
<tr>
<td>April 14</td>
<td>End of second week of instruction</td>
</tr>
<tr>
<td>April 21</td>
<td>End of third week of instruction – Census date</td>
</tr>
<tr>
<td>May 19</td>
<td>End of seventh week of instruction</td>
</tr>
<tr>
<td>May 26</td>
<td>Academic holiday – Memorial Day observed</td>
</tr>
<tr>
<td>May 27, Tuesday</td>
<td>Classes follow a Monday Schedule</td>
</tr>
<tr>
<td>June 6</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>June 9–13</td>
<td>Final examination period</td>
</tr>
<tr>
<td>June 14</td>
<td>Commencement; end of spring term</td>
</tr>
<tr>
<td>June 15–18</td>
<td>Academic holiday</td>
</tr>
</tbody>
</table>

* Faculty work day; not a class day.
SUMMER TERM 2008

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 23</td>
<td>Beginning of university year</td>
</tr>
<tr>
<td></td>
<td>Beginning of summer term – classes begin</td>
</tr>
<tr>
<td>July 2</td>
<td>Last day to obtain ePermission number and add a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to drop a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to select or change to CR/NC</td>
</tr>
<tr>
<td>July 4</td>
<td>Academic holiday – Independence Day</td>
</tr>
<tr>
<td>July 7</td>
<td>End of second week of instruction</td>
</tr>
<tr>
<td>July 14</td>
<td>End of third week of instruction – Census date</td>
</tr>
<tr>
<td>August 11</td>
<td>End of seventh week of instruction</td>
</tr>
<tr>
<td>August 26</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>August 27–29</td>
<td>Final examination period</td>
</tr>
<tr>
<td>August 29</td>
<td>End of summer term</td>
</tr>
<tr>
<td>August 30–</td>
<td>Academic holiday</td>
</tr>
<tr>
<td>September 7</td>
<td></td>
</tr>
</tbody>
</table>

FALL TERM 2008

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 8</td>
<td>Beginning of fall term (faculty only)</td>
</tr>
<tr>
<td>September 15</td>
<td>Fall term classes begin</td>
</tr>
<tr>
<td>September 24</td>
<td>Last day to obtain ePermission number and add a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to drop a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to select or change to CR/NC</td>
</tr>
<tr>
<td>September 26</td>
<td>End of second week of instruction</td>
</tr>
<tr>
<td>October 3</td>
<td>End of third week of instruction – Census date</td>
</tr>
<tr>
<td>October 31</td>
<td>End of seventh week of instruction</td>
</tr>
<tr>
<td>November 11</td>
<td>Academic holiday – Veterans’ Day</td>
</tr>
<tr>
<td>November 25</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>November 26–30</td>
<td>Academic holiday – Thanksgiving</td>
</tr>
<tr>
<td>December 1-5</td>
<td>Final examination period</td>
</tr>
<tr>
<td>December 6</td>
<td>Mid-Year Commencement</td>
</tr>
<tr>
<td></td>
<td>End of fall term</td>
</tr>
<tr>
<td>December 7–</td>
<td>Academic holiday</td>
</tr>
<tr>
<td>January 4</td>
<td></td>
</tr>
</tbody>
</table>

WINTER TERM 2009

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 5</td>
<td>Beginning of winter term – classes begin</td>
</tr>
<tr>
<td>January 14</td>
<td>Last day to obtain ePermission number and add a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to drop a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to select or change to CR/NC</td>
</tr>
<tr>
<td>January 16</td>
<td>End of second week of instruction</td>
</tr>
<tr>
<td>January 19</td>
<td>Academic holiday – Martin Luther King, Jr.’s Birthday observed</td>
</tr>
<tr>
<td>January 26</td>
<td>End of third week of instruction – Census date</td>
</tr>
<tr>
<td>February 13,</td>
<td>Classes follow a Monday Schedule</td>
</tr>
<tr>
<td>February 16</td>
<td>Academic holiday – George Washington’s Birthday observed</td>
</tr>
<tr>
<td>February 24</td>
<td>End of seventh week of instruction</td>
</tr>
<tr>
<td>March 13</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>March 16-20</td>
<td>Final examination period</td>
</tr>
<tr>
<td>March 23</td>
<td>*Evaluation Day, End of winter term</td>
</tr>
<tr>
<td>March 24–29</td>
<td>Academic holiday</td>
</tr>
</tbody>
</table>

SPRING TERM 2009

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 30</td>
<td>Beginning of spring term – classes begin</td>
</tr>
<tr>
<td>March 31</td>
<td>Academic holiday – Cesar Chavez’s Birthday</td>
</tr>
<tr>
<td>April 9</td>
<td>Last day to obtain ePermission number and add a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to drop a class via CPReg</td>
</tr>
<tr>
<td></td>
<td>Last day to select or change to CR/NC</td>
</tr>
<tr>
<td>April 13</td>
<td>End of second week of instruction</td>
</tr>
<tr>
<td>April 20</td>
<td>End of third week of instruction – Census date</td>
</tr>
<tr>
<td>May 18</td>
<td>End of seventh week of instruction</td>
</tr>
<tr>
<td>May 25</td>
<td>Academic holiday – Memorial Day observed</td>
</tr>
<tr>
<td>June 5</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>June 8–12</td>
<td>Final examination period</td>
</tr>
<tr>
<td>June 13</td>
<td>Commencement</td>
</tr>
<tr>
<td></td>
<td>End of spring term</td>
</tr>
<tr>
<td></td>
<td>End of university year (faculty only)</td>
</tr>
</tbody>
</table>
Academic terminology and a university catalog can be confusing to someone first entering the University. This section explains some of the jargon you will quickly come to know and explains briefly how the catalog is organized.

For the most current information, students are encouraged to visit the Cal Poly web pages shown above and to consult with their academic advisors.

College and Departments
The faculty of Cal Poly is organized into academic departments, and the departments are grouped into Colleges. All of the degree programs offered by the University are described in the catalog. Sections for each College follow in alphabetical order. Departments are arranged alphabetically within the appropriate College.

Academic Programs. Please refer to the following pages for a listing of academic programs.

Degrees
A degree is an academic rank which the University confers on a student who satisfactorily completes a designated curriculum, or program of study. Cal Poly grants undergraduate degrees — also called baccalaureate degrees — master's degrees, the first graduate degree and the doctorate of education.

At the undergraduate level, Cal Poly grants the
* Bachelor of Arts (BA),
* Bachelor of Science (BS),
* Bachelor of Architecture (BArch), and
* Bachelor of Landscape Architecture (BLA).

At the graduate level, Cal Poly grants the
* Master of Arts (MA),
* Master of Science (MS),
* Master of Business Administration (MBA),
* Master of City and Regional Planning (MCRP), and
* Master of Public Policy (MPP).

Majors
A major is a program of study that provides students with the knowledge, skills and experience necessary to pursue a specific career or advanced study and leads to a degree in that subject. Each major is offered in an academic department.

Cal Poly students select a major at the time they apply for admission. A complete listing of majors, arranged by College and department, may be found on page 12.

General requirements for bachelor's degrees are given in "Academic Requirements," and for master's degrees in "Graduate Programs." The specific requirements for a particular degree program are listed under the academic department that offers the degree.

The curriculum display for each bachelor's degree program shows courses arranged by Major, Support, General Education and Electives. Some programs also show a curriculum display with the suggested order for taking courses and group them into the traditional four years for an undergraduate program (five years for BArch and BLA).

These curriculum displays are useful guides, but many students find, for a variety of reasons, that they need more than four years to complete their bachelor's programs. In planning their programs, students should rely on the academic advising available in their departments and/or colleges, as well as on the information in this catalog.

Academic Advising. Information regarding academic advising is available on page 19.

Courses
Descriptions of Cal Poly courses are located in the back half of the catalog, arranged alphabetically by course prefix (an abbreviation that represents the subject). The courses in a bachelor's degree curriculum are identified as major courses, support courses, general education, and electives.

Major courses are designed to provide competence in the professional field in which a degree is earned. They are usually offered by the academic department in which the degree program is offered, but they may include courses from other departments.

Support courses provide background needed for major courses and are usually offered by departments other than the department in which the major is offered. For example, most majors in engineering and in the sciences require support courses in mathematics.
General Education (GE) courses provide a common foundation of knowledge for all undergraduate programs. GE requirements are described in detail on page 56.

Electives are courses that students can choose simply to pursue their own interests.

Experimental courses are approved after the publication of the catalog and are distinguished by an "X" in front of the course number.

Prerequisites are one or more courses that must be completed or other knowledge, skills, or standards that must be demonstrated before a student is permitted to take certain courses. Prerequisites (if any) for a course are listed in the Catalog. Some prerequisites have their own prerequisites, forming a string of courses that must all be taken. The catalog course description shows the last course in the prerequisite string of courses. For example, ME 212 Engineering Dynamics has prerequisites of MATH 241 and ME 211. MATH 241 requires MATH 143, which requires MATH 141. ME 211 requires ME 241 and PHYS 131. To enroll in ME 212, students must have successfully completed MATH 241, 143, 142, 141 and ME 211 and PHYS 131.

COURSE NUMBERING SYSTEM
Courses are generally numbered according to the plan shown below.

- **010-099**: Nondegree credit or short courses.
- **100-299**: Courses primarily for freshman and sophomore students.
- **300-399**: Courses primarily for advanced undergraduate students with prerequisite coursework.
- **400-499**: Courses for advanced undergraduates. Certain 400-level courses can be used in graduate programs. See page 76.
- **500-599**: Graduate courses.

MODES OF INSTRUCTION
The mode of instruction is included in each course description; for supervision courses, no mode is indicated. Some courses have more than one mode of instruction.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Class meets weekly for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>2 hours per unit of credit.</td>
</tr>
<tr>
<td>Laboratory</td>
<td>3 hours per unit of credit.</td>
</tr>
<tr>
<td>Lecture</td>
<td>1 hour per unit of credit.</td>
</tr>
<tr>
<td>Seminar</td>
<td>1 hour per unit of credit.</td>
</tr>
<tr>
<td>Supervision</td>
<td>3 hours per week per unit of credit. Courses involve independent work done by students under the guidance of the faculty and do not meet regularly in a classroom.</td>
</tr>
</tbody>
</table>

Concentrations
A concentration is a group of courses designed to provide specialized knowledge within a bachelor's degree program. Completion of a concentration will be noted on the student's transcript, but not shown on the diploma.

Specializations
A specialization is a similarly specialized group of courses in a master's degree program. Completion of a specialization will be noted on the student's transcript and be shown on the diploma.

Minors
A minor is an integrated, coherent group of courses designed to give a student knowledge in an academic area outside of the major field of study. The minor will be completed along with the requirements for the bachelor's degree. For more information and a list of available minors at Cal Poly, see pages 12 and 55.

Quarters and Quarter Units
Cal Poly's academic calendar consists of four quarters – Fall, Winter, Spring and Summer (see page 8 for Academic Calendar).

Cal Poly's academic year consists of Fall, Winter and Spring quarters.

The university year includes, and begins with, Summer Quarter.

Each course offered by the University carries a value in quarter units, often referred to simply as units or credits.

To convert semester units to quarter units, multiply by 1.5. For example,

\[
6 \text{ semester units} \times 1.5 = 9 \text{ quarter units.}
\]
Academic Programs

DEGREE PROGRAMS, CONCENTRATIONS, SPECIALIZATIONS

<table>
<thead>
<tr>
<th>BA</th>
<th>Bachelor of Arts</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFA</td>
<td>Bachelor of Fine Arts</td>
</tr>
<tr>
<td>BS</td>
<td>Bachelor of Science</td>
</tr>
<tr>
<td>BArch</td>
<td>Bachelor of Architecture</td>
</tr>
<tr>
<td>BLA</td>
<td>Bachelor of Landscape Architecture</td>
</tr>
<tr>
<td>EdD</td>
<td>Doctor of Education</td>
</tr>
<tr>
<td>MA</td>
<td>Master of Arts</td>
</tr>
<tr>
<td>MS</td>
<td>Master of Science</td>
</tr>
<tr>
<td>MBA</td>
<td>Master of Business Admin</td>
</tr>
<tr>
<td>MCRP</td>
<td>Master of City & Regional Planning</td>
</tr>
<tr>
<td>MPP</td>
<td>Master of Public Policy</td>
</tr>
<tr>
<td>minor</td>
<td></td>
</tr>
<tr>
<td>conc</td>
<td>Concentration within bachelor's program</td>
</tr>
<tr>
<td>spec</td>
<td>Specialization within master's program</td>
</tr>
</tbody>
</table>

Accounting	MS, conc
Aerospace Engineering	BS, MS
Agribusiness	MS, spec, minor
Agribusiness Management	conc
Agricultural Business	BS
Agricultural Communication	minor
Agricultural Education	spec
Agricultural Engineering Technology	spec
Agricultural Science	BS
Agricultural Systems Management	BS
Agriculture	MS
American Politics	conc
Anatomy-Physiology	conc
Animal Science	BS, spec
Anthropology-Geography	minor
Applied Nutrition	conc
Applied Social Psychology	conc
Architectural Engineering	BS, spec, minor
Architecture	BArch MS
Art	minor
Art & Design	BFA
Astronautics	conc
Biochemical Engineering	spec
Biochemistry	BS
Bioengineering	conc, spec
Biological Sciences	BS, MS, minor
Biomedical Engineering	BS, spec
BioResource & Agricultural Engineering	BS
Biotechnology	minor
Business	minor
Business Administration	BS, MBA
Chemistry	BS
Child Development	BS, minor
City & Regional Planning	BS, MCRP, minor
Civil Engineering	BS
Civil & Environmental Engineering	MS
Communication Studies	BA, minor
Comparative Ethnic Studies	BA
Computer Engineering	BS
Computer Science	BS, MS, minor
Construction Management	BS, minor
Counseling & Family Psychology	conc
Counseling & Guidance	spec
Criminal Justice	conc
Crop & Soil Science	conc
Crop Science	BS, spec, minor
Cross-Cultural Studies & International Development	conc
Culinary Science & Mgmt	conc
Curriculum & Instruction	spec
Dairy Products Technology	spec
Dairy Science	BS, minor
Dance	minor
Design Reproduction Technology	conc
Developmental Psychology	conc
Document Systems Management	spec
Earth Sciences	BS
Ecology	conc
Economics	BS, minor
Education	MA
Educational Leadership	EdD
Educational Leadership & Administration	spec
Electrical Engineering	BS, MS
Electronic Publishing & Imaging	conc
Electronics	conc
Electro-Optics	conc
Engineering	MS
Engineering Management	MBA/MS
English	BA, MA, minor
Enology	conc
Entrepreneurship & Small Business	conc
Environmental Engineering	BS
Environmental Horticultural Science	BS, spec
Environmental Impact Mitigation Strategies	conc
Environmental Interpretation and Assessment	conc

2007-2009 Cal Poly Catalog
DEGREE PROGRAMS, MINORS, CONCENTRATIONS, SPECIALIZATIONS

<table>
<thead>
<tr>
<th>Degree/Concentration/Spec</th>
<th>Program/Minor/Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>Bachelor of Arts</td>
</tr>
<tr>
<td>BFA</td>
<td>Bachelor of Fine Arts</td>
</tr>
<tr>
<td>BS</td>
<td>Bachelor of Science</td>
</tr>
<tr>
<td>Barch</td>
<td>Bachelor of Architecture</td>
</tr>
<tr>
<td>BLA</td>
<td>Bachelor of Landscape Architecture</td>
</tr>
<tr>
<td>EdD</td>
<td>Doctor of Education</td>
</tr>
<tr>
<td>MA</td>
<td>Master of Arts</td>
</tr>
<tr>
<td>MS</td>
<td>Master of Science</td>
</tr>
<tr>
<td>MBA</td>
<td>Master of Business Admin</td>
</tr>
<tr>
<td>MCRP</td>
<td>Master of City & Regional Planning</td>
</tr>
<tr>
<td>MPP</td>
<td>Master of Public Policy</td>
</tr>
<tr>
<td>BS</td>
<td>Bachelor of Science</td>
</tr>
<tr>
<td>MCRP</td>
<td>Master of City & Regional Planning</td>
</tr>
<tr>
<td>Barch</td>
<td>Bachelor of Architecture</td>
</tr>
<tr>
<td>BLA</td>
<td>Bachelor of Landscape Architecture</td>
</tr>
<tr>
<td>EdD</td>
<td>Doctor of Education</td>
</tr>
<tr>
<td>MA</td>
<td>Master of Arts</td>
</tr>
<tr>
<td>Environmental Management</td>
<td>conc</td>
</tr>
<tr>
<td>Environmental Management Protection</td>
<td>BS</td>
</tr>
<tr>
<td>Environmental Planning and Assessment</td>
<td>conc</td>
</tr>
<tr>
<td>Environmental Policy and Planning</td>
<td>conc</td>
</tr>
<tr>
<td>Environmental Science and Technology</td>
<td>conc</td>
</tr>
<tr>
<td>Environmental Studies</td>
<td>minor</td>
</tr>
<tr>
<td>Environmental Studies & Sustainability</td>
<td>conc</td>
</tr>
<tr>
<td>Equine Studies</td>
<td>minor</td>
</tr>
<tr>
<td>Ethnic Studies</td>
<td>minor</td>
</tr>
<tr>
<td>Exercise Science & Health Promotion</td>
<td>conc</td>
</tr>
<tr>
<td>Field & Wildlife Biology</td>
<td>conc</td>
</tr>
<tr>
<td>Financial Management</td>
<td>conc</td>
</tr>
<tr>
<td>Food Science</td>
<td>BS, minor</td>
</tr>
<tr>
<td>Forestry & Natural Resources</td>
<td>BS</td>
</tr>
<tr>
<td>Forestry Sciences</td>
<td>MS</td>
</tr>
<tr>
<td>French</td>
<td>minor</td>
</tr>
<tr>
<td>Fruit Science</td>
<td>BS, minor</td>
</tr>
<tr>
<td>General Engineering</td>
<td>BS</td>
</tr>
<tr>
<td>Geographic Information Systems (GIS)</td>
<td>minor</td>
</tr>
<tr>
<td>Geology</td>
<td>minor</td>
</tr>
<tr>
<td>Geosciences Teaching</td>
<td>conc</td>
</tr>
<tr>
<td>German</td>
<td>minor</td>
</tr>
<tr>
<td>Gerontology</td>
<td>minor</td>
</tr>
<tr>
<td>Graphic Communication</td>
<td>BS, minor</td>
</tr>
<tr>
<td>Graphic Design</td>
<td>conc</td>
</tr>
<tr>
<td>Graphics for Packaging</td>
<td>conc</td>
</tr>
<tr>
<td>Heating, Ventilating, Air-Conditioning and Refrigerating</td>
<td>conc</td>
</tr>
<tr>
<td>History</td>
<td>BA, MA, minor</td>
</tr>
<tr>
<td>Human Ecology</td>
<td>conc</td>
</tr>
<tr>
<td>Industrial & Technical Studies</td>
<td>MS</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>BS, MS</td>
</tr>
<tr>
<td>Industrial Technology</td>
<td>BS, minor</td>
</tr>
<tr>
<td>Information Systems</td>
<td>conc</td>
</tr>
<tr>
<td>Integrated Project Delivery</td>
<td>minor</td>
</tr>
<tr>
<td>Integrated Technology Management</td>
<td>spec</td>
</tr>
<tr>
<td>Interdisciplinary Studies</td>
<td>BA</td>
</tr>
<tr>
<td>International Affairs</td>
<td>conc</td>
</tr>
<tr>
<td>International Agribusiness Management</td>
<td>conc</td>
</tr>
<tr>
<td>International Business</td>
<td>conc</td>
</tr>
<tr>
<td>International Relations</td>
<td>minor</td>
</tr>
<tr>
<td>Irrigation</td>
<td>spec</td>
</tr>
<tr>
<td>Journalism</td>
<td>BS</td>
</tr>
<tr>
<td>Kinesiology</td>
<td>BS, MS</td>
</tr>
<tr>
<td>Land Rehabilitation</td>
<td>minor</td>
</tr>
<tr>
<td>Land Resources</td>
<td>conc</td>
</tr>
<tr>
<td>Landscape Architecture</td>
<td>BLA</td>
</tr>
<tr>
<td>Landscape Horticulture</td>
<td>conc, minor</td>
</tr>
<tr>
<td>Latin America Studies</td>
<td>minor</td>
</tr>
<tr>
<td>Law and Society</td>
<td>minor</td>
</tr>
<tr>
<td>Liberal Studies</td>
<td>BA, BS</td>
</tr>
<tr>
<td>Linguistics</td>
<td>minor</td>
</tr>
<tr>
<td>Literacy & Reading</td>
<td>spec</td>
</tr>
<tr>
<td>Management</td>
<td>conc</td>
</tr>
<tr>
<td>Manufacturing Engineering</td>
<td>BS</td>
</tr>
<tr>
<td>Marine Biology & Fisheries</td>
<td>conc</td>
</tr>
<tr>
<td>Marketing Management</td>
<td>conc</td>
</tr>
<tr>
<td>Materials Engineering</td>
<td>BS, spec</td>
</tr>
<tr>
<td>Mathematics</td>
<td>BS, MS, minor</td>
</tr>
<tr>
<td>Meat Science and Processing</td>
<td>minor</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>BS, MS</td>
</tr>
<tr>
<td>Mechatronics</td>
<td>conc</td>
</tr>
<tr>
<td>Microbiology</td>
<td>BS, minor</td>
</tr>
<tr>
<td>Military Science</td>
<td>minor</td>
</tr>
<tr>
<td>Modern Languages & Literatures</td>
<td>BA</td>
</tr>
<tr>
<td>Molecular and Cellular Biology</td>
<td>conc</td>
</tr>
<tr>
<td>Molecular Biology</td>
<td>conc</td>
</tr>
<tr>
<td>Multidisciplinary Design</td>
<td>minor</td>
</tr>
<tr>
<td>Music</td>
<td>BA, minor</td>
</tr>
<tr>
<td>Natural Resources Recreation</td>
<td>conc</td>
</tr>
<tr>
<td>Nursery & Floriculture</td>
<td>conc</td>
</tr>
<tr>
<td>Nutrition</td>
<td>BS, minor</td>
</tr>
<tr>
<td>Organizations</td>
<td>conc</td>
</tr>
<tr>
<td>Ornamental Horticulture</td>
<td>conc</td>
</tr>
<tr>
<td>Ornamental Plant Production</td>
<td>minor</td>
</tr>
<tr>
<td>Outdoor, Adventure, & Resource Recreation</td>
<td>conc</td>
</tr>
<tr>
<td>Packaging</td>
<td>minor</td>
</tr>
<tr>
<td>Philosophy</td>
<td>BA, minor</td>
</tr>
<tr>
<td>Photography & Digital Imagery</td>
<td>conc</td>
</tr>
<tr>
<td>Physical Education - Teaching</td>
<td>conc</td>
</tr>
<tr>
<td>Physics</td>
<td>BA, BS, minor</td>
</tr>
<tr>
<td>Plant Protection Science</td>
<td>spec, minor</td>
</tr>
</tbody>
</table>

2007-2009 Cal Poly Catalog
DEGREE PROGRAMS, MINORS, CONCENTRATIONS, SPECIALIZATIONS

<table>
<thead>
<tr>
<th>Degree</th>
<th>Program/Concentration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>Bachelor of Arts</td>
<td></td>
</tr>
<tr>
<td>BFA</td>
<td>Bachelor of Fine Arts</td>
<td></td>
</tr>
<tr>
<td>BS</td>
<td>Bachelor of Science</td>
<td></td>
</tr>
<tr>
<td>BArch</td>
<td>Bachelor of Architecture</td>
<td></td>
</tr>
<tr>
<td>BLA</td>
<td>Bachelor of Landscape Architecture</td>
<td></td>
</tr>
<tr>
<td>EdD</td>
<td>Doctor of Education</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>Master of Arts</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Master of Science</td>
<td></td>
</tr>
<tr>
<td>MBA</td>
<td>Master of Business Admin</td>
<td></td>
</tr>
<tr>
<td>MCRP</td>
<td>Master of City & Regional Planning</td>
<td></td>
</tr>
<tr>
<td>MPP</td>
<td>Master of Public Policy</td>
<td></td>
</tr>
<tr>
<td>minor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conc</td>
<td>Concentration within bachelor's program</td>
<td></td>
</tr>
<tr>
<td>spec</td>
<td>Specialization within master's program</td>
<td></td>
</tr>
</tbody>
</table>

CREDENTIAL PROGRAMS

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Services</td>
<td>Administrative Services</td>
</tr>
<tr>
<td>Agriculture Specialist</td>
<td></td>
</tr>
<tr>
<td>Education Specialist (Mild/Moderate Disabilities)</td>
<td></td>
</tr>
<tr>
<td>Multiple Subject Instruction</td>
<td></td>
</tr>
<tr>
<td>Multiple Subject; Bilingual Cross-cultural Language and Academic Development (BCLAD) Emphasis</td>
<td></td>
</tr>
<tr>
<td>Pupil Personnel Services; School Counseling</td>
<td></td>
</tr>
<tr>
<td>Single Subject; Agriculture Instruction</td>
<td></td>
</tr>
<tr>
<td>Single Subject; Biological Science Instruction</td>
<td></td>
</tr>
<tr>
<td>Single Subject; Chemistry Instruction</td>
<td></td>
</tr>
<tr>
<td>Single Subject; English Instruction</td>
<td></td>
</tr>
<tr>
<td>Single Subject; Mathematics Instruction</td>
<td></td>
</tr>
<tr>
<td>Single Subject; Social Science Instruction</td>
<td></td>
</tr>
<tr>
<td>Single Subject; Physical Education Instruction</td>
<td></td>
</tr>
<tr>
<td>Single Subject; Physics Instruction</td>
<td></td>
</tr>
</tbody>
</table>

OTHER PROGRAMS

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTC</td>
<td></td>
</tr>
<tr>
<td>TESL</td>
<td>Teaching English as a Second Language (TESL) Certificate</td>
</tr>
</tbody>
</table>
The University is fully accredited by the Western Association of Schools and Colleges (WASC), which may be contacted at:

Western Association of Schools and Colleges
985 Atlantic Avenue, Suite 100
Alameda, California 94501
(510) 748-9001

The College of Education offers instruction and services credentials which are fully accredited by California Commission on Teacher Credentialing (CCTC). The credentials are described in catalog sections on "Teaching Credential Programs" and "Specialist Education Credentials."

<table>
<thead>
<tr>
<th>Program</th>
<th>Accrediting Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art and Design, BFA</td>
<td>National Association of Schools of Art and Design (NASAD)</td>
</tr>
<tr>
<td>Architecture, BArch</td>
<td>National Architectural Accrediting Board (NAAB)</td>
</tr>
<tr>
<td>Business Administration, BS, MBA</td>
<td>Association to Advance Collegiate Schools of Business (AACSB)</td>
</tr>
<tr>
<td>City and Regional Planning, BS, MCRP</td>
<td>Planning Accreditation Board (PAB)</td>
</tr>
<tr>
<td>Computer Science, BS</td>
<td>Accreditation Board for Engineering and Technology, (ABET)</td>
</tr>
<tr>
<td></td>
<td>Computing Accreditation Commission (CAC)</td>
</tr>
<tr>
<td>Construction Management, BS</td>
<td>American Council for Construction Education (ACCE)</td>
</tr>
<tr>
<td>Engineering Programs:</td>
<td>Accreditation Board for Engineering and Technology, (ABET)</td>
</tr>
<tr>
<td>Aerospace Engineering, BS</td>
<td>Engineering Accreditation Commission (EAC)</td>
</tr>
<tr>
<td>Architectural Engineering, BS</td>
<td></td>
</tr>
<tr>
<td>BioResource and Agricultural Engineering, BS</td>
<td></td>
</tr>
<tr>
<td>Civil Engineering, BS</td>
<td></td>
</tr>
<tr>
<td>Computer Engineering, BS</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering, BS</td>
<td></td>
</tr>
<tr>
<td>Environmental Engineering, BS</td>
<td></td>
</tr>
<tr>
<td>Industrial Engineering, BS</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Engineering, BS</td>
<td></td>
</tr>
<tr>
<td>Materials Engineering, BS</td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering, BS</td>
<td></td>
</tr>
<tr>
<td>Forestry and Natural Resources, BS</td>
<td>Society of American Foresters (SAF)</td>
</tr>
<tr>
<td>Graphic Communication, BS</td>
<td>Accrediting Counsel for Collegiate Graphic Communications (ACCGC)</td>
</tr>
<tr>
<td>Industrial Technology, BS</td>
<td>National Association of Industrial Technology (NAIT)</td>
</tr>
<tr>
<td>Landscape Architecture, BLA</td>
<td>American Society of Landscape Architects (ASLA)</td>
</tr>
<tr>
<td>Music, BA</td>
<td>National Association of Schools of Music (NASM)</td>
</tr>
<tr>
<td>Nutrition, BS (Applied Nutrition Concentration)</td>
<td>American Dietetics Association (ADA), Commission on Accreditation for Dietetics Education (CADE)</td>
</tr>
<tr>
<td>Recreation, Parks, and Tourism Administration, BS</td>
<td>National Recreation and Parks Association (NRPA) and the American Association for Physical Activity and Recreation (AAPAR)</td>
</tr>
</tbody>
</table>

2007-2009 Cal Poly Catalog
Policies On The Rights & Responsibilities Of Individuals

STATEMENT ON DIVERSITY
The following excerpts are taken from The Cal Poly Statement on Diversity, which has been endorsed by the Cal Poly Academic Senate Resolution AS-506-98/DTP:

“At the heart of a university is the responsibility for providing its students with a well-rounded education, an education that fosters their intellectual, personal and social growth. The ultimate product of universities is education in the broadest sense, including preparation for life in the working world.” In this regard, it is in the compelling interest of Cal Poly, the State, and the Nation to provide our students with an education that is rich with a diversity of ideas, perspectives, and experiences.”

“Cal Poly’s commitment to diversity signals an affirmation of the highest educational goals for this University, including mutual respect, civility, and engaged learning.”

POLICIES ON THE RIGHTS OF INDIVIDUALS
Cal Poly is a community enriched by individual differences. The University is committed to respecting and protecting the rights of individuals. This section presents a summary of University non-discrimination policies and procedures for pursuing complaints under these policies. The office of Employment Equity and Faculty Recruitment, working with the University Diversity Enhancement Committee, has been designated to oversee and coordinate implementation of campus nondiscrimination policies. Except where otherwise indicated, procedures for reporting incidents of discrimination can be found in “Reporting Guidelines.”

Non-discrimination Policy
Cal Poly does not discriminate in admission or access to, or treatment or employment in, its programs and activities, including intercollegiate athletics. Cal Poly and its auxiliary organizations are committed to maintaining and implementing policies and procedures in compliance with applicable CSU, State and federal nondiscrimination and affirmative action laws, regulations, policies. Cal Poly supports an environment free of unlawful discrimination on the basis of:

- Race
- Color
- Religion
- National Origin
- Ancestry
- Age
- Sex
- Sexual Orientation
- Gender Identity
- Marital Status
- Physical Disability
- Mental Disability
- Medical Condition
- Veteran Status (as defined by the Vietnam-Era Veterans' Readjustment Assistance Act of 1974, as amended)

Federal, State and CSU Mandates
Cal Poly complies with the requirements of Title VI and Title VII of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, Sections 504 and 508 of the Rehabilitation Act of 1973, the Americans with Disabilities Act of 1990 and other CSU, State and federal laws, regulations, and policies prohibiting unlawful discrimination.

Protection from Retaliation
It is critical that individuals not be deterred from reporting possible prohibited harassment. CSU policy [Executive Order 927] prohibits retaliation against individuals who have or are believed to have filed a discrimination complaint, opposed a discriminatory act, or participated in a discrimination investigation or proceeding.

Reporting Guidelines
Inquiries regarding the application of these laws, regulations and policies to programs and activities of California Polytechnic State University, or individuals wishing to file a complaint alleging a violation of these policies, may contact the office of Employment Equity and Faculty Recruitment, Fisher Science (Bldg. 33), Room 290, (805)-756-6770, http://employequity.calpoly.edu, or other designated campus offices as indicated in the following administrative guidelines.

* Complaints from or about students alleging violations of these policies by other students may be directed to the office of the Vice President for Student Affairs, Administration Building (Bldg. 01), Room 209, (805) 756-1521; the office of the Dean of Students, Student Health Center (Bldg. 17), Room 113, (805) 756-0327; or the office of Student Rights and Responsibilities, Student Services Building (124), (805) 756-0327.

* Student disability-related complaints may be directed to the Disability Resource Center, Student Services Building (124), Room 119, (805) 756-1395.

* Students wishing to seek additional information or file a complaint not previously addressed should contact the office of Employment Equity and Faculty Recruitment, Fisher Science (Bldg. 33), Room 290, (805) 756-6770 for assistance.

* Complaints by or against employees who are covered by either collective bargaining agreements or CSU system-wide procedures shall be processed in accordance with the applicable collective bargaining agreement or system-wide procedures. Questions should be directed to the office of the Associate Vice President for Academic Personnel, Administration (Bldg. 01), Room 314, (805) 756-2844 for faculty matters; and the office of the
Academic Freedom

Cal Poly recognizes and supports the principle of academic freedom, by which each faculty member has the right to teach, to conduct research, and to publish material relevant to that faculty member's discipline, even when such material is controversial.

The University also guarantees to its faculty the same rights shared by all citizens, which include:

* the right to free expression,
* the right to assemble, and
* the right to criticize and seek revision of the institution's regulations.

At the same time, the faculty should recognize an equally binding obligation to perform their academic duties responsibly and to comply with the internal regulations of the University.

Each faculty member is expected to recognize the right of free expression of other members of the university community; intolerance and personal abuse are unacceptable.

Faculty shall not claim to be representing the University unless authorized to do so.

STUDENT ACADEMIC RIGHTS & RESPONSIBILITIES

Academic Rights

The classroom (including laboratories, field trips, independent study, etc.) is the essential part of any university where freedom to learn should flourish. The instructor has the responsibility for the manner of instruction and the conduct of the classroom. The instructor should not act in any way that denies the rights of students as set forth below:

Students are free to take reasoned exception to the data or views offered in courses. It is the responsibility of the instructor to take every precaution to ensure that what is presented is factual. If the instructor's presentation is in the area of opinion, belief, or debatable fact, it is the instructor's responsibility to make this clear to the students. Students may be required to know thoroughly the particulars set forth by the instructor, but they are free to reserve personal judgment as to that which is presented in the classroom.

The student has the right to substantial presentations appropriate to the course. Unjustified failure of the instructor to meet or prepare for classes, which results in incompetent performance, is a legitimate ground for student complaints against the instructor.

The student has the right to a statement at the beginning of each quarter providing: instructor's name, office location, office telephone number, and office hours; texts and supplementary materials required for the course; purpose of the course; prerequisites; requirements for grading; frequency and types of tests; and other information to assure student's understanding of the nature and requirements of the course.

A Fairness Board has been established to hear grievances of students who believe their academic rights have been denied or violated. The process and procedure of evaluation in the course shall be the sole criterion of the Fairness Board. Students may contact the Academic Senate (756-1258) for clarification of the description and procedures for the Fairness Board and the appeal process for grade disputes. Students may also contact the Dean of Students (756-0327) for informal assistance with grade disputes.

Academic Responsibilities

Students enrolled in a class are responsible for meeting standards of performance and conduct established by the University and the instructor. Students are responsible for registering and “adding” and “dropping” classes in a timely fashion, to ensure that others will have an opportunity to
take classes. Students are responsible for completing and submitting all class assignments, examinations, tests, projects, reports, etc., by scheduled due dates, or face penalties. If any problem arises regarding course work or attendance, the student will be held responsible for initiating communication and contact with the instructor. In addition, students will be held responsible for behavior and conduct adverse to the preservation of order as established by the University and the instructor. Students are responsible for meeting their degree requirements as provided in the university catalog.

Cheating and Plagiarism

Cal Poly will not tolerate academic cheating or plagiarism in any form.

Learning to think and work independently is part of the educational process.

Cheating or plagiarism in any form is considered a serious violation of expected student behavior and may result in disciplinary action. All faculty and students are encouraged to review the formal policy on cheating and plagiarism (including definitions, sanctions, and appeal procedures) found in the Campus Administrative Manual, Section 684.

University policy can be summarized simply:

> As a student, you are responsible for your own work and you are responsible for your actions.

USE AND RELEASE OF STUDENT INFORMATION

http://www.ess.calpoly.edu/_records/stu_info/ferpa.htm

The Family Educational Rights and Privacy Act (FERPA) affords students certain rights with respect to their educational records. This federal law applies to all schools that receive funding under most programs administered by the Department of Education. The primary rights afforded each student are the right to inspect and review his/her educational records, the right to seek to have the records amended, and the right to have some control over the disclosure of information from the records.

RESPONSIBLE USE OF INFORMATION TECHNOLOGY RESOURCES

http://security.calpoly.edu/policies/

Information technology resources are provided to support the University’s mission of education, research and service. To ensure that these shared and finite resources are used effectively to further the University’s mission, each user has the responsibility to:

- use the resources appropriately and efficiently;
- respect the freedom and privacy of others;
- protect the stability and security of the resources; and
- understand and fully abide by established University policies and applicable public laws.

All students, faculty and staff are encouraged to review the policy, which covers authorized use/access, data security, confidentiality and privacy, network and system integrity, commercial use, copyright infringement, and more.

The full policy describes consequences of non-compliance and procedures for reporting and responding to complaints. It includes definitions and examples of responsible and irresponsible use. Information Technology Services (ITS) is responsible for policy oversight and compliance. For more information, call 805-756-2966 or it-policy@calpoly.edu.

E-MAIL -- AN OFFICIAL MEANS OF COMMUNICATION TO STUDENTS

http://www.email.calpoly.edu/policy/email-student-final.html

Campus policy permits colleges, departments and faculty to use electronic mail (e-mail) to send official communications to students, i.e., messages pertaining to the conduct of university business for academic or administrative purposes. Using e-mail for such purposes is at the discretion of the sender and in no way precludes the use of other communication methods. Official communications will be sent to a student’s university-assigned e-mail address (username@calpoly.edu).

Students are responsible for receiving and reading official e-mail communications in a timely manner and for taking action where appropriate. Redirecting university e-mail to a non-university e-mail address does not absolve students from their responsibilities associated with official communications.

For more information about the policy and related standards and practices, including frequently asked questions, see: www.email.calpoly.edu/policy/index.html.

ACCESSIBILITY OF CAL POLY ELECTRONIC AND INFORMATION TECHNOLOGY RESOURCES

http://accessibility.calpoly.edu

The Americans with Disabilities Act (ADA) provides that no qualified individual with a disability be denied access to or participation in services, programs, and activities at Cal Poly. This act applies to virtually all aspects of campus activities, including employment, teaching and learning, and services provided to the campus community.

It is the policy of the California State University to make information technology resources and services accessible to all CSU students, faculty, staff, and the general public regardless of disability status. Cal Poly is committed to ensuring that university information and services delivered electronically are made accessible and the needs of individual students and employees with disabilities are accommodated. For more information regarding Cal Poly plans and policies and related standards and practices related to accessibility, visit: http://accessibility.calpoly.edu
Academic Resources and Support Services

ACADEMIC ADVISING
advising.calpoly.edu
Cal Poly is committed to providing a broad spectrum of advising resources to all students beginning when they apply and continuing through graduation. Each college at Cal Poly determines how it will interpret the university's policies on academic requirements. Academic advisors help students avoid time-consuming and costly mistakes so that they can graduate on time. Students who visit an advisor regularly are less stressed and more in control of their goals and plans.

College Advising Centers
Agriculture Contact Department Offices
Architecture & Environmental Design
Advising Center 805-756-1325
Business Advising Center 805-756-2601
Engineering Advising Center 805-756-1461
Liberal Arts Advising Center 805-756-6200
Science and Mathematics Advising Center .. 805-756-2615

Other Academic Advising Services
Academic Skills Center 805-756-1256
Athletic Advising 805-756-2762
Disability Resource Center 805-756-1395
Educational Opportunity Program 805-756-2301
Entry Level Mathematics (ELM, MAPE) ... 805-756-2268
General Education Program 805-756-2228
Graduate Programs 805-756-1508
Health Professions 805-756-2615
Student Academic Services 805-756-2301
Student Support Services 805-756-1395
Writing Skills Program (EPT, GWR) 805-756-2067

BIOTECHNOLOGY PROGRAMS
Biotechnology is broadly defined as the application of modern technological advances, whether in genetics, chemistry, engineering, or other fields, to biological systems. Modern biotechnology has evolved over the last twenty years to exploit the power of molecular biology and genetic engineering technology to further develop microorganisms, as well as plants and animals, for improved manufacturing of biomedicinal and agricultural products.

Examples of today's biotechnology applications range from the production of human insulin in bacterial cells to the development and use of genetically engineered crops, animals, and microbial fermentation for the production of crop protection products as well as the use of microbes to help clean up the environment (bioremediation) or the use of computers to help decipher complex genetic information (bioinformatics). Biotechnology is also used in the development of new technologies and therapies applied to health, nutrition, and the treatment of diseases in both human and non-human animals.

The biotechnology industry is highly interdisciplinary and involves people with backgrounds in biochemistry, biology, microbiology, agriculture, engineering, as well as business and law. For additional program information, please refer to the program's catalog description.

College of Agriculture, Food and Environmental Sciences
Agricultural Systems Management, BS
Animal Science, BS
BioResource and Agricultural Engineering, BS
Crop Science, BS
Environmental Horticultural Science, BS
Fruit Science, BS
Soil Science, BS

College of Engineering
Biomedical Engineering, BS
Civil and Environmental Engineering, MS
Computer Science, BS, MS
Engineering, MS
Environmental Engineering, BS
General Engineering, BS

College of Science and Mathematics
Biochemistry, BS
Biological Sciences, BS, MS, Minor
Biotechnology Minor
Microbiology, BS, Minor

Biotechnology-Related Center and Institutes
The Dairy Products Technology Center (DPTC) conducts research that provides the scientific and technological basis for new and improved dairy food products and processes. Through research and outreach, undergraduate and graduate programs train students to enter careers in the dairy industry and allied fields. Contact: Dr. Rafael Jimenez-Flores, 805-756-6103, rjimenez@calpoly.edu.

The Environmental Biotechnology Institute (EBI) focuses on advancing biotechnology research on the Central Coast. Faculty partnerships with major corporations and local laboratories carry out research efforts and offer learning experiences for students. Research projects include the study of microbial communities in the environment, genomics, bioremediation, fungal biotechnology, and microbial diversity and evolution. Contact: Dr. Raul Cano, 805-756-1358, rcano@calpoly.edu or Dr. Chris Kitts, 805-756-2949, ckitts@calpoly.edu.

The Renewable Energy Institute, a multidisciplinary institute involving the Colleges of Agriculture, Engineering

2007-2009 Cal Poly Catalog
and Architecture, offers research and teaching opportunities in the development of renewable energy sources including biomass, wind, passive- and active- solar energy. Contact: Margot McDonald, 805-756-1298, mmcdonal@calpoly.edu.

The Advanced Technology Laboratory (St. Jude Bioengineering Laboratory) symbolizes the dynamic partnership between academia, government and industry. Faculty and students pursue applied research projects such as bioinstrumentation, medical devices, biomaterials, biomechanics, bioremediation, prosthetic robotics and microbial interaction with materials. Contact: Dr. Dan Walsh, 805-756-6400, dwalsh@calpoly.edu.

CENTER FOR TEACHING AND LEARNING
Joe Grimes, Director
Robert E. Kennedy Library (35) Room 209, 805 756-7002
wwwctl.calpoly.edu

The Center for Teaching and Learning (CTL) provides activities toward building community, resources, training and support for the preparation, development and enhancement of teacher-scholars at Cal Poly. The center strives to support, endorse, and improve teaching effectiveness and student learning; encourage scholarship of teaching and learning and other scholarly activities; communicate to all audiences the importance of teaching and learning; and serve as a catalyst for constructivist (learner-centered) learning.

The CTL faculty associates from all of the colleges and other staff members are responsible for coordinating specific events and activities. Current focus areas are: integrated support of improving pedagogy and using technology, teaching and learning workshops, learning communities, classroom visits, courses and seminars, new faculty/staff support, individual and group consultation services for faculty/staff, a quarterly newsletter, and a web site.

COMPUTING AT CAL POLY
Timothy J. Kearns, Vice Provost & CIO
Information Technology Services (ITS)
Frank E. Pilling Bldg. (14), 805 756-7000
www.its.calpoly.edu

Cal Poly's learn-by-doing environment is enhanced by electronic access to learning materials and resources, multimedia classrooms, distance learning and video-conferencing facilities, digital video editing systems, media and presentation equipment checkout, and open access student computing labs. Students frequently use computers in their courses, and are strongly encouraged to have access to a computer and the Internet in their residences.

Students, faculty, staff and others accessing Cal Poly's information technology resources agree to abide by the Responsible Use Policy and other policies at http://security.calpoly.edu/policies/.

When connecting to the university network, students are expected to comply with campus security standards. This includes ensuring that networked devices are protected against viruses, spyware, and other threats. Standard tools are available for students to use for this purpose.

ENDOWED CHAIRS AND PROFESSORS
Cal Poly has received generous corporate donations and grants that have created endowed chairs and professorships and helped support new faculty positions. Endowment funds support faculty research and provide opportunities for students to become involved in research. Examples include the Arthur C. Edwards Endowed Chair of Polymers and Coatings, the Unocal Chair for Environmental Studies, and two Unocal Professors of Marine Science (College of Science and Mathematics); the J. G. Boswell Professorship (College of Agriculture, Food and Environmental Sciences); and a Joseph and Victoria Cotchett endowed professorship of educational technology (College of Education).

HEALTH CAREERS: Preprofessional Preparation
Health Professions Advising Center
805 756-2615 Bldg. 53, Room 219
www.calpoly.edu/~cosamac/health

Cal Poly provides excellent preparation and resources for students interested in a career in the health professions. Information about professional school prerequisites, internships, research opportunities, health professions experience, and other requirements, is available at the Health Professions Advising Center.

Choosing a Major. There is no best major to prepare students for professional school as long as the prerequisite courses for the chosen profession are completed. A major should be chosen on the basis of interest. Professional schools are concerned with the overall quality and scope of the undergraduate work and not with the major course of study. Specific requirements vary for each professional school, so students should contact the schools directly.

Health Professions Peer Advising Program
Peer Advisors, 805 756-6510
Health professions peer advisors are upper-division students who advise students regarding health professions, including information about required coursework, gaining experience in health care, and application strategies.

INTERNATIONAL EDUCATION & PROGRAMS
John Battenberg, Director
Bldg 38, Room 108, 805 756-1477
www.iep.calpoly.edu

Cal Poly’s International Education & Programs (IEP) offers many programs and services for both international students studying at Cal Poly and Cal Poly students who wish to study abroad. College graduates in the 21st century will be citizens of a world in which thinking and working across cultures will be a requirement for a successful career. Many Cal Poly departments support the concept of
international education and encourage students to investigate opportunities for overseas study.

Study Abroad Programs
Students interested in studying abroad should begin by stopping by the IEP office, Cal Poly’s clearinghouse for information on all study abroad programs. An extensive resource center and library provide students with printed material and web resources on study abroad worldwide. A study abroad advisor is available for discussion.

The CSU International Programs
Developing intercultural communication skills and international understanding among its students is a vital mission of the California State University (CSU). Since its inception in 1963, the CSU International Programs has contributed to this effort by providing qualified students an affordable opportunity to continue their studies abroad for a full academic year. More than 15,000 CSU students have taken advantage of this unique study option.

International Programs participants earn resident academic credit at their CSU campuses while they pursue full-time study at a host university or special study center abroad. The CSU International Programs serves the needs of students in over 100 designated academic majors. Affiliated with more than 50 recognized universities and institutions of higher education in 20 countries, it also offers a wide selection of study locales and learning environments.

Additional information about the specific programs and answers to questions regarding the application materials may be obtained from the IP Coordinator at Cal Poly (38-106), or by writing to The California State University International Programs, 401 Golden Shore, Sixth Floor, Long Beach, CA 90802-4210. Visit www.gateway.calstate.edu/csuienet/.

Fees
The CSU International Programs pays all tuition and administrative costs for participating California resident students to the same extent that such funds would be expended to support similar costs in California. Participants are responsible for all personal costs, such as transportation, room and board, living expenses, and home campus fees. Financial aid, with the exception of Federal Work-Study, is available to qualified students.

Admission
To qualify for admission to the International Programs, students must have upper division or graduate standing at a CSU campus by the time of departure. Students at the sophomore level may, however, participate in the intensive language acquisition programs in France, Germany, and Mexico. California Community Colleges transfer students are eligible to apply directly from their community colleges. Students must also possess a current cumulative grade point average of 2.75 or 3.0, depending on the program for which they apply. Some programs also have language study and/or other coursework prerequisites.

Applications
For the academic year overseas, applications must be submitted by February 1. Australia, New Zealand and South Africa are exceptions, having a deadline of May 1.

Programs
Australia. Griffith University, Macquarie University, Queensland University of Technology, University of Queensland, University of Western Sydney, Victoria University
Canada. universities of the Province of Quebec, including: Bishop's University, Concordia University, McGill University, Université Laval, Université de Montréal, Université du Quebec
China. Pontificia Universidad Católica de Chile (Santiago)
China. Peking University (Beijing)
Denmark. Denmark’s International Study Program (the international education affiliate of the University of Copenhagen)
France. Institut des Etudes Françaises pour Étudiants Étrangers, L'Académie d'Aix-Marseille (Aix-en-Provence), Universités de Paris III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, the Institute of Oriental Languages and Civilizations, and Université Evry
Germany. University of Tübingen and a number of institutions of higher education in the Federal state of Baden-Württemberg
Ghana. University of Ghana (Legon)
Israel. Tel Aviv University, The Hebrew University of Jerusalem, University of Haifa
Italy. CSU Study Center (Florence), Università degli Studi di Firenze, La Accademia di Belle Arti di Firenze
Japan. Waseda University (Tokyo)
Korea. Yonsei University (Seoul)
Mexico. Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Querétaro
New Zealand. Lincoln University (Christchurch), Massey University (Palmerston North)
South Africa. University of KwaZulu-Natal, Nelson Mandela Metropolitan University
Spain. Universidad Complutense de Madrid, Universidad de Granada
Sweden. Uppsala University
Taiwan. National Taiwan University (Taipei), National Tsing Hua University
United Kingdom. Bradford University, Bristol University, Hull University, Kingston University, Sheffield University, University of Wales, Swansea
Zimbabwe. University of Zimbabwe (Harare)

Cal Poly’s Exchange Programs
Australia
Univ of Canberra Landscape Architecture
Swinburne U. of Technology Business and Engineering
Univ of Melbourne... Agriculture
Austria
FH Joanneum Fachhochschul-Studiengängen... Construction Mgt
Brazil
Universidade Federal Do Rio De Janeiro.....City/Regional Plng
China
Nanjing University of Technology Engineering
Denmark
Copenhagen Business School............................... Business

Finland
Helsinki Polytechnic Stadia.............................. Engineering

France
Institut de Formation Internationale Rouen Business
L’Ecole d’Architecture de Paris-Vél-de-Marne Architecture

Germany
Fachhochschule München Engineering
Fachhochschule Karlsruhe................................. Engineering
University of Education, Ludwigsburg..... Education, Liberal Arts

Honduras
Centro de Diseño Arquitect. Constr...... City & Regional Planning

Mexico
Benemérita Universidad Autónoma de Puebla City & Regional Planning

Norway
Agricultural University of Norway............ Landscape Architecture

Sweden
Chalmers University of Technology..................... Engineering

Switzerland
HSR Hochschule für Technik, Rapperswil.. City & Regional Plan

Taiwan (Republic of China)
Chaoyang University of Technology.................... Engineering
National Cheng Kung University Engineering

United Kingdom
Leeds Metropolitan University.............. Landscape Architecture

Exchange Programs in the United States
National Student Exchange (NSE) Consortium........ All Majors

Cal Poly Study Abroad Programs
In addition to The CSU International Programs and agreements for exchange programs, Cal Poly offers the following study programs:

Cal Poly at Sea. Sponsored by Cal Poly and the California Maritime Academy. Participants live and study with cadets from CMA aboard their training ship, The Golden Bear. A 500-foot ex-Navy oceanographic vessel, it is a unique living laboratory that offers Cal Poly students two months of shipboard experience, classroom instruction, and an international educational experience. The charted cruise rotates on a three-year cycle, each time visiting a different region of the Pacific: the South Pacific Cruise (Tahiti, New Zealand, Australia; New Guinea, Fiji; and Hawaii), the South American Cruise (Mexico, Costa Rica, Panama, Cocos Island, Chile, San Felix Island, Seattle), and the Asia Pacific Cruise (Hawaii, the Philippines, China, Hong Kong, Vietnam, Japan). Every participant is required to attend a three-day safety and lifeboat-training program prior to departure at CMA in Vallejo, California, to earn his or her Merchant Mariner’s Document.

Australia Study Program. A one quarter study program led by Cal Poly faculty on the St. Lucia campus of the University of Queensland in Brisbane. The program is offered during Winter Quarter, and students may obtain 12 to 16 units of Cal Poly credit. The study program includes 8

weeks of classes with some weekend field trips to nearby sites, including the popular Gold Coast, followed by two weeks of independent travel. The University of Queensland’s main campus is located in the picturesque inner-city suburb of St. Lucia. Bound by the Brisbane River on three sides and only seven kilometers from Brisbane’s vibrant cityheart, this 285-acre site provides students with the perfect study, research and living environment.

Summer Study in London. While the six-week program is planned primarily for general education experiences in the arts, humanities, and social sciences, the program draws students from all majors. Cal Poly students and faculty alike immerse themselves in courses that use London as a laboratory. Students take numerous field trips visiting London’s concert halls, theaters, museums, cathedrals, and halls of government. The city’s modern cosmopolitan identity combines a fascinating past with a present of more than 7 million people living, studying, working, and playing in its different areas. The arts, theatre, nightlife, music, and literature are showcased in London.

Thai Study and Internship Program. The program is offered during Spring Quarter and students may obtain up to 16 units of credit. In addition, an internship program with U.S. corporations, the American Embassy, and universities is available for qualified seniors. As the only Asian nation never to have been colonized or occupied by Western powers, Thailand retains a unique culture and charm, with an unusual blend of ancient culture and modern industry. During the first month of the program, classes are held at Chiang Mai University in Chiang Mai. Following a field trip to the historical capital Sukhothai, the group moves to First Global Community College (FGCC) in Nong Khai for two weeks. The group spends three weeks in Bangkok where it is hosted by Silpakorn University.

Peru Study Program. One of the most unique and exotic study abroad programs offered. The program offers students a chance to spend five weeks living in Cuzco, Peru, while obtaining 12 units of academic credit. Students study Spanish and take Cal Poly general education courses that incorporate hands-on community-based development work. Excursions include trips to Machu Picchu, Lake Titicaca, and the Amazon rainforest. The program runs from late June to the end of July.

Affiliation Agreements
Cal Poly has a university-wide affiliation agreement with AustraLearn: North American Center for Australian Universities for providing direct enrollment study abroad opportunities in Australia and New Zealand. The 22 Australian and eight New Zealand universities that are working with AustraLearn have unique academic programs with the highest standard of service. AustraLearn serves as the liaison with the host universities and Cal Poly regarding credit transfer, financial aid, and academic issues. The Australian and New Zealand universities issue the
transcripts to Cal Poly. Cal Poly students receive transfer credit for pre-approved courses and are considered for AustraLearn scholarships. Cal Poly disburses federal financial aid to eligible students.

Cal Poly’s newest affiliation agreement is with **Cultural Experiences Abroad (CEA)**, which was founded in 1996 to provide international education opportunities for U.S. and Canadian college students of all language levels and majors. CEA sends thousands of students on study abroad programs at 35 universities in Argentina, Costa Rica, Czech Republic, England, France, Hungary, Ireland, Italy, Mexico and Spain. Cal Poly is currently sending approximately 22 students per year on various CEA programs.

Cal Poly has a university-wide affiliation agreement with **Denmark’s International Study Program (DIS)** that provides students from any major with the option of enrolling in any of the following academic tracks offered for a semester or summer program: Architecture & Design, European Politics and Society, Humanities & Social Sciences, International Business & Economics, Medical Practice and Policy, Molecular Biology and Biotechnology, and Psychology and Child Development. DIS is affiliated with the University of Copenhagen and is recognized and supervised by the Danish Ministry of Education. Since 1959 DIS has provided a number of specialized academic fields, which focus on European topics and issues that are designed for upper-division undergraduate students. The classroom teaching is strongly enhanced by real-life insights through field studies, guest lectures, and study tours throughout Europe.

Cal Poly joins 29 member and associated universities that cooperate within the **University Studies Abroad Consortium (USAC)**. USAC has provided quality programs for over 25 years and currently offers 37 study abroad programs at host universities in 25 countries ranging from summer, semester, and year-long programs. USAC offers two types of programs: (1) the language specialty programs focus on language immersion and cultural studies (beginning through advanced language tracks) and (2) partnership programs offer direct enrollment in partner universities offering a full curriculum of studies. USAC offers study abroad opportunities for some non-traditional disciplines (i.e., computer science, education, engineering, viticulture, and women’s studies) along with internships, field studies, and community involvement programs. Cal Poly students receive transfer credit for pre-approved courses. Cal Poly disburses federal financial aid for eligible students.

International Student Programs and Services

International Student Programs and Services (ISPS) offers a variety of comprehensive programs designed to assist international students as they pursue their academic goals. ISPS is committed to creating an academic environment that supports and emphasizes international and cross-cultural understanding. As advocates for international students, ISPS provides liaisons with the campus academic and administrative departments, the U.S. Citizenship & Immigration Services (formerly known as the INS), the U.S. Department of State, local, state and federal government offices.

ISPS provides individual immigration advising for international students to facilitate compliance with immigration regulations, maintaining visa status and timely application processing for transfer of schools, extensions, change of status and employment authorization. Cal Poly is SEVIS (Student & Exchange Visitor Information System) compliant and provides electronic updates to the U.S. Citizenship & Immigration Services and the Department of State regarding student enrollment, change of name, address, or major, etc. as required by immigration law.

Monthly informational programs are offered on various inter-cultural topics to spur discussion and provide a broad-based educational experience. These meetings are open to the entire Cal Poly and San Luis Obispo community.

ISPS offers the program, “Holistic Approach to Cross-Cultural Adaptation and Reentry.” The main objective is to increase cross-cultural understanding of all segments of the university community with a goal to bring about more globally aware and committed citizens of the world. At a fall weekend camping retreat, students begin the cross-cultural and team-building dialog and form triad groups with their University Honors student mentors. The triads continue to meet bimonthly throughout the year. Their informal activities build stronger bonds and assist in integrating the students into their new environment. The mentors provide a support system to assist the international students, and in return, the Honors students receive an invaluable experience learning about cross-cultural adaptation and understanding.

LIBRARY SERVICES

Michael D. Miller, Dean
Robert E. Kennedy Library (Bldg 35)
805-756-2598 (Hours); 756 -2029 (Circulation)
www.lib.calpoly.edu

The Kennedy Library supports Cal Poly’s educational mission by collecting and preserving traditional and digital collections, fostering active learning environments, and supporting the university’s scholarly publishing efforts. Librarians are subject-matter specialist who works proactively with each of Cal Poly’s colleges.

The Kennedy Library is undertaking a multiyear effort to plan a major addition to the existing facility. The expansion will create a dynamic environment with student group project spaces, galleries and electronic presentation rooms.

Collections

Print and Electronic Resources. The Kennedy Library contains a print collection of nearly 3.5 million items,
including books, journals, senior projects, master’s theses, archives and manuscripts, government documents, and maps. The library also licenses more than 7,000 electronic resources, delivering full-text access to hundreds of journals directly to users via the web. Additionally, if the library does not own a desired item, lending services permit accessing other libraries’ collections.

Special Collections and University Archives. This department offers more than 100 unique research collections in many formats including manuscripts, correspondence, business records, architectural drawings, photographs and negatives, and audio and videotape. Collection strengths include architectural records and drawings, fine printing and graphic arts, and local and California history. The University Archives houses materials that document the history, growth and development of Cal Poly. These materials include campus records, publications, photographs, plans, blueprints, and ephemera dating from the founding of the university in 1901 to the present.

The Learning Commons
The Learning Commons provides students and faculty with a number of smart labs available for scheduled classes, open-access labs, and modern collaborative workspaces, complete with the latest technological, print and electronic resources. An oversized and specialty (CAD) printing service, scanners, and wireless laptop checkout are also available. Staffed by expert student assistants, the Learning Commons desk offers technical and research assistance during all open library hours.

The Learning Commons is a collaboration between Library Services, Information Technology Services, and the Center for Teaching and Learning.

Services
The **Adaptive Technology Center** is equipped with a voice-activated computer and computers with screen reading and enlarging programs, a Braille printer, closed circuit television (print enlarger) and tactile image enhancer. The Center is a collaboration between Library Services and the Disability Resource Center. For more information please see www.drc.calpoly.edu/services/adaptive_lab.html.

Course Reserves provides access to both electronic and print collateral reading materials selected by faculty for the use of students enrolled in their classes. To search course reserve materials or access online forms and instructions, go to http://poetry.lib.calpoly.edu/screens/reserves.html.

PolyCAT, Cal Poly’s online library catalog, provides access to books, e-books, maps, periodicals, videos, course reserves, online databases, and senior projects. **MyPolyCAT** allows users to renew books, place holds and save customized search results online.

PolySearch. Users can search multiple databases at once and link directly to full-text articles using PolySearch. **MyPolySearch** allows users to customize searches, create search histories and save and organize electronic resources.

Pony Prints. Located on the first floor of Kennedy Library offers a wide variety of services including copying, binding, transparencies, color printing, digital file printing, and faxing.

Other program units located in the Kennedy Library include the Academic Skills Center, the Center for Teaching and Learning, the Peace Corps campus headquarters, the Research Scholars in Residence, and the University Honors Program.

PREFACE: Cal Poly’s Shared Reading Program
Patricia Ponce, Coordinator
805 756-5932

PREFACE provides students the opportunity to read and discuss a meaningful book at the university level without the formal course structure (no grades). New students and the campus community will read the book selection over the summer. In the fall, they will join small group discussions and share a common intellectual experience. Campus-wide activities related to the book, such as a visit by the author, lectures and movie screening continue over the course of an academic year. Faculty, staff, administrators, and community members volunteer their time to lead the discussion groups.

RESEARCH AND PROJECT INVOLVEMENT
Susan Opava, Dean, Research and Graduate Programs
Bldg. 38, Room 154, 805 756-1508

Faculty actively seeks grants and contracts for research and development activities. These sponsored projects enhance the educational program by bringing to the campus state-of-the-art equipment and financial support for undergraduate and graduate student research. Students who wish to become involved in significant applied research and development activities on the leading edge of their disciplines are encouraged to contact faculty members in their programs who have ongoing projects, to explore becoming part of the project team.

SERVICE LEARNING AND CIVIC ENGAGEMENT
Student Life, University Union, Bldg 65, Room 217, 805 756-6749, www.studentlife.calpoly.edu/csv and www.civic.calpoly.edu

Service learning provides students an opportunity to participate in a structured learning experience that combines service to the community with explicit learning objectives, preparation, reflection, and evaluation. Students enrolled in service learning courses provide direct service in areas identified by the community. The students learn about the context in which the service is provided, the connection between the service and their academic coursework, and their roles as citizens. Each quarter, hundreds of students participate in service learning classes and volunteer to
provide thousands of hours of service to homeless shelters, low-income families, youth, and disabled individuals. Service learning workshops are offered quarterly through the Center for Teaching and Learning to support faculty development of service learning classes. As part of the strategic plan supported by the Chancellor's Office of Community Service Learning, Cal Poly is working towards extending the influence and resources of the University beyond the campus through quality service learning opportunities.

Each year, the University President awards the President’s Community Service Award to outstanding students, clubs, and faculty.

SUSTAINABILITY PRACTICES
In April 2004, President Baker signed the Talloires Declaration, committing Cal Poly to sustainability and environmental literacy in teaching and practice. Over 150 courses relating to this area are available to students in a variety of departments. These courses can be viewed online at sustcat.calpoly.edu.

A number of clubs and co-curricular activities focus on sustainability as well, including the BioDiesel Club, Fair Trade Club, Hydrogen Energy Club, Poly Greens, Renewable Energy Club, and Engineers Without Borders. Students can work on the Organic Farm or take part in other activities sponsored by the Sustainable Agriculture Research Consortium or the Center for Sustainability in Engineering.

Sustainability is also taken into account when planning and building facilities at Cal Poly. Between 2000 and 2005, various efforts reduced the campus’s energy use by 12 percent. In December 2006, a photovoltaic energy system was installed on the rooftop of the Engineering West building. The system, which is expected to generate enough power for approximately 20 homes per year, was built and is owned, operated, and maintained by SunEdison, North America’s largest solar energy services provider. The installation of the solar panels earned Cal Poly a Pollution Reduction Award from the San Luis County Air Pollution Control District.

Additional accolades include an award from the California Higher Education Energy Partnership for the university’s efforts in the areas of load management, retrofitting heating and cooling systems, and student energy conservation. The U.S. Environmental Protection Agency also honored Cal Poly as one of the best workplaces for commuters from colleges and universities nationwide. The 72 schools on the list were recognized as environmental leaders for improving air quality, saving energy, and reducing traffic congestion in their communities.

UNIVERSITY HONORS PROGRAM
Sema Alptekin, Director
Robert E. Kennedy Library, Bldg. 35, Room 510
805 756-7029; www.honors.calpoly.edu

The University Honors Program provides academically motivated students with the opportunity to develop their potential by fully exploring the resources at Cal Poly. Intellectual creativity, civic engagement, and research are the hallmarks of the program. In particular, it builds relationships among all colleges on campus and seeks to educate students in the connections between the disciplines, from engineering to English, agriculture to art, or business to biology. Honors students have the opportunity to enjoy a varied educational experience, including courses in specially designed honors seminars as well as undergraduate research opportunities.

Following Cal Poly’s distinctive "hands-on" approach to education, students are encouraged to participate in community projects and international programs to enhance their global awareness. Most Honors courses offer smaller class sizes, where students work closely with faculty in a challenging, stimulating and supportive learning environment. Analytical and interpretive study is encouraged and communication skills, written and oral, are developed. Most courses fulfill graduation requirements.

UNIVERSITY STUDIES "UNIV" COURSE OFFERINGS
W. David Conn, Vice Provost for Academic Programs and Undergraduate Education
Administration Bldg. (01), Room 315, 805 756-2246
www.academicprograms.calpoly.edu/whatsnew/univecourses.htm

The UNIV prefix denotes certain interdisciplinary courses. Typically, these courses are co-taught by instructors from more than one college, and carry General Education and/or U. S. Cultural Pluralism credit.

WRITING SKILLS PROGRAM
Mary Kay Harrington, Director
Bldg 10, Room 130, 805 756-2067
www.calpoly.edu/~writskils

The Writing Skills Program provides a free, one-on-one tutoring center, the University Writing Lab and assists Cal Poly students with any writing task. The CSU system-wide Graduation Writing Requirement (GWR) is administered by this office, including the upper-division Writing Proficiency Examination (WPE). The developmental writing courses for students who score low on the English Placement Test are coordinated from this office as well as the screening of unqualified students from freshman composition courses.
Support Services

ALUMNI ASSOCIATION
Alumni Relations
Albert B. Smith Alumni and Conference Center
805 756-2586

Cal Poly's Alumni Association (CPAA) provides a link between alumni and their alma mater provides a variety of programs and services including newsletters, e-mail updates, continuing education opportunities, travel programs, POLY REPS (a student alumni association), GOLD programs for Graduates Of the Last Decade, Homecoming and a host of regional events and activities both in the state of California and beyond.

The CPAA is governed by a volunteer Board of Directors. The Office of Alumni Relations coordinates the activities of the association. With nearly 30 alumni chapters, the association sponsors alumni events in numerous locations throughout the state of California and assists special interest alumni chapters such as Vines to Wines, FANS, Rose Float, Graphic Communication, Rugby, ENVE and WOW.

Members of the CPAA enjoy unique benefits such as access to all CSU libraries, access to Cal Poly recreational facilities, group insurance programs, SLO merchant discounts, and special invitations and member pricing for alumni events.

CAL POLY CORPORATION
Corporation Administration Bldg. (15)
805 756-1131

The Cal Poly Corporation is a separate, but closely linked auxiliary organization serving the University across several key support functions:

- Retail Operations – El Corral Bookstore, Cal Poly Downtown, Campus Dining, and Poly Prints
- Business Services – Sponsored Research and Grants, Conferences and Workshops
- Advancement Support – Gifts, Endowment and Trust Management Services
- Student Aid to Instruction – University Graphic Systems and Student Enterprise Projects
- Technology Transfer and Innovation – Financial Support and Administration

A Board of Directors comprising faculty, students, community leaders and university administrators overseas Cal Poly Corporation operations.

PERFORMING ARTS CENTER
Ticket hotline: 805 756-2787,
Toll-free in California: 888 233-2787
Administrative office: 805 756-7222
www.pacslo.org/

The Christopher Cohan Center is the result of a partnership and cooperation between Cal Poly, the City of San Luis Obispo, and the community's Foundation for the Performing Arts Center. Located on the campus, it features three performance venues: Sidney J. Harman Hall, Philips Electronics Recital Hall, and the Pavilion.

The Cohan Center and the 500-seat Cal Poly Theatre comprise the Performing Arts Center San Luis Obispo. The Center accommodates all types of cultural events, from student and local performances to major touring artists, including the annual summer Mozart Festival.

UNIVERSITY ADVANCEMENT
Administration Bldg. (01), Room 413
805 756-1445, www.giving.calpoly.edu

The mission of University Advancement is to enhance pride and generate support for Cal Poly by building mutually beneficial relationships with alumni, parents, friends, corporations, foundations, government entities and the media.

University Advancement also offers the opportunity for its many friends and supporters to help Cal Poly fulfill its unique polytechnic mission through private support of academic programs, research, scholarships and facilities.

Toward that end, Cal Poly recently formed the Cal Poly Foundation, a private nonprofit corporation led by Cal Poly alumni and friends to promote philanthropic activity and manage the university’s $165-million endowment. The foundation intends to build on the success of the recent Centennial Campaign, which alone raised $264.4 million.

UNIVERSITY POLICE
Building 74, 805 756-2281
www.Police.calpoly.edu

Cal Poly's Police Department is a full service police agency certified by the California Department of Justice. It has the same responsibilities and authorities as municipal, county or other state law enforcement agencies and has state-wide authority. It includes a 9-1-1 emergency dispatch center. Parking is a major function of the University Police, which includes the management of 6,800 parking spaces, a parking structure, parking planning and traffic flow.

Commuter and Access Services provide resources for alternative transportation in partnership with local bus transit, RideShare, Safe Ride Home, and bicycle organizations. The Escort Service provides free transportation for students, faculty and staff on campus and in the close vicinity of Cal Poly during evening hours.
Summer Institute

Summer Institute '06 students enjoy a traditional rite of passage, the "hike to the P" and the view of Cal Poly from the hilltop. Cal Poly's Summer Institute provides students an accelerated 3-week academic term that offers students a transition from high school to Cal Poly so that they begin their first fall quarter feeling part of the campus, part of a strong group of academic friends and more prepared for their new lives at the University.

Photos courtesy of Student Academic Services and Academic Programs

Student Affairs
The Office of the Vice President for Student Affairs oversees a division that provides services, leadership training, and learning experiences for all Cal Poly students. Through advocacy, program development, and serving as a liaison to student organizations on behalf of the University, Student Affairs is the key link to student life on campus. Dedicated to student learning, Student Affairs staff mentor students, encourage personal development, and support important initiatives to enhance retention and matriculation of students.

Mission Statement

The mission of the Student Affairs Division is to cultivate student learning and success. Together with the University, the Student Affairs Division is committed to the principle of integrating Student Affairs programs and services into the student’s total learning environment, in and out of the classroom, and fostering within each student respect and responsibility for self and members of the greater community.

Delivery of programs and services is influenced by an ongoing assessment of student needs, the campus climate and established outcomes. It is guided by:

- The scholastic achievements of our students;
- The residential nature of our campus;
- The high staff/faculty-to-student ratio of our departments;
- The selective standards of our admissions, which draw students from around the state; and
- The learn-by-doing focus of our curricular and co-curricular activities.

The mission is carried out through teaching and personal instruction, advisement and counseling, community service learning, internships and experiential education, organized programming, and services. The mission is achieved through the following programs and services:

- Associated Students, Inc.
- Career Services
- Dean of Students
- Disability Resource Center
- Health and Counseling Services
- Housing and Residential Life
- Office of Student Rights and Responsibilities
- Parent Program
- Student Academic Services
- Student Life and Leadership
- Testing Services

ASSOCIATED STUDENTS, INC. (ASI)
University Union (65), Room 212, 805 756-1281

Mission Statement

The mission of Associated Students, Inc. is to enrich the quality of student life and to complement the educational mission of Cal Poly through shared governance, student employment, student advocacy and a broad spectrum of programming, services and opportunities for leadership and social interaction.

Vision Statement

Associated Students, Inc. is every student’s connection to the ultimate college experience.

ASI Student Government
University Union (65), Room 202, 805 756-1291

Leadership opportunities are open to all interested students. This includes the elected College Council representatives who form the Board of Directors and appointed positions on the University Union Advisory Board and the ASI Executive Staff. ASI student leaders represent the student body on community, campus and regional committees.

Three student officers guide the organization: the ASI President, Chair of the Board, and Chair of the University Union Advisory Board. These officers and the Board of Directors are elected in spring quarter, and they are the recognized representatives of Cal Poly students. The ASI Chief of Staff is an appointed leader who guides the ASI Executive Staff in supporting the goals of the ASI President.

The Board of Directors oversees the policy development of ASI, an $11 million nonprofit corporation. ASI collects quarterly fees, commercial revenue and grants, which support a wide range of campus clubs as well as student programs and services.

PROGRAMS AND SERVICES OF ASI

ASI operates a wide variety of programs and services in four facilities, the Julian A. McPhee University Union, Orfalea Family and ASI Children’s Center, Recreation Center, and the Cal Poly Sports Complex.

ASI Business Office
University Union (65), Room 212, 805 756-1281

The ASI Business Office provides internal business services to all ASI programs and services, including administrative support, fiscal services, human resources,
project management, information technology and public relations and marketing.

JULIAN A. McPHEE UNIVERSITY UNION (UU)
Information Desk: Second Floor Lobby, University Union (65), 805 756-1154 (Voice or TDD)
The Julian A. McPhee University Union is a central place for students, faculty, staff, alumni and guests to meet, relax and exchange ideas. Facilities include: UU Plaza, UU Epicenter, two student lounges: Bishop’s Lounge and San Luis Lounge, UU Gallery, ASI Events, Poly Escapes, ASI Craft Center, Mustang Lanes, BackStage Pizza, Julian’s, SESLOC Credit Union, Student Life & Leadership, Student Community Services, Multicultural Center, Women’s Center, ASI Student Government Office, Chumash Auditorium and UU Reservations.

UU Epicenter
University Union (65), Room 203, 805 756-5807
The UU Epicenter is students’ one-stop shop for “Events, Programs and Ideas.” Students can obtain information, materials and resources on the following programs and services: ASI Events, Cal Poly Rose Float, ASI Craft Center, UU Gallery, Club Services, Poly Escapes and the Chumash Challenge High Ropes Course.

Cal Poly clubs also have access to a Club Resource Center with computers and printers, club mailboxes and club registration.

Cal Poly Clubs
There are close to 300 active clubs and organizations affording students the opportunity to become active in campus life. Clubs include academic and professional organizations, hobby-interest clubs, honor societies, service clubs, residential groups, multicultural organizations and spiritually based groups.

A complete list of all clubs on campus, meeting dates, locations and contact information can be found on the ASI website at www.asi.calpoly.edu/uu/clubprograms.

ASI has created co-sponsorship and grant funding programs to support clubs and organizations, including those that enhance cultural activities, community services and campus-wide education efforts.

ASI Events
University Union (65), Room 203, 805 756-1112
ASI Events provides on-campus entertainment programming in four different program areas: UU Gallery, concerts, Concerts in the Plaza (formerly UU Hour) and special events. These programs, in addition to our multicultural events and celebrations, comedy, artistic expression, education programs and speaker forums on social issues, have been identified to meet the diverse needs of a comprehensive university.

UU Gallery
University Union (65), Room 203, 805 756-5807
The UU Gallery is located in the UU Epicenter and is designed to give students and community members the opportunity to showcase artwork with exhibits of painting, photography, sculpting and more.

ASI Craft Center
University Union (65), Room 111, 805 756-1266
The ASI Craft Center offers a wide variety of fun, non-academic craft classes and workshops. The facility includes a black and white photo darkroom, ceramics area, bike repair room, woodworking power tools, glass bead making lab, poster-making tables with pens and paper, and a retail store.

Poly Escapes and the Escape Route
University Union (65), Room 112, 805 756-1287
For more than 30 years ASI’s Poly Escapes has been sponsoring outdoor trips and programs with students at the core of its leadership program. With a zest for spontaneous adventure and the desire to explore the unknown, Cal Poly students have looked to Poly Escapes to take them on “once in a lifetime adventures.” Poly Escapes provides trip coordination, educational experiences, a climbing wall, resource library and roughly 30 trips each fall, winter and spring. Students may also rent equipment such as tents, sleeping bags, back packs, cross country skis, surfboards and ice cream makers at reasonable prices.

Mustang Lanes
University Union (65), Room 118, 805 756-5523
The facility offers 10 bowling lanes with automatic scoring, a large video arcade and eight full-sized billiard tables. Physical education bowling classes are offered quarterly. The games area also houses a full-service Pro Shop where all bowling equipment is expertly fitted and drilled on the premises.

Cal Poly Rose Float
University Union (65), Room 209, 805 756-1268
One of the most exciting activities on the Cal Poly campus is building the annual Rose Parade float. Since 1949, a team of students at the Cal Poly San Luis Obispo and Pomona campuses has produced floats annually. For more than 50 consecutive years, students from all academic majors have enjoyed the thrill of watching a float they designed, built and decorated make its way down Colorado Boulevard on New Year’s Day in the Tournament of Roses Parade.

Not only is the Cal Poly float a one-of-a-kind building venture for college students, but it is also an opportunity for students to develop new innovations such as computer controlled animation, hydraulics systems for movement and more.
ASI CHILDREN’S PROGRAMS
Orfalea Family and ASI Children's Center (133).
805 756-1267
The Orfalea Family and ASI Children's Center is a nationally accredited program providing quality childcare services to children from 4 months to 6 years old. Student parents are given first priority for enrollment. Subsidized childcare is available for low-income student parents.

The ASI Children’s Programs philosophy is based on the belief that young children thrive in an environment that promotes understanding of themselves, others and the world around them. Teachers focus on facilitating children’s development in the social-emotional, cognitive and physical domains. Activities are designed to meet the children’s individual and age-appropriate needs. With the understanding that children learn through play, caregivers encourage them to explore, discover and have fun. Emphasis is placed on teaching children how to problem solve and make appropriate choices, while learning to interact within a group setting.

ASI RECREATIONAL SPORTS
Recreation Center (43)
805 756-1366 (Main), 805-756-PLAY (Hotline)
www.asi.calpoly.edu/recsports
ASI Recreational Sports offers opportunities for all students to participate in aquatics, exercise and instructional classes, intramural sports, informal recreation and special events.

Registered Cal Poly students have free access to the Recreation Center, which is open seven days a week. Facilities include two sand volleyball courts, a 7,000-square-foot weight room, a 6,500-square-foot fitness room, nine racquetball courts, an Olympic sized swimming pool and four indoor basketball courts.

ASI’s Recreational Sports Program employs more than 160 students each year. Student and full-time staff members are available to assist with any questions or concerns about Recreational Sports programs.

Programs include:

Aquatics classes are designed for all levels of swimmers, from beginning to masters. Scuba courses, stroke clinics and lifeguard training are just a few of the classes offered.

Chumash Challenge is a unique experiential education program that empowers groups and individuals through initiatives and problem solving activities using team building and High Ropes workshops. Cal Poly clubs, class labs and organizations as well as local schools, county government agencies, youth-at-risk groups and local businesses are all active participants of Chumash Challenge. Located in the hills of Stenner Canyon, it is a place of self-discovery where the “challenge by choice” philosophy is followed and participants are not pressured to move beyond their comfort zone. Group cooperation, leadership skills, decision-making skills, positive risk-taking, trust and self-confidence are all part of the Chumash Challenge experience. Call 756-2628 for more information.

Fitness and Instructional programs are designed for individuals to acquire new skills in a relaxed and enjoyable setting. Programs offered include an extensive aerobic schedule, massage instruction, martial arts, East/West Coast Lindy Hop, pilates and yoga. Nationally certified personal trainers are on staff to assist in meeting fitness goals.

Informal Recreation provides non-structured opportunities to participate in a variety of activities such as swimming, cardiovascular exercise, free weight and weight machines, basketball, volleyball, racquetball and indoor soccer.

Intramural Sports provides a variety of structured sports leagues and tournaments in a safe, recreationally competitive environment. The program is open to all Cal Poly students and also to faculty, staff and alumni who are current members of the Recreation Center. Popular sports include: basketball, flag football, soccer, softball and volleyball.

CAREER SERVICES
Student Services (124), Room 114, 805 756-2501
www.careerservices.calpoly.edu
This centralized service is available to all students and alumni of the University. In conjunction with the seven academic colleges, Career Services assists students with exploring, formulating and implementing career plans. Career Services actively promotes and supports effective professional relationships between the University and employers.

Career Counseling
Through individual appointments and group workshops, students are guided through the exploration and formation of personal career plans. Students considering a change of major are particularly encouraged to utilize Career Services so that they may become better informed about career options. With the assistance of department staff, students may take advantage of interest inventories; utilize computerized career guidance systems, review current literature on career profiles, trends and work environments; attend career fairs, employer/industry information sessions, and career-related events. Students are offered the opportunity to network with company representatives.

Student Employment
Student employment opportunities are available to all currently-enrolled students. Positions are centralized online through Mustang Jobs through the On-Campus Interview Program or Job Listing Service. This includes local part-time jobs (on-campus and off-campus), Co-op, internships, summer, and seasonal jobs. These types of jobs can support a student’s future career direction as well as earn money for college expenses.
Cooperative Education

Cooperative Education is a joint partnership between employers, Career Services and Cal Poly's academic programs. Students are able to secure professional-level work experience related to their major, obtain professional contacts in industry, affirm career goals, obtain marketable skills, develop self-confidence, and integrate what is learned in the classroom within the world of work. Co-op assignments are primarily full-time paid positions, three to six months in duration, offered to junior and senior-level students. Students earn academic credit for their participation.

Career Employment and Graduate School Services

Through workshops and individual advisement, students are guided through the job search or graduate school application process, which includes clarifying the career objectives; identifying, researching and contacting potential employers and graduate programs; preparing resumes and personal statements; and preparing for interviews.

Employer contacts may be generated through Mustang Jobs (on-campus interview program, job listings) and job fairs, as well as professional directories and publications geared toward the hiring of new college graduates.

Students are encouraged to take advantage of the Career Resource Center, which contains a variety of career resources, annual reports, salary trend information, alumni network files, and student workstations allowing Internet research and computer-assisted career exploration programs.

DEAN OF STUDENTS

Health Services Bldg. (27), Room 188, 805 756-0327

The Dean of Students Office provides leadership to support student success, strengthen campus community relations, and provide the initiatives for future student-centered programs that foster the development of the student academically, socially and ethically.

The Dean of Students supports student learning and service through:

- helping students manage academic and nonacademic situations;
- consulting extensively with faculty and staff on behalf of student concerns;
- interpreting and assisting with understanding campus policies and procedures;
- consulting with student clubs and organizations to foster a healthy student life;
- cultivating a caring, supportive campus and community environment; and
- assisting with parent concerns regarding campus life and policies.

Students with questions or concerns are encouraged to stop by or contact the office. The staff answers questions, advocates when appropriate, investigates student complaints of discrimination, and directs students to the appropriate campus or community resource as needed.

DISABILITY RESOURCE CENTER

Student Services (124), Room 119, 805 756-1395, voice or tty

The Disability Resource Center's mission is to assist in creating an accessible university community where students with disabilities have an equal opportunity to fully participate in all aspects of the educational environment. The Center cooperates through partnerships with students, faculty, and staff to cultivate student learning and success.

Students wishing to use disability-related services and accommodations complete an Application for Services, submit disability documentation, and then meet with an access specialist who determines eligibility and accommodations. Advance planning is strongly encouraged.

For detailed information please see www.drc.calpoly.edu.

HEALTH AND COUNSELING SERVICES

Student Health Center (27), 805 756-1211

The goal of Health and Counseling Services is to support the physical and psychological well-being of all students attending Cal Poly. A variety of services are offered for students including outpatient care, individual counseling, a pharmacy, and health education programs. Health and Counseling Services assists students by minimizing class time lost due to illness, injury, or personal problems.

Health Services

Student Health Center (27), 805 756-1211

The following services are available to all students as part of the health services fee:

- Outpatient medical services are available, year-round, Monday through Friday, 8:00 a.m. to 4:30 p.m. except Wednesday, 9:00 a.m. to 4:30 p.m., and includes primary physician and nursing services, men's/women's health care, laboratory and routine x-ray procedures.

- Health education programs on nutrition, Educational Resources On Sexuality (EROS), and Thoughtful Lifestyle Choices (TLC) are provided by staff professionals and students trained as peer health educators. Programs include nutrition counseling, alcohol and drug awareness, sexuality and lifestyle wellness.

- Additional health services are also available at a low cost and include pharmacy items (prescription and over-the-counter items), lab tests when specimens are sent off-campus for processing, immunizations, orthopedic supplies and optometry.

Major medical insurance coverage for off-campus services is strongly recommended. Students are encouraged to have their own coverage for major medical, surgical and emergency expenses. Due to a shortage of doctors in the community in certain specialty areas, students requiring specialty medical care are encouraged to call for appointments with local specialists well in advance.

2007-2009 Cal Poly Catalog
Counseling Services
Student Health Center (27), 805 756-2511
Counseling Services offers individual and group counseling, crisis intervention, education and outreach, and internship training. Counselors are available to assist with the normal adjustments of academic and social life; personal issues such as confidence and self-esteem, stress management, body image and sexuality; as well as more serious personal concerns, like depression, anxiety, alcohol and drug abuse.

Housing and Residential Life
Housing Office (170-G), Room 115, 805 756-1226
Living on-campus can be a unique and rewarding experience. For the majority of entering first-year students, it is the first experience in a community living environment. Learning in the classroom is extended into the residence halls through educational programming, recreational activities, the First Year Connection and the Living/Learning Programs.

Returning students and new transfers have an opportunity to live on campus in an environment which provides programmatic support with the goal of retention and academic success.

All students participate in a variety of social interactions and share the same community with diverse groups of individuals. Residents are provided with an environment that educates, challenges and supports their personal and academic development. Activities are coordinated by the residents and the hall staff. Most students make lifelong friends while residing on campus.

Staff
Activities are administered by full-time professionals, Coordinators of Student Development, who are available to assist residents with counseling, crisis intervention, general referrals, and judicial actions. The Coordinators also supervise desk services and the Resident Advisors/Community Advisors.

Resident Advisors and Community Advisors, known as RAs, and CAs, are typically upper-division students who understand the challenges faced by new students and try to make living on campus a positive and memorable experience. The RAs and CAs are trained in advising, event planning, and crisis intervention to assist students through their first year.

Residential Life Programs
First Year Connection
First Year Connection Residence Halls offer programs that support student transition into the residence hall community and University. This program is designed to provide incoming students with the information, resources and support needed to be personally and academically successful at Cal Poly. Participating students have the opportunity to get involved with leadership, community service and social activities in the halls.

Living/Learning Halls
Living/Learning Residence Halls are centered around Cal Poly's academic colleges. Faculty, administrators, and alumni meet with the students in an informal setting. The programming focuses on four fundamental areas: academic development and support, personal development, professional affiliation, and leadership development. This provides many advantages for residents including direct faculty contact, study groups and events relating to the student’s major and career planning. The “Honors Program” and “Respect House” are two special interest communities that are housed within the First Year Connection Program.

Apartment Style Living
On-campus apartments are offered to returning residents through a lottery process. Some transfer students are also given the opportunity to live in the apartments. Student programming supports retention and overall academic success.

Community Involvement
Student representatives are elected in fall term to serve on governing boards in each of the halls. Participants contribute to their hall’s community by planning social, recreational, and educational events, and by voicing student-related concerns. Networks in community services, recreational sports and multicultural issues provide additional opportunities for student involvement.

ResNet
All on-campus rooms have access to the Cal Poly Network and the Internet. Cal Poly ResNet is the on-campus housing networking project that provides dedicated high-speed network connections 24 hours a day. The ResNet Office provides this and other computing support programs for on-campus residents.

Applying for On-Campus Housing
www.housing.calpoly.edu
Information about the on-campus housing program and timeline to apply can be found at the housing web site. Housing is offered to university-admitted students; however, spaces are limited. On-campus housing is secured on a first-come/first-served payment basis and cannot be guaranteed to all incoming freshmen. Conditionally admitted students submit a housing application via an online process through the my.calpoly.edu portal, printing the Housing License Agreement, and mailing it with payment to Cal Poly.

Living Expenses for Students in Campus Residence Halls and Apartments
(Subject to Change)
All Housing fees are payable in advance. Installment plans are available. All fees listed below reflect 2006-07 prices and are subject to change:

Residence Hall Rooms – Double Occupancy
(academic year license) $4,781

Residence Hall Meal Plan (mandatory) $3,786

Apartments – Private Rooms
(academic year license) $647/month (approx.)
Off-Campus Housing Resources
www.housing.calpoly.edu

The Housing Office maintains information regarding the rental of off-campus houses and apartments, and an extensive list of private and shared rooms. Information is available at our web site. The University does not inspect, approve or disapprove of any housing offered through these rental resources.

OFFICE OF STUDENT RIGHTS AND RESPONSIBILITIES
Student Services (124), 805 756-2794
www.osrr.calpoly.edu

The Office of Student Rights and Responsibilities (OSRR) administers the CSU student disciplinary process at Cal Poly. It is responsible for ensuring a fair and impartial disciplinary process for students referred for allegedly violating the Student Code of Conduct, and providing for a safe and comfortable campus environment. OSRR addresses student behavioral problems, whenever possible, in a developmental and educational manner, to facilitate and encourage respect for the campus community, and to provide learning experiences for students who participate in the judicial process. Most cases are resolved in ways that seek to foster the ethical development and personal integrity of students.

PARENT PROGRAM
Administration Building (01), Room 217
Parent Helpline: 805 756-6700
www.parent.calpoly.edu
e-mail: calpolyparent@calpoly.edu

The Cal Poly Parent Program is dedicated to helping families effectively support their students’ transition and success and providing opportunities for them to stay connected to the university community. All of the Parent Program’s services are designed to serve as resources for parents and families as they discover the best way to support their sons or daughters, while also enabling their students’ independence and personal responsibility.

Parents are encouraged to sign up for the Parent E-newsletter. This monthly service provides links to university news and important dates, and features timely tips and articles on relevant topics.

The University’s Parent Program Advisory Council serves in an advisory capacity to the Parent Program and offers the Cal Poly parent community experienced parent perspectives and avenues for involvement. In addition, the Parent Program welcomes parents at orientation events, hosts an annual Parents’ Weekend, and encourages support of Cal Poly and its programs through the Cal Poly Fund.

STUDENT ACADEMIC SERVICES
Hillcrest (81), 805 756-2301

Student Academic Services (SAS) offers comprehensive programs that directly support academic excellence. Program services include academic and personal advising, admissions and transition services, new student first year seminars, supplemental workshops and study group assistance. Academic advisors work with each of the seven academic colleges to provide academic and personal advising assistance to students with class scheduling, assessment of academic skills, graduation planning, career clarification and related learning and study skills.

Supplemental workshops and study sessions are available for key content courses in first- and second-year curricula.

An additional emphasis of SAS is to offer support to students from backgrounds that have been traditionally underrepresented in the California State University System. The goal of SAS is to ensure that all students have equal opportunity to achieve academic success and graduation. Student Academic Services incorporates the following:

Academic Skills Center (ASC)
Kennedy Library (35), Room 112, 805 756-1256
The ASC offers a wide variety of retention programs and campus support services, including study skills seminars, study sessions and tutor referral services.

College Bound
Hillcrest (81), 805 756-2301

The purpose of EOP College Bound is to motivate and assist in the preparation of students from low-income, first generation college families for application and entrance to Cal Poly or another post-secondary institution of their choice. The program offers various educational outreach strategies to high school students.

Connections for Academic Success (CAS)
University Union (65), Room 217A, 805 756-6774
The mission of Connections for Academic Success is two-fold: to help increase the retention of new students by providing services in support of their academic success, and, through outreach efforts, provide educationally and/or economically disadvantaged students with information about Cal Poly and support their preparation for admission. CAS provides academic advising and referrals to other advising resources; assistance with obtaining tutoring and study session contacts; assisting students with identifying and overcoming obstacles to their academic success; and connecting students with other campus resources.

Educational Opportunity Program (EOP)
Hillcrest (81), 805 756-2301

EOP provides admissions and academic support programs for low-income, historically disadvantaged students. EOP offers academic and personal advising, study sessions,
academic orientation courses, career and post-graduate advising, and referrals to campus resources.

Educational Talent Search (ETS)

Hillcrest (81), 805 756-2301

Educational Talent Search is a federally funded program designed to assist participants in reaching their academic potential. Cal Poly’s program assists middle and high school students who meet federal low-income guidelines and may be the first in their family to attend college. The services of ETS support those offered through guidance offices at selected campuses in San Luis Obispo and Santa Barbara Counties. While the staff is employed at Cal Poly, San Luis Obispo, the program is not used as a recruitment tool for the University; participants receive assistance in applying to any college, university or other qualified post-secondary institution.

Student Support Services (SSS)

Student Services (124), Room 119, 805 756-1395

The purpose of this federally funded program is to provide support services to low-income, first-generation or disabled college students to enhance their academic skills, increase their retention and graduation rates, and facilitate their entrance into graduate and professional school programs.

Summer Institute (SI)

Hillcrest (81), 805 756-2301

SI is an academic scholars’ program held annually at Cal Poly. Selected newly admitted freshman students have the opportunity to participate in this three-to-five-week residential program geared at helping make a successful transition from high school to the more rigorous Cal Poly environment.

Upward Bound (UB)

Hillcrest (81), 805 756-2301

UB is a federally funded program which provides a college preparatory program for low-income and/or potential first-generation college students. This program motivates and academically prepares local high school students for college. The academic program and residential summer school session at Cal Poly offer tutoring, career advisement, supplemental instruction, as well as cultural and recreational activities.

STUDENT LIFE AND LEADERSHIP

University Union (65), Room 217, 805 756-2476

www.studentlife.calpoly.edu

Student Life and Leadership offers opportunities to develop leadership skills, contribute to the community, experience diversity, participate in group dynamics, and mentor new students. Its mission is to advance and encourage the learning and personal development of students, and its programs are integrated into the student’s total learning environment.

Clubs and Organizations

Student clubs and organizations provide opportunities for the enhancement of academic, cultural, social, and recreational aspects of student life through participation in group activities and programs. Being part of a campus club or organization can greatly enrich the student experience at Cal Poly.

Commencement

Commencement ceremonies are coordinated by Student Life and Leadership staff in collaboration with the Commencement Committee and are held each December and June.

Community Service Programs

The Community CENTER at Cal Poly represents the University’s commitment to community involvement and civic engagement. It is dedicated to helping each individual, as well as student clubs, find meaningful and satisfying service experiences through both volunteer service and service related to academic learning.

Student Community Services provides volunteer service programs that address a variety of social issues, concerning children, homeless individuals, mentally disabled adults, seniors, animals, and the environment. Each year, thousands of students participate in service activities. Annual events include Make a Difference day, WOW Day of Service, Hunger Awareness Week, Homeless Awareness Week, Change the Status Quo Conference, Martin Luther King, Jr. Day of Service, and Cesar Chavez Day of Service.

Service-learning courses integrate community service with course curriculum to enhance learning outcomes. Each quarter, hundreds of students are involved in community service as part of their academic coursework. The Community CENTER provides support for faculty and students in developing and implementing service learning.

The Community CENTER assists the University in recognizing students for outstanding service in a variety of ways. Each year, the University President awards the President’s Community Service Award to outstanding students, clubs, and faculty. Students can have their service hours noted on their official university transcripts.

Greek Organizations

There are thirty-four fraternities, sororities, and cultural Greek organizations affiliated with Cal Poly. Many of the social sororities and fraternities own or lease housing near the campus. Some provide lodging and meals for their members and pledges.

Multicultural Center

The mission of the Multicultural Center (MCC) is to promote an environment where diversity is respected and celebrated, and alliances are built regardless of ethnic/racial membership or sexual orientation. The mission serves to complement the University’s philosophy that affirms all students’ identities and which enhances the quality of university life for all students. The Center’s mission strives
to prepare all students to become culturally competent citizens in a global society.

Orientation Programs
Open House encompasses many activities showcasing the excellence of Cal Poly and the surrounding community. An event preview is hosted on Thursday night at the popular Farmers’ Market, and on Friday, conditionally admitted students and their supporters are invited to campus. On Saturday, campus is open to the public with many events, including the Poly Royal parade, open ceremonies, kids’ fair, and an exciting club booth and activity area with more than 200 student clubs participating.

Student Orientation, Advising and Resources (SOAR) is a one-day academic advising session that helps new students and their families learn how to navigate the Cal Poly environment. Each academic college invites its students to participate in SOAR to get connected to information specific to its students’ majors, and to prepare them to register for their first quarter of classes. Families and students learn about available resources and what to expect for the rest of their time at Cal Poly.

The Week of Welcome (WOW) orientation program is coordinated by staff and operated by students, for students, with a peer-helping method that creates a combination of excitement, learning, and new experiences for new students and their families in a fun, comfortable atmosphere. First-year and transfer students are placed in small groups that participate in activities introducing them to the campus and community for the week prior to fall classes.

The WOW experience is designed to assist new students with a successful academic, social and emotional transition to university life. Parent orientation programs provide parents with an opportunity to celebrate their student’s transition as well as have their own questions and concerns addressed during Family Orientation Weekend. During this weekend, programs are also provided for first-year students, transfer students, non-traditional students, and parents and younger siblings of new students.

WOW also hosts the parents’ Coffee House during Open House, summer advising sessions for parents, non-traditional student orientation day, and welcome activities for new students starting during winter and summer quarters. WOW is an exciting environment in which to meet new people, become familiar with Cal Poly and San Luis Obispo, and prepare to start a college career.

Pride Alliance: LGBT (lesbian, gay, bisexual, transgender) Center
The LGBT Center is a resource center for the entire campus community. Its mission is to provide programming, networking and resources that raise awareness and educate students of diverse backgrounds about LGBT and related issues. The center’s Ally Training program prepares members of the campus community to support and be sensitive to the needs of LGBT people.

SAFER (Sexual Assault-Free Environment Resources)
SAFER’s mission is to promote a caring, empowered campus community where people understand what constitutes sexual assault; understand the harmful effects of sexual assault; are motivated to intervene to prevent sexual assault; know how to reduce the risk of sexual assault for themselves and others; know who to call and what to do should they or someone else experience sexual assault; and agree that all sexual activities should be consensual and based on respect and equality.

Sport Club Program
The Sport Club program offers the campus community a wide variety of competition, instruction, and development in the form of 16 sport clubs and related activities. The program currently has approximately 535 members and features a competitive level above the traditional intramural program. The members compete against clubs from other universities, improve their skills through instruction, and develop leadership skills through the management of their organizations. Students of all skill levels are encouraged to participate.

Women’s Programs and Services
The mission of Women’s Programs and Services is to create and sustain a university environment that promotes the personal, educational and professional growth of women. Students, faculty and staff work together in The Women’s Center to create activities and programs which highlight women’s achievements and concerns. Programs are planned and produced in collaboration with diverse campus and community groups.

TESTING SERVICES
Student Services (124), Room 121, 805 756-1551
Testing Services administers standardized tests of admission, proficiency and certification, such as the PRAXIS Series, Law School Admission Test, and Medical College Admission Test, and coordinates the administration of the CSU English Placement (EPT) and Entry Level Math (ELM) test programs. In addition, Testing Services operates an ETS Computer-Based Testing Center that offers such tests as the GRE, TOEFL and PPST.
California State University, Long Beach • S
1250 Bellflower Blvd., Long Beach, CA 90840-0106
(562) 985-5471 • www.csulb.edu

California State University, Los Angeles • Q
5151 State University Drive, Los Angeles, CA 90032-8530
(323) 343-3901 • www.calstatela.edu

The California Maritime Academy • S
200 Maritime Academy Drive, Vallejo, CA 94590-8181
(800) 561-1945 • www.csum.edu

California State University, Monterey Bay • S
100 Campus Center, Seaside, CA 93955-8001
(831) 582-3738 • www.csumb.edu

California State University, Northridge • S
18111 Nordhoff Street, Northridge, CA 91330-8207
(818) 677-3700 • www.csun.edu

California State Polytechnic University, Pomona • Q
3801 West Temple Avenue, Pomona, CA 91768-4003
(909) 869-3210 • www.csupomona.edu

California State University, Sacramento • S
6000 J Street, Sacramento, CA 95819-6122
(916) 278-3901 • www.csus.edu

California State University, San Bernardino • Q
5500 University Parkway, San Bernardino, CA 92407-2397
(909) 537-5188 • www.csusb.edu

San Diego State University • S
5500 Campanile Drive, San Diego, CA 92182-7455
(619) 594-6336 • www.sdsu.edu

San Francisco State University • S
1600 Holloway Avenue, San Francisco, CA 94132-4002
(415) 338-1113 • www.sfsu.edu

San José State University • S
One Washington Square, San Jose, CA 95192-0009
(408) 283-7500 • www.sjsu.edu

California Polytechnic State University, San Luis Obispo • Q
San Luis Obispo, CA 93407
(805) 756-2311 • www.calpoly.edu

California State University, San Marcos • S
333 S. Twin Oaks Valley Road
San Marcos, CA 92096-0001
(760) 750-4848 • www.csusm.edu

Sonoma State University • S
1801 East Cotati Avenue, Rohnert Park, CA 94928
(707) 664-2778 • www.sonoma.edu

California State University, Stanislaus • 4-1-4
801 West Monte Vista Avenue, Turlock, CA 95382
(209) 667-3152 • www.csustan.edu

Note: Telephone numbers are to the campus admission office.
ADMISSION REQUIREMENTS

Cal Poly's Admission Requirements

Since Cal Poly is a campus of The California State University System, all applicants must meet CSU eligibility requirements as specified below. However, Cal Poly typically receives many more applications than it can accommodate. Consequently, admission to Cal Poly is highly competitive, and meeting the CSU eligibility requirements is insufficient by itself to gain acceptance.

Cal Poly reserves the right to select its students and deny admission to the University or any of its programs as the University, at its sole discretion, determines appropriate based on an applicant's suitability and the best interests of the University.

Unlike most other universities, Cal Poly encourages all students to take at least one course each term in their major program of study, starting immediately on entry. For this reason, all applicants, including first-time freshmen, are required to declare a major on their application for admission. Some students change their major after they have started at the University, but because competition for entry into most majors is strong, and because of Cal Poly's unusual curriculum structure, transfer from one major to another cannot be guaranteed.

In selection, Cal Poly looks for students who are accomplished academically and who have taken an active part in their education, in and out of the classroom. Because Cal Poly is unable to accept all of the well qualified applicants who apply, it seeks to be as fair as possible by using an objective, point-based admission selection process developed by the University's faculty. The criteria employed in this process are in addition to the CSU eligibility requirements.

Each applicant is screened and ranked by level within a specified major as either a freshman or a transfer applicant. Freshman candidates are evaluated in four separate categories, including CSU preparatory coursework, GPA earned in specific CSU preparatory courses, test scores, and work experience and/or extra-curricular activities. Transfer candidates are evaluated in four categories, including major-specified coursework, general education coursework completed, GPA in completed coursework, and work experience and/or extra-curricular activities.

Eligibility Index

http://www.csumentor.edu/

The eligibility index is the combination of a high school grade point average and a score on either the ACT or the SAT. A grade point average is based on grades earned in courses taken during the final three years of high school that satisfy all college preparatory "a-g" subject requirements, with bonus points for approved honors courses (excluding physical education and military science).

A CSU Eligibility Index (EI) can be calculated by multiplying a grade point average by 800 and adding the combined Reading and mathematics sections score on the SAT I. Students who took the ACT multiply the grade point average by 200 and add ten times the ACT composite score. California high school graduates (or residents of California for tuition purposes) need a minimum index of 2900 using the SAT I or
694 using the ACT. The Eligibility Index Table illustrates several combinations of test scores and averages that meet minimum eligibility requirements. Persons who neither graduated from a California high school nor are residents of California for tuition purposes need a minimum index of 3502 (SAT I) or 842 (ACT). Graduates of secondary schools in foreign countries must be judged to have academic preparation and abilities equivalent to applicants eligible under this section.

<table>
<thead>
<tr>
<th>Sample Eligibility Index Table for California High School Graduates or Residents of California</th>
<th>GPA</th>
<th>2.00*</th>
<th>2.20</th>
<th>2.40</th>
<th>2.60</th>
<th>2.80</th>
<th>3.00**</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT Score</td>
<td>30</td>
<td>26</td>
<td>22</td>
<td>18</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAT I Score***</td>
<td>1300</td>
<td>1140</td>
<td>980</td>
<td>820</td>
<td>660</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: With a GPA of 2.40 and an SAT I score of 980, minimum eligibility requirements are met.

* Below 2.00 does not qualify for regular admission.
** 3.00 and above qualifies with any score.
*** Reading and Mathematics sections only

When the grade point average is 3.00 or above (3.61 for nonresidents), applicants are not required to submit test scores. However, all applicants for admission are urged to take the ACT or SAT I because campuses use these test results for advising and placement purposes and may require them for admission to impacted majors or programs. (Note that Cal Poly evaluates test scores as part of its competitive admission process. Applicants are unlikely to gain admission to Cal Poly if test scores are not submitted, regardless of grade point average.)

Applicants qualify for regular admission when the University verifies that they have graduated from high school, have a qualifiable eligibility index, have completed the comprehensive pattern of college preparatory “a-g” subjects, and, if applying to an impacted program, have met all supplementary criteria.

Honors Courses

Up to eight semesters of honors courses taken in the last two years of high school, including up to two approved courses taken in the tenth grade, can be accepted for consideration in the overall GPA criteria (Note that Cal Poly does not utilize the overall GPA to determine selection to competitive programs). Each unit of A in an honors course receives a total of 5 points; B, 4 points; and C, 3 points. (Note that Cal Poly's competitive admission process takes into account all honors courses taken in the 9th through 12th grade for consideration in the College Preparatory GPA criteria which is the GPA utilized in selection for competitive programs.)

Subject Requirements

CSU requires that first-time freshman applicants complete, with grades of C or better, a comprehensive pattern of college preparatory study totaling 15 units. A "unit" is one year of study in high school.

- 2 years of social science, including 1 year of U.S. history, or U.S. history and government.
- 4 years of English.
- 3 years of math (algebra, geometry, and intermediate algebra).
- 2 years of laboratory science (1 biological and 1 physical, both with labs).
- 2 years in the same foreign language (subject to waiver for applicants demonstrating equivalent competence).
- 1 year of visual and performing arts: art, dance, drama/theater, or music.
- 1 year of electives: selected from English, advanced mathematics, social science, history, laboratory science, foreign language, visual and performing arts, or other courses approved and included on the UC/CSU “a-g” list.

Subject Requirement Substitution for Students with Disabilities

Applicants with disabilities are encouraged to complete college preparatory course requirements, if at all possible. If an applicant is judged unable to fulfill a specific course requirement because of his or her disability, alternate college preparatory courses may be substituted for specific subject requirements.

Substitutions may be authorized on an individual basis after review and recommendation by the applicant’s academic advisor or guidance counselor in consultation with the director of Cal Poly’s Disability Resource Center. Although the distribution may be slightly different from the course pattern required of other students, students qualifying for substitutions are still held accountable for 15 units of college preparatory study.

Students should be aware that course substitutions may limit later enrollment in certain majors, particularly those involving mathematics. For further information and substitution forms, please contact the director of Disability Resource Center.

TRANSFER REQUIREMENTS

A transfer applicant meets the minimum requirements for admission to the CSU system if the applicant has a grade point average of 2.0 (C) or better in all transferable units attempted, is in good standing at the last college or university attended, and meets the following standards:

The applicant is an upper division transfer student (i.e., at least 60 transferable semester [90 quarter] units have been completed) and has made up any missing subject requirements (see "Making Up Missing College Preparatory Subjects"). Nonresidents must have a 2.4 grade point average or better. In addition:

*If the applicant graduated from high school in 1988 or later, the applicant must have completed at least 30 semester units of college coursework with a grade of C or better in each course to be selected from courses in English, arts and humanities, social science, science and mathematics at a level at least equivalent to courses that

2007-2009 Cal Poly Catalog
meet general education requirements. The 30 units must include all of the general education requirements in communication in the English language and critical thinking (at least 9 semester units) and the requirement in mathematics/quantitative reasoning (usually 3 semester units) OR the applicant must have completed the Inter-segmental General Education Transfer Curriculum (IGETC) requirements in English communication and mathematical concepts and quantitative reasoning.

If the applicant graduated from high school prior to 1988, the applicant should contact the Admissions Office to inquire about alternative admission programs.

Transferable courses are those designated for baccalaureate credit by the college or university offering the courses.

Making Up Missing College Preparatory Subject Requirements

Applicants who did not complete subject requirements while in high school may make up missing subjects in any of the following ways:

1. Complete appropriate courses with a C or better in adult school or high school summer sessions.
2. Complete appropriate college courses with a C or better. One college course of at least three semester or four quarter units is considered equivalent to one year of high school study.
3. Earn acceptable scores on specified examinations.

Please consult with the Admissions Office for further information about alternative ways to satisfy the subject requirements.

Hardship Consideration

Cal Poly gives special consideration to place-bound, domiciled, upper-division transfer candidates who are not able to leave the local area and who have completed all lower-division and general education courses required for degree completion in their major. After having filed an on-time application for a fall term, and if not selected, qualified candidates can be evaluated for admission based on University Interest as a Hardship Consideration. To be reviewed for Hardship Consideration, a letter that includes official college transcripts from all institutions attended must be sent to the Assistant Vice President of Admissions, Recruitment & Financial Aid.

APPLICATION PROCEDURES

www.csumentor.edu/planning, www.calpoly.edu/_admiss/

Cal Poly, San Luis Obispo requires all applicants to file on-time applications for admission consideration via the Internet at CSU Mentor.

All applications must be accompanied by a $55 non-refundable application fee that should be submitted through CSU Mentor. The application fee may not be transferred or used to apply to another term.

Importance of Filing Complete, Accurate, Authentic Application for Admission Documents

Cal Poly advises prospective students to supply complete and accurate information on the application for admission, residence questionnaire, and financial aid forms, as changes to the self-reported information will not be considered. Applicants must also submit authentic, official transcripts sent directly from the issuing institution of all previous academic work attempted, including work in progress, when requested to do so by the University. Failure to file complete, accurate, and authentic application documents may result in denial of admission, cancellation of academic credit, suspension, or expulsion (Section 41301 of Title 5, California Code of Regulations).

Because all majors at Cal Poly are competitive at the undergraduate level, it is necessary for all applications to be submitted by the application deadline.

TEST REQUIREMENTS

All first-time freshmen need to submit either ACT or SAT I test scores.

The College Board (SAT I) ACT Registration Unit
Registration Unit, Box 6200 P.O. Box 414
Princeton, New Jersey 08541-6200 Iowa City, Iowa 52240
(609) 771-7588 (319) 337-1270
www.collegeboard.org www.act.org

CAL POLY APPLICATION FILING PERIODS

Under the Regular Decision process used by the vast majority of those applying, Cal Poly accepts new freshman applicants for the fall and summer terms and new transfer applicants for the fall, summer, and winter terms.

Exceptions—Applicants to the following programs are admitted for the fall term only: Art and Design, and Music.

The following majors accept new first-time freshman applicants for fall term only and new transfer applicants for both fall and winter terms: Architectural Engineering, Architecture, City and Regional Planning, Construction Management, and Landscape Architecture.

Applications must be submitted during the following time periods:

Fall Quarter October 1st – November 30th of previous year
Summer Quarter February 1st – Last Day of February of same year
Winter Quarter June 1st – June 30th of previous year

Freshmen applicants seeking Early Decision must apply during the month of October (October 1st – 31st) of previous year (see below).
Notification (Regular Decision)

For a Fall Term:

- The student submits an admission application by November 30th.
- Notification of the admission decision is normally made by April 1st. If accepted, the student must file an electronic Statement of Intent to Register (SIR).
- The SIR, together with other requested documents, must be submitted no later than May 1st.

Confirmation of Admission

Any offer of admission to Cal Poly is conditional on completion of outstanding requirements and submission of transcripts or other supporting documents, as applicable. Once a student has been conditionally admitted to Cal Poly, it is the student’s responsibility to verify that the terms of their conditional acceptance have been met. It is mandatory that selected students submit their SIR on-line (and any transcripts or other supporting documents requested by the Admissions Office) by the stated deadline in order to confirm formal admission and guarantee clearance for registration.

Statement of Intent to Register Deadlines (SIR)

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>May 1st</td>
</tr>
<tr>
<td>Summer</td>
<td>Not required</td>
</tr>
<tr>
<td>Winter</td>
<td>Not required</td>
</tr>
</tbody>
</table>

Early Decision Option

Early Decision is an option offered to those first-time freshman applicants for whom Cal Poly is clearly their first choice. Applicants should have established strong and consistent academic records throughout secondary school and should have completed all the required standardized testing by October of their senior year. Candidates are reviewed on their program of study in secondary school, academic performance in classes, standardized test scores, extra-curricular activities, and/or work experience.

Early Decision candidates must be committed to attend Cal Poly. Students admitted under this plan and who accept the terms of admission may be released only for compelling medical or financial reasons. Students who apply for Early Decision and are not selected will automatically be reviewed under the Regular Decision process.

For students who choose the Early Decision option:

- The student must submit an electronic application, along with the required $55 application fee, by a final deadline of October 31st.
- The student is notified of the admission decision by December 15th.
- The student’s reply to an offer of admission by Cal Poly must be submitted electronically by January 15th.

OTHER INFORMATION

Returning Students in Same Major

Matriculated students who have not registered for one or two consecutive quarters will be entitled to their registration priority without applying for readmission. Summer Quarter is a regular quarter and is counted in determining the length of absence.

Matriculated students who have not registered for three consecutive quarters or more (counting Summer Quarter) and have not been on an approved leave of absence may return to the University without going through the competitive admissions process providing the following criteria are met:

1. The student must return in the same major.
2. The student must be in good standing (2.0 or better Cal Poly GPA) or have received permission to return from their Academic Dean.
3. A CSU paper application for readmission must be filed or postmarked before the deadline dates listed below. The application fee must accompany the application for readmission.

Application Deadlines for Returning Students

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>April 1st</td>
</tr>
<tr>
<td>Fall</td>
<td>July 1st</td>
</tr>
<tr>
<td>Winter</td>
<td>October 1st</td>
</tr>
<tr>
<td>Spring</td>
<td>February 1st</td>
</tr>
</tbody>
</table>

Returning Students Seeking a Different Major

Students wishing to return to Cal Poly in a different major must file an on-line application for admission, including the application fee, by the same application deadlines as new students. They will compete equally with new applicants for the available transfer openings in the new major.

International Students -- General Admissions Requirements

TOEFL Requirement

All undergraduate applicants whose native language is not English must present a score of 550 or above on the Test of English as a Foreign Language (TOEFL). Those opting to take the Computer Based Test of English as a Foreign Language must present a score of 213 or above or those opting to take the Internet Based Test must present a score of 80 or above. These are minimum CSU requirements, which may be exceeded in Cal Poly’s selective admission process. Applicants should take the TOEFL at least six months prior to the term of application to ensure the test scores are received in time for full consideration in the selection process.
Additional Admission Requirements
The CSU must assess the academic preparation of international students. For this purpose, "international students" include those who hold U.S. temporary visas as students, exchange visitors, or those in other nonimmigrant classifications. The CSU uses separate requirements and application filing dates in the admission of “international students.” Verification of English proficiency (see TOEFL above), financial resources, and academic performance are each important considerations for admission. Academic records from foreign institutions must be on file by the file completion dates listed below, and if not in English, must be accompanied by certified English translations.

To be considered for admission to an undergraduate or graduate program, applicants must have graduated from a secondary, higher secondary, or tertiary institution which is recognized by the Ministry of Education. International applicants must have their admission file completed by the deadline dates listed below. A completed file includes: official transcripts from all schools attended, showing evidence of graduation from secondary school and all coursework and any certificates or degrees received; confidential financial statement; health insurance promissory note; International Education Background form; and a Test of English as a Foreign Language with a score of 550 or more on the written exam, 213 or more on the computer exam or 80 or more on the internet exam. All official documents must be submitted in the native language and accompanied by a certified English translation.

International applicants may also be required to submit a fee for an international credential analysis from a specified agency if requested by the Admissions Office.

International Application and File Completion Deadlines for Undergraduates and Graduates:

<table>
<thead>
<tr>
<th>Term</th>
<th>Application Deadline</th>
<th>File Completion Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Nov. 30th</td>
<td>April 1st</td>
</tr>
<tr>
<td>Winter</td>
<td>June 30th</td>
<td>Sept. 1st</td>
</tr>
<tr>
<td>Spring</td>
<td>Not Accepted</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>Not Accepted</td>
<td></td>
</tr>
</tbody>
</table>

After all required forms and academic documents have been received, the University will determine the candidate’s eligibility for admission and notify the applicant of the results. If admitted, students will receive a Certificate of Eligibility (I-20 form) which is necessary to obtain a student visa to enter the United States or for requesting permission from the U.S. Citizenship & Immigration Services (formerly INS) for transfer to Cal Poly from another U.S. school. Other requirements may be imposed by USCIS. The I-20 form is valid for enrollment only at Cal Poly for the quarter indicated, and includes an expiration date. If it is necessary to change an application to another term, applicants must make the request to Cal Poly in writing and another application fee will be required.

Consistency with State Regulations
The philosophy of the Admissions Office is consonant with the mission of California Polytechnic State University, and is in accordance with Title 5, Chapter 1, Subchapter 3, of the California Code of Regulations. If unsure of these requirements, please view the Cal Poly Admissions website at www.ess.calpoly.edu/_admiss/ or call the Admissions Office (805-756-2311).

Graduate Admission Requirements
For information regarding graduate admission, see the "Graduate Programs" section.

Determination of Residence for Nonresident Tuition Purposes
The campus Office of Admissions determines the residence status of all new and returning students for nonresident tuition purposes. Please refer to the "Appendix" for detailed information.
Fees, nonresident tuition and payment policies are subject to change upon approval by the President, the CSU Chancellor or Board of Trustees. Please refer to www.fees.calpoly.edu for complete information on fees, including on-campus housing, meal costs, and parking fees.

Schedule of Fees
All regularly enrolled students, both undergraduate and graduate, pay registration fees determined by the number of units per quarter. Legal residents of California are not charged graduate, pay registration fees determined by the number of units per quarter. Mandatory systemwide fees are waived for those individuals who qualify for such exemption under the provisions of the California Education Code (see Student Fee Waivers).

Registration Fees Per Quarter
Registration Fees are the sum of two types of fees:
1) **Campus-Wide Fees** that are payable irrespective of college/academic unit. Campus-wide fees include: State University Fee, Associated Students Fee, Health Facilities Fee, Instructionally Related Activities Fee, Health Services Fee, University Union Fee, and Campus Services Card Fee. Nonresident and foreign students are also charged per unit for nonresident tuition up to a prescribed maximum per year.

Cal Poly registration fees are due at the time of registration, and all prior term balances must be paid in full in order to register. Fees that are not paid by the fifth day following a student’s registration become past due, and a registration hold is placed on the account that prevents adding or swapping classes. If registration fees are still past due as of the next published cancellation date, then the student may be canceled from all enrolled classes. Students who have accepted financial aid, have an approved third-party contract on file, or are receiving fee waivers are not subject to financial registration holds or class cancellation. Financial aid students whose awards are insufficient to pay fees in full are billed for the balance, and are unable to register for subsequent quarters until the balance has been paid.

Refund of Fees Including Nonresident Tuition
Regulations governing the refund of mandatory fees, including nonresident tuition, for students enrolling at the California State University are included in §41802 of Title 5, California Code of Regulations. For purposes of the refund policy, mandatory fees are defined as those systemwide fees and campus fees that are required to be paid in order to enroll in state-supported academic programs at the California State University. Refunds of fees and tuition charges for self-support programs at the California State University (courses offered through extended education) are governed by a separate policy established by the University.

In order to receive a full refund of mandatory fees, including nonresident tuition, a student must cancel registration or drop all courses prior to the first day of instruction for the term. Information on procedures and deadlines for canceling registration and dropping classes is available online at www.ess.calpoly.edu/records.

For state-supported semesters, quarters, and non-standard terms or courses of four weeks or more, a student who withdraws during the term in accordance with the University’s established procedures will receive a refund of mandatory fees, including nonresident tuition, based on the portion of the term during which the student was enrolled. No student withdrawing after the 60 percent point in the term will be entitled to a refund of any mandatory fees or nonresident tuition.

For state-supported semesters, quarters, and non-standard terms or courses of less than four (4) weeks, no refund of mandatory fees and nonresident tuition will be made unless a student cancels registration or drops all classes prior to the first day in accordance with the University’s established procedures and deadlines. Students will receive a refund of mandatory fees, including nonresident tuition, under the following circumstances:
- The tuition and mandatory fees were assessed or collected in error;
- The course for which the tuition and mandatory fees were assessed or collected was cancelled by the University;
- The University makes a delayed decision that the student was not eligible to enroll in the term for which mandatory fees were assessed and collected and the delayed decision was not due to incomplete or inaccurate information provided by the student; or
- The student was activated for compulsory military service.

Students who are not entitled to a refund as described above may petition the University for a refund demonstrating exceptional circumstances, and the chief financial officer of the University may authorize a refund if he or she determines that the fees and tuition were not earned by the University. Information concerning any aspect of the refund of fees may be obtained from the Student Accounts Office.

Fees and Debts Owed to the University
Should a student or former student fail to pay a fee or a debt owed to the institution, the institution may "withhold permission to register, to use facilities for which a fee is authorized to be charged, to receive services, materials, food or merchandise, or any combination of the above from any person owing a debt" until the debt is paid (see Title 5, California Code of Regulations, Sections 42380 and 42381).
Prospective students who register for courses offered by the University are obligated for the payment of fees associated with registration for those courses. Failure to cancel registration in any course for an academic term prior to the first day of the academic term gives rise to an obligation to pay student fees including any tuition for the reservation of space in the course.

The institution may withhold permission to register or to receive official transcripts of grades or other services offered by the institution from anyone owing fees or another debt to the institution. If a person believes he or she does not owe all or part of an asserted unpaid obligation, that person may contact the Student Accounts Office. The Student Accounts Office, or another office on campus to which the Student Accounts Office may refer the person, will review all pertinent information provided by the person and available to the campus, and advise the person of its conclusions. For more information or questions, please contact the Senior Director of Financing and Treasury in the CSU Chancellor’s Office, at (562) 981-4579.

Credit Cards
Master Card, Discover Card, and American Express may be used for payment of registration fees, nonresident tuition, housing and certain other University fees using the web credit card system. The University also accepts electronic check payments, known as eCheck orACH, using the web on-line payment systems. Details concerning the use of electronic checks and credit cards for fee payments may be obtained from the University website under www.fees.calpoly.edu. Credit cards may be used for the purchase of meal plans from the Cal Poly Corporation, theatre tickets from the Cal Poly Theatre Box Office, tickets for sports events from the Athletics Department, health services from the University Health Center, Bookstore purchases and for Continuing Education program fees. Contact the individual service center for specific credit card information.

Student Fee Waivers
The California Education Code includes provisions for the mandatory waiver of systemwide fees as follows:

- § 68120 – Children and surviving spouses/registered domestic partners of deceased public law enforcement or fire suppression employees who were California residents and who were killed in the course of law enforcement or fire suppression duties (referred to as Alan Pattee Scholarships);

- § 66025.3 – Qualifying children, spouses/registered domestic partners, or unmarried surviving spouses/registered domestic partners of a war period veteran of the U.S. military who is totally service-connected disabled or who died as a result of service-related causes; children of any veteran of the U.S. military who has a service-connected disability, was killed in action, or died of a service-connected disability and meets specified income provisions; any dependents or surviving spouse/registered domestic partner who has not remarried of a member of the California National Guard who in the line of duty and in active service of the state was killed or became permanently disabled or died of a disability as a result of an event while in active service of the state; and undergraduate students who are the recipient of or the child of a recipient of a Congressional Medal of Honor and meet age and income restrictions; and

- § 68121 – Students enrolled in an undergraduate program who are the surviving dependent of any individual killed in the September 11, 2001, terrorist attacks on the World Trade Center in New York City, the Pentagon building in Washington, D.C., or the crash of United Airlines Flight 93 in southwestern Pennsylvania, if the student meets the financial need requirements set forth in Section 69432.7 for the Cal Grant A Program and either the surviving dependent or the individual killed in the attacks was a resident of California on September 11, 2001.

Students who may qualify for these benefits should contact the Admissions Office for further information and/or an eligibility determination.

Procedure for the Establishment or Abolishment of a Student Body Fee
The law governing the California State University provides that fees defined as mandatory, such as a student body association fee and a student body center fee, may be established. A student body association fee must be established upon a favorable vote of two-thirds of the students voting in an election held for this purpose (Ed. Code § 89300). A student body center fee may be established only after a fee referendum is held which approves by a two-thirds favorable vote the establishment of the fee (Ed. Code § 89304). The campus President may adjust the student body association fee only after the fee adjustment has been approved by a majority of students voting in a referendum established for that purpose (Ed. Code § 89300). The required fee shall be subject to referendum at any time upon the presentation of a petition to the campus President containing the signatures of 10 percent of the regularly enrolled students at the University. Once bonds are issued, authority to set and adjust student body center fees is governed by provisions of the State University Revenue Bond Act of 1947, including, but not limited to, Ed. Code Sections 90012, 90027, and 90068. Student body association fees support a variety of cultural and recreational programs, child care centers, and special student support programs.

The process to establish and adjust other campus-based mandatory fees requires consideration by the campus fee advisory committee and a student referendum. The campus President may use alternate consultation mechanisms if he/she determines that a referendum is not the best mechanism to achieve appropriate and meaningful consultation. Results of the referendum and the fee committee review are advisory to the campus President. The President may also request the Chancellor to establish the mandatory fee.

For more information or questions, please contact the Senior Director of Financing and Treasury in the CSU Chancellor’s Office, at (562) 981-4579.
Financial Aid

The University has a variety of scholarships, grants, part-time employment opportunities and loans designed to assist students financially. Additional current information may be obtained by accessing the Financial Aid Office website.

The application for Financial Aid is called the Free Application for Federal Student Aid (FAFSA). The FAFSA is available on the Web at www.fafsa.ed.gov or may be obtained from any university or college financial aid office or most high schools. The priority deadline for filing the FAFSA is March 2. All students are encouraged to file the FAFSA and qualified students are considered for scholarships.

Typical Student Expenses
Following are the average expenses per quarter for the 2006-2007 academic year for the California resident student attending Cal Poly. Charges for room and board are payable in advance or in quarterly installments. Nonresident students should be prepared to pay additional tuition and fees. For the 2006-07 school year nonresident tuition was an extra $226 per unit. Please see the "Fees and Expenses" section for more information. All State fees are subject to change upon approval by the Board of Trustees of the California State University.

University Estimated Expenses per Quarter

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration fees</td>
<td>1,450</td>
</tr>
<tr>
<td>Room and board</td>
<td>2,810</td>
</tr>
<tr>
<td>Books and supplies</td>
<td>435</td>
</tr>
<tr>
<td>Personal and transportation</td>
<td>986</td>
</tr>
<tr>
<td>Estimated total per quarter</td>
<td>5,681</td>
</tr>
</tbody>
</table>

Cancellation of Registration or Withdrawal from the Institution and Financial Aid

Students who find it necessary to cancel their registration or to withdraw from all classes after enrolling for any academic term are required to follow the University’s official withdrawal procedures. Failure to follow formal University procedures may result in an obligation to pay fees, the assignment of failing grades in all courses and the need to apply for readmission before being permitted to enroll in another academic term. Information on canceling registration and withdrawal procedures is available from the Office of Academic Records, Administration Building, Room 222, 805-756-2531.

Students who receive financial aid funds must consult with the Financial Aid and Student Accounts Offices prior to withdrawing from the University regarding any refunds or repayments of grant or loan assistance received for that academic term or payment period. If a recipient of student financial aid funds withdraws from the institution during an academic term or a payment period, the amount of grant or loan assistance received may be subject to return and/or repayment provisions.

UNIVERSITY SCHOLARSHIPS

General Information
Scholarships are awarded each year. Criteria include financial need, scholastic achievement, participation in school activities, community service, honors and organizational affiliations, and educational objectives. Some scholarships have additional requirements which relate to a concentration or field of study, geographic origin, class level, and project or design portfolios.

There are numerous scholarships available due to the generous support of individuals and corporations. Please refer to the Financial Aid web site for detailed information.

Generally, a student must have at least a 3.0 grade point average. Both undergraduate and graduate students are considered for scholarships.

| Annual Deadline Date to Apply (Complete the FAFSA) for the following academic year: March 2 |

How to Apply
The Financial Aid Office website offers the latest information at www.calpoly.edu/~finaid. For need-based scholarships, completing the FAFSA is required. For priority consideration for financial aid programs and Cal Poly scholarships, complete the FAFSA by March 2.

Scholarship Notifications
Scholarships are normally awarded during the spring and summer for the following academic year. During that time award notices are sent which include scholarship amount, disbursement and donor information. Recipients must be in good academic standing, maintain full-time enrollment while receiving a scholarship, and concurrent enrollment units are excluded. Some scholarships require recipients to have earned at least one-half the value of the scholarship during the previous year.

Scholarships are awarded for an academic year and are typically disbursed in quarterly increments. Non-attendance will result in cancellation or a prorated amount.

Athletic Program Grants-In-Aid
Cal Poly athletic grants-in-aid are offered to students participating in intercollegiate athletics. Grants are
renewable on a quarterly basis, the requisites for renewal being at the discretion of the University.

The grant-in-aid is subject to the financial limitations imposed by the National Collegiate Athletic Association and any conference of which the University is a member. Financial aid, scholarships, specific outside resources and employment shall be considered in determining compliance with these limitations. Additional information can be provided by the Athletic Department.

Other Scholarships
In addition to University scholarships, awards from various private donors and organizations are available to assist students with University expenses. Interested students should make inquiries for such awards directly to sponsoring organizations. Currently, Cal Poly students are beneficiaries of several million dollars of outside scholarship assistance each year. Exercise caution in using scholarship search services; many sell information that is readily available at no cost. Other sources of scholarship funding may be available from:

- community organizations
- employers
- professional, career and trade associations

For valuable links visit the scholarship website at www.ess.calpoly.edu/finaid/NewFinAid/school_main.htm.

GRANTS

Federal Pell Grants are designed to help undergraduates and teaching credential candidates pay for their education. The Pell Grant amount is determined by the Expected Family Contribution, the cost of education, full-time or part-time enrollment and terms of enrollment. To apply, complete the FAFSA.

Academic Competitiveness Grants (ACG) are available to assist first and second year undergraduate students who show financial need and have completed a rigorous high school program. Students must be enrolled full-time, a U.S. Citizen, and for second year recipients, have a GPA from their first year of at least 3.0. To apply, complete the FAFSA.

National Science and Mathematics Access to Retain Talent (SMART) Grants are available to assist third and fourth year undergraduates pursuing a major in science (including physical, life, and computer sciences), mathematics, technology, engineering, or a critical foreign language, such as Arabic, Chinese, Korean, Japanese and Russian. Students must also be enrolled full-time, a U.S. Citizen, have a cumulative GPA of at least 3.0 and eligible for a Federal Pell Grant. To apply, complete the FAFSA.

Federal Supplemental Educational Opportunity Grant (SEOG) is designed to assist undergraduate students who have substantial financial need. To apply, complete the FAFSA by March 2 for the upcoming school year.

CAL GRANTS

The California Student Aid Commission (CSAC) awards entitlement and competitive Cal Grants. To qualify, students must be California residents. If applying for a Cal Grant for the first time, students must complete the FAFSA and a Cal Grant GPA verification form. Request the GPA Verification Form from your high school or college. To apply, complete the FAFSA and mail the GPA Verification Form to CSAC by March 2.

For the latest information on the Cal Grant program, visit the CSAC website at www.csac.ca.gov

Cal Grant A is awarded to middle- and low-income undergraduates. New awards are limited to students who will be freshmen, sophomores or juniors. Cal Grant A covers a portion of student registration fees and eligibility is tied to the cost of attendance. Cal Grant A may be renewed until completion of four years of college attendance. Recipients must continue to meet eligibility standards. Students may be eligible for an additional year of Cal Grant A at Cal Poly if enrolled in a designated five-year program or the teaching credential program.

Cal Grant B is awarded to low-income undergraduate students. First year recipients receive stipend only. Cal Grant B renewal recipients receive stipend plus a portion of registration fees. Eligibility is tied to the cost of attendance. Cal Grant B may be renewed until completion of four years of college attendance and must meet eligibility standards. Students may be eligible for an additional year of Cal Grant B at Cal Poly if enrolled in a designated five-year program or the teaching credential program.

State Educational Opportunity Program Grant (SEOP) assists undergraduate students who have been admitted to the University through the Educational Opportunity Program (EOP). To apply, complete the FAFSA by March 2 for the upcoming school year.

State University Grant (SUG) covers a portion of student registration fees. SUG is available to undergraduate and graduate students who are California residents and show financial need. To apply, complete the FAFSA by March 2 for the upcoming year.

EMPLOYMENT

Federal Work-Study (FWS) is a need-based program which provides part-time employment for students. Work-Study jobs assist students financially and may provide career related work experience. FWS positions are either on- or off-campus with approved departments/organizations. Pay rates vary depending on job requirements and student skills. To receive priority consideration, complete the FAFSA by March 2 for the upcoming school year.
LOANS

Loans are for educational purposes only, with specific provisions for repayment. There are four types: Federal Perkins Loans, Federal Stafford Student Loans (FFEL), Federal Parent Loans (PLUS), and Cal Poly Long-Term Educational Loans. Also available are small, short-term emergency loans.

Federal Perkins Loan is a five percent interest loan available to both undergraduate and graduate students. Annual amounts are based on students' need as determined by the FAFSA data. Repayment begins nine months after the student leaves school or ceases to be enrolled at least half-time. The government pays the interest while the student is in school and during the grace period. There are cancellation and deferment provisions. To apply, complete the FAFSA by March 2 for the upcoming school year.

Federal Subsidized Stafford Loans are available to students through lending institutions such as banks and credit unions. Annual amounts are based on the students' need as determined by the FAFSA and federal limits. The federal government pays the interest on the loan while the student is in school and there are deferment provisions. To apply, complete the FAFSA.

Federal Unsubsidized Stafford Loans are available for students who are ineligible for some or all of a subsidized Federal Stafford Loan. With the exception of demonstrated financial need, borrowers must meet all eligibility criteria under the Federal Stafford Loan program. Interest payments begin immediately after the loan is disbursed or the borrower may elect to defer payment and add the interest to the amount owed. An additional amount of Unsubsidized Stafford Loan, above the Federal Subsidized Stafford limit, may be available to independent students and to dependent students whose parents are denied a PLUS Loan.

Federal Parent Loans (PLUS) enable borrowers to obtain low interest loans for educational costs through banks and other lending institutions. PLUS loan repayment begins when the loan is disbursed. To apply, complete the FAFSA.

University Long-Term Educational Loans are available to students who demonstrate long-term financial need. Some require written application, recommendations and interviews. The interest rate is four percent on the unpaid balance during repayment. Typically, interest accrues after the specified due date, graduation or withdrawal from the University. A one percent service charge is deducted from each loan disbursement.

University Short-Term Emergency Loans are designed to help students cope with unanticipated, educationally-related financial emergencies. Registration fees, rent, or utility bills are expenses that students should plan and are not considered emergencies as defined under this program. Full-time enrollment and a minimum 2.0 GPA are required. Each application is reviewed on a case-by-case basis. For further information, visit the Financial Aid Office website at www.calpoly.edu/~finaid, or stop by the office.

University Educational and Emergency Student Loans

There are numerous loans available due to the generous support of individuals and corporations. Please refer to the Financial Aid web site for detailed information.

Alternative or Private Loans are offered by the private sector for the purpose of covering educational expenses and do not require students to demonstrate "financial need." Careful review of the interest rates, repayment options and qualification standards will help students determine which is the best loan suited for their needs. This type of loan is meant to be used after traditional financial aid eligibility has been exhausted or for students who do not qualify for traditional need based aid programs. Visit the Financial Aid Office website or stop by the office for more information.
PLACEMENT TEST REQUIREMENTS

The California State University requires that each entering undergraduate, except those who qualify for an exemption, take the CSU Entry Level Mathematics (ELM) examination and the CSU English Placement Test (EPT) after admission and prior to enrollment. These placement tests are not a condition for admission to the CSU, but they are a condition of enrollment. They are designed to identify entering students who may need additional support in acquiring college entry-level English and mathematics skills necessary to succeed in CSU baccalaureate-level courses. Undergraduate students who do not demonstrate college-level skills in English and/or mathematics should enroll in appropriate remedial courses or programs during the first term of their enrollment.

English Placement Test (EPT)

Purpose of the EPT
The EPT is designed to assess the level of reading and writing skills of entering undergraduate students so that they can enroll in appropriate courses. Those undergraduate students who do not demonstrate college-level skills will be advised to enroll in courses or programs designed to help them attain these skills. The test is not a condition for admission to the CSU, but it is a condition of enrollment. Students may take the EPT only once. It may not be repeated.

Who Must Take the EPT
The CSU English Placement Test must be completed by all entering undergraduates with the exception of those who present proof of one of the following.

- a score of “Exempt” on the augmented English CST, i.e., the CSU Early Assessment Program (EAP), taken in grade 11 as part of the California Standard Test.
- a score of 550 or above on the Verbal section of the College Board SAT taken on or after April 1, 1995 or later.
- a score of 680 or above on the re-centered and adjusted College Board SAT II Writing Test taken May 1998 or later.
- a score of 24 or above on the enhanced ACT English Test taken October 1989 or later.
- a score of 3, 4, or 5 on either the Language and Composition or the Composition and Literature examination of the College Board Advanced Placement program.

Registration materials for the EPT will be mailed to all students subject to the requirement. The materials may also be obtained from the Test Office (805-756-1551).

Remediation
In addition, students who do not demonstrate requisite competence are required to enroll in appropriate remedial or developmental courses beginning in their first term in order to complete the requirements during the first year of enrollment (ENGL 102, 103, 112, or 113). All students who score low on the EPT are required to enroll in ENGL 103 Writing Lab concurrently with ENGL 134 Writing: Exposition or ENGL 133 Writing Exposition for English as a Secondary Language (ESL). Failure to successfully complete ENGL 103 will result in a grade of F in ENGL 134 or ENGL 133.

Students who do not make adequate progress in developing foundational skills within the first year of enrollment will face disqualification from the University.

Entry Level Mathematics (ELM) Exam
Purpose of the ELM
The ELM examination is designed to assess the skill levels of entering CSU students in the areas of mathematics typically covered in three years of rigorous college preparatory courses in high school (normally Algebra I, Algebra II, and Geometry). Undergraduate students who do not demonstrate college-level skills will be advised to enroll in courses or programs designed to help them attain these skills. The ELM is not a condition for admission to the CSU, but it is a condition of enrollment.
Who Must Take the ELM

All entering undergraduates must take the ELM examination before enrolling in a course that satisfies the college-level mathematics requirement of the General Education-Breadth program. Exemptions from the test are given only to those students who can present proof of one of the following:

- a score of "Exempt" on the augmented mathematics California Standards Test, i.e., the CSU Early Assessment Program (EAP), taken in grade 11.
- a score of "Conditionally Exempt" on the augmented CST, i.e., the CSU Early Assessment Program (EAP) PLUS successful completion of a Senior-Year Mathematics Experience (SYME).
- a score of 550 or above on the mathematics section of the College Board SAT or on the College Board SAT Subject Tests—Mathematics Tests Level I, IC (Calculator), II, or IIC (Calculator).
- a score of 23 or above on the ACT Mathematics Test.
- a score of 3 or above on the College Board Advanced Placement Calculus examination (Calculus AB or BC) or Statistics examination.
- for transfer students, completion and transfer of a course that satisfies the General Education or Intersegmental General Education Transfer Curriculum (IGETC) quantitative reasoning requirement, provided the course was completed with a grade of C or better.

Cal Poly Mathematics Placement Examination (MAPE)

The Cal Poly Mathematics Placement Exams are diagnostic exams given by the Mathematics Department to place students who have satisfied the ELM requirement in the appropriate math course. The MAPE is not intended for all students, so please read the following information carefully.

Precalculus MAPE

Students who anticipate taking Trigonometry, Calculus, or Mathematics for Elementary Teaching (MATH 119, 141, 161, 221, or 327) must pass the precalculus MAPE unless they have presented proof of one of the following exemptions:

- a score of 600 or above on the mathematics section of the SAT I Test or on the SAT II Mathematics Tests Level I, IC (Calculator), II, or IIC (Calculator);
- a score of 30 or above on the American College Testing (ACT) Mathematics Test;
- a score of 3 or above on the College Board Advanced Placement Mathematics (Calculus AB or BC) examination;
- completion of MATH 118 at Cal Poly or transfer of a college course equivalent to MATH 118

Intermediate Algebra MAPE

Students who anticipate taking Precalculus Algebra (MATH 118) must pass the intermediate algebra MAPE unless they have presented proof of one of the following exemptions:

For MATH 118:

- a score of 550 or above on the mathematics section of the SAT I Test or on the SAT II Mathematics Tests Level I, IC (Calculator), II, or IIC (Calculator);
- a score of 23 or above on the American College Testing (ACT) Mathematics Test; or
- a score of 65 or above on the ELM test.

NOTE: For MATH 141, students must also have credit for college or high school trigonometry, completed with grade C or better.

REGISTRATION HOLDS/DISENROLLMENT

CSU Trustee policy requires that all non-exempt students take the ELM examination after admission and before enrollment in the CSU. At Cal Poly, failure to take the ELM examination or show documented exemption before enrollment will result in a hold on registration privileges and may lead to disenrollment from the University.

In addition, students who do not demonstrate requisite competence are required to enroll in appropriate remedial or developmental programs during the first term of enrollment and each subsequent term until such time as they demonstrate competence. Students who do not demonstrate proficiency within the first year of enrollment will face disqualification from the University.

At Cal Poly, students may not enroll in any college level mathematics or statistics course without satisfying the ELM requirement.

Students who need to take the ELM exam will be sent the information about the exam and how to register. This information is also available from the ELM/MAPE Office (805-756-2268), or online at www.calpoly.edu/~math/elmmape.html

NOTE: Students who have satisfied the ELM requirement and are planning to take MATH 112 or MATH 116 do not need to take the MAPE.

Students who need to take a math placement exam must do so prior to enrollment. The MAPE is free and offered regularly throughout the year. For information, contact the ELM/MAPE Office (805-756-2268) or the Math Department Office (805-756-2206).
EVALUATION OF TRANSFER CREDIT

The Office of Academic Records evaluates previous college work as it relates to the requirements at Cal Poly. Each student seeking a degree will be issued an Evaluation of Transfer Credit statement, which will serve as a basis for determining the remaining requirements for the student’s specific degree objective. Semester units transferred to Cal Poly will be converted to quarter units by multiplying the semester units by one and one-half.

Evaluation of Transfer Credit statements are completed automatically after students are admitted. It is important that new transfer students review their previous college work in terms of the degree and credential requirements outlined in the catalog to make a tentative selection of courses for their first quarter of enrollment. Students should consult a faculty advisor in their major department or the appropriate Advising Center for assistance in the selection of courses.

The evaluation remains valid as long as the student matriculates for the term specified, pursues the objective declared, and remains in continuous attendance.

While students may follow the specific catalog year academic requirements on which their Evaluation of Transfer Credit is based, they will be responsible for complying with changes in other regulations, policies, and procedures, which may appear in subsequent catalogs.

Credit for Community College Courses

Course credit earned in accredited community colleges will be evaluated by the Evaluations Unit in the Office of Academic Records in accordance with the following provisions:

- Community college credit is allowed up to a maximum of 105 quarter units (70 semester units). Credits and grades earned above the maximum allowable may be used only to satisfy subject and grade point requirements but they may not be applied toward the total units required for graduation.
- Upper division credit will not be allowed for community college work.

Cal Poly maintains articulation agreements at www.assist.org with all of the California Community Colleges (CCC), the California State University (CSU) and University of California (UC) campuses. The CCC campuses publish the CSU General Education (GE) and Intersegmental General Education Transfer Core (IGETC) course lists on the ASSIST website.

Transfer credit for GE courses will be accepted from California institutions, as approved by the CSU Chancellor’s office. The GE Area letters and numbers at Cal Poly (e.g., GE A1, D4) may be different at other colleges. Many Cal Poly programs require specific GE courses in the Major and/or Support; these courses must be met with articulated equivalencies. See catalog page 56 and following for General Education requirements.

OTHER ACADEMIC CREDIT

Advanced Placement (AP) Credit

Cal Poly grants credit for AP exams successfully completed through the College Board AP program. AP scores may be requested from Educational Testing Service (ETS)/AP Programs and should be sent to Cal Poly electronically. Exams passed with a score of 3 or higher result in nine (9) quarter units of credit, except where otherwise noted. To request scores: ETS/AP Program, PO Box 6671, Princeton, NJ 08541-6671 or (609) 771-7300.

Credit may vary from year to year, as Cal Poly requirements and AP Exams change. AP credit matrices are available on the Office of Academic Records website: www.ess.calpoly.edu/records. The AP exams for May 2007 will be available after publication of this catalog. The following table indicates credit likely to be given, based on past experience. It should be viewed as a guideline only and is subject to change:

<table>
<thead>
<tr>
<th>Exam Name</th>
<th>#</th>
<th>Credit Granted & GE Area (GE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History</td>
<td>13</td>
<td>ART 112 plus electives (C3)</td>
</tr>
<tr>
<td>Art: Drawing</td>
<td>14</td>
<td>9 units electives</td>
</tr>
<tr>
<td>Art: 2-D Design</td>
<td>15</td>
<td>9 units electives</td>
</tr>
<tr>
<td>Art: 3-D Design</td>
<td>16</td>
<td>9 units electives</td>
</tr>
<tr>
<td>Biology:</td>
<td>20</td>
<td>Score 3 = BIO 111 or 115 plus electives (B2 & B4) Score 4 or 5 = BIO 111 or 115 or 151 or 161 or BIO 213/ENGR 213 plus electives (B2 & B4)</td>
</tr>
<tr>
<td>Calculus AB</td>
<td>66</td>
<td>MATH 141 or 161 or 221 or 112 or 118 or 119 plus GE B1 electives. (B1)</td>
</tr>
<tr>
<td>Calculus BC</td>
<td>68</td>
<td>MATH 141 or 142 or 161 or 162 or 141 or 182 or 112 or 118 or 119 or 221 plus GE B1 electives. (B1)</td>
</tr>
<tr>
<td>Calculus BC: AB Subscore</td>
<td>69</td>
<td>MATH 141 or 161 or 221 or 112 or 118 or 119 plus GE B1 electives. (B1)</td>
</tr>
<tr>
<td>Chemistry</td>
<td>25</td>
<td>Score 3 = CHEM 110 or 111 or 124 or 127 plus electives. (B3 & B4) Score 4 or 5 = CHEM 110 or 111 or 124 or 127 plus electives; check with the Chemistry Dept. for possible credit for CHEM 125 or 128. (B3 & B4)</td>
</tr>
</tbody>
</table>

Note: If both Calculus AB & BC exams are passed, credit is extended only for Calculus BC, since BC duplicates AB material.
<table>
<thead>
<tr>
<th>Exam Name</th>
<th>#</th>
<th>Credit Granted & GE Area (GE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Sci:</td>
<td>31</td>
<td>Score 3 = 9 units electives</td>
</tr>
<tr>
<td>Test A</td>
<td></td>
<td>Score 4 or 5 = CSC 101 plus electives</td>
</tr>
<tr>
<td>Computer Sci:</td>
<td>33</td>
<td>Score 3 = 9 units electives</td>
</tr>
<tr>
<td>Test AB</td>
<td></td>
<td>Score 4 or 5 = CSC 101 plus electives</td>
</tr>
</tbody>
</table>

Note: If both Computer Science A & AB are passed, credit is extended for Computer Science AB, since AB duplicates the A material.

Economics:
- **Micro** 34 | ECON 221 plus electives
- **Macro** 35 | ECON 222 plus electives (D2)

English:
- **Lang & Comp** 36 | ENGL 134 plus electives (A1)
- **Lit & Comp** 37 | Score 3 = ENGL 134 plus electives (A1)
- **Lit and Comp** 37 | Score 4 or 5 = ENGL 134 & GE C1 Lit (4 units) plus 1 elective (A1 & C1)

Note: If both English Lit/Comp & Lang/Comp are passed, only 4.5 units of credit are awarded for the second exam (total of 13.5 units).

Environmental Science 40 | FNR 101 plus electives

European History 43 | HIST 111 plus electives

French:
- **Language** 48 | Score 3 = FR 121 plus electives
- **Literature** 51 | Score 3 = FR 121 plus electives

Note: If both French Language & Literature are passed, only 4.5 units of credit are awarded for the second exam (total of 13.5 units).

German Language 55 | Score 3 = GER 121 plus electives
- Score 4 or 5 = GER 121 and 122 plus 1 elective

Govt & Politics:
- **Comparative** 58 | 9 units electives
- **United States** 57 | Upon completion of POLS 111 (1 unit CA Govt.) 3 units of credit are awarded for GE D1 (no credit for USCP) plus electives

Human Geog 53 | GEOG 150 plus electives (D3)

Italian Language & Culture 58 | Score 3 = FORL 121 plus electives
- Score 4 or 5 = FORL 121 & 122 plus 1 elective

ADVANCED PLACEMENT EXAM CREDIT - 2006

<table>
<thead>
<tr>
<th>Exam Name</th>
<th>#</th>
<th>Credit Granted & GE Area (GE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latin: Virgil</td>
<td>60</td>
<td>Score 3 = FORL 121 plus electives</td>
</tr>
</tbody>
</table>
- Score 4 or 5 = FORL 121 & 122 plus 1 elective

Latin: Literature 61 | Score 3 = FORL 121 plus electives
- Score 4 or 5 = FORL 121 & 122 plus 1 elective

Music Theory 75 | MU 101 plus electives (C3)

Physics B 78 | Score 3 = PHYS 104 plus electives
- Present lab book to Physics Dept. for review and possible lab credit (B3)
- Score 4 or 5 = PHYS 121 (1 unit) & 122 & 123 (B3 & B4)

Physics C:
- **Mechanics** 80 | Score 3 = PHYS 121 plus electives (B3 & B4)
- Score 4 or 5 = PHYS 131 plus electives (B3 & B4)

Psychology 85 | Score 3 = PSY 201 or 202 plus electives (D4)

Spanish:
- **Language** 87 | Score 3 = SPAN 121 plus electives
- Score 4 or 5 = SPAN 121 & 122 plus 1 elective

Statistics 90 | Score 3 = STAT 130 plus electives (B1)
- Score 4 or 5 = STAT 211 or 217 or 218 or 221 or 251 plus electives (B1)

2007-2009 Cal Poly Catalog
International Baccalaureate (IB) Exam Credit

The Cal Poly Academic Senate adopted a credit policy regarding the IB program in February 1990, as follows:

The International Baccalaureate Diploma shall be considered in lieu of a high school diploma for admission to the University.

Credit will be awarded for classes at the Higher level.

All credit is given on a credit/no credit basis; no units are calculated into the GPA.

For each exam score of 5 or higher, a maximum of 8 units of elective credit shall be awarded.

Course-specific credit may be granted with the concurrence of the academic department.

The following table indicates credit likely to be given, based on past experience. It should be viewed as a guideline only and is subject to change:

<table>
<thead>
<tr>
<th>Exam Name</th>
<th>Credit Given & GE Area (GE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>BIO 111 or 115 plus electives (B3 & B4)</td>
</tr>
<tr>
<td>Grade of 5 or 6</td>
<td>BIO 111 or 115 or 151 plus electives (B3 & B4)</td>
</tr>
<tr>
<td>Grade of 7</td>
<td>CHEM 110 or 111 or 127+128 or 124 (see Chem Dept for possible credit for CHEM 125) plus electives possible (B3 & B4)</td>
</tr>
</tbody>
</table>

Note: 2007 AP Exam Yr: CHEM 110 or 111 plus electives. Credit MAY give credit for CHEM 124 or 127 plus electives upon consultation with the Chemistry Dept Chair and course coordinator.

Credit for Non-collegiate Instruction

Cal Poly grants undergraduate degree credit for successful completion of non-collegiate instruction, either military or civilian, appropriate to the baccalaureate, which has been recommended by the Commission on Educational Credit and Credentials of the American Council on Education. The number of units allowed are those recommended in the Guide to the Evaluation of Educational Experience in the Armed Services and the National Guide to Educational Credit for Training Programs.

Credit for Military Service

Nine quarter units of elective credit will be allowed toward graduation to any student submitting evidence of satisfactory completion of basic training in the military service of the United States. Credit is allowed in accordance with the recommendations by the Commission on Educational Credit and Credentials of the American Council on Education. The number of units allowed are those recommended in the Guide to the Evaluation of Educational Experience in the Armed Services. Credit is not given for college level General Educational Development Tests. No grade points are assigned in connection with units of credit allowed for military service. The units allowed are not included in scholarship computations.

Credit by Examination

Cal Poly grants credit to those students who pass examinations that have been approved for credit systemwide. These include the Advanced Placement Examination and some College Level Entrance Program (CLEP) examinations.

CLEP tests acceptable for credit are:

- College Algebra-Trigonometry with a passing score of 49;
- General Chemistry with a passing score of 48;

International Baccalaureate Exam Credit - 2006

<table>
<thead>
<tr>
<th>Exam Name</th>
<th>Credit Given & GE Area (GE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language A1/A2: French</td>
<td>FR 305 plus electives (C4)</td>
</tr>
<tr>
<td>German</td>
<td>GER 305 plus electives (C4)</td>
</tr>
<tr>
<td>Spanish</td>
<td>SPAN 305 plus electives (C4)</td>
</tr>
<tr>
<td>Language B: French</td>
<td>FR 301 plus electives</td>
</tr>
<tr>
<td>German</td>
<td>GER 301 plus electives</td>
</tr>
<tr>
<td>Spanish</td>
<td>SPAN 301 plus electives</td>
</tr>
<tr>
<td>Mathematics:</td>
<td>MATH 141 or 161 or 221 plus electives (B1)</td>
</tr>
<tr>
<td>Philosophy</td>
<td>8 units electives</td>
</tr>
<tr>
<td>Physics:</td>
<td>PHYS 121 & 122 & 123 (B3 & B4)</td>
</tr>
<tr>
<td>Psychology:</td>
<td>PSY 201 or 202 plus PSY prefix electives (D4)</td>
</tr>
<tr>
<td>Social Anthropology</td>
<td>ANT 201 and GEOG 150 (D3)</td>
</tr>
</tbody>
</table>
• Calculus with Elementary Functions with a passing score of 51.

4.5 quarter units of credit may be earned with an assigned grade of credit (CR), which is not included in the GPA calculation.

Credit for CLEP and other externally developed examinations will not be awarded if any of the following apply:

• examination previously taken within the past year;
• equivalent degree credit or duplicate credit has already been granted;
• credit has been granted for previous coursework or for a previously completed more advanced or higher level examination.

Challenging Cal Poly Courses
A student may challenge a course in which he or she is qualified through previous education by taking an examination developed at the campus. Credit shall be awarded to those who pass them successfully. A student may not petition for credit by examination if the student has ever been enrolled in the course. Credit shall not be awarded when credit has been granted at a level more advanced than that represented by the course.

The credit by examination option is only available to regular Cal Poly students during a term in which they are officially enrolled. The graded credit by examination petition must be received by the Office of Academic Records prior to the beginning of the term after which credit is to be granted. A fee is charged for such an exam.

The examination may include written, oral, or skills tests, or a combination of all three types, and will be sufficiently comprehensive to determine that the student has essentially the same knowledge and skills as those students who successfully complete the course. The grade received is entered on the student's permanent record. The grade may not be Credit/No Credit. The length of the examination will be consistent with the unit value of the course.

Arrangements to obtain course credit by exam may be made with the head of the department in which the course is taught. Units of credit received through this procedure do not apply toward the residence requirements for any of the degrees or credentials offered by the University. Detailed instruction for applying for credit by examination may be obtained from the Office of Academic Records.

General Requirements – Bachelor's Degree

CHOICE OF CATALOG
Cal Poly issues a new catalog every one or two years, and the requirements for degree programs may change from one catalog to the next. Students have the right to choose the catalog they'll use, as described in Section 40401 of Title 5 of the California Code of Regulations.

An undergraduate student remaining in attendance in regular sessions at any California State University campus, at any California community college, or any combination of California community colleges and campuses of the California State University, may for purposes of meeting graduation requirements, elect to meet the requirements in effect at the campus from which the student will graduate either:

(1) at the time the student began such attendance, or
(2) at the time of entrance to the campus, or
(3) at the time of graduation, or
(4) as allowed by campus policy.

Campus authorities may authorize or require substitutions for discontinued courses. A campus may require a student changing his or her major or any minor field of study to complete the major or minor requirements in effect at the time of the change.

For purposes of this section, "attendance" means attendance in at least one semester or two quarters each university year. Absence due to an approved educational leave or for attendance at another accredited institution of higher learning shall not be considered an interruption in attendance, if the absence does not exceed two years. (Title 5 of the California Code of Regulations, Section 40401.)

Choice of Catalog Older than 10 years for Returning Students
Returning students may request to complete their degrees on a catalog older than 10 years if the only remaining degree requirements at the time they left Cal Poly do not exceed 16 units. The remaining degree requirements may include senior project, Graduation Writing Requirement, and/or United States Cultural Pluralism requirement. The decision to approve or disapprove a student's request is based on:(1) her/his willingness to commit to completing outstanding degree requirements within a specified timeframe, and (2) her/his ability to demonstrate, with written documentation, reasonable currency of knowledge and skills in her/his degree field to the satisfaction of the faculty in the applicable major, as certified by the department chair. Both the college dean and the Vice Provost for Academic Programs must give approval.
GENERAL GRADUATION REQUIREMENTS

There are nine general requirements, which all students must meet in order to earn the bachelor's degree from Cal Poly and participate in commencement. Students must be formally admitted to the major in which they wish to graduate, and must matriculate, in order to earn a degree. The more students understand their progress toward meeting these requirements and relate them to the many programs available, the better the chance of creating an exciting educational experience and avoiding errors which may delay graduation.

The specific requirements for each degree program are shown under the academic department offering the major and include a curriculum display with courses listed by Major, Support, General Education, and Electives. The department may have a flow chart, which shows the recommended sequence of courses leading to the degree.

Students are responsible for meeting all requirements. Advice is available from faculty advisors, college advising centers, and the Office of Academic Records. Students should plan their degree programs carefully and review them frequently with their advisors.

Minimum Requirements for Graduation

1. Minimum Number of Units
 Baccalaureate degree programs 180 units
 For the Bachelor of Arts (BA), a minimum of 18 major units must be in upper division courses and 60 units overall must be upper division. For the Bachelor of Science (BS), a minimum of 27 major units must be in upper division courses and 60 units overall must be upper division. Individual baccalaureate degree programs may require more than 180 units. (Title 5, Sections 40500, 40501, 40505, 40507)

2. Grade Point Average (GPA)
 Students must earn at least a 2.0 GPA in all Higher Education units attempted (all college-level work), in Cal Poly cumulative units attempted, and in the major (the courses listed as major courses in the curriculum display). For a definition of GPA and quality points and hours, please refer to Grading.

 Students must complete the USCP requirement as indicated on page 61.

4. General Education (GE) Courses
 Students must complete the GE requirements as indicated in the degree program and shown in the GE section of this catalog (see page 56).

5. Graduation Writing Requirement (GWR)
 Students must demonstrate competency in writing skills as described below.

6. Senior Project
 A senior project is a required for all Cal Poly students as described below.

7. Academic Residence Requirements
 The minimum requirements for units taken in residence at Cal Poly are:
 * 50 quarter units
 * 30 units in residence of the last 40 units counted toward the degree
 * 36 of the 50 units in residence must be upper division
 * 18 of the 36 upper division units in residence must be in the major
 * 12 units of General Education
 Extension credit or credit by examination may not be used to fulfill the residence requirements. However, a maximum of 36 quarter units of extension credit may be counted toward the bachelor's degree.

8. Evaluation for Graduation
 Students should request a graduation evaluation from the Office of Academic Records four quarters prior to their anticipated graduation date. The evaluation confirms remaining requirements for graduation and is a formal statement on the expected quarter of graduation. The actual date of graduation will be the end of the quarter in which all requirements have been met.

Graduating students will receive a complimentary diploma. Additional diplomas may be ordered through El Corral Bookstore. The diploma will not be ordered until all degree requirements have been completed. The diploma will be mailed approximately three to four weeks after the degree has been awarded.

If a student breaks attendance prior to completion of degree requirements, he or she may be required to re-enroll and may be held to catalog requirements in effect at that time.

9. Commencement
 For a student to participate in graduation ceremonies, the student must satisfy at least one of the following:
 * shall have completed all degree requirements and not have participated in a graduation ceremony previously;
 * shall currently be enrolled in classes that would complete all of that student's degree requirements;
 * shall be registered for classes for the following term that would allow the student to complete all of his/her degree requirements.

Students completing all degree requirements in the Winter, Spring or Summer term are eligible to participate in the Spring Commencement. Students completing all degree requirements in the Fall term are eligible for Fall commencement.
Graduation Writing Requirement (GWR)

All students must demonstrate competency in writing skills as a requirement for graduation. Information on currently available ways to meet this graduation requirement may be obtained from the Writing Skills Program Office, Agriculture Building (10) Room 130 (756-2067), or on the Writing Skills webpage, www.calpoly.edu/~wrskills.

The Board of Trustees of the California State University has mandated that all students earning undergraduate or graduate degrees in the CSU must be certified as proficient in writing at the upper-division level.

Students must earn proficiency after reaching 90 units. Students should review their program requirements to determine which option is appropriate. The GWR must be fulfilled at Cal Poly, not at another campus.

At Cal Poly students may meet the Graduation Writing Requirement (GWR) through one of the following options:

1. Pass the Writing Proficiency Exam.
2. Pass an approved upper-division course with a grade of C or better AND receive certification of proficiency in writing based on a 500-word in-class essay.

The following courses are approved for GWR credit:
*Non-GE writing courses: ENGL 301, 302, 310, 317, or 326;

Senior Project

Definition: the senior project is a capstone experience required for all Cal Poly students receiving a baccalaureate degree. It integrates theory and application from across the student's undergraduate educational experiences. The senior project consists of one or more of the following:

1. a design or construction experience,
2. an experiment,
3. a self-guided study or research project,
4. a presentation,
5. a report based on internship, co-op, or service learning experience,
6. a public portfolio display or performance.

Where the senior project does not consist primarily of a written document, departments, may, where they deem appropriate, require some written documentation (length to be determined by the department) to accompany the senior project. The precise nature or form of a senior project is to be determined by the department or program of the student's major. The senior project is normally related to the student's field of study, future employment, and/or scholastics goals, and is carried out under direct faculty supervision.

Expected Outcomes

At the discretion of the major department, students are expected to have the ability to:

- Reduce a topic to specific points of analysis.
- Organize the points of analysis into a logical sequence.
- Apply acquired competencies to the successful completion of a project.
- Obtain, evaluate, synthesize, and apply project-related information.
- Develop and follow a project plan.
- Estimate hours of labor and/or cost of materials necessary to complete a project.
- Organize, illustrate, and write clear and concise project documentation.
- Accept supervision when needed.

Requirements

1. The total number of senior project units must be 1 to 6 quarter units.
2. The senior project requirement will be the same for all students in a given curriculum, but not for all students in the university, because of the nature of the various curricula.
3. Normally 30 hours of student work will be required for each unit of credit granted.
4. Projects requiring an excessive amount of time are discouraged.
5. The number of students participating in a group senior project should not be so large as to unduly limit individual experience or responsibility and initiative.
6. The student is responsible for identifying costs and potential funding sources for his or her senior project prior to initiation of the project. Costly projects are discouraged.
7. It is the student's responsibility to become informed about the university's intellectual properties policy and human subject policy (where applicable).

Library Copy

1. The academic department may send one copy of each senior project to the University Library where it will be reproduced on microfiche or in an electronic format. A microfiche or electronic copy of the project will become part of the Library's archival collection where it will be available for public use.
2. After being copied on microfiche or electronically, the original project will be returned to the academic department of its origin, as applicable. Non-print media (slides, audio/video tapes, CD's, floppy disks, etc.), however, comprising all or part of a project will be permanently retained in the Library collection.
3. All projects submitted to the Library will include a completed Senior Project Requirement Form and a title page. The Form must be signed by the student's advisor or academic department head before it can be accepted for processing by the Library. The title page should follow a standardized format.

4. Each student whose senior project is submitted to the library is required to pay a library-processing fee for making her/his senior project available.

OTHER INFORMATION

Academic Minors
A minor is an integrated, coherent group of courses (24 to 30 quarter units), which gives the student knowledge in an area that lies outside of the major field of study. At least half of the units must be from upper-division courses (300- or 400-level) and at least half of the units must be taken at Cal Poly. Please see page 12 for the list of minors.

Not more than one-third of the courses in a minor can be graded Credit/No Credit (CR/NC), except for courses that have mandatory CR/NC grading. A minimum 2.0 GPA is required in all units counted for completion of the minor (foreign language minors must have a 2.75 GPA). A minor is not required for a degree. The minor will be completed along with the requirements for the bachelor's degree. A major and a minor may not be taken in the same degree program.

Students who wish to complete a minor are to contact the department offering the academic minor as early as possible in the program and fill out the appropriate agreement form. The minor is declared when the student requests a graduation evaluation in the Evaluations Office. The completion of the minor will be noted on the student's transcript, but will not be shown on the diploma. In no case will a diploma be awarded for the minor.

Academic Honors
The Dean's Honors List is compiled at the end of each quarter to honor undergraduate students who have completed 12 or more letter-graded units during the quarter with a 3.5 grade point average or better for that term. The President's Honors List is compiled at the end of each university year to honor those undergraduate students who have demonstrated consistent achievement, as represented by being named to the Dean's Honors List for any three of the four quarters of the university year. The university year begins with summer quarter.

Candidates for bachelor's degrees with the following Cal Poly grade point averages will be awarded honors at graduation. The GPA is officially calculated at the time the student has completed graduation requirements:

- Summa cum laude – 3.85
- Magna cum laude – 3.70
- Cum laude – 3.50

Blended BS+MS Programs
Blended programs provide an accelerated route to a graduate professional degree, with simultaneous award of both bachelor's and master's degrees. See individual programs and/or page 75 for additional information.

Change of Major
An application for change of major will not be considered until/ unless a student has completed at least one quarter at Cal Poly. Students who feel they have selected an inappropriate major for their interests and abilities, and who want to change their major, must consult with the department head in the target major (the major to which a student wishes to change). Students are strongly advised also to consult with at least one of the following: department head in the current major, faculty in the target major, advising center staff in current/target major, and Career Services staff.

Applicants for changing major will be evaluated against published performance criteria. The criteria are established by each program and are designed to assess the student's likelihood of achieving success in the major. Some majors have a limited number of available spaces and not all students who meet the performance criteria will be accepted. At a minimum, a selection process will take place twice each year. Students should contact the target major department for specific information regarding change of major.

Admission to a new curriculum will depend on the availability of space within the limitations imposed by budget, faculty, and facilities. Once approved, students will automatically receive from the Office of Academic Records a new evaluation of completed requirements for the new major.

Transfer from one curriculum to another does not in any way change a student's scholastic standing.

Course Substitution
Although a curriculum is specified for each major, under certain conditions a student may be permitted some deviation from the established curriculum. See the major department for substitutions involving major or support courses.

All Cal Poly students are expected to complete the GE courses specified in their degree program. Cal Poly GE courses must be selected from the GE requirement list. Substitutions are not permitted except in extraordinary circumstances. Students requesting exceptions must follow petition procedures, outlined on the GE web site. This process may take several weeks.

Double Majors or Degrees
If a student has completed the requirements for two or more majors leading to the same baccalaureate degree, those majors will be acknowledged on the diploma. If a student has completed the requirements for two or more majors leading to
different baccalaureate degrees, those degrees and the completed major or majors leading to each degree will be acknowledged on the diploma. The student will be consulted regarding the order in which the student prefers the degree(s) and major(s) to appear. If a student has completed concurrently the requirements for two or more degrees, at least one of which is a graduate degree, the campus may issue a single diploma acknowledging the degrees earned or a separate diploma for each degree earned.

A student may use one senior project to fulfill the requirements for two majors. However, the program in which the student seeks to replace the senior project must grant permission before the student begins the project. Permission must be obtained using a major/support substitution.

Graduate Courses Taken by Undergraduates for Graduate Credit
Cal Poly undergraduates who have achieved senior standing may take courses in the 400 or 500 series for graduate credit while still undergraduates. If they subsequently enter a Cal Poly master's or credential program, they may petition to have such course credit applied toward their master's degree or credential program, if the units were not used for the baccalaureate degree.

Second Bachelor's Degree
A qualified student who holds a bachelor's degree from Cal Poly or from another accredited institution may be awarded a second bachelor's degree in a different major. Students must complete General Education requirements in accordance with the Chart 3 policies on the GE website under Second Baccalaureate (http://ge.calpoly.edu). All students must complete 12 units of GE in residence per CSU/Title 5 policy. A minimum of 45 units of coursework for Cal Poly graduates and 50 units for graduates from another accredited institution must be completed in residence after the requirements for the first degree have been fulfilled. A senior project is required for each bachelor's degree.

Student Classification
Undergraduate students are assigned a classification level according to the number of quarter units earned:

Lower Division
- Freshman: fewer than 45 units
- Sophomore: 45 to 89 units

Upper Division
- Junior: 90 to 134 units
- Senior: 135 or more units

General Education

Program Goals
Consistent with E.O. 595, Cal Poly's General Education Program is designed to assure graduates have made noteworthy progress toward becoming truly educated persons and to provide means whereby graduates will have

- The ability to think clearly and logically, to find information and examine it critically, to communicate orally and in writing, and to reason quantitatively;
- Appreciable knowledge about their own bodies and minds, about how human society has developed and how it now functions, about the physical world in which they live, about the other forms of life with which they share the world, and about the cultural endeavors and legacies of their civilizations;
- An understanding and appreciation of the principles, methodologies, value systems, and thought processes employed in human inquiries.

Foundational Courses
Students are encouraged to complete lower division (foundational) courses as early as possible. This coursework in Areas A-D has been designed to give students the knowledge and skills to move to more complex materials.

Technology Elective (Area F)
The elective is integrative in nature, requiring the application and generalization of basic scientific and mathematical knowledge along with the study of particular technologies with critical examination from multiple perspectives.

Advising
Students should consult academic advisors and curriculum displays for specific courses that may be required in their degree program. GE courses may change quarterly; consult PASS for the latest information. Cal Poly's GE Program changed significantly with the 2001-03 catalog. If you are following a prior catalog, you should consult with your academic advisor and refer to chart 1 or 2 at ge.calpoly.edu.

Double-Counting
Courses from the student's Major department may not be used to fulfill upper-division electives in Area C4 or D5.

GE Course Substitutions
Students are expected to complete the GE courses specified in their degree program. Cal Poly GE courses must be selected from the GE requirement list. Substitutions will not be permitted except in extraordinary circumstances. Students requesting exceptions must follow petition procedures, outlined on the GE website. This process may take several weeks.

Transfer Credit
Transfer credit for GE courses will be accepted from California institutions, as approved by the CSU Chancellor's office. The GE Area letters and numbers at Cal Poly (e.g., GE A1, D4) may be different at other colleges. Many Cal Poly programs require specific GE courses in the Major and/or Support; these courses must be met with articulated equivalencies. Refer to www.assist.org for California Community College CSU GE lists and articulation agreements.
GE Requirements

2001-03 – 2007-09 Catalogs
www.ge.calpoly.edu/

ENGR = Engineering Programs.

Some programs indicate specific GE courses to fulfill Major and Support course requirements.
Courses from student's Major department may not be used to fulfill Areas C4 or D5.

- **non-unit requirement**
- All GE courses are 4 units unless otherwise indicated.

<table>
<thead>
<tr>
<th>GE Requirements</th>
<th>Most Majors</th>
<th>CLA only</th>
<th>ENGR only</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE Units Taken in Residence</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>GE Upper Division Units Required</td>
<td>12</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

AREA A: COMMUNICATION

A1 Expository Writing	4	4	4
A2 Oral Communication	4	4	4
A3 Reasoning, Argumentation, and Writing	4	4	4

AREA B: SCIENCE & MATH

B1 Mathematics/Statistics	8	8	8
B2 Life Science	4	4	4
B3 Physical Science	4	4	4
B4 One lab taken with B2 or B3 course	✓	✓	✓
B5 elective (for CLA students only)	4		
CLA students may take B5, or any course from B1-B4			
B6 Upper-division (Engineering)	4		

Engineering: Additional Area B

| 8 |

AREA C: ARTS AND HUMANITIES

C1 Literature	4	4	4
C2 Philosophy	4	4	4
C3 Fine and Performing Arts	4	4	4
C4 Upper-division elective	4	4	4
Area C Elective (One from C1-C4)	0	0	0

AREA D/E: SOCIETY/INDIVIDUAL

20	20	16	
D1 The American Experience (40404)	4	4	4
D2 Political Economy	4	4	4
D3 Comparative Social Institutions	4	4	4
D4 Self Development (CSU Area E)	4	4	4
D5 Upper-division elective	4	4	0

AREA F TECHNOLOGY (upper-div)

| 4 | 4 | 0 |

TOTAL GE UNITS 72 72 72

General Education Courses

<table>
<thead>
<tr>
<th>General Education Courses</th>
<th>Most Majors</th>
<th>CLA only</th>
<th>ENGR only</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA A: COMMUNICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 133 Writing: Exposition for ESL Students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 134 Writing: Exposition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>COMS 101 Public Speaking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMS 102 Principles of Speech Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNRS 101 Public Speaking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>COMS 126 Argument & Advocacy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMS 145 Reasoning, Argumentation and Writing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 145 Reasoning, Argumentation, and Writing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 148 Reasoning, Argumentation, and Professional Writing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 149 Technical Writing for Engineers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNRS 145 Reasoning, Argumentation, and Writing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNRS 148 Reasoning, Argumentation, and Professional Writing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNRS 149 Technical Writing for Engineers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL 126 Logic and Argumentative Writing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA B: SCIENCE & MATH</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Mathematics/Statistics</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>HNRS 141 Calculus I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNRS 142 Calculus II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNRS 143 Calculus III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 112 Nature of Modern Math</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 117 Pre-Calculus Algebra II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 118 Pre-Calculus Algebra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 119 Pre-Calculus Trigonometry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 141 Calculus I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 142 Calculus II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 143 Calculus III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 161 Calculus for the Life Sciences I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 162 Calculus for the Life Sciences II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 182 Calculus for Architecture and Construction Mgmt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 221 Calculus for Business and Economics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 130 Intro Statistical Reasoning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 217 Intro to Statistical Concepts and Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 218 Applied Statistics for the Life Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 221 Intro Probability and Statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 251 Statistical Inference for Management I (5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 252 Statistical Inference for Management II (5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 313 Applied Experimental Design & Regression Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2 Life Science (B2&4=lab course)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ANT 250 Biological Anthropology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCI 112 Principles of Animal Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 111 General Biology (B2&4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 113 Animal Diversity and Ecology (B2&4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic Requirements and Policies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 114 Plant Diversity and Ecology (B2&4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 115 Animal/Human Structure and Function (B2&4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 151 Intro to Biology (5) (B2&4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 161 Introduction to Cell and Molecular Biology (B2&4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 227 Wildlife Conservation Biology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOT 121 General Botany (B2&4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCRO 221 Surv Microbiology (B2&4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCRO 224 Gen Microbiology I (5) (B2&4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPSC 110 Peoples, Pests and Plagues (B2&B4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Engineering students only; concurrent enrollment required:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 213 Life Science for Engineers (2) and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR/BRAE 213 Bioengineering Fundamentals (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B3 Physical Science (B3&4=lab course)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 101 Intro to the Solar System</td>
<td>4</td>
</tr>
<tr>
<td>ASTR 102 Intro to Stars & Galaxies</td>
<td>4</td>
</tr>
<tr>
<td>ASTR 112 Introduction to the Stars and Galaxies (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 110 World of Chemistry (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 111 Survey of Chemistry (5) (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124 General Chemistry for Engineers I (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 125 General Chemistry for Engineers II (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 127 General Chemistry I (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 102 Introduction to Geology</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 205 Earthquakes</td>
<td>4</td>
</tr>
<tr>
<td>HNRS 131 General Physics I (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>HNRS 132 General Physics II (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>HNRS 134 General Physics IA</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 104 Introductory Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 107 Introduction to Meteorology</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 111 Modern Physics for Poets</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 121 College Physics I (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 122 College Physics II (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 123 College Physics III (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 126 College Physics IV (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 131 General Physics I (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132 General Physics II (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 133 General Physics III (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 141 General Physics IA</td>
<td>4</td>
</tr>
<tr>
<td>PSC 101 Physical Environment: Matter & Energy (B3&4)</td>
<td>4</td>
</tr>
<tr>
<td>PSC 103 Physical Environment: Earth & Universe</td>
<td>4</td>
</tr>
</tbody>
</table>

B4 One lab taken with B2 or B3 course

<table>
<thead>
<tr>
<th>CLA students: (Select one from B1-B5)</th>
<th>✔</th>
<th>✔</th>
<th>✔</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 112 Conservation Biology & Environmental Science</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 302 Human Genetics</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO 305 Biology of Cancer</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOT 311 Plants, People and Civilization</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FNR 319 Natural Resource Ecology, Theories & Applications</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSN 210 Nutrition</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL 203 Fossils and History of Life</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 326 Mathematics and Visual Art</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSC 201 Intro to Physical Oceanography</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSY 340 Biopsychology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 121 Intro to Soil Science</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B5 elective (GE option for College of Liberal Arts students only)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 112 Conservation Biology & Environmental Science</td>
<td>4</td>
</tr>
<tr>
<td>BIO 302 Human Genetics</td>
<td>4</td>
</tr>
<tr>
<td>BIO 305 Biology of Cancer</td>
<td>4</td>
</tr>
<tr>
<td>BOT 311 Plants, People and Civilization</td>
<td>4</td>
</tr>
<tr>
<td>FNR 319 Natural Resource Ecology, Theories & Applications</td>
<td>4</td>
</tr>
<tr>
<td>FSN 210 Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 203 Fossils and History of Life</td>
<td>4</td>
</tr>
<tr>
<td>MATH 326 Mathematics and Visual Art</td>
<td>4</td>
</tr>
<tr>
<td>PSC 201 Intro to Physical Oceanography</td>
<td>4</td>
</tr>
<tr>
<td>PSY 340 Biopsychology</td>
<td>4</td>
</tr>
<tr>
<td>SS 121 Intro to Soil Science</td>
<td>4</td>
</tr>
</tbody>
</table>

B6 Upper-division Area B (ENGR only)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 305 Physical Chemistry for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>CSC 341 Numerical Engineering Analysis</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 305 Fundamentals Seismology</td>
<td>4</td>
</tr>
<tr>
<td>MATH 304 Vector Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MATH 344 Linear Analysis II</td>
<td>4</td>
</tr>
</tbody>
</table>

Engineering: Additional Area B

<table>
<thead>
<tr>
<th>Most</th>
<th>CLA</th>
<th>ENGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

AREA C: ARTS AND HUMANITIES

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 230 Masterworks British Literature through 18th Century</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 231 Masterworks British Lit: Late 18th Century - Present</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 240 American Tradition in Literature</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 251 Great Books I: Ancient & Classical World</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 252 Great Books II: Emergence of Europe</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 253 Great Books III: Age of Revolution</td>
<td>4</td>
</tr>
<tr>
<td>FR 233 Critical Readings in French Literature</td>
<td>4</td>
</tr>
<tr>
<td>GER 233 Critical Readings in German Literature</td>
<td>4</td>
</tr>
<tr>
<td>HNRS 251 Great Books I: Ancient & Classical World</td>
<td>4</td>
</tr>
<tr>
<td>SPAN 233 Introduction to Hispanic Readings</td>
<td>4</td>
</tr>
</tbody>
</table>

C2 Philosophy

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNRS 231 Philosophical Classics: Social & Political Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 230 Philosophical Classics: Metaphysics & Epistemology</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 231 Philosophical Classics: Social & Political Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>ARCH 217 History of Architecture</td>
<td>4</td>
</tr>
<tr>
<td>ARCH 218 History of Architecture</td>
<td>4</td>
</tr>
<tr>
<td>ARCH 219 History of Architecture</td>
<td>4</td>
</tr>
<tr>
<td>ART 101 The Fundamentals of Drawing</td>
<td>4</td>
</tr>
<tr>
<td>ART 111 Introduction to Art</td>
<td>4</td>
</tr>
<tr>
<td>ART 112 Survey of Western Art</td>
<td>4</td>
</tr>
<tr>
<td>ART 148 Sculpture</td>
<td>4</td>
</tr>
<tr>
<td>COMS 208 Performance of Literature</td>
<td>4</td>
</tr>
<tr>
<td>DANC 221 Dance Appreciation</td>
<td>4</td>
</tr>
<tr>
<td>LA 211 History of Landscape Arch: Ancient Civs – Col America</td>
<td>4</td>
</tr>
<tr>
<td>LA 212 History of Modern & Contemporary Landscape Arch</td>
<td>4</td>
</tr>
<tr>
<td>MU 101 Introduction to Music Theory</td>
<td>4</td>
</tr>
<tr>
<td>MU 120 Music Appreciation</td>
<td>4</td>
</tr>
<tr>
<td>MU 221 Jazz Styles (USCP)</td>
<td>4</td>
</tr>
<tr>
<td>MU 229 Music of the 60's: War and Peace (USCP)</td>
<td>4</td>
</tr>
<tr>
<td>TH 210 Introduction to Theatre</td>
<td>4</td>
</tr>
<tr>
<td>TH 227 Theatre History: Classical</td>
<td>4</td>
</tr>
<tr>
<td>TH 228 Theatre History: 18th Century to Contemporary</td>
<td>4</td>
</tr>
</tbody>
</table>

C3 Fine and Performing Arts

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 326 Native American Architecture & Place (USCP)</td>
<td>4</td>
</tr>
<tr>
<td>ART 314 History of Photography</td>
<td>4</td>
</tr>
<tr>
<td>ART 318 Asian Art: National, Religion & Intel Movements</td>
<td>4</td>
</tr>
<tr>
<td>COMS 308 Group Performance of Literature</td>
<td>4</td>
</tr>
<tr>
<td>DANC 311 Dance in American Musical Theatre</td>
<td>4</td>
</tr>
<tr>
<td>DANC 321 Cultural Influences on Dance in America (USCP)</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 330 Brit Lit: Age of Belief to 1485</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 331 Brit Lit: Age of Discovery, 1485-1600</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 332 Brit Lit: Age of Enlightenment, 1660-1798</td>
<td>4</td>
</tr>
</tbody>
</table>

C4 Upper-division elective

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 320 Topics in Architectural History</td>
<td>4</td>
</tr>
<tr>
<td>ARCH 326 Native American Architecture & Place (USCP)</td>
<td>4</td>
</tr>
<tr>
<td>ART 314 History of Photography</td>
<td>4</td>
</tr>
<tr>
<td>ART 318 Asian Art: National, Religion & Intel Movements</td>
<td>4</td>
</tr>
<tr>
<td>COMS 308 Group Performance of Literature</td>
<td>4</td>
</tr>
<tr>
<td>DANC 311 Dance in American Musical Theatre</td>
<td>4</td>
</tr>
<tr>
<td>DANC 321 Cultural Influences on Dance in America (USCP)</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 330 Brit Lit: Age of Belief to 1485</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 331 Brit Lit: Age of Discovery, 1485-1600</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 332 Brit Lit: Age of Enlightenment, 1660-1798</td>
<td>4</td>
</tr>
</tbody>
</table>

2007-2009 Cal Poly Catalog
ENGL 333 Brit Lit: Age of Romanticism, 1798-1832
ENGL 334 Brit Lit: Age of Industrialism, 1832-1914
ENGL 335 Brit Lit: Age of Modernism: 1914-Present
ENGL 338 Intro Shakespeare: London
ENGL 339 Intro Shakespeare
ENGL 340 Literary Sources American Character: 1600-1865
ENGL 341 Literary Sources American Character: 1865-1914
ENGL 342 Literary Sources American Character: 1914-1956
ENGL 343 Multiple Voices Contemp Amer Lit: 1956 - Present
ENGL 345 Women Writers of 20th Century (USCP)
ENGL 346 Ethnic American Lit (USCP)
ENGL 347 African American Literature (USCP)
ENGL 349 Gender in 20th-Century Literature (USCP)
ENGL 350 Modern Novel
ENGL 351 Modern Poetry
ENGL 352 Modern Drama
ENGL 353 Drama in London
ENGL 354 Bible as Literature and in Literature and the Arts
ENGL 370 World Cinema
ENGL 371 Film Styles and Genres
ENGL 372 Film Directors
ENGL 380 Literary Themes
ENGL 381 Diversity in 20th-Century American Lit (USCP)
ENGL 386 Creative Nonfiction
ENGL 387 Fiction Writing
ENGL 388 Poetry Writing
ES 300 Chicano/a Non-Fiction Literature (USCP)
ES 326 Native American Architecture & Place (USCP)
ES 360 Ethnicity & Land (USCP)
FNR 360 Ethnicity & Land (USCP)
FR 305 Significant Writers in French
FR 350 French Literature in English Translation
GER 305 Significant Writers in German
GER 350 German Literature-English Translation
HIST 206 American Cultures (USCP)
HIST 213 Modern Political Economy
HNRS 112 Race, Culture, Politics in the U.S. (USCP)
HUM 310 World Cultures
HUM 320 Values, Media, Culture
HUM 361 Modernism
MU 324 Music and Society
MU 328 Women in Music
PHIL 311 Greek Philosophy
PHIL 312 Medieval Philosophy
PHIL 313 Continental Philosophy: Descartes to Leibniz
PHIL 314 British Philosophy: Bacon to Mill
PHIL 315 German Philosophy: Kant to Nietzsche
PHIL 316 Contemporary European Philosophy
PHIL 317 Contemporary British & American Philosophy
PHIL 320 Asian Philosophy
PHIL 321 Philosophy of Science
PHIL 322 Philosophy of Technology
PHIL 331 Ethics
PHIL 332 History of Ethics
PHIL 333 Political Philosophy
PHIL 334 Philosophy of Law
PHIL 335 Social Ethics (USCP)
PHIL 336 Ethics, Gender and Society (USCP)
PHIL 337 Business Ethics
PHIL 338 Ethics and Education
PHIL 339 Biomedical Ethics
PHIL 340 Environmental Ethics
PHIL 341 Professional Ethics
PHIL 342 Philosophy of Religion
PHIL 350 Aesthetics
RELS 301 Religions of Asia
RELS 302 Monotheisms: Judaism, Christianity, and Islam
RELS 304 Judaism
RELS 306 Hinduism
RELS 307 Buddhism
RELS 310 Christianity
RELS 311 Islam
RELS 370 Religion, Gender and Society (USCP)
RELS 372 Spiritual Extremism: Asceticism, Mysticism, Madness
RELS 374 Religion and Violence
SPAN 305 Significant Writers in Spanish
SPAN 340 Chicano/a Authors (USCP)
SPAN 350 Hispanic Literature in English Translation
SPAN 351 Latino/a Writers in U. S. (USCP)
TH 310 Women's Theatre
TH 320 Black Theatre (USCP)
TH 360 Theatre in the United States
TH 390 World Drama
WS 370 Religion, Gender and Society (USCP)

Area C Elective (one course from C1-C4) 4 0 0

<table>
<thead>
<tr>
<th>AREA DIE: SOCIETY & INDIVIDUAL</th>
<th>Most Majors</th>
<th>CLA only</th>
<th>ENGR only</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 The American Experience (40404)</td>
<td>4 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 112 Race, Culture, Politics in the U.S. (USCP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 206 American Cultures (USCP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 207 Freedom and Equality in American History (USCP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNRS 112 Race, Culture, Politics in the U.S. (USCP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLS 112 American and California Government</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2 Political Economy</td>
<td>4 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 201 Survey of Economics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 222 Macroeconomics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 213 Modern Political Economy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 214 Political Economy of Latin America & Middle East</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNRS 201 Survey of Economics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC 218 International Political Economy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3 Comparative Social Institutions</td>
<td>4 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT 201 Cultural Anthropology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT 202 World Prehistory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 212 Global Origins of U.S. Cultures (USCP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 150 Intro to Cultural Geography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 210 World History I (5000 B.C.E. to 1789)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 215 World History II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNRS 212 Global Origins of U.S. Cultures (USCP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNRS 215 Comparative World History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELS 201 Religion, Dialogue and Society</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC 110 Comparative Societies</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2007-2009 Cal Poly Catalog
D4 Self Development (CSU Area E) 4 4 4
ANT 345 Human Behavioral Ecology
FSN 250 Food and Nutrition: Customs & Culture (USCP)
KINE 250 Healthy Living
KINE 255 Personal Health: Multi-cultural Approach (USCP)
PSY 201 General Psychology
PSY 202 General Psychology

D5 Upper-division elective 4 4 0
Courses from student's Major Dept will not receive D5 credit
ANT 325 Precolombian Mesoamerica
ANT 330 Indigenous South Americans
ANT 344 Sex, Death & Human Nature
ANT 360 Human Cultural Adaptations
BUS 311 Managing Technology International Legal Environ
CRP 334 Cities in Globalizing World
ECON 303 Econ of Poverty Discrimination Immigration (USCP)
ECON 304 Comparative Econ Systems
ECON 322 Economic History of the Advanced World
ES 308 Fire and Society
ES 320 African American Cultural Images (USCP)
ES 322 Asian American Cultural Images (USCP)
ES 323 Mexican American Cultural Images (USCP)
ES 330 Chinese American Experience (USCP)
ES 335 Filipina/o American Experience (USCP)
ES 380 Critical Race Theory (USCP)
FNR 308 Fire and Society
FNR 323 Human Dimensions Natural Resource Management
GEOG 300 Geography of United States
GEOG 301 Geography of Resource Utilization
GEOG 308 Global Geography
GEOG 370 Geography of Latin America
HIST 306 The Witch-Hunt in Europe
HIST 307 European Thought, 1800-2000
HIST 308 Trans-Atlantic Slave Trade
HIST 309 Cultures of West Africa & African Diaspora
HIST 310 East Asian Culture & Civilization
HIST 319 Modern South and Southeast Asia
HIST 316 Modern East Asia
HIST 320 Colonial & Revolutionary America
HIST 321 Civil War America
HIST 322 Modern America
HIST 323 Versions of the Past: Novels, Comics and Movies
HIST 324 The Historical Novel in the U.S., '60's to Present
HIST 336 Britain at War: 1939-1945
HNRS 303 Econ of Poverty Discrimination Immigration (USCP)
HUM 316 London: From Roman Colony to World Capitol
KINE 323 Sport and Gender (USCP)
KINE 324 Sport, Media & American Popular Culture (USCP)
POLS 325 Global Political Issues
POLS 330 Critical Issues American Politics
POLS 339 Comparative Political Regimes
POLS 384 Citizenship, Society and Self
PSY 311 Environmental Psychology
PSY 318 Psychology of Aging
PSY 352 Conflict Resolution: Violent & Nonviolent
SOC 315 Global Race and Ethnic Relations
SOC 326 Sociology of the Life Cycle
SOC 377 Sociology of Religion
WS 301 Introduction to Women’s Studies (USCP)

WS 311 Women in Cross Cultural Perspectives
WS 340 Sexuality Studies

AREA F: TECHNOLOGY ELECTIVE (upper division) 4 4 0

AERO 310 Air and Space
AG 315 Organic Agriculture
AG 330 Cal Poly Land: Nature, Technology & Society
AG 350 The Global Environment
AG 360 Holistic Management
BIO 307 World Aquaculture: Apps, Methods & Trends
BIO 317 Introduction to the World of Spatial Information
BOT 329 Plants, Food, and Biotechnology
BRAE 340 Irrigation Water Mgmt
BRAE 348 Energy for a Sustainable Society
BUS 350 The Global Environment
CHEM 349 Chemical and Biological Warfare
CRP 338 Digital Cities
CSC 302 Computers & Society
CSC 310 Computers for Poets
EDES 350 The Global Environment
ENGR 302 Transportation & Manufacturing in 21st Century
ENGR 350 The Global Environment
ENVE 324 Introduction to Air Pollution
ES 350 Gender, Race, Science and Technology
FNR 312 Technology of Wildland Fire Management
FNR 317 Introduction to the World of Spatial Information
FNR 321 Water Systems Technology, Issues and Impacts
FSN 319 Food Technology/Customer
GEOG 317 Introduction to the World of Spatial Information
GRC 377 Desktop Publishing for Print and World Wide Web
HCS 329 Plants, Food, and Biotechnology
HIST 354 History Network Technology
HIST 358 Cloning
HIST 359 Living in the Material World
HNRS 310 Air and Space
HUM 302 Human Values in Agriculture
HUM 330 Cal Poly Land: Nature, Technology & Society
HUM 350 The Global Environment
IME 320 Human Factors & Technology
IT 336 Textile Technology
IT 341 Plastics Processes & Applications
LA 317 Introduction to the World of Spatial Information
MATE 359 Living in the Material World
ME 320 Consumer Energy Guide
ME 321 Solar Energy
POLS 333 World Food Systems
PSC 307 Nuclear Weapons in Post 9/11 World
PSC 320 Energy and the Environment
SCM 320 Technology in London
SCM 325 Genetic Engineering Technology
SCM 330 Ocean Discovery through Technology
SCM 350 The Global Environment
UNIV 330 Cal Poly Land: Nature, Technology & Society
UNIV 333 World Food Systems
UNIV 350 The Global Environment
UNIV 350 Gender, Race, Science and Technology

Total GE Units 72 72 72
U.S. Cultural Pluralism Requirement

United States Cultural Pluralism (USCP) courses fulfill the following criteria:

1. Emphasis on one or more of these four U.S. cultures: Asian American, African American, Hispanic American, American Indian;
2. Attention to general issues of gender, diversity, equity, ethnocentricty, and ethnicity; and the relationships to problems facing contemporary society, especially those resulting from racism, discrimination and cultural conflict;
3. Application of rigorous pedagogical, scholarly methods and standards as evidenced in substantive exams, reports, papers, and projects; and
4. Attention to critical thinking skills which will allow students to address cultural, racial, and gender issues in a sensitive and responsible manner and to evaluate their own attitudes and those of others.

Students are required to complete one USCP course. This course will also fulfill a requirement for Major, Support, General Education, or Free Elective category.

The following courses fulfill the United States Cultural Pluralism requirement. Consult the Schedule of Classes (PASS) or your academic advisor for an up-to-date list.

* = Course also satisfies a General Education requirement

AGB 401 Managing Cultural Diversity in Agricultural Labor Relations (4)
ANT 415 Native American Cultures (4)
ARCH 326 Native American Architecture & Place (4) C4*
COMS 416 Intercultural Communication (4)
CRP 215 Planning for and with Multiple Publics (4)
DANC 321 Cultural Influences/Dance in America (4) C4*
ECON 303 Econ Poverty/Discrim/Immigration (4) D5*
ENGL 345 Women Writers (4) C4*
ENGL 346 Ethnic American Literature (4) C4*
ENGL 347 African American Literature (4) C4*
ENGL 349 Gender in 20th Century Literature (4) C4*
ENGL 381 Diversity in 20th Century Amer. Lit. (4) C4*
ES 112 Race, Culture, and Politics—United States (4) D1*
ES 114 Race in American Culture (4)
ES 212 Global Origins of U. S. Cultures (4) D3*
ES 215 Planning for and with Multiple Publics (4)
ES 240 Latino Metropolis (4)
ES 241 Survey of Indigenous Studies (4) D3*
ES 242 Survey of Africana Studies (4) D3*
ES 243 Survey of Latino/a Studies (4) D3*
ES 244 Survey of Asian American Studies (4) D3*
ES 300 Chicano/a Non-Fiction Literature (4) C4*
ES 310 Hip-Hop, Poetics and Politics (4) D5*
ES 320 African American Cultural Images (4) D5*
ES 321 Native American Cultural Images (4)
ES 322 Asian American Cultural Images (4) D5*
ES 323 Mexican American Cultural Images (4) D5*
ES 325 Sex & Gender in African Amer. Communities (4)
ES 326 Native American Architecture & Place (4) C4*
ES 330 Chinese American Experience (4) D5*
ES 335 The Filipina/o American Experience (4) D5*
ES 350 Gender, Race, Science and Technology (4)
ES 360 Ethnicity and the Land (4) C4*
ES 380 Critical Race Theory (4)
ES 381 The Social Construction of Whiteness (4) D5*
FN 303 Econ Poverty/Discrim/Immigration (4) D5*
FSN 250 Food and Nutrition: Customs/Culture (4) D4*
HIST 206 American Cultures (4) D4*
HIST 207 Freedom & Equality American History (4) D1*
HIST 333 African American History from 1865 (4)
HIST 435 Women's History since 1870 (4)
HNR 303 Econ Poverty/Discrim/Immigration (4) C4*
HUM 312 Chicano/a Culture (4) C4*
KINE 255 Personal Health: Multicultural Approach (4) D4*
KINE 323 Sport and Gender (4) D5*
KINE 324 Sport/Media/American Popular Culture (4) D5*
MU 221 Jazz Styles (4) C3*
MU 229 Music of the 60s: War and Peace (4) C3*
MU 325 America's Music (4)
PHIL 335 Social Ethics (4) C4*
PHIL 336 Ethics, Gender and Society (4) C4*
POLS 310 Politics of Ethnicity and Gender (4)
POLS 343 Civil Rights in America (4)
PSY 472 Multicultural Psychology (4)
RELS 336 Religion, Gender and Society (4) C4*
SOC 316 American Ethnic Minorities (4)
SPAN 111 Elementary Hispanic Language & Culture (4)
SPAN 123 Spanish for Heritage Speakers (4)
SPAN 340 Chicano/a Authors (4) C4*
SPAN 351 Latino/a Writers in the U. S. (4) C4*
TH 320 Black Theatre (4) C4*
WS 301 Introduction to Women's Studies (4)
WS 336 Religion, Gender and Society (4) C4*
WS 350 Gender, Race, Science and Technology (4)
WS 435 American Women's History since 1870 (4)
WS 450 Feminist Theory (4)

Registration

Students are required to enroll in courses by using the web registration system (CPReg). The courses selected should meet the requirements specified for each student's major course of study.

Credit for coursework completed is given only when the student is properly registered. A student is not properly registered until fee requirements have been met and enrollment in classes through the CPReg system has been confirmed.

Students are strongly advised to print copies of their schedule for their records. Individuals are not permitted to attend courses unless they are officially registered as regular students, as approved extension students, or as enrolled auditors (see Audit).
Information concerning registration for classes is available at www.ess.calpoly.edu/records/registration. Information concerning payment of fees is available at www.fees.calpoly.edu.

ENROLLMENT POLICY
State funding is allocated to the University based on student enrollment each term. Any attendance/participation in classes where the student is not officially enrolled during the term of participation (and where appropriate registration fees have not been paid) is against campus policy. This includes enrollment in Internship courses and acceptance of a position through the Cooperative Education program. All registration should be completed by the end of the Add Period, the 8th day of the term.

Official term enrollment requires the awarding of grades for classes attempted.

CLASS ATTENDANCE
Students are expected to attend regularly to keep the quality and quantity of work high. Absence from classes is regarded as serious, and work missed is not excused. An excused absence can be allowed only by the instructor in charge of the class upon consideration of the evidence justifying the absence presented by the student. An excused absence merely gives the individual who missed the class an opportunity to make up the work and is not an excuse from the work required.

HOLDING OF RECORDS
Student records may be placed on a "Hold" status because of financial or other obligations to the University. The Hold authorizes the University to deny registration, prevent the release of transcripts, and to withhold other services normally provided to the student. A student's records will be held until the obligation is cleared to the satisfaction of the office or department placing the Hold.

ENROLLMENT STATUS
Full-time undergraduate students are those enrolled in 12 or more units of coursework in any regular quarter. Half-time undergraduate students are those enrolled in 6 to 11 units, and part-time undergraduate students are those enrolled for 5 or less units. Verification of enrolled units is based on enrollment status at the time of the verification request. Full-time status for graduate students is defined in the "Graduate Studies" section of this catalog.

MAXIMUM UNIT LOAD
The maximum load for all students is 22 quarter units including audited courses and concurrent work at other colleges. Exceptions may be made with the advance approval of the student's major department head or graduate advisor. Increase in maximum unit load is not available to students on academic probation. Maximum load requirements may be waived only on presentation of evidence of ability to carry successfully such a group of courses. A petition to carry an excess load is available from the Office of Academic Records.

ADD/DROP
All changes to individual class registration or enrollments are the responsibility of the student. The add/drop period continues through CPReg initial registration cycles until the end of the 8th day of instruction of each term. During this period, the student has the opportunity to add or drop classes. See specific dates for completing these transactions at www.ess.calpoly.edu/records/Calendars_Deadlines. Students are responsible for knowing and adhering to these published timelines and for their enrollments.

Adding
Closed classes: If a class is full, students may use a permission number, issued by the instructor, during the first 8 days of instruction. See www.ess.calpoly.edu/records/registration for details.

Time conflict: Students may not enroll in two classes that meet at the same time.

Eligibility: Students must meet prerequisite and Schedule of Classes footnote requirements and be in attendance at the first class meeting to remain enrolled in the class.

Late registration: Students registering late have until the end of the add/drop period to pay late registration fees and to register for classes through CPReg with a permission number issued by the instructor of the class.

Dropping
Students have until the end of the 8th day of instruction to drop a class through CPReg. No entry will be made on their academic records. At the end of the regular add/drop period the instructor must assume that any student who has not dropped voluntarily remains officially enrolled in the class. For information on withdrawing after the end of the regular add/drop period see Withdrawals from Courses.

First class meeting: An instructor may drop a student from a class for failure to attend the first class meeting.

Footnote requirement: An instructor may drop a student from a class if the footnote requirements, as stated in the Schedule of Classes, are not met.

Prerequisite missing: An instructor may drop a student from a class if the prerequisite requirements, as stated in the catalog course description, have not been completed.

Canceled classes: If a class is canceled, students will be automatically dropped and have no reporting responsibilities.

LEAVES OF ABSENCE
Students are permitted to take a Planned Educational Leave or a Medical Leave with a written request and approval by campus officials.
Eligibility for All Leaves
1. A student on Educational or Medical Leave will be considered to be in continuous attendance with the purpose of returning to the same curriculum that was in effect when the leave began.
2. A student on Educational or Medical Leave will not be required to apply for readmission or pay an application fee provided that the student returns to the same major and within the time period agreed upon when the application was approved.
3. No more than two leaves will be available to each student (totaling a maximum of 8 terms).
4. A student on leave may return and enroll for any term prior to the term when the leave is scheduled to end. NO leave will be extended beyond the two-year limitation for any reason.
5. Any student on leave who fails to return and enroll within the time limits specified by the leave agreement will be required to reapply for admission, pay the reapplication fee, and may be held to any new curriculum requirements which may be in effect.

Educational Leaves:
1. A Planned Educational Leave must be for a purpose that contributes to the student's educational objective and is approved by the student's major department head or chair.
2. To be considered for an Educational Leave, the student must be eligible to enroll for the term in which the leave begins and not be on academic probation.
3. The application for Educational Leave must be initiated and approved before the leave begins and will not be granted retroactively.
4. Application forms and information concerning Leaves of Absence may be obtained from the Office of Academic Records.

Medical Leaves:
1. A Medical Leave provides time for the student to receive treatment or to recover from a disabling injury or other medical condition and is approved by a medical doctor.
2. The Medical Leave begins the term following the student's last term in attendance and may be granted retroactively based on the student's personal situation.
3. A written letter together with medical documentation is required. Information concerning Leaves of Absence may be obtained from the Office of Academic Records.

RETURNING STUDENTS
Matriculated students who have not registered for two consecutive quarters and who have not been on an approved leave of absence must file an application for readmission. The application fee must accompany the application for readmission. See the Admissions section for application deadlines for returning students.

Summer Quarter is a regular quarter and is counted in determining the length of absence.

INTRASYSTEM AND INTERSYSTEM ENROLLMENT PROGRAMS
Students enrolled at any CSU campus will have access to courses at other CSU campuses on a space available basis unless those campuses or programs are impacted. This access is offered without students being required to be admitted formally to the host campus and sometimes without paying additional fees. Although courses taken on any CSU campus will transfer to the student’s home CSU campus as elective credit, students should consult their home campus academic advisors to determine how such courses may apply to their degree programs before enrolling at the host campus.

There are two programs for enrollment within the CSU and one for enrollment between CSU and the University of California or California community colleges. Additional information about these programs is available from the Office of Academic Records, Admin. 222.

CSU Concurrent Enrollment – matriculated students in good standing may enroll at both their home CSU campus and a host CSU campus during the same term. Credit earned at the host campus is reported to the home campus to be included on the student’s transcript at the home campus. This counts as residential credit towards the degree but will be shown as transfer credit.

CSU Visitor Enrollment – matriculated students in good standing enrolled at one CSU campus may enroll at another CSU campus for one term. Credit earned at the host campus is reported to the home campus to be included on the student’s transcript at the home campus as transfer credit.

Intersystem Cross Enrollment – matriculated CSU, UC, or community college students may enroll on a “space available” basis for one course per term at another CSU, UC, or community college and request that a transcript of record be sent to the home campus and will be recorded as transfer credit.

HEATH SCREENING
Entering CSU students are required to present proof of the following immunizations to the CSU campus they will be attending before the beginning of their first term of enrollment. Measles and Rubella: All new and readmitted students born after January 1, 1957 must provide proof of full immunization (two MMRs) against measles and rubella prior to enrollment. Hepatitis B: All new students who will be 18 years of age or younger at the start of their first term at a CSU campus must provide proof of full immunization against Hepatitis B before enrolling. Full immunization against Hepatitis B consists of three timed doses of vaccine over a minimum 4 to 6 months period. Each incoming freshman who will be residing in on-campus housing will be required to return a form indicating that they have received
information about meningococcal disease and the
availability of the vaccine to prevent contracting the disease
and indicating whether or not the student has chosen to
receive the vaccination. These are not admission require-
ments, but are required of students as conditions of enroll-
ment in CSU. Proof of measles and rubella immunizations
shall also be required for certain groups of enrolled students
who have increased exposure to these diseases. These
groups include:

- Students who live in campus residence halls;
- Students who obtained primary or secondary
 schooling outside the United States;
- Students enrolled in dietetics, medical technology,
 student teaching, or field work in a health care
 setting or involving preschool-age children; and
- Intercollegiate Athletes.

Registration will not be permitted until these requirements
have been satisfied. Contact Health Services for further
information concerning clearances or special circumstances.

Grading

A grade may be changed for the purpose of correcting
clerical or administrative error, or to correct an error in the
calculation or recording of a grade. A change of grade shall
not occur as a result of additional work performed or re-
examination beyond the established course requirements.

Earned Hours are all hours for which credit was earned
(excludes grades of F, WU, and NC).

Quality Hours carry grade point value (excludes CR and
NC).

Quality Points are awarded for each course unit and are
determined by multiplying course unit by the quality point
value of the grade.

Grade Point Average (GPA) is determined by dividing
Quality Points by Quality Hours.

Higher Education GPA is the grade point average of all
college level work.

Transcripts are the official record of academic history.
Once a degree has been posted, subsequent revision and
alteration of any transcript entry is permitted only for
correction of proven error as certified by the appropriate
academic dean and the Registrar. No changes will be made
to the academic record after 60 days following the posting
of the degree.

GRADING SYMBOLS

<table>
<thead>
<tr>
<th>Academic Grading Symbols Earned</th>
<th>Quality Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Superior Attainment of Course Objectives</td>
<td>4.0</td>
</tr>
<tr>
<td>A – Superior Attainment of Course Objectives</td>
<td>3.7</td>
</tr>
<tr>
<td>B + Good Attainment of Course Objectives</td>
<td>3.3</td>
</tr>
<tr>
<td>B – Good Attainment of Course Objectives</td>
<td>3.0</td>
</tr>
<tr>
<td>B – Good Attainment of Course Objectives</td>
<td>2.7</td>
</tr>
<tr>
<td>C + Acceptable Attainment of Course Objectives</td>
<td>2.3</td>
</tr>
<tr>
<td>C Acceptable Attainment of Course Objectives</td>
<td>2.0</td>
</tr>
<tr>
<td>*C – Acceptable Attainment of Course Objectives</td>
<td>1.7</td>
</tr>
<tr>
<td>**D + Poor Attainment of Course Objectives</td>
<td>1.3</td>
</tr>
<tr>
<td>D Poor Attainment of Course Objectives</td>
<td>1.0</td>
</tr>
<tr>
<td>D – Poor Attainment of Course Objectives</td>
<td>0.7</td>
</tr>
<tr>
<td>F Non-Attainment of Course Objectives</td>
<td>0.0</td>
</tr>
<tr>
<td>CR Credit</td>
<td>–</td>
</tr>
<tr>
<td>NC No Credit</td>
<td>–</td>
</tr>
</tbody>
</table>

Administrative Grading Symbols

AU Audit
I Incomplete (authorized)
RD Report Delayed
RP Report in Progress
W Withdrawn
WU Withdrawal Unauthorized

* Certain sequenced courses may have a C– prerequisite
 for advancement.

** If a grade of D+ is received in a course that is a
 prerequisite for another course, the student is
 encouraged to repeat the prerequisite course before
 attempting the next course in sequence.

Credit/No Credit Grading

Some courses, as indicated in their catalog descriptions,
are offered on a Credit/No Credit grading basis only. The
following conditions apply when a student elects to take for
Credit/No Credit grading those courses that are not
designated by the University as being graded on an
exclusive Credit/No Credit basis.

a. Students desiring to elect a course on a Credit/No Credit
grading basis must be currently enrolled in the course
and must elect the Credit/No Credit grading option
through the registration system. This request can be
made through the 8th day of the quarter. Students may
not change from one grading system to the other after
the end of the 8th day of the term.

b. Undergraduate students will be given a grade of CR for
accomplishment equivalent to a grade of C– or better. No
credit (NC) will be given for D+ or lower grades.
Graduate students will receive a grade of CR that is
based on an evaluated grade of B– or higher and NC for
assigned grades of C+ or lower. Instructors will submit
conventional letter grades to the Registrar's Office where
they will be converted to Credit/No Credit grades.

NOTE: Some post-baccalaureate programs penalize
students for a grade of CR.
c. The applicant for a Credit/No Credit grade must have at least a 2.0 grade point average in cumulative Cal Poly work. This requirement is waived for first-time students.
d. No more than two courses may be selected for Credit/No Credit grading in any term.e. Units earned in courses for which the grade was CR will count toward satisfaction of all degree requirements.
f. Undergraduate students may elect a maximum of 16 units of Credit/No Credit grading. Up to 4 units of Credit/No Credit grading is allowed in major or support courses (subject to the approval of the student's major department) and up to 4 units of Credit/No Credit grading is allowed in General Education courses.
g. Credit/No Credit grading will be removed for courses not meeting the above guidelines.
h. Non-matriculated students, including those in the Extension Program, Summer Session, and Workshops must meet the same requirements as matriculated students to elect courses on a Credit/No Credit grading basis. (The 2.0 GPA requirement is waived in the case of non-matriculated students having no previous coursework recorded at Cal Poly.)

Administrative Grading Symbols

Audit
An auditor is a student who attends a course and receives no credit for the course. Enrollment as an auditor is subject to permission of the instructor. Enrollment in a course as an auditor shall be permitted only after students otherwise eligible to enroll on a credit basis have had an opportunity to do so.

Auditors are subject to the same fee structure as credit students, and regular class attendance is expected. Once enrolled as an auditor, a student may not change to credit status unless such a change is requested prior to the last day to add classes. Courses enrolled in with audit grades are not considered when determining enrollment status (for financial aid and other purposes).

An instructor is authorized to submit a change-of-grade form to change an AU to NC for students who audit a class but do not attend or do not meet agreed-upon criteria.

The student services fee and nonresident tuition fee are determined on the basis of the total units for which the student is enrolled including courses audited.

Incomplete (Authorized)
An incomplete signifies that a portion of required coursework has not been completed and evaluated in the prescribed time period due to unforeseen but fully justified reasons and that there is still a possibility of earning credit. It is the student's responsibility to bring pertinent information to the instructor who will determine the means by which the remaining course requirements will be satisfied. A final grade is assigned when the work agreed upon has been completed and evaluated. The student is not permitted to re-enroll in the course to complete course requirements. If the student does re-enroll, the original grade of I will be counted as an F (or NC) and the re-enrollment will be processed as a repeated course.

The instructor will designate terms of the contract and length of time allowed to complete work, not to exceed one year. Failure to complete the assigned work will result in the I being counted as equivalent to an F (or NC) for grade point average computation. All remaining grades of I will be changed to F (or NC) at the time the student's degree is awarded.

Withdrawal Unauthorized
The symbol “WU” indicates that an enrolled student did not withdraw from the course and also failed to complete course requirements. It is used when, in the opinion of the instructor, completed assignments or course activities or both were insufficient to make normal evaluation of academic performance possible. For purposes of grade point average and progress point computation, this symbol is equivalent to an “F”.

A student may petition to have one grade of WU changed to a Withdrawal, with appropriate approvals, within one year of enrollment of the course. For details, contact the Office of Academic Records.

Report In Progress
The “RP” symbol is used in connection with courses that extend beyond one academic term. It indicates that work is in progress but that assignment of a final grade must await completion of additional work. Work is to be completed within one year except for graduate degree theses, which have a three-year time limit.

Cumulative enrollment in units attempted may not exceed the total number applicable to the student’s educational objective. Reenrollment is permitted prior to the assignment of the final grade provided that the total permissible number of units for the course or courses is not exceeded. Work is to be completed within a stipulated time period.

The RP symbol shall be replaced with the appropriate final grade within one year or the grade will be converted to an F. Grades of RP for graduate degree theses will convert to a grade of No Credit (NC) if a final grade has not been assigned within three years. All remaining RP grade symbols will be changed to F or NC at the time the student's degree is awarded.

Repeating a Course
Undergraduate students may repeat a maximum of 20 units at Cal Poly for purposes of improving GPA. A course taken at Cal Poly or at another university or college in which a grade of D+ or less was received may be repeated at Cal Poly with the new grade recorded along with the prior
grade. If the second grade is equal to or higher than the first, then the grade earned by repeating the course will replace the quality points, quality hours and earned hours which were previously earned. The original grade is "forgiven" from GPA computation, but both grades appear on the student's permanent record (transcript). Effective Summer 2007, any course is eligible for grade forgiveness one time only. Repeated attempts will be averaged in the student's GPA. With the exception of the reasons listed below, the repeat adjustment is made automatically at the end of the term in which the course is repeated. If a course is re-taken with credit/no credit grading, the original grade will not be excluded from the GPA.

A repeat petition is required for the following reasons only:

- the course was originally taken at Cal Poly before Fall 1987
- the course was originally taken at another institution
- the course has changed prefix or number
- the course was taken through Cal Poly Extended Education

Repeat petitions for the situations listed above must be turned in to the Office of Academic Records by the end of the seventh week of the quarter in which the course is repeated.

If the student repeats a course in which a C- or higher grade was earned, both grades will be calculated in the grade point average, but the duplicate earned hours will not be counted toward the degree.

WITHDRAWALS / RENEWAL

Withdrawals from Courses

The W grading symbol indicates that the student was permitted to withdraw from the course after the regular add/drop period with the approval of the appropriate campus officials. It carries no adverse connotation of quality of student performance and is not used in calculating grade point averages.

Between the end of the regular add/drop period and the end of the seventh week of instruction a student must request permission to withdraw from a course by processing a petition that is available at the Office of Academic Records. The petition will be approved and withdrawn authorized only if there are serious and compelling reasons for withdrawal in the judgment of the department head. The withdrawal petition also requires the signature of the course instructor and the student's academic advisor.

Between the end of the 7th week of instruction and the last day of instruction, withdrawals are permitted only if the withdrawal is based on an emergency situation clearly beyond the control of the student. In such cases a final or incomplete grade may be assigned for courses in which sufficient work has been completed to permit an evaluation to be made. The student must request permission to withdraw as specified above, or request grade assignment, both of which are subject to approval by designated campus officials. Any student who fails to provide notification or who fails to obtain formal approval to withdraw will be subject to failing grades (WU, F, or NC).

Cancellation of Registration or Withdrawal from the Term

Students who find it necessary to cancel their registration or to withdraw from all classes after enrolling for any academic term are required to follow the University's official withdrawal procedures. Failure to follow formal University procedures may result in an obligation to pay fees as well as the assignment of failing grades in all courses and the need to apply for readmission before being permitted to enroll in another academic term.

Students may drop their classes on CPReg all the way through the add/drop period, until the end of the 8th day of the term. Grades will not be assigned for courses dropped during this period.

With the approval of campus officials, a student is permitted to withdraw from all classes for the quarter for serious and compelling reasons until the end of the 7th week of instruction. After the 7th week and through the last day of instruction, withdrawals for the term must be based on an emergency situation clearly beyond the control of the student, and approved by campus officials.

The student is required to initiate a request for a term withdrawal with the Registrar and to complete required exit procedures. If the student is unable to appear in person, he/she may write or call the Office of Academic Records, 805-756-2531, to request withdrawal. The request must specify reasons for leaving the institution and include the student's signature. The date of the withdrawal will be established according to the guidelines contained in the institutional policies governing term withdrawals or as determined by the Registrar.

The student may be eligible for a full or partial refund of registration fees depending upon the time and circumstances of withdrawal. If eligible for a refund, the refund will remain in the student's account on campus, unless the student files a written application for the refund to be sent to the student. Fee refund policy information is available at www.fees.calpoly.edu.

Students who receive financial aid funds must consult with the Financial Aid and Student Account Offices prior to withdrawing from the University regarding any refunds or repayments of grant or loan assistance received for that academic term. If a Title IV financial aid recipient withdraws from the University during a payment period, the grant or loan assistance received is subject to federal refund and repayment provisions.

2007-2009 Cal Poly Catalog
Withdrawal from Previous Terms
A student may petition to have all grades retroactively changed to the administrative grade of "W" if he/she can demonstrate and document that there were serious and compelling reasons or circumstances that resulted in the unofficial withdrawal for the quarter in question. A student may not retroactively withdraw from selected courses during a particular quarter, but must petition to withdraw from the entire quarter. The petition must be submitted within one year following the end of the term. Refunds of registration fees are not available for withdrawals following the last day of instruction. For more information, contact the Office of Academic Records.

Academic Renewal
The Trustees of the California State University have established a program of Academic Renewal whereby students who are having difficulty meeting graduation requirements due to a grade point deficiency may petition to have up to two semesters or three quarters of previous college work discounted from all considerations associated with meeting requirements for the baccalaureate degree.

Academic Renewal, as defined by campus policy, will be processed at the point of graduation. Academic Renewal is intended only to facilitate graduation from Cal Poly and is not applicable for individuals who already possess a baccalaureate degree or who meet graduation requirements without the approval of a petition for Academic Renewal.

Conditions: In order to qualify for Academic Renewal all of the following conditions established by the Trustees must be met:

1. Five years must have elapsed since the term or terms to be disregarded were completed. Terms taken at any institution may be disregarded.

2. Since completion of the term(s) to be disregarded, the student must have completed coursework at Cal Poly of at least one of the following:
 - 22 units with a GPA of 3.00,
 - 45 units with a GPA of 2.50,
 - 67 units with a GPA of 2.00

3. The student must present evidence that the coursework to be disregarded was substandard and not representative of the student's present scholastic ability and level of performance, due to extenuating circumstances.

For additional information about Academic Renewal contact the Office of Academic Records.

Academic Standards
Academic Obligations
All students are expected to be diligent in the pursuit of their courses of study in order that both they and the State will receive maximum benefit from the educational opportunities provided. Each student is responsible for his or her enrollments and timely adds, drops and withdrawals following campus policy.

Students are expected to satisfy the academic demands required by their instructors in such ways as they may set forth, in order to satisfy the instructor that they are performing their assignments in a proper manner.

Instructors are expected to give first priority to meeting their scheduled classes and other assigned responsibilities, including keeping regular office hours for student conferences.

In classroom settings, instructors have the authority and responsibility to establish rules, maintain order, and to dismiss students from a class session for violation of the rules or misconduct. Violations or misconduct warranting more than a single dismissal from a class session should be referred by the instructor to the Office of Student Rights and Responsibilities (756-2794) for disciplinary action.

Uniform standards for academic probation or disqualification, and for administrative-academic probation or disqualification, are in effect at all campuses of the California State University. Undergraduate students may be placed on academic probation and later be disqualified, or be placed on administrative-academic probation and later be disqualified, when they do not meet these standards.

Students who have been placed on academic probation, administrative-academic probation, or who have been notified of their disqualification may request review of such action by the dean of the college taking the action. Students who have been disqualified for inadequate progress or performance will not be readmitted until presentation of satisfactory evidence that they have improved their chances of academic success. The request for readmission will be referred to the dean of the college in which the student wishes to enroll.

Students on academic probation may not participate on intercollegiate teams nor may they hold positions of leadership in student organizations or student government groups. This includes, but is not limited to, such groups as: athletic teams, debate teams, drama casts, judging teams, ASI councils, boards and committees. Such students may not hold an office in a student organization, nor may they be editors, managers, or hold similar positions on student publications. However, students on academic probation may participate in such activities as club membership, intramurals, and music that do not include travel and the official representation of the University.

Certain groups may have set higher standards than the minimum for specific positions or areas of responsibility that require considerable commitments of time and energy.
Academic Probation and Disqualification

The quality of academic performance is considered in the determination of a student's eligibility to remain enrolled. An undergraduate student becomes subject to academic probation or disqualification under the conditions shown below. For minimum scholarship standards applicable to graduate and post-baccalaureate students see the Graduate Programs section.

I. Academic Probation

An undergraduate student is automatically placed on academic probation when the grade point average drops below 2.0 (C). The grade point average applies to the current term (unadjusted for any subsequent grade forgiveness), the Cal Poly cumulative, or the higher education cumulative. The student is advised promptly, by email or other means, of being placed on probation. It is the student's responsibility to notify the Office of Academic Records of address changes.

An undergraduate student is removed from academic probation when the current term, Cal Poly cumulative, and higher education cumulative grade point averages are all 2.0 or higher.

II. Academic Disqualification

A. An undergraduate student on academic probation for two consecutive terms is subject to academic disqualification.

B. An undergraduate student on academic probation is also subject to academic disqualification when:

(1) As a freshman (fewer than 45 quarter units of college credit completed) the student falls below a grade point average of 1.50 in all units attempted (higher education GPA) or in all units attempted at Cal Poly (Cal Poly cumulative GPA).

(2) As a sophomore (45 through 89 quarter units of college credit completed) the student falls below a grade point average of 1.70 in all units attempted (higher education GPA) or in all units attempted at Cal Poly (Cal Poly cumulative GPA).

(3) As a junior (90 to 134 quarter units of college credit completed) the student falls below a grade point average of 1.85 in all units attempted (higher education GPA) or in all units attempted at Cal Poly (Cal Poly cumulative GPA).

(4) As a senior (135 or more quarter units of college credit completed) the student falls below a grade point average of 1.95 in all units attempted (higher education GPA) or in all units attempted at Cal Poly (Cal Poly cumulative GPA).

C. In addition to the above disqualification standards applicable to students on probation, the President may designate a campus official to act to disqualify an individual not on probation when the following circumstances exist:

(1) At the end of any term, the student has a cumulative grade point average (higher education or Cal Poly) below 1.0, and

(2) The cumulative grade point average is so low that in view of the student's overall educational record, it seems unlikely that the deficiency will be removed within a reasonable period.

III. Notice of Disqualification

Students who are disqualified at the end of a quarter are notified before the beginning of the next consecutive regular quarter. Students disqualified at the beginning of a summer enrollment break are notified at least one month before the start of the fall quarter.

Notification may occur by email or other means. A student will be considered notified if he/she has previously received a written academic contract and has failed to meet its terms, making the student subject to disqualification. It is the student's responsibility to notify the Office of Academic Records of address changes.

In cases where a student ordinarily would be disqualified at the end of a term save for the impossibility of making timely notification, the student may be advised by the student's school dean that the disqualification is to be effective at the end of the next term. Such notification includes any condition which, if met, would result in permission to continue in enrollment. Failure to notify a student does not create the right of that student to continue enrollment.

IV. Administrative-Academic Probation

An undergraduate or graduate student may be placed on administrative-academic probation by action of the dean of the school in which the student is enrolled for any of the following reasons:

A. Withdrawal from all or a substantial portion of a program of studies in two successive terms or in any three terms. (Note: a student whose withdrawal is directly associated with a chronic or recurring medical condition or its treatment is not subject to Administrative-Academic probation for such withdrawal.)

B. Repeated failure to progress toward the stated degree or program objective, including that resulting from assignment of 15 units of NC, when such failure appears to be due to circumstances within the control of the student.

C. Failure to comply, after due notice, with an academic requirement or regulation which is routine for all students or a defined group of students.

When such action is taken, the student is notified in writing and is provided with the conditions for removal from probation and the circumstances which would lead to disqualification, should probation not be removed.

Academic Petitions

Academic petitions are handled through the academic affairs division of the University. The process of review...
may include the academic department, academic advising offices, administrative offices, and/or college dean's office. Typical academic petitions include, but are not limited to, transferring from one program to another, academic requirement or policy deviation requests, and admission/re-admission issues. Contact the appropriate office for specific academic petition procedures.

Academic Petition Appeals

Following a petition decision, and under limited circumstances, students may appeal to the Vice Provost for Academic Programs and Undergraduate Education or his/her designee. The right to an appeal is not guaranteed and an appeal will only be granted if the student can show that one or more of the following exist:

1. A requirement or policy was incorrectly applied to the petition.
2. A requirement or policy is unclear or ambiguous.
3. There is new information that should be considered in the evaluation of the petition.
4. There are special circumstances warranting the granting of the appeal.

The granting of an academic petition appeal gives students the opportunity to present the merits of their petition to the Vice Provost. The Vice Provost’s decisions regarding appeals represent the University’s final decision on academic petitions. Contact the Office of Academic Programs at 756-2246 for more information on the procedures for filing an academic petition appeal.

Student Grievances

The University provides students with a variety of mechanisms to address student grievances or concerns. In all such matters, the University encourages students to attempt to resolve their grievance or concern at the source of the issue (i.e., with the professor, department chair or administrator, or college associate dean). The Dean of Students Office (756-0327) is available to any campus community member to assist with identifying and clarifying appropriate campus policies and procedures for addressing student grievances or concerns.

For general questions about grievances, contact the Dean of Students Office, 756-0327. The following list contains the offices or programs designated to address the more common student grievances at the University:

Grade Grievances – The Fairness Board: Contact the Academic Senate Office, 756-1258 (See page 17 for more detail on the functions of this Board)

Student or Student Club Misconduct – Office of Student Rights and Responsibilities, 756-2794 (See page 33 for more detail on the functions of this Office)

Eligibility for Intercollegiate Athletics

Eligibility for competition in intercollegiate athletics is regulated in general by the rules of the National Collegiate Athletic Association (NCAA), and specifically by current Conference and university regulations. The Director of Athletics is responsible for maintaining up-to-date intercollegiate athletics eligibility rules applicable to the University. The Faculty Athletic Representative has the responsibility for the interpretation of the NCAA, Conference, and university rules for determining student eligibility to represent the University in intercollegiate athletic events.

Eligibility for Student Activities

Students on either academic or disciplinary probation may not participate on intercollegiate teams nor may they hold positions of leadership in chartered student organizations or coded student government groups. Students on probation may participate in such student organizations and groups as members but they may not hold an office or represent the University or the Associated Students, Incorporated, in any official capacity.

Student Conduct and Discipline

It is expected that all Cal Poly students are enrolled for serious educational pursuits and that they will conduct themselves so as to preserve an appropriate atmosphere of learning. It is also expected that all students who enroll at Cal Poly are willing to assume the responsibilities of citizenship in the campus community. Association in such a community is voluntary, and students may withdraw from it at any time that they consider the obligations of membership disproportionate to the benefits. While enrolled, students are subject to campus authority that includes the prerogative of dismissing those whose conduct is inimical to the aims of an institution of higher education.

While enrolled, students are subject to the regulations governing discipline stated in Education Code Sections 66017 and in Title 5 of the California Code of Regulations, Sections 41301–41302, and to such rules and regulations as have been approved and promulgated by authority of the President. Copies of Title 5 California Code of Regulations 41301 and 41302, which deal specifically with student disciplinary regulations, are available to all students in the "Appendix" of this catalog. Other applicable regulations are contained in this Catalog, in the Campus Administrative Policies, the Standards for Student Conduct, Rights and Responsibilities, and in other official university publications, including the Cal Poly web site.
Outstanding Thesis Award:

“The Establishment of the Sustainable Agriculture Resource Consortium at Cal Poly”

The concept of “sustainable agriculture” has been developed and embraced by a wide cross-section of experts from many different disciplines. It is commonly understood to include three main goals: environmental health, economic viability and social responsibility in the long term.

In June 2006, Cal Poly’s President Warren J. Baker presented Hunter Francis with the “Outstanding Thesis Award.” Mr. Francis received the Master of Science degree in Agriculture with a Soil Science specialization. The thesis was entitled, “The Establishment of the Sustainable Agriculture Resource Consortium at Cal Poly.” In his work, Mr. Francis traces how the consortium was founded, reflecting on both successes and challenges, and outlines future directions for the program.

The mission of the Sustainable Agriculture Resource Consortium (SARC) is to advance sustainable food and agricultural systems through the College of Agriculture, Food and Environmental Sciences at Cal Poly. The SARC seeks to fulfill its mission through four principal methods of service:

- education of students and the general public;
- demonstration of holistic approaches to agriculture on Cal Poly land;
- investigation of organic and sustainable farming methods; and,
- facilitation of collaborative efforts among students, faculty, staff and community.

The SARC was instrumental in the founding of the Cal Poly Organic Farm, home to Cal Poly’s first Community Supported Agriculture (CSA) program.

www.calpoly.edu/~sarc
Graduate Programs

Research and Graduate Programs Office
Math and Science Bldg. (38), Room 154
805 756-1508 FAX 805 756-1725

Master's Degree Programs

Accounting, MS
Aerospace Engineering, MS *
 Research Specialization
 Space Systems Engineering Specialization
Agribusiness, MS
Agriculture, MS
 Agricultural Engineering Technology Specialization
 Agricultural Education Specialization
 Animal Science Specialization
 Crop Science Specialization
 Dairy Products Technology Specialization
 Environmental Horticulture Specialization
 Food Science and Nutrition Specialization
 Irrigation Specialization
 Plant Protection Science Specialization
 Recreation, Parks, and Tourism Management Specialization
 Soil Science Specialization
Architecture, MS
 Architectural Engineering Specialization
Biological Sciences, MS
Business Administration, MBA
 Agribusiness Specialization
 General Management Specialization
 Graphic Communication Document Systems Management Specialization
City and Regional Planning, MCRP
Civil and Environmental Engineering, MS
Computer Science, MS
Education, MA
 Counseling and Guidance Specialization
 Curriculum and Instruction Specialization
 Educational Leadership and Administration Specialization
 Literacy and Reading Specialization
 Special Education Specialization
Electrical Engineering, MS *
Engineering, MS
 Biochemical Engineering Specialization *
 Bioengineering Specialization *
 Biomedical Engineering Specialization *
 Integrated Technology Management Specialization *
 Materials Engineering Specialization
 Water Engineering Specialization
Engineering Management, MBA/MS
English, MA
Forestry Sciences, MS
History, MA
Industrial and Technical Studies, MS
Industrial Engineering, MS *
Kinesiology, MS
Mathematics, MS *

Mechanical Engineering, MS*
Polymers and Coatings Science, MS
Psychology, MS
Public Policy, MPP
Transportation Planning, MCRP/MS

Cal Poly offers studies leading to advanced degrees through its instructional departments. University policy governing graduate study emphasizes the need for students to demonstrate maturity, responsibility and scholarly integrity. Graduate students should have a command of the basic knowledge, techniques, and skills essential for independent and self-directed study.

In graduate courses, students cope with more complex ideas, problems, techniques and materials than in undergraduate courses. Graduate study requires searching and exhaustive analysis, identification and investigation of theories and principles; application of theory to new ideas, problems, and materials; extensive use of bibliographic and other resource materials, with emphasis on primary sources for data; and demonstration of competence in scholarly presentation of the results of independent study.

Regulations governing fees, grading, and financial aid are located elsewhere in the catalog. This section of the catalog reviews university definitions of policy and minimum requirements governing graduate studies. It is not, however, all inclusive.

Within these general requirements there are specific departmental requirements for each degree. These will be found in the descriptions of master's degree programs within each school’s description. It is important that graduate students, in consultation with their advisors, familiarize themselves with these requirements. Failure to do so may result in a substantial delay in progress towards the degree and graduation. It is the responsibility of the student to ascertain and comply with all university, college and departmental procedures and requirements.

Application for Admission
An application for graduate studies may be obtained from the Admissions Office of any CSU campus. The application form and official transcripts should be sent directly to the Admissions Office at Cal Poly. An electronic version of the CSU graduate application is available on the World Wide Web at www.csumentor.edu. The CSU Mentor system allows students to browse through general information about

* Blended BS+MS programs available, see page 75.
Graduate and Post-Baccalaureate Admission Requirements

Admission Requirements

Graduate and post-baccalaureate applicants may apply for a degree objective, a credential or certificate objective. Depending on the objective, the CSU will consider an application for admission as follows:

- **General Requirements** -- The minimum requirements for admission to graduate and post-baccalaureate studies at a California State University campus are in accordance with university regulations as well as Title 5, chapter 1, subchapter 3 of the California Code of Regulations.

Specifically, a student shall:

1. have completed a four-year college course of study and hold an acceptable baccalaureate degree from an institution accredited by a regional accrediting association, or shall have completed equivalent academic preparation as determined by appropriate campus authorities;
2. be in good standing at the last college or university attended;
3. have attained a grade point average of at least 2.5 ($A = 4.0$) in the last 60 semester (90 quarter) units attempted; and
4. satisfactorily meet the professional, personal, scholastic, and other standards, including qualifying examinations, as appropriate.

Specifically, a student shall:

- **Post-Baccalaureate Classified** -- Candidates who wish to enroll in a credential or certificate program will be required to satisfy additional professional, personal, scholastic, and other standards, including qualifying examinations, prescribed by the campus.
- **Graduate Conditionally Classified** -- Candidates may be admitted to a graduate degree program in this category if, in the opinion of appropriate campus authority, deficiencies can be remedied by additional preparation.
- **Graduate Classified** -- To pursue a graduate degree, candidates are required to fulfill all of the professional, personal, scholastic, and other standards, including qualifying examinations, prescribed by the campus.

If your transcript is not received by the Admissions Office prior to the first day of what would be your second quarter, or if your degree was not awarded for a preceding term, you will be required to reapply for a subsequent quarter. A second application and fee to a post-baccalaureate program will not be accepted or processed until an official transcript is provided showing that your undergraduate degree has been awarded.
Unless proof of an undergraduate degree is provided by the registration date for your second quarter, you will lose your registration priority.

Under special circumstances graduate coordinators may recommend admission of applicants who do not meet eligibility requirements. The Dean of Research and Graduate Programs will act on these recommendations.

Residency Status Determination

The campus Admissions Office determines the residency status of all new and returning students for nonresident tuition purposes. Responses to the Application for Admission and, if necessary, other evidence furnished by the student are used in making this determination. A student who fails to submit adequate information to establish a right to classification as a California resident will be classified as a nonresident. For detailed explanation please refer to Determination of Residence for Nonresident Tuition Purposes,” page 503.

International (Foreign) Student Admission Requirements

International master's and credential applicants must file an application for admission with the Office of Admissions. For this purpose, "foreign students" include those who hold U.S. temporary visas as students, exchange visitors, or in other non-immigrant classifications. The application may be filed at any time, but in order to be considered for admission in the targeted quarter the portfolio must be completed by the dates listed below.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Application Deadline</th>
<th>File Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Quarter</td>
<td>November 30</td>
<td>April 1st</td>
</tr>
<tr>
<td>Winter Quarter</td>
<td>June 30</td>
<td>September 1st</td>
</tr>
</tbody>
</table>

All master's and credential applicants must submit the following documents to establish their admission portfolio:

- Application form, Parts A and B
- $55 application fee
- Certified transcripts from all schools attended, showing coursework. All official documents must be accompanied by a certified English translation from one of the following:
 - Institute for International Education (IIE)
 - AMIDEAST
 - Saudi Arabian Education Mission
 - United States Embassy or Consulate
- Two letters of recommendation from instructors, professors or professional references
- Confidential financial statement
- Promissory note agreeing to purchase required health insurance
- International Educational Background form
- AACRAO credential analysis fee of $75 in the form of a U.S. Postal Money Order or an International Money Order, made payable to "AACRAO" (American Association of Collegiate Registrars and Admissions Officers)
- TWE (Test of Written English) with a score of 4.5 or better
- All applicants, regardless of citizenship, whose native language is not English, or who have not attended schools at the secondary level, or above, for at least three years, full-time, where English is the principal language of instruction (see list below), must present a score of 550 or above on a paper-based, or 213 or above on the computer-based Test of English as a Foreign Language (TOEFL). Applicants should take the TOEFL at least six months prior to the term for which they are applying, for scores to be received in time for full consideration in the selection process.

Both the TWE and TOEFL will be waived for applicants whose native language is English. For a list of countries please refer to the following website: www.ess.calpoly.edu/_admiss/international/toefl.htm

The Office of Admissions will complete an initial portfolio review that will include verification of an equivalent B.A./B.S. degree, a determination of the appropriate level of study and a narrative evaluation of all work completed. Copies will be included in the applicant's file.

The Office of Admissions will notify all applicants of the documents needed to complete their portfolios. Graduate coordinators may require additional documentation to assist them in determining an applicant's eligibility.

International applicants for graduate study can receive either conditional or classified admission. The graduate coordinators will make all recommendations for conditional and classified admissions to the graduate program to the Director of Admissions.

HEALTH SCREENING

All new and readmitted students born after January 1, 1957 will be notified of the requirement to present proof of measles and rubella immunizations (two MMRs). All students 18 years of age or younger on the first day of their first quarter of enrollment shall be required to present proof of immunization against hepatitis B. These are not admission requirements, but shall be required of students as conditions of enrollment in CSU. Proof of measles and rubella immunizations shall also be required for certain groups of enrolled students who have increased exposure to these diseases. See page 63 for more information.
Academic Requirements and Responsibilities

The following conditions and requirements are common to all master's degrees:

- All students shall attempt to satisfy the graduation writing requirement during the first quarter of enrollment.
- A student shall file an approved formal study plan before the twelfth unit of graduate study is completed.
- A student shall maintain a grade point average of 3.0 (grade of B on a scale where A = 4.0), or better, in all courses in the formal program of study for the degree. A course in which no letter grade is assigned shall not be used in computing the grade point average.
- A student shall maintain satisfactory scholarship and professional standards. Only those graduate students who continue to demonstrate a satisfactory level of scholastic competence and fitness, as determined by the appropriate university authorities, shall be eligible to continue in such curricula. Students whose performance is judged to be unsatisfactory by the authorities of the University may be required to withdraw from all graduate degree curricula offered by the University.
- A student shall be formally advanced to candidacy before being allowed to enroll for thesis or project units or to take the comprehensive examination.
- A student shall successfully complete a culminating experience (thesis, project and/or comprehensive examination).
- A student shall complete all of the graduate work in the formal study plan within the seven-year period preceding the date when all the requirements for the degree have been met.
- A student may elect to meet the graduation requirements in effect in the catalog either at the time the student was admitted to graduate standing (conditional or classified) provided that continuous enrollment was maintained, or at the time of graduation. The student may be required to make substitutions for discontinued courses.

General Policies Governing Graduate Studies

Academic Probation

A student who is enrolled in a graduate degree program in conditionally classified or classified standing shall be placed on academic probation for failure to maintain a cumulative grade point average of at least 3.0 (grade of B on a scale where A = 4.0) in all courses in the formal program of study for the degree.

A student who has been admitted as post-baccalaureate-classified in order to pursue a credential program shall be subject to academic probation for failure to maintain a cumulative grade point average of at least 3.0 in all units taken in the credential program.

Academic Disqualification

A graduate or post-baccalaureate student shall be subject to disqualification if while on probation the student fails to achieve a sufficient grade point average to be removed from probationary status. Disqualification may be either from further registration in the program or from further enrollment at the University as determined by the student's college dean. Notification of disqualification will be made by the school's dean.

Administrative Academic Disqualification

A graduate student may also be placed on probation or may be disqualified by appropriate campus authorities for unsatisfactory scholastic progress regardless of grade point average. Such actions shall be limited to those arising from repeated withdrawal, failure to progress toward an educational objective or noncompliance with an academic requirement, and shall be consistent with guidelines issued by the Chancellor's Office.

Advancement to Candidacy

Advancement to candidacy recognizes that the student has demonstrated the ability to operate at and sustain a level of scholarly competence that is satisfactory for successful completion of the degree requirements. The student is then cleared for the final stages of the program, which, in addition to any remaining coursework, will include the thesis, project, and/or comprehensive examination.

The student may request advancement to candidacy only after a formal program of study has been submitted, the graduation writing requirement has been satisfied, and sufficient coursework has been completed to allow the department to make a judgment about the student's potential to complete the program.
Advisement
Soon after enrollment, students should contact the department for the assignment of an advisor in their area of study. Students should meet with their advisors prior to registration, for information concerning prerequisites, courses to be taken, and to develop an informal study plan. An informal study plan is a projection of initial coursework, including prerequisites, that the student will undertake prior to filing a formal study plan, or in lieu of the formal program of study, if the student is a post-baccalaureate student without credential or degree objective.

Departmental advisors and graduate coordinators share the responsibility for advising master's degree students throughout their work toward a degree. College or departmental graduate study committees certify completion of a master's degree program on the recommendation of the advisors. Students are urged to maintain a personal file of transcripts and other records of all undergraduate and graduate work undertaken, and to make this file available whenever they seek advising.

Blended BS+MS Programs
Academic Objectives
Blended programs provide an accelerated route to a graduate professional degree, with simultaneous conferring of both bachelor's and master's degrees. Most blended programs allow for the possibility of students' earning graduate credit for several of their senior electives, effectively decreasing the summed unit requirements for both degrees. Blended programs provide a seamless process whereby students can progress from undergraduate to graduate status without having to apply through the Admissions Office (thereby eliminating the need to pay a $55 fee). In addition, blended BS+MS programs provide a meaningful capstone experience that in most cases integrates the senior project with the graduate thesis/project.

Process for Changing Status
Students who are interested in pursuing blended programs should submit a request to the department head or graduate coordinator for a change of degree objective. A draft graduate study plan is prepared, but not submitted to the Graduate Programs Office until after 12 graduate units have been completed.

The department head/graduate coordinator, with assistance of the Academic Records Office, determines whether students meet the eligibility criteria (see below). If criteria are met, the coordinator sends a change of degree objective form to Records. Students are notified of their acceptance upon receipt of the signed Change of Objective form.

Eligibility for Blended Programs
The following are minimum eligibility criteria; individual departments may have more stringent requirements.

1. Students must successfully complete a minimum of 186 units / maximum 198 units (for engineering programs the maximum number of units is 210). These units must count toward one or other of the two degrees (BS or MS) that will ultimately be awarded in the blended program; they need not be restricted to those counting toward the undergraduate degree alone.

2. Students cannot enter the blended BS+MS program if they have exceeded the maximum number of units as defined in #1.

3. Students must have a minimum 2.5 GPA in the last 90 quarter units attempted. (Note that students, once admitted to graduate standing, must maintain a 3.0 GPA or better in courses counting toward the graduate degree.)

4. Students are strongly encouraged to complete the Graduation Writing Requirement (GWR).

Process to Graduate with Both Degrees
1. Students must be enrolled in BMS status a minimum of two quarters prior to graduation.

2. Students must submit the Formal Study Plan to Graduate Programs Office (only for courses counting toward MS); request Advancement to Candidacy; and maintain a minimum 3.0 GPA for courses counting toward MS.

3. When all requirements are met for both the undergraduate and graduate programs, both degrees are awarded at the same time and graduation ceremony.

4. If a student fails to complete the MS program requirements, then the BS degree may be granted when all requirements for that degree are met.

Change of Post-Baccalaureate Objective
If students wish to change their post-baccalaureate objective, they must formally file this intention by obtaining a Post-baccalaureate Change of Objective form, available in the Graduate Programs Office or at www.calpoly.edu/~rgp.

Comprehensive Examination
A comprehensive examination is one of the possible culminating experiences for the master's degree and assesses the student's ability to integrate knowledge, show critical and independent thinking, and demonstrate mastery of the subject matter. The results of the examination should provide evidence of these abilities and achievement. A record of the examination questions and responses is maintained.

Courses Counting Towards Graduation and Credit/No Credit Grading
Only those letter-graded courses in which an A, B, or C is earned count towards satisfying the total unit requirement for the degree. Courses which are offered only on a credit/no credit basis will also satisfy the unit requirement if a credit grade is earned. The equivalent of an A or a B is required to earn credit in such courses.
Graduate students may elect to take courses that are not part of their formal program of study on a credit/no credit basis.

Credit by Exam for Coursework
See page 51.

Culminating Experience
The culminating experience for the granting of a graduate degree is the successful completion of a thesis, project or comprehensive examination. The quality of work accomplished, including the quality of the writing, is the major consideration in judging the acceptability of the thesis, project, or comprehensive examination. The student must successfully complete the culminating experience required by the specific program to be granted a graduate degree.

Enrollment in Graduate Courses
To enroll in 500-level graduate courses a student must have post-baccalaureate standing, graduate standing, or permission of the instructor.

Formal Study Plan
The student should make an appointment with the advisor before the 12th unit of work is completed to develop a formal program of study for the master's degree. A formal study plan is an agreement between the student and the college on the specific coursework to be completed in order to fulfill the requirements for the master's degree. A copy of the study plan must be submitted to the Graduate Programs Office for review and final approval.

Certain 400-series courses may be completed by the graduate student as part of the degree program when this is consistent with university requirements, departmental master's degree specifications, and the candidate's formal program of study. The student should always consult the advisor to make certain that only approved courses are selected, since departmental requirements vary, and some courses are excluded. No fewer than one-half of the units required for the degree shall be in courses organized primarily for graduate students (500 level).

Only 400- and 500-level courses are allowed in an approved graduate plan of study. In those programs where specific courses below the 400-level may be essential for a student's success, the student may be conditionally accepted to the program contingent upon completing those courses. Courses below the 400-level may not constitute any part of the approved units in the plan of graduate study.

No fewer than 32 quarter units of a 45-unit program shall be completed in residence. In programs with more than 45 units an equivalent proportion (32/45) of units must be taken “in residence”. A course taught "in residence" is normally a catalog offering or approved experimental course taught by a Cal Poly faculty member. Extension courses may not be used to fulfill the residency requirement. However, summer session courses, and up to 12 units taken through concurrent enrollment, can be counted as courses in residence. Petitioned graduate courses taken at Cal Poly as an undergraduate count as taken in residence. Courses for which students received credit by examination may be petitioned to count as taken in residence. These situations are explained further below.

No more than 13 quarter units of approved extension courses shall be accepted for the master's degree. Regular extension courses may not be used to satisfy the residency requirement, but grades earned in these courses count in calculation of the student's grade point average if they are part of the formal study plan.

No more than 12 quarter units of concurrent enrollment shall be approved in the submission of a formal study plan. Concurrent enrollment courses are counted for “in residence” credit.

Up to 12 quarter units of summer session shall be granted credit if taken prior to the submission of a formal program of study. Summer session courses are counted as “in-residence” credit.

In addition to the above rules governing “in-residence” courses, the following apply to courses included on the formal study plan:

No more than nine quarter units shall be in student teaching.

No more than nine quarter units shall be allowed for a thesis or project.

No more than 12 quarter units of approved post-baccalaureate (unclassified) course credit will be accepted for the master's degree.

Full-Time Graduate Student Status
A full-time graduate student is defined as one taking 8 or more units in a quarter. Students receiving financial aid may need to meet different requirements to be considered full-time and should consult with the Financial Aid Office. Normally students are not permitted to enroll in more than 16 units each quarter.

Grade Point Calculation for Graduate Degree
Satisfaction of the GPA requirement for the conferring of the master's degree requires a GPA of 3.0 or more in the courses taken in the formal study plan. Repeating a course does not remove a lower letter grade from the overall GPA calculation.

Graduate Courses Taken by Undergraduates for Graduate Credit
Cal Poly undergraduates who have achieved senior standing may take courses in the 400 or 500 series for graduate credit while still undergraduates. If they subsequently enter a Cal Poly master's or credential program, they may petition to have such course credit applied toward their master's degree or credential program, if the units were not used for the baccalaureate degree.
Graduation
A student planning to graduate must request a final graduation evaluation from the Evaluations Office approximately two quarters prior to the anticipated date of degree completion. A student cannot graduate without this evaluation.

Graduation with Distinction
Some, but not all, graduate programs choose to confer the honor, “graduation with distinction,” on outstanding students. To be eligible for this recognition, students must have a GPA of 3.75 or better and meet specific program criteria.

Graduation Requirement in Writing Proficiency
All students must demonstrate competency in writing skills as a requirement for graduation. Graduate students should attempt to meet the Graduation Writing Requirement in the first quarter of residence. There are three options for completing the requirement. Each student should review his or her curricular requirements to determine which of the following options is appropriate. If Option 3 is used, students must begin graduate coursework within seven years from the date the GWR was satisfied or the student will be required to fulfill the requirement using one of the other options. The requirement must be met before the student can be advanced to candidacy.

Students may meet the Graduation Writing Requirement (GWR) through one of the following options:

1. Pass the Writing Proficiency Examination.
2. Pass an approved upper-division course with a grade of C (not C-) or better AND receive certification of proficiency in writing based on a 500-word, in-class essay.
3. Document that the GWR was met as part of an undergraduate program of study at Cal Poly within seven years of matriculation as a graduate student.

The following courses are approved for GWR credit:

The Graduation Writing Requirement may be waived, at the discretion of campus authorities, in the following circumstances:

1. The requirement was satisfied by the student as an undergraduate on one of the CSU campuses and no more than seven (7) years have elapsed before entering the graduate program at Cal Poly. Documentation to support this waiver option must include date of satisfaction.
2. An equivalent upper-division, graduation writing requirement was satisfied at another 4-year college or university. Official, dated documentation must be provided (i.e., transcripts, catalog description, etc.). Again, no more than seven (7) years may elapse between meeting the requirement and beginning graduate study.
3. The student has earned an advanced degree at least equivalent to the Master’s. Supporting documentation must be presented.

Graduate students who wish to waive the GWR should present documentation to the Writing Skills Office (Bldg. 10, Rm. 130, 756-2067) in their first quarter of residence.

Leaves of Absence
See undergraduate section, page 62.

Prerequisites
Each master’s degree program has specific prerequisites, both in courses and in grade-point average. Deficiencies in prerequisites must be removed prior to advancement to classified graduate status. Courses taken for this purpose normally will not count toward fulfillment of the unit requirement for the degree.

Registration
The schedule and instructions for registration and payment of fees are available through the registration and enrollment tab at the MyCalPoly web portal. Detailed descriptions of courses are found in the back of this catalog.

Repeating a Course
Students may enroll in a course for credit more than once only if the catalog course description states that the course may be repeated for credit. An exception to this policy allows the repeating of a course in cases where a grade of D or F was received. However, for graduate students both grades will be reflected in the calculation of the grade point average. Graduate students are not eligible to repeat courses and remove the lower grade points from calculation of the GPA.

Research Involving Special Conditions
Research that involves the use of human subjects, vertebrate animals, or hazardous materials requires special campus review before the study begins. If your research involves any of these special conditions, check with your graduate coordinator and the Graduate Programs Office for procedures.

Residence Courses
See "Formal Study Plan."

Returning Students
Matriculated students who have not registered for three consecutive quarters and have not been on an approved leave of absence must file an application for readmission before the deadline dates listed below. The application fee must accompany the application for readmission.

Matriculated students who have not registered for one quarter or two consecutive quarters will be entitled to their registration priority without applying for readmission. Summer Quarter is a regular quarter and is counted in determining the length of absence.
Application Deadlines for Returning Students

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Quarter</td>
<td>April 1</td>
</tr>
<tr>
<td>Fall Quarter</td>
<td>July 1</td>
</tr>
<tr>
<td>Winter Quarter</td>
<td>October 1</td>
</tr>
<tr>
<td>Spring Quarter</td>
<td>March 1</td>
</tr>
</tbody>
</table>

Second Master's Degree

A student can earn only one master's degree in any one of the graduate programs offered. A student who wishes to complete a second master's degree in another discipline, or two master's degrees simultaneously, must complete all the requirements for both degrees. Of the units required in common for each degree, no more than nine quarter units of coursework may be used to satisfy requirements in both master's degree programs.

Thesis or Project Report Requirements

A thesis is the written product of a systematic study of a significant problem. It identifies the problem, states the major assumptions, explains the significance of the undertaking, sets forth the sources for and methods of gathering information, analyzes the data, and offers a conclusion or recommendation. The finished product evidences originality, critical and independent thinking, appropriate organization and format, and thorough documentation. Normally, an oral defense of the thesis is required.

A project is a significant undertaking appropriate to the fine and applied arts or to professional fields. It evidences originality and independent thinking, appropriate form and organization, and a rationale. It is described and summarized in a written report that includes the project's significance, objectives, methodology, and a conclusion or recommendation. An oral defense of the project may be required.

Thesis/project committee composition must be approved by the Graduate Programs Office.

If a thesis or project is required in a master's degree program, a committee-approved copy must be completed in accordance with university specifications. Guidelines to be followed in preparing final copy for filing with the University can be obtained from the Graduate Programs Office.

A copy of the thesis or project report must be received and reviewed by the Thesis Editor in the Graduate Programs Office. Upon completion of any required corrections, a copy ready for binding is filed with the Graduate Programs Office for submission to the University Library. These steps must be completed before the degree will be awarded.

Time Limit for Degree

The time allowed to complete all coursework in the formal study plan, including thesis and project courses, is seven years. The University, at its option, and in exceptional cases, may extend the time frame. Students who wish to extend the seven-year limit must file a petition for special consideration explaining the reasons why the extension is necessary, what courses are requested for inclusion in the study plan that will be over seven years old at the proposed time of graduation, and what evidence is offered to support claims of currency in that coursework.
Sustainable Irrigation Practices

The principles of sustainability necessitate technological and theoretical innovation. Cal Poly’s Irrigation Training and Research Center (ITRC) employs cutting-edge technology and techniques at their extensive facilities for the benefit of BioResource and Agricultural Engineering students, as well as water professionals.

Pictured below is a pipeline at the ITRC Water Delivery Facility (WDF) that utilizes new magnetic flow measurement techniques critical to monitoring and sustaining our most precious resource—water.

Photo courtesy of Stuart Styles

Organic Farming Enterprise Project

Students in CRSC 203 harvest tomatoes on the largely student-managed Cal Poly Organic Farm. The class is open to students of all majors and covers all aspects of organic vegetable production, including propagation, management, irrigation, harvesting, sales and marketing.

Photo courtesy of Hunter Francis
College of Agriculture, Food & Environmental Sciences

Agricultural Sciences Bldg. (11), Room 211
(805) 756-2161

David J. Wehner, Dean
Mark D. Shelton, Associate Dean
Mary E. Pedersen, Associate Dean

ACADEMIC PROGRAMS

Agribusiness ... MS
Agribusiness Specialization MBA
Agricultural Business BS, Minor
Agricultural Communication Minor
Agricultural Science ... BS
Agricultural Systems Management BS
Agriculture .. MS, Credential
Animal Science .. BS
BioResource & Agricultural Engineering BS, Minor
Crop Science .. BS
Dairy Science ... BS, Minor
Earth Sciences ... BS
Environmental Horticultural Science BS
Environmental Management and Protection BS, Minor
Equine Science .. Minor
Food Science .. BS, Minor
Forestry and Natural Resources BS
Forestry Sciences ... MS
Fruit Science ... BS, Minor
Geographic Info Systems for Agriculture BS, Minor
Land Rehabilitation ... Minor
Meat Science and Processing Minor
Military Science ... Minor
Nutrition ... BS, Minor
Ornamental Plant Production Minor
Plant Protection ... Minor
Poultry Management .. Minor
Rangeland Resources .. Minor
Recreation, Parks, and Tourism Admin. BS
Soil Science ... BS, Minor
Water Engineering Specialization MS
Water Science .. Minor
Wine and Viticulture BS, Minor

The College of Agriculture, Food and Environmental Sciences offers programs reflecting the growing diversity of choices available and skills required in modern agriculture, life sciences, and related professions.

Students take courses in their major field beginning with their first quarter of enrollment. This early exposure to their major provides them with knowledge to supplement that gained in other coursework in basic sciences, mathematics and the liberal arts. Moreover, it allows students to evaluate whether or not the curriculum selected is appropriate to their interests and abilities.

Taking courses in the major throughout the academic program fosters personal contact with faculty and other students having common interests but varied backgrounds.

The students' early involvement in their major field, combined with the faculty's close contacts with schools, private industry, governmental agencies, and nonprofit organizations provide excellent opportunities for student internships during their junior or senior years. Other opportunities which enhance education, provide financial assistance, and help prepare students for the job market include enterprise projects, scholarships, and work-study jobs.

Student clubs are active in every department. The 43 clubs, most of which are affiliated with national professional organizations, provide an excellent forum for student and faculty interactions. Active club members may practice leadership skills, and attend national, state and local professional meetings, as well as participate in a variety of professional and social events.

Faculty in the College of Agriculture, Food and Environmental Sciences are experts in their disciplines, and are dedicated to teaching. They are eager to help students learn, are readily available for consultation and are proud of their close relationship with students.

FACILITIES

A wide range of agriculture research and production facilities are available for student use. They provide students with unique opportunities for hands-on experiences which augment the instruction received in the classroom.

Campus Farm
A 6,000-acre farm includes beef cattle, dairy cattle, horse, sheep, swine and poultry units, rodeo, horse training and show arenas, vineyards, irrigated and non-irrigated fields for various crops, citrus groves, avocado and deciduous orchards, an arboretum, wholesale and retail nurseries, putting greens, turf research plots, and greenhouses.

Labs and Special Facilities
Special facilities include several microcomputer laboratories, a market news information facility, an irrigation demonstration field, reservoirs, an agroforestry demonstration plot, laboratories with modern equipment for soil-plant-water testing, engineering testing and manufacturing shops, complete food processing units for
dairy products, meats, fruit and vegetables, and two biotechnology and embryology laboratories.

Swanton Pacific Ranch
The 3,800 acre Swanton Pacific Ranch in Santa Cruz County was generously donated by Al Smith, alumnus of Cal Poly's Crop Science Department. The ranch provides students with an opportunity to live and work on a commercial farm with forestry, watershed management, cattle and crop production activities.

COURSES
The courses offered in each agricultural curriculum may be grouped into four areas:

Major. The major courses include a required cluster of courses in which the student expects to graduate. These courses constitute the core of specific preparation for the student’s major field in agriculture.

Support. The support courses draw from courses in agriculture, life sciences, and closely allied fields which support and supplement the block of courses constituting the student’s major.

General Education. Courses are selected from the physical and life sciences, mathematics, communications, arts and humanities, and social, political, and economic institutions. These courses furnish the student with background and support for agricultural courses as well as providing cultural background for the students’ intelligent participation in a complex world society.

Electives. Course selection from electives is designed to provide freedom for students to pursue interests of their choosing in any university department.

RECOMMENDED PREPARATION
In addition to pursuing the CSU mandated entrance requirements, high school and community college students are encouraged to participate in extra- and co-curricular activities as part of their preparation for admission to Cal Poly’s College of Agriculture, Food and Environmental Sciences. These activities could include, but are not limited to, FFA, 4-H, leadership roles in school clubs, meaningful work experience and community organizations.

LABORATORY SAFETY
Students are required to meet sanitation and safety regulations in laboratories. These regulations are explained by the instructor at the first meeting of the class.

AGRICULTURAL ENTERPRISE PROJECTS
Students have many opportunities to participate in agricultural enterprise projects that are sponsored by the Cal Poly Corporation. Enterprise projects offer students practical experience in agriculture production and management.

The College of Agriculture, Food and Environmental Sciences operates a campus farm which, with its equipment, buildings, livestock, orchards, nurseries, and vineyards is available to students for their use in conducting a wide variety of agricultural enterprise projects.

The Animal Science Department conducts student enterprise projects with beef cattle, swine, sheep, horses and poultry, as well as meat processing and marketing. The stock utilized by our students represents the best genetics in the nation.

The beef program includes registered herds of 100 cows and commercial cow/calf operation of 160 cows, a Bull Testing Facility for 300 head and a 200-head feedlot. Extensive artificial insemination and embryo transfer are widely used for herd improvement. These cattle are managed in a variety of settings from environmentally controlled confinement to our 3,500 acre range operation where animals are grazed under intensive management using electric fencing and improved conservation practices. The cattle are dispersed over six different ranches away from the campus core and four distinct areas on campus. These animals and facilities are utilized for student projects including cow/calf management, artificial insemination, calving, show cattle operations and performance testing.

The sheep enterprises are conducted with approximately 120 crossbred ewes and 30 Registered Suffolk ewes. All sheep operations are located at the Cheda Ranch with its approximately 90 acres of non-irrigated pastures and 15 acres of irrigated pastures. Sheep enterprise projects include the ewe project, wherein students conduct the management of the crossbred flock for the entire production year, and the ram project, which sells range rams to the commercial sheep industry of California.

The swine herd consists of two major breeds—Yorkshires and Hampshires. The facilities include a 10-unit farrowing house, nursery, grower, and two finish facilities. Approximately 750 market hogs are produced each year.

The Foundation Horse program is made up of the Quarter Horse and Thoroughbred breeds. There are approximately 100 broodmares, foals, yearlings, two-year olds and riding horses. Typically, about five private and University owned stallions stand at stud each year. Emphasis is placed on basic horse handling and training procedures and equine reproduction technologies. Horses raised in the program are marketed by the students, giving them first-hand exposure to the industry and professional horse people. Artificial insemination and embryo transfer technologies are employed by veterinarians and students to breed over 125 mares each year.

The poultry unit houses about 12,000 layer hens and 7,000 broilers for use with student enterprises. Student projects involve broiler production, started pullet production, and egg production. The poultry facilities and equipment are some of the most modern in the country. Equipment includes a modern incubator, egg-handling facilities, and brooding.
and rearing equipment. Students care for all of the operations under the supervision of technicians and faculty.

Meat processing facilities provide students with the opportunities to develop, process, and market specialty meat items at the local market. Products such as smoked hams and specialty sausages are popular products produced by student enterprises.

The modern dairy facility includes the Dairy Cattle Instructional Building, containing the milking parlor, meeting rooms and classrooms, a nutrition and physiology lab, a microbiology lab, and a computer lab dedicated to dairy management and application software. The dairy complex also includes the Dairy Products Technology Building, which houses production-scale facilities for teaching, research, and technology transfer, a conference room, and state-of-the-art analytical laboratories. The University-owned dairy herd consists of 110 milking-age registered Holsteins and 110 milking-age registered Jerseys. Both herds are recognized for their high production and outstanding type.

The Food Science and Nutrition Department is equipped with a food processing pilot plant and culinary lab. The laboratories offer hands-on experience with many types of pilot scale commercial processing equipment. Students process foods under faculty supervision. Some examples are jams, condiments, baked goods and specialty products. In addition, Cal Poly Chocolates is an active student enterprise. All food products manufactured by student enterprise projects and class work are marketed in the Campus Store.

The Natural Resources Management Department has a number of outdoor field sites where faculty and student learn-by-doing projects are conducted. Facilities sited at the Cal Poly campus include a Forestry Skills Center, a tree farm, computer labs, GIS laboratories, and several well-equipped greenhouses. Most importantly, the NRM Department plays a lead role in administering the Swanton Pacific Ranch and School Forest near Santa Cruz, California. The Swanton site provides hands-on learning of active forest, ranch, and watershed management activities.

The Environmental Horticultural Science Program provides facilities consisting of fifteen greenhouses, six shade houses, extensive growing grounds, a sales area, a large plant biotechnology lab, extensive turf plots, two disease and pest labs, and three large labs available for production. The unit has the latest equipment and machinery to facilitate student project needs which encompass all phases of nursery and greenhouse production.

The Crop Science Program is well equipped with many of the types of machinery found on mechanized farms in California including post-harvest facilities. All of the crop production and marketing operations are carried out under the supervision of the Horticulture and Crop Science Department through enterprise projects. Orchards, vine-

yards, crop land, fruit and vegetable packing facilities and marketing outlets are available for instructional purposes.

The Earth and Soil Sciences Department is equipped for the accurate analysis of soil and water with modern equipment and facilities. Under faculty supervision, enterprise students have the opportunity to learn the management and operation of a soil and water testing program. The erosion control facility provides opportunity to assess practices that improve water quality.

AGRICULTURAL COMMUNICATION MINOR

Brock Center for Agricultural Communication
Agriculture Bldg. (10), Room 235, (805) 756-6138

This interdisciplinary minor enhances the students' ability to seek careers in dynamic professions associated with the agricultural industry, including print journalism, broadcast journalism, and public relations.

A key feature of this minor is an interdisciplinary approach. It is a cooperative effort between the College of Agriculture, Food and Environmental Sciences and the College of Liberal Arts and advised by faculty members assigned to the Brock Center for Agricultural Communication. Students have the opportunity to participate in the Cal Poly chapter of the national Agricultural Communicators of Tomorrow Association.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOUR 203 News Writing and Reporting</td>
<td>4</td>
</tr>
<tr>
<td>JOUR 205 Agricultural Communications</td>
<td>4</td>
</tr>
<tr>
<td>COMS 301 Business/Professional Communication</td>
<td>4</td>
</tr>
<tr>
<td>AGED 404 Agricultural Leadership</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Area

| College of Agriculture, Food and Environmental Sciences Majors: | 15 |
| Selected from advisor approved list. Minimum of 10 units must be at 300-400 level; two courses must be selected from JOUR, COMS, ENGL. |

| Journalism, Communication Studies, and other Non-agriculture Majors: | 30 |
| Courses to be selected from advisor approved list. A minimum of 10 units must be at 300-400 level |

ENVIRONMENTAL STUDIES MINOR

Please see the College of Science and Mathematics for more information on this interdisciplinary minor.

GEOGRAPHIC INFORMATION SYSTEMS FOR AGRICULTURE MINOR

An interdisciplinary program sponsored by three departments in the College of Agriculture, Food and Environmental Sciences: BioResource and Agricultural Engineering, Natural Resources Management, and Horticulture and Crop Science. New technologies of geographic information systems (GIS), global positioning systems (GPS), and orthophotography (uniform scale aerial
photographs) are revolutionizing the management of resources. There are great employment opportunities for those who understand the technologies and society benefits from improved management decisions. Students interested in this minor may come from the following majors: forestry and natural resources; crop science; soil science; landscape architecture; agricultural systems management; bioresource and agricultural engineering or animal science.

Required Courses
- BRAE 133 Engineering Design Graphics (3) and
 BRAE 151 CAD for Agric. Engr. (1); or
 CE 114 Intro. CAD Civil & Environ. Engr (4); or
- LA 111 3-D Graphics/Landscape Arch (4) and
 LA 310 Intro Computing/Landscape Arch (2) 4/6
- BRAE 239 Engineering Surveying 4
- BRAE 345 Aerial Photogrammetry/Remote Sensing 3
- FNR/LA 318 Applications in GIS 3
- FNR 418 Applied GIS or
 BRAE/LA/HCS 470 Selected Adv. Topics 3

Emphasis areas (select one) 12

Environmental Information Emphasis
- BRAE 447 Adv Surveying-GIS Applications (4)
- FNR 306 Natural Res Ecology/Habitat Mgt (4) or
 BIO 325 General Ecology (4)
- FNR 416 Environmental Impact Analysis (4)

Precision Agriculture Emphasis
- CRSC 244 Precision Farming (4)
- Select two of the following (8):
 - BRAE 447; CRSC 405, 410, 421, 431, 445; SS 433;
 - VGSC 423

LANG REHABILITATION MINOR

Students completing the minor gain skills in recognizing, assessing, and treating disturbed lands for numerous purposes, including erosion and sediment control, water quality improvement, habitat restoration, and aesthetic enhancement. They develop proficiency in plant identification and selection, soil properties and processes, and ecological principles, and also learn to set criteria and judge the feasibility, prudence, efficiency, and effectiveness of rehabilitation efforts.

Before being admitted to the minor, students must have successfully completed the following courses:
- BOT 121 or BIO 114; SS 121; MATH 118

At least one-half of the units must be at the 300-400 level. Generally, courses required for the student's major degree cannot be counted toward the minor, except that courses selected in the required core may count in both the major and minor programs. This and other course exceptions must be approved by the minor coordinator. As a guideline, students should take at least 20 units from outside their major degree program.

Each student is required to complete a hands-on rehabilitation or restoration field project that provides practical experience in recognizing, assessing, and treating a landscape disturbance. Before beginning the treatment phase, the student must prepare a written plan that includes a problem assessment, treatment design, anticipated outcome, and budget. This plan must be approved by the faculty advisor and the minor coordinator before land treatment begins. Project may be carried out individually or in small groups. Contact the minor coordinator for more details.

Required core courses (Minimum of 14 units) 14

Plant area (select one course):
 - BOT 238, 333; EHS 381

Soils area (select one course):
 - SS 321 Soil Morphology (4) or
 - SS 440 Forest and Range Soils (4)

Ecological Principles (select one course):
 - BOT 326; FNR 306; AG 360

Project (select one course)
 May be selected from Special Problems, Selected Advanced Topics, Senior Project or other course approved by the minor coordinator.

Coordinator approved electives 12

Select 4 courses from the following list:
- ASCI 329; BIO 418; BOT 313, 324;
- BRAE 340, 415; PPSC 321, 327;
- EHS 382; FNR/LA 318;
- FNR 307, 308, 408, 419, 420;
- HCS 124; MCRO 436; ERSC 202; SS 221

RANGELAND RESOURCES MINOR

Managing productive and sustainable rangelands, incorporating knowledge of rangeland ecosystems and applying this to grazing animal systems is the main emphasis of this interdisciplinary program. The Earth and Soil Sciences and the Animal Science Departments sponsor this minor. Students learn to develop ranch water quality plans and to develop a holistic approach to management. The courses are intended to provide knowledge and experience regarding the interactions of plants, animals, water, and soil to improve rangeland health. Careers associated with this minor are rangeland specialists, ecologists, wildland managers, ranchers, and environmental specialists.

This minor offers sufficient courses to allow students to meet the educational requirements for Certified Rangeland Manager.

Before being admitted to the program, students must have successfully completed the following: BOT 121 or BIO 162, GE Area B1 MATH course, SS 121.
Required courses. At least one-half of the units must be at the 300-400 level. Courses to be selected with advisor approval.

Range Resource Area ... 7
ASCI 329 and AG 360

Rangeland Animal Management Area.
Select one course from: ... 4
ASCI 223/311/339/490; BIO 427

Rangeland Plant Physiology Area ... 4
BIO 435

Rangeland Ecology Area. Select one course from: 4
BOT 326; FNR 306; PPSC 321

Rangeland Measurements Area.
Select one course from: ... 4
BIO 419; CRSC 411; ERSC 202; SS 321/440

Rangeland Policy/Planning Area. 3
Select one course from:
ASCI 476; CRP 342/404/408; FNR 404/408; SS 433

SUSTAINABLE AGRICULTURE MINOR

Students approach modern agricultural problems from a holistic perspective, emphasizing agricultural planning integrated with ecological principles. Through experience in sustainable agricultural practices, students learn about a farm in the context of an agro-ecosystem: a system whose processes and relationships can be manipulated to allow production with fewer adverse environmental impacts and external inputs. Students develop knowledge and skills involving holistic management, crop production, and adaptive decision-making in a hands-on environment. The minor is available to all Cal Poly students.

Required courses

AG 315 Organic Agriculture ... 4
AG 339 Internship in Agriculture .. 4
AG 360 Holistic Management .. 4
CRSC 203 Organic Farming Enterprise Project 2

Area Studies:

Select minimum of one course from each of the following areas. Minimum 4 units at 300-400 level.

Agriculture and Society Area:
AG 350, AGB 312, FNR 202, GEOG 301, GEOG 333, UNIV/POLS 333

Production Agriculture Area:
AGB 212, 401; ASCI 221, 223, 311; BOT 323; BUS 212; CRSC 445; PPSC 321, 431, 441; SS 221

Agroecology Area:
FNR 306, 319, 323; PPSC 421; ERSC 202; SS 321

Environmental Design Area:
EDES 406; EHS 381; LA 202, 221

WATER SCIENCE MINOR

The Water Science minor emphasizes one of three areas of study: irrigation, water policy, or watershed management. In California, 85% of the developed water is used for irrigation. Irrigation water use and management have tremendous impacts upon ground water quality, power usage, crop yields, surface water supplies and quality, drainage problems, and water availability for transfer to urban uses. For students interested in the environment and water, the Water Science minor provides marketable skills.

Required core courses

BRAE 340 Irrigation Water Management 4
SS 121 Introductory Soil Science 4
FNR 408 Water Resource Law and Policy 3

Select one emphasis area ... 13-18

Irrigation Emphasis (13)
Select 13 units from the following:
BRAE 237 or 239, BRAE 331, 405, 435, 438, 439, 440, 532

Water Policy Emphasis (17-18)

AGB 315 Land Economics (4)
AGB 409 California Agricultural Law (3) or FNR 404 Environmental Law (3)
FNR 320 Watershed Mgt and Restoration (4)
FNR 435 Natural Resources Policy Analysis (4)
SS 433 Land Use Planning (3)

Watershed Management Emphasis (16)

FNR 306 Natural Res Ecology/Habitat Mgt (4)
FNR 320 Watershed Management (4)
FNR 420 Advanced Watershed Hydrology (4)
SS 440 Forest and Range Soils (4)

WINE AND VITICULTURE MINOR

The goals of the minor are to educate students in the various aspects of wine and viticulture management, addressing knowledge of viticulture, enology, and marketing with skill areas of growing practices, winemaking and wine marketing. The minor is a cooperative effort between the Agribusiness, Food Science and Nutrition, and Horticulture and Crop Science departments, and is designed for students with majors from these departments.

Required core courses

AGB 443 Branded Wine Marketing 4
AGB 444 Wine Compliance and Market Analysis 4
FRSC 231 Viticulture I .. 4
FRSC 331 Viticulture II ... 4
FSN 341 Wines and Fermented Foods 4

Advisor approved electives .. 8
Select 8 units from the following:
AGB 405, 406; BRAE 340/440; FRSC 415; FSN 270; HCS 339; PPSC 321, 414; SS 121, 221.

2007-2009 Cal Poly Catalog
Wine and Viticulture
An Interdisciplinary Curriculum in Enology, Viticulture and Wine Business

Program Director, Mary Pedersen
College of Agriculture, Food and Environmental Sciences, Bldg. 11, Room 211 (805) 756-2161

Director of Program Development, July Ackerman
College of Agriculture, Food and Environmental Sciences, Bldg. 11, Room 213 (805) 756-7319

ACADEMIC PROGRAM

BS Wine and Viticulture
The major, based on fundamental and applied sciences, modern agribusiness principles, and appropriate social sciences, encompasses grape cultivation, enology, and wine business – creating both an interesting and diverse undergraduate opportunity. The proposed curriculum fosters an academic alliance among production agriculture, food science, and agricultural business interests and provides an academic understanding of the “vine to glass” opportunity. Students gain extensive hands-on experience in all aspects of the wine industry.

Courses in the major expose students to an overall breadth of the industry. Topics include diverse courses such as sensory evaluation, irrigation, soil science, financial accounting, human resources, and at least two courses from each concentration.

The Wine and Viticulture Major offers three multi-disciplinary concentrations: Enology, Viticulture, and Wine Business. Students taking advantage of the diverse course offerings including internships enter industry well prepared to succeed. To further enhance their education, students can also participate in associated extracurricular activities such as student clubs, student enterprise projects, industry interactions, applied research projects, internships, and trade association or professional society meetings.

Cal Poly’s College of Agriculture, Food and Environmental Sciences currently offers a diverse faculty and nearly 9,000 acres of farmland, including a 100-acre state-of-the-art commercial vineyard. This vineyard provides our students an excellent opportunity to practice Cal Poly’s trademark “learn-by-doing” philosophy.

The research winery and well-equipped teaching lab to maintain Cal Poly’s “learn-by-doing” philosophy is under development.

Viticulture. Professional positions within the grape and wine industry are now multi-dimensional, with winemakers and grape growers working together. To develop successful strategies, management teams must understand all aspects of wine. The viticulture concentration provides unique cross-training for students, combining an understanding of vineyards, winemaking, and marketing, thus preparing them for upper echelon management. Students receive intensive training in all aspects of quality wine grape production. Topics include, but are not limited to, site evaluation and development, pest management, and state-of-the-art cultural practices.

Wine Business. The wine business concentration focuses on specific issues unique to this industry. The wine industry requires substantial long-term capital commitments and is controlled by many levels of government. This concentration educates Wine and Viticulture students in operational and strategic management, while providing knowledge of marketing and regulatory constraints.

BS WINE and VITICULTURE
For course prerequisites, please refer to the “Course Descriptions” section of this catalog. In scheduling courses each quarter, students must consult with their academic advisor.

- 60 units upper division
- 2.0 GPA
- GWR
- USCP
- * = Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>WVIT 101</td>
<td>Orientation to Wine and Viticulture</td>
<td>1</td>
</tr>
<tr>
<td>WVIT 102</td>
<td>Grapes and Wines of the World</td>
<td>4</td>
</tr>
<tr>
<td>WVIT 202</td>
<td>Enology I</td>
<td>4</td>
</tr>
<tr>
<td>WVIT 339</td>
<td>Internship in Wine and Viticulture</td>
<td>4</td>
</tr>
<tr>
<td>WVIT/FSN 342</td>
<td>Sensory Evaluation of Wine</td>
<td>4</td>
</tr>
<tr>
<td>WVIT 463</td>
<td>Issues and Trends in Wine</td>
<td>2</td>
</tr>
<tr>
<td>AGB 401</td>
<td>Managing Cultural Diversity in Agricultural Labor Relations (USCP)</td>
<td>4</td>
</tr>
<tr>
<td>AGB 443</td>
<td>Branded Wine Marketing</td>
<td>4</td>
</tr>
<tr>
<td>AGB 460/461/HCS/FSN 461/462</td>
<td>Senior Project</td>
<td>2,2</td>
</tr>
</tbody>
</table>

2007-2009 Cal Poly Catalog
<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 340 Irrigation Water Management (F)*</td>
<td>4</td>
</tr>
<tr>
<td>BUS 212 Financial Accounting Nonbus Majors</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 111 Survey of Chemistry (B3)*</td>
<td>5</td>
</tr>
<tr>
<td>FRSC 231 Viticulture</td>
<td>4</td>
</tr>
<tr>
<td>FRSC 331 Advanced Viticulture</td>
<td>4</td>
</tr>
<tr>
<td>SS 121 Introductory Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>Concentration courses (see below)</td>
<td>45-58</td>
</tr>
<tr>
<td>Advisor-approved electives</td>
<td>7-20</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

72 units required; 24 units are in Major/Concentrations.
→See page 56 for complete GE course listing.
→Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

- A1 Expository Writing | 4 |
- A2 Oral Communication | 4 |
- A3 Reasoning, Argumentation, and Writing | 4 |

Area B Science & Mathematics (no additional units req'd)

- B1 Math/Statistics * 8 units in Concentrations | 0 |
- B2 Life Science * 4 units in Concentrations | 0 |
- B3 Physical Science * 4 units in Major | 0 |
- B4 One lab taken with either a B2 or B3 course | 0 |

Area C Arts and Humanities (20 units)

- C1 Literature | 4 |
- C2 Philosophy | 4 |
- C3 Fine/Performing Arts | 4 |
- C4 Upper-division elective | 4 |
- Area C elective (Choose one from C1-C4) | 4 |

Area D/E Society and the Individual (16 units)

- D1 The American Experience (40404) | 4 |
- D2 Political Economy * 4 units in Concentration | 0 |
- D3 Comparative Social Institutions | 4 |
- D4 Self Development (CSU Area E) | 4 |
- D5 Upper-division elective | 4 |

Area F Technology Elective (upper division)

4 units in Major | 0 |

ELECTIVES | 11 |

CONCENTRATIONS (select one)

Enology Concentration

- WVIT 404 Enology II | 4 |
- CHEM 312 Survey of Organic Chemistry | 5 |
- ECON 201 Survey of Economics (D2)* | 4 |
- FSN 264 Survey of Food Chemistry | 4 |
- FSN 270 Food and Wine Plant Sanitation | 4 |
- FSN 354 Packaging Function in Food Processing | 4 |
- FSN 374 Food Laws and Regulations | 4 |
- FSN 464 Wine Chemistry and Analysis | 4 |
- MATH 118 Pre-Calculus Algebra or | 4 |
- MATH 161 Calculus for Life Sciences I (B1)* | 4 |
- MCRO 221 Microbiology (B2)* | 4 |
- STAT 218 Appd Stats for the Life Sciences (B1)* | 4 |

Viticulture Concentration

- BIO 303 Survey of Genetics | 3 |
- BOT 121 General Botany (B2)* | 4 |
- BOT 323 Plant Pathology | 4 |
- BRAE 438 Drip/Micro Irrigation or | 4 |
- BRAE 439 Vineyard Water Management | 4 |
- CHEM 312 Survey of Organic Chemistry | 5 |
- ECON 201 Survey of Economics (D2)* | 4 |
- FRSC 202 Enterprise Project | 2 |
- FRSC 210 Viticultural Practices | 2 |
- FRSC 402 Enterprise Project Management | 2 |
- FRSC 415 Vine Physiology | 4 |
- MATH 118 Pre-Calculus Algebra or | 4 |
- MATH 161 Calculus for Life Sciences I (B1)* | 4 |
- PPSC 311 Agricultural Entomology | 4 |
- PPSC 321 Weed Biology and Management | 4 |
- PPSC 414 Grape Pest Management | 4 |
- SS 221 Fertilizers and Plant Nutrition | 4 |
- STAT 218 Appd Stats for the Life Sciences (B1)* | 4 |

Wine Business Concentration

- AGB 202 Sales, Communication and Leadership in Agribusiness | 4 |
- AGB 212 Agricultural Economics | 4 |
- AGB 301 Food and Fiber Marketing | 4 |
- AGB 310 Agribusiness Credit and Finance | 4 |
- AGB 323 Agribusiness Managerial Accounting | 4 |
- AGB 422 Logistics in Global Agribusiness | 4 |
- AGB 444 Wine Compliance and Market Analysis | 4 |
- AGB 450 Agribusiness Strategy Formulation | 4 |
- BIO 111 General Biology (B2)* | 4 |
- ECON 222 Macroeconomics (D2)* | 4 |
- MATH 118 Pre-Calculus Algebra or | 4 |
- MATH 221 Calculus Business/Economics (B1)* | 4 |
- STAT 218 Intro Probability and Statistics (B1)* | 5 |

2007-2009 Cal Poly Catalog
Master of Science in Agriculture

MS Agribusiness – see page 93
MS Forestry Sciences – see page 127
MS Agriculture with Specializations in:
 Agricultural Education
 Agricultural Engineering Technology
 Animal Science
 Crop Science
 Dairy Products Technology
 Environmental Horticultural Science
 Food Science and Nutrition
 Irrigation
 Plant Protection Science
 Recreation, Parks, and Tourism Management
 Soil Science

General Characteristics
Graduate studies in the College of Agriculture, Food and Environmental Sciences allow the student to pursue either a professional program designed to enhance the competencies of agricultural educators, or an academic program of graduate-level scholarly activities and research in one of several specializations. Graduates are prepared for:
* professional-level positions with business and industry, government, and foreign service in agriculture and related fields;
* agricultural teaching in secondary schools or community colleges;
* continued graduate work at other institutions.

When to Apply
Master's applicants may file an application for admission at any time. In order to be considered for admission in the "targeted" quarter, the portfolio must be completed by the dates provided at the following websites:

Deadlines for graduate programs are available at www.ess.calpoly.edu/admiss/grad/regular.htm.

Prerequisites
Consideration for admission to this program as a classified graduate student requires a minimum grade point average of 2.75 in the last 90 quarter units attempted. An applicant not meeting these academic standards, but who meets the basic university standard of a grade point average of 2.5 in the last 90 quarter units attempted may be considered for admission as a postbaccalaureate student; such admission does not constitute admission to graduate degree standing (refer to page 71). A change from postbaccalaureate status to graduate status requires application and additional processing through the university's admissions office.

An applicant meeting the grade point requirement for classified graduate status, but who is deficient in background courses in agriculture and/or related support disciplines, may be considered for admission as a conditionally classified graduate student. Before such a student is advanced to classified graduate status, deficiencies in prerequisites must be removed and satisfactory academic performance in a graduate program must be demonstrated by the completion of no fewer than 12 units of specified courses with a minimum grade point average of 3.0. Courses taken to remove deficiencies in prerequisites do not count toward the unit requirement for the degree.

All applicants who do not speak and write English as their primary language are required to complete the Test of English as a Foreign Language (TOEFL), with a minimum score of 550, and the Test of Written English (TWE), with a minimum score of 4.5.

Programs of Study
There are three MS degrees in the college: MS in Agribusiness (see page 93), MS in Forestry Sciences (see page 127), and the MS in Agriculture. The MS Agriculture program includes the following specializations: Agricultural Education, Agricultural Engineering Technology, Animal Science, Crop Science, Dairy Products Technology, Environmental Horticultural Science, Food Science and Nutrition, Irrigation, Plant Protection Science, Recreation, Parks, and Tourism Management, and Soil Science. Although the program offers several specializations, there is a single degree; students may not earn more than one Master of Science degree in the College of Agriculture, Food and Environmental Sciences.

The Thesis
The thesis is based on independent, supervised research. Students should contact individual departments to determine the availability of funding support for their research. The final copy of the thesis must meet the standards explained in the "Manual of Instructions for the Preparation and Submission of the Master's Thesis or Master's Project" available from the Cal Poly Research and Graduate Programs Office. At least one course in statistical methods and/or experimental design is required of students in a thesis based curriculum.

Formal Study Plan
Graduate students must file the formal study plan for the degree with the Graduate Coordinator of the College of Agriculture, Food and Environmental Sciences.
Agriculture, Food and Environmental Sciences no later than the end of the quarter in which the 12th unit of approved courses is completed. The formal program of study must include at least 45 units of committee-approved graduate coursework; at least half of the units required by the committee as reflected on the formal study plan must be at the 500 level.

Students should refer to the course descriptions in this catalog for credit limitations of individual courses; for example, total credit for AG 500, Individual Study, is limited to six units.

All candidates must meet the current Graduation Writing Requirement; see page 77. All students are required to pass an oral comprehensive examination which is normally given during the final quarter of the program of study. A written comprehensive exam may also be required by the master's degree committee, but this is optional. For students in a thesis program the final oral comprehensive examination includes, but is not necessarily limited to, a defense of the thesis.

MS Agriculture, Specialization in AGRICULTURAL EDUCATION

Provides students with the opportunity to focus their graduate study in Agricultural Education, and is generally taken concurrently with the credential program.

Required Courses

- AGED 539 Internship ... 6
- AGED 520 Program Develop/Agric Education 3
- AGED 522 Instructional Prog/Agric Mechanics...... 3

Restricted electives .. 33

Any 400- and 500-level courses approved by the student's graduate committee. At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level.

Students are required to complete one year of successful teaching or graduate level internship prior to the written and oral examinations.

MS Agriculture, Specialization in AGRICULTURAL ENGINEERING TECHNOLOGY

Students have the opportunity to focus their program on the application of engineering technologies and management to solve agriculturally related problems.

Required Courses

- AG 599 Thesis .. 6
- SS 501 Research Planning 4
- STAT 512 Statistical Methods 4

Restricted electives ... 31

Any 400 and 500 level courses approved by the student’s graduate committee. At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level.

MS Agriculture, Specialization in ANIMAL SCIENCE

Additional prerequisites: Prospective students are required to: (1) submit a cover letter identifying interests, goals and experience relevant to the MS program, (2) take the general portion of the GRE and submit scores, and (3) submit a resume.

The program provides students with an interdisciplinary, science-based program, where students develop basic scientific knowledge, apply that knowledge to a research project, then write and defend a thesis. An individual’s coursework and research project is focused based upon his or her interests and goals in Animal Science, and under the guidance of the advisor and thesis committee.

Required Courses

- AGC 581 Graduate Seminar 3
- AG 581 Graduate Seminar 1
- STAT 512 Statistical Methods 4
- STAT 513 Applied Experimental Design and Regression Models ... 4
- AG 599 Thesis ... 6

Select 16 units from the following ... 16

- AG 500 Individual Study in Agriculture 6
- ASCI 403 Applied Biotech in Animal Science 5
- ASCI 405 Domestic Livestock Endocrinology 4
- ASCI 406 Applied Animal Embryology 5
- ASCI 415 HACCP for Meat and Poultry Ops 3
- ASCI 420 Animal Nutrition 3
- ASCI 450 Computer Apps in Animal Science: Spreadsheet Analysis 4
- ASCI 500 Individual Study in Animal Science 6
- ASCI 503 Adv Molecular Tech in Animal Sci 4
- VS/ASCI 438 Systemic Animal Physiology 4
- VS/ASCI 440 Immunology and Diseases of Animals (4) or VS/ASCI 540 Advanced Immunology and Diseases of Animals (4)
- AGED 438 Instructional Processes in Agric Ed 4
- BIO 431 General and Cellular Physiology 4
- BIO 501 Molecular and Cellular Biology 4
- BIO 524 Developmental Biology 4
- CHEM 528 Nutritional Biochemistry 3
- FNR 532 Apps in Biometrics and Econometrics 4

Restricted electives .. 11

Any 400 and 500 level courses approved by the student’s graduate committee. At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level.
MS Agriculture, Specialization in CROP SCIENCE
For students with undergraduate preparation in plant agriculture. Research currently is focused primarily in postharvest technology, viticulture, and integrated pest management, with additional work being done in other areas, including agronomy, horticulture, and precision farming.

Required Courses
- CRSC 445 Cropping Systems .. 4
- CRSC 581 Graduate Seminar .. 3
- CRSC 599 Thesis .. 6
- HCS 511 Ecological Biometrics 4
- SS 501 Research Planning .. 4

Restricted electives .. 24
Any 400- and 500-level courses, approved by the student's graduate committee. At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level. 45

MS Agriculture, Specialization in DAIRY PRODUCTS TECHNOLOGY
An applied program for students who desire to use their academic preparation in food science and nutrition, dairy science, microbiology, chemistry, engineering, biochemistry and related fields to address applied research questions of impact to the field of dairy science and technology. The program requires the demonstration of strong analytical thinking, effective oral and written communication, and project management. Coursework and thesis experience are designed with flexibility to enhance and increase proficiency in scientific methods while enriching students' overall preparation to enter the workforce. Graduates enter research and development positions with major food companies, leadership positions in dairy food processing and other allied areas, or further graduate study for the Ph.D. Students have opportunity to work on funded research projects of the Dairy Products Technology Center and interact with multidisciplinary teams of scientists from throughout the world. International students are encouraged to apply.

Required Courses
- DSCI 401 Physical and Chemical Properties of Dairy Products .. 4
- DSCI 444 Dairy Microbiology .. 4
- DSCI 570 Selected Topics in Dairy Science .. 3
- DSCI 571 Selected Adv. Lab in Dairy Science 3
- DSCI 581 Graduate Seminar in Dairy Science 3
- DSCI 599 Thesis .. 6
- STAT 523 Research Planning .. 4

Restricted electives .. 18
Any 400- and 500-level courses, approved by the student's graduate committee. At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level. 45

MS Agriculture, Specialization in ENVIRONMENTAL HORTICULTURAL SCIENCE
For students interested in careers in teaching, applied research positions in industry, or to students planning on continuing on for a Ph.D. It would also appeal to foreign students interested in an American graduate degree, particularly since California is internationally famous for its horticulture industry.

Required Courses
- CRSC 581 or EHS 581 Graduate Seminar 3
- HCS 500 Individual Study ... 3
- HCS 511 Ecological Biometrics 4
- HCS 570/571 Selected Topics/Lab 3
- SS 501 Research Planning .. 4
- EHS 599 Thesis .. 6

Restricted electives .. 22
Any 400- and 500-level courses approved by the student's graduate committee. At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level. 45

MS Agriculture, Specialization in FOOD SCIENCE AND NUTRITION
For students with undergraduate preparation in food science, nutrition, or other science-based curricula. A thesis is required. Research areas vary with faculty expertise and interest; refer to Food Science and Nutrition Department and College of Agriculture, Food and Environmental Sciences web pages for more information on faculty research. Graduates are prepared for further study in doctoral programs or for responsible positions in nutrition and food industries.

Required Courses
- FSN 581 Graduate Seminar ... 3
- FSN 599 Thesis .. 6
- SS 501 Research Planning or other 400-500 level research methods course 2-4
- STAT 512 Statistical Methods ... 4

Advisor approved electives (400–500 level courses) 28-30
At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level. 45

MS Agriculture, Specialization in IRRIGATION
Prerequisite: B.S. or B.A. with proficiency in basic chemistry and math. Students must have successfully completed at least one undergraduate class in general irrigation, soil science, crop science, calculus, and hydraulics, plus be familiar with spreadsheets. Students may complete prerequisite courses at Cal Poly if necessary.

Required Courses
- BRAE 405 Chemigation ... 1
- BRAE 414 Irrigation Engineering 4
- BRAE 435 Drainage or BRAE 440 Agricultural Irrigation Systems 4

2007-2009 Cal Poly Catalog
BRAE 438 Drip/Micro Irrigation or BRAE 439 Vineyard Irrigation .. 4
BRAE 532 Water Wells and Pumps .. 4
BRAE 500 Individual Study .. 3
BRAE 533 Irrigation Project Design 4
BRAE 599 Thesis .. 6
400-500 level research methods or statistics course 3

Electives .. 12

400-500 level courses approved by the student's graduate committee. At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level.

MS Agriculture, Specialization in PLANT PROTECTION SCIENCE

Provides research experience at the graduate level; provides the opportunity to conduct field and/or laboratory research programs with corporate stakeholders for career enhancement; allows students to develop more diverse or specialized skill sets for post-graduation employment; provides opportunity to obtain required coursework for state licensing.

Required Courses

- CRSC/EHS 581 Graduate Seminar .. 3
- AG 581 Graduate Seminar ... 1-3
- HCS 511 Ecological Biometrics 4
- PPSC 599 Thesis .. 6
- SS 501 Research Planning 4
- PPSC 521 Plant-Pest Interactions 4

Select 8 units from the following 8

- PPSC 405 Advanced Weed Management (4)
- PPSC 414 Grape Pest Management (4)
- PPSC 427 Disease and Pest Control Systems for Ornamental Plants (4)
- PPSC 431 Insect Pest Management (4)
- PPSC 441 Biological Control of Insects (4)

Electives .. 13-15

400-500 level courses approved by the graduate committee. At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level.

MS Agriculture, Specialization in RECREATION, PARKS, AND TOURISM MANAGEMENT

Prerequisite: In order to develop an academic background in this discipline, students who have not completed a BS/BA degree in Recreation, Parks and Tourism Administration are required to take the following undergraduate courses: REC 101, REC 210, REC 360, and STAT 217/218.

Required Courses

- REC 527 Leisure Behavior and Theory 4
- REC 581 Graduate Seminar (1) (1) 2
- REC 599 Thesis .. 9
- SS 501 Research Planning ... 4

STAT 513 Applied Experimental Design and Regression Models .. 4

Electives .. 22

400-500 level courses approved by the graduate committee. At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level.

MS Agriculture, Specialization in SOIL SCIENCE

Prerequisite: B.S. degree in soil science, geo-science, or physical or biological sciences, or a B.A. degree with proficiency in the basic sciences (chemistry, physics, botany, biology, and statistics). A computer science or computer applications course is required. Students may complete prerequisite courses at Cal Poly if necessary.

Required Courses

- SS 501 Research Planning ... 4
- SS 508 Environmental Assessment for Erosion Control 3
- SS 522 Advanced Soil Fertility 3
- SS 581 Graduate Seminar in Soil Science 3
- SS 582 Advanced Land Management 3
- SS 599 Thesis .. 6

Electives .. 23

400-500 level courses approved by the graduate committee. At least 6 units of electives must be from outside of the College of Agriculture, Food and Environmental Sciences. At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level.

MBA, Specialization in AGRIBUSINESS

The Orfalea College of Business and the Agribusiness Department jointly offer an Agribusiness Specialization in the Master of Business Administration program. The program is part of the two-year MBA curriculum and requires the completion of six graduate classes taught by the Agribusiness Department (see page 163, the Orfalea College of Business). Information and application materials may be obtained by writing to the MBA Coordinator, Orfalea College of Business.

MS Engineering, Specialization in WATER ENGINEERING

The College of Engineering and the BioResource and Agricultural Engineering Department jointly offer the Water Engineering Specialization under the M.S. Engineering. Please see College of Engineering section of this catalog for more information.
Agribusiness

Department Chair, Wayne H. Howard
James J. Ahern Elvis Qenani-Petrela
William H. Amspacher Bradley J. Rickard
Renny J. Avey David J. Schaffner
Phillip M. Doub Kenneth C. Scott
Lynn L. Hamilton Marcia L. Tilley
Sean P. Hurley Robert C. Thompson
Neal MacDougall Marlin D. Vix
Jay E. Noel Marianne McGarry Wolf

ACADEMIC PROGRAMS
BS Agricultural Business
MS Agribusiness
Agribusiness Minor

The BS program in Agricultural Business emphasizes management preparation for careers in agribusiness as part of the world's food system. The food system encompasses all the direct functions such as inputs to producers, production, processing, distribution, and marketing. Emphasis is placed on the support functions such as finance, domestic policy, and international policy. The curriculum is based on a solid background in production agriculture.

CONCENTRATIONS
In addition to the required major courses in agricultural business, students select one of the following concentrations or individualized course of study based upon their interests and career goals.

Agribusiness Finance and Appraisal. The study of economic, legal and real estate principles in the investment, development and mortgaging of agricultural real estate. Employment opportunities are available with a variety of institutions such as the Farm Credit System, Farm Service Agency, commercial banks, and large insurance companies. Careers may include loan officer, fee appraiser, financial officer, and agricultural real estate management and sales.

Agribusiness Marketing. Coursework includes the analysis of marketing methods and planning, sales forecasting, and research design for agribusiness. Career opportunities involve the marketing, advertising, distribution, and sales of farm products.

Agribusiness Policy. Coursework includes the analysis of agricultural resource allocation issues with emphasis on policies that impact the production of food and fiber. Typical careers include policy analysts and lobbyists for agribusiness, farm organizations, commodity associations, agribusiness trade associations, government regulatory agencies, and federal and state legislatures.

Agribusiness Management. Graduates frequently return to manage the increasingly complex operations of integrated family farm/processor operations, or find career opportunities with large-scale agribusinesses. The study of agribusiness management, including factors that influence profits and efficiency, accounting procedures and agricultural tax laws and preparation.

International Agribusiness Management. The opportunity for studying global agricultural production, marketing, trade policies and factors influencing U.S. exports of agricultural commodities and products. In addition to the required curriculum, students are encouraged to develop competency in a second language and complete an internship experience outside of the U.S.

Individualized Course of Study. Students have the option of choosing one of the above concentrations or developing an individualized course of study with advisor and department head approval. The agribusiness sector is changing rapidly with the evolution of biotechnology and information technology. Students are encouraged to explore these and other topics by developing a program of study that reflects individual talents and interests.

BS AGRICULTURAL BUSINESS

☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP

* = Satisfies General Education requirement

MAJOR COURSES
AGB 101 Introduction to Agribusiness 4
AGB 202 Sales, Communication, Leadership 4
AGB 212 Agricultural Economics 4
AGB 214 Agribusiness Financial Accounting 4
AGB 301 Food and Fiber Marketing 4
AGB 310 Agribusiness Credit and Finance 4
AGB 312 Agricultural Policy 4
AGB 313 Agricultural Economic Analysis 4
AGB 401 Managing Cultural Diversity in Agricultural Labor Relations (USCP) 4
AGB 460 Research Methodology in Agribusiness 2
AGB 461 Senior Project 2
Concentration courses (see below) 28

Total: 68

2007-2009 Cal Poly Catalog
SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 207 Business Law</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 110 World of Chem/Essentials (B3 & B4)*</td>
<td>4</td>
</tr>
<tr>
<td>Life science elective with lab (B2)*</td>
<td>4</td>
</tr>
<tr>
<td>1 ECON 222 Macroeconomics (D2)*</td>
<td>4</td>
</tr>
<tr>
<td>2 MATH 221 Calculus for Business & Econ. (B1)*</td>
<td>4</td>
</tr>
<tr>
<td>STAT 221 Probability/Statistical Inference (B1)*</td>
<td>5</td>
</tr>
<tr>
<td>Any ASCI, PM or DSCI course</td>
<td></td>
</tr>
<tr>
<td>SS 121 Introductory Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>Any FRSC, CRSC, HCS, PPSC or VGSC course</td>
<td>4</td>
</tr>
<tr>
<td>AG 315/BRAE 340/BRAE 348/FNR 312/FNR</td>
<td>4</td>
</tr>
</tbody>
</table>

Agricultural science electives 12/13

12-13 units in Agriculture with course prefixes other than AGC, AGED, REC, MSC and ERSC (except if crosslisted with SS). No AG prefixes except AG 315, AG 360 and AG 450. No more than a combined total of 4 units in enterprise projects, special problems, internship and AG 243.

53

GENERAL EDUCATION (GE)

72 units required; 24 units are in Support.

→ See page 56 for complete GE course listing.

→ Minimum of 12 units required at the 300-400 level.

<table>
<thead>
<tr>
<th>Area A Communication (12 units)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area B Science and Mathematics (no additional units required)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Mathematics/Statistics * 8 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B2 Life Science * 4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B3 Physical Science * 4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B4 One lab taken with either a B2 or B3 course</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area C Arts and Humanities (20 units)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Literature</td>
<td>4</td>
</tr>
<tr>
<td>C2 Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>C3 Fine/Performing Arts</td>
<td>4</td>
</tr>
<tr>
<td>C4 Upper-division elective</td>
<td>4</td>
</tr>
<tr>
<td>Area C elective (Choose one course from C1-C4)</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area D/E Society and the Individual (16 units)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 The American Experience (40404)</td>
<td>4</td>
</tr>
<tr>
<td>D2 Political Economy * 4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>D3 Comparative Social Institutions</td>
<td>4</td>
</tr>
<tr>
<td>D4 Self Development (CSU Area E)</td>
<td>4</td>
</tr>
<tr>
<td>D5 Upper-division elective</td>
<td>4</td>
</tr>
</tbody>
</table>

ELECTIVES

11

180

CONCENTRATIONS or INDIVIDUALIZED COURSE OF STUDY (select one)

Agribusiness Finance and Appraisal Concentration

AGB 322 Principles of Agribusiness Management 4
AGB 324 Agric. Property Management and Sales 4
AGB 326 Rural Property Appraisal 4
AGB 331 Farm Accounting or AGB 323
Agribusiness Managerial Accounting 4
AGB 410 Agricultural Lending 4
ECON 337 Money, Banking, and Credit 4
Advisor approved electives: AGB/BUS (300-400 level) or foreign language (any level) 4

28

Agribusiness Management Concentration

AGB 321 Farm Records 4
AGB 322 Principles of Agribusiness Management 4
AGB 331 Farm Accounting or AGB 323
Agribusiness Managerial Accounting 4
AGB 433 Agricultural Price Analysis 4
AGB 435 Linear Programming in Agriculture 4
AGB 456/404/450 4
Advisor approved electives: AGB/BUS (300-400 level) or foreign language (any level) 4

28

Agribusiness Marketing Concentration

AGB 318 Global Agricultural Marketing/Trade 4
AGB 323 Agribusiness Managerial Accounting 4
AGB 405 Agribus. Marketing Research Methods 4
AGB 406 Agribusiness Marketing Planning or AGB 407 Agribusiness Marketing Plan Internship 4
AGB 421 Agribusiness Operations Analysis or AGB 433 Agricultural Price Analysis 4
AGB 450 Agribusiness Strategy Formulation 4
Advisor approved electives: AGB/BUS (300-400 level) or foreign language (any level) 4

28

1 AGB majors: AGB 212 is prerequisite for ECON 222, not ECON 221.
2 Prerequisite: Passing score on appropriate Mathematics Placement Examination, or MATH 118 or equivalent.
Agribusiness Policy Concentration

- AGB 315 Land Economics ... 4
- AGB 323 Agribusiness Managerial Accounting or AGB 435 Linear Programming ... 4
- AGB 370 World Food Economy 4
- AGB 412 Advanced Agricultural Policy 4
- AGB 421 Agribusiness Operations Analysis or AGB 433 Agricultural Price Analysis ... 4
- AGB 442 Agricultural Policy Resolution 4
- Advisor approved electives: AGB/BUS (300-400 level) or foreign language (any level) ... 4

International Agribusiness Management Concentration

- AGB 318 Global Agricultural Marketing and Trade ... 4
- AGB 323 Agribusiness Managerial Accounting 4
- AGB 370 World Food Economy 4
- AGB 422 Logistics in Global Agribusiness 4
- AGB 451 Strategy and Cases in International Agribusiness ... 4
- BUS 433 International Finance ... 4
- Area study concentration elective ... 4
- To be selected from approved courses in anthropology, history, humanities, and foreign languages ... 4

Individualized Course of Study

- Advisor and department head pre-approval of courses is required ... 28

AGribusiness MINOR

In today’s ever more complex, technology-driven world, it is a necessity for any graduate in agriculture to have some exposure to marketing, personnel management, financial management, budgeting, and economics if they are to succeed. The minor is designed to give students in the College of Agriculture, Food and Environmental Sciences this opportunity. Interested students must apply for acceptance into the minor through the Agribusiness Department.

Required courses

- AGB 212 Agricultural Economics ... 4
- AGB 301 Food and Fiber Marketing ... 4
- AGB 310 Agribusiness Credit and Finance 4
- AGB 401 Managing Cultural Diversity in Agricultural Labor Relations (USCP) ... 4
- AGB 214/AGB 321/BUS 212 ... 4

Additional courses

Select 8 additional units of AGB courses (not including AGB 101, 200, 339, 400) with prior approval by AGB Minor Coordinator. ... 28

Interdisciplinary Minors

The department participates in offering the interdisciplinary minor in Wine and Viticulture. Please see College of Agriculture, Food and Environmental Sciences section for more information.

MS AGribusiness

The Master of Science degree program in Agribusiness has the following objectives:

Prerequisites: A bachelor’s degree and one course in each of the following areas: Intermediate microeconomics, macroeconomics, statistics, calculus of business calculus.

Program of Study: Designed to enhance the agribusiness management, commodity marketing, and technical skills of graduate students with interests in international and domestic agribusiness.

Core courses

- AGB 433/435/422 ... 4
- AGB 450 Agricultural Strategy Formulation 4
- AGB 460/SS 501 Research Methodology in Agribusiness/Research Planning ... 2/4
- AGB 510 International Development and Agribusiness ... 4
- AGB 514 Agribusiness Managerial Leadership and Communication ... 4
- FNR 532 Applications in Biometrics and Econometrics ... 4
- AGB 543 Agricultural Policy and Program Analysis ... 4
- AGB 554 Food Systems Marketing ... 4
- AGB 555 Technological and Economic Change in Agriculture ... 4
- AGB 563 International Agribusiness Trade: Cases and Theory ... 4
- AGB 599 Thesis or Scholarly Project in Agribusiness ... 6

1. **Committee approved elective (400-500 level)....** 3/4
 At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level.

2. **Committee approved elective (400-500 level)....** 3/4

1 This course has particular statistical applications for economics and business forecasting that are appropriate to this program.

2 Similar courses or course equivalents already completed at the undergraduate level require that the student complete additional “committee approved” elective units, but not reduce the degree unit requirement. Those electives are to be selected from the College of Agriculture, Food and Environmental Sciences or the Orfalea College of Business at the 400 or 500 level.
Agricultural Education & Communication

Department Office
Agriculture Bldg. (10), Room 244
(805) 756-2803

Department Head, Robert A. Flores
Glen R. Casey J. Scott Vernon
William C. Kellogg Wendy J. Warner

Affiliate Faculty:
Daniel E. Lassanske

ACADEMIC PROGRAMS

BS Agricultural Science

The Agricultural Education and Communication Department offers a Bachelor of Science degree in Agricultural Science with a choice of one of six concentrations. The program also offers 26/27 units of advisor approved electives that may be selected from one of two career pathways: preparation of agriculture teachers for the public secondary schools of California, or professional preparation in agricultural communication.

The teaching credential program provides for early field experience and professional education coursework in the undergraduate curriculum. Specialized preprofessional and professional courses are offered for undergraduate and graduate students.

Postbaccalaureate work is required of students seeking the Single Subject in Agriculture, and Agricultural Specialist credentials. Students interested in teaching agriculture may receive a B.S. degree in any of the agricultural science, production or management fields. Coursework toward the teaching credential should be started early in order to complete the total curriculum most effectively.

Student teaching is a vital part of the graduate program for the agriculture credential. Candidates must complete a minimum of 45 units of postgraduate coursework necessary for the preliminary teaching credential. For more information see, Teaching Credential Programs.

In association with the Brock Center for Agricultural Communication, selected interdisciplinary courses in Journalism, Graphic Communications, English, Communication Studies and Agriculture make up the Agricultural Communication minor. Career preparation includes a breadth and depth in agriculture along with a foundation in journalism, and an industry internship. For more information about the minor, see College of Agriculture, Food and Environmental Sciences. The Brock Center for Agricultural Communication provides students the opportunity for industry linkages and professional preparation in this rapidly growing career area.

Agricultural Education courses taken at the graduate level may be used to fulfill many of the units required for the MS Agriculture with a specialization in Agricultural Education. Detailed information may be obtained in the office of the Dean of the College of Agriculture, Food and Environmental Sciences or in the Agricultural Education and Communication Department.

CONCENTRATIONS

Agricultural Mechanics. Designed to develop knowledge and ability necessary to perform agricultural mechanical operations and processes.

Agricultural Supplies and Services. Study of the consumable supplies and services needed in the production and post harvest phases of agriculture.

Animal Science. Principles and practices related to the economic use of resources in the production of livestock and poultry.

Crop and Soil Science. Principles and practices related to the economic use of resources in the culture and production of agricultural plants.

Forestry and Natural Resources. Principles and practices involved in the conservation, multiple use or improvement of natural resources.

Ornamental Horticulture. Principles and practices involved with the culture of plants used for ornamental or aesthetic purposes.

Graduate Programs

Cal Poly offers a Master of Science degree in Agriculture with a specialization in Agricultural Education, which provides the opportunity to focus in the area of Agricultural Communication. Please refer to the MS Agriculture section of the College of Agriculture, Food and Environmental Sciences.

CONTINUING EDUCATION IN AGRICULTURE

Cal Poly and the Agricultural Education and Communication Department play an active role in the professional development and continuing education of high school and community college teachers of agriculture. Instructional staff and facilities are provided for workshops and training programs cooperatively sponsored by the University and the State of California. The campus offers an annual summer skills program. The content varies, depending upon the needs and desires of the teachers, as expressed through the California Agricultural Teachers' Association. Cal Poly faculty provide up-to-date training in the technical phases of agriculture and offer instruction in teaching methods.
BS AGRICULTURAL SCIENCE

- 60 units upper division
- GWR
- 2.0 GPA
- USCP

* = Satisfies General Education requirement

MAJOR COURSES
AGED 202 Intro. to Agricultural Education and Communication or AGC 102 Orientation to Agricultural Communication 2
AGED 404 Agricultural Leadership 3
AGC 426 Presentation Methods in Agricultural Communication or EDUC 412 Schooling in a Democratic Society 4
AGED 460 Research Methodology in Agricultural Education and Communication 1
AGED/AGC 461 Senior Project 1
AGED/AGC 462 Senior Project 1
AG 360 Holistic Management or ASCI 476 Issues in Animal Agriculture 4/3
AGB 202 Communication, Leadership and Management Skills for Agribusiness 4
AGB 301 Food and Fiber Marketing 4
AGB 401 Managing Cultural Diversity in Agricultural Labor Relations (USCP) 4
ASCI 112 Principles of Animal Science 4
ASCI 232 General Animal Science Laboratory 1
BRAE 121 Agricultural Mechanics 2
BRAE 141 Agricultural Machinery Safety 3
CRSC 123 Forage Crops 4
DSCI 230 General Dairy Husbhandy 4
DSCI 231 General Dairy Manufacturing or FSN 230 Elements of Food Processing 4
EHS 230 Environmental Horticulture 4
FRSC 230 California Fruit Growing or VGSC 230 Introduction to Vegetable Science 4
PM 225 Introduction to Poultry Management 4
SS 121 Introductory Soil Science 4
Concentration courses (see below) 22

87-88

SUPPORT COURSES
CHEM 110 World of Chem/Essentials (B3 & B4)* 4
BRAE 340 Irrigation Water Management (Area F)* 4
FNR 308 Fire and Safety or FNR 323 Human Dimensions in Natural Resources Management (D5)* 4
MATH 118 Pre-Calculus Algebra (B1)* 4
(MATH 116 & MATH 117 substitute)
Advisor approved restricted electives 26
12-20 units must be 300-400 level depending on concentration. Career area programs may be selected from teaching agriculture, or agricultural communication.

GENERAL EDUCATION (GE)
72 units required; 16 units are in Support.
See page 56 for complete GE course listing.
Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (8 units)
B1 Mathematics/Statistics * 4 units in Support 4
B2 Life Science 4
B3 Physical Science * 4 units in Support 0
B4 One lab taken with either a B2 or B3 course

Area C Arts and Humanities (20 units)
C1 Literature 4
C2 Philosophy 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4
Area C elective (Choose one course from C1-C4) 4

Area D/E Society and the Individual (16 units)
D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective *4 units in Support 0

Area F Technology Elective (upper division) 4
* 4 units in Support 0

ELECTIVES 6-7 192

CONCENTRATIONS (select one)

Agricultural Mechanics
BRAE 133 Engineering Design Graphics 2
BRAE 237 Intro to Engineering Surveying 2
BRAE 321 Agricultural Safety 3
BRAE 335 Internal Combustion Engines 4
BRAE electives (3 units at 300-400 level) 11

Agricultural Supplies and Services
AGB 212 Agricultural Economics 4
AGB 310 Agribusiness Credit and Finance 4
AGB 312 Agricultural Policy 4
AGB electives (2 units at 300-400 level) 10

2007-2009 Cal Poly Catalog
Animal Science

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCI 221, 222, 223</td>
<td>4,4</td>
</tr>
<tr>
<td>ASCI 220 Intro Animal Nutrition and Feeding</td>
<td>4</td>
</tr>
<tr>
<td>DSCI 330 Artificial Insemination and Embryo Biotechnology</td>
<td>4</td>
</tr>
<tr>
<td>ASCI/DSCI/PM electives (300-400 level)</td>
<td>6</td>
</tr>
</tbody>
</table>

Total: 22

Crop and Soil Science

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERSC 202 Soil Erosion and Water Conservation</td>
<td>4</td>
</tr>
<tr>
<td>FRSC 230 California Fruit Growing or VGSC 230 Introduction to Vegetable Science</td>
<td>4</td>
</tr>
<tr>
<td>Select a course not taken in major column</td>
<td>4</td>
</tr>
<tr>
<td>PPSC 311 Agricultural Entomology</td>
<td>4</td>
</tr>
<tr>
<td>SS 221 Fertilizers</td>
<td>4</td>
</tr>
<tr>
<td>CRSC/FRSC/VGSC/SS electives (300-400 level)</td>
<td>6</td>
</tr>
</tbody>
</table>

Total: 22

Forestry and Natural Resources

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 227 Wildlife Conservation Biology</td>
<td>4</td>
</tr>
<tr>
<td>FNR 202 Environmental Management</td>
<td>3</td>
</tr>
<tr>
<td>FNR 208 Dendrology</td>
<td>4</td>
</tr>
<tr>
<td>FNR 306 Natural Resource Ecology and Habitat Management</td>
<td>4</td>
</tr>
<tr>
<td>FNR electives (minimum of 6 units at 300-400 level)</td>
<td>7</td>
</tr>
</tbody>
</table>

Total: 22

Ornamental Horticulture

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHS 123 Landscape Installation and Maintenance</td>
<td>4</td>
</tr>
<tr>
<td>HCS 120 Principles of Horticulture and Crop Science</td>
<td>4</td>
</tr>
<tr>
<td>HCS 124 Plant Propagation</td>
<td>4</td>
</tr>
<tr>
<td>EHS 438 Teaching Methods in Environmental Horticulture</td>
<td>4</td>
</tr>
<tr>
<td>EHS electives (300-400 level)</td>
<td>6</td>
</tr>
</tbody>
</table>

Total: 22
Animal Science

Department Head, Andrew J. Thulin

Jonathon L. Beckett
Matthew Burd
M. Steven Daugherty
Robert J. Delmore
Michael H. Hall
Brooke D. Humphrey
Jaymie J. Noland

Daniel G. Peterson
L. Allen Pettey
William E. Plummer
Robert T. Rutherford
Dale A. Smith
Robert Spiller
Rudy A. Wooten

Affiliate Faculty:
Brent G. Hallock, Soil Scientist
Edwin H. Jaster, Dairy Scientist

ACADEMIC PROGRAMS

BS Animal Science
Equine Science Minor
Meat Science and Processing Minor
Poultry Management Minor
Rangeland Resources Minor

The Bachelor of Science degree in Animal Science prepares students for many career opportunities. The major coursework combines scientific theory and practical applications for animal production. In consultation with their faculty advisors, students select electives according to their interests. Students may select coursework in one of the following areas: pre-veterinary medicine, graduate school, animal biotechnology, livestock production, poultry management, meat science and processing, rangeland resource management, zoo and exotic animal management, agribusiness, and teaching agriculture.

In addition, the department offers a wide assortment of extra- and co-curricular activities including five different student clubs and nationally competitive livestock and horse judging teams. Students participate in organizing and conducting special meetings, seminars and field days sponsored by the department.

The department maintains beef cattle, horses, sheep, swine, and poultry. These animal operations are supported by an on-campus veterinary clinic, meat processing facilities, and a feed manufacturing plant. By actively participating in the management of the herds and flocks, students simulate the larger commercial operations of the industry. The enterprise system is another valuable experience for students, and industry internships are strongly encouraged.

The department has an active role in the management of the Swanton-Pacific Ranch and is developing environmentally sound resource management practices including intensive controlled grazing, multiple species grazing and using the grazing animal as a tool to enhance the total environment of the ranch. Cal Poly's Animal Science major provides the knowledge and understanding to apply new technologies for the fast-changing, technology-driven world in which we live. Our focus is to help students build a plan for personal and professional growth. Students develop the ability to apply and manage technology, and they also learn how to be team players, with the ability to solve problems utilizing leadership and professional communication skills. Most importantly, we teach students how to learn so they can adapt to the future.

Graduate Program

Cal Poly offers a Master of Science degree in Agriculture with a specialization in Animal Science. Please refer to the MS Agriculture section of the College of Agriculture, Food and Environmental Sciences.

BS ANIMAL SCIENCE

- 60 units upper division
- 2.0 GPA
- USCP
- GWR

* = Satisfies General Education requirement

MAJOR COURSES

ASCI 101 Introduction to the Animal Sciences 2
ASCI 112 Principles of Animal Science 4
ASCI 211 Meat Science 4
ASCI 220 Intro. Animal Nutrition and Feeding 4
ASCI 304 Animal Breeding 3
ASCI 320/Chem 313/Chem 371 4-5
ASCI 351 Reproductive Physiology 4
ASCI 461 Senior Project 1
ASCI 462 Senior Project 2
ASCI 463 Undergraduate Seminar 2
ASCI 476 Issues in Animal Agriculture 3
VS/ASCI 229 Anatomy and Physiology of Farm Animals 4

Production courses (select one from each of the three categories): 12

Ruminants: ASCI 221 Intro. Beef Prod. (4) or
ASCI 223 Syst. Sheep Prod. (4)

Nonruminants: PM/ASCI 225 Intro. Poultry Mgmt (4) or ASCI 222 Syst. Swine Prod. (4)

Companion Animals: ASCI 224 Equine Science (4) or ASCI 227 Companion Animal Sci. (4)

Nutrition (select one) 3-4

ASCI 350, 355, 346, 420; DSCI 301

Physiology (select one) 3-5

ASCI 333, 347, 405, 406; DSCI 330; VS/ASCI 438, VS/ASCI 440

2007-2009 Cal Poly Catalog
EQUINE SCIENCE MINOR

The Equine Science minor is designed for students interested in developing a knowledge of, and competency in, the areas of equine training and/or reproduction. This science-based program exposes students to various aspects of the horse industry, including basic equine management, training, and breeding farm management. By completing this minor, students gain an understanding of the principles and practices used within the equine industry.

Prerequisites. BIO 111 or BIO 161; ASCI 224 and VS/ASCI 229 is required for ASCI 315, ASCI 333, and ASCI 347.

Required courses
ASCI 112 Principles of Animal Science (B2) .. 4
ASCI 220 Intro Animal Nutrition and Feeding .. 4
ASCI 224 Equine Science ... 4
ASCI 315 Equine Biomechanics ... 4
ASCI 346 Equine Nutrition ... 3
ASCI 333 Equine Reproduction ... 5
ASCI 347 Equine Exercise Physiology .. 3

Select 3 units from the following: ... 3
ASCI 324, 329, 339/490, 344, 345 ... 30

MEAT SCIENCE AND PROCESSING MINOR

The Meat Science and Processing minor incorporates knowledge of general food science, basic meat science and the principles and practices of adding value to raw materials through livestock harvesting, carcass fabrication and the manufacture of further processed meat and poultry products. Opportunities for business and management training are available. The minor meets the requirements needed to become eligible for jobs with the government or commercial meat processing firms and other businesses associated with the production of food products containing meat or poultry. In addition to the required courses, selected courses address basic principles of microbiology, food science, food sanitation and safety, food chemistry and process control procedures, and other optional courses are offered in agribusiness.

Prerequisite. One quarter of chemistry.
Curriculum for Meat Science and Processing Minor

Required courses
ASCI 211 Meat Science ... 4
ASCI 384 Processed Meat Products or PM/ASCI 330 Poultry Meat Production and Processing 4
ASCI 415 HACCP for Meat and Poultry Operations .. 3
MCRO 221 Microbiology ... 4

Selected courses .. 12-15
6 units must be at upper-division level:
ASCI 112/231, 226, 290/490, 339, 450, 476;
FSN 125/230, 270, 364; MCRO 421, 444;
AG 360; any upper-division AGB course

POULTRY MANAGEMENT MINOR

The Poultry Management minor prepares students for a wide variety of positions in the commercial poultry industry and in many allied services related directly to the industry. Career opportunities are many and varied.

Students have an opportunity to conduct enterprise projects in the production of market eggs, hatching eggs, meat birds, replacement pullets, turkey, and game birds, which give them valuable experience in production techniques as well as exposure to a number of business activities related to production. Advanced students may have opportunities to study special topics related to problems in management of commercial poultry flocks.

The program is supported by a state-of-the-art poultry production facility. Cal Poly's Poultry Unit is now considered one of the best in the Western United States; it accommodates 14,000 layers, 7,000 replacement pullets, 7,000 broilers, and 2,500 chickens/turkeys for testing and research purposes. These production facilities allow students to gain hands-on learning which complements their formal class work, and provides real-world experience.

Required courses
ASCI 350 Applied Nonruminant Nutrition 4
PM/ASCI 225 Introduction to Poultry Management .. 4
PM/ASCI 325 Egg Production, Processing and Distribution .. 4
PM/ASCI 330 Poultry Meat Production and Processing ... 4
PM/ASCI 342 Poultry Business Management 4
VS/ASCI 440 Immunology and Diseases of Animals .. 4

Electives ... 4
Select 4 units from the following:
AGB 310; ASCI 339, 415; BUS 212, 346;
ENGL 310; FSN 270, 275, 323, 334, 335;
PM/ASCI 290/490, PM 360

2007-2009 Cal Poly Catalog
BioResource & Agricultural Engineering

Department Head, Richard A. Cavaletto
Benali B. Burgoa
Charles M. Burt
Samantha J. Gill
M. Stephen Kaminaka

Shaun F. Kelly
Ilhami Yildiz
Mark A. Zohns

Department Office
Agricultural Engineering Bldg. (08), Room 101
(805) 756-2378, FAX: (805) 756-2626

ACADEMIC PROGRAMS

BS Agricultural Systems Management
BS BioResource and Agricultural Engineering

The BioResource and Agricultural Engineering Department offers two programs leading to a Bachelor of Science degree: BioResource and Agricultural Engineering and Agricultural Systems Management.

The BioResource and Agricultural Engineering Department is an engineering-based educational organization consisting of professionals whose mission is the study, teaching, and practice of engineering and systems management support for agriculture. The Department is nationally recognized as a leader in this field, and for balancing theory with application and principle with practice.

Department facilities include well-equipped laboratories for hydraulic systems, evaluation and testing of power units, fabrication of agricultural machinery, agricultural electrical systems, design and construction of agricultural structures, photogrammetry, microcomputers and controllers.

Outdoor facilities include a water delivery unit with multiple pumping systems and operational canals, a field for evaluation of various irrigation systems including an operating linear move and land for experience in the mechanical production of farm products and safe operation of agricultural machinery.

Students are encouraged to participate in the student clubs of the department. The Agricultural Engineering Society is involved in a broad range of activities and services including Open House displays. The student branch of the American Society of Agricultural Engineers offers professional and extracurricular activities.

BS Agricultural Systems Management
The mission of the Agricultural Systems Management program is to provide a "Learn by Doing" undergraduate educational experience that prepares students for systems management practice in support of agriculture and related industries throughout the West.

Students receive broad agricultural training with a business and management emphasis in one of the following areas: plant production, livestock production, food and fiber processing, environmental information management, water/irrigation, and processing and manufacturing.

Students have the opportunity to develop management expertise through interdisciplinary experiences in agricultural technology and business oriented coursework.

The objectives of the Agricultural Systems Management program are to produce graduates who:

- are successful in technical, business, or management positions within agriculture or related industries; and
- are "industry ready" to undertake technological, business, or management projects and make significant contributions from day one on the job; or
- are enrolled in an advanced degree program and are successful at graduate studies should they choose to pursue them.

Agricultural Systems Management graduates demonstrate a knowledge and understanding of basic agricultural technologies and agribusiness principles necessary for technical operations and business management careers in agriculture and related industries; an understanding of modern science and practice within a specialized agricultural area of interest; and ability to apply quantitative, analytical processes for developing solutions to technological, business or management problems associated with production, processing, or the distribution of products and support services in agriculture and related industries; an understanding of the interconnected "systems" of agriculture; and ability to safely and properly handle the materials, machines, sensors, tools and techniques of modern agricultural or technical operations; and an ability to communicate and perform as effective agricultural systems management professionals in the solution of problems crossing discipline or cultural boundaries.

Career opportunities are available in the manufacturing, sales, and service of agricultural equipment and machinery; management and production of animals and crops; processing of food and fiber; and management of water/irrigation facilities. The program is recognized by the American Society of Agricultural Engineers.
BS BioResource and Agricultural Engineering

The bioresource/agricultural engineer represents the most general type of engineer, adept at utilizing electrical and mechanical energy sources, water resources, and designing structural units. The curriculum features a unique combination of engineering and applied science coursework, with a focus on preparing graduates for practice in professional engineering.

The mission of the BioResource and Agricultural Engineering program is to provide a "Learn by Doing" undergraduate educational experience that prepares students for engineering practice in support of agriculture and related industries throughout the West.

The objectives of the BioResource and Agricultural Engineering program are to produce graduates who are:

- Engineers in positions of professional responsibility and leadership in a modern multidisciplinary system-oriented environment that emphasizes problem solving.
- Actively pursuing or have achieved a degree in an advanced degree program.
- Applying unique engineering problem-solving skills and principles within a career outside traditional engineering environments, such as management, teaching, research, or other professional fields.

BioResource and Agricultural Engineering graduates demonstrate a knowledge and understanding of the basic mathematics, physical and engineering sciences necessary for modern agricultural engineering practice; the ability to design components, systems or processes to meet specified objectives, including prudent use of resources; an understanding of their professional and ethical responsibilities as agricultural engineers, including the societal impact of engineering solutions and the need to engage in life-long learning; the ability to plan, design, execute and evaluate engineering solutions to problems/projects that are real, practical and of a complexity representative of projects encountered in beginning professional practice; and the ability to communicate and perform as effective engineering professionals in both individual and team-based project environments.

Cal Poly's "learn by doing" philosophy is emphasized by the numerous design-centered laboratories and the senior project. In the senior design project, which is completed in a three-quarter set of capstone courses, students demonstrate their understanding of engineering knowledge and their ability to apply that knowledge creatively to practical problems.

Consistent with program accreditation requirements regarding a graduate's ability to function on multidisciplinary teams, the BioResource and Agricultural Engineering program has adopted an explicit graduation requirement in this area. This provides students an opportunity to practice team skills. Such experience is important for practicing engineers given the ever-increasing diversity of engineering science and applications. Methods to fulfill this requirement include items such as:

- Team senior project
- CO-OP or internship employment
- Certain club activities
- Working with faculty on a sponsored project
- Project embedded in curriculum
- Taking certain technical electives
- Service learning project

Career opportunities exist in the design, evaluation and management of systems -- irrigation, drainage, hydrology, soil conservation; agricultural machinery; food processing; and agricultural environments. The program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Minors

The department participates in offering interdisciplinary minors in Water Science and Geographic Information Systems. Please see College of Agriculture, Food and Environmental Sciences section for more information.

Graduate Programs

Cal Poly offers the MS in Agriculture with specializations in Agricultural Engineering Technology and in Irrigation, and the MS in Engineering with a specialization in Water Engineering. Please see College of Agriculture, Food and Environmental Sciences and College of Engineering sections for more information.

BS AGRICULTURAL SYSTEMS MANAGEMENT

- 60 units upper division
- 2.0 GPA
- USCP
- 8 units upper division GWR

* = Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 128</td>
<td>Careers in Bioresource/Agric. Engr</td>
<td>2</td>
</tr>
<tr>
<td>BRAE 129</td>
<td>Laboratory Skills and Safety</td>
<td>1</td>
</tr>
<tr>
<td>BRAE 133</td>
<td>Engineering Design Graphics</td>
<td>2</td>
</tr>
<tr>
<td>BRAE 141</td>
<td>Agricultural Machinery Safety</td>
<td>3</td>
</tr>
<tr>
<td>BRAE 142</td>
<td>Agric Power and Machinery Mgt</td>
<td>4</td>
</tr>
<tr>
<td>BRAE 151</td>
<td>CAD for Agricultural Engineering</td>
<td>1</td>
</tr>
<tr>
<td>BRAE 203</td>
<td>Agricultural Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BRAE 237</td>
<td>Intro to Engineering Surveying</td>
<td></td>
</tr>
<tr>
<td>BRAE 239</td>
<td>Engineering Surveying</td>
<td>2/4</td>
</tr>
<tr>
<td>BRAE 301</td>
<td>Hydraulic/Mechanical Power Systems</td>
<td>4</td>
</tr>
<tr>
<td>BRAE 321</td>
<td>Agricultural Safety</td>
<td>3</td>
</tr>
<tr>
<td>BRAE 324</td>
<td>Principles Agricultural Electrification</td>
<td>4</td>
</tr>
<tr>
<td>BRAE 340</td>
<td>Irrigation Water Management</td>
<td>4</td>
</tr>
<tr>
<td>BRAE 342</td>
<td>Agricultural Materials</td>
<td>4</td>
</tr>
<tr>
<td>BRAE 343</td>
<td>Mechanical Systems Analysis</td>
<td>4</td>
</tr>
<tr>
<td>BRAE 348</td>
<td>Energy for a Sustainable Society (Area F)</td>
<td>4</td>
</tr>
<tr>
<td>BRAE 418</td>
<td>Agricultural Systems Management I</td>
<td>4</td>
</tr>
</tbody>
</table>
BRAE 419 Agricultural Systems Management II ... 4
BRAE 425 Computer Controls for Agriculture ... 3
BRAE 432 Agricultural Buildings ... 4
BRAE 460 Senior Project Organization .. 1
BRAE 461 Senior Project I ... 2
BRAE 462 Senior Project II ... 2
Advisor approved electives ... 16
Selected from: plant production, livestock production, food processing, environment
information management, water/irrigation, agricultural waste management, process and
manufacturing, or teaching agriculture

SUPPORT COURSES
AGB 212 Agricultural Economics ... 4
AGB 301 Food and Fiber Marketing .. 4
AGB 310 Agribusiness Credit and Finance .. 4
AGB 401 Managing Cultural Diversity in Agricultural Labor 4
BUS 212 Financial Accounting for Nonbusiness Majors or AGB 321 Farm Records... 4
CHEM 110 World of Chemistry - Essentials or CHEM 111 Survey of Chemistry (B3 & B4)* 4/5
CSC 110/CSC 113/CSC 232/AG 250 .. 3
ENGL 148 Reasoning, Argumentation, and Professional Writing (A3)* 4
MATH 118 Pre-Calculus Algebra (B1)* .. 4
MATH 119 Pre-Calculus Trigonometry (B1)* ... 4
PHYS 121 College Physics I ... 4
SS 121 Introductory Soil Science .. 4
Animal or plant production course .. 3

GENERAL EDUCATION (GE)
72 units required; 20 units are in Major/Support.
→See page 56 for complete GE course listing.
→Minimum of 12 units required at the 300–400 level.

Area A Communication (8 units)
A1 Expository Writing .. 4
A2 Oral Communication .. 4
A3 Reasoning, Argumentation, and Writing * 4 units in Support 0

Area B Science and Mathematics (4 units)
B1 Mathematics/Statistics * 8 units in Support .. 0
B2 Life Science .. 4
B3 Physical Science * 4 units in Support .. 0
B4 One lab taken with either a B2 or B3 course

Area C Arts and Humanities (20 units)
C1 Literature .. 4
C2 Philosophy ... 4
C3 Fine/Performing Arts .. 4
C4 Upper-division elective .. 4
Area C elective (Choose one course from C1-C4) .. 4

Area D/E Society and the Individual (20 units)
D1 The American Experience (40404) .. 4
D2 Political Economy ... 4

D3 Comparative Social Institutions ... 4
D4 Self Development (CSU Area E) ... 4
D5 Upper-division elective ... 4

Area F Technology Elective (upper division)
* 4 units in Major ... 0

ELECTIVES ... 0

BS BIORESOURCE AND AGRICULTURAL ENGINEERING
☐ 60 units upper division GWR
☐ 2.0 GPA
☐ USCP
* = Satisfies General Education requirement

MAJOR COURSES
BRAE 128 Careers in Bioresource & Ag Engr .. 2
BRAE 129 Laboratory Skills and Safety .. 1
BRAE 133 Engineering Design Graphics ... 2
BRAE 151 CAD for Agricultural Engineering ... 1
BRAE 216 Fundamentals of Electricity .. 4
BRAE 232 Agricultural Structures Planning ... 4
BRAE 234 Intro Mechanical Systems-Agricultural 4
BRAE 236 Principles of Irrigation ... 4
BRAE 239 Engineering Surveying ... 4
BRAE 312 Hydraulics .. 4
BRAE 320 Prince Bioresource Engineering .. 4
BRAE 328 Measurements/Computer Interfacing .. 4
BRAE 331 Irrigation Theory ... 3
BRAE 403 Agricultural Systems Engineering .. 4
BRAE 414 Irrigation Engineering ... 4
BRAE 421, 422 Equipment Engineering ... 3,4
BRAE 433 Agricultural Structures Design .. 4
BRAE 460 Senior Project Organization .. 1
BRAE 461, 462 Senior Project I, II ... 2,2
Advisor approved electives ... 10

SUPPORT COURSES
BIO 213 and ENGR/BRAE 213 or MCRO 221 Microbiology (B2)* 4
CE 201 Mechanics of Materials (6) or CE 204 and CE 207 Mechanics of Materials I, II (3)(3) ... 6
CHEM 124 General Chemistry for the Engineering Disciplines (B3/B4)* 4
CHEM 125 General Chemistry for the Engineering Disciplines (Add’l Area B)* 4
CSC 231/CSC 232/CSC 234 .. 2/3
ECON 201 Survey of Economics (D2)* ... 4
ENGL 149 Technical Writing for Engineers (A3)* 4
MATH 141, 142 Calculus I, II (B1)* .. 4,4
MATH 143 Calculus III (Add’l Area B)* ... 4
MATH 241 Calculus IV .. 4
MATH 244 Linear Analysis I ... 4
ME 211 Engineering Statics ... 3
<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 212 Engineering Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 302 Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 141 General Physics IA</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132, 133 General Physics</td>
<td>4,4</td>
</tr>
<tr>
<td>PHYS 206 Instrument/Experimental Physics and PHYS 256 Electrical Measurements Lab or EE 321 Electronics & EE 361 Electronics Lab</td>
<td>3,1</td>
</tr>
<tr>
<td>SS 121 Introductory Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>STAT 312 Statistical Methods-Engr. (B6)*</td>
<td>4</td>
</tr>
</tbody>
</table>

81-82

GENERAL EDUCATION (GE)
72 units required; 36 units are in Support.

See page 56 for complete GE course listing.
Minimum of 8 units required at the 300-400 level.

Area A Communication (8 units)
A1 Expository Writing | 4 |
A2 Oral Communication | 4 |
A3 Reasoning, Argumentation, and Writing * 4 in Support | 0 |

Area B Science and Mathematics (no additional units are required)
B1 Mathematics/Statistics * 8 units in Support | 0 |
B2 Life Science * 4 units in Support | 0 |
B3 Physical Science * 4 units in Support | 0 |
B4 One lab taken with either a B2 or B3 course | 0 |
B5 (requirement for Liberal Arts students only) | 0 |
B6 Upper-division Area B * 4 units in Support | 0 |
Additional Area B units* 8 units in Support | 0 |

Area C Arts and Humanities (16 units)
C1 Literature | 4 |
C2 Philosophy | 4 |
C3 Fine/Performing Arts | 4 |
C4 Upper-division elective | 4 |

Area D/E Society and the Individual (12 units)
D1 The American Experience (40404) | 4 |
D2 Political Economy * 4 units in Support | 0 |
D3 Comparative Social Institutions | 4 |
D4 Self Development (CSU Area E) | 4 |

36

ELECTIVES | 0 |

192

2007-2009 Cal Poly Catalog
Dairy Science

Department Head, Bruce L. Golden

Leanne M. Berning Stanley L. Henderson
Nana Y. Farkye Rafael Jimenez-Flores
Leslie S. Ferreira Edwin H. Jaster
William T. Gillis Phillip S. Tong

ACADEMIC PROGRAMS
Dairy Science - BS, Minor

The Bachelor of Science degree in Dairy Science is designed to prepare students for employment in the various phases of the dairy industry, as well as related fields. All students within the major take a common core of courses and, with advisor approval, select additional courses in an area of interest, which may include: dairy farm or plant management, processing technology, agriculture communication, management, preparation for graduate or veterinary school, and agriculture teaching.

Excellent facilities are provided for students. The dairy herd includes purebred Jerseys and Holsteins, located on a well-planned unit, where feeding, milking, calf raising, artificial insemination, and management are carried out. The campus creamery is well-equipped with modern processing equipment. Students are employed on a part-time basis to work in both the production and processing areas.

The Dairy Products Technology Center (DPTC) focuses on multidisciplinary dairy foods research and training activities designed to support the dairy industry and consumers of dairy products. Current research areas are: cheese chemistry and technology, bioseparation processes, and new product and process development. The Center has state-of-the-art research and development facilities. Students may conduct dairy foods related research projects under the guidance of Dairy Science faculty. Opportunities also exist to work on joint projects with other institutions.

Graduate Program
Cal Poly offers a Master of Science degree in Agriculture with a specialization in Dairy Products Technology. Please refer to the MS Agriculture section of the College of Agriculture, Food and Environmental Sciences.

BS DAIRY SCIENCE

☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP
* = Satisfies General Education requirement

MAJOR COURSES
DSCI 100 Enterprise Project or
DSCI 339 Internship in Dairy Science 2
DSCI 101 Dairy Feeds and Feeding 4
DSCI 121 Elements of Dairying or
DSCI 230 General Dairy Husbandry 4
DSCI 123 Dairy Science Orientation 1
DSCI 134 Intro. to Dairy Products Technology or
DSCI 231 General Dairy Manufacturing 4
DSCI 202 Dairy Promotion and Marketing 4
DSCI 223 Frozen Dairy Foods or
DSCI 241 Dairy Cattle Selection, Breeds, Fitting and Showing .. 4
DSCI 233 Milk Processing and Inspection 4
DSCI 234 Dairy Foods Evaluation 2
DSCI 301 Dairy Cattle Nutrition or
DSCI 401 Physical and Chemical Properties of Dairy Products ... 4
DSCI 321 Lactation Physiology or
DSCI 444 Dairy Microbiology 4
DSCI 330 Artificial Insemination and Embryo Biotechnology or DSCI 434 Cheese and Fermented Dairy Foods .. 4
DSCI 333 Dairy Cattle Management, Safety and Animal Well-Being or DSCI 402 Quality Assurance and Control of Dairy Products.......................... 4
DSCI 422 Breeding and Genetics of Dairy Cattle or DSCI 435 Concentration/Fractionation and Butter Technology ... 4
DSCI 432 Advanced Dairy Herd Management or
DSCI 433 Dairy Plant Mgt. & Equipment 4
DSCI 461 Senior Project 3
DSCI 463 Undergraduate Seminar 2

58

SUPPORT COURSES
* = Courses satisfy General Education requirement
MCRO 221 Microbiology (B2 & B4)* 4
CHEM 111 Survey of Chemistry or CHEM 127 General Chemistry (B3&B4)* 5/4
CHEM 312 Survey Organic Chemistry or
BIO 111 General Biology 5/4

2007-2009 Cal Poly Catalog
MATH 118 Pre-Calculus Algebra (B1)* 4
Advisor approved electives 41
At least 18 units must be 300-400 level. May be selected from one of the following areas: dairy management, dairy industry, pre-veterinary, agricultural communications, agricultural education, pre-graduate studies in dairy products technology or pre-graduate studies in dairy production.

GENERAL EDUCATION (GE)
72 units required; 12 units are in Support.
→ See page 56 for complete GE course listing.
→ Minimum of 12 units required at the 300-400 level.
Area A Communication (12 units)
A1 Expository Writing ... 4
A2 Oral Communication ... 4
A3 Reasoning, Argumentation, and Writing.................. 4

Area B Science and Mathematics (4 units)
B1 Mathematics/Statistics * 4 units in Support............ 4
B2 Life Science * 4 units in Support.......................... 0
B3 Physical Science * 4 units in Support.................... 0
B4 One lab taken with either a B2 or B3 course

Area C Arts and Humanities (20 units)
C1 Literature .. 4
C2 Philosophy .. 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4
Area C elective (Choose one course from C1-C4) ... 4

Area D/E Society and the Individual (20 units)
D1 The American Experience (40404) 4
D2 Political Economy .. 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective 4

Area F Technology Elective (upper division)
(4 units).. 4

ELECTIVES ... 3/5

DAIRY SCIENCE MINOR
The purpose of this minor is to help students from other disciplines gain a basic understanding of the terminology and practices used within the field of dairy science. Students may choose to emphasize dairy husbandry or dairy products technology, but the curriculum is flexible enough to accommodate students' individual goals. After completion, dairy husbandry students have a basic understanding of cattle, dairy nutrition, milk production practices and commercial dairy herd management. Dairy products technology students have an understanding of dairy food processing and marketing, quality and regulatory control and processing plant management. Specific programs are designed to reflect the individual student's interest and needs.

The Dairy Science Minor requires two introductory courses. Students must obtain prior program approval from the Dairy Science Minor Coordinator in selecting an additional five courses according to their interests and goals. A minimum of 26 hours is required for the minor, at least half of which must be at the 300 and 400 level.

Required courses
DSCI 121 Elements of Dairying
 or DSCI 230 General Dairy Husbandry.................... 4
DSCI 134 Intro to Dairy Products Technology
 or DSCI 231 General Dairy Manufacturing............... 4

Courses in area of emphasis 18
Select five courses from the following, with advisor approval:

Dairy Husbandry
DSCI 101 Dairy Feeds and Feeding (4)
DSCI 241 Dairy Cattle Selection, Breeds, Fitting and Showing (4)
DSCI 301 Dairy Cattle Nutrition (4)
DSCI 321 Lactation Physiology (4)
DSCI 330 Artificial Insemination and Embryo Biotechnology (4)
DSCI 333 Dairy Cattle Mgt, Safety and Animal Well-Being (4)
DSCI 422 Breeding/Genetics of Dairy Cattle (4)
DSCI 432 Advanced Dairy Herd Management (4)

Dairy Products Technology
DSCI 202 Dairy Promotion and Marketing (4)
DSCI 223 Frozen Dairy Foods (4)
DSCI 233 Milk Processing and Inspection (4)
DSCI 234 Dairy Foods Evaluation (2)
DSCI 401 Phys/Chem Properties of Dairy Products (4)
DSCI 402 Quality Assurance and Control of Dairy Products (4)
DSCI 433 Dairy Plant Management and Equipment (4)
DSCI 434 Cheese and Fermented Dairy Foods (4)
DSCI 435 Concentration/Fractionation and Butter Technology (4)
DSCI 444 Dairy Microbiology (4)

1 MATH 116 and 117 substitute for MATH 118 and are taught at a slower pace. Upon completion of both MATH 116 and MATH 117, a student receives 4 units of GE credit for Area B1.
Earth and Soil Sciences

Department Chair, Brent G. Hallock
Christopher S. Appel Thomas J. Rice, Jr.
Delmar D. Dingus Thomas A Ruehr
Lynn E. Moody Terry L. Smith
Affiliate Faculty:
Gregory S. Bohr James R. Keese
David W. Chipping William L. Preston
Antonio F. Garcia

Academic Programs
Earth Sciences - BS
Soil Science - BS, Minor

BS Earth Sciences
The BS in Earth Sciences provides a strong foundation for understanding and improving the utilization of land, water, and atmospheric resources. The program emphasizes a wide range of disciplines in natural resources and in the cultures that use and modify them. The core of the earth sciences curriculum is composed of geography, geology, and soil science, and is strengthened by a diverse array of related topical and technical specialties.

The Earth Sciences major provides detailed and thorough training in the natural and cultural processes that govern the relationship between humans and their habitats. The program also furnishes students the marketable expertise to assess, manage, repair, and improve this fragile relationship while acquiring a well rounded education in both the natural and social sciences. In addition, majors can meet the educational requirements for professional certification in a number of areas and find their training ideal for graduate school preparation in a number of related disciplines.

Due to the multidisciplinary nature of the Earth Sciences major, students have access to diverse faculty and laboratories in the various colleges. The degree program, itself, is administered by the Earth and Soil Sciences department, within the College of Agriculture, Food and Environmental Sciences. The department and its students have access to several thousand acres of agricultural, forest, and range land managed by this school. Additionally, California's Central Coast offers a diverse environmental and cultural setting for real-world training and experiences in the earth sciences.

Undergraduate students majoring in Earth Sciences earn the credentials for useful careers in resource assessment and administration. They graduate with a substantial and well rounded education in the natural and social sciences. Moreover, Earth Sciences graduates possess the understanding, flexibility, and tools to appreciate and adapt to a changing world and its employment opportunities.

Concentrations
In addition to the required major courses, students select one of the following concentrations or individualized course of study based upon their interests and career goals.

Environmental Interpretation and Assessment. Preparation for careers in environmental assessment, impact analysis, planning, and government administration. Study and analysis of environmental utilization and modification and the current legal and regulatory environment. This concentration also provides a strong foundation for graduate school in geology, geography, and environmental studies.

Geosciences Teaching. Prepares students to meet California State Board of Education Earth Sciences Content Standards. Prepares students to seek a teaching credential for teaching earth sciences in elementary or secondary schools.

Land and Water Resources. Prepares students for professional opportunities in the mitigation and conservation of land and water resources. Emphasis is on the processes that endanger these ecosystems and the knowledge necessary to protect and maintain them. Additional training in soils and hydrological studies along with enhanced technological skills is provided. This concentration also prepares students for graduate study in disciplines that specialize in land and water.

Individualized Course of Study. Students may pursue an academic minor or create a program, with faculty approval, based upon their interests and career goals. The coursework may be specifically tailored for a career in industry, education, government, or as preparation for graduate school.

BS Soil Science
Three-fourths of the world's food and nearly all of its fiber come from the fragile, thin skin of the land's surface—the soil. Also, soil absorbs and transmits rain and snow which replenish our groundwater; and it captures great quantities of environmental wastes. Soil scientists are the most knowledgeable and best trained people responsible for the management of soil, one of our most precious natural resources.

The Bachelor of Science degree in Soil Science provides fundamental knowledge and skills needed for field, laboratory, management, and teaching positions, as well as for graduate studies. Concentrations are offered in Land Resources, Environmental Management, and Environmental Science and Technology. These high quality programs help ensure that our graduates are well prepared for the diverse opportunities awaiting them. Also, graduates can meet educational requirements for professional certification by the American Registry of Certified Professionals in
Agronomy, Crops and Soils, and as Certified Professional Erosion and Sediment Control Specialists.

Students are encouraged to reinforce their education, develop professional contacts, and strengthen their career potential by participating in any of the following activities: the Earth, Soil, and Water Conservation Club, which is nationally affiliated; the Soil Judging Team, which commonly qualifies for national competition; and internships and cooperative education programs with government and industry. Each of these opportunities, combined with a friendly, helping atmosphere, provide students a college experience that is highly personable as well as rewarding. Students also are encouraged to investigate opportunities for international education. Please see the Study Abroad program section of this catalog.

Facilities of the department include laboratories, up-to-date analyzers and a glasshouse. The department has access to several thousand acres of agricultural, forest and range land managed by the College of Agriculture, Food and Environmental Sciences. All of the facilities, equipment and land, which allow practical application of classroom knowledge, are for student use.

Our undergraduate soil science program ranks among the largest and strongest in the nation. Our graduates are employed from Alaska to Mexico, Maine to Hawaii, and on every continent. Their Cal Poly experience has provided them with the strong scientific foundation, practical skills and balanced general education needed to be flexible and competitive in today's diverse, and often unpredictable, job market.

Undergraduate and graduate students majoring in soil science earn a solid, useful education; likewise, students from other fields who select soil science courses as electives, or who select the soil science minor, can augment their skills and knowledge, making them more adaptable to changing professional opportunities. All students can discover soil's vital role in their lives, and the human dependence on the quality of soil for quality of life.

Cal Poly offers a Master of Science in Agriculture degree with a specialization in Soil Science. Please refer to the MS Agriculture section of the College of Agriculture, Food and Environmental Sciences.

SOIL SCIENCE MINOR

Students from major fields other than Soil Science may broaden their education, and enhance their career opportunities, by selecting the minor in Soil Science.

Required courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 121</td>
<td>Introductory Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>ERSC 202</td>
<td>Soil Erosion and Water Conservation</td>
<td>4</td>
</tr>
<tr>
<td>SS 221</td>
<td>Fertilizers and Plant Nutrition or ERSC</td>
<td>4</td>
</tr>
<tr>
<td>223 Rocks and Minerals</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SS 321</td>
<td>Soil Morphology</td>
<td>4</td>
</tr>
</tbody>
</table>

Restricted Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 310</td>
<td>Urban Soils</td>
<td>4</td>
</tr>
<tr>
<td>SS 322</td>
<td>Soil Plant Relationships</td>
<td>4</td>
</tr>
<tr>
<td>ERSC 323</td>
<td>Geomorphology</td>
<td>4</td>
</tr>
<tr>
<td>SS 345</td>
<td>Soil Interpretations and Management</td>
<td>4</td>
</tr>
<tr>
<td>SS 422</td>
<td>Soil Microbiology and Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>SS 423</td>
<td>Soil and Water Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>SS 431</td>
<td>Soil Resource Inventory</td>
<td>4</td>
</tr>
<tr>
<td>SS 432</td>
<td>Soil Physics</td>
<td>5</td>
</tr>
<tr>
<td>SS 433</td>
<td>Land Use Planning</td>
<td>3</td>
</tr>
<tr>
<td>SS 440</td>
<td>Forest and Range Soils</td>
<td>4</td>
</tr>
<tr>
<td>SS 442</td>
<td>Soil Vadose Zone Remediation</td>
<td>4</td>
</tr>
<tr>
<td>SS 453</td>
<td>Tropical Soils</td>
<td>4</td>
</tr>
</tbody>
</table>

27/30

Land Resources. Prepares students for professional opportunities in soil and water conservation, farm advisement, fertilizer and agricultural chemicals industries, forest and range soils, urban land enhancement, laboratory analysis, soil surveying, environmental issues, and international agriculture. The flexibility of this concentration allows students to select (with departmental approval) from nearly any minor offered by the University. Students are encouraged to consider the minors in Land Rehabilitation, Water Science, and Geographic Information Systems, offered through the College of Agriculture, Food and Environmental Sciences. In addition, students may design their programs to prepare for graduate studies.

Graduate Program

Cal Poly offers a Master of Science degree in Agriculture with a specialization in Soil Science. Please refer to the MS Agriculture section of the College of Agriculture, Food and Environmental Sciences.

Curricular Concentrations

Environmental Management. Offers a solid scientific background melded with environmental policy and administration, site analysis, and resource planning. The program helps prepare students for managerial positions dealing with today's complicated environmental problems and opportunities.

Environmental Science and Technology. Provides the strongest foundation for evaluating and solving complex environmental problems, including land and water degradation and contamination by hazardous wastes. Additionally, the concentration includes courses needed for admission to rigorous graduate programs.

2007-2009 Cal Poly Catalog
BS EARTH SCIENCES
- **60 units upper division**
- **GWR**
- **2.0 GPA**
- **USCP**

* = Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 101</td>
<td>Introduction to the Solar System</td>
<td>4</td>
</tr>
<tr>
<td>BOT 121</td>
<td>General Botany (B2 & B4)*</td>
<td>4</td>
</tr>
<tr>
<td>BOT 326</td>
<td>Plant Ecology</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 127, 128</td>
<td>General Chemistry (B3 & B4)*</td>
<td>4,4</td>
</tr>
<tr>
<td>ERSC 144</td>
<td>Introduction to Earth Systems</td>
<td>4</td>
</tr>
<tr>
<td>ERSC/GEOG 250</td>
<td>Physical Geography</td>
<td>4</td>
</tr>
<tr>
<td>ERSC/GEOG 333</td>
<td>Human Impact on the Earth</td>
<td>4</td>
</tr>
<tr>
<td>ERSC/GEOG 414</td>
<td>Global & Regional Climatology</td>
<td>4</td>
</tr>
<tr>
<td>ERSC/SS 110</td>
<td>Orientation in Earth & Soil Sciences</td>
<td>1</td>
</tr>
<tr>
<td>ERSC 223</td>
<td>Rocks and Minerals</td>
<td>4</td>
</tr>
<tr>
<td>ERSC 323</td>
<td>Geomorphology</td>
<td>4</td>
</tr>
<tr>
<td>ERSC 461, 462</td>
<td>Senior Project I, II</td>
<td>1,3</td>
</tr>
<tr>
<td>FNR/LA 318</td>
<td>Applications in GIS</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 328</td>
<td>Applications in Remote Sensing</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 201</td>
<td>Physical Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 241</td>
<td>Physical Geology Lab</td>
<td>1</td>
</tr>
<tr>
<td>GEOL 415</td>
<td>Structural Geology</td>
<td>4</td>
</tr>
<tr>
<td>PSC 201</td>
<td>Introduction to Physical Oceanography</td>
<td>4</td>
</tr>
<tr>
<td>SS 121</td>
<td>Introductory Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>SS 321</td>
<td>Soil Morphology</td>
<td>4</td>
</tr>
<tr>
<td>STAT 218</td>
<td>Applied Statistics/Life Sciences (B1)*</td>
<td>4</td>
</tr>
<tr>
<td>Concentration (see below; 4 units B1)*</td>
<td>41-42</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

72 units required; 16 units are in Major.

- See page 56 for complete GE course listing.
- Minimum of 12 units required at the 300-400 level.

<table>
<thead>
<tr>
<th>Area</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Communication (12 units)</td>
<td></td>
</tr>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
<tr>
<td>Area B Science and Mathematics (no add'l units req'd)</td>
<td></td>
</tr>
<tr>
<td>B1 Math/Statistics * 8 units in Major & Conc</td>
<td>0</td>
</tr>
<tr>
<td>B2 Life Science * 4 units in Major</td>
<td>0</td>
</tr>
<tr>
<td>B3 Physical Science * 4 units in Major</td>
<td>0</td>
</tr>
<tr>
<td>B4 One lab taken with either a B2 or B3 course</td>
<td></td>
</tr>
<tr>
<td>Area C Arts and Humanities (20 units)</td>
<td></td>
</tr>
<tr>
<td>C1 Literature</td>
<td>4</td>
</tr>
<tr>
<td>C2 Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>C3 Fine/Performing Arts</td>
<td>4</td>
</tr>
<tr>
<td>C4 Upper-division elective</td>
<td>4</td>
</tr>
<tr>
<td>Area C elective (Choose one course from C1-C4)</td>
<td>4</td>
</tr>
<tr>
<td>Area D/E Society and the Individual (20 units)</td>
<td></td>
</tr>
<tr>
<td>D1 The American Experience (40404)</td>
<td>4</td>
</tr>
<tr>
<td>D2 Political Economy</td>
<td>4</td>
</tr>
<tr>
<td>D3 Comparative Social Institutions</td>
<td>4</td>
</tr>
<tr>
<td>D4 Self Development (CSU Area E)</td>
<td>4</td>
</tr>
<tr>
<td>(KINE 250 recommended for Geosciences Teaching Concentration)</td>
<td></td>
</tr>
</tbody>
</table>

D5 Upper-division elective | 4 |

(PSY 352 recommended for Environmental Interpretation and Assessment Concentration)

Area F Technology Elective (upper division) | 4 |

(BRAE 340 recommended for Geosciences Teaching Concentration)

ELECTIVES | 0-1 180 |

CONCENTRATIONS (select one):

Environmental Interpretation and Assessment Concentration

- CRP 420 Land Use Law | 4 |
- ERSC 202 Soil Erosion and Water Conservation | 4 |
- ERSC/GEOG 325 Climate and Humanity | 4 |
- ERSC 463 Undergraduate Seminar | 2 |
- GEOG 301 Geography of Resource Utilization | 4 |
- MATH 118 Pre-Calculus Algebra (B1)* | 4 |
- MATH 119 Pre-Calculus Trigonometry | 4 |
- PHYS 121 College Physics I | 4 |
- Restricted electives | 12 |

Geosciences Teaching Concentration

- ASTR 102 Introduction to the Stars and Galaxies | 4 |
- BIO 113 Animal Diversity and Ecology | 4 |
- EDUC 300 Intro to the Teaching Profession | 3 |
- GEOG 301 Geography of Resource Utilization | 4 |
- GEOG 325 Climate and Humanity | 4 |
- GEOL 203 Fossils and the History of Life | 4 |
- GEOL 204 Geologic History of California | 3 |
- MATH 118 Pre-Calculus Algebra | 4 |
- MATH 119 Pre-Calculus Trigonometry | 4 |
- PHYS 121 College Physics I | 4 |
- PSC 424 Organizing/Teaching of Phys Sciences or EDUC 480 Computer Based Curriculum | 4/3 |

Land and Water Resources Concentration

- ERSC 202 Soil Erosion and Water Conservation | 4 |
- ERSC 463 Undergraduate Seminar | 2 |
- BRAE 415 Hydrology | 4 |
- CHEM 129 General Chemistry | 4 |
- MATH 141, MATH 142 Calculus I, II (B1)* | 4,4 |
- PHYS 141, 132 General Physics IA, II | 4,4 |
- Restricted electives | 12 |

Individualized Course of Study

- ERSC 463 Undergraduate Seminar | 2 |
- MATH 118 Pre-Calculus Algebra (B1)* | 4 |
- MATH 119 Pre-Calculus Trigonometry | 4 |
- PHYS 121 College Physics I | 4 |
- Restricted electives (min 18 units 300-400 level) | 28 |

2007-2009 Cal Poly Catalog
BS SOIL SCIENCE

- 60 units upper division
- GWR
- 2.0 GPA
- USC

* = Satisfies General Education requirement

MAJOR COURSES

- SS 110 Orientation in Earth and Soil Sciences 1
- SS 121 Introductory Soil Science 4
- ERSC 202 Soil Erosion and Water Conservation 4
- SS 221 Fertilizers and Plant Nutrition 4
- ERSC 223 Rocks and Minerals 4
- SS 321 Soil Morphology .. 4
- SS 322 Soil Plant Relationships 4
- SS 345 Soil Interpretations and Management 4
- SS 422 Soil Microbiology and Biochemistry 4
- SS 423 Soil and Water Chemistry 4
- SS 431 Soil Resource Inventory 4
- SS 432 Soil Physics .. 5
- SS 461 Senior Project I .. 1
- SS 462 Senior Project II ... 3
- SS 463 Undergraduate Seminar 2
- Concentration courses (see below) 28

SUPPORT COURSES

- BOT 121 General Botany (B2 & B4)* 4
- BRAE 340 Irrigation Water Management (Area F)* 4
- CHEM 127 General Chemistry (B3&B4)* 4
- CHEM 128 General Chemistry 4
- CHEM 129 General Chemistry 4
- CHEM 313 Survey of Biochemistry 4
- GEOL 201 Physical Geology ... 3
- FNR/LA 318 Applications of GIS 3
- MATH 118 Pre-Calculus Algebra or MATH 141 Calculus I (B1)* 4
- MATH 119 Pre-Calculus Trigonometry or MATH 142 Calculus II (B1)* 4
- PHYS 121/PHYS 141 .. 4
- STAT 218 Appl Statistics-Life Sciences 4

GENERAL EDUCATION (GE)

- 72 units required; 20 units are in Support.
- See page 56 for complete GE course listing.
- Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

- A1 Expository Writing .. 4
- A2 Oral Communication ... 4
- A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (no add'l units req'd)

- B1 Mathematics/Statistics * 8 units in Support 0
- B2 Life Science * 4 units in Support 0
- B3 Physical Science * 4 units in Support 0
- B4 One lab taken with either a B2 or B3 course 0

Area C Arts and Humanities (20 units)

- C1 Literature ... 4
- C2 Philosophy .. 4
- C3 Fine/Performing Arts .. 4
- C4 Upper-division elective 4
- Area C elective (Choose one course from C1-C4) 4

Area D/E Society and the Individual (20 units)

- D1 The American Experience (40404) 4
- D2 Political Economy ... 4
- D3 Comparative Social Institutions 4
- D4 Self Development (CSU Area E) 4
- D5 Upper-division elective 4

Area F Technology Elective (upper division)

- * 4 units in Support .. 0

ELECTIVES

- 0 52

180

CONCENTRATIONS (select one):**

Environmental Management Concentration

- CHEM 312 Survey of Organic Chemistry *(transfer equivalent CHEM 212)* 5
- CRSC 411/STAT 313 .. 4
- SS 433 Land Use Planning .. 3
- Select from: FNR 202, 306, 311, 416, 425; PHIL 340, REC 302 .. 8
- Select from: CRP 404, 408, 420; FNR 408, 464; LA 451 .. 8

Environmental Science and Technology Concentration

- CHEM 316 *(transfer equivalent CHEM 216), 317*(transfer equivalent CHEM 217) Organic Chemistry I, II .. 5,5
- Select from: CHEM 218/318, 231/331, 319, 341, 342, 385, 481 .. 8
- Select from: ENVE 325, 330, 434, 439; SS 442 .. 6
- STAT 313 Applied Experimental Design and Regression Models .. 4

Land Resources Concentration

- CHEM 312 Survey of Organic Chemistry *(transfer equivalent CHEM 212)* .. 5
- CRSC 411 Experimental Techniques and Analysis. .. 4
- Additional courses selected from approved list.
- These units may be selected to apply toward an approved minor .. 19

1. Students in the Environmental Science and Technology concentration take MATH 141 and MATH 142.
2. Students in the Environmental Science and Technology concentration take PHYS 141.

2007-2009 Cal Poly Catalog
Food Science and Nutrition

Department Office
Agricultural Sciences Bldg. (11), Room 244
(805) 756-2660
www.calpoly.edu/~fsn

Department Head, Doris Derelian
Louise A. Berner Tom Neuhaus
Brian C. Hampson Lisa M. Nicholson
Susan N. Hawk Peggy C. Paphathakis
Hany M. Khalil Scott K. Reaves
Joseph Montecalvo, Jr. Madoka Watabe-Belzel

ACADEMIC PROGRAMS

Food Science - BS, Minor
Nutrition - BS, Minor

The department offers two degree programs designed to prepare graduates for employment in the general areas of human nutrition and commercial food processing. Graduates in Nutrition find rewarding careers in public health, business, food industry, clinical nutrition, food systems management and education. Food Science graduates take responsible positions in commercial food processing and development, sales, quality assurance and government regulation. Opportunities for private consulting and business are available to graduates in both majors, depending on personal interests and initiative. The department also offers minors in Food Science and Nutrition.

The department is equipped with a food processing pilot plant and a food preparation laboratory. These and additional laboratories are designed for teaching courses in nutrition, food service management, sensory evaluation, functional components of foods, and quality control as well as other food processing systems. Classroom and laboratory instruction is personalized, and faculty adhere to the university's learn-by-doing philosophy.

Through the student enterprise program, students can manufacture and market various food products. Enterprise projects are designed to simulate industry and business practices. Students are encouraged to gain valuable experience by working during the summer or by participating in one of the university co-op or internship programs.

There are two departmental clubs—Nutrition Club and Food Science Club. Club activities involve a wide range of social, professional and service projects. Clubs provide opportunity for leadership training and participation in professional societies and organizations.

BS Food Science

The program is designed to prepare students for employment in the food industry and for graduate study. Principal areas of instruction are food processing, food safety and sanitation, quality assurance, food chemistry and analysis, product development, and sensory evaluation. Employment opportunities are strong in each of these areas. Students follow one of two concentrations.

Concentrations

Applied Food Technology allows students to select coursework focused in a commodity or other area where they have career interest. For example, with proper selection of advisor-approved electives and concentration area courses, students can earn minors in meat science, wine and viticulture, or packaging within the 186-unit requirement. Course selections could also focus in dairy products, culinary science, or business.

Basic Food Science is the curriculum approved by the Institute of Food Technologists (IFT), the key international professional society for food scientists. Students are strongly advised to follow this concentration if they anticipate graduate study following completion of the BS, as many graduate programs in food science require the advanced chemistry and math coursework included in this concentration. In addition, students must follow this concentration to be eligible for IFT scholarships.

BS Nutrition

The program offers a broad preparation in the science of nutrition. Coursework includes foods and nutrition, general chemistry, organic chemistry, biochemistry, microbiology, general biology, and a variety of general education courses. Students select an area of concentration based upon their interests and career goals. The concentrations are described below.

Concentrations

Applied Nutrition. Prepares students for careers in various areas of nutrition, including dietetics, food systems management, nutrition communications, and community nutrition. This concentration is a Didactic Program in Dietetics (DPD), which is currently developmentally accredited by the Commission on Accreditation for Dietetics Education, of the American Dietetic Association, 120 Riverside Plaza, Suite 2000, Chicago, IL 60606-6995, (312) 899-4876. Students in this concentration who graduate with a minimum higher education overall GPA of 2.5 and receive a Verification Statement are eligible to apply for admission to an accredited dietetic internship, upon completion of which the graduate must pass a national examination administered by the Commission on Dietetic Registration to qualify as a registered dietitian (RD). Graduates also are prepared to
pursue advanced degrees in foods and nutrition, public health, and food systems management.

Culinary Science and Management in Nutrition. Designed for students wanting to apply a strong science background in one of two areas: foodservice management or food product development. This concentration serves the growing need for nutritionists who are positioned to make decisions that require a blend of management training, culinary expertise, and a fundamental science background. Graduates are prepared to pursue advanced degrees in food science or nutrition, or may choose to attend a two-year culinary program.

Nutrition and Food Industries. Designed for students who want to apply knowledge of nutrition to careers in the food industry and related organizations (such as commodity and other non-profit organizations, pharmaceutical companies, or government). A Food Science or Agricultural Communications minor can be earned with proper course selection within this concentration. Students are prepared for positions in food product research and development, quality and regulatory operations, food and health communications, public relations, extension, and technical sales. In addition, students are prepared for graduate study in food science, nutrition, or related fields.

Nutrition Science. Emphasizes a strong background in basic sciences and human nutrition for students planning further study in graduate school or a health-related profession such as medicine, dentistry, nursing, or physical therapy. Students need to check with their advisors for specific requirements for various health-related professions.

Interdisciplinary Minors
The department participates in offering interdisciplinary minors in Packaging (see Orfalea College of Business section), and Wine and Viticulture (see College of Agriculture, Food and Environmental Sciences section).

Graduate Program
Cal Poly offers an MS in Agriculture with a specialization in Food Science and Nutrition. Please refer to the MS Agriculture section in the College of Agriculture, Food and Environmental Sciences.

Dietetic Internship
Cal Poly’s dietetic internship has been granted developmental accreditation by the Commission on Accreditation for Dietetics Education (CADE) of the American Dietetic Association. The program consists of at least 1,120 hours of supervised practice and at least 108 hours of class, seminars, and professional meetings. Upon completion, interns must pass a national examination administered by the Commission on Dietetic Registration to qualify as a Registered Dietitian (R.D.). Applications for fall quarter are due mid-February.

BS FOOD SCIENCE

- 60 units upper division
- GWR
- 2.0 GPA
- USCP

* = Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSN 125</td>
<td>Introduction to Food Science</td>
<td>5</td>
</tr>
<tr>
<td>FSN 204</td>
<td>Food Processing Operations</td>
<td>4</td>
</tr>
<tr>
<td>FSN 210</td>
<td>Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>FSN 250</td>
<td>Food/Nutrition: Customs/Culture (D4)*</td>
<td>4</td>
</tr>
<tr>
<td>FSN 270</td>
<td>Food and Wine Plant Sanitation</td>
<td>4</td>
</tr>
<tr>
<td>FSN 275</td>
<td>Principles of Food Safety & Hazard Analysis</td>
<td>4</td>
</tr>
<tr>
<td>FSN 311</td>
<td>Sensory Evaluation of Food</td>
<td>4</td>
</tr>
<tr>
<td>FSN 330</td>
<td>Intro to Principles of Food Engineering</td>
<td>4</td>
</tr>
<tr>
<td>FSN 334</td>
<td>Food Packaging</td>
<td>3</td>
</tr>
<tr>
<td>FSN 335</td>
<td>Food Quality Assurance</td>
<td>4</td>
</tr>
<tr>
<td>FSN 364</td>
<td>Food Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>FSN 368</td>
<td>Food Analysis</td>
<td>4</td>
</tr>
<tr>
<td>FSN 374</td>
<td>Food Laws and Regulations</td>
<td>4</td>
</tr>
<tr>
<td>FSN 408</td>
<td>Food Comp Science and Product Dev</td>
<td>4</td>
</tr>
<tr>
<td>FSN 444</td>
<td>Engineering Concepts in Food Processing</td>
<td>4</td>
</tr>
<tr>
<td>FSN 461</td>
<td>Senior Project I</td>
<td>3</td>
</tr>
<tr>
<td>FSN 462</td>
<td>Senior Project II</td>
<td>3</td>
</tr>
<tr>
<td>FSN 474</td>
<td>Advanced Food Processing</td>
<td>4</td>
</tr>
</tbody>
</table>

Concentration courses (see below)

<table>
<thead>
<tr>
<th>Concentration Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 111</td>
<td>General Biology (B2 & B4)*</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 312</td>
<td>Survey of Organic Chemistry or</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 316</td>
<td>Organic Chemistry I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 313</td>
<td>Survey of Biochemistry and Biotech.</td>
<td>5</td>
</tr>
<tr>
<td>MATH 118</td>
<td>Pre-Calculus Algebra (B1)*</td>
<td>4</td>
</tr>
<tr>
<td>MCRO 221</td>
<td>Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>MCRO 421</td>
<td>Food Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 104</td>
<td>Introductory Physics</td>
<td>4</td>
</tr>
<tr>
<td>STAT 218</td>
<td>Applied Statistics/Life Sciences (B1)*</td>
<td>4</td>
</tr>
</tbody>
</table>

Advisor approved electives

GENERAL EDUCATION (GE)

- 72 units required; 20 units are in Major/Support.
- See page 56 for complete GE course listing.
- Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2</td>
<td>Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3</td>
<td>Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
</tbody>
</table>

Area B Science and Mathematics (no add'l units req'd)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Mathematics/Statistics * 8 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B2</td>
<td>Life Science * 4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B3</td>
<td>Physical Science * 4 units in Concentrations</td>
<td>0</td>
</tr>
<tr>
<td>B4</td>
<td>One lab taken with either a B2 or B3 course</td>
<td></td>
</tr>
</tbody>
</table>

Area C Arts and Humanities (20 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Literature</td>
<td>4</td>
</tr>
<tr>
<td>C2</td>
<td>Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>C3</td>
<td>Fine/Performing Arts</td>
<td>4</td>
</tr>
<tr>
<td>C4</td>
<td>Upper-division elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Area C elective (Choose one course from C1-C4) | 4
Area D/E Society and the Individual (16 units)

- D1 The American Experience (40404) 4
- D2 Political Economy ... 4
- D3 Comparative Social Institutions 4
- D4 Self Development (CSU Area E) * 4 units in Major 4
- D5 Upper-division elective .. 4

Area F Technology Elective (upper division) (4 units) 4

ELECTIVES ... 0

186

CONCENTRATIONS (select one)

Applied Food Technology Concentration

- CHEM 111 Survey of Chemistry (B3)* 5
- FSN 410 Nutritional Implications of Food Industry Practices.. 4
- Commodity courses Choose 3 from the following: 12
 - ASCI 384, ASCI 415;
 - DSCI 231, DSCI 223, DSCI 434;
 - FSN 201, FSN 244, FSN 341, FSN 401;
 - FRSC 230, FRSC 231, FRSC 331;
 - PM 325, PM 330;
 - VGSC 230

Basic Food Science Concentration

- BIO 303 Survey of Genetics .. 4
- CHEM 127 General Chemistry (B3)* 4
- CHEM 128 General Chemistry ... 4
- MATH 161 Calculus for Life Sciences I 4
- MATH 162 Calculus for Life Sciences II 4

BS NUTRITION

- 60 units upper division .. 60
- 2.0 GPA ... 2.0
- W ... 0
- Satisfies General Education requirement

MAJOR COURSES

- FSN 101 Orientation to the Nutrition Major 1
- FSN 121 Fundamentals of Food 4
- FSN 210 Nutrition .. 4
- FSN 230 Elements of Food Processing 4
- FSN 250 Food and Nutrition: Customs and Culture (D4)* (USCP) .. 4
- FSN 263 Preparation for Professional Practice 2
- FSN 310 Maternal and Child Nutrition 4
- FSN 315 Nutrition in Aging ... 4
- FSN 328, 329 Advanced Nutrition I, II 4,4
- FSN 415 Nutrition Education and Communications 4
- FSN 461, 462 Senior Project I, II 2,2
- MCRO 221 Microbiology (B2 & B4)* 4
- 1 CHEM 111 Survey of Chemistry or CHEM 127 General Chemistry (B3&B4)* 5/4

1 CHEM 313 Survey Biochemistry & Biotechnology or CHEM 371 Biochemical Principles 5
1 ECON 201 Survey of Economics (D2)* 4
1, 2 MATH 118 Pre-Calculus Algebra (B1)* 4
1 STAT 218 Applied Statistics Life Sciences (B1)* 4
1 BIO 111 General Biology or BIO 161 Intro to Cell and Molecular Biology 4
Concentration courses (see below) 60-61

GENERAL EDUCATION (GE)

72 units required; 24 units are in Major.

... See page 56 for complete GE course listing.

Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

- A1 Expository Writing .. 4
- A2 Oral Communication ... 4
- A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (no additional units req'd)

- B1 Mathematics/Statistics * 8 units in Major 0
- B2 Life Science * 4 units in Major 0
- B3 Physical Science * 4 units in Major 0
- B4 One lab taken with either a B2 or B3 course 4

Area C Arts and Humanities (20 units)

- C1 Literature ... 4
- C2 Philosophy ... 4
- C3 Fine/Performing Arts ... 4
- C4 Upper-division elective .. 4
- Area C elective (Choose one course from C1-C4) 4

Area D/E Society and the Individual (12 units)

- D1 The American Experience (40404) 4
- D2 Political Economy * 4 units in Major 0
- D3 Comp. Social Institutions 4
- D4 Self Dev. (CSU Area E) * 4 units in Major 0
- D5 Upper-division elective 4

Area F Technology Elective (upper division) (4 units) 4

ELECTIVES ... 48

186

1 Most Nutrition majors should take the lower numbered courses. Students choosing the Nutrition Science concentration may need to take higher numbered courses, depending on their career goals and advisor-approved electives. Students selecting CHEM 127 generally also take CHEM 128. Students selecting CHEM 316 generally also take CHEM 317. See advisor.

2 MATH 116 and 117 substitute for MATH 118 and are taught at a slower pace. Upon completion of both MATH 116 and MATH 117, a student receives 4 units of GE credit for Area B1.
CONCENTRATIONS (select one)

Applied Nutrition Concentration
FSN 321 Culinary Mgt: Principles and Practice 4
FSN 343, 344 Institutional Foodservice I, II 3,3
FSN 416 Community Nutrition 4
FSN 417 Nutrition Counseling 4
FSN 420 Critical Evaluation of Nutrition Research 4
FSN 426 Food Systems Management 4
FSN 429, 430 Clinical Nutrition I, II 4,4
BIO 302 Human Genetics or BIO 303 Survey of Genetics 4
BUS 212 Financial Actg for Nonbusiness Majors 4
MCRO 421 Food Microbiology 4
PSY 201/202 General Psychology 4
ZOO 331, 332 Human Anatomy/Physiology I, II 5,5

Culinary Science and Management in Nutrition Concentration
FSN 304 Adv. Culinary Principles and Practice 4
FSN 311 Sensory Evaluation of Food 4
FSN 321 Culinary Mgt: Principles and Practice 4
FSN 343 Institutional Foodservice I 3
FSN 344 Institutional Foodservice II 3
FSN 364 Food Chemistry 4
FSN 408 Food Comp. Science/Product Dev 4
FSN 426 Food Systems Management 4
AGB 301 Food and Fiber Marketing 4
BUS 212 Accounting 4
BUS 384 Human Resources Management 4
MCRO 421 Food Microbiology 4
PSY 201/202 General Psychology 4
Advisor approved electives 11

Nutrition and Food Industries Concentration
FSN 275 Principles of Food Safety and Hazard Analysis 4
FSN 311 Sensory Evaluation of Food 4
FSN 364 Food Chemistry 4
FSN 368 Food Analysis 4
FSN 374 Food Laws and Regulations 4
FSN 408 Food Comp. Science and Product Dev 4
FSN 410 Nut Implications of Food Ind Practices 4
FSN 420 Critical Evaluation of Nutrition Research 4
AGB 301 Agricultural Marketing 4
Select one from: ASCI 211; FSN 204, 244, 341; DSCI 231 4
Select one from: ASCI 231, DSCI 230, FRSC 230, VGSC 230 4
Advisor approved electives 16

Nutrition Science Concentration
FSN 416 Community Nutrition 4
FSN 429 Clinical Nutrition I 4
FSN 430 Clinical Nutrition II 4
BIO 302/BIO 351/BIO 303 4/5
PHYS 121 College Physics I 4
ZOO 331, 332 Human Anatomy/Physiology I, II 5,5
Advisor approved electives 30

FOOD SCIENCE MINOR

The minor is principally designed for students majoring in related academic disciplines who desire employment in the food industry. Students acquire the fundamental technical skills necessary to understand basic issues and concepts in food science such as food processing, food safety, and quality assurance.

Required core
FSN 125 Introduction to Food Science 5/4
FSN 204 Food Processing Operations 4
FSN 335 Food Quality Assurance 4

Emphasis area courses: 14-15
Select from the following courses:
ASCI 211, 384, 415;
FSN 244, 270, 311, 330, 341, 354, 364, 368, 374, 408, 410, 444, 474;
DSCI 231; MCRO 421

NUTRITION MINOR

The minor is designed for students majoring in science disciplines (Chemistry, Biological Sciences, Kinesiology), Agribusiness or Agricultural Communications, and other interested majors such as Business or Psychology. Students can enhance career opportunities or qualification for admission into graduate programs or allied health fields. See the department Nutrition minor coordinator for criteria for admission into the Nutrition minor.

Required core
FSN 210 Nutrition (B5) 4
FSN 310 Maternal and Child Nutrition 4
FSN 315 Nutrition in Aging 4

Emphasis area courses (Select one area) 16-18
Clinical (CHEM 313 and ZOO 331, 332 or equivalents as prerequisites)
FSN 328, 329, 429, and 430
Community (CHEM 313 or equivalent as prerequisite)
FSN 328, 329, and 416
Plus select one of the following:
FSN 250, 415; ANT 401; COMS 418;
POLS/UNIV 333; REC 450; SOC 323.

Culinary Science and Food Service Management
FSN 121, 321, 343, 344
Plus select FSN 304 or FSN 426

Sports Nutrition (CHEM 313 or equivalent as prerequisite)
FSN 328, 329, KINE 303, and 451
Horticulture and Crop Science

Department Head, John C. Peterson
J. Wyatt Brown
Michael J. Costello
Thomas E. Eltzroth
Lauren C. Garner
David W. Hannings
David H. Headrick
Daniel E. Lassanske
Ramon G. Leon
W. Keith Patterson

John C. Phillips
Robert P. Rice, Jr.
Mark D. Shelton
Terry L. Vassey
Virginia R. Walter
David J. Wehner
Jeffrey C. Wong
Michael D. Zohns

ACADEMIC PROGRAMS
Crop Science - BS, Minor
Environmental Horticultural Science - BS
Fruit Science - BS, Minor
Landscape Horticulture Minor
Ornamental Plant Production Minor
Plant Protection Minor

The department offers three major curricula leading to the Bachelor of Science degree and five minors, all of which are well-grounded in the sciences and designed to prepare students for many attractive career opportunities. The majors are crop science, environmental horticultural science, and fruit science; the minors include crop science, fruit science, landscape horticulture, ornamental plant production, and plant protection.

In consultation with faculty advisors, students in the different majors have the flexibility to select electives according to their career goals. Those students majoring in crop science or fruit science select electives in one of the following areas: crop production or management; orchard and vineyard management; post-harvest technology-marketing; crop/vegetable science; pomology; enology; crop ecology; and applied biotechnology. Students majoring in environmental horticultural science may select a concentration in landscape horticulture; nursery and floriculture production; turfgrass management; or may create their own area of specialization.

The Crops Unit has 70 acres of productive citrus, avocados, grapes, deciduous orchard, and berries. Additional nonbearing acreage for instructional use exists and new plantings are under way. In addition there are approximately 35 acres of annual vegetable and forage crops; eleven acres of this land is certified organic. There is also a new building containing two modern teaching labs with prep rooms, a greenhouse, cooler and other fruit and vegetable processing facilities.

The Environmental Horticulture Unit includes 35,000 square feet of greenhouses, a 5,000 square-foot retractable roof greenhouse, 7,500 square feet of shadehouses; a 10,000-square foot US Golf Association specification experimental green; an extensive field container growing area; and a five-acre arboretum. Additionally there are four horticulture laboratories, one of which is fitted with “smart-room” technologies for state-of-the-art teaching capabilities.

The department has modern, well-equipped laboratories for instruction in plant biotechnology, insect and weed pest management, post harvest technology, landscape horticulture including CAD capabilities and plant materials. In addition to 200 acres of landscaped campus, the on-campus Leaning Pine Arboretum is also utilized as an outdoor laboratory. The campus is planted with many interesting and unusual trees and shrubs from all over the world, as well as native plant materials. Some courses use these plant specimens for laboratory instruction.

The technological aspects of instruction are enhanced by an array of equipment required in crop and fruit production systems, postharvest handling, seed processing, pesticide application, nursery and greenhouse operations, parks and sport grounds maintenance, landscape construction and maintenance, and florist shops. Field trips supplement instruction and are strongly encouraged for most classes.

An extensive list of periodicals covering all of the related disciplines in the department is available to students through the Robert E. Kennedy Library on campus.

Internships are readily available to students and are highly recommended. Interns are typically placed with private industry and public facilities all across the United States and in several foreign countries. Over $100,000 of scholarships are also available to students as are several undergraduate student assistantships which are sponsored by industry. Thousands of graduates of the department are employed nationally and internationally and are often leaders in their industries. Graduates of the department are in great demand. Typically there are more internship and job opportunities than there are students to fill them.

Students are encouraged to gain experience and earn income by participating in the enterprise project program or by working on the campus farm. Enterprise projects are run under faculty supervision but are student-operated and require them to develop a business plan for producing and marketing crops. These projects provide students with a "no
risk” glimpse of a commercial enterprise. Students can work with crops in the fields, orchards and vineyard, or grow seasonal potted plants or vegetable transplants in our greenhouses or work in our retail floral shop.

The department supports extra- and co-curricular activities for its students, including six student clubs. Student teams in horticulture science, flower judging, floral design and landscape industry areas continue to win national championships.

BS Crop Science
This major prepares graduates for careers in crop production, management, sales and service. Positions are available with agricultural pest control firms, government regulatory agencies, and agriculturally related organizations. Graduates also pursue careers as agronomists and horticulturists with government or industry. Instruction includes agronomic crops, vegetable crops, and tropical crops.

BS Environmental Horticultural Science
This major offers students a comprehensive preparation for attractive positions in the nursery, turf, greenhouse, landscape, and floriculture industries, including the production and sales-service areas of these major fields. The curriculum stresses production and marketing of nursery plants, fresh flowers, flowering plants, and foliage plants; landscape contracting, design, installation and management, turf management, integrated pest management, and marketing. Through concentrations students can choose coursework to meet their individual needs.

Cal Poly environmental horticultural science graduates are employed nationally and internationally as business owners, growers, managers, researchers, educators, salespersons, landscape contractors, designers, landscape management professionals, extension agents, agricultural commissioners, consultants, pest control advisors, and park and golf course superintendents.

Concentrations
Landscape Horticulture. Prepares students for careers in the rapidly growing areas of landscape sales, design, implementation, construction, and maintenance. Students take courses giving them a broad background in the landscape industry, and then they may focus on one of these areas.

Nursery and Floriculture Production. Prepares students to own or manage wholesale floriculture or nursery operations. Students receive a broad background in plant production including hands-on experience from an enterprise project or internship, after which they may focus in a more narrow aspect of plant production.

Turfgrass Management. Prepares students for careers in the construction, management, and maintenance of golf courses and athletic fields, or careers in professional lawn care and commercial grounds maintenance. Students are required to get hands-on experience through at least one internship.

Individualized Course of Study. Students may pursue an academic minor or create a program, with the approval of their advisor and department head, based on their interests and career goals. Courses are selected, and contracts signed, before students have completed 145 units of coursework toward their degree. The coursework may be specifically tailored for a career in industry, education, government, or as preparation for graduate school.

Recommended Sequence: Major and Support Courses
The following is a guide for scheduling Major and Support Courses. By following this sequence, students should meet prerequisites for Major coursework. Courses are not always offered during the quarter indicated. Please consult with your academic advisor and the current Class Schedule.

<table>
<thead>
<tr>
<th>1st Year</th>
<th>2nd Year</th>
<th>3rd Year</th>
<th>4th Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
<td>Fall</td>
</tr>
<tr>
<td>HCS 110</td>
<td>EHS 127/128</td>
<td>HCS 124</td>
<td>HCS 110</td>
</tr>
<tr>
<td>HCS 120</td>
<td>EHS 123</td>
<td>EHS 126</td>
<td>HCS 111</td>
</tr>
<tr>
<td>BOT 121</td>
<td>EHS 127/128</td>
<td>EHS 231</td>
<td></td>
</tr>
<tr>
<td>CHEM 111</td>
<td>CHEM 212/312</td>
<td>SS 121</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st Year</th>
<th>2nd Year</th>
<th>3rd Year</th>
<th>4th Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
<td>Fall</td>
</tr>
<tr>
<td>HCS 110</td>
<td>EHS 127/128</td>
<td>HCS 124</td>
<td>HCS 110</td>
</tr>
<tr>
<td>HCS 120</td>
<td>EHS 123</td>
<td>EHS 126</td>
<td>HCS 111</td>
</tr>
<tr>
<td>BOT 121</td>
<td>EHS 127/128</td>
<td>EHS 231</td>
<td></td>
</tr>
<tr>
<td>CHEM 111</td>
<td>CHEM 212/312</td>
<td>SS 121</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st Year</th>
<th>2nd Year</th>
<th>3rd Year</th>
<th>4th Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
<td>Fall</td>
</tr>
<tr>
<td>HCS 110</td>
<td>EHS 127/128</td>
<td>HCS 124</td>
<td>HCS 110</td>
</tr>
<tr>
<td>HCS 120</td>
<td>EHS 123</td>
<td>EHS 126</td>
<td>HCS 111</td>
</tr>
<tr>
<td>BOT 121</td>
<td>EHS 127/128</td>
<td>EHS 231</td>
<td></td>
</tr>
<tr>
<td>CHEM 111</td>
<td>CHEM 212/312</td>
<td>SS 121</td>
<td></td>
</tr>
</tbody>
</table>

BS Fruit Science
This major prepares graduates for management positions with orchards/vineyards, canneries, pest control firms, government regulatory agencies, fruit tree nurseries, research stations, and produce-marketing companies. Instruction includes deciduous fruits, nut crops, citrus, avocados, grapes, berries, tropical and subtropical fruits, and minor fruit species.

Wine and Viticulture
In addition to those majors listed above, students who select the viticulture concentration in the multidisciplinary wine and viticulture major are administratively housed in the Horticulture and Crop Science Department. This major offers three multidisciplinary concentrations: enology, viticulture, and wine business. Students taking advantage of the diverse course offerings, including internships, enter industry well prepared to succeed. To further enhance their education, students can also participate in associated extracurricular activities such as student clubs, enterprise projects, industry interactions, applied research projects,
internships, and trade association or professional society meetings.

Viticulture Concentration. Professional positions within the grape and wine industry are now multi-dimensional, with winemakers and grape growers working together. To develop successful strategies, management teams must understand all aspects of wine. This concentration provides unique cross-training for students, combining an understanding of vineyards, winemaking, and marketing, thus preparing them for upper management. Students receive intensive training in all aspects of quality wine grape production. Topics include but are not limited to site evaluation and development, pest management, and state-of-the-art cultural practices.

CROP SCIENCE MINOR
Designed for students majoring in related academic disciplines who desire careers in crop production or the associated industries. The minor offers a broad-based knowledge of the science and technology of agronomy and vegetable production, especially as practiced in California.

Required courses
- HCS 120 Principles of Horticulture/Crop Science 4
- CRSC 132 California Field Crops 4
- VGSC 190 California Vegetable Production 4
- CRSC 202/203/VGSC 202 Enterprise Project 2
- BRAE 340 Irrigation Water Management 4

Restricted elective courses
Select any three courses from the following:
- CRSC 333, 421, 445; HCS 304, 421; PPSC 311, 321

30

FRUIT SCIENCE MINOR
The minor is designed for students majoring in related academic disciplines who desire careers in fruit production or the associated industries. The minor offers a broad-based knowledge of the science and technology of fruit and nut production.

Required courses
- HCS 120 Principles of Horticulture/Crop Science 4
- HCS 124 Plant Propagation 4
- FRSC 132 Pomology I 4
- FRSC 133 Pomology II 4
- FRSC 342 Citrus and Avocado Fruit Production 4
- FRSC 202 Enterprise Project 2

Electives
Select from:
- EHS 201/210/231/232, 310, 324, 340, 341, 342, 424, 425, HCS 327
- At least 15 units must be at 300-400 level

30

LANDSCAPE HORTICULTURE MINOR
The minor provides students with an understanding of the landscape horticultural industry and provides them with basic skills to understand design, installation and maintenance of landscapes. Students develop knowledge of landscape plants and plant care as well as the basics of landscape contracting, including construction processes and materials used in the landscape industry. Students learn of the wide range of career opportunities in the industry. Depending on which electives are chosen, students also learn more advanced skills and concepts in the areas of design, plant care (both interior and exterior), and computer applications for design and presentation techniques.

Required courses
- EHS 123 Landscape Installation and Maintenance 4
- EHS 126 Landscape and Env. Hort. Construction 2
- EHS 127 Introduction to Landscape Graphics 4
- EHS 230 Environmental Horticulture or EHS 231 4
- 232 Plant Materials I, II 4
- EHS 331 Landscape Contracting 4

Electives
Approved by minor coordinator, and chosen from:
- EHS 301, 320, 324, 332, 335, 337, 343, 381, 421, 422, 434

30

ORNAMENTAL PLANT PRODUCTION MINOR
The Ornamental Plant Production minor gives a student an understanding of the important ornamental crops grown in California, how they are propagated and grown, how we manipulate the environment to control the crop, and how they are harvested and handled after harvest. Ornamental plants are a multibillion dollar part of the agriculture industry in California, and students majoring in Agricultural Business, Crop Science, or Fruit Science may well deal with ornamental plants as crops during their careers.

Required courses
- HCS 120 Principles of Horticulture/Crop Science 4
- HCS 124 Plant Propagation 4
- EHS 245 Horticulture Applications 4

Electives
Chosen from:
- HCS 327

19

At least 15 units must be at 300-400 level
- EHS 201/210/231/232, 310, 324, 340, 341, 342, 424, 425, HCS 327

30
PLANT PROTECTION MINOR
This program emphasizes both plant protection and plant production. Within the plant protection field of study, the student is exposed to a broad range of pest management subjects including entomology, plant pathology, and weed control. Within the production area the student may emphasize fruit production, crop production, ornamental horticulture, or natural resource management.

Required courses for Plant Protection Minor
Advanced versions of the following courses may be substituted by production majors.

BOT 323 Plant Pathology or PPSC 311 Agricultural Entomology PPSC 321 Weed Biology and Management
PPSC 302 Ornamental and Forest Pathology ... 4
PPSC 311 Agricultural Entomology ... 4
PPSC 321 Weed Biology and Management ... 4

Courses in area of emphasis
Students elect Emphasis I or Emphasis II based on their major.

I. Emphasis for Plant Production Majors (16 units)
Plant production majors: Crop Science, Fruit Science, Forestry and Natural Resources (Forestry Concentration) and Environmental Horticultural Science.
Select 16 units from: PPSC 327, 405, 414, 421, 431, 441. FRSC majors can choose up to 4 units from BIO/BOT/CHM. WVIT majors can choose up to 8 units from BIO/BOT/CHM.

II. Emphasis for Non-Plant Production Majors (16 units)
Select 12 units of agriculture production courses

Interdisciplinary Minors
The department participates in offering interdisciplinary minors in Geographic Information Systems for Agriculture, Land Rehabilitation, Sustainable Agriculture, and Wine and Viticulture. Please see College of Agriculture, Food and Environmental Sciences section for more information.

Graduate Program
Cal Poly offers a Master of Science degree in Agriculture with specializations in Crop Science, Environmental Horticultural Science, and Plant Protection Science, among others. Please refer to the MS Agriculture section of the College of Agriculture, Food and Environmental Sciences.

BS CROP SCIENCE
- 60 units upper division
- 2.0 GPA
- GWR
- USCP
- MATH 116 & 117 substitute
* = Satisfies General Education requirement

MAJOR COURSES
HCS 110 Orientation to Horticulture/Crop Science .. 2
HCS 120 Principles of Horticulture & Crop Science ... 4
CRSC 132 California Field Crops ... 4
VGSC 190 California Vegetable Production ... 4
CRSC 202/CRSC 203/VGSC 202 Enterprise Proj .. 2
FRSC 230 California Fruit Growing ... 4
HCS 231 Commercial Seed Production ... 4
CRSC 244 Precision Farming .. 4
HCS 304 Plant Breeding ... 4
PPSC 311 Agricultural Entomology .. 4
PPSC 321 Weed Biology and Management .. 4
HCS 410 Crop Physiology or BIO 435 Plant Physiology .. 4
CRSC 411 Experimental Techniques and Analysis .. 4
HCS 461, 462 Senior Project I, II ... 2, 2
HCS 463 Undergraduate Seminar ... 1
CRSC/FRSC/HCS/PPSC/VGSC 300-400 level electives .. 8

SUPPORT COURSES
BIO 303 Survey of Genetics .. 4
BOT 121 General Botany (B2 & B4)* ... 4
BOT 323 Plant Pathology ... 4
BRAE 340 Irrigation Water Mgmt (Area F)* ... 4
CHEM 111 Survey of Chemistry (B3&B4)* ... 5
CHEM 312 Survey of Organic Chemistry .. 5
MATH 118 Pre-Calculus Algebra (B1)* ... 4
(MATH 116 &117 substitute)
STAT 218 Applied Statistics/Life Sciences (B1)* ... 4
SS 121 Introductory Soil Science .. 4
Advisor-approved electives ... 25
At least 12 units must be 300-400 level.

GENERAL EDUCATION (GE)
72 units required; 20 units are in Support.
See page 56 for complete GE course listing.
Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
A1 Expository Writing .. 4
A2 Oral Communication .. 4
A3 Reasoning, Argumentation, and Writing ... 4

Area B Science and Mathematics (no additional units req'd)
B1 Mathematics/Statistics * 8 units in Support .. 0
B2 Life Science * 4 units in Support .. 0
B3 Physical Science * 4 units in Support ... 0
B4 One lab taken with either a B2 or B3 course

Area C Arts and Humanities (20 units)
C1 Literature ... 4
C2 Philosophy ... 4
C3 Fine/Performing Arts ... 4
C4 Upper-division elective ... 4
Aren C elective (Choose one course from C1-C4) ... 4

Area D/E Society and the Individual (20 units)
D1 The American Experience (40404) ... 4
D2 Political Economy .. 4
D3 Comparative Social Institutions ... 4
D4 Self Development (CSU Area E) ... 4
D5 Upper-division elective ... 4

Area F Technology Elective (upper division)
* 4 units in Support .. 0

ELECTIVES... 4

1 Approval of minor advisor required.
BS ENVIRONMENTAL HORTICULTURAL SCIENCE

- 60 units upper division
- 2.0 GPA
- * = Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCS 110</td>
<td>Orientation to Horticulture/Crop Science</td>
<td>2</td>
</tr>
<tr>
<td>HCS 120</td>
<td>Principles of Horticulture/Crop Science</td>
<td>4</td>
</tr>
<tr>
<td>EHS 123</td>
<td>Landscape Installation and Maintenance</td>
<td>4</td>
</tr>
<tr>
<td>HCS 124</td>
<td>Plant Propagation</td>
<td>4</td>
</tr>
<tr>
<td>EHS 126</td>
<td>Environmental Horticulture Construction</td>
<td>2</td>
</tr>
<tr>
<td>EHS 231, 232</td>
<td>Plant Materials I, II</td>
<td>4,4</td>
</tr>
<tr>
<td>PPSC 311</td>
<td>Agricultural Entomology</td>
<td>4</td>
</tr>
<tr>
<td>PPSC 321</td>
<td>Weed Biology and Management</td>
<td>4</td>
</tr>
<tr>
<td>HCS 327</td>
<td>Abiotic Plant Problems</td>
<td>3</td>
</tr>
<tr>
<td>PPSC 427</td>
<td>Diseases & Pest Control Systems for Ornamental Plants</td>
<td>4</td>
</tr>
<tr>
<td>BIO 435</td>
<td>Plant Physiology or HCS 410 Crop Physiology</td>
<td>4</td>
</tr>
<tr>
<td>HCS 461</td>
<td>Senior Project I</td>
<td>2</td>
</tr>
<tr>
<td>HCS 462</td>
<td>Senior Project II</td>
<td>2</td>
</tr>
<tr>
<td>HCS 463</td>
<td>Senior Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Concentration courses

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT 121</td>
<td>General Botany (B2 & B4)*</td>
<td>4</td>
</tr>
<tr>
<td>BOT 323</td>
<td>Plant Pathology or BOT 324</td>
<td>4</td>
</tr>
<tr>
<td>BUS 201/207</td>
<td>Business Law Survey</td>
<td>3</td>
</tr>
<tr>
<td>BUS 212</td>
<td>Financial Acctg for Nonbusiness Majors</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 111</td>
<td>Survey of Chemistry (B3&B4)*</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 312</td>
<td>Survey of Organic Chemistry (transfer equivalent CHEM 212)</td>
<td>5</td>
</tr>
<tr>
<td>ECON 201</td>
<td>Survey of Economics (D2)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 118</td>
<td>Pre-Calculus Algebra (B1)*</td>
<td>4</td>
</tr>
<tr>
<td>(MATH 116 & MATH 117 substitute)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPAN 111</td>
<td>Elementary Hispanic Language and Culture (USCP)</td>
<td>4</td>
</tr>
<tr>
<td>SS 121</td>
<td>Introductory Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>SS 221</td>
<td>Fertilizers</td>
<td>4</td>
</tr>
<tr>
<td>STAT 218</td>
<td>Applied Statistics/Life Sciences (B1)*</td>
<td>4</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

- 72 units required; 24 units are in Support.
- *See page 56 for complete GE course listing.
- *Minimum of 12 units required at the 300-400 level.

Area C Arts and Humanities (20 units)

- C1 Literature .. 4
- C2 Philosophy .. 4
- C3 Fine/Performing Arts 4
- C4 Upper-division elective 4

Area D/E Society and the Individual (16 units)

- D1 The American Experience (4040) 4
- D2 Political Economy * 4 units in Support 0
- D3 Comparative Social Institutions 4
- D4 Self Development (CSU Area E) 4
- D5 Upper-division elective 4

Area F Technology Elective (upper division)

- * 4 units in Concentrations 0

ELECTIVES .. 188

CONCENTRATIONS (select one)

Landscape Horticulture Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHS 127</td>
<td>Introduction to Landscape Graphics</td>
<td>4</td>
</tr>
<tr>
<td>EHS 301</td>
<td>Principles of Landscape Design</td>
<td>4</td>
</tr>
<tr>
<td>EHS 331</td>
<td>Landscape Contracting</td>
<td>4</td>
</tr>
<tr>
<td>EHS 343</td>
<td>Turfgrass Management</td>
<td>4</td>
</tr>
<tr>
<td>EHS 421</td>
<td>Arboriculture</td>
<td>4</td>
</tr>
<tr>
<td>EHS 434</td>
<td>Landscape Management</td>
<td>4</td>
</tr>
<tr>
<td>BRAE 337</td>
<td>Landscape Irrigation</td>
<td>3</td>
</tr>
<tr>
<td>BRAE 340</td>
<td>Irrigation Water Management (Area F)*</td>
<td>4</td>
</tr>
</tbody>
</table>

Advice approved electives 12

Nursery and Floriculture Production Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHS 128</td>
<td>Principles of Horticultural Design</td>
<td>3</td>
</tr>
<tr>
<td>EHS 245</td>
<td>Horticulture Production Technologies</td>
<td>3</td>
</tr>
<tr>
<td>EHS 340</td>
<td>Principles of Greenhouse Environment</td>
<td>4</td>
</tr>
<tr>
<td>EHS 342</td>
<td>Potted Plant Production</td>
<td>4</td>
</tr>
<tr>
<td>EHS 424</td>
<td>Nursery Crop Production</td>
<td>4</td>
</tr>
<tr>
<td>EHS 210/EHS 310/HCS 339 Enterprise Project/Internship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAE 340</td>
<td>Irrigation Water Management (Area F)*</td>
<td>4</td>
</tr>
</tbody>
</table>

Advice approved electives 17

Turfgrass Management Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHS 127</td>
<td>Introduction to Landscape Graphics</td>
<td>4</td>
</tr>
<tr>
<td>HCS 339</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>EHS 343</td>
<td>Turfgrass Management</td>
<td>4</td>
</tr>
<tr>
<td>EHS 434</td>
<td>Advanced Turfgrass Science</td>
<td>4</td>
</tr>
<tr>
<td>EHS 434</td>
<td>Landscape Management</td>
<td>4</td>
</tr>
<tr>
<td>BRAE 337</td>
<td>Landscape Irrigation</td>
<td>3</td>
</tr>
<tr>
<td>BRAE 340</td>
<td>Irrigation Water Management (Area F)*</td>
<td>4</td>
</tr>
<tr>
<td>BUS 384</td>
<td>Human Resource Management</td>
<td>4</td>
</tr>
</tbody>
</table>

Advice approved electives 13

2007-2009 Cal Poly Catalog
Individualized Course of Study
EHS 128 Principles of Horticultural Design 3
BRAE 340 Irrigation Water Management (Area F)* or any Area F course .. 4
36 units, 16 of which must be upper division EHS
Course selection must be made before the student has finished 145 units toward the degree, and must be with the concurrence of the student’s advisor and department head.

BS FRUIT SCIENCE
- 60 units upper division
- 2.0 GPA
- 2.0 GPA
- 2.0 GPA
* = Satisfies General Education requirement

MAJOR COURSES
HCS 110 Orientation to Horticulture/Crop Science 2
HCS 120 Principles of Horticulture/Crop Science 4
FRSC 132, 133 Pomology I, II 4,4
FRSC 202/402 Enterprise Project Management 4,2
FRSC 231 Viticulture I 4
PPSC 311 Agricultural Entomology 4
PPSC 321 Weed Biology and Management 4
PPSC 327 Vertebrate Pest Management 4
FRSC 331 Viticulture II 4
FRSC 342 Citrus and Avocado Fruit Production 4
HCS 410 Crop Physiology or BIO 435 Plant Physiology ... 4
CRSC 411 Experimental Techniques/Analysis 4
HCS 421 Postharvest Tech. Horticultural Crops 4
FRSC 422 Tropical/Subtropical Crop & Fruit Prod. 4
HCS 461, 462 Senior Project I, II 2,2
HCS 463 Undergraduate Seminar 1
Advisor approved electives 18
At least 8 units must be at the 300-400 level

SUPPORT COURSES
BIO 303 Survey of Genetics 3
BOT 121 General Botany (B2 & B4)* 4
BOT 323 Plant Pathology 4
BRAE 340 Irrigation Water Management (Area F)* 4
BRAE 440 Agricultural Irrigation Systems 4
CHEM 111 Survey of Chemistry (B3&B4)* 5
CHEM 312 Survey of Organic Chemistry 5
MATH 118 Pre-Calculus Algebra (B1)* 4
(MATH 116 & 117 substitute)
STAT 218 Applied Statistics/Life Sciences (B1)* 4
SS 121 Introductory Soil Science 4
VGSC 230 Introduction to Vegetable Science 4

GENERAL EDUCATION (GE)
72 units required; 20 units are in Support.
→ See page 56 for complete GE course listing.
→ Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (no additional units are required)
B1 Mathematics/Statistics * 8 units in Support 0
B2 Life Science * 4 units in Support 0
B3 Physical Science * 4 units in Support 0
B4 One lab taken with either a B2 or B3 course

Area C Arts and Humanities (20 units)
C1 Literature ... 4
C2 Philosophy .. 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4
Area C elective (Choose one course from C1-C4) 4

Area D/E Society and the Individual (20 units)
D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective 4

Area F Technology Elective (upper division)
* 4 units in Support ... 0

ELECTIVES .. 0

83
52
180
Military Science

Department Head,
Lieutenant Colonel Gary Sargent

Lieutenant Colonel Augusto Lecaros
Major Richard Wellman
Master Sergeant Mark Byrd
Sergeant First Class Stephen Hall

PROGRAMS

ROTC Four-Year Program
Military Science Minor

Four-Year Program
The Military Science Department conducts a dynamic four-year program of instruction which develops the mental and physical qualifications of graduates in preparation for positions of leadership within the military and civilian communities. Students may enroll at any time for full academic elective credit without incurring any military service obligation. However, the last two years of the program are oriented toward preparing the student for a military career.

The innovative and well-taught courses complement all major areas of study by broadening the student's basic education. The complete curriculum includes both military leadership and management courses; courses which provide an awareness of the heritage of the U.S. military; the Armed Forces' role in national defense strategy; professional military subjects; and military ethics.

Students desiring to attain a highly sought-after commission as a Second Lieutenant in the U.S. Army must meet eligibility requirements and complete the entire Military Science/ROTC (Reserve Officers' Training Corps) Advanced Course (25 units). To be eligible for participation in the Cal Poly ROTC Program, a student must be enrolled full time (12 units) at Cal Poly, have at least two years remaining as a university student to permit completion of the advanced course prior to reaching the 30th birthday, and be physically qualified.

Financial Assistance
Many opportunities for financial assistance are available to students. Three areas of opportunities are: ROTC cadets who sign a contract for Advanced Phase, students who earn an ROTC scholarship, and cadets who train with Reserve or National Guard units. All ROTC cadets sign a contract to participate in the Advanced Phase of ROTC and receive a $300 - 500 a month allowance. Criteria to participate in the Advanced Phase are stated later. Highly competitive two-, two and a half, three-, and four-year ROTC scholarships are available. The scholarship provides payment of either full tuition or room and board (student's choice), books, supplies, and the $300 - 500 a month allowance for the duration of the scholarship. Students interested in ROTC scholarship should contact the Military Science Department. Reserve or National Guard training provides an additional two sources of financial assistance: approximately $165 a month for one weekend drill and approximately $190 a month tuition assistance from the National Guard/Army Reserve "New GI Bill" benefits.

Equipment and Uniforms
All necessary equipment, uniforms, and textbooks for participation in the Military Science/ROTC program are furnished to the student by the United States Government free of charge. Title to this property, other than expendable items, remains with the government.

Phases of Four-Year Program
The four-year program elective military science curriculum is divided into two diverse phases. The basic phase is primarily for freshmen and sophomores, and the advanced phase is for junior and senior level students.

Basic Phase
The Basic Phase is a two-year challenging opportunity where students may, without obligation, investigate the ROTC Program and the military as a full- or part-time career. Students may enter and leave this phase during any quarter. The curriculum for the basic phase is listed below and offers many exciting opportunities for all students. To become an ROTC cadet during this phase requires the student be registered for a Military Science class, completion of an ROTC Leader's Training Course or completing any military basic training program. Students have the option of contracting any time during their second year of the Basic Phase of study.
ROTC Leader's Training Course (Summer Session only)

One method to qualify for the Advanced Phase is to successfully complete the six-week challenging ROTC Leader’s Training Course (LTC). Students normally attend LTC during the summer between their second and third academic years. Transfer students may complete the camp during the summer immediately prior to their matriculation at Cal Poly. It is important that potential transfer students who plan to participate in the two-year ROTC program make their intentions known directly to the Military Science Department no later than June 1 of the year they plan to register at the university even though this date may precede the date of their final acceptance by the university.

The government provides a transportation allowance to and from LTC and pay at the rate of one-half of a Second Lieutenant's basic pay. All equipment, uniforms, room, board and medical care are furnished free while at camp. A maximum of 7 units elective credit may be earned for attending LTC. No military obligation is incurred for attending this camp.

Basic Training

Outstanding students who have successfully served on active duty, regardless of the branch of service, are qualified to enter the Advanced Phase because they have completed basic training for their particular branch of service. Also, students who have been or are members of Reserve or National Guard units and have completed basic training are qualified for the Advanced Phase.

Advanced Phase

The Advanced Phase is a two-year period where ROTC cadets receive advanced leadership and management training. The cadets receive many hours of hands-on, practical leadership experiences to prepare them for a military career or a management position in the civilian sector. To become a cadet in the Advanced Phase a student must complete the Basic Phase, ROTC Summer Leader’s Training Course (LTC) or Basic Training. The student must also make a commitment to attend all required training activities and sign a contract to accept a prestigious commission in the United States Army. In return for the student’s commitment, the Military Science Department provides $450 - $500 a month (which is based on program year), class-room instruction, real leadership opportunities, and continuous professional development of their leadership skills.

After their first year of the Advanced Phase, cadets usually attend a five-week camp where their leadership skills are further developed and assessed. All equipment, uniforms, room, board, and medical care are furnished free while at this camp. The cadets also receive approximately $800 during the five weeks. Upon successful completion of the Advanced Phase and graduation from the university, the cadet is commissioned as a Second Lieutenant in the United States Army.

Simultaneous Membership Program

Students can serve simultaneously in either the California National Guard or Army Reserve while they are cadets in ROTC and receive pay from both their unit and ROTC. Those who complete the ROTC Advanced Phase prior to graduation may continue serving in the Reserve or National Guard in the Simultaneous Membership Program. Since students can earn as much as $4,000 each year, this program provides both substantial financial benefits and leadership experience.

BASIC PHASE

Freshman

MSL 101 Foundations of Officership I (1)
MSL 102 Foundations of Officership II (1)
MSL 103 Basic Leadership (1)
MSL 110 Exercises in Military Leadership (1)
MSL 111 Orienteering (2)
MSL 112 The Army Physical Fitness Program (1)

Sophomore

MSL 201 Foundations of Leadership I (2)
MSL 202 Foundations of Leadership II (2)
MSL 203 Foundations of Leadership III (2)
1 MSL 212 Leader’s Training Course (1-7)
MSL 229 Ranger Challenge (2)
2 MSL 240 American Military History and the Evolution of Western Warfare (4)

ADVANCED PHASE

Junior

MSL 301 Tactical Leadership I (3)
MSL 302 Tactical Leadership II (3)
MSL 303 Applied Leadership (3)
3 MSL 314 Leadership Development and Assessment Course (6)

Senior

MSL 400 Special Problems for Advanced Undergraduates (1-2)
MSL 401 Developmental Leadership I (3)
MSL 402 Developmental Leadership II (3)
MSL 403 Adaptive Leadership (3)
MSL 470 Selected Advanced Topics (1-4)

1 LTC is an optional 5-week summer training course (1-7 units) at Fort Knox, Kentucky.
2 MSL 240 or equivalent is required for commissioning of all cadets.
3 LDAC is a required 5-week summer training experience at Fort Lewis, Washington (6 credits).
Military Science Minor

The minor emphasizes the following personal and technical skills: time, personnel, and resource management under duress; knowledge of U.S. military heritage, customs, and courtesies; planning and briefing under time constraints; current national defense issues; equal opportunity, sexual harassment, and military ethics; military justice; physical fitness; map reading and orienteering; leadership, management, and counseling skills under duress; oral, visual, and written communication skills in accordance with Army norms; small unit tactics. It provides marketable skills to students interested in government service, personnel management, and law enforcement. The Military Science Minor is limited to contracted ROTC cadets only.

Required core

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSL 203 Foundations of Leadership III</td>
<td>2</td>
</tr>
<tr>
<td>MSL 240 American Military History and the Evolution of Western Warfare</td>
<td>4</td>
</tr>
<tr>
<td>MSL 301 Tactical Leadership I</td>
<td>3</td>
</tr>
<tr>
<td>MSL 302 Tactical Leadership II</td>
<td>3</td>
</tr>
<tr>
<td>MSL 303 Applied Leadership</td>
<td>3</td>
</tr>
<tr>
<td>MSL 401 Developmental Leadership I</td>
<td>3</td>
</tr>
<tr>
<td>MSL 402 Developmental Leadership II</td>
<td>3</td>
</tr>
<tr>
<td>MSL 403 Adaptive Leadership</td>
<td>3</td>
</tr>
</tbody>
</table>

Advisor approved electives

Select 6 units from the following:
- MSL 101, 102, 103, 110, 111, 112, 201, 202, 212, 229, 314 (ROTC only)
Natural Resources Management

Department Head, Douglas D. Piirto
Christopher A. Dicus
Brian C. Dietterick
Samantha J. Gill
Marni Goldenberg
Jerusha B. Greenwood
John H. Harris
William W. Hendricks
Jeffrey A. Jacobs
Walter R. Mark
Norman H. Pillsbury
Richard P. Thompson
James R. Vilkitis

ACADEMIC PROGRAMS
BS Environmental Management and Protection
BS Forestry and Natural Resources
BS Recreation, Parks, and Tourism Administration
MS Forestry Sciences

BS FORESTRY AND NATURAL RESOURCES
The Bachelor of Science degree program in Forestry and Natural Resources prepares students for careers in the protection and management of our forest and natural resources. Students may specialize in recreation management; urban forestry; environmental management; watershed management and hydrology, fire and fuels management, forest and environmental practices, wildlife biology, or an individualized course of study.

Graduates qualify for such positions as: forester, environmental planner and assessor, natural resource manager, urban forester, park administrator, watershed manager, hydrologist, fire and fuels manager, and many other related environmental career areas.

Cal Poly graduates are employed throughout the world: establishing, managing and sustaining forests and urban wildland areas; providing opportunities for a full range of uses; teaching; extension; research; and protecting and managing the environment.

The NRM Department manages the forest resources of Swanton Pacific Ranch, located near Santa Cruz adjacent to the Pacific Ocean. This 3800-acre field laboratory includes redwood forests, salmon-bearing streams, agricultural land and many other ecological environments. Students make extensive use of this facility.

Most students are required to complete an internship equivalent to half-time work. Paid internships are available at Swanton Pacific Ranch, or the student may choose to pursue a seasonal job, volunteer work, or a cooperative education program. Work experience for academic credit must be documented by work supervisor and approved by student's academic advisor.

Students are required to purchase 8-inch high field boots, hard-hats (OSHA approved), hand calculator capable of linear regression, 10X hand lens, and an engineers scale ruler prior to taking 200- or 300-level major courses. Students are strongly encouraged to purchase a laptop before beginning 300-level major courses.

The Society of American Foresters accredits the Forestry and Natural Resources program. Also, the U.S. Office of Personnel Management (OPM) recognizes employment as a forester with the Federal Government upon graduation.

Curricular Concentrations
Concentrations prepare students for entry into the profession of forestry and natural resources. Extensive field training occurs concurrently with classroom instruction.

Environmental Planning and Assessment. Prepares students for employment as professionals in the environmental management subdisciplines of environmental planning, impact assessment, analysis and monitoring. Graduates from this concentration are academically qualified for Cal EPA's Registered Environmental Assessor I and II.

Forest and Environmental Practices. Specialized areas of study are available through this concentration. Students integrate real-world management practices with environmental concerns and balance both views in their profession. The program has a strong industry connection and professional career orientation. Offered at Swanton Pacific Ranch in Santa Cruz County and only available by application and acceptance. Open to students majoring in FNR and ENVM.

Natural Resources Recreation. Prepares students for employment in the planning, interpretation, development, and management of governmental and private resource-based parks and other recreational lands. Two areas of study are offered: recreation resource management and natural resources tourism.

Urban Forestry. Management problems resulting from the continued trend of urbanization into the urban-wildland interface are studied. Urban Forestry focuses on the urban ecosystem including lesser vegetation, wildlife, and open space, as well as the trees. The curriculum emphasizes the application of forestry skills for management of urban forest ecosystems. Students taking this concentration are eligible for two scholarships of $2000 and $1000.
Watershed Management and Hydrology. Provides students a focused and encompassing program in watershed management including a proficiency in watershed hydrology in forest ecosystems and Mediterranean ecosystems, rangeland hydrology, post-fire watershed evaluation, watershed and stream restoration and urban/wildland hydrologic implications. Students pursuing specific coursework can qualify as hydrologists under U.S. Government OPM guidelines.

Wildland Fire and Fuels Management. Focused study on the management of fire and fuels on landscapes ranging from the wildlands to the urban interface. Emphasis on the technologies, issues and policies in managing fire, using fire as an ecosystem management tool and social and economic impacts of fire.

Other Concentrations Available. The Field and Wildlife Biology concentration, offered by the Biological Sciences Department, is available to Forestry and Natural Resources majors and prepares students for employment in the fish and wildlife areas of law enforcement, management, and production.

Individualized Course of Study. Students have the option of developing an individualized course of study. The intent of this option is to give students the opportunity to pursue a minor in related areas, such as geographic information systems, land rehabilitation, soil science, and others.

Minors

Geographic Information Systems For Agriculture. An interdisciplinary minor sponsored by the departments of BioResource and Agricultural Engineering, Natural Resources Management, and Horticulture and Crop Science. For more information, see the College of Agriculture, Food and Environmental Sciences section.

Water Science. An interdisciplinary minor that emphasizes one of three areas of study: irrigation, water policy, or watershed management. For more information, see the College of Agriculture, Food and Environmental Sciences section.

BS FORESTRY AND NATURAL RESOURCES

☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP
* = Satisfies General Education requirement

MAJOR COURSES

FNR 140 Careers in Forestry and Environ. Mgmt. 1
FNR 201 Introduction to Forest Ecosystem Mgmt. 3
FNR 208 Dendrology 4
FNR 215 Land and Resource Measurements 2
FNR 260 Forest Practices and Environ. Protection 4
FNR 306 Natural Resource Ecology & Habitat Mgt 4
FNR 307 Fire Ecology 3
FNR 315 Measurements & Sampling in Forested Env. 4
FNR/LA 318 Applications in GIS 3
FNR 320 Watershed Management 4
FNR 326 Natural Resources Econ. & Valuation 4
FNR 335 Conflict Mgmt. in Natural Resources 4
FNR 365 Silviculture and Vegetation Management 4
FNR 402 Forest Health 4
FNR 412 Forest and Natural Resources Senior Assessment Project or FNR 461 Sr. Project I 3
FNR 414 Sustainable Forest Management 4
FNR 416 Environmental Impact Analysis & Mgmt. 4
FNR 435 Natural Resources Policy Analysis 4
FNR 465 Ecosystem Management 4
Concentration courses 32

SUPPORT

AGB 212 Agricultural Economics 4
ASCI 329 Principles of Range Mgmt. or
BIO 427 Wildlife Management 3-4
BOT 121 General Botany (B2&B4)* 4
BRAE/FNR 247 Forest Surveying 2
BRAE 345 Aerial Photogram. & Remote Sensing 3
CHEM 111 Survey of Chemistry (B3)* 5
MATH 161 Calculus for the Life Sciences I or
MATH 221 Calculus for Bus & Econ (B1)* 4
SS 121 Introductory Soil Science 4
STAT 217 or STAT 218 Statistics (B1)* 4
Advisor approved science course
BOT 313, CHEM 312, or PHYS 121 4-5

GENERAL EDUCATION (GE)

72 units required; 16 units are in Support.
→See page 56 for complete GE course listing.
→Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (no additional units req'd)

B1 Mathematics/Statistics * 8 units in Support 0
B2 Life Science * 4 units in Support 0
B3 Physical Science * 4 units in Support 0
B4 One lab taken with either a B2 or B3 course

Area C Arts and Humanities (20 units)

C1 Literature 4
C2 Philosophy 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4
Area C elective (Choose one course from C1-C4) 4

Area D/E Society and the Individual (20 units)

D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective 4

Area F Technology Elective (upper division) (4 units) 4

ELECTIVES 0

192

2007-2009 Cal Poly Catalog
CONCENTRATIONS (Select one)

Environmental Planning and Assessment Concentration
- CRP 212 Introduction to Urban Planning 4
- ENVE 330 Environmental Quality Control 4
- FNR 339 Internship...................................... 6
- FNR/CRP 404 Environmental Law or FNR 408 Water Resource Law and Policy 3
- FNR 425 Applied Resource Analysis 4
- Restricted electives, advisor's prior written approval .. 11

Forest and Environmental Practices Concentration
- FNR 339 Internship...................................... 6
- FNR 475 Sustainable Forest and Environmental Practices .. 15
- Restricted electives, advisor's prior written approval .. 11

Natural Resources Recreation Concentration
- FNR 311 Environmental Interpretation 4
- FNR 339 Internship...................................... 6
- FNR 350 Urban Forestry.................................. 3
- FNR 410 Resource Recreation Management 4
- FNR 417 Resource Recreation Planning 3
- REC 101 Intro Recreation Parks and Tourism or FNR 112 Parks and Outdoor Recreation 3-4
- Restricted electives, advisor's prior written approval .. 9

Urban Forestry Concentration
- CRP 212 Introduction to Urban Planning 4
- EHS 421 Arboriculture 4
- EHS 422 Adv. Arboriculture or FNR 311 Environmental Interpretation 2/4
- FNR 339 Internship...................................... 6
- FNR 350 Urban Forestry.................................. 3
- FNR 450 Community Forestry.................................. 3
- Restricted electives, advisor's prior written approval .. 10

Watershed Management and Hydrology Concentration
- FNR 420 Advanced Watershed Hydrology 4
- SS 321 Soil Morphology.................................... 4
- SS 440 Forest and Range Soils 4
- Restricted electives, advisor's prior written approval .. 20

Wildland Fire and Fuels Management Concentration
- FNR 204 Wildland Fire Control 3
- FNR 339 Internship...................................... 6
- FNR 340 Wildland Fire Management 3
- FNR 455 Wildland-Urban Interface Fire Protection ... 3
- Restricted electives, advisor's prior written approval .. 17

Individualized Course of Study
- 4 units of FNR coursework plus 6 units in FNR 339, Advisor and department head pre-approval required ... 32

BS ENVIRONMENTAL MANAGEMENT AND PROTECTION

The Environmental Management and Protection program is an undergraduate, interdisciplinary course of study integrating the biophysical and social/economical/political sciences. The curriculum emphasizes management and protection of ecosystem structures and processes that sustain uses of environmental resources. The major provides students with the science and management background that, when properly integrated, can guide consumptive uses of resources in a sustainable manner.

The purpose of environmental management and protection is the sustainable management of environmental resources to balance uses and values for current and future generations. Because environmental problems arise from human demands on the environment, solutions must focus on the human dimension of the ecosystem. Thus, environmental management is the management of both people and resources to attain human goals while protecting environmental values in order to sustain natural systems.

Students are prepared for a broad range of professional careers in environmental science and management. Graduates are educated in environmental assessment, impact analysis, project management and impact mitigation monitoring. Knowledge of the legal and regulatory environment is balanced with study of other theories and practices to solving social conflicts over the environment.

The Environmental Management and Protection (ENVM) major is endorsed by the California Association of Environmental Professionals (AEP). The AEP is a professional association representing the full range of environmental professions, both private and public sector. The AEP has partnered with the NRM Department to provide students in the ENVM major with several paid internships in major environmental consulting companies each year, and a $1000 scholarship for new students.

Curricular Concentrations

In addition to the required major courses, students select one of the following concentrations or an individual course of study.
Environmental Impact Mitigation Strategies. Provides students with a knowledge base to utilize multiple strategies to mitigate environmental impacts.

Environmental Policy and Management. Through further study in land use analysis and planning, economics, regulation, administration, and law, students are prepared for careers in environmental planning and policy analysis. Typical careers include analysts or lobbyists for non-profits, trade associations, and government regulatory agencies.

Watershed Management and Hydrology. Provides students a focused and encompassing program including a proficiency in watershed hydrology in forest ecosystems and Mediterranean ecosystems, rangeland hydrology, post-fire watershed evaluation, watershed and stream restoration and urban/wildland hydrologic implications.

Individualized Course of Study. This option for the student is planned, designed and developed through guidance from the student's advisor, and allows development of a program to meet the student's interests and career goals. It allows students to pursue existing minors/concentrations in areas such as water science, land rehabilitation, geographic information systems, soil science, rangeland resources, public administration, sustainable environments, or wildlife biology.

BS Environmental Management and Protection

☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP

* = Satisfies General Education requirement

MAJOR COURSES

FNR 140 Careers in Forestry & Env. Mgmt. 1
FNR 202 Environmental Management 3
FNR 215 Land and Resource Measurements 2
FNR/LA 318 Applications in GIS 3
FNR 326 Natural Resources Econ. & Valuation 4
FNR 335 Conflict Mgmt. in Natural Resources 4
FNR 402 Forest Health or
FNR 320 Watershed Mgmt & Restoration 4
FNR/CRP 404 Environmental Law or
FNR/CRP 408 Water Law 3
FNR 412 Forest and Natural Resources Senior Assessment Project or FNR 461 Senior Project I 3
FNR 416 Env. Impact Analysis and Mgmt 4
FNR 425 Applied Resource Analysis 4
FNR 465 Ecosystem Management 4
ASCI 329/BIO 263/BIO 427 3-4
BIO 161 Intro to Cell & Molecular Biology or
BOT 121 General Botany (B2&B4)* 4
BIO 162 Intro to Organismal Form & Function or
FNR 208 Dendrology 4-5
BIO 325 General Ecology or FNR 306 Ecology of Natural Resources & Habitat Mgmt 4
BRAE 237 or BRAE/FNR 247 or BRAE 239 2
BRAE 348 Energy for a Sustainable Society or
ENVE 324 Intro to Air Pollution (Area F)* 4
CHEM 111 Survey of Chemistry or CHEM 127
General Chemistry (B3)* 4-5
CHEM 312 Survey of Organic Chemistry 5
ENVE 330 Environmental Quality Control 4
GEOL 201 Physical Geology 3
MATH 161/221 (B1)* 4
PHYS 121 College Physics I (B3)* 4
PSY 201/202 Introduction to Psychology (D4)* 4
SS 121 Introductory Soil Science 4
STAT 217/218 Applied Statistics (B1)* 4
Concentration courses (see below) 36

GENERAL EDUCATION (GE)
72 units required; 24 units are in Major.
→See page 56 for complete GE course listing.
→Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (no additional units req’d)

B1 Mathematics/Statistics * 8 units in Major 0
B2 Life Science * 4 units in Major 0
B3 Physical Science * 4 units in Major 0
B4 One lab taken with either a B2 or B3 course 0

Area C Arts and Humanities (20 units)

C1 Literature 4
C2 Philosophy 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4
Area C elective (Choose one course from C1-C4) 4

Area D/E Society and the Individual (16 units)

D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) * 4 units in Major 0
D5 Upper-division elective 4

Area F Technology Elective (upper division)

(no additional units req’d) * 4 units in Major 0

ELECTIVES 180

2007-2009 Cal Poly Catalog
CONCENTRATIONS (Select one)

Environmental Impact Mitigation Strategies Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 427 Wildlife Management</td>
<td>4</td>
</tr>
<tr>
<td>CRP/FNR 404 Environmental Law or CRP/FNR 408 Water Resource Law and Policy</td>
<td>3</td>
</tr>
<tr>
<td>FNR/REC 311 Environmental Interpretation</td>
<td>4</td>
</tr>
<tr>
<td>ZOO 329 Vertebrate Field Zoology</td>
<td>4</td>
</tr>
<tr>
<td>ZOO 423 Fisheries Science and Resource Conservation</td>
<td>4</td>
</tr>
<tr>
<td>Restricted electives, advisor’s prior written approval</td>
<td>17</td>
</tr>
</tbody>
</table>

Environmental Policy and Management Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP 212 Introduction to Urban Planning</td>
<td>4</td>
</tr>
<tr>
<td>CRP 420 Land Use Law</td>
<td>4</td>
</tr>
<tr>
<td>ECON 431 Environmental Economics</td>
<td>4</td>
</tr>
<tr>
<td>ENVE 465 Environmental Management and Urban Systems</td>
<td>2</td>
</tr>
<tr>
<td>FNR 435 Natural Resources Policy Analysis</td>
<td>4</td>
</tr>
<tr>
<td>FNR/CRP 404 Env. Law or FNR/CRP 408 Water Law (4)</td>
<td>3</td>
</tr>
<tr>
<td>FNR/REC 417, FNR 418 or SS 433</td>
<td>3-4</td>
</tr>
<tr>
<td>POLS 316 Political Parties and Interest Groups or POLS 318 Political Behavior</td>
<td>4</td>
</tr>
<tr>
<td>LA 451 Regional Landscape Assessment or FNR 339 Internship Forest & Natural Resources</td>
<td>5-6</td>
</tr>
<tr>
<td>Restricted elective, advisor’s prior written approval</td>
<td>3</td>
</tr>
</tbody>
</table>

Watershed Management and Hydrology Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNR 420 Advanced Watershed Hydrology</td>
<td>4</td>
</tr>
<tr>
<td>SS 321 Soil Morphology</td>
<td>4</td>
</tr>
<tr>
<td>SS 440 Forest and Range Soils</td>
<td>4</td>
</tr>
<tr>
<td>Restricted electives, advisor’s prior written approval</td>
<td>24</td>
</tr>
</tbody>
</table>

Individualized Course of Study

Courses are selected by the student subject to approval by the student’s academic advisor and department head. 36

Environmental Management. Offers advanced preparation in the disciplines that comprise the field of environmental management, including environmental assessment, planning, mitigation and policy formation relating to a wide range of landscapes and ecosystems.

Prerequisites

For admission as a classified graduate student, an applicant will have completed a bachelor’s degree in forestry at an accredited forestry four-year college or a related B.S. degree area such as environmental sciences with a minimum grade point average of 2.75 in the last 90-quarter units. An applicant who meets these standards but lacks prerequisite coursework may be admitted as a conditionally classified student and must make up any deficiencies before advancement to classified graduate standing.

Program of Study

Graduate students must file a formal study plan with their major professor, graduate committee, department, college and university graduate studies office no later than the end of the quarter in which the 12th unit of approved courses is completed.

The formal program of study must include a minimum of 45 units (at least 23 of which must be at the 500 level). The broad curriculum for the Master of Science degree in Forestry Sciences is:

a) a minimum of 26 units in the required core;

b) a minimum of 19 units in area of emphasis approved by the student’s major professor and department head;

c) completion of a thesis or scholarly project, and an oral and written examination. At the discretion of the graduate committee, the written examination may consist of submitting an article for publication to a referred journal.

Required courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 501 Research Planning (4) or equivalent</td>
<td>26</td>
</tr>
<tr>
<td>FNR 530 Social Sys/Natural Resources Mgmt (3)</td>
<td>3</td>
</tr>
<tr>
<td>FNR 532 Apps in Biometrics & Econometrics (4)</td>
<td>4</td>
</tr>
<tr>
<td>FNR 534 Forest Ecosystem Modeling (3)</td>
<td>4</td>
</tr>
<tr>
<td>FNR 581 Graduate Sem. in Forestry & Env. Sci. (3)</td>
<td>4</td>
</tr>
<tr>
<td>FNR 599 Thesis (9)</td>
<td>4</td>
</tr>
</tbody>
</table>

Area of Emphasis

Determined by the student’s graduate committee from forestry subdisciplines (400–500 level). At least half of all units required by the committee as reflected on the formal study plan must be at the 500 level.

For more information, contact Dr. Douglas Piirto, Department Head.

2007-2009 Cal Poly Catalog
BS RECREATION, PARKS, AND TOURISM ADMINISTRATION

The Recreation, Parks, and Tourism Administration program is dedicated to excellence in teaching, developing professionals, and fostering dynamic and effective leaders. Recreation, parks, and tourism are mainstays of the American culture and a foundation of the United States economy, with over 400 billion dollars spent annually on leisure pursuits. U. S. households spend seven to eight percent of their income on recreation. The United States has been ranked as the second most popular tourist destination in the world and generates over 85 billion dollars from international tourism. Both U.S. and foreign tourists can visit any of the 200 million acres of federal land, which the government has set aside for recreation. While recreation, parks, and tourism provide activities for people from all walks of life, these industries also provide numerous jobs, both in this country and abroad.

The Bachelor of Science degree program in Recreation, Parks, and Tourism prepares students for professional employment in public, non-profit, private, and commercial recreation, parks, and tourism organizations. Students may pursue a concentration in tourism planning and management or outdoor, adventure, and resource recreation. In addition, students may select a course of study in special events management, outdoor recreation management, adventure and eco-tourism, sport management, or community recreation. The major is accredited by the National Recreation and Park Association/ American Association for Recreation. The major is accredited by the National Recreation and Park Association/ American Association for Leisure and Recreation Council on Accreditation.

To prepare students, the major includes a 400-hour required internship (one quarter) in a recreation, parks, or tourism organization. Graduates qualify for diverse positions as recreation supervisors, park and recreation administrators, travel and tourism specialists, environmental educators, park rangers, park naturalists, outdoor recreation managers, recreation-related business owners, outdoor and adventure leaders, private recreation club managers, employee services and recreation specialists, adventure program planners, camp directors, chamber of commerce specialists, convention and visitor bureau program directors, meeting planners, and special event planners.

Graduates employed in settings located in and out of the United States are planning, organizing, implementing and evaluating recreation, parks, and tourism services. Sound management skills developed in the program, and through practical and research applications, allow for career progress into executive management positions within the recreation, parks, and tourism industries. Students have access to the program’s field laboratories and also develop competencies in a myriad of sites, including leadership laboratories, environmental education centers, leisure businesses, and parks and recreation departments. Students plan and implement major special events and programs, as well as conduct applied research in required and elective coursework.

In addition to major requirements, the curriculum provides a full range of general education and support courses. These courses are designed to fully educate and prepare students for cultural diversity, community engagement, and international understanding in a global society.

Curricular Concentrations

Tourism Planning and Management. Emphasizes preparation for employment in organizations that provide leisure products or services for national and international tourists. Students may choose to emphasize in areas such as: tourism planning, tourism marketing, resort management, and business opportunities.

Outdoor, Adventure, and Resource Recreation. Prepares students for employment in the planning, development, leadership, and management of outdoor recreation opportunities on public and private lands. Areas of study include adventure/eco-tourism and outdoor recreation management.

Graduate Program

Cal Poly offers a Master of Science degree in Agriculture with a specialization in Recreation, Parks, and Tourism Management. Please refer to the MS Agriculture section of the College of Agriculture, Food and Environmental Sciences.

Recommended Sequence: Major and Support Courses

The following is a guide for scheduling Major and Support Courses. By following this sequence, students should meet prerequisites for Major coursework. Courses are not always offered during the quarter indicated. Please consult with your academic advisor and the current Class Schedule.

<table>
<thead>
<tr>
<th>1st Year</th>
<th>2nd Year</th>
<th>3rd Year</th>
<th>4th Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Winter</td>
<td>Spring</td>
<td>Fall</td>
</tr>
<tr>
<td>REC 101</td>
<td>REC 110</td>
<td>REC 127</td>
<td>REC 350</td>
</tr>
<tr>
<td></td>
<td>MATH 118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Year</td>
<td>Winter</td>
<td>Spring</td>
<td>Fall</td>
</tr>
<tr>
<td>REC 210</td>
<td>REC 252</td>
<td>REC 205/270</td>
<td>REC 360</td>
</tr>
<tr>
<td>BUS 212</td>
<td>STAT 217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Year</td>
<td>Winter</td>
<td>Spring</td>
<td>Fall</td>
</tr>
<tr>
<td>ENGL 310</td>
<td>REC Elective</td>
<td>REC 413/FNR 410/EHS 337/LA 363</td>
<td>REC 346</td>
</tr>
<tr>
<td>BUS 346</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Year</td>
<td>Winter</td>
<td>Spring</td>
<td>Fall</td>
</tr>
<tr>
<td>REC 405</td>
<td>REC 461</td>
<td>REC 465</td>
<td>REC 405</td>
</tr>
<tr>
<td>REC 460</td>
<td>REC 424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REC 463</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2007-2009 Cal Poly Catalog
BS Recreation, Parks, and Tourism Administration

- **60 units upper division**
- **2.0 GPA**

* = Satisfies General Education requirement

MAJOR COURSES

- REC 101 Intro. to Recreation, Parks and Tourism... 4
- REC 110 Career Planning in Rec, Parks & Tourism 1
- REC 127 Leisure Behavior 4
- REC 205 Leadership in Rec., Parks, and Tourism 4
 or REC 270 Experiential Education Leadership and Facilitation
- REC 210 Introduction to Program Planning 4
- REC 252 Recreation and Special Populations 4
- REC 342 Legal Aspects of Rec, Parks, & Tourism 4
- REC 350 Recreation Areas and Facilities Management 4
- REC 360 Assessment/Eval of Rec Parks & Tourism 4
- REC 405 Recreation, Parks, and Tourism Management 4
- REC 413/FNR 410/EHS 337/LA 363 4/3
- REC 424 Financing Recreation, Parks, and Tourism Services 4
- REC 460 Research in Recreation, Parks & Tourism 4
- REC 461 Senior Project 3
- REC 463 Pre-Internship Seminar 1
- REC 465 Internship 6
- Concentration courses (see below) or advisor approved electives 28

SUPPORT COURSES

- BUS 212 Financial Acctg for Nonbusiness Majors... 4
- BUS 346 Principles of Marketing 4
- ENGL 310 Corporate Communications 4
- MATH 118 Pre-Calculus Algebra (B1)* or MATH 116 and 117 (B1)* 4
- STAT 217 Intro to Statistical Concepts and Methods (B1)* 4

GENERAL EDUCATION (GE)

- **72 units required; 8 units are in Support.**
- →See page 56 for complete GE course listing.
- →Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

- A1 Expository Writing 4
- A2 Oral Communication 4
- A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (8 units)

- B1 Mathematics/Statistics * 8 units in Support 0
- B2 Life Science .. 4
- B3 Physical Science 4
- B4 One lab taken with either a B2 or B3 course

Area C Arts and Humanities (20 units)

- C1 Literature ... 4
- C2 Philosophy ... 4
- C3 Fine/Performing Arts 4
- C4 Upper-division elective 4
- Area C elective (Choose one course from C1-C4) 4

Area D/E Society and the Individual (20 units)

- D1 The American Experience (40404) 4
- D2 Political Economy 4
- D3 Comparative Social Institutions 4
- D4 Self Development (CSU Area E) 4
- D5 Upper-division elective 4

Area F Technology Elective (upper division)

- (4 units) ... 4

ELECTIVES.......... 9-10 180

CONCENTRATION OR ADVISOR APPROVED ELECTIVES

Select either a concentration or advisor approved electives.

Outdoor, Adventure, and Resource Recreation Concentration

- REC 302 Environmental and Wilderness Education 4
- REC 313 Sustainable Tourism 4
- REC 314/REC 415/FNR/REC 417 4/3
- REC 325 Outdoor and Adventure Leadership or REC 311 Environmental Interpretation 4
- Restricted electives 12/13

Tourism Planning and Management Concentration

- REC 313 Sustainable Tourism 4
- REC 314 Travel and Tourism Planning 4
- REC 317 Convention and Meeting Management 3
- REC 414 Commercial Recreation Enterprise 4
- Restricted electives 13

Advisor Approved Electives 28

2007-2009 Cal Poly Catalog
Students of the College of Architecture and Environmental Design (CAED) have the opportunity to apply the entire design, construction and planning ideation process. They are shown above left creating sketches of early design concepts. In the top right photo, faculty and a 5th-year student examine and discuss his thesis work at the annual Architecture Student Design Exhibition.

Project managers, a faculty member and construction management students who are applying sustainability to commercial design-build projects are shown on campus touring the largest student housing project in the history of the CSU, designed by CAED alumni. Fieldtrips offer students first-hand opportunities to experience how sustainable ideas and solutions are implemented. Their analysis helps the design-build team evaluate the project for sustainability. A team of these students won third place honors in the LEED category of a national competition. Additionally, there are many options for students in all CAED disciplines to study abroad.

The CAED is an award-winning leader in sustainable education. The American Institute of Architects reviewed 49 programs across the U.S. and selected Cal Poly as their recipient of the first award for “ecological literacy.”

Considered at the forefront, the CAED has a long history of integrating sustainable design and construction principles into its curricular offerings. Students are provided multiple opportunities for engagement, exploration and mastery in their preparation as future leaders in the innovation and application of sustainable design benefits. Cal Poly is uniquely positioned for teaching and practicing sustainability due to the combined presence of the Colleges of Agriculture, Food and Environmental Sciences; Engineering; and Architecture and Environmental Design.

Photos courtesy of CAED Archive: Ray Ladd/Josef Kasperovich
ACADEMIC PROGRAMS
Architectural Engineering BS, Minor
Architecture BArch, MS
City and Regional Planning BS, MCRP, Minor
Construction Management BS, Minor
Integrated Project Delivery Minor
Landscape Architecture BLA
Real Property Development Minor
Sustainable Environments Minor
Transportation Planning MCRP/MS Engineering

The five undergraduate programs share the common objective of betterment of the human physical environment through the effective application of natural and cultural systems knowledge in planning, design and construction. They are all nationally accredited by their respective external review organizations.

The masters degree programs are designed for students interested in advanced professional studies. Included under the MS Architecture are specializations in structural engineering, environmental design and professional practice. The college also offers the Master of City and Regional Planning (MCRP). The joint MCRP/MS Engineering with a specialization in Transportation Planning is an interdisciplinary program. It is a cooperative effort between the colleges of Engineering and Architecture and Environmental Design.

The well-equipped college facilities include design laboratories, grading galleries, soils laboratory, stress laboratory, construction shop, project yard, instructional resource center, computer laboratories, and photo presentation laboratory. An outlying area of 12 acres known as the "Canyon" is available for experimental construction.

The location of the campus between the great population centers of San Francisco and Los Angeles is ideal for community and environmental studies in a variety of contexts and scales. An active visiting lecturer program joins with faculty in all departments in providing excellent student instruction. Field trips are arranged to various parts of the state as required coursework. Students have the opportunity to participate in national and international exchange programs. The college offers several opportunities through departmentally sponsored programs for directed foreign study. Students also regularly participate in the California State University's International Programs in Denmark and Italy.

In addition to individual faculty representation in a wide range of professional associations, departments are members of their respective educators associations: the Association of Collegiate Schools of Architecture (ACSA); the Council of Educators in Landscape Architecture (CELA); the Association of Collegiate Schools of Planning (ACSP); and the Associated Schools of Construction Management (ASCM).

Likewise, students maintain active chapters of the professional organizations of the American Institute of Architects (AIA), the American Society of Landscape Architects (ASLA), the Associated General Contractors (AGC), the Structural Engineers Association of California (SEAOC), the American Planning Association (APA), and the National Society of Architectural Engineers (NSAE).

Opportunities for interdisciplinary interaction within the college are made available through coursework, annual forums, participation in district and national student competitions, student council activities and community service projects. Students are exposed to viable economic and ecological alternatives to conventional planning, design and construction through faculty applied research in such areas as passive solar building, post-disaster community rebuilding, sustainable design and construction technologies, earthquake-resistant building systems, project delivery methodologies, and daylighting and electrical lighting integration.

The college has various enhanced computing capabilities including Geographic Information System Technology, Computer-Aided Design and Immersive Visualization (virtual reality).

Students interested in pursuing one of the five undergraduate program offerings within the college should familiarize themselves with the appropriate curriculum flow chart, available through the College Advising Center, Architecture and Environmental Design Bldg. (05), Room 221, and departments. Special attention is directed to the sequencing of courses and prerequisite requirements. Students who plan to transfer from a California community college should schedule classes to maximize transfer units. Current admission requirements may be found at the Cal Poly website (www.calpoly.edu).
As a consequence of the period review and accreditation requirements of its programs, the college reserves the right to keep selected student projects for its archives. These projects are returned to students at the discretion of their respective department faculty.

CAED Advising Center
Ellen Notermann, Director
Bldg. (05), Room 221
(805) 756-1325
www.calpoly.edu/~caed/the_CAED/Advising_Center/

The College of Architecture and Environmental Design (CAED) Advising Center provides academic advising services to all students within the college in conjunction with each student's faculty advisor. These services include providing curriculum information about academic programs within the college; general education and breadth requirements; transfer credit; university and college policies and procedures; tutoring; special programs; and referral of students to other campus resources.

The Advising Center processes most student-related forms including curriculum substitution, course withdrawal, change of major, and others. Curriculum sheets, flowcharts, articulation agreements, and information on jobs, scholarships and competitions are located in the Advising Center.

ENVIRONMENTAL STUDIES MINOR

Students who complete the Environmental Studies Minor, coordinated through the College of Science and Mathematics (see that College's catalog section for additional information), are able to:

- Analyze, explain, and evaluate environmental issues from both scientific/technical and social/political/economic perspectives.
- Integrate and synthesize knowledge from multiple disciplines.
- Explain and apply the methodologies and approaches that different disciplines bring to bear on complex problems.
- Work productively and effectively with students from other disciplines and with other points of view.
- Confront real issues of contemporary significance; issues that affect them and their future.
- Gain employment or pursue further study that emphasizes interdisciplinary knowledge and skills.

The College of Architecture and Environmental Design offers the following course options as a part of this minor:

- LA 321 Concepts in Environmental Design
- EDES 406 Sustainable Environments
- CRP 336 Introduction to Environmental Decision Making
- CRP 404 Environmental Law

INTEGRATED PROJECT DELIVERY MINOR

This minor is offered by the Construction Management Department, and is specific and intentional in its design. It is intended to provide an “interdisciplinary” understanding of the design and construction process. It is designed to serve students who will be engaged in the A/E/C industry and be involved in integrated services project delivery.

Prerequisite. Upper division standing; and thus students are presumed to have completed the majority of their General Education courses, support, and/or major courses.

Interested students should contact the Construction Management Department for individual assessment.

Required courses

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 301</td>
<td>Business and Professional Communication</td>
<td>4</td>
</tr>
<tr>
<td>CM/CRP 315</td>
<td>Fiscal and Project Feasibility</td>
<td>4</td>
</tr>
<tr>
<td>CM/EDES 430</td>
<td>Collaborative Process</td>
<td>3</td>
</tr>
<tr>
<td>CM/EDES 431</td>
<td>Integrated Project Services</td>
<td>3</td>
</tr>
<tr>
<td>CM 432</td>
<td>Design-Build Project Management</td>
<td>3</td>
</tr>
<tr>
<td>IT 454</td>
<td>Facilities Development</td>
<td>4</td>
</tr>
</tbody>
</table>

Advisor approved electives

Construction Management students must complete

- 9 units of advisor approved design courses (ARCE, ARCH, CRP or LA prefix)

Other CAED students must complete:

- CM 364 Construction Jobsite Management (3)
- CM 452 Project Controls (3)
- CM 454 Construction Estimating (3)

Non-CAED students must complete:

- 9 units of advisor approved design and/or CM courses

2007-2009 Cal Poly Catalog
REAL PROPERTY DEVELOPMENT MINOR

This minor is designed for students who are interested in the built environment, and want to deepen their knowledge of how projects get initiated, move through the development process, and then how they are managed after construction.

The program is designed to prepare students for entry-level employment with professionals engaged in real property development. Courses include aspects of practitioners’ real world experiences and knowledge of state-of-the-art practices, techniques, and challenges.

Students learn about the economic, design, environmental, and regulatory factors that influence housing, office, industrial, and commercial projects. They gain a clearer understanding of how these factors impact green development, urban sprawl, place-making, and transit oriented development.

Interested students should contact the City and Regional Planning Department for individual advisement.

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM 475 Real Property Development Principles</td>
<td>4</td>
</tr>
<tr>
<td>CRP 315 Fiscal and Project Feasibility or CM 332 Evaluation of Cost Alternatives</td>
<td>4/3</td>
</tr>
<tr>
<td>CRP 446 Development Review and Entitlement</td>
<td>4</td>
</tr>
</tbody>
</table>

Planning/Design

Select one course from the following:
- ARCH 445 Urban Design in Architecture (3)
- ARCH 472 Housing Design Concepts (3)
- ARCH 537 Principles of Development (3)
- CM 431 Integrated Project Services (3)
- CRP 430 Public Sector Planning Practice (3)

Any advisor approved planning or design courses at the 400 or 500 level

Restricted Electives

Select two or more courses from the following to complete a minimum of 24 units.
- BUS 434
- CM 342, 364
- CRP 336, 420, 442, 447, 458, 470
- ECON 434, 435
- LA 470

24

2007-2009 Cal Poly Catalog

SUSTAINABLE ENVIRONMENTS MINOR

This minor educates students within the college in the principles and various aspects of sustainable environmental design with global, regional and local perspectives and concepts. It provides students with the knowledge and abilities needed to integrate concerns for ecology, social equity and economics within the context of human and natural resource systems and the built environment.

Interested students should contact the Architecture Department for individual advisement.

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDES 406 Sustainable Environments</td>
<td>4</td>
</tr>
<tr>
<td>EDES 408 Implementing Sustainable Principles</td>
<td>4</td>
</tr>
</tbody>
</table>

Restricted Electives

Select 16 units from the following courses:
- AG 450
- ANT 201, 360
- ARCH 413, 445, 472, 531
- BIO 112, 301, 325
- BOT 238
- BRAE 348
- CRP 211, 212, 214, 215, 336, 342, 334, 436, 438
- ECON 303
- EDES 350, 410, 420
- ENGL 380
- FNR 306, FNR/LA 318
- GEOG 150, 333
- HUM 303, 330
- LA 321, 451, 482
- PHIL 340
- PHYS 310
- POLS 333, 455, 484
- PSY 311
- SOC 313

24
Architectural Engineering

Department Head, Allen C. Estes
Graham Archer James Mwangi
Craig Baltimore Ansgar Neuenhofer
Pamalee Brady Brent Nuttall
Kevin Dong Clayton Pharaoh
Abraham C. Lynn Satwant S. Rihal
Cole McDaniel Edmond Saliklis

ACADEMIC PROGRAM

BS Architectural Engineering
Architectural Engineering Minor

The Architectural Engineering Department is an integral part of the College of Architecture and Environmental Design, and it shares and supports the mission of the College. The department has several overall program objectives, which are: to prepare students for career paths in architectural engineering and the building construction field, to give students the opportunity to pursue graduate degrees, to inspire students to seek out learning opportunities throughout their lives and to ensure that graduates are effective communicators.

To meet these overall departmental objectives, the following learning outcomes must be satisfied. The program ensures that students can apply mathematics, science and other engineering disciplines to the design of building structures. The program provides a balance of theoretical (analytical) and experimental courses. In the experimental courses students design their own experiments, interpret gathered data and think critically to reach rational conclusions. Students learn to design building components and building systems and to understand building behavior.

The Architectural Engineering program carefully addresses architectural design, constructability issues, life safety and economy of construction. In addition, course projects address realistic design criteria, such as economic implications and environmental, social, ethical and sustainability issues. Using integrated design projects, modern technological tools, and the latest design codes to address these goals, the department emphasizes the advantages of a close, interdisciplinary team-based approach to design and construction.

The use of interdisciplinary projects allows students to hone their communication, critical thinking, and project management skills by working in multi-disciplinary teams. As students learn more about building design, they become cognizant of the ethical implications of design, specifically of how political and societal issues affect the engineering of the built environment, both on a local scale and on a broader international scale. These larger societal issues motivate students to engage in life-long learning, allowing them to use their skills in professional structural engineering practice.

The department's learn-by-doing philosophy is part of a pedagogy which emphasizes design-centered laboratories, integrating theory and design, culminating in a senior project capstone design experience.

The Architectural Engineering Program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

Graduate Program
Cal Poly offers the MS in Architecture with a specialization in Architectural Engineering. Please see the Architecture Department’s catalog section for more information.

Architectural Engineering Minor

The minor is designed for students wishing to pursue a more in-depth education in structures. The coursework exposes students to analytical, design, and construction issues relevant to the structural design process. Students work with an advisor to develop a sequence of courses that focus on either structural design or structural analysis. The program is tailored for students majoring in architecture, construction management, and civil engineering. Enrollment is limited and acceptance into the program is dependent upon the student’s performance in structures-related courses. For architecture and construction management majors, it is recommended that applications be submitted prior to enrolling in ARCE 226. Contact the department for additional information.

Required courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCE 211, 212</td>
<td>Structures I, II</td>
<td>3,3</td>
</tr>
<tr>
<td>ARCE 223</td>
<td>Mechanics of Structural Elements</td>
<td>4</td>
</tr>
<tr>
<td>ARCE 227</td>
<td>Structures III</td>
<td>2</td>
</tr>
<tr>
<td>ARCE 302</td>
<td>Structural Analysis</td>
<td>4</td>
</tr>
<tr>
<td>ARCE 351, 352</td>
<td>Structural Computing Anly I, II</td>
<td>1,1</td>
</tr>
<tr>
<td>ARCE 371</td>
<td>Structural Systems Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CSC 231</td>
<td>Programming for Engineering Students</td>
<td>2</td>
</tr>
</tbody>
</table>

Electives

Select from the following:

29

2007-2009 Cal Poly Catalog
Integrated Project Delivery Minor

The department also participates in offering an interdisciplinary minor in Integrated Project Delivery. Please see the College of Architecture and Environmental Design for more information.

BS ARCHITECTURAL ENGINEERING

- **60 units upper division**
- **2.0 GPA**
- **GWR**
- **USCP**

* = Satisfies General Education requirement

Note: All ARCE majors must obtain a grade of C- or better in ARCE courses that are prerequisites for other ARCE courses.

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCE 211 Structures I</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 212 Structures II</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 223 Mechanics of Structural Members</td>
<td>4</td>
</tr>
<tr>
<td>ARCE 225 Dynamics or ME 212 Engrg Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 227 Structures III</td>
<td>2</td>
</tr>
<tr>
<td>ARCE 257 Structural CAD for Building Design</td>
<td>2</td>
</tr>
<tr>
<td>ARCE 302 Structural Analysis</td>
<td>4</td>
</tr>
<tr>
<td>ARCE 303 Steel Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 304 Timber Design</td>
<td>2</td>
</tr>
<tr>
<td>ARCE 305 Masonry Design</td>
<td>2</td>
</tr>
<tr>
<td>ARCE 306 Matrix Analysis of Structures</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 351, 352, 353 Structural Computing</td>
<td>1,1,1</td>
</tr>
<tr>
<td>ARCE 371 Structural Systems Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 372 Steel Structures Design Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 412 Dynamics of Framed Structures</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 421 Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 422 Foundation Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 444 Reinforced Concrete Lab</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 451 Timber/Masonry Structures Design and Constructability Lab</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 452 Concrete Structures Design and Constructability Lab</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 453 Senior Project Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ARCE 483 Seismic Analysis and Design</td>
<td>4</td>
</tr>
<tr>
<td>Advanced structural electives</td>
<td>6</td>
</tr>
<tr>
<td>Approved professional electives</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
</tr>
</tbody>
</table>

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 105 Professional Practice 1</td>
<td>1</td>
</tr>
<tr>
<td>ARCH 106 Materials of Construction</td>
<td>2</td>
</tr>
<tr>
<td>ARCH 121, 122, 123 Design and Drawing 1, 1, 1, 1, 1, 1</td>
<td>3,3,3</td>
</tr>
<tr>
<td>ARCH 221 Architectural Design Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 217/ARCH 218/ARCH 219 (C3)*</td>
<td>4</td>
</tr>
<tr>
<td>BRAE 237 Intro to Engineering Surveying</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 124 General Chem/Engr Discipline (B3/B4)*</td>
<td>4</td>
</tr>
<tr>
<td>CM 211 Construction Contract Documents</td>
<td>4</td>
</tr>
<tr>
<td>CM 332 Evaluation of Cost Alternatives or IME 314 Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>CSC 231 Fortran for Engineering Students or CSC 234 C and UNIX (3)</td>
<td>2</td>
</tr>
<tr>
<td>CSC 341 Numerical Engineering Analysis or approved equivalent (B6)*</td>
<td>4</td>
</tr>
<tr>
<td>EDES 101 Intro to Architecture and Env Design</td>
<td>2</td>
</tr>
<tr>
<td>EE 201 Electrical Circuit Theory</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 201 Physical Geology</td>
<td>3</td>
</tr>
<tr>
<td>MATH 141, 142 Calculus I, II (B1)*</td>
<td>4,4</td>
</tr>
<tr>
<td>MATH 143 Calculus III (Add'l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 241 Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td>MATH 244 Linear Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>ME 302 Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 341 Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 141 General Physics IA (Add'l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132, 133 General Physics</td>
<td>4,4</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

72 units required; 28 units are in Support.
→See page 56 for complete GE course listing.
→Minimum of 8 units required at the 300-400 level.

<table>
<thead>
<tr>
<th>Area</th>
<th>Communication (12 units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Expository Writing</td>
</tr>
<tr>
<td>A2</td>
<td>Oral Communication</td>
</tr>
<tr>
<td>A3</td>
<td>Reasoning, Argumentation, and Writing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Science and Mathematics (4 units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Mathematics/Statistics * 8 units in Support</td>
</tr>
<tr>
<td>B2</td>
<td>Life Science</td>
</tr>
<tr>
<td>B3</td>
<td>Physical Science * 4 units in Support</td>
</tr>
<tr>
<td>B5</td>
<td>(not required of Engineering)</td>
</tr>
<tr>
<td>B4</td>
<td>One lab taken with either a B2 or B3 course</td>
</tr>
<tr>
<td>B6</td>
<td>Upper-division Area B * 4 units in Support</td>
</tr>
<tr>
<td>Additional A B units * 8 units in Support</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Arts and Humanities (12 units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Literature</td>
</tr>
<tr>
<td>C2</td>
<td>Philosophy</td>
</tr>
<tr>
<td>C3</td>
<td>Fine/Performing Arts * 4 units in Support</td>
</tr>
<tr>
<td>C4</td>
<td>Upper-division elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>D/E Society and the Individual (16 units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>The American Experience (40404)</td>
</tr>
<tr>
<td>D2</td>
<td>Political Economy</td>
</tr>
<tr>
<td>D3</td>
<td>Comparative Social Institutions</td>
</tr>
<tr>
<td>D4</td>
<td>Self Development (CSU Area E)</td>
</tr>
</tbody>
</table>

Total 84 units

ELECTIVES 204 units
Bachelor of Architecture

The objective of the five-year Bachelor of Architecture degree program is to develop design and related skills necessary for entry into the professional field of architecture. Preparation for architecture spans several disciplines and requires a range of aptitudes. As the architect has a responsibility for solving problems of the built environment involving people, an understanding and sensitivity to human needs is required. Therefore, programs in architecture are broad in nature. With careful selection of elective work, areas of specialization can be included.

The Bachelor of Architecture degree is accredited by the National Architectural Accrediting Board.

"In the United States, most state registration boards require a degree from an accredited professional degree program as a prerequisite for licensure. The National Architectural Accrediting Board (NAAB), which is the sole agency authorized to accredit US professional degree programs in architecture, recognizes two types of degrees: the Bachelor of Architecture and the Master of Architecture. A program may be granted a six-year, three-year, or two-year term of accreditation, depending on its degree of conformance with established educational standards.

Masters degree programs may consist of a pre-professional undergraduate degree and a professional graduate degree, which, when earned sequentially, comprise an accredited professional education. However, the pre-professional degree is not, by itself, recognized as an accredited degree."

LAPTOP REQUIREMENT

The department has a requirement that all freshmen or transfer students have a notebook computer when they enter the program. In the profession of architecture, computing is an integral component, and developing the ability to critically integrate hand and digital tools is a fundamental aspect of architectural education. A notebook computer is the key to having computing capabilities available at all times and all locations. Financial aid may be available to cover the cost of the notebook computer (contact the Financial Aid Office for more information).

OFF-CAMPUS ARCHITECTURE PROGRAMS

Off-campus study opportunities for fourth year Architecture students are offered in a variety of formats and locations. Programs from one quarter to a full year are available abroad and in the United States. There is a third year student general information session each fall quarter to present the department-sponsored programs offered for the following year. Applications from third year students for all programs are due in the winter quarter.

CSU International Programs. There are two CSU-sponsored organized studio programs for Architecture majors, one in Copenhagen, Denmark, and one in Florence, Italy. The concept of the studio organization is similar to Cal Poly. Credit for major design courses, some professional electives, some general education courses and free electives are handled through approved overseas study centers.

San Francisco Urban Design Internship Program offers fourth year students the opportunity to live and study in San Francisco for one quarter (fall and spring). Each class utilizes real projects with the participation of talented, award-winning architectural offices and urban designers to introduce students to urban design and architectural practice.

Washington Alexandria Architecture Consortium. The Consortium, comprised of several universities including Cal Poly, is organized to offer a challenging and stimulating one-year option. The Center functions as an extension of the College of Architecture of Virginia Polytechnic Institute and State University (VPI) in the Washington DC Metropolitan Area. The Consortium seeks to explore and expand design pedagogues and processes and establish collaboration with national and international institutions.
Other Programs. The Architecture Department offers a changing variety of off-campus programs throughout the world. Contact the Architecture Department for current information.

Cooperative Education (Co-op). In addition to traditional classroom study experiences and instructor-led field trips, students have the opportunity to work for professional architecture firms and receive professional elective credits. To find out more about Cooperative Education opportunities, visit the Architecture Department or Career Services. Applications and opportunities for Co-op credit are available year-round.

BACHELOR OF ARCHITECTURE

☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP
* = Satisfies General Education requirement

MAJOR COURSES

ARCH 105 Architectural Practice 1.......................... 1
ARCH 121, 122, 123 (3)(3)(3) & ARCH 160 (4)
or ARCH 131, 132, 133 (4)(4)(4) 12-13
ARCH 207 Environmental Control Systems 1 4
ARCH 217 History of Architecture (C3)* 4
ARCH 218 History of Architecture (Area C)* 4
ARCH 219 History of Architecture 4
ARCH 241, 242 Architectural Practice 2.1, 2.2 4,4
ARCH 251, 252, 253 Arch. Design 2.1, 2.2, 2.3 5,5,5
ARCH 307 Environmental Control Systems 2............ 4
ARCH 341, 342 Architectural Practice 3.1, 3.2 4,4
ARCH 351, 352, 353 Arch. Design 3.1, 3.2, 3.3 5,5,5
ARCH 420 Seminar in Architectural History, Theory and Criticism or ARCH 320 Topics in Architectural History .. 4
ARCH 443 Professional Practice 4
ARCH 451, 452, 453 Arch. Design 4.1, 4.2, 4.3 5,5,5
ARCH 481 Senior Arch Design Project or
ARCH 521 Graduate Arch Design Project 5,5,5
ARCH 492 Senior Design Thesis or
ARCH 592 Graduate Design Thesis 3

120-121

SUPPORT COURSES

ARCE 211 Structures I 3
ARCE 212 Structures II 3
ARCE 226 Structural Systems for Architects 3
ARCE 315 Small Scale Buildings 4
ARCE 316 Large Scale Buildings 4
EDES 101 Intro to Architecture and Env Design 2
MATH 141 Calculus I (B1)* 4
MATH 182 Calculus for Architecture and Construction Management (MATH 142 Calculus II substitutes) (B1)* 4
PHYS 121/PHYS 141 (B3)* 4
PHYS 122 College Physics II or PHYS 132 General Physics II .. 4

Professional Electives 20

May include:
Any EDES, ARCH, ARCE, CM, CRP, LA or ART course.

Any course included in any College of Architecture and Environmental Design minor, or the ART minor.

GENERAL EDUCATION (GE)

72 units required; 20 units are in Major and Support.

Area A Communication (12 units)

A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (4 units)

B1 Mathematics/Statistics 0
B2 Life Science ... 4
B3 Physical Science 0
B4 One lab taken in either PHYS 121 (see Support) or a B2 course with lab component

Area C Arts and Humanities (12 units)

C1 Literature ... 4
C2 Philosophy .. 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4
Area C elective * 4 units in Major 0

Area D/E Society and the Individual (20 units)

D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective 4

Area F Technology Elective (upper division)

(4 units) .. 4

52

ELECTIVES .. 0

227-228

1 Option for students intending to pursue a graduate degree.

2 PHYS 121 has a lab (B4). If PHYS 141 is taken, then take a B2 Life Science course with a lab (B4).
MBA – Architectural Management Track
This track is available only to those students who are enrolled in Cal Poly's Bachelor of Architecture (BArch) program. During the fifth/final year of the architecture program, students may request permission to enroll in MBA courses. The request, along with all supporting documents, must be submitted to the Orfalea College of Business – Graduate Programs Office. Permission to participate in the courses is competitive and based upon the student's previous academic performance and GMAT/GRE results.

Upon completion of the BArch degree, students are eligible to formally apply to the University for admission to the MBA program. Students who fulfill all the requirements first receive the BArch and then the MBA.

MBA Common Required Courses (36)

- GSB 511 Accounting for Managers ... 4
- GSB 512 Quantitative Analysis .. 4
- GSB 513 Organization Behavior .. 4
- GSB 523 Managerial Economics .. 4
- GSB 524 Marketing Management .. 4
- GSB 531 Managerial Finance ... 4
- GSB 533 Aggregate Economic Analysis & Policy 4
- GSB 534 Production and Operations Mgmt.............................. 4
- GSB 562 Seminar in General Mgmt & Strategy or GSB 567 Adv Sem International Business Mgmt or other approved culminating experience ... 4

Advisor approved electives .. 24
One elective must satisfy the Orfalea College of Business’ international course requirement

MCRP, ARCHITECTURE PLANNING TRACK
This track is available only to students who are enrolled in Cal Poly's Bachelor of Architecture (BArch) program. Students may request permission to enroll in Master of City and Regional Planning (MCRP) graduate level courses during their fourth and fifth years of study. Upon completion of the BArch degree, students are eligible to formally apply for graduate student status in the MCRP program. Students who fulfill all the requirements first receive the BArch and then the MCRP. Contact the Graduate Coordinator, City and Regional Planning Department for additional information.

MASTER OF SCIENCE IN ARCHITECTURE
The Master of Science in Architecture is a post-professional degree in the broad field of architecture with an emphasis on environmental planning and design in an information society. Common core studies aim to establish a framework for advanced study and research, while specialization and directed electives provide for the development of in-depth study chosen by candidates.

Professional Practice Specialization. Designed for applicants holding an accredited architecture degree wishing to pursue advanced studies with a strong professional practice orientation.

Environmental Design Specialization. Designed for applicants holding a degree in one of the several cognate environmental design disciplines, engineering, or computer science, wishing to pursue advanced studies with a strong inter-professional orientation. This is a post-professional specialized degree in the inter-professional field of environmental design, with special reference to its three primary contributory disciplines of Architecture, City and Regional Planning, and Landscape Architecture. The common core curriculum aims to establish a central focus for advanced study and research, while sub-core studies and directed electives provide for in-depth study in one of the contributory disciplines of Architecture, City and Regional Planning, Architectural Engineering, Landscape Architecture and Construction Management.

Graduate Study Areas. The graduate study topics are challenging. Each is of critical importance to the architecture, engineering, and construction industry. The knowledge and experience students bring to the program are fully employed. At the same time new practices and new knowledge are acquired. These study areas are:

* Computer-Aided Design. Focusing on the development and utilization of computer systems in the architectural process, with particular emphasis on design information representation and management, the development and utilization of knowledge bases, and expert design assistants. Students are encouraged to participate in the research projects undertaken by the CAD Research Center of the College of Architecture and Environmental Design.

* Architectural Science. Focusing on the increasingly complex performance and technical aspects of architectural design and the knowledge and skills needed when designers deal with the challenges associated with such topics as energy responsive architecture, acoustics, lighting, and wind-effects phenomena.

* Facilities Management. Stresses the practice of coordinating the physical workplace with the people and work of an organization. It integrates the principles of business administration, architecture, and behavioral and engineering sciences. Facilities management is concerned with the design, construction, maintenance, and management of physical environments. Facility managers usually work as generalists managing teams of specialists such as architects, interior architects, interior designers, engineers, construction personnel, communication technicians, etc.

* Structural Engineering. For students holding an accredited degree in architectural engineering or civil
Curriculum for MS Architecture

Core Curriculum

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 519 Theory of Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 551 Architectural Design</td>
<td>5</td>
</tr>
<tr>
<td>ARCH 561 Advanced Design</td>
<td>9</td>
</tr>
<tr>
<td>ARCH 598 Master's Design Project</td>
<td>9</td>
</tr>
</tbody>
</table>

Directed Electives

Advisor approved elective courses are included in a student's formal program of study.

For further information contact the Graduate Program Coordinator, Architecture Department, College of Architecture and Environmental Design, Cal Poly, San Luis Obispo, CA 93407.

MS Architecture, Specialization in Architectural Engineering

The Structural Engineering specialization is designed for students holding an accredited degree in architectural engineering or civil engineering who wish to pursue advanced studies in structural engineering. For students within the Cal Poly Architectural Engineering undergraduate program, a blended BS + MS option is available. The program is developed to better prepare students in meeting the demands for practice in the structural engineering profession. Core curriculum courses expose students to emerging topics in structures, advanced methodologies to predict and analyze structural behavior, and cutting edge design procedures. Additionally, related topics in architecture and construction management are integrated into the curriculum to create a unique masters level education. Elective courses allow individuals to concentrate in an area of interest related to environmental design or technology. Individuals conclude their educational experience through a series of project oriented laboratories designed to increase the student's awareness of building design issues using projects, reports, or experimentation, and culminating in a report and oral presentation. Additionally, candidates should refer to the “General Policies Governing Graduate Studies” section for supplemental University requirements.

Core Curriculum

ARCE 502 Nonlinear Structural Behavior I (3)
ARCE 503 Nonlinear Structural Behavior II (3)
ARCE 511 Structural System Behavior (3)
ARCH 551 Architectural Design (5, 5)
ARCH 598 Master's Design Project (9)

Directed Electives

Advisor approved elective courses shall be included in a student's formal study plan.

For additional information contact the Architectural Engineering Department or the Architecture Department Graduate Program Coordinator.

Blended BS Architectural Engineering + MS Architecture

For motivated students a blended program, also referred to as a 4+1 program, is available. The blended program allows students to simultaneously complete both a bachelor in Architectural Engineering and a Masters in Architecture with a specialization in structural engineering. The blended program offers promising individuals an opportunity to continue their studies in architectural engineering in a collaborative learning environment.

Eligibility for the Blended Program

Architectural Engineering (ARCE) students wishing to pursue a Masters of Science in Architecture with a Specialization in Structural Engineering may apply after completing all 300-level Architectural Engineering courses and 180 units. The ARCE Graduate Committee reviews all applications and selects individuals with records that demonstrate success at the undergraduate level as well as potential to succeed at the graduate level. Candidates shall meet the University requirements, as a minimum, stated in “Blended BS+MS Programs” in the Graduate Programs section. Contact the Architectural Engineering Department for additional information.
City and Regional Planning

Department Office
Dexter Bldg. (34), Room 251
(805) 756-1315

Department Head, William J. Siembieda
Michael R. Boswell Adrienne I. Greve
W. David Conn Cornelius K. Nuworsoo
Vicente del Rio Umut Toker
D. Gregg Doyle Paul Wack

ACADEMIC PROGRAMS
BS City and Regional Planning
MCRP Master of City and Regional Planning
MCRP/MS Engineering with Specialization in Transportation Planning
City and Regional Planning Minor

The profession of city and regional planning involves helping people and communities manage growth and change in their physical, social, and economic environments. The focus is on understanding how cities and towns (human settlements) function and how to make them better places for people to live, work and play. City planning has its roots in engineering, architecture, landscape architecture, law, social welfare and government reform. The practice of city and regional planning is both science and art. It involves technical competence, creativity, hard-headed pragmatism and the ability to develop a vision of the future and to build on that vision. Contemporary planners combine design, quantitative, and people skills to assist communities and society. Both the undergraduate (BSCRP) and the graduate (MCRP) programs are accredited by the national Planning Accreditation Board.

The degree programs prepare students for professional careers in the design of human settlements in harmony with the natural environment and the needs of society. Practicing planners work in public agencies, non-profit organizations, and private consulting firms, preparing comprehensive plans for projects, neighborhoods, cities, and entire regions. They deal with the use of land, housing, transportation, public facilities, and open space. In addition, they are responsible for finding the means to make their plans become a reality by budgeting for public projects and programs and by reviewing and regulating private development.

The curriculum leading to the Bachelor of Science in City and Regional Planning provides a broad, interdisciplinary education as well as competency in physical planning with an emphasis on urban design and development. The Master of City and Regional Planning degree builds on a general undergraduate preparation in the humanities, architecture, landscape architecture, social sciences or natural sciences, and offers two areas of emphasis: urban development and design and environmental planning.

BS CITY AND REGIONAL PLANNING
- 60 units upper division
- 2.0 GPA
- GWR
- WCR

* = Satisfies General Education requirement

MAJOR COURSES

CRP 101 Intro to Profession of CRP 1
CRP 201 Basic Graphic Skills 4
CRP 202 Urban Design Studio I 4
CRP 203 Urban Design Studio II 4
CRP 212 Introduction to Urban Planning 4
CRP 213 Population, Housing and Econ Apps 4
CRP 214 Land Use and Transportation Studies 4
CRP 215 Planning for and with Multiple Publics ... 4
CRP 216 Computer Applications for Planning 2
CRP 314 Planning Theory 3
CRP 315 Fiscal and Project Feasibility 4
CRP 336 Intro to Environmental Planning 4
CRP 341 Community Design Laboratory 4
CRP 342 Environmental Planning Methods 4
CRP 409 Planning Internship 2
CRP 410, 411 Community Planning Lab I, II 5,5
CRP 412 Plan Implementation 4
CRP 420 Land Use Law 4
CRP 430 Public Sector Planning Practice 3
CRP 436 Collaborative Planning 4
CRP 461, CRP 462 Senior Project I, II or CRP 463 Senior Project Professional Practice 4
Advisor approved electives 12

93

SUPPORT COURSES

EDES 101 Intro to Arch and Env Design 2
FNR 306/FNR 319/BIO 112 4
GEOL 102 (B3*)/GEOL 205 (B3*)/CHEM 110 (B3&B4)* 4
LA 213 Site and Terrain Analysis or LA 220 Landscape Ecology: Concepts, Issues and Interrelationships 4
MATH 118 Pre-Calculus Algebra (B1)* 4
POL 375/471/516 .. 4
STAT 221 Intro to Probability & Statistics (B1)* 5

27

GENERAL EDUCATION (GE)

72 units required; 12 units are in Support.
See page 56 for complete GE course listing.
Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing 4

2007-2009 Cal Poly Catalog
Area B Science and Mathematics (4 units)
B1 Mathematics/Statistics * 8 units in Support... 0
B2 Life Science .. 4
B3 Physical Science * 4 units in Support........... 0
B4 One lab taken with either a B2 or B3 course
Area C Arts and Humanities (20 units)
C1 Literature .. 4
C2 Philosophy .. 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4
Area C elective (Choose one course from C1-C4) 4
Area D/E Society and the Individual (20 units)
D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective 4
Area F Technology Elective (upper division) (4 units) .. 4
ELECTIVES .. 0

City and Regional Planning Minor
The minor provides students with an interdisciplinary understanding of the science and the art of city planning and its relationship with other environmental design professionals. The student is provided with an understanding of how growth and change affect the physical, social and economic aspects of the city, including the relationships among land use, transportation, housing and the environment. Courses that build skills in the preparation of plan documents, land use studies and environmental studies are combined with laboratory courses providing opportunities for involvement in community building and plan-making projects.

The minor is excellent preparation for creating visions of the future, participation in government and community organizations. It enhances skills in disciplines that have linkages with cities and the built and natural environments. It provides the student with the knowledge, skills and values that help people build better communities and cities.

Required courses
CRP 212 Introduction to Urban Planning 4
CRP 213 Population, Housing and Economic Applications or CRP 214 Land Use and Transportation Studies .. 4
Select two courses from the following: 8
CRP 203 Urban Design Studio II (4)
or appropriate equivalent
CRP 336 Intro to Environmental Planning (4)
CRP 341 Community Design Laboratory (4)
CRP 342 Environmental Planning Methods (4)

Electives ... 11/12
Select three courses from the following:

Additional Minors
The department also participates in offering interdisciplinary minors in Real Property Development, and Sustainable Environments.

MCRP Advising Track (5+1) for BLA & BARCH Students
Students may pursue an accelerated route to a graduate professional degree through enrollment in MCRP courses during their fourth and fifth years of undergraduate study and an additional year of graduate study after completion of their undergraduate degree. Contact the Graduate Coordinator, City and Regional Planning Department, for additional information.

Blended Program-Bachelor of Architecture/Master of City and Regional Planning (BLA/MCRP)
The blended BLA/MCRP Program is an accelerated route to the graduate professional degree in City and Regional Planning. Under this program a student can simultaneously graduate with a BLA and MCRP. Contact the Graduate Coordinator, City and Regional Planning Department, for additional information.
MASTER OF CITY & REGIONAL PLANNING

General Characteristics
The Master of City and Regional Planning degree (MCRP) is an applied, comprehensive, and professionally-based program. It is open to students with high standards of academic achievement who wish to pursue careers in city and regional planning. It is structured to prepare graduates to function in a general context of city planning, as well as in an area of special emphasis. The core courses cover planning theory, methods, law, and formulation and implementation of plans and policies.

Two principal areas of study are emphasized:
- urban development and design, focused on comprehensive physical planning, housing, or community development, and
- environmental planning, focused on natural systems and development impacts.

In addition, skill building in all aspects of planning communications (visual, verbal, written) is stressed. The City and Regional Planning Department jointly offers the MCRP degree with the Master of Science in Engineering with a specialization in transportation planning.

The MCRP program is structured to meet the needs of those who have earned baccalaureate degrees in a variety of disciplines including, but not limited to, environmental studies, economics, business, geography, architecture, landscape architecture, civil engineering, political science, environmental or urban studies, natural resources management, and ecology. The program is six quarters (two years) in duration and consists of 72 approved units (not including courses necessary to compensate for deficiencies). Because of the sequencing of courses, students admitted to the program are generally expected to begin their studies in the fall quarter. Students with prerequisite coursework deficiencies and those with backgrounds allowing waivers of first-year core courses may be admitted in other quarters. The degree culminates in a thesis (CRP 599), professional project (CRP 596), or a community planning studio (CRP 556).

Students have an opportunity to develop a close working relationship with the planning faculty. Self-directed study, tailored to the student's interests and needs, is also encouraged.

Prerequisites
Students entering the MCRP program are required to have a background in computers and computer applications equivalent to the Cal Poly course, CSC 110 Computers and Computer Applications: Windows. This includes knowledge of Microsoft Windows, word processing and spreadsheets.

Applicants for admission to the Master of City and Regional Planning program are expected to:

1. Have earned a bachelor's degree from an accredited university or college,
2. Have attained a grade point average of 3.0 in last 90 quarter units of undergraduate work,
3. Provide the CRP Department with the results of the Graduate Record Examination Aptitude Test in cases of borderline grade point average,
4. Give indications of motivation, maturity, and high standards of academic involvement through work and references (three letters required) and submission of a project or paper demonstrating writing ability,
5. Provide a statement (maximum of 500 words) demonstrating an understanding of, and areas of interest in, city and regional planning, career and educational objectives.

Applicants lacking prerequisites or other background requirements for classified standing requirements may be admitted on a conditionally classified basis, depending on the results of an individual analysis of their applications.

Units

Core Courses ... 55/57

First Year
CRP 501 Foundations of Cities and Planning (4)
CRP 510 Planning Theory (4)
CRP 512 Intro to Visual Communication and GIS (4)
CRP 513 Planning Research Methods (4)
CRP 516 Methods of Data Analysis (4)
CRP 525 Plan Implementation (4)
CRP 553 Project Planning Lab (4)

Second Year
CRP 409 Planning Internship (4)
CRP 518 Public Policy Analysis (4)
CRP 530 Planning Agency Management (3)
CRP 535 Land Use and Planning Law (4)
CRP 552 Community and Regional Planning Studio I (4)
CRP 554 Community and Regional Planning Studio II (4)
CRP 596 Prof Project (2)(2)(2) or
CRP 599 Thesis/Project (2)(2)(2) or
CRP 556 Community and Regional Planning Studio III (4)

Emphasis Area (select one) .. 11

Urban Development and Design
CRP 520 Feasibility Studies in Planning (4)
CRP 548 Principles of Urban Development and Design (4)
Advisor approved urban electives (3)

Environmental Planning
CRP 545 Principles of Env Planning (4)
Advisor approved environmental electives (7)

Advisor approved electives ... 6/4

72
Joint MCRP/MS Engineering with Specialization in TRANSPORTATION PLANNING

The Transportation Planning Specialization is a joint interdisciplinary program between the College of Engineering and the City and Regional Planning Department of the College of Architecture and Environmental Design. Participation in the program requires enrollment in both Colleges. Participants successfully completing the program are awarded both the MCRP and the MS in Engineering, each with a Specialization in Transportation Planning.

The major objectives of this joint program are to:

(a) Provide an interdisciplinary graduate program which combines elements of transportation planning with city and regional planning to address a need for professionals who understand the technology of transportation planning and the importance of transportation within the urban environment. The required master's project enables students to integrate their work through directed study applied to special areas of their choosing.

(b) Provide planners with courses essential to understanding the technologies of transportation planning. Provide engineers with a broad background in urban studies and knowledge of contemporary environmental issues.

(c) Take advantage of the backgrounds of program participants. The graduate students of both sponsoring departments include both mature professionals returning for advanced degrees and recent graduates with diversity of specializations.

Prerequisites. Applicants must have satisfactorily completed courses that cover the following or equivalent subject areas:

- CE 221 Fundamentals of Transportation Engineering
 - or CRP 435 Transportation Theory
- COMS 101 Public Speaking
- ECON 201 Survey of Economics or ECON 222 Macroeconomics
- ENGL 148 Reasoning, Argumentation and Professional Writing or ENGL 149 Technical Writing for Engineers
- MATH 142 Calculus
- PHYS 141 General Physics IA
- STAT 321 Probability and Statistics for Engineers and Scientists or STAT 221 Intro to Probability and Statistics or STAT 312 Statistical Methods for Engineers

Applicants for admission are expected to:

1. Have earned a bachelor's degree from an accredited university or college,

2. Have attained a grade point average of 3.0 in last 90 units of undergraduate work,

3. Provide results of the Graduate Record Examination (GRE) Aptitude Test to the Admissions Committee (GRE requirement may be waived for Cal Poly bachelor of science graduates and applicants with superior academic records),

4. Give indications of motivation, maturity, and high standards of academic involvement through work and references (three letters required) and submission of a project or paper demonstrating writing ability,

5. Provide a statement (maximum of 500 words) addressing their understanding of and areas of interest in planning, career objectives, and educational objectives.

Applicants lacking prerequisites or other background requirements for classified standing may be admitted on a conditionally classified basis, depending on the results of an individual analysis of their applications.

Core Courses ... 64

- CE 523 Transportation System Planning (4)
- CE 528 Transportation Analysis or
 CE 421 Traffic Engineering (4)
- CE 591 Graduate Seminar I (1)
- CE 599 Design Project (Thesis) (2,2,2) or CRP 599 Thesis (2)(2)(2) or CRP 596 Professional Project (2)(2)(2) or CRP 556 Community and Regional Planning Studio III (4)
- CRP 409 Planning Internship (4)
- CRP 435 Transportation Theory (3)
- CRP 501 Foundations of Cities and Planning (4)
- CRP 510 Planning Theory (4)
- CRP 513 Planning Research Methods (4)
- CRP 516 Methods of Data Analysis (4)
- CRP 518 Policy Analysis for Planners (4)
- CRP 525 Plan Implementation (4)
- CRP 530 Planning Agency Management (3)
- CRP 535 Land Use and Planning Law (4)
- CRP 552 Community & Reg'l Planng Studio I (4)
- CRP 554 Community & Reg'l Planng Studio II (4)
- Advisor approved elective (3) or (5)

Emphasis Area (select one of the following) 11

- **Urban Development and Design Emphasis**
 - CRP 520 Feasibility Studies in Planning (4)
 - CRP 548 Principles of Urban Dev. and Design (4)
 - Urban Development and Design elective (3)
- **Environmental Planning Emphasis**
 - CRP 545 Principles of Env. Planning (4)
 - Environmental Planning electives (7)

Approved CE/ENVE electives: 15

Select from: CE 421, 422, 423, 424, 500, 521, 522, 525, 527, 528, 529, 573, ENVE 411, or other advisor approved CE/ENVE courses

2007-2009 Cal Poly Catalog
Construction Management

Department Office
Engineering West (21), Room 116-A
(805) 756-1323

Department Head, Allan J. Hauck
Philip L. Barlow
Barbara J. Jackson
Barry K. Jones
Hal Johnston
Thomas M. Korman
Michael A. Montoya
Lonny G. Simonian
Paul A. Weber

ACADEMIC PROGRAMS
BS Construction Management
Construction Management Minor

The curriculum in Construction Management leads to the Bachelor of Science degree which is accredited by the American Council for Construction Education. Major emphasis is placed on organizing and managing the construction phase of society's efforts to improve the environment. The constructor is an important member of the building team and requires a professional knowledge of techniques, materials, equipment, job planning and cost control to add to the contributions of the planning and design professions. Graduates of this program can help supply the urgent needs of the construction industry and its related fields.

Laptop Requirement
The department has a requirement that all students have a notebook computer beginning the sophomore year. This is the point the students begin their major coursework and begin preparing themselves for a career in the construction industry. Most Construction Management classes emphasize cooperative projects/assignments, and a notebook computer provides the required mobility to facilitate collaboration. In today's construction environment, computing is an integral component with the computer being the standard tool. A notebook computer is the key to having computing capability available at all times and all locations. Financial aid may be available to cover the cost of the computer laptop (contact the Financial Aid Office for more information).

Minors
The department offers a Construction Management Minor for students in other programs and also participates in offering interdisciplinary minors in Integrated Project Delivery, and Real Property Development. Please see the College of Architecture and Environmental Design for more information.

BS CONSTRUCTION MANAGEMENT
☐ 60 units upper division
☐ GWR
☐ 2.0 GPA
☐ USCP
* = Satisfies General Education requirement

MAJOR COURSES
CM 211 Construction Drawings and Specifications 4
CM 212 Fundamentals of Construction Mgt. 3
CM 221 Concrete Technology 3
CM 331 Construction Accounting 3
CM 332 Evaluation of Cost Alternatives 3
CM 333 Construction Contracts and Law 3
CM 341 Residential Construction Practices 3
CM 342 Commercial Construction Practices 3
CM 343 Heavy Civil Construction Practices 3
CM 352 Electrical Systems for Buildings 3
CM 353 Mechanical Systems for Buildings 3
CM 364 Construction Jobsite Management 3
CM/EDES 431 Integrated Project Services 3
CM 443 Management of the Construction Firm 3
CM 444 Concrete Formwork and Other Temporary Structures 3
CM 452 Project Controls 3
CM 454 Construction Estimating 3
CM 463 Senior Project: Professional Practice for Constructors 3
Advisor approved technical electives 8
(maximum 6 units in Co-op)

SUPPORT COURSES
ARCE 211 Structures I 3
ARCE 212 Structures II 3
ARCE 226 Structural Systems for Architects 3
ARCE 315 Small Scale Buildings 4
ARCE 316 Large Scale Buildings 4
ARCE 421 Soil Mechanics 3
ARCH 105 Professional Practice I 1
ARCH 106 Materials of Construction 2
BRAE 239 Engineering Surveying 4
BUS 207 Legal Responsibilities of Business 4
BUS 212 Financial Acctg for Nonbusiness Majors 4
BUS 215 Managerial Accounting 4
BUS 300–400 level advisor approved elective 4
ECON 221 Microeconomics 4
ECON 222 Macroeconomics (D2)* 4
EDES 101 Intro to Architecture and Env Design 2
ENGL 310 Corporate Communication or ENGL 318 Advanced Professional Writing 4
GEOL 201 Physical Geology 3

2007-2009 Cal Poly Catalog
CONSTRUCTION MANAGEMENT MINOR

The Construction Management Minor provides students an introduction to the body of knowledge expected of persons pursuing careers in the construction industry. This minor gives a student a competitive edge when applying for certain jobs, by providing concepts, tools and skills which enhance one’s progress in a career in one of the professions involved in the built environment.

The Construction Management Minor is recommended for majors in architecture, architectural engineering, civil engineering, mechanical engineering and electrical engineering. Enrollment in the minor is limited, and selection is made based upon the applicant’s performance in his or her major courses. Contact the department for more information.

Core courses

- CM 212 Fundamentals of Construction Mgmt
- CM 364 Construction Jobsite Management
- CM 452 Project Controls
- CM 454 Construction Estimating

Methods courses

- Select two of the following six courses:
 - CM 341 Residential Construction Practices
 - CM 342 Commercial Construction Practices
 - CM 343 Heavy Civil Construction Practices
 - CM 352 Electrical Systems for Buildings
 - CM 353 Mechanical Systems for Buildings
 - CM 444 Concrete Formwork and Other Temporary Structures

Management courses

- Select two of the following four courses:
 - CM 331 Construction Accounting
 - CM 332 Evaluation of Cost Alternatives
 - CM 333 Construction Contracts and Law
 - CM 443 Management of the Construction Firm

Project-Based courses

- Select one of the following two courses:
 - CM 431 Integrated Project Services
 - CM 463 Senior Project: Professional Practice for Constructors
Department Office
Dexter Bldg.(34), Room 213
(805) 756-1319

Department Head, Margarita M. Hill
Walter D. Bremer
Gary R. Clay
Gary C. Dwyer
Omar Faruque

Affiliated Faculty:
Thomas J. Rice, Earth and Soil Sciences Department

ACADEMIC PROGRAMS
Bachelor of Landscape Architecture

The profession of landscape architecture is primarily involved with the design, planning, and protection of the natural and developed environments. The program in landscape architecture is accredited by the American Society of Landscape Architects and recognized by the Landscape Architects Technical Committee of the California Board of Architectural Examiners.

An emphasis is placed on a process oriented approach to design and planning while developing an awareness and sensitivity to community and human values as they relate to environmental conditions. Students majoring in landscape architecture acquire technical competencies and creative design skills through a range of projects which represent the breadth of the profession.

Graduates of the program are prepared for positions in private practice, consulting, governmental agencies at the national, state or local levels, industry and construction firms. Graduate study is encouraged for those students interested in pursuing advanced studies or academic positions.

Majors who are in their last two years of study and have at least a 3.2 grade point average may have the opportunity to join Theta Chapter of Sigma Lambda Alpha, the national scholastic honor society for landscape architecture.

Laptop Requirement
The department has a requirement that all freshmen or transfer students have a notebook computer when they enter the program. In the profession of landscape architecture, computing is an integral component, and developing the ability to critically integrate hand and digital tools is a fundamental aspect of landscape architecture education. A notebook computer is the key to having computing capabilities available at all times and all locations. Financial aid may be available to cover the cost of the notebook computer (contact the Financial Aid Office for more information).

BACHELOR OF LANDSCAPE ARCHITECTURE

☑️ 60 units upper division
☑️ GWR
☑️ 2.0 GPA
☑️ USCP
* = Satisfies General Education requirement

MAJOR COURSES
LA 101 Introduction to Landscape Architecture 4
LA 130 Landscape Interpretation 4
LA 170 Principles of Design Communication 4
LA 202 Design Fundamentals I 4
LA 203 Design Fundamentals II 4
LA 204 Design Fundamentals III 4
LA 211 History of Landscape Architecture: Ancient Civilizations through Colonial America 4
LA 212 History of Modern and Contemporary Landscape Architecture .. 4
LA 220 Landscape Ecology: Concepts, Issues and Interrelationships 4
LA 221 California Plants and Plant Communities .. 4
LA 241 Site Engineering Techniques & Apps........ 4
LA 242 Implementation Strategies 4
LA 243 Materials/Techniques of Landscape Constr. 4
LA 320 Design Theory for Landscape Architecture 4
LA 330 Cultural Landscapes: People, Places and Ethical Decisions 4
LA 370 Professional Practice 4
LA 371 Internship ... 3
LA 402 Design Theory & Exploration Focus Studio 4
LA 403 Natural Environments Design Focus Studio...... 4
LA 404 Cultural Environments Design Focus Studio 4
LA 405 Proj. Design/Implementation Focus Studio 4
Select one course from:
LA 402, LA 403, LA 404, or LA 405 4
Select five (5) courses from the following
Integrated Learning Courses (ILC) 20
LA 431 CAD & Digital Media Communications (ILC) (4)
LA 432 Landscape Ecology Applications (ILC) (4)
LA 433 Cultural Environments (ILC) (4)
LA 434 Project Design/Implementation (ILC) (4)
LA 435 Professional Practice (ILC) (4)
LA 436 Traditional/Digital Design Communications (ILC) (4)
LA 437 3D Digital Design Commun. (ILC) (4)
LA 438 GIS App. to Design Projects (ILC) (4)
LA 461 Senior Design Project Focus Studio 4
Upper division LA electives 4

two 4-unit courses or one 4-unit course and one 3-unit course plus one unit of free elective

2007-2009 Cal Poly Catalog
SUPPORT COURSES
ARCH 217/218/219 History of Architecture (C3)* 4
BOT 121 General Botany (B2 & B4)* 4
CRP 212 Introduction to Urban Planning 4
EDES 101 Intro Architecture & Env Design 2
EHS 231 Plant Materials 4
EHS 232 Plant Materials 4
MATH 118 Pre-Calculus Algebra (B1)* 4
MATH 119 Pre-Calculus Trigonometry (B1)* 4
Select two courses from the following 8
BIO 227 Wildlife Conservation Biology (4)
BRAE 337 Landscape Irrigation (3) plus one unit
of free elective
SS 121 Introductory Soil Science (4)
STAT 217 Intro to Stat Concepts and Methods (4)
or STAT 218 Applied Stat for Life Sciences (4)
Professional electives...................................... 8
May include any course in: College of
Architecture and Environmental Design; Art and
Design Department; any minor in the College of
Architecture and Environmental Design.

GENERAL EDUCATION (GE)
72 units required; 16 units are in Support.
→See page 56 for complete GE course listing.
→Minimum of 12 units required at the 300-400 level.
Area A Communication (12 units)
A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing...... 4
Area B Science and Mathematics (4 units)
B1 Mathematics/Statistics * 8 units in Support... 0
B2 Life Science * 4 units in Support............... 0
B3 Physics.. 4
B4 One lab taken with either a B2 or B3 course
Area C Arts and Humanities (16 units)
C1 Literature ... 4
C2 Philosophy.. 4
C3 Fine/Performing Arts * 4 units in Support ... 0
C4 Upper-division elective 4
Area C elective (Choose one course from C1-C4) 4
Area D/E Society and the Individual (20 units)
D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective 4
Area F Technology Elective (upper division)
(4 units) .. 4

ELECTIVES .. 0

46

MBA – Landscape Architecture Management Track
This program is available only to those students who are
currently enrolled in Cal Poly's Bachelor of Landscape
Architecture (BLA) program. During the fifth/final year of
the landscape architecture program, students may request
permission to enroll in MBA courses. The request, along
with all supporting documents, must be submitted to the
Orfalea College of Business – Graduate Programs Office.
Permission to participate in the courses is competitive and
based upon the student's previous academic performance
and GMAT/GRE results.

Upon completion of the BLA degree, students are eligible
to formally apply to the University for admission to the
MBA program. Students who fulfill all the requirements
first receive the BLA and then the MBA.

MBA Common Required Courses (36)
GSB 511 Accounting for Managers.................. 4
GSB 512 Quantitative Analysis 4
GSB 513 Organization Behavior 4
GSB 523 Managerial Economics 4
GSB 524 Marketing Management 4
GSB 531 Managerial Finance 4
GSB 533 Aggregate Economic Analysis & Policy . 4
GSB 534 Production and Operations Mgmt 4
GSB 562 Seminar in General Mgmt & Strategy or
GSB 567 Adv Sem International Business Mgmt or
other approved culminating experience 4

Advisor approved electives 24
One elective must satisfy the Orfalea College of
Business' international course requirement

60

Blended Program-Bachelor of Landscape
Architecture/Master of City and Regional Planning
(BLA/MCRP)

The blended BLA/MCRP Program is an accelerated route
to the graduate professional degree in City and Regional
Planning. Under this program a student can simultaneously
graduate with a BLA and MCRP. Students shall meet the
minimum eligibility requirements for a blended degree set
down in the university catalog, complete a planning
internship and the required MCRP classes. An updated list
pertaining to which courses can be counted in the program
is available from the City and Regional Planning
Department. Students choosing this program shall make a
request for admission to the department head. The CRP
department head or graduate coordinator makes a
determination of eligibility.

MCRP courses for the blended degree include: CRP 420,
510, 516, 518 or 513, 520, 525, 530, 552, and 554.
Industrial Technology Students Utilize Biodegradable Packaging

Through a generous donation of equipment and film from Primary Packaging in Visalia, students in Cal Poly’s Industrial Technology major are the first to provide individually packaged produce using EarthFirst™ cornstarch-based biodegradable packaging. This is the first of many projects involving packaging applications for non-petroleum based renewable biodegradable packaging. Students in IT 409 Packaging Machinery are shown using the new biodegradable film to package apples with the Flow-pack overwrap machine.

Photo courtesy of Keith Vorst

Orfalea College of Business

Mission Statement

The Orfalea College of Business challenges highly motivated students to become tomorrow’s socially responsible business leaders through a learn-by-doing, technology-oriented education.
Orfalea College of Business

Area/Contact	Bachelor of Science Degrees:
Accounting | Accounting
Finance | Financial Management
Management | Information Systems Management
Marketing | Marketing Management
Interdisciplinary Studies | Entrepreneurship & Small Business International Business
Associate Dean | Independent Course of Study
Economics | Economics, BS
Industrial Technology | Industrial Technology

Area/Contact	Minors:
Advising | Business Center
Economics | Economics
Industrial Technology | Packaging

Area/Contact	Graduate Programs:
Accounting | Accounting, MS
Graduate Management Programs | Business Administration, MBA
General Management
Specialization
Agribusiness Specialization
Graphic Communication Document Systems Management
Specialization
Architectural Management Track
Bachelor of Architecture, MBA Engineering Management
MBA & MS Engineering
Industrial Technology | Industrial and Technical Studies, MS

Mission Statement
The Orfalea College of Business challenges highly motivated students to become tomorrow’s socially responsible business leaders through a learn-by-doing, technology-oriented education.

Amplification of Strategic Concepts/Phrases
... challenges highly motivated students:
- Committed to rigorous, relevant courses taught by dedicated, professionally-active faculty
- Committed to students actively involved in their education
- Committed to education occurring both inside and outside the classroom
- Committed to significant faculty-student interaction
... to become tomorrow’s socially responsible business leaders:
- Emphasis on having a positive impact on society
- Emphasis on having ethical leaders and role models
- Emphasis on working in a diverse, dynamic business environment
- Emphasis on integration of knowledge
- Development of team skills
- Preparation for careers
- Preparation for lifelong learning
... through a learn-by-doing, technology-oriented education:
- Emphasizes an understanding of the influence and uses of technology in business
- Emphasizes technology-based business decision-making
- Identifies the need to forge partnerships between the College and industry
- Focuses on applied scholarship (AACSB defined)
- Leverages the technological competencies of other colleges at Cal Poly

Shared Values
- Honesty and Integrity
- Openness and cooperation
- Mutual respect and collegiality
- Students as individuals
- Student-centered teaching and learning
- Quality teaching
- Flexible thinking and innovation
- Learn-by-doing
- Diversity in people and ideas
- Quality scholarship

The BS degree program and the graduate programs in Business Administration are accredited by the AACSB—The International Association to Advance Collegiate Schools of Business. The BS degree program in Industrial Technology is accredited by the National Association of Industrial Technology (NAIT). The objective of accreditation is to foster high quality educational programs.

The college is organized into seven areas: Accounting, Economics, Finance, Industrial Technology, Marketing, Management and Graduate Management Programs. This organizational structure allows for programs of study that blend broad-based knowledge of the functional disciplines of Business and Economics with an in-depth study of particular discipline(s).

The college's educational philosophy follows the Cal Poly tradition—that of enlisting maximum student involvement in the learning process through case analysis, special projects, internships, computer simulations and other learn-by-doing exercises. The college has state-of-the-art computer facilities which are available to students to meet their coursework needs. Educational programs are designed to challenge highly motivated students to become tomorrow's socially responsible business leaders through a learn-by-doing technology oriented education. The curricula include general education requirements and specialized studies in the student's major field. Optional areas of concentration within each major enable the student to select the program most closely suited to the chosen career field.

Business Honor Society

Beta Gamma Sigma is the honor society serving business programs accredited by AASCB International – The Association to Advance Collegiate Schools of Business. Membership in Beta Gamma Sigma is the highest recognition a business student anywhere in the world can receive in a business program accredited by AASCB International. Only 7% of the junior class and 10% of the senior class are invited to join. The mission of Beta Gamma Sigma is to encourage and honor academic achievement in the study of business and to foster personal and professional excellence among its members. For further information, please contact the Dean's Office, 805 756-2705.

Advising Center

Kris McKinlay, Director of Advising Center
Charity Romano, Academic Advisor
Business Bldg. (03), Room 100; 805 756-2601

The Orfalea College of Business Advising Center provides academic advising services to all majors within the College in conjunction with each student's faculty advisor.

Faculty advisors provide information on course content, career planning, and specific areas of the concentration. Students may also seek information concerning graduate schools, co-ops, internships, and future jobs. Faculty advisors are assigned by the student's area office or by the student's concentration.

The Advising Center provides advice and clarification of university and college policies and procedures. Academic and administrative progress of all Orfalea College of Business undergraduate students is monitored within the Advising Center. Students who are interested in pursuing minors in Business, Economics, Industrial Technology, or Packaging are also assisted here. Most student-related forms (such as curriculum substitution forms, withdrawal forms, and change of major forms) are processed in the Advising Center. Advisors are available by appointment to assist students with course scheduling. A majority of questions concerning general education and breadth and interpretation of transfer credit may be answered in the Advising Center upon the student's receipt of the initial evaluation provided to the student by the Evaluations Office.

Each Orfalea College of Business student has a file in the Advising Center which is maintained in order to track the student's progress. Student evaluations, file information, and the student information database are used for general advising purposes including: tracking student degree progress, monitoring student's grade point averages, verifying satisfaction of the Graduation Writing Requirement and United States Cultural Pluralism requirement, and on-course pre-graduation completion checks.

This office houses a wealth of information for students, including curriculum sheets and flowcharts for all undergraduate College of Business majors, information on minors, articulation agreements, petitions and substitution forms, faculty directory information (including office numbers, office hours, telephone numbers, and e-mail addresses) and updates on course offerings and finals schedules. The Advising Center staff is available to answer most university and college questions or refer the student to the appropriate service on campus.

Transfer Students

Transfer students to the Orfalea College of Business should refer to the curricula listed for the appropriate major. Please note that all lower division courses may be completed at most California Community Colleges. Full time students who have successfully completed all lower division courses prior to transferring to the College of Business can usually anticipate graduating in six quarters.
Bachelor of Science Degree Programs

BS Business Administration
BS Economics
BS Industrial Technology

BS BUSINESS ADMINISTRATION

The undergraduate business program provides students with the knowledge and the analytical skills essential for employment in all sectors of business, industry, governmental and non-profit organizations. Graduates of the business program:

- will understand the fundamentals of how a successful enterprise operates, and
- will have sufficient depth in an area of study to begin a successful career by providing immediate value to an organization.

Listed below are some ways that the business administration degree program is aligned with the mission statement:

...challenges highly motivated students:

- The program requires a clear understanding of each of the functional disciplines of business administration.
- The program requires students to understand how strategic decisions must be made within the context of changing technological, social, economic and political environments.
- The program trains students to engage in abstract logical thinking and critical analysis.
- The program demonstrates how knowledge from various functional disciplines must be integrated in a cross-disciplinary and holistic fashion to reach managerial solutions.
- The program requires students to present, discuss, and defend views effectively through written and oral means.

...to become tomorrow’s socially responsible business leaders:

- The program helps students achieve maximum personal development, to prepare for entry into the business world, and to foster citizenship, leadership, ethical decision-making and constructive community living.
- The program requires students to explore the responsibilities that businesses should undertake to address cultural, social and environmental values.
- The program develops respect for different cultures and business practices in international environments.
- The program encourages students to make positive contributions to society and to minimize negative social impacts from business operations.

...through a learn-by-doing, technology-oriented education:

- The program requires students to understand current and emerging technologies in all business disciplines, and to recognize their impact on the organization and society.
- The program focuses attention on the operations of technology-oriented business.
- The program enlists maximum student involvement in the learning process through case analysis, senior projects, computer simulations, business plans and other learn-by-doing exercises.
- The program trains students to locate, obtain, organize and report information from human, print and electronic sources.
- The program encourages learning outside the classroom through internships and student club activities.

Opportunities for specialization are provided for students preparing for careers in accounting, financial management, managing people and technology, information systems, marketing management, entrepreneurship and small business, and international business.

The Business Administration degree program consists of five components: Major, Concentration, Support, General Education, and Electives.

- 60 units upper division
- 2.0 GPA
- Satisfies General Education requirement

Note: No major, support or concentration courses may be taken as credit/no credit.

MAJOR COURSES

- BUS 207 Legal Responsibilities of Business 4
- BUS 214 Financial Accounting 4
- BUS 215 Managerial Accounting 4
- BUS 342 Fundamentals of Corporate Finance 4
- BUS 346 Principles of Marketing 4
- BUS 387 Organizational Behavior 4
- BUS 391 Information Systems 4
- BUS 401 Seminar in General Mgmt and Strategy 4
- BUS 404 Governmental and Social Influences 4
- Select one of the following: 4
 IT 326, 330, 341 371
 International business. Select one: 4
 BUS 302, 303, 402, 407, 410, 427, 433, 446; ECON 330.
- Senior Project. Select: 4
 BUS 461 and BUS 462, or BUS 463 or BUS 464 4
- Concentration courses (see following pages) 24-28
- 72-76
SUPPORT COURSES
ECON 221 Microeconomics 4
ECON 222 Macroeconomics (D2)* 4
ECON elective (300-400 level) 4
MATH 221 Calculus for Business and Econ (B1)* 4
STAT 251 Statistical Inference-Mgmt. I (B1)* 4
STAT 252 Statistical Inference-Mgmt. II 5

GENERAL EDUCATION (GE)
72 units required; 12 units are in Support.
→See page 56 for complete GE course listing.
→Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
A1 Expository Writing .. 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing........... 4

Area B Science and Mathematics (8 units)
B1 Mathematics/Statistics * 8 units in Support ... 0
B2 Life Science ... 4
B3 Physical Science .. 4
B4 One lab taken with either a B2 or B3 course

Area C Arts and Humanities (20 units)
C1 Literature .. 4
C2 Philosophy .. 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4
Area C elective (Choose one course from C1-C4) 4

Area D/E Society and the Individual (16 units)
D1 The American Experience (40404) 4
D2 Political Economy * 4 units in Support 0
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective 4

Area F Technology Elective (upper division)
(4 units).. 4

ELECTIVES ... 19-23

Accounting

Business Bldg. (03), Room 403
805 756-1384

Area Chair (Position Vacant)
Dan Bertozzi, Jr. Jap Efendi
Lee B. Burgunder Garo Kalfayan
Chris Carr ... Earl C. Keller
Janice L. Carr Kathryn A. S. Lancaster
Douglas C. Cerf Charles R. (Tad) Miller
Li Dang ... Steven Mintz

Accounting is known as the "language of business" and is fundamental to understanding the operations of organizations. It provides information for making sound and informed business decisions. The Accounting Area works closely with the accounting profession to help ensure curriculum relevancy and technical competency.

ACCOUNTING CONCENTRATION

The Accounting Concentration prepares students for careers in public accounting (tax and audit), private industry, government, and not-for-profit organizations.

BUS 319 Accounting Information Systems............... 4
BUS 320 Taxation of Business Entities............... 4
BUS 321 Intermediate Accounting I 4
BUS 322 Intermediate Accounting II 4
BUS 420 Advanced Financial Reporting
or BUS 425 Auditing 4
BUS 429 Accounting Process Analysis 4
Four units of electives from any 400 level
Accounting electives 4

2007-2009 Cal Poly Catalog
The Finance Area’s mission is threefold: First, to provide all Business students with an understanding of the financial principles which are essential to their success in the business world. Second, to provide students concentrating in Finance a rigorous, coherent, real-world-based, and up-to-date curriculum which prepares them for rewarding careers in Finance. Third, the Finance Area provides coursework in support of other majors and concentrations both within and outside the Orfalea College of Business.

Many of the classes are taught in the Financial Analysis Resource Center, a special-purpose classroom with Bloomberg and Reuters data terminals, scrolling ticker tape and DataWall display of prices of selected stocks. Each workstation is equipped with software which permits students to work on real-world problems, individually and in teams.

FINANCIAL MANAGEMENT CONCENTRATION
This concentration has four required courses, which provide Finance students with fundamentals of asset valuation, and applies these principles to securities as well as business assets. These principles are applied in courses focused on financial markets and institutions, and on corporate finance. Within the Finance curriculum, students can further specialize in one of three tracks, depending upon their career goals: the Financial Services track, including insurance, retirement, and estate planning; the Corporate Finance track; or the Financial Analyst track, working for investment banks, brokerage industry, or the asset management industry. The following are the required course that should be taken in sequence:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 431 Security Analysis and Portfolio Mgmt</td>
<td>4</td>
</tr>
<tr>
<td>BUS 438 Advanced Corporate Finance</td>
<td>4</td>
</tr>
<tr>
<td>BUS 439 Fixed Income Securities and Markets</td>
<td>4</td>
</tr>
<tr>
<td>BUS 443 Case Studies in Finance</td>
<td>4</td>
</tr>
<tr>
<td>Advisor approved electives</td>
<td>12</td>
</tr>
</tbody>
</table>

Total: 28

Management

Area Chair, A. B. (Rami) Shani
Dawn Chandler
Jean-Francois Coget
Rebecca Ellis
Barry Floyd
Colette Frayne
J. Michael Geringer
Kenneth A. Griggs
Kevin Lertwachara
Eldon Y. Li
Patricia A. McQuaid
David A. Peach
William Pendergast
James Sena
Michael W. Stebbins
Rosemary Wild

The Management Area offers coursework in human resource management, information systems, international management, organization behavior, organization theory and operations management, management science, entrepreneurship, and small business management. The area’s objectives include: 1) to provide students with knowledge, skills, and competencies critical to managerial success in small and complex organizations; 2) to prepare students for initial employment and subsequent management career advancement; 3) to help professionally oriented students use theory, concepts, analytical tools, and problem solving techniques; 4) to provide experiences that integrate functional business knowledge; and 5) to prepare students for integrating technology-based solutions in the business environment. The Management Area includes two concentrations: Management and Information Systems.

MANAGEMENT CONCENTRATION
Concentration Co-Coordinators
Rebecca Ellis and A. B. (Rami) Shani

The Management Concentration has five required courses devoted to managing people, processes, and programs. This is an interdisciplinary program that prepares students to manage knowledge workers in both small and large enterprises within a global marketplace. Selected electives support a human resources or program management emphasis or a selected course of study tailored to their particular industry and occupational goals.

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 382 Organizations, People and Technology</td>
<td>4</td>
</tr>
<tr>
<td>BUS 384 Human Resources Management</td>
<td>4</td>
</tr>
<tr>
<td>BUS 407 Managing People in Global Environment</td>
<td>4</td>
</tr>
<tr>
<td>BUS 475 Staffing</td>
<td>4</td>
</tr>
<tr>
<td>BUS 477 Organization Development Programs</td>
<td>4</td>
</tr>
<tr>
<td>Advisor approved electives</td>
<td>8</td>
</tr>
</tbody>
</table>

Select one course from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 386, 471, 472, 473, 478, 483, 488, 489</td>
<td>8</td>
</tr>
</tbody>
</table>

Total: 28
INFORMATION SYSTEMS CONCENTRATION
Concentration Coordinator
Barry Floyd

The Information Systems Concentration is an interdisciplinary program for students who want to analyze, design and implement technology-based solutions for business and industry. With a focus on teamwork and turning theory into practice, the program ensures that students acquire a strong understanding of information systems and the functional areas of business while developing effective interpersonal skills. Students have numerous opportunities to tailor the program to fit their particular interests, including earning a minor in Computer Science or a double concentration in Accounting or Finance. Graduates enjoy exciting career opportunities in business and industry as business analysts, consultants, network administrators, database designers, web developers, and programmers, among many others.

BUS 290 or CSC/CPE 101 or CSC/CPE 237 4
BUS 390 Business Data Structures.................... 4
BUS 393 Database Systems in Business............... 4
BUS 394 Systems Analysis and Design............... 4
BUS 395 Systems Design and Implementation...... 4
Advisor approved electives 8
 Select two courses from the following:
 BUS 491, 493, 494, 496, 498, 499

MARKETING

Area Chair, Norm A. Borin
Jeffrey Danes Teresa (Terri) Swartz
Lynn E. Metcalf Brian Tietje

The objective of the Marketing Area is twofold: 1) to prepare students for rewarding careers in marketing, and 2) to provide non-marketing students with a basic understanding of marketing and its role in business. At the heart of marketing is a customer-focus; the same is true of the Area and its faculty. The marketing faculty is student-oriented and is committed to helping students develop the skills necessary to successfully transition from the academic environment to the business world. The Area offers classes in the undergraduate and graduate degree programs offered through the College and works to tailor its courses to meet student and market place needs.

MARKETING MANAGEMENT CONCENTRATION

The Marketing Management Concentration provides students with a rigorous, analytical understanding of marketing decision-making. Students learn to generate, analyze, interpret, and present the information that organizations need to satisfy and retain customers; build brand equity and maximize return on investment; and develop innovative products and services.

The marketing concentration provides students with knowledge of a wide range of tools and techniques from fields as diverse as sociology, psychology, anthropology, information technology, engineering, and economics. Students learn to leverage information, technology, and knowledge to support innovation in virtually all areas of business, non-profit enterprises, and government.

As a discipline with broad applications, the Marketing Management Concentration offers flexible career paths and work styles. Graduates are in demand for positions in marketing intelligence, product development, product management, advertising, sales, and purchasing.

BUS 418 Listening to the Customer 4
BUS 419 Strategic Marketing Measurement 4
BUS 451 Product Development and Launch 4
BUS 452 Product Management 4
BUS 454 Developing/Presenting Marketing Projects 4
BUS 455 Marketing Strategy 4

2007-2009 Cal Poly Catalog
ENTREPRENEURSHIP and SMALL BUSINESS CONCENTRATION
This interdisciplinary concentration provides an environment in which students foster their entrepreneurial spirit and acquire the knowledge and skills to launch new ventures in start-up and existing organizations, domestic and international environments, and in for-profit and non-profit contexts.

BUS 310 Introduction to Entrepreneurship 4
BUS 436 Entrepreneurial Finance 4
BUS 451 Product Development and Launch 4
BUS 488 Planning and Managing New Ventures 4
Electives selected from: .. 12
 BUS 308, 311, 402, 430, 470, 478, 494

INTERNATIONAL BUSINESS CONCENTRATION
This interdisciplinary concentration provides the student the opportunity to develop proficiency in the subject matter basic to an occupational goal in business of international/multinational operations. It provides cultural understanding, business knowledge and analytical skill central to international business contexts.

BUS 302 International and Cross Cultural Mgmt 4
BUS 402 International Business Management 4
BUS 403 Adv. Seminar in International Mgmt 4
Electives selected from the following courses: 16
 BUS 303, 311, 405, 406, 407, 410, 433, 446;
 ECON 303, 304, 325, 401

Students have the option of choosing one of the previously mentioned concentrations or 28 units of advisor approved electives selected according to individual talents and interests. This option allows students to blend courses from a variety of areas to achieve specific career objectives. Students planning to go to law school generally select the independent course of study.
The mission of the economics program is to educate students in the models and problem solving tools of economics. The degree program:

- instructs students on the analytical tools of economics and the application of these tools to business and social problems,
- instructs students on the economic structure of our society and its interdependence with the global marketplace,
- instructs students about the economic forces that affect business, the natural environment, technology and political decision-making,
- instructs students on the role of business, government and households in our economy,
- prepares students for successful careers in business, government and non-profit organizations, and
- prepares students for graduate studies in business, economics, law and public administration.

CONCENTRATIONS

Students may select one of the following concentrations or advisor approved electives.

Business Concentrations. Choose from accounting, entrepreneurship, finance, international business, management and marketing.

Quantitative Economics. Emphasizes the skills needed to analyze market data in fast-paced industries such as manufacturing, financial services, and advertising, and provides the technical training required to engage in consulting. There is also a continued need for quantitative economic analysis by lawyers, accountants, engineers, health service administrators, urban planners, and local, national, and international government agencies. The concentration prepares students for jobs that entail forecasting, market assessment, economic feasibility studies, commodity pricing and data analysis, and provides a solid foundation for graduate study in economics and business.

Real Estate Economics. Provides a program of study that focuses on emerging trends and issues in real estate markets. Students learn to apply economic techniques to real estate markets, and to describe, explain, and predict patterns of real estate prices, building production, and real estate consumption. The program prepares real estate professionals for public sector and private industry jobs in real estate analysis, appraisal, corporate asset management, development, insurance, and investment.

Advisor Approved Electives. The most fundamental and enduring strength of economics is that it provides a logical way of looking at a variety of problems. Economic tools can be applied to the analysis of costs and benefits, crime, the environment, health, labor, law, politics and other fields. The study of economics can be preparation for careers in engineering cost-benefit analysis, environmental protection, health administration, labor representation, law, and public administration. The Advisor Approved Electives offers the opportunity for students to design a program of study to emphasize individual talents and interests.

BS ECONOMICS

60 units upper division GWR
2.0 GPA USCP

* = Satisfies General Education requirement
Note: No major, support or concentration courses may be taken as credit/no credit.

MAJOR COURSES

ECON 221 Microeconomics 4
ECON 222 Macroeconomics (D2) * 4
ECON 311 Intermediate Microeconomics 4
ECON 313 Intermediate Macroeconomics 4
ECON 461, 462 Senior Project I, II or
ECON 464 Applied Senior Project 4
ECON electives (300-400 level) 12
ECON electives (400 level) 16
Concentration or advisor approved electives 28

76

SUPPORT COURSES

BUS 207 Legal Responsibilities of Business 4
BUS 214 Financial Accounting 4
BUS 215 Managerial Accounting 4
1 MATH 221 Calculus-Business & Econ. or
MATH 141, 142 Calculus I, II (B1)* 4/8
2 STAT 251, 252 Statistical Inference-Mgmt I, II
(B1)* or STAT 301, 302 Statistics I, II 9/8
24/29

1 Students pursuing the Quantitative Economics concentration should take MATH 141 and 142 instead of MATH 221.
2 Students pursuing the Quantitative Economics concentration should take STAT 301 and 302 instead of STAT 251 and 252.
GENERAL EDUCATION (GE)
72 units required; 12 units are in Major/Support.
→See page 56 for complete GE course listing.
→Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
- A1 Expository Writing .. 4
- A2 Oral Communication .. 4
- A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (8 units)
- B1 Mathematics/Statistics * 8 units in Support 0
- B2 Life Science ... 4
- B3 Physical Science ... 4
- B4 One lab taken with either a B2 or B3 course

Area C Arts and Humanities (20 units)
- C1 Literature .. 4
- C2 Philosophy ... 4
- C3 Fine/Performing Arts 4
- C4 Upper-division elective 4
- Area C elective (Choose one course from C1-C4) 4

Area D/E Society and the Individual (16 units)
- D1 The American Experience (40404) 4
- D2 Political Economy * 4 units in Major 0
- D3 Comparative Social Institutions 4
- D4 Self Development (CSU Area E) 4
- D5 Upper-division elective 4

Area F Technology Elective (upper division) (4 units) 4

ELECTIVES .. 20/15
.. 180

CONCENTRATION OR ADVISOR APPROVED ELECTIVES (select one)

Quantitative Economics Concentration
- ECON 339 Econometrics 4
- ECON 408 Mathematical Economics 4
Electives. Select from the following or advisor approved courses: 20
- ECON 340, 403, 404, 405, 406, 431, 432;
- BUS 431, 439, 442, 444;
- MATH 143, 206, 241, 242, 244, 248, 304, 306,
 344, 406, 408, 409, 412, 417, 418, 431, 432,
 437, 451;
- STAT 323, 324, 325, 330, 416, 419, 425, 426,
 427, 430

Real Estate Economics Concentration
- ECON 424 Monetary Economics 4
- ECON 434 Urban Economics 4
- ECON 435 Economics of Land and Water 4

Electives. Select from the following or advisor approved courses: 16
- AGB 310, 315, 324, 326;
- BUS 320, 409, 434, 435, 439;
- CM 475;
- CRP 446;
- ECON 410, 431, 432

Advisor Approved Electives
Students select courses with advisor approval 28

Students are required to complete seven 300-400 level courses. At least three must be 300-400 level ECON. Four courses may be 300-400 level courses offered outside of the economics program.

Students must obtain prior approval for their program of study from the area coordinator of economics
Industrial Technology

Business Bldg. (03), Room 405
805 756-2676

Area Chair: Lou Tornatzky
Clifford S. Barber
Manocher Djassemi
Eric O. Olsen
Anthony J. Randazzo
Jagjit Singh
Keith Vorst

Industrial Technology prepares individuals to be effective technical managers and entrepreneurial leaders in a rapidly-changing technological and global economy. The baccalaureate curriculum is particularly suited for careers that involve working with people and technology concurrently. It includes instruction in electro-mechanical systems, industrial materials and processes, and quality and safety management that are then applied to technology-based business problems in packaging, value chain management, and technology entrepreneurship. Students take complementary courses in physics, chemistry, calculus and statistics. The curriculum also includes a business core with accounting, economics, marketing, and information systems.

The themes of insuring quality, enabling innovation, and enhancing value are woven through the curriculum.

Listed below are some ways the Industrial Technology degree program is aligned with the OCOB mission statement:

- The program provides both university general education on issues of technological change and a broad foundation in technologies that are key to industrial management problem-solving in a variety of work environments.
- The program prepares students to be effective decision makers in developing new products and enterprises, ensuring product integrity through packaging, and managing production and distribution systems that maximize customer value. Embedded in each of these application areas is a strong bias toward building sustainable businesses, products, and processes that provide economic opportunities for people and are environmentally responsible.
- The program emphasizes a continuous improvement mindset that includes attention to the interface between people and technology, change management, the development of lean processes that eliminate waste and fosters ethical leadership.
- The program’s philosophy of instruction is consistent with Cal Poly’s “learn-by-doing” philosophy and the conviction that effective technical managers must have practice in peer leadership, team membership, and skillful communication with individuals and groups.

BS INDUSTRIAL TECHNOLOGY

- **60 units upper division**
- **GWR**
- **2.0 GPA**
- **USCP**

* = Satisfies General Education requirement
Note: No major, support or concentration courses may be taken as credit/no credit.

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 137 Electrical/Electronic Systems</td>
<td>4</td>
</tr>
<tr>
<td>IT 150 Industrial Power Systems</td>
<td>4</td>
</tr>
<tr>
<td>IT 233 Decision Making/Prob Solving using CAD</td>
<td>4</td>
</tr>
<tr>
<td>IT 260 Manufacturing Processes</td>
<td>4</td>
</tr>
<tr>
<td>IT 326 Product Evaluation</td>
<td>4</td>
</tr>
<tr>
<td>IT 329 Industrial Materials</td>
<td>4</td>
</tr>
<tr>
<td>IT 330 Fundamentals of Packaging</td>
<td>4</td>
</tr>
<tr>
<td>IT 341 Plastics Processes and Applications (F)*</td>
<td>4</td>
</tr>
<tr>
<td>IT 403 Quality Systems Management</td>
<td>4</td>
</tr>
<tr>
<td>IT 407 Applied Industrial Product Design, Fabrication and Sales</td>
<td>4</td>
</tr>
<tr>
<td>IT 408 Paper and Paperboard Packaging</td>
<td>4</td>
</tr>
<tr>
<td>IT 410 Operations Planning and Control</td>
<td>4</td>
</tr>
<tr>
<td>IT 411 Industrial Safety and Quality Program Leadership</td>
<td>4</td>
</tr>
<tr>
<td>IT 428 Commercialization of New Technologies</td>
<td>4</td>
</tr>
<tr>
<td>IT 475 Packaging Performance Testing</td>
<td>4</td>
</tr>
</tbody>
</table>

Choose two of the following three courses:
- IT 402, 435, 406
- Senior Project: IT 461, 462 Senior Project I, II or IT 464 Applied Industrial Technology Senior Project Seminar
- Advisor approved electives

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 212 Financial Acctg for Nonbusiness Majors</td>
<td>4</td>
</tr>
<tr>
<td>BUS 346 Principles of Marketing</td>
<td>4</td>
</tr>
<tr>
<td>BUS 391 Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 110 World of Chemistry - Essentials or CHEM 111 Survey of Chemistry (B3 & B4)*</td>
<td>4/5</td>
</tr>
<tr>
<td>Econ 201 Survey of Economics (D2)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 141 Calculus I or MATH 221 Calculus for Business and Economics (B1)*</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 121, 122 College Physics I, II</td>
<td>4,4</td>
</tr>
<tr>
<td>STAT 217 Intro to Statistical Concepts and Methods or STAT 218 Appl. Statistics-Life Sciences (B1)*</td>
<td>4</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

72 units required; 20 units are in Major and Support.
- See page 56 for complete GE course listing.
- Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
</tbody>
</table>

2007-2009 Cal Poly Catalog
Area B Science and Mathematics (4 units)
- B1 Mathematics/Statistics * 8 units in Support... 0
- B2 Life Science .. 4
- B3 Physical Science * 4 units in Support......... 0
- B4 One lab taken with either a B2 or B3 course

Area C Arts and Humanities (20 units)
- C1 Literature ... 4
- C2 Philosophy ... 4
- C3 Fine/Performing Arts 4
- C4 Upper-division elective 4
- Area C elective (Choose one course from C1-C4) 4

Area D/E Society and the Individual (16 units)
- D1 The American Experience (40404) 4
- D2 Political Economy * 4 units in Support......... 0
- D3 Comparative Social Institutions 4
- D4 Self Development (CSU Area E) 4
- D5 Upper-division elective 4

Area F Technology Elective (upper division)
- * 4 units in Major .. 0

ELECTIVES .. 11/12

	180
Academic Minors

Business
Economics

Business Minor

College Advising Center
Business Bldg. (03), Room 100
805 756-2601

This minor provides non-business students with an introduction to the body of knowledge expected of persons pursuing careers in business. A business minor gives a student a competitive edge when applying for certain jobs, by providing concepts, tools and skills which enhance one's progress in a career. In addition, students who plan on a career in the non-business sector gain a greater appreciation of the challenges and opportunities facing business, now and in the future.

Enrollment is limited and selection is made based upon the applicant's performance in the prerequisite courses listed below. After admission to the minor, the student must complete the remaining required courses while satisfying specified academic performance standards in all minor courses.

Prerequisites. The following courses must be taken before admission to the minor.

BUS 207 Legal Responsibilities of Business (4)
BUS 214 Financial Accounting (4)
ECON 221 Microeconomics (4)
ECON 222 Macroeconomics (D2) (4)
MATH 221 Calculus for Business and Economics (B1) (4)
STAT 251 Statistical Inference for Management I (B1) (4)
STAT 252 Statistical Inference for Management II (B1) (5)

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 215 Managerial Accounting</td>
<td>4</td>
</tr>
<tr>
<td>BUS 342 Fundamentals of Corporate Finance</td>
<td>4</td>
</tr>
<tr>
<td>BUS 346 Principles of Marketing</td>
<td>4</td>
</tr>
<tr>
<td>IT 371 Decision Making in Supply Chain,</td>
<td>4</td>
</tr>
<tr>
<td>Services, and Project Management</td>
<td></td>
</tr>
<tr>
<td>BUS 387 Organizational Behavior</td>
<td>4</td>
</tr>
<tr>
<td>BUS 391 Management Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
</tr>
</tbody>
</table>

Economics Minor

Economics
Business Bldg. (03), Room 407
805 756-2783

This minor is designed to give students from other majors a general competency in economics. Students are encouraged to meet with the advisor of the Economics Minor to develop a course of study that complements their major curriculum. For more information, contact the Economics Area office.

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 221 Microeconomics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 222 Macroeconomics (D2)</td>
<td>4</td>
</tr>
<tr>
<td>ECON 311 Intermediate Microeconomics</td>
<td>4</td>
</tr>
</tbody>
</table>

Electives

12 units of upper division economics courses, 8 units of which must be at the 400 level.

Environmental Studies Minor

Please see the College of Science and Mathematics for more information on this interdisciplinary minor.
Packaging Minor
Industrial Technology
Business Bldg. (03), Room 405
805 756-2676

The purpose of this interdisciplinary minor is to complement the student's degree major with a planned curriculum in packaging. The program is designed to capitalize on theories and skills learned in other disciplines thereby uniquely preparing students for success as packaging professionals in positions ranging from highly technical research and development through purchasing, production, sales and management.

Students gain the skills needed for the design of package forms and graphics, the specifications of materials and machinery to be used, the evaluation of package systems, as well as the planning and coordinating of packaging requirements. These specialized skills result from an integration of knowledge gained through the packaging curriculum with that of the major discipline. A significant understanding of packaging issues and their impact on the industry is also gained.

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110 World of Chemistry - Essentials or CHEM 111 Survey of Chemistry (B3 & B4)</td>
<td>4/5</td>
</tr>
<tr>
<td>FSN 230 Elements of Food Processing or FSN 334 Food Packaging</td>
<td>4/3</td>
</tr>
<tr>
<td>IT 330 Fundamentals of Packaging</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 104 Introductory Physics (B3) or PHYS 121 College Physics I (B3&B4)</td>
<td>4</td>
</tr>
</tbody>
</table>

Advisor approved electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSN 335 Food Quality Assurance</td>
<td>4</td>
</tr>
<tr>
<td>FSN 354 Packaging Function in Food Processing</td>
<td>3</td>
</tr>
<tr>
<td>GRC 211 Substrates, Inks and Toners</td>
<td>4</td>
</tr>
<tr>
<td>GRC 337 Consumer Packaging</td>
<td>3</td>
</tr>
<tr>
<td>IT 341 Plastic Processes and Applications</td>
<td>4</td>
</tr>
<tr>
<td>IT 408 Paper and Paperboard Packaging</td>
<td>4</td>
</tr>
<tr>
<td>IT 409 Machinery for Packaging</td>
<td>4</td>
</tr>
<tr>
<td>IT 435 Package Development</td>
<td>4</td>
</tr>
<tr>
<td>IT 457 Radio Frequency Identification</td>
<td>4</td>
</tr>
<tr>
<td>IT 475 Packaging Performance Testing</td>
<td>4</td>
</tr>
</tbody>
</table>

26-29

Industrial Technology Minor
Industrial Technology
Business Bldg. (03), Room 405
805 756-2676

This minor is an interdisciplinary program. Students learn about the technical, social and business issues related to the use of new technology and how the technology is integrated into corporate operations. The minor appeals to students who are majoring in nontechnical disciplines.

Technology Issues (Required course).......................... 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 311 Managing Technology in the International Legal Environment</td>
<td>4</td>
</tr>
</tbody>
</table>

Materials and Processes electives (select three)......... 12

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 137 Electrical/Electronic Systems</td>
<td>4</td>
</tr>
<tr>
<td>IT 150 Industrial Power Systems</td>
<td>4</td>
</tr>
<tr>
<td>IT 233 Decision Making and Problem Solving Using CAD</td>
<td>4</td>
</tr>
<tr>
<td>IT 260 Manufacturing Processes</td>
<td>4</td>
</tr>
<tr>
<td>IT 329 Industrial Materials</td>
<td>4</td>
</tr>
<tr>
<td>IT 330 Fundamentals of Packaging</td>
<td>4</td>
</tr>
<tr>
<td>IT 336 Textiles Technology</td>
<td>4</td>
</tr>
<tr>
<td>IT 341 Plastics Processes and Applications</td>
<td>4</td>
</tr>
<tr>
<td>IT 411 Industrial Safety and Quality Program Leadership</td>
<td>4</td>
</tr>
</tbody>
</table>

Management and IT elective (select one).................. 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 371 Decision Making in Supply Chain, Services, and Project Management</td>
<td>4</td>
</tr>
<tr>
<td>BUS 387 Organizational Behavior</td>
<td>4</td>
</tr>
<tr>
<td>IT 403 Quality Systems Management</td>
<td>4</td>
</tr>
<tr>
<td>IT 410 Operations Planning and Control</td>
<td>4</td>
</tr>
<tr>
<td>IT 428 Commercialization of New Technologies</td>
<td>4</td>
</tr>
</tbody>
</table>

Humanities and Social Issues (select one)............... 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM 303 Values and Technology</td>
<td>4</td>
</tr>
<tr>
<td>IME 320 Human Factors and Technology</td>
<td>4</td>
</tr>
</tbody>
</table>

24

2007-2009 Cal Poly Catalog
Graduate Programs

Master of Business Administration

Chris Carr, Associate Dean of Graduate Programs and Faculty Development
Business Bldg. (03), Room 409
805 756-2637
mba@calpoly.edu
http://cob.calpoly.edu/gradProgram

Programs of Study/Specializations Available
MBA – General Management Specialization
MBA – Agribusiness Specialization
MBA – Graphic Communication Document Systems Management Specialization
MBA – Architectural Management Track
MBA – Landscape Architectural Management Track

General Characteristics
Cal Poly's MBA programs are designed to prepare students to enter successful management positions in industry, government, and not-for-profit organizations. The programs give graduates a broad management background. Cal Poly’s MBA programs are 60 to 64 units in length, depending on specialization, and consist of required courses and advanced elective courses.

The primary objectives of the MBA programs are to:
- provide students with a broad-based understanding of fundamental concepts, principles and practices in multiple business disciplines
- instill in students an understanding of business dynamics for effective responses to the changing global business environment
- help students acquire skills in formulating, analyzing and implementing significant business decisions
- develop in students the skills that are necessary to work with other people in effective domestic and/or multinational organizations in an ethical and socially responsible manner

Prerequisites
Students are required to possess a bachelor's degree from an accredited program. The MBA program is specifically designed to provide the essential business knowledge to students without prior business background. Therefore, no specific prerequisite courses are required.

Admission/Acceptance Requirements
Admission to the MBA programs is based upon:
- successful completion of an accredited undergraduate program of study
- prior academic performance with particular emphasis placed on the last 90 quarter units (60 semester units)
- achievement on the Graduate Management Admission Test (GMAT)
- prior work experience (desirable).

Culminating Experience
In order to satisfy the culminating experience requirement, students must satisfactorily complete a comprehensive examination at the end of GSB 562 or GSB 567. Other courses and/or options may be available, but must be approved in advance by the Associate Dean of Graduate Programs.

PROGRAMS OF STUDY
The MBA – General Management
This program allows students to take electives of particular interest that fit their specific needs or career objectives. The program consists of 36-quarter-units of required courses with the remaining elective units selected from a focused group of advanced courses.

MBA Common Required Courses (36)
GSB 511 Accounting for Managers 4
GSB 512 Quantitative Analysis 4
GSB 513 Organization Behavior 4
GSB 523 Managerial Economics 4
GSB 524 Marketing Management 4
GSB 531 Managerial Finance 4
GSB 533 Aggregate Economic Analysis & Policy 4
GSB 534 Production and Operations Mgmt 4
GSB 562 Seminar in General Mgmt & Strategy or GSB 567 Adv Sem International Business Mgmt or other approved culminating experience 4
Advisor approved electives 24
One elective must satisfy the Orfalea College of Business' international course requirement

60
MBA – Agribusiness Specialization
This specialization is offered in conjunction with the Agribusiness Department in the College of Agriculture, Food and Environmental Sciences. The program is designed for those interested in agribusiness management careers. Graduates are prepared for large farm and ranch management as well as for positions in supporting agribusiness industries such as commodity marketing or food processing.

MBA Common Required Courses (36)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSB 511</td>
<td>Accounting for Managers</td>
<td>4</td>
</tr>
<tr>
<td>GSB 512</td>
<td>Quantitative Analysis</td>
<td>4</td>
</tr>
<tr>
<td>GSB 513</td>
<td>Organization Behavior</td>
<td>4</td>
</tr>
<tr>
<td>GSB 523</td>
<td>Managerial Economics</td>
<td>4</td>
</tr>
<tr>
<td>GSB 524</td>
<td>Marketing Management</td>
<td>4</td>
</tr>
<tr>
<td>GSB 531</td>
<td>Managerial Finance</td>
<td>4</td>
</tr>
<tr>
<td>GSB 533</td>
<td>Aggregate Economic Analysis & Policy</td>
<td>4</td>
</tr>
<tr>
<td>GSB 534</td>
<td>Production and Operations Mgmt</td>
<td>4</td>
</tr>
<tr>
<td>GSB 562</td>
<td>Seminar in General Mgmt & Strategy</td>
<td>4</td>
</tr>
</tbody>
</table>

Specialization Required Courses (20)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGB 514</td>
<td>Agribusiness Managerial Leadership</td>
</tr>
<tr>
<td>AGB 539</td>
<td>Graduate Internship in Agriculture</td>
</tr>
<tr>
<td>AGB 543</td>
<td>Agribusiness Policy/Program Analysis</td>
</tr>
<tr>
<td>AGB 554</td>
<td>Food System Marketing</td>
</tr>
<tr>
<td>AGB 555</td>
<td>Technological and Economic Change in Agribusiness</td>
</tr>
</tbody>
</table>

Advisor approved electives
<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

One elective must satisfy the Orfalea College of Business’ international course requirement

64

MBA – Architectural Management Track
This program is available only to those students who are enrolled in Cal Poly's Bachelor of Architecture (BArch) program. During the fifth/final year of the architecture program, students may request permission to enroll in MBA courses. See page 138 for additional information.

MBA – Landscape Architecture Management Track
This program is available only to those students who are currently enrolled in Cal Poly's Bachelor of Landscape Architecture (BLA) program. During the fifth/final year of the landscape architecture program, students may request permission to enroll in MBA courses. See page 147 for additional information.

Option to Concurrently Pursue MBA & Another Master's Degree
The Orfalea College of Business permits students to develop an individualized program of study that incorporates the required elements of two distinct Cal Poly graduate degree programs. This option offers graduate students the opportunity to simultaneously pursue an MBA degree in the Orfalea College of Business and an MA or MS degree in one of Cal Poly's other colleges.

To participate in this option, students must apply to, meet the qualifications for, and be accepted into each program separately. Students must first apply for formal admission to one specific Cal Poly graduate program such as the MBA program. After enrollment in a specific graduate program, the student must apply to, meet the qualifications for, and be accepted into the second program. The two degrees must be awarded in the same quarter.

Depending upon the combination of degrees pursued, students may be permitted to substitute courses in the other graduate degree program for similar courses in the MBA program, thereby reducing the overall number of units. Such substitutions must be approved in advance by the OCOB Associate Dean of Graduate Programs and generally are limited to a maximum of three courses.
Engineering Management Program, MBA & MS Engineering

Chris Carr, Associate Dean of Graduate Programs and Faculty Development
Business Bldg. (03), Room 409
805 756-2637
mba@calpoly.edu
http://cob.calpoly.edu/gradProgram

The dual-degree Engineering Management Program (EMP) is an interdisciplinary program linking the MBA and MS in Engineering degree programs. It is a cooperative effort between the Orfalea College of Business and the Cal Poly College of Engineering (Industrial and Manufacturing Engineering Department). Students are required to have a prerequisite degree in engineering, computer science, or equivalent technical degree to be admitted to both the College of Engineering and the Orfalea College of Business, and to be enrolled in both degree programs. Successful participants are awarded both MBA and MS in Engineering degrees, each with a specialization in Engineering Management.

The mission of the EMP is to develop high quality industry-ready graduates who will be facilitators of change and integrators of engineering, business, and people issues.

The three major objectives of this program are to:

1) integrate knowledge and skills from engineering and business disciplines for effective responses to rapidly changing technological and business environments;
2) prepare engineers for effective participation in the management of technology, management of technology-based organizations, and management of technological change; and
3) take advantage of the unique background of program participants and the unique strengths of Cal Poly.

Prerequisites
Students are required to possess a bachelor's degree, from an accredited program in engineering, computer science, or equivalent technical degree.

Admission/Acceptance Requirements
Admission to the EMP is based upon:
- successful completion of an accredited undergraduate program of study
- prior academic performance with particular emphasis placed on the last 90 quarter units (60 semester units)
- achievement on the Graduate Management Admission Test (GMAT) and the Graduate Record Examination Test (GRE)
- prior work experience (desirable).

Culminating Experience
In order to satisfy the culminating experience requirement, students must satisfactorily complete a comprehensive examination at the end of GSB 562 or GSB 567 and satisfactorily complete a comprehensive project, IME 596 or design project/thesis, IME 599. Other courses and/or options may be available, but must be approved in advance by the Orfalea College of Business Associate Dean of Graduate Programs and by the College of Engineering, Engineering Management Program Advisor.

Required courses (62)
- GSB 511 Accounting for Managers .. 4
- GSB 513 Organization Behavior .. 4
- GSB 523 Managerial Economics ... 4
- GSB 524 Marketing Management .. 4
- GSB 531 Managerial Finance ... 4
- GSB 533 Aggregate Economic Analysis & Policy 4
- GSB 562 Seminar in General Mgmt & Strategy or GSB 567 Adv Sem International Business Mgmt or other approved culminating experience ... 4
- IME 430 Quality Engineering ... 4
- IME 503 Applied Statistical Methods in Engrg 4
- IME 507 Graduate Seminar .. 4
- IME 556 Technological Project Management 4
- IME 580 Manufacturing Systems .. 4
- IME 596 Internship/Team Project (10) or IME 599 Design Project (Thesis) (9) .. 9/10

College of Engineering approved electives 16-17
Other advisor approved electives 16
One elective must satisfy the Orfalea College of Business' international course requirement ... 90

Formal Study Plan. The Formal Study Plan for this dual degree program must be approved in advance by both the Orfalea College of Business – Associate Dean of Graduate Programs and by the College of Engineering – Engineering Management Program Advisor.
MS Accounting

Eddy Quijano, Director
Graduate Programs in Accounting
Business Bldg. (03), Room 403
805 756-1384

Chris Carr, Associate Dean
Graduate Programs and Faculty Development
Business Bldg. (03), Room 409
805 756-2637
mba@calpoly.edu
http://cob.calpoly.edu/gradProgram

General Characteristics
The MS Accounting program is a one-year academic course of study designed to prepare students for careers in taxation or public accounting. The program is designed to meet the 150-semester-hour (225 quarter-hour) education requirement that the American Institute of Certified Public Accountants (AICPA) adopted to qualify for membership.

The 45-quarter-unit taxation specialization program begins with a three-week intensive session in the summer immediately preceding commencement of the fall quarter and continues through the spring quarter of the following year. The program requires an internship during the winter quarter. The student who successfully completes the internship receives credit for 9 quarter units.

Admission/Acceptance Requirements
Acceptance to the program is based upon an applicant's:

- successful completion of an accredited undergraduate program of study with a minimum of (i) one (1) course in federal taxation and (ii) eight (8) quarter units in accounting or two (2) years of equivalent experience in accounting,
- prior academic performance with particular emphasis placed on performance during the last 90 graded quarter units completed prior to application (or equivalent), and
- achievement on the Graduate Management Admission Test (GMAT).

Application to the program should be submitted by June 1 of the year in which the applicant plans to begin the program. The program director determines whether the applicant's educational background and experience meet the program's requirements for acceptance into the program.

Tuition and Fees
The MS Accounting program is offered through Continuing Education and University Outreach. As such, the program carries a separate tuition and fee schedule available in the Office of the Associate Dean of Graduate Programs, Orfalea College of Business.

Program of Study
The program presently focuses on a specialization in taxation. Students who, prior to admission into the program successfully completed a tax course required as part of the curriculum, must take an advisor-approved elective in lieu of the course successfully taken.

MS Accounting, Specialization in TAX

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSB 529</td>
<td>Effective Communication Skills for Managers</td>
<td>4</td>
</tr>
<tr>
<td>GSA 536</td>
<td>Taxation of Trusts, Estates, and Transfer Taxes</td>
<td>4</td>
</tr>
<tr>
<td>GSA 537</td>
<td>State and Local Taxation</td>
<td>4</td>
</tr>
<tr>
<td>GSA 538</td>
<td>Current Developments in Taxation</td>
<td>4</td>
</tr>
<tr>
<td>GSA 539</td>
<td>Internship</td>
<td>9</td>
</tr>
<tr>
<td>GSA 540</td>
<td>Taxation of Corporations and Partnerships or advisor-approved elective</td>
<td>4</td>
</tr>
<tr>
<td>GSA 546</td>
<td>Tax Research and Administrative Procedures</td>
<td>4</td>
</tr>
<tr>
<td>GSA 548</td>
<td>Advanced Individual Taxation and Tax Planning</td>
<td>4</td>
</tr>
<tr>
<td>GSA 549</td>
<td>Advanced Taxation of Flow-through Entities (includes comprehensive examination)</td>
<td>4</td>
</tr>
<tr>
<td>GSA 550</td>
<td>Advanced Corporate Taxation</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 45 units
General Characteristics

The Master of Science in Industrial and Technical Studies (MS I&TS) program is designed to prepare students for critical "hands-on" positions in companies as operations-based facilitators. The program concentrates on developing graduates who will function successfully in technically focused industrial environments that are characterized by rapid and continual change.

The core of the program offers preparation in business-based decision tools, and technically-focused industrial processes and methods. Additional courses are taken to develop depth in a focus area that is designed to meet the student's career objectives.

Prerequisites

Students are required to possess a bachelor's degree, from an accredited program in industrial technology, engineering or similar technical degree or background.

Admission Requirements

Admission to the MS I&TS program is based upon:
(a) Successful completion of an accredited undergraduate program of study;
(b) Prior academic performance, with particular emphasis placed on performance in the last 90 quarter units (60 semester units);
(c) Achievement on the General Test of the Graduate Record Examination (GRE) or the Graduate Management Admission Test (GMAT); and
(d) Prior work experience (desirable).

Program of Study

The program requires 45 quarter-units with 29 units of core courses and 16 units of electives. These courses collectively provide students with background information and training to:
- utilize business decision tools
- deal successfully with the impact of science and technology on industrial processes and methods
- improve productivity through the use of technology
- commercialize changed and new technologies
- understand and implement the impact of technology on business strategies
- deal with the human and cultural issues that arise in technically focused industrial settings.

Culminating Experience

In order to satisfy the culminating experience requirement, students must satisfactorily complete a comprehensive project at the end of IT 598. Other courses and/or options may be available, but must be approved in advance by the Associate Dean of Graduate Programs.

Required courses (29)

- IT 510 Impact of Science and Technology 4
- IT 512 Improving Productivity through Technology 4
- IT 514 Commercializing Tech. Developments 4
- IT 520 Management of Technology 4
- IT 527 Trends and Issues in Technology 4
- IT 598 Industrial and Technical Studies Project or other approved culminating experience 5

One course from the following 4
- GSB 512, 523, 525, 531, 534

Advisor approved electives 16

Selected from the following list of courses:
- IME 555, IME 575, IME 580; IT 521, IT 522, IT 523; GSB 514, GSB 526, GSB 527, GSB 533, GSB 569, GSB 571, GSB 574, GSB 577, GSB 578, GSB 587 (admission into GSB courses is subject to space availability; students in an MBA program receive priority)
A $2-million gift from alumnus Joseph Cotchett (ENGR ’60) and his wife, Victoria, provides the College of Education with funding for an endowed professorship of educational technology, endowed scholarships, renovation of a teaching lab and other science and math teacher education initiatives.

Educational Technology in the Classroom

Under the guidance of Lou Rosenberg, endowed professor of educational technology, a range of modern tools, from robotics to claymation, are being integrated into K-12 teaching practice. The elementary school student below explores the principles of basic electronics through interactive learn-by-doing projects. On the left, students as young as kindergarten use the tools of digital media to compose interactive artwork, stories, and even short movies.

Photos courtesy of the College of Education and Lou Rosenberg
ACADEMIC DEGREE PROGRAMS
Education MA
 Counseling and Guidance Specialization
 Curriculum and Instruction Specialization
 Educational Leadership and Administration
 Literacy and Reading Specialization
 Special Education Specialization
 Educational Leadership Ed.D.

Cal Poly's credential programs are accredited by the California Commission on Teacher Credentialing (CCTC) to prepare candidates and recommend for the following credentials.

CREDENTIAL PROGRAMS
 Administrative Services
 Agriculture Specialist
 Education Specialist (Mild/Moderate Disabilities)
 Multiple Subject Instruction
 Multiple Subject: Bilingual Cross-cultural Language and Academic Development (BCLAD) Emphasis
 Pupil Personnel Services: School Counseling
 Single Subject: Agriculture Instruction
 Single Subject: Biological Science Instruction
 Single Subject: Chemistry Instruction
 Single Subject: English Instruction
 Single Subject: Mathematics Instruction
 Single Subject: Social Science Instruction
 Single Subject: Physical Education Instruction
 Single Subject: Physics Instruction

VISION, MISSION AND PROGRAMS
Vision: The College of Education develops and supports qualified, competent, and caring education professionals who prepare a diverse student population to become active and thoughtful participants in a democratic society.

Mission: The College of Education leads the campus in an all-university approach to preparing education professionals. These professionals create, assess and modify environments, practices, and policies to foster the achievement of each and every learner; they strive for equity in schools and society; and they are committed to inquiry and professional growth for themselves and the advancement of P-20 education.

College of Education faculty models leadership in its teaching, scholarship, and service through a grounded, reflective learn-by-doing approach and through sustained collaborations with its education partners — P-12 schools, families, community colleges, universities, and local, state, and national agencies.

Programs: The College offers a wide variety of courses and programs leading to careers in education. Common to all programs is a commitment to excellence, to partnerships and collaboration, and to preparation for future educational challenges. As the state's population grows, enrollments in grades P-12 increase and with them the demand for well-prepared teachers, and for specialists in administration, curriculum planning, counseling and special education.

To meet the need for excellent teachers the College seeks talented, creative students who are committed to a long-term career in education and to the improvement of educational processes and institutions.

The College offers programs that lead to a preliminary teaching credential in Multiple Subject or Single Subject Instruction, in Administrative Services, Pupil Personnel Services, or as an Education Specialist. Supplementary and subject matter authorizations are available in a variety of subject areas.

The College offers a Master of Arts in Education degree with specializations in Counseling and Guidance, Curriculum and Instruction, Educational Leadership and Administration, Literacy and Reading, and Special Education.

A Doctor of Education degree (Ed.D.) in Educational Leadership for working professionals is offered by the College in partnership with the Gevirtz Graduate School of Education at the University of California, Santa Barbara. The program is designed to prepare and support exemplary educational leaders in K-16 settings.

Courses in these programs are offered to meet the needs of the students. To accommodate the working professional, courses in some programs are offered during the late afternoons, evenings, weekends, and during the summer.

Stressing the "learn by doing" philosophy, the College provides opportunities for extensive student on-site observation and fieldwork. Cal Poly maintains cooperative relations with the surrounding school districts, and within our service area students can enjoy cross-cultural, city and rural fieldwork.
Teacher Education Division

Division Chair, Elaine Y. Chin
Leonard Davidman Susan L. McBride
Patricia Davidman Shirley J. Magnusson
Anita C. Hernandez Patricia A. Mulligan
Roberta J. Herter Dennis M. Nulman
Donald K. Maas Charlotte Ratzlaff

Affiliated Faculty
The following faculty participate with the College of Education and hold academic rank in a department outside the College of Education:

John Battenburg William C. Kellogg
Michael Black Elsa Medina
Seth Bush Grace Neff
Glen R. Casey Joel Orth
Denise Daniels Jeanne Richison
Susan Duffy Kate J. Riley
Gwen Fisher Johanna Rubba
Robert A. Flores Michael A. Sutliff
Kathleen D. Friend Kevin Taylor
Todd A. Grundmeier Scott Vernon
Ed Himmelblau Wendy Warner
Chance Hoellwarth Raymond F. Zeuschner

INSTRUCTION CREDENTIAL PROGRAMS

Agriculture Specialist
Multiple Subject Instruction
Multiple Subject: Bilingual Cross-cultural Language and Academic Development (BCLAD) Emphasis
Single Subject: Agriculture Instruction
Single Subject: Biological Science Instruction
Single Subject: Chemistry Instruction
Single Subject: English Instruction
Single Subject: Mathematics Instruction
Single Subject: Social Science Instruction
Single Subject: Physical Education Instruction
Single Subject: Physics Instruction

Credential programs consist of coursework and field experiences, including student teaching, that are required to obtain the Preliminary Multiple or Single Subject teaching credentials in California. The teaching credential programs typically take four or five quarters of full-time enrollment, depending on completed prerequisites. Applications are accepted during specific periods at the beginning of each fall, winter and spring quarter. Detailed information about dates and other requirements are available at the College of Education Student Information Center (805-756-2126) or at www.coe.calpoly.edu.

Multiple Subject Teaching
A student may enter the Multiple Subject Credential program as a Cal Poly Liberal Studies undergraduate, as a graduate student, or as a Cal Poly undergraduate in any program leading to a baccalaureate degree. The “Blended” program offers undergraduates in the Liberal Studies major the opportunity to earn a BS degree while also pursuing a teaching credential. The Liberal Studies Blended Program is designed so that students take education related courses in their freshman and sophomore years to help them meet the prerequisites for admission to the program, and begin professional education course work and field experiences during their junior and senior years.

Students applying for the post-baccalaureate Multiple Subject Credential program must have completed a baccalaureate degree. During the program, candidates take educational foundation and methods courses; engage in extensive field experiences, one quarter of part-time student teaching, and a final quarter of full-time student teaching. Upon successful completion of the program, candidates are recommended for a Preliminary Multiple Subject Teaching Credential.

Candidates may also elect to earn a Preliminary Multiple Subject Teaching Credential with a Bilingual (Spanish) emphasis (BCLAD). The Bilingual emphasis requires proficiency in Spanish and additional course work in the foundations and methods for bilingual teaching, and knowledge of the history of Mexico/Latin America. Detailed information for the Multiple Subject Credential and the BCLAD emphasis is available at the College of Education Student Information Center (02-120) or at www.coe.calpoly.edu.

Single Subject Teaching
The Single Subject Teaching Credential is for candidates who wish to teach a specific content area at the secondary level. Single subject candidates must demonstrate subject matter competency by completing a California Commission for Teacher Credentialing approved subject matter course work program in that subject-matter area or provide to the College of Education’s Student Information Center evidence of passing the appropriate California Subject Examinations for Teachers specialty area test(s). Demonstration of subject matter competency must be completed before candidates begin their part-time student teaching experience.

2007-2009 Cal Poly Catalog
A student may enter the Single Subject Credential program as a Cal Poly undergraduate through the Integrated Credential program (as Biology, Chemistry, or Physics majors) or as a post-baccalaureate candidates. The Integrated Credential program allows students to “blend” into a Single Subject Credential program in the College of Education as an undergraduate in their content area. Candidates begin to take their methods classes as part of the requirements for the degree; complete their first student teaching experience, and then, upon completion of the undergraduate degree requirements, complete their credential and second student teaching experience as a graduate candidate in the College of Education.

All Integrated, Cal Poly undergraduates, or off-campus candidates applying to the post-baccalaureate Single Subject program must apply for admission to graduate studies at the university. At the time of admission, students must specify the single subject specialization they are seeking.

During the program, candidates take educational foundation and methods courses; engage in extensive field experiences, complete one quarter of part-time student teaching, and one quarter of full-time student teaching. Upon successful completion of the program, candidates are recommended for a Preliminary Single Subject Credential. Detailed information is available at the College of Education Student Information Center (02-120) or at www.coe.calpoly.edu.

Candidates for the Single Subject teaching credential in Agriculture or the Agricultural Specialist credential complete their preparation program through the Agricultural Education and Communication Department at Cal Poly and should communicate with the department credential advisor for further information or advisement (Dr. Robert Flores, at 805-756-2803 or rflores@calpoly.edu).

NOTE: Credential requirements are subject to change. Please check with program advisors for up-to-date information.

ADMISSION REQUIREMENTS

Details concerning specific requirements are available from the appropriate advisor, the advisement handbook, or at www.coe.calpoly.edu.

The requirements for admission to Cal Poly to pursue a Multiple Subject credential differ slightly from those for the Single Subject credential. However, with the exception of the Liberal Studies “Blended” students, all applicants must first apply for admission to graduate studies in Education at Cal Poly by completing an application at www.csumentor.edu.

Admission to the university does not guarantee admission to either teacher education program. Admission to either Preliminary Credential program requires that each candidate be in at least in their junior year, pass the CBEST, earn a Certificate of Clearance, verify completion of early field experience, and satisfy all other prerequisites for a specific credential program.

To make successful progress through the program, candidates must maintain a B average in all professional education courses, and complete a series of applications (Step I or A, II or B, & III) at specific transition points in the credential program. Check with the credential program advisor, the credential handbook, and www.coe.calpoly.edu to be sure all requirements are completed.

Clear Credential – Fifth Year of Study

California Senate Bill 2042 transferred the granting of clear (advanced) multiple subject and single subject teaching credential recommendations to school district based Induction Programs, or to Fifth Year of Study Programs conducted with California Commission on Teacher Credentialing approved school district-university initiatives. At this writing, Cal Poly does not sponsor a Fifth Year of Study option; Cal Poly does, however, partner with the San Luis Obispo County Induction Program. Graduates obtaining their preliminary credential from Cal Poly should consult the school district employing them, whether in San Luis Obispo County or elsewhere in California, for information about the Induction Program and obtaining the clear credential.

Supplementary and Subject Matter Authorizations

Students are encouraged to complete additional authorizations which can be added to Preliminary Multiple and Single Subject credentials at the time of recommendation. One example of a Supplementary Authorization is a three course sequence in educational technology (EDUC 507, EDUC 508, EDUC 509), which is taken in combination with a specially designed independent study (EDUC 500) to satisfy the 15 quarter-unit California requirement for receiving a Supplementary Authorization in Computer Concepts and Applications. This authorization distinguishes one who completes the requirements as a teaching professional with a specialized background and advanced skills relating to the use of technology in K-12 classrooms.
Graduate Studies in Education

Department Chair, George J. Petersen
James L. Gentilucci Jodi D. Jaques
Kathleen C. Harris Louis B. Rosenberg
Roberta J. Herter Michael B. Ruef

Affiliated Faculty
The following faculty participate with the College of Education and hold academic rank in a department outside the College of Education:
Steven Kane

Credential Programs in:
Administrative Services
Education Specialist (Mild/Moderate Disabilities)
Pupil Personnel Services: School Counseling

MA Education with Specializations in:
Counseling and Guidance
Curriculum and Instruction
Educational Leadership and Administration
Literacy and Reading
Special Education

EdD Educational Leadership

CREDENTIAL PROGRAMS

Admission Requirements
Details concerning specific requirements are available from the appropriate advisor, the advisement handbook, or at www.coe.calpoly.edu.

Education Specialist (Mild/Moderate Disabilities)
Preliminary Level I
Clear Level II

This credential authorizes the holder to teach in the following settings: special day classes, special schools, home/hospital settings, correctional facilities, nonpublic schools and agencies, and resource rooms.

The program is designed to prepare candidates to work with pupils with mild/moderate disabilities, which include specific learning disabilities; mild to moderate mental retardation; attention deficit and attention deficit hyperactivity disorders; and serious emotional disturbance, and authorizes serving individuals in K-12, and in classes organized for adults through age 22.

A full-time candidate may complete the requirements in one calendar year. The Education Specialist program is heavily field based and requires 57 quarter units, most of which are applicable to the MA in Education with a Specialization in Special Education.

A Multiple or Single subject teaching credential is not required for admission. However, some coursework taken for the Single Subject or Multiple Subject Credential program may be applied to the Education Specialist Credential program.

Candidates who complete the Preliminary Level I program are required to obtain a Clear Level II Education Specialist Credential. The program requires 20-28 units and will be delivered on a two-year cycle. Entry requirements include the following:

1) a minimum of a 2.75 GPA over the last 90 quarter (60 semester) units;
2) a valid Preliminary Level I Education Specialist credential or Certificate of Eligibility in Mild/Moderate Disabilities;
3) verification of employment as a special education teacher of students with mild/moderate disabilities in a California school district, non-public school or agency, or county office of education; and
4) two letters of recommendation from persons familiar with the applicant’s teaching ability.

In addition to required university coursework, students are required to work with district personnel to identify an Emphasis Area for their work. The Emphasis Area is pursued through 80 hours of university coursework or non-university activities. Check with the credential program advisor, the credential handbook, and www.coe.calpoly.edu to be sure all requirements are completed.

Pupil Personnel Services: School Counseling
The Pupil Personnel Services (PPS): School Counseling credential program is designed to prepare students for school counseling positions in public schools in grades K-12. This program stresses applied theory and practical, direct experiences to prepare candidates. A low student-advisor ratio allows for personalized attention. The PPS: School Counseling credential program has excellent fieldwork placements in K-12 public schools in the surrounding area.

The PPS: School Counseling credential requires 72 quarter units, which are applicable to the MA in Education with a Specialization in Counseling and Guidance.

2007-2009 Cal Poly Catalog
Administrative Services
Preliminary (Tier I)
Administrative Intern

Administrative Services offers two credential programs: one leading to recommendation for the Preliminary Administrative Services Credential, and a second, the Administrative Intern Credential, for those persons earning their Preliminary Administrative Services Credential and who concurrently serve in an administrative position.

Preliminary Administrative Services. This program emphasizes a comprehensive knowledge of public school administration including applied theory, administration and leadership, schools in contemporary society, and effective management related to educational outcomes. As a basis for credential recommendation, the preliminary program emphasizes applied theory with actual experience in fieldwork assignments and an evaluation of administrative competence.

The credential program requires 45 quarter units, most of which are applicable to the MA in Education with a Specialization in Educational Leadership and Administration. The Preliminary Administrative Services Credential authorizes service in any administrative position at any grade level in California.

Administrative Internship Program. This program supports districts that have an immediate need for an administrator and are without suitable candidates. Candidates earn the Preliminary Administrative Services Credential as they serve in an administrative capacity within a one year timeframe.

MASTER OF ARTS IN EDUCATION

General Characteristics
The Master of Arts degree program in Education is designed to provide a broad-based perspective of education. The specializations are closely related to the occupational and professional requirements of a variety of pursuits in the fields of education, counseling, college student affairs, and agencies involved with community affairs.

Admission
Admission to the MA in Education degree program minimally requires the following:

- 3.0 GPA in last 90 quarter units
- Letters of recommendation
- Bachelors degree from an accredited college/university

Each specialization below may list additional requirements for the specific program (see the Graduate section of this catalog for additional information on admission).

Program of Study
All specializations require a minimum of 45 quarter units of graduate work, with at least 40 units of 500-level Education (EDUC) courses. Courses taken in these specializations may also be applied toward related credentials.

Candidates must maintain a grade point average of 3.0 or better in all coursework and remain in good professional standing within their specialization. Calculation of the GPA includes all grades, although only the courses with A, B, or C grades are counted to satisfy requirements for the degree. Required courses with a grade of D or F must be repeated. All candidates must meet the Graduation Writing Requirement.

Credits earned in student teaching are not accepted toward completion of any specialization within the MA Education. At least 36 program-required units shall be completed in residence. Transfer and/or extension credits are only accepted when the credits are acceptable for master's degree credit by the offering institution in its own programs.

Advising
The candidate must meet with his/her advisor on a regular basis. Continued consultation with the advisor assists a smooth progression toward completion of the degree.

Formal Study Plan
The candidate is required to file a Formal Study Plan prior to completion of 12 units in his/her program. This plan is completed in consultation with the program advisor and helps the candidate to schedule courses in a sequence that results in timely completion of the program. A Formal Study Plan is required prior to Advancement to Candidacy.

Advancement to Candidacy
Advancement to master's degree candidacy requires:

- Completing at least 24 units of program-required courses in residence, specified in a formal program of study, with minimum GPA of 3.0;
- Having met the university Graduation Writing Requirement;
- Receiving formal recommendation of the graduate faculty;
- GPA of 3.0 in all coursework included on the formal program of study, and in all coursework completed subsequent to admission to postbaccalaureate standing; and
- Having satisfactorily met any conditions of admission.

Culminating Experience
Depending on the specialization, final assessment of a candidate's progress shall include a comprehensive written examination and EDUC 590 Research Applications in Education, or the completion of a thesis/project. Students must enroll in EDUC 599 Thesis/Project for every quarter in which they are receiving advisement.
MA Education, Specialization in
COUNSELING & GUIDANCE
This program prepares students for careers as school counselors or counselors in higher education. Admission to the program, which occurs only in spring quarter, requires references, an autobiographical statement, and an interview. Students enrolling in the specialization area of school counseling and who are also pursuing the Pupil Personnel Services (PPS)-School Counseling credential must meet the specific requirements of the State of California.

Students who have career goals of working in clinical counseling in agency settings or in private practice should refer to the MS Psychology in the College of Liberal Arts.

Education Core
EDUC 586 Introduction to Inquiry in Education 4
EDUC 587 Educ Foundations & Current Issues 4
EDUC 588 Education, Culture and Learning 4
EDUC 589 Educational Research Methods 4
EDUC 590 Research Applications in Education (4) and comprehensive exam or EDUC 599 Thesis/Project (3) (3) 4/6

Required in the Area of Specialization: 48
EDUC 555 Counseling and Communication (4)
EDUC 556 Ethnic Counseling (4)
EDUC 557 Career Development (4)
EDUC 560 Counseling Theories & Assessment (4)
EDUC 561 Group Counseling (4)
EDUC 564 Legal & Ethical Issues in Counseling (4)
EDUC 565 Measurement & Assess. Counseling (4)
EDUC 566 Leadership & Consultation Counsel (4)
EDUC 568 Counseling Techniques (4)
EDUC 573 Field Experience-Counseling (12)
Select one area of emphasis with advisor's approval .. 4/12

School Counseling Emphasis (12):
EDUC 558 Elementary School Counseling (4)
EDUC 559 Secondary School Counseling (4)
EDUC 563 Violence Prevention in Schools (4)
Higher Education Counseling Emphasis (4)
EDUC 562 Student Dev-Higher Education (4)

MA Education, Specialization in
CURRICULUM AND INSTRUCTION
This specialization expands the student's instructional skills and knowledge of curriculum at the elementary and/or secondary level. Candidates may want to improve their skills as classroom teachers; they may choose to enter positions as curriculum specialists or instructional team leaders; or they may seek employment in the private sector in curriculum development and training related positions. Courses may apply toward Supplementary Authorizations including Educational Technology.

Students select an emphasis in either Social Studies and Language Arts or Science, Math, Technology and Research-based Teaching. Applicants for the Social Science and Language Arts emphasis must have successfully completed student teaching or the equivalent prior to entering the program.

Applicants for Science, Math, Technology and Research-based Teaching should have at least three years of teaching experience before applying. This emphasis is designed to be completed in three summers.

Education Core
EDUC 586 Introduction to Inquiry in Education 4
EDUC 587 Educ Foundations & Current Issues 4
EDUC 588 Education, Culture and Learning 4
EDUC 589 Educational Research Methods 4
EDUC 590 Research Applications in Education (4) and comprehensive exam or EDUC 599 Thesis/Project (3) (3) 4/6

Required in Area of Specialization
EDUC 501 Appl Practices Curriculum Develop 4
EDUC 504 Seminar in Science and Mathematics Curriculum and Methods 4
EDUC 506 Models of Instruction 4
EDUC 532 Adv. Field Experiences in Education ... 3
Select one area of emphasis with advisor's approval 14
Social Studies & Language Arts Emphasis
EDUC 503 Sem Language Arts Curric & Meth (4)
EDUC 505 Sem Social Studies Curric & Meth (4)
Electives to be selected with advisor's approval (6)
Science, Math, Technology & Research-based Teaching Emphasis
EDUC 507 Instructional Materials & Tech (4)
Electives in science, math, technology to be selected with advisor's approval (10) 49/51
MA Education, Specialization in
EDUCATIONAL LEADERSHIP and
ADMINISTRATION

The fast-track M.A. and Preliminary Administrative Services Credential program allows students to complete their master's degree and/or credential in 15 weekends (Friday evenings and all day Saturdays) and one summer session during an 11-month period. This rigorous, practical program is designed for those seeking leadership positions in K-12 schools, community colleges, universities, government agencies, and educationally related organizations. Admission to the program occurs only in spring quarter.

The fast-track program emphasizes applied theories of educational leadership, mastery of practical skills required for effective school administration, and competence in research methods necessary for understanding and assessing learning organizations. While designed primarily for K-16 leaders, the program is beneficial for leaders from other fields. Individuals interested in leading nonprofit organizations are encouraged to apply.

Fall Quarter
EDUC 586 Introduction to Inquiry in Education 4
EDUC 512 Educational Organization & Mgmt 4
EDUC 513 Educ. Planning & Decision Making 4
1 EDUC 518 Supervised Fieldwork 3

Winter Quarter
EDUC 514 School Site Administration 4
EDUC 515 Curriculum and Program Evaluation 4
EDUC 516 Personnel Supervision and Evaluation ... 4
1 EDUC 518 Supervised Fieldwork 3

Spring Quarter
EDUC 510 Educ Finance & Resource Allocation 4
EDUC 511 Educational Law and Governance 4
EDUC 589 Educational Research Methods 4
1 EDUC 518 Supervised Fieldwork 3

Summer Session
EDUC 587 Educ Foundations & Current Issues 4
EDUC 588 Education, Culture and Learning 4
2 EDUC 590 Research Applications in Education .. 4
M.A. degree only requires 48 units minimum; 48/57
M.A. and credential require 57 units minimum

MA Education, Specialization in
LITERACY AND READING

This specialization is designed to provide teachers with professional development in research-based literacy practices and reading program development at the school and district level. Qualified candidates must have a minimum of three years classroom teaching experience before applying for admission to the program.

Education Core
EDUC 586 Introduction to Inquiry in Education 4
EDUC 587 Educ Foundations & Current Issues 4
EDUC 588 Education, Culture and Learning 4
EDUC 589 Educational Research Methods .. 4
EDUC 590 Research Applications in Education (4) and comprehensive exam or
EDUC 599 Thesis/Project (3) (3) 4/6

Required in Area of Specialization
EDUC 525 Literacy and Reading Processes, Programs, and Technology 4
EDUC 526 Diagnostic Procedures in Literacy and Reading 4
EDUC 530 Secondary, College, and Adult Literacy Practices 4
EDUC 532 Adv. Field Experiences in Education ... 3
Electives (to be selected with advisor's approval) 8/10
Suggested electives: EDUC 527, 529.

1 Administrative services credential candidates only.
2 All students are required to complete a comprehensive electronic portfolio and pass an oral examination at the end of the program.
Doctor of Education in Educational Leadership (Ed.D.)

The College of Education at California Polytechnic State University, San Luis Obispo and the Gevirtz Graduate School of Education at the University of California, Santa Barbara offer a field-based Ed.D. in Educational Leadership for working professionals. The program is designed to prepare and support exemplary educational leaders who will demonstrate the abilities to:

- Engage in scholarly research and effectively use extant data to make sound, information-driven decisions;
- Critically examine current educational practices and policies from a variety of relevant theoretical perspectives;
- Formulate and implement effective leadership, managerial, and instructional practices that will improve student achievement and organizational productivity; and
- Engage in reflective praxis to assess personal and professional leadership effectiveness.

Graduates typically pursue employment in leadership and administrative roles in K-12 schools, community colleges, universities, government agencies, and other allied organizations.

The program takes advantage of the unique strengths of each institution (research and field-based practice) to provide innovative programmatic features including a focus on non-urban schools, an accelerated time to degree, research in K-14 Professional Development Districts (PDDs), the inclusion of reflective praxis in all elements of the program, and annual dissemination of student research findings at summer institutes. The program is built upon a tripartite relationship among universities, local K-12 school districts, and community colleges. For additional information, please contact Dr. Jim Gentilucci and visit our web site: www.education.ucsb.edu/program/jointdoc

Admission Criteria
Prospective students must meet UCSC admission criteria. Information about these requirements can be found at www.graddiv.ucsb.edu/academic/handbook/admissions. Faculty admit only those applicants who possess the highest potential for successful graduate study and who, with the benefit of doctoral education, will contribute substantially to their academic or professional field through teaching, research, and professional practice. Successful applicants must have:

- Received a master’s degree or its equivalent from a regionally accredited university prior to the quarter for which they seek admission;
- Maintained an upper-division grade point average of 3.0 or above;
- Earned Graduate Record Exam (GRE) scores that indicate sufficient ability for successful doctoral study;
- Shared research and/or practice goals with program faculty;
- References indicating their ability to work productively with others; and
- Writing and speaking ability appropriate for doctoral study.

Program of Study
The program consists of 72 quarter units (minimum) of coursework, field-based research, practicums, summer institutes, and dissertation research and writing. Because the program is time delimited (expected completion within 36-42 months) there are no electives offered in the program. Students are expected to enroll in a minimum of 12 consecutive quarters (fall, winter, spring, summer) and satisfy all requirements for the degree in no more than four years plus two additional quarters after admission. The curriculum is divided into five parts:

1) Three core courses that ground students in the theoretical and empirical work that defines the field;
2) Four methods courses that teach students how to frame research questions and seek answers using a variety of methodological tools;
3) Five specialized seminars and practicums that focus on the application of theory to problems of educational practice;
4) Two summer institutes that provide opportunity for independent study and the presentation of research during the institutes; and
5) A dissertation that is concerned with the application and development of research-based knowledge in the field of educational leadership.

Fees and Residency Requirements
Students are considered UC students for the purposes of academic residency and fee requirements and must pay UC graduate fees for the duration of the program. They must also complete three consecutive quarters of residency in regular session at UCSB before they are permitted to advance to candidacy for the degree. Note: The residency requirement can be satisfied by enrolling as a part-time (8 units) graduate student. Students can remain fully employed and meet the UC residency requirement.

Dissertation
Students are required to research and write a dissertation that integrates theory with practice. Unlike the Ph.D. dissertation that is largely theoretical in nature, the goal of the applied dissertation is to improve educational practice within students’ professional work environment and normally represents the culmination of their prior field-based research in Professional Development Districts.
Supermileage Team
The Supermileage Team (below) competed for the first time since 1993 at the Marshall Proving Grounds in Michigan. Led by ME undergraduate Jason Kempenaar, the group designed and fabricated a stunning, fully faired single-occupant vehicle. In a field consisting of 22 university competitors, Cal Poly took sixth overall. The high point was the team finish in Fuel Economy: 861 miles per gallon.

Hybrid Vehicle Development Team
The Hybrid Vehicle Development Team (HVDT, above) is the evolution of the former Cal Poly FutureTruck team. The HVDT is dedicated to developing hybrid technologies that will increase fuel efficiency and reduce emissions of future on-road vehicles. The team feels that now is the time to maximize fuel efficiency, to explore the use of alternative fuels, and to further reduce emissions, all through hybrid drive technology. HVDT is currently using an SUV chassis and a bio-diesel engine to design and build a hydraulic-hybrid vehicle.

Water Treatment
Senior Civil Engineering student Thomas Abbia, president of Cal Poly's Society of Black Engineers & Scientists (SBES) chapter, displays a water filter project. He is also a member of the Society of Environmental Engineers, which came in second in a 2006 national wastewater treatment competition.
College of Engineering

ACADEMIC PROGRAMS

Aerospace Engineering .. BS*, MS
Biomedical Engineering BS
BioResource & Agricultural Engineering BS*
 (College of Agriculture, Food and Environmental Sciences)
Civil and Environmental Engineering MS
Civil Engineering .. BS*
Computer Engineering .. BS*
Computer Science ... BS**, MS, Minor
Electrical Engineering BS*, MS
Engineering ... MS
Engineering Management MBA/MS
Environmental Engineering BS*
General Engineering .. BS
Industrial Engineering .. BS*, MS
Manufacturing Engineering BS*
Materials Engineering BS*
Mechanical Engineering BS*, MS
Multidisciplinary Design Minor
Software Engineering .. BS
Transportation Planning MCRP/MS

* Engineering programs accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012 – telephone: (410) 347-7700.

** BS Computer Science program accredited by the Computing Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012 – telephone: (410) 347-7700.

Engineering and computer science programs at Cal Poly are strongly oriented toward preparing graduates for immediate entry into professional practice. Students declare their majors when they enter as freshmen, and they generally take at least one course in that major each quarter. This early introduction better motivates and prepares students to master the foundational mathematics, basic science, and engineering science or computer science central to success in all the engineering disciplines.

The undergraduate engineering disciplines listed above provide the education needed for entry to the engineering profession and for continued academic work toward advanced degrees. Many of our graduates enter graduate programs at Cal Poly or other institutions. Cal Poly engineering and computer science graduates are highly desired by industry and find a variety of professional opportunities awaiting them, such as engineering design, computer hardware and software engineering, test and evaluation, systems analysis, modeling and simulation, manufacturing, applied research, development, sales and field engineering. Graduates pursue careers in a broad cross-section of industry, government agencies, public utilities, marketing groups, and educational institutions.

The College of Engineering is an internationally-recognized, premier undergraduate engineering college. Its mission is to educate students for careers of service, leadership and distinction in engineering or other fields by using a participatory, learn by doing, "hands-on" approach.

State-of-the-art facilities and laboratories form the core of Engineering's project-centered curriculum. Ranging from the Aircraft Design Lab to the Rotor Dynamics Laboratory, these facilities offer advanced technological systems that allow students to link theory with practice. New college buildings also promote interdisciplinary project activities, including the Advanced Technology Laboratories, Bonderson Projects Center, and Engineering IV. With 19,000 square feet of space for individual and team-based projects, the Bonderson Center offers enriched opportunities for multidisciplinary projects and collaboration with industry. The newest facility, Engineering IV, concentrates many of the engineering programs in one area. The $28 million, 104,000-square-foot building includes modern classrooms and laboratories for aerospace, mechanical, civil, environmental, industrial and manufacturing engineering programs.

The Accreditation Board for Engineering and Technology (ABET) defines engineering as "the profession in which a knowledge of the mathematical and natural sciences gained by study, experience, and practice is applied with judgment to develop ways to utilize economically the materials and forces of nature for the benefit of mankind."

Engineering and computer science programs at Cal Poly prepare graduates for practice in professional engineering and computer science. Attributes of engineering graduates include:

(a) an ability to apply knowledge of mathematics, science, and engineering;
(b) an ability to design and conduct experiments, as well as to analyze and interpret data;

2007-2009 Cal Poly Catalog
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability;

(d) an ability to function on multidisciplinary teams;

(e) an ability to identify, formulate, and solve engineering problems;

(f) an understanding of professional and ethical responsibility;

(g) an ability to communicate effectively;

(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context;

(i) a recognition of the need for, and an ability to engage in life-long learning;

(j) a knowledge of contemporary issues; and

(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. In addition, an engineering program must demonstrate that its students attain any additional outcomes articulated by the program to foster achievement of its education objectives.

Multidisciplinary Requirement

Consistent with ABET’s requirement (d) on multidisciplinary teams, most engineering programs have adopted an explicit graduation requirement in this area. This provides students an opportunity to practice team skills. Such experience is important for practicing engineers, with the ever increasing diversity of engineering science and applications. Required activities for students are defined by each individual program, and may include items such as:

- Team senior project
- CO-OP or internship employment
- Certain club activities
- Working with faculty on a sponsored project
- Project embedded in curriculum
- Taking certain technical electives
- Service learning project

Contact department for specific requirements, or the College of Engineering Advising Center.

Our curricula reflects a "learn by doing" philosophy via incorporation of numerous design-centered laboratories, integration of design, and inclusion of the senior design project capstone design experience.

The excellence of Cal Poly's undergraduate engineering and computer science programs provides the foundation for master's degree programs. Industry often considers the master's degree as an important requirement for the design, development, applied research and analysis occupations in engineering and computer science. The master's degree allows entry into these occupations at higher levels of technical skills and responsibilities.

ENVIRONMENTAL STUDIES MINOR

Please see the College of Science and Mathematics for more information on this interdisciplinary minor.

STUDENT SERVICES CENTER

The College of Engineering Student Services Center, located in the Engineering South Building (40), houses the Advising Center, the MESA Engineering Program, and the Women’s Engineering Program. These offices provide centralized services to undergraduate engineering students.

Advising Center and International Exchange Program

Stacey Breitenbach, Assistant Dean
Engineering South (40), Room 115
(805) 756-1461
www.eadvise.calpoly.edu

The College of Engineering Advising Center serves undergraduate students with academic advising issues in conjunction with each student’s faculty advisor.

The academic advising staff tracks the academic and administrative progress of each student based on the academic expectations outlined below.

Academic Expectations

- Students are expected to maintain current, cumulative, higher education, and major grade point averages of a 2.0 or higher.
- Students are expected to complete a minimum of 36 degree applicable units each academic year (an academic year runs from summer quarter through spring quarter). These units do not include repeated coursework. Students pursuing their degree on a part-time basis with acceptable reasons for doing so are expected to submit an academic plan to the assistant dean for review (all units on the plan should be degree applicable).
- Students are expected to enroll and complete a minimum of six units of major/support coursework each quarter with no more than four units outside of their declared degree program.
- Students are expected to enroll and complete a course in one attempt.
- Students are expected to complete their lower-division math and science courses as early as possible.
- Students are expected to be enrolled in a math course each quarter until their sequence is completed.

All academically oriented student paperwork is processed through the Advising Center (for example, course substitution petitions, excess unit forms, late enrollment forms, withdrawal forms, change of major forms, technical
elective forms, etc). The majority of the general education questions and interpretation of transfer credit is handled in the Advising Center once the Evaluations Office has provided the initial evaluation.

The Advising Center maintains working folders on each student. These folders are used for general advising purposes. The Advising Center has past and present flowcharts for all engineering majors and major specific technical elective forms.

While the Advising Center is responsible for providing procedural advice, faculty advisors are responsible for providing academic content and technical advice. Student course scheduling, course content questions, and career planning are usually done by the faculty advisors. Although the assistant dean has signature authority for the advisor, department chair, and dean, it is not uncommon for some forms to be routed for appropriate review. In order to process paperwork in a timely manner, it is important for students to submit paperwork to the Advising Center for initial review.

International Exchange Program
The College of Engineering has agreements with several overseas universities. These exchange programs differ from the University wide exchange programs in that they offer students the opportunity to attend overseas universities with an engineering focus, while paying Cal Poly tuition. The partner universities have been specifically selected by the College for their innovative technology and engineering coursework. Participation gives students the opportunity to gain a global engineering perspective while taking coursework that may be degree applicable. Students typically return with improved communication skills, a better understanding of other cultures, and a more marketable resume for industry.

MESA Engineering Program (MEP)
David Cantu, Director
Engineering South (40), Room 117
(805) 756-1433
www.calpoly.edu/~mep

The MESA Engineering Program (MEP) is an academic support program designed to recruit, retain, and graduate educationally disadvantaged students in engineering and computer science disciplines. MEP builds an academic support community among students and provides the necessary bridges for students' academic and professional success.

MEP offers an orientation class in effective learning techniques. A study center is available for students so that they can overcome feelings of isolation, develop supportive academic peer groups, and share information about classes and scholarship opportunities. Tutoring is available for undergraduate technical courses. Group study workshops teach students complex technical concepts through group study and support. MEP fosters professional development by helping coordinate summer jobs, internship, and scholarship opportunities with companies who recognize the MEP as a valuable source for skilled future employees.

Women’s Engineering Program (WEP)
Helene Finger, Director
Engineering South (40), Room 119
(805) 756-2350
http://ceng-web.calpoly.edu/wep.php

The mission of the Women’s Engineering Program (WEP) is to recruit and retain women engineering and computer science students by focusing on outreach, on-campus support and professional preparation objectives. To meet these objectives, WEP works closely with the Society of Women Engineers (SWE) Cal Poly student section, one of the top student sections in the nation, in supporting a variety of programs directed at pre-college, undergraduate and graduate students.

Outreach activities are directed at students from kindergarten through community college. These programs are designed to encourage pre-university women and girls to consider engineering as a career choice. Outreach recruitment activities include: Building an Engineer workshops, Shadow an Engineering Student day, Engineering Road Show, Girl Scout Engineering Badge day, elementary school workshops, and career fairs.

The Women’s Engineering Program provides on-campus support to Cal Poly women engineering students through a variety of academic, leadership and social activities. These activities help students connect to their peers while concurrently assisting them in achieving their educational goals. On-campus support activities include: scholarships, academic counseling and referrals, pre-registration counseling, big sibling program, test files, teacher evaluations, SWE meetings, and community service activities.

Professional preparation activities are designed to prepare students for a productive career by facilitating networking with professionals and corporations. Professional preparation activities include: Shadow an Engineer, Evening With Industry banquet, Team Tech, Industry Tours, Resume Book, and MentorNet.
Master of Science in Engineering

PROGRAMS

MS Engineering with Specializations in:
- Biochemical Engineering
- Bioengineering
- Biomedical Engineering
- Integrated Technology Management
- Materials Engineering
- Water Engineering

Blended BS+MS Programs

Joint Programs:
- Engineering Management Specialization, MBA/MS Engineering
- Transportation Planning Specialization, MCRP/MS Engineering

Other Graduate Engineering Programs

In addition to the MS in Engineering, the college also offers several other graduate programs: MS Aerospace Engineering, MS Civil and Environmental Engineering, MS Computer Science, MS Electrical Engineering, MS Industrial Engineering, and MS Mechanical Engineering. Information regarding these programs is listed with the respective departments.

MS Engineering

General Characteristics

The Master of Science degree program in Engineering has the following objectives:

- Provide preparation for further study in engineering, leading to the Doctor of Engineering or Ph.D. degree.
- Provide an empowering terminal professional degree for students who intend to become practicing engineers, a degree that not only retains the strong laboratory emphasis and industrial interaction found in the BS curriculum, but which also provides an attractive, efficient educational option to undergraduate students.
- Provide job-entry education for the more complex and evolving interdisciplinary areas of engineering, such as research and development, innovative design, systems analysis and design, bio-engineering, biomedical engineering, manufacturing, mechatronics, and engineering management.
- Update and upgrade opportunities for practicing engineers.
- Allows graduates to maintain currency in their fields.

Prerequisites

For admission as a classified graduate student, an applicant should hold a bachelor’s degree in engineering or a closely related physical science with a minimum grade point average of 2.5 in the last 90 quarter units (60 semester units) attempted. Applicants for graduate engineering programs are required to submit scores for the General Test of the Graduate Record Examination. An applicant who meets these standards but lacks prerequisite coursework may be admitted as a conditionally classified student and must make up any deficiencies before advancement to classified graduate standing.

Program of Study

Graduate students must file formal study plans with their advisor, department, college, and university graduate studies office no later than the end of the quarter in which the 12th unit of approved courses is completed.

The formal program of study must include a minimum of 45 units (at least 23 of which must be at the 500 level) with a specialization in one of the following areas: Biochemical Engineering, Bioengineering, Biomedical Engineering, Integrated Technology Management, Materials Engineering, Water Engineering, or another individualized course of study.

Requirements

The broad curriculum requirements for the Master of Science degree in Engineering are:

a) a minimum of 24 units in the field of specialization, with at least 18 units at the 500 level;

b) a minimum of 9 units from an approved list of mathematics, statistics, computer science, or analytic engineering courses, with at least 3 units at the 500 level;

c) remaining units taken from a list of approved electives;

d) at least 23 units of the 45 unit program at the 500 level.

In some specializations, two program options are available: a thesis program which requires coursework, a thesis and oral defense of thesis; or a non-thesis option which involves additional coursework and a comprehensive examination. The non-thesis option is normally allowed only for those students who have completed a senior project or have had significant engineering project experience.

Joint Programs

The College of Engineering offers two joint programs: in conjunction with the Orfalea College of Business, the MBA/MS Engineering, with a specialization in Engineering Management; and with the College of Architecture and Environmental Design (City and Regional Planning Department), the MCRP/MS Engineering, with a specialization in Transportation Planning.
Blended BS + MS Engineering Program
The blended program provides motivated students with an accelerated route to the MS Engineering, with simultaneous conferring of both bachelor's and master's degrees. Students in the blended program are provided with a seamless process whereby they can progress from undergraduate to graduate status.

Eligibility for Blended BS+MS Engineering
Students majoring in BS General Engineering, BS Computer Engineering, BS Manufacturing Engineering, and BS Materials Engineering may be eligible to pursue the blended program toward the MS Engineering with a specialization in Biochemical Engineering, Bioengineering, Biomedical Engineering, or Integrated Technology Management. They may also be able to pursue blended programs incorporating MS degrees from other departments in the College of Engineering.

In addition, students in departments with their own masters degrees may be able to pursue masters degrees in other departments, or the MS Engineering degree via the blended program, based on agreements between their bachelors granting program and their target masters program.

Participation in the program is based on prior academic performance and other measures of professional promise. Students are selected by an interdisciplinary faculty committee, chosen on the basis of the student’s area of interest. Please see page 75 for eligibility criteria.

Program of Study
The program may allow students to complete a more meaningful capstone experience that integrates the senior project with the graduate thesis. This arrangement also increases the possibilities for industrial interaction in students' professional programs.

The blended program may allow students to earn graduate credit for several senior electives, effectively decreasing the summed unit requirements for both degrees. Requirements concerning shared units vary by degree program. Contact the program graduate coordinator or the College of Engineering for details.

Other Blended Programs
Blended BS+MS programs are also available in Aerospace Engineering, Civil and Environmental Engineering, Computer Science, Electrical Engineering, Industrial Engineering, and Mechanical Engineering. Additional information about these programs may be obtained from the individual departments.

MS Engineering, Specialization in BIOCHEMICAL ENGINEERING
Required Courses
- Analytical methods for engineering (6)
- Advanced mathematics (3)
- ENGR 599 Design Project (Thesis) (2) (2) (5) or 9 units of approved technical electives and written comprehensive examination

Select 19 units from the following:
- ME 541 Advanced Thermodynamics (4)
- ME 552 Advanced Heat Transfer I (4)
- ME 553 Advanced Heat Transfer II (4)
- ENVE 421 Mass Transfer Operations (3)
- ENGR 581, 582, 583 Biochemical Engr (4,4,4)

Approved Electives

MS Engineering, Specialization in BIOENGINEERING
Required Courses
- ENGR 550 Advanced Topics in Bioengineering (4)
- MATE 530 Biomaterials (4)
- ENGR 581 Biochemical Engineering I (4)
- ENGR 599 Design Project (Thesis) (9)

Select 12 units from the following:
- BIO 432, 542
- CSC 471, 473, 474, 541
- ENGR 450, 582
- ENVE 443, 536
- IME 507
- MATE 425, 570
- ME 401, 502, 551, 552, 553, 554
- STAT 512, 542

Approved Engineering Electives

MS Engineering, Specialization in BIOMEDICAL ENGINEERING
Required Courses
- BMED 450 Special Topics in Bioengineering (4)
- BMED 460 Engineering Physiology (4)
- BMED 530 Biomaterials (4)
- BMED 550 Advanced Topics in Bioengineering (4)
- BMED 563 Biomedical Engineering Graduate Seminar (2)
- BMED 599 Design Project (Thesis) (9) (BMED 591/592 substitute for 2 or 4 units of BMED 599)

Approved Engineering, Science and Mathematics Electives

2007-2009 Cal Poly Catalog
MS Engineering, Specialization in INTEGRATED TECHNOLOGY MANAGEMENT

The program goal is to develop "industry ready" graduates who will be integrators of engineering disciplines, industry concerns, and technology management. Many of the program courses involve actual integrated problems or opportunities from industrial organizations in a collaborative learning environment.

Required Courses
- IME 430 Quality Engineering (4)
- IME 503 Applied Stat. Analysis for Engineers (4)
- IME 507 Graduate Seminar (2)(2)
- IME 556 Technological Project Management (4)
- IME 580 Manufacturing Systems (4)
- IME 596 Team Project/Internship (10) or IME 599 Design Project/Thesis (9)

Approved Electives
- 16/15 units

MBA/MS Engineering, Specialization in ENGINEERING MANAGEMENT

The dual-degree Engineering Management Program (EMP) is an interdisciplinary program linking the MBA and MS in Engineering degree programs. It is a cooperative effort between the Orfalea College of Business and the Cal Poly College of Engineering (Industrial and Manufacturing Engineering Department). Students are required to have a prerequisite degree in engineering, computer science, or equivalent technical degree to be admitted to both the College of Engineering and the Orfalea College of Business, and to be enrolled in both degree programs. Successful participants are awarded both MBA and MS in Engineering degrees, each with a specialization in Engineering Management.

The mission of the EMP is to develop high quality industry-ready graduates who will be facilitators of change and integrators of engineering, business, and people issues.

The three major objectives of this program are to:
1) integrate knowledge and skills from engineering and business disciplines for effective responses to rapidly changing technological and business environments;
2) prepare engineers for effective participation in the management of technology, management of technology-based organizations, and management of technological change; and
3) take advantage of the unique background of program participants and the unique strengths of Cal Poly.

Prerequisites
Students are required to possess a bachelor’s degree, from an accredited program in engineering, computer science, or equivalent technical degree.

Admission/Acceptance Requirements
Admission to the EMP is based upon:
- successful completion of an accredited undergraduate program of study
- prior academic performance with particular emphasis placed on the last 90 quarter units (60 semester units)
- achievement on the Graduate Management Admission Test (GMAT) and the Graduate Record Examination Test (GRE)
- prior work experience (desirable).

Culminating Experience
In order to satisfy the culminating experience requirement, students must satisfactorily complete a comprehensive examination at the end of GSB 562 or GSB 567 and satisfactorily complete a comprehensive project, IME 596 or design project/thesis, IME 599. Other courses and/or options may be available, but must be approved in advance by the Orfalea College of Business Associate Dean of
Graduate Programs and by the College of Engineering, Engineering Management Program Advisor.

Required courses (62)
- GSB 511 Accounting for Managers 4
- GSB 513 Organization Behavior...................... 4
- GSB 523 Managerial Economics 4
- GSB 524 Marketing Management 4
- GSB 531 Managerial Finance 4
- GSB 533 Aggregate Economic Analysis & Policy 4
- GSB 562 Seminar in General Mgmt & Strategy or GSB 567 Adv Sem International Business Mgmt or other approved culminating experience 4
- IME 430 Quality Engineering 4
- IME 503 Applied Statistical Methods in Engrg 4
- IME 507 Graduate Seminar 4
- IME 556 Technological Project Management 4
- IME 580 Manufacturing Systems 4
- IME 596 Internship/Team Project (10) or IME 599 Design Project (Thesis) (9) 9/10

College of Engineering approved electives 16-17

Other advisor approved electives 16
*One elective must satisfy the Orfalea College of Business’ international course requirement *

Formal Study Plan. The Formal Study Plan for this dual degree program must be approved by both the Orfalea College of Business – Associate Dean of Graduate Programs and by the College of Engineering – Engineering Management Program Advisor.

MCRP/MS Engineering, Specialization in TRANSPORTATION PLANNING

The Transportation Planning Specialization is a joint interdisciplinary program between the College of Engineering and the City and Regional Planning Department of the College of Architecture and Environmental Design. Participation in the program requires enrollment in both Colleges. Participants successfully completing the program are awarded both the MCRP and the MS in Engineering, each with a Specialization in Transportation Planning.

The major objectives of this joint program are to:

(a) Provide an interdisciplinary graduate program which combines elements of transportation planning with city and regional planning to address a need for professionals who understand the technology of transportation planning and the importance of transportation within the urban environment. The required master's project enables students to integrate their work through directed study applied to special areas of their choosing.

(b) Provide planners with courses essential to understanding the technologies of transportation planning. Provide engineers with a broad background in urban studies and knowledge of contemporary environmental issues.

(c) Take advantage of the backgrounds of program participants. The graduate students of both sponsoring departments include both mature professionals returning for advanced degrees and recent graduates with diversity of specializations.

Prerequisites

Applicants must have satisfactorily completed courses that cover the following or equivalent subject areas:

- CE 221 Fundamentals of Transportation Engineering or CRP 435 Transportation Theory
- COMS 101 Public Speaking
- ECON 201 Survey of Economics or ECON 222 Macroeconomics
- ENGL 148 Reasoning, Argumentation and Professional Writing or ENGL 149 Technical Writing for Engineers
- MATH 142 Calculus II
- PHYS 141 General Physics I
- STAT 321 Probability and Statistics for Engineers and Scientists or STAT 312 Statistical Methods for Engineers or STAT 221 Introduction to Probability and Statistics
Applicants for admission are expected to:

* Have earned a bachelor's degree from an accredited university or college,
* Have attained a grade point average of 3.0 in last 90 units of undergraduate work,
* Provide results of the Graduate Record Examination (GRE) Aptitude Test to the Admissions Committee (GRE requirement may be waived for Cal Poly bachelor of science graduates and applicants with superior academic records).
* Give indications of motivation, maturity, and high standards of academic involvement through work and references (three letters required) and submission of a project or paper demonstrating writing ability,
* Provide a statement (maximum of 500 words) addressing their understanding of and areas of interest in planning, career objectives, and educational objectives.

Applicants lacking prerequisites or other background requirements for classified standing may be admitted on a conditionally classified basis, depending on the results of an individual analysis of their applications.

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 523</td>
<td>Transportation System Planning</td>
<td>4</td>
</tr>
<tr>
<td>CE 528</td>
<td>Transportation Analysis or CE 421 Traffic Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CE 591</td>
<td>Graduate Seminar I</td>
<td>1</td>
</tr>
<tr>
<td>CE 599</td>
<td>Design Project (Thesis) (2,2,2) or CRP 599 Thesis (2)(2)(2) or CRP 596 Professional Project (2)(2)(2) or CRP 556 Community and Regional Planning Studio III</td>
<td>4</td>
</tr>
<tr>
<td>CRP 409</td>
<td>Planning Internship</td>
<td>4</td>
</tr>
<tr>
<td>CRP 435</td>
<td>Transportation Theory</td>
<td>3</td>
</tr>
<tr>
<td>CRP 501</td>
<td>Foundations of Cities and Planning</td>
<td>4</td>
</tr>
<tr>
<td>CRP 510</td>
<td>Planning Theory</td>
<td>4</td>
</tr>
<tr>
<td>CRP 513</td>
<td>Planning Research Methods</td>
<td>4</td>
</tr>
<tr>
<td>CRP 516</td>
<td>Methods of Data Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CRP 518</td>
<td>Policy Analysis for Planners</td>
<td>4</td>
</tr>
<tr>
<td>CRP 525</td>
<td>Plan Implementation</td>
<td>4</td>
</tr>
<tr>
<td>CRP 530</td>
<td>Planning Agency Management</td>
<td>3</td>
</tr>
<tr>
<td>CRP 535</td>
<td>Land Use Law</td>
<td>4</td>
</tr>
<tr>
<td>CRP 552</td>
<td>Community and Regional Planning Studio I</td>
<td>4</td>
</tr>
<tr>
<td>CRP 554</td>
<td>Community and Regional Planning Studio II</td>
<td>4</td>
</tr>
<tr>
<td>Advisor approved electives</td>
<td>(3/5)</td>
<td></td>
</tr>
</tbody>
</table>

Emphasis Area (select one of the following)

Urban Development and Design Emphasis
- CRP 520 Feasibility Studies in Planning | 4
- CRP 548 Principles of Urban Dev. and Design | 4
- Urban Development and Design elective | 3

Environmental Planning Emphasis
- CRP 545 Principles of Environmental Planning | 4
- Environmental Planning electives | 7

Approved CE/ENVE electives:

Select from: CE 421, 422, 423, 424, 500, 521, 522, 525, 527, 528, 529, 573, ENVE 411 or other advisor approved CE/ENVE courses
Aerospace Engineering

Department Office
Engineering Ill Bldg. (40A), Room 134
(805) 756-2562 FAX: (805) 756-2376

College of Engineering Advising Center
Engineering South (40), Room 115
(805) 756-1461

Department Chair, Jordi Puig-Suari
Daniel J. Biezad Rob A. McDonald
Dianne J. DeTurris Eric A. Mechel
Faysal A. Kolkailah Jin Tso
David D. Marshall

ACADEMIC PROGRAMS

BS, MS Aerospace Engineering
Multidisciplinary Design Minor

The Bachelor of Science degree in Aerospace Engineering prepares students for engineering work related to aerodynamics, flight testing, structures, propulsion, control systems, vehicle dynamics, stability and control, flight simulation, and design for both fixed and rotary wing aircraft, missiles, and spacecraft. The problems faced by the aerospace industry offer an unusual engineering challenge. Much of the analysis and testing must be accomplished at the very frontiers of knowledge. Nevertheless, products must be designed and manufactured; thus, an exceptionally wide range of engineering abilities is required within the industry and government.

The Aerospace Engineering Department's mission is to educate students using a laboratory-based, hands-on approach. This approach, coupled with a systems view of engineering, is encouraged through coursework and a group-based capstone design experience. This educational philosophy has yielded engineers capable of working in positions of technical responsibility and leadership in a modern multidisciplinary, systems-based environment.

Graduates in Aerospace Engineering 1) are well rounded engineers for positions of technical responsibility and leadership in a modern multidisciplinary system-oriented environment that emphasizes problem solving; 2) achieve high-quality professional performance in both aeronautical and astronautical engineering by integrating a systems view of engineering that is built upon group based design experiences; and 3) demonstrate a solid foundation in aerodynamics, controls, structures, propulsion and their integration into systems design.

Aerospace Engineering graduates obtain employment in all phases of the aerospace industry such as general design, aerodynamics, stress analysis, flight testing, flight simulation, dynamics, stability and control, and propulsion systems.

The BS degree program in Aerospace Engineering is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. It places emphasis on both analysis and design, with supplementary basic work in laboratory projects. Throughout the entire program there is constant interplay between theory and application. Opportunities are available for advanced elective work in the student's field of special interest.

The program maintains laboratory facilities for fabrication, propulsion, structures and composites, aerodynamics, dynamics and control, flight simulation and flight test, aerothermodynamics, and design.

Aerospace students may participate in two student chapters of national professional societies—the American Institute of Aeronautics and Astronautics and the Society for the Advancement of Material and Process Engineering. There is also a student chapter of the national aerospace engineering honor society, Sigma Gamma Tau.

Blended BS + MS Aerospace Engineering

The blended program provides motivated students with an accelerated route to the MS Aerospace Engineering, with simultaneous conferring of both bachelor's and master's degrees. Students in the blended program are provided with a seamless process whereby they can progress from undergraduate to graduate status.

Eligibility
Students majoring in BS Aerospace Engineering may be eligible to pursue the blended program toward the MS Aerospace Engineering. Participation in the program is based on prior academic performance and other measures of professional promise, with a minimum GPA of 2.5 required (3.0 GPA recommended). Students are selected by a faculty committee. Please see page 75 for eligibility criteria.

Program of Study
The program allows students to complete a more meaningful capstone experience that integrates the senior project with the graduate thesis. This arrangement also increases opportunities for industrial interaction.

The blended program allows students to double count up to nine units of coursework to fulfill the requirements for the BS and MS degrees. For instance, five of the nine units of AERO 599 Thesis (Design Project) can serve to complete the senior project requirement and a graduate lecture/lab course can be used as a senior elective.

Multidisciplinary Design Minor

The minor enhances students' ability to work in multidisciplinary engineering teams. The students develop an understanding of the design process and the role of systems engineering in product design and development including costs analysis. They also learn the systems...
integration process and how different subsystems are interfaced to develop a successful product.

Non-AERO students in the minor are admitted by permission of the minor coordinator, and not held to the prerequisites for AERO 443/444/445 or AERO 447/448/449, nor IME 418.

Curriculum for Multidisciplinary Design Minor

Introductory courses ... 14

- IME 314 Engineering Economics (3)
- IME 418 Product-Process Design (4)
- BUS 271 Principles of Management (3)
- PSY 350 Teamwork (4)

Core courses .. 16

- AERO 360 Creative Prob. Solv/Engrg Design (2)
- AERO 443/444/445 or AERO 447/448/449 (10)
- AERO 450 Aerospace Systems Engineering (4)

BS AEROSPACE ENGINEERING

- 60 units upper division
- 2.0 GPA
- USCP

MAJOR COURSES

- AERO 121 Aerospace Fundamentals 2
- AERO 215 Introduction to Aerospace Design 2
- AERO 300 Aerospace Engineering Analysis 5
- AERO 301, 302, 303 Aerothermodynamics 4, 4, 4
- AERO 304 Experimental Aerothermodynamics 2
- AERO 306 Aerodynamics and Flight Performance 4
- AERO 307 Experimental Aerodynamics 2
- AERO 320 Fundamentals of Guidance and Control 4
- AERO 331 Aerospace Structural Analysis I 4
- AERO 401 Propulsion Systems 4
- AERO 420 Stability/Control of Aerospace Vehicles ... 4
- AERO 431 Aerospace Structural Analysis II 4
- AERO 433 Experimental Stress Analysis 1
- AERO 446 Introduction to Space Systems 4
- AERO 461, 462 Senior Project I, II or AERO 463, 464 Senior Project Laboratory I, II 2, 3
- CE 204 Mechanics of Materials I 3
- CE 207 Mechanics of Materials II 3
- EE 201, 251 Electric Circuit Theory and Lab 3, 1
- Concentration courses (see below) 22

SUPPORT COURSES

- BIO 213 and ENGR/BRAE 213 (B2)* 2, 2
- CHEM 124 Gen Chem for Engineering (B3/B4)* 4
- EE 321, 361 Electronics and Lab 3, 1
- ENGL 149 Technical Writing for Engineers (A3)* 4
- IME 144 Intro Design and Manufacturing 4
- MATE 210 Materials Engineering 3
- MATH 141, 142 Calculus I, II (B1)* 4, 4
- MATH 143 Calculus III (Add'l Area B)* 4
- MATH 241 Calculus IV 4
- MATH 244 Linear Analysis I 4
- ME 211 Engineering Statics 3
- ME 212 Engineering Dynamics 3
- PHYS 131 General Physics (Add'l Area B)* 4
- PHYS 132, 133 General Physics II, III 4, 4
- STAT 312 Statistical Methods for Engineers (B6)* 4

GENERAL EDUCATION (GE)

- 72 units required; 32 units are in Support.
- See page 56 for complete GE course listing.
- Minimum of 8 units required at the 300-400 level.

Area A Communication (8 units)

- A1 Expository Writing 4
- A2 Oral Communication 4
- A3 Reasoning, Argumentation, and Writing * 4 units in Support ... 0

Area B Science and Mathematics (no add'l units req'd)

- B1 Mathematics/Statistics * 8 units in Support 0
- B2 Life Science * 4 units in Support 0
- B3 Physical Science * 4 units in Support 0
- B4 One lab taken with either a B2 or B3 course B5 (requirement for Liberal Arts students only) B6 Upper-division Area B * 4 units in Support 0
- Additional Area B units* 8 units in Support 0

Area C Arts and Humanities (16 units)

- C1 Literature ... 4
- C2 Philosophy ... 4
- C3 Fine/Performing Arts 4
- C4 Upper-division elective 4

Area D/E Society and the Individual (16 units)

- D1 The American Experience (40404) 4
- D2 Political Economy 4
- D3 Comparative Social Institutions 4
- D4 Self Development (CSU Area E) 4

ELECTIVES .. 0

CONCENTRATIONS (select one)

Aeronautes Concentration

- AERO 405 Supersonic/Hypersonic Aerodynamics 4
- AERO 443, 444, 445 Aircraft Design I, II, III 2, 4, 4
- Aeronautics electives 8

Astronautics Concentration

- AERO 451 Spaceflight Dynamics I 4
- AERO 447, 448, 449 Spacecraft Design I, II, III ... 2, 4, 4
- Astronautics electives 8

MS AEROSPACE ENGINEERING

General Characteristics. The Master of Science program in Aerospace Engineering prepares the student for entry into a well-established field of aerospace engineering. Two versions of the master’s program are available.
- **Research Specialization.** Emphasizes engineering science and research activity. Graduates have an increased capability for complex research, development, and innovative design, and are prepared for further study in engineering, leading to the Doctor of Engineering or Ph.D. The subject matter relative to flight simulation and controls, structures, propulsion, and aerothermal sciences has been integrated into course work. A thesis is required.

- **Space Systems Engineering Specialization.** Is a more focused version of the MS Aerospace Engineering with a smaller number of electives and a clear space systems and systems engineering emphasis. It is designed to accommodate students with undergraduate degrees in science or engineering disciplines other than aerospace engineering. Students in this specialization develop an understanding of all subsystems in a space vehicle (spacecraft or missile/launch vehicle) and how they are combined to form a complete space vehicle. The program also presents the basic principles of systems engineering and their application to space vehicle design.

Prerequisites. For admission as a classified graduate student, an applicant must hold a bachelor's degree in engineering or a closely related physical science with a minimum grade point average of 3.0 in the last 90 quarter units (60 semester units) attempted. Applicants are required to submit satisfactory scores for the General (Aptitude) Test of the Graduate Record Examination. An applicant who meets these standards but lacks prerequisite coursework may be admitted as a conditionally classified student and must make up any deficiencies before advancement to classified graduate standing. Information pertaining to specific requirements for admission to graduate standing (classified or conditionally classified) may be obtained from the Graduate Coordinator, Department of Aerospace Engineering.

Program of Study. Graduate students must file a formal study plan with their advisor, department, college and graduate studies office by no later than the end of the quarter in which the 12th unit of approved courses is completed. The formal program of study must include a minimum of 45 units (at least 24 of which must be at the 500 level). A thesis or project is required as a culminating experience. Course work includes core electives in specific areas of interest to aerospace engineering as well as a number of advisor approved electives in the student’s area of interest.

Core Areas

Select from the following courses or advisor approved elective(s):

- Stability and Control
 AERO 519, 550, 551, 552, 560

- Structures
 AERO 532, 534, 535

- Propulsion
 AERO 540, 541

- Aerodynamics/Fluid Dynamics
 AERO 520, 521, 522, 523, 525

- Engineering Fundamentals
 AERO 515

- Space Electronics and Electrical Systems
 EE 519, 526, 528, 533

MS Aerospace Engineering, Specialization in RESEARCH

Core Area requirements

Select 4 of the following core areas:
- Stability and Control (4)
- Structures (4)
- Propulsion (4)
- Aerodynamics/Fluid Dynamics (4)
- Engineering Fundamentals (4)

Mathematics courses

- MATH 501 Applied Mathematics I (4)
- Math or numerical methods elective (4)

Advisor approved electives

12

Culminating experience

AERO 599 Thesis (Design Project) (2) (2) (5)

45

M.S. Aerospace Engineering, Specialization in SPACE SYSTEMS ENGINEERING

Core Area requirements

Select 3 of the following core areas:
- Stability and Control (4)
- Structures (4)
- Propulsion (4)
- Space Electronics and Electrical Systems (4)

Systems Engineering courses

AERO 450 Intro Aerospace Systems Engr (4)
AERO 510 Aerospace Systems Engr I (4)
AERO 511 Aerospace Systems Engr II (4)

Space Systems courses

AERO 446 Intro Space Systems (4)
AERO 512 Aerospace Vehicle Software App (4)
AERO 566 Adv Spacecraft Design (4) or AERO 567 Launch Vehicle & Missile Des (4)

Space Systems lab courses

AERO 561 Vehicle Integration & Testing (2)
AERO 562 Space Operations (2)

Culminating experience

AERO 599 Thesis (Design Project) (5)

45

2007-2009 Cal Poly Catalog
Biomedical and General Engineering

Engineering Bldg. (13), Room 260
(805) 756-6400

Academic Programs

Department Chair (Interim), Robert Crockett
Lanny Griffin Daniel W. Walsh
Robert Szlavik
Adjunct Faculty:
George Becky M. Stephen Kaminaka
Gene Bornzin Mark Kroll
Martin Chollette Yarrow M. Nelson
Jonathan Fow Nirupam Pal
Rafael Jimenez-Flores

ACADEMIC PROGRAMS

BS Biomedical Engineering
BS General Engineering

BS Biomedical Engineering

Biomedical engineering is an interdisciplinary field in which the principles and tools of engineering are applied to biomedical problems. Engineering plays an increasingly important role in medicine and in projects that range from basic research in physiology to advances in biotechnology and the improvement of health care delivery. By its very nature, biomedical engineering is broad and requires a foundation in the engineering sciences as well as in physiology and other biological sciences.

The mission of the Biomedical Engineering program is to educate students for careers of service, leadership and distinction in engineering or other fields by using a participatory, learn-by-doing, "hands-on" laboratory, projects and design centered approach.

The program offers a four-year curriculum leading to a B.S. degree. The main educational objectives of the program are to prepare graduates who will excel in the biomedical engineering profession, understand that their education is a continuous enterprise, and seek graduate degrees for increased flexibility and mobility. The curriculum provides a sound theoretical background, practical engineering knowledge and solid laboratory exposure. It highlights an immediate introduction to the major, strong personal interaction with faculty, strong partnerships with industrial participants and a signature laboratory emphasis. The degree is an excellent preparation for an applied terminal masters degree in these interdisciplinary fields such as the Blended BS+MS program described in the MS Engineering section of this catalog.

The application of engineering to medicine and biology underpins a strong and growing segment of the industrial sector, and continues to be an area of inherent interest to students. The need for well educated professionals in this interdisciplinary area has become more acute as the technology being applied has become more sophisticated. Evolution in computing, electronics, signal analysis and mechatronic systems have resulted in dramatic improvements in diagnostic efforts, therapeutic approaches and bioindustrial applications. Studies of biological materials, physiological mechanisms, biochemical kinetics and heat and mass transport in biological systems require engineering expertise. With the advent of research into artificial organs, prosthetic devices and tissue engineering, applied medical research and applied biological research has taken on a distinct engineering aspect.

Biomedical engineering combines engineering expertise with medical needs for the enhancement of health care. It is a branch of engineering in which knowledge and skills are developed and applied to define and solve problems in biology and medicine. Students choose the biomedical engineering field to be of service to people; for the excitement of working with living systems; and to apply advanced technology to the complex problems of medical care.

Some well established specialty areas exist within the field of biomedical engineering: bioinstrumentation, biomechanics, biomaterials, systems physiology, tissue engineering, clinical engineering, and rehabilitation engineering.

Bioinstrumentation is the application of electronics and measurement principles and techniques to develop devices used in diagnosis and treatment of disease. Computers are becoming increasingly important in bioinstrumentation, from the microprocessor used to do a variety of small tasks in a single purpose instrument to the extensive computing power needed to process the large amount of information in a medical imaging system. Biomechanics is mechanics applied to biological or medical problems. It includes the study of motion, of material deformation, of flow within the body and in devices, and transport of chemical constituents across biological and synthetic media and membranes.

Biomaterials describes both living tissue and materials used for implantation. Understanding the properties of the living material is vital in the design of implant materials. Systems physiology is the term used to describe that aspect of biomedical engineering in which engineering strategies, techniques and tools are used to gain a comprehensive and integrated understanding of the function of living organisms.
ranging from bacteria to humans. Tissue engineering is a rapidly developing field that combines engineered materials with living cells to restore or replace lost organ function. Clinical engineering is the application of technology for health care in hospitals. The clinical engineer is a member of the health care team along with physicians, nurses and other hospital staff. Rehabilitation engineering is a new and growing specialty area of biomedical engineering. Rehabilitation engineers expand capabilities and improve the quality of life for individuals with physical impairments.

In addition to the objectives for all engineering programs, the goal of the BS program in Biomedical Engineering is the preparation of engineering professionals who have: (1) an understanding of biology and physiology; (2) an ability to apply advanced mathematics to problems at the interface of engineering and biology; (3) an ability to measure and interpret data from living systems; and (4) an ability to address the problems associated with the interaction between living and nonliving systems.

BS General Engineering

Flexibility, core competency and self-determination are the keywords for students of the General Engineering Program. The mission of the General Engineering Program is to provide students with the highest quality technical and professional engineering education, with a particular emphasis in new or evolving interdisciplinary areas, while allowing the students to participate in designing their curricula. General Engineering graduates have directed the technical electives in their programs towards studies of project management, technical sales, law, medicine and a hundred other paths defined by their keen intellects and adventuresome spirits.

The primary goal of the General Engineering Program is to provide students with a theoretically rigorous and laboratory-centered, practice-oriented, hands-on education that allows graduates to immediately participate and to excel in professional environments. The program is underpinned by a rigorous selection of mathematics, science, basic engineering and liberal-arts courses. The students, with their advisors, then select forty technical elective classes that allow the students to put their own mark on their degrees, ensuring a unique competency with a solid underpinning. General Engineering graduates are ready for immediate entry into the professional engineering field. They demonstrate an ability to satisfy their personal needs for further education, as expressed in their matriculation to graduate or professional schools in many cases, and an interest in lifelong learning in all cases. They possess a solid engineering foundation which underpins a successful career. They can become leaders, based on strong communication skills, a capacity to form teams and perform in teams, and an understanding of the economic and social impact of their decisions.

In addition to the abilities expected of all engineering graduates, articulated in the section of this catalog describing the College of Engineering, General Engineering graduates are expected to leave the University with special capabilities pertinent to their own concentrations.

The Bachelor of Science degree in General Engineering is designed to allow students the latitude in course selection required to educate themselves either in the classical study of engineering or in new and evolving interdisciplinary technologies such as bioengineering, biochemical engineering and mechatronics. The degree is an excellent preparation for an applied terminal masters degree in these interdisciplinary fields such as the Blended BS+MS program described in the MS Engineering section of this catalog. General Engineering can also accommodate those students who wish to major in engineering but have not presently decided in which specific program their interest is centered. The curriculum builds a sound foundation in the fundamental principles of engineering and engineering systems during the early years of study. During their final quarters of study, students customize their study plan with the help of a faculty advisor and are given the opportunity to focus their education while still at the undergraduate level. The BS degree in General Engineering is, therefore, a direct path to employment in a classic engineering field or in an area of emerging technology. It is also a natural step toward a professional or a graduate degree.

General Engineering students are encouraged to participate in the Blended BS+MS program. This program recognizes that the expertise required of entry level engineers in many fields, particularly new and evolving technological fields, implies that a masters degree is a prerequisite for success. The program allows motivated students to reduce the time necessary to earn both degrees.

All practitioners of engineering must have an understanding of the physical sciences and mathematics. Further, they must have a firm grasp of engineering sciences. The General Engineering curriculum provides the framework for this matrix of understanding, upon which the practitioner may begin to develop a unique area of expertise.

This program is for directed, highly motivated students. The technical elective courses are selected to be consistent with a sharply defined career goal. Each student is required to submit a study plan to the coordinator prior to the end of the first quarter of their junior year. Study plans selected in the past have emphasized engineering physics, management of technology, bioengineering, ocean engineering and engineering in unique environments.

One example of a highly multidisciplinary field of study is mechatronics, defined as the application of decision making to physical systems. Today’s engineered products are complex, composed of integrated mechanical and electronic components, and operate with the aid of control software. Design and fabrication of such products requires knowledge of manufacturing, mechanical engineering, electronics and
materials as well as experience with concurrent engineering tools. Embedded computers of all sizes and capabilities are used in the decision making elements of products which daily affect the lives of essentially each resident in the developed world. Microcontrollers and mechatronic systems are found in devices as mundane as lawnmowers and as esoteric as deep space probes, and every system in between.

Bioengineering Concentration. Provides students with interdisciplinary exposure in a burgeoning field. The program highlights an immediate introduction to the major, strong personal interaction with faculty, strong partnerships with industrial participants and a signature laboratory emphasis. Rooted in a strong engineering exposure, the curriculum allows students to pursue applied biotechnical research in practical, interdisciplinary settings. Students and faculty are concerned with the design, analysis, integration and operation of engineered materials and engineered systems in biological applications. Typical areas of study include bioinstrumentation, bioelectric signals and communication, remediation and bioindustrial systems.

Biomedical Engineering Concentration. Prepares students to enter the increasingly technical world of medicine and medical services. Steeped in a rigorous exposure to engineering, the curriculum allows students to explore biomedical engineering in practical interdisciplinary settings. Students and faculty are concerned with the design, analysis, integration and operation of engineered materials and engineered systems in biomedical applications. Graduates work or go on to graduate study in areas including biomedical instrumentation and medical device development and manufacture, biomaterials production and development, biomechanics or similar areas.

Individualized Course of Study. Permits students to pursue a course of study which meets their individual needs and interests. Courses are selected by the student with the advice and approval of the student’s academic advisor and department chair.

BS BIOMEDICAL ENGINEERING

- 60 units upper division
- GWR
- 2.0 GPA
- USCP

* = Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 110</td>
<td>Engineering Science I</td>
<td>3</td>
</tr>
<tr>
<td>BMED 111</td>
<td>Biomedical Engrg Calculations</td>
<td>3</td>
</tr>
<tr>
<td>BMED 212</td>
<td>Intro to Biomedical Engrg Design</td>
<td>3</td>
</tr>
<tr>
<td>BMED 310</td>
<td>Biomed. Engrg Measurement/Analysis</td>
<td>4</td>
</tr>
<tr>
<td>BMED 410</td>
<td>Biomechanics</td>
<td>4</td>
</tr>
<tr>
<td>BMED 420</td>
<td>Biomaterials</td>
<td>4</td>
</tr>
<tr>
<td>BMED 425</td>
<td>Biomedical Engineering Transport</td>
<td>4</td>
</tr>
<tr>
<td>BMED 430</td>
<td>Biomedical Modeling</td>
<td>4</td>
</tr>
<tr>
<td>BMED 440</td>
<td>Bioelectronics and Instrumentation</td>
<td>4</td>
</tr>
<tr>
<td>BMED 450</td>
<td>Special Topics in Biomedical Engrg</td>
<td>4</td>
</tr>
<tr>
<td>BMED 455</td>
<td>Biomedical Engineering Design I</td>
<td>4</td>
</tr>
<tr>
<td>BMED 456</td>
<td>Biomedical Engineering Design II</td>
<td>4</td>
</tr>
<tr>
<td>BMED 460</td>
<td>Engineering Physiology</td>
<td>4</td>
</tr>
</tbody>
</table>

Advisor approved technical electives (300/400) | **14**

BMED 481, 482 or ENGR 462 Senior Project | **4**

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 161</td>
<td>Intro to Cell & Molecular Bio (B2/B4)*</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Gen Chem for Engrg I (B3/B4)*</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Gen Chem for Engrg (Add'l Area B)</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 149</td>
<td>Technical Writing for Engineers (A3)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 141</td>
<td>Calculus I, II (B1)*</td>
<td>4,4</td>
</tr>
<tr>
<td>MATH 143</td>
<td>Calculus III (Add'l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 241</td>
<td>Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td>MATH 244</td>
<td>Linear Systems</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 141</td>
<td>General Physics I & II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 133</td>
<td>General Physics III</td>
<td>4</td>
</tr>
</tbody>
</table>

1 Advisor approved math and science electives | **16**

CE 204 Mechanisms of Materials I | 3

CSC 101 Fundamentals of Computer Science or CSC 234 C and Unix | 3

EE 201 Electric Circuit Theory | 3

IME 314 Engineering Economics | 3

MATE 210 Materials Engineering | 3

ME 211 Engineering Statics | 3

ME 212 Engineering Dynamics | 3

ME 302 Thermodynamics | 3

ME 341 Fluid Mechanics I | 3

GENERAL EDUCATION (GE)

72 units required; 32 units in Support.

→See page 56 for complete GE course listing.

→Minimum of 8 units required at the 300-400 level.

Area A Communication (8 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

units in Support | 0

Area B Science and Mathematics (no add'l units req'd)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Mathematics/Statistics</td>
<td>8 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B2 Life Science</td>
<td>4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B3 Physical Science</td>
<td>4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B4 One lab taken with either a B2 or B3 course</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B5 (requirement for Liberal Arts students only)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B6 Upper-division Area B</td>
<td>4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>Additional Area B</td>
<td>8 units in Support</td>
<td>0</td>
</tr>
</tbody>
</table>

Area C Arts and Humanities (16 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Literature</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C2 Philosophy</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

C3 Fine/Performing Arts | 4

C4 Upper-division elective | 4

For a total of 16 units:

Select one course from:

- ZOO 331, ZOO 322, BIO 432, BIO 433.

Select one course from GE B6*:

- MATH 344, STAT 312, PHYS 417.

Typical remaining course selections include, but are not limited to:

BIO 302 OR 303 OR 351, BIO 405, BIO 447, BIO 452, CHEM 312, CHEM 313, CHEM 444, CHEM 473, MCRO 221 OR 224, MCRO 225, MCRO 320, MCRO 402, ZOO 426.
Area D/E Society and the Individual (16 units)
D1 The American Experience (40404) ... 4
D2 Political Economy .. 4
D3 Comparative Social Institutions ... 4
D4 Self Development (CSU Area E) ... 4

ELECTIVES ... 0

BS GENERAL ENGINEERING
☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP

* = Satisfies General Education requirement

MAJOR COURSES
CE 204 Mechanics of Materials I ... 3
CSC 234/CSC 101 .. 3
EE 201 Electric Circuit Theory ... 3
1 ENGR 110,111,112 Engineering Science I,II,III 3,3,3
IME 314 Engineering Economics ... 3
MATE 210 Materials Engineering and
MATE 215 Materials Laboratory I ... 3,1
ME 211 Engineering Statics .. 3
ME 212 Engineering Dynamics .. 3
ME 302 Thermodynamics .. 3
ME 341 Fluid Mechanics I .. 3
ME 343 Heat Transfer .. 4
ENGR 481, 482 Sr. Project Design Lab I, II or Sr. Project-appropriate engineering discipline 2,2

2 Concentration or individual course of study 46

SUPPORT COURSES
BIO 213 and ENGR/BRAE 213 (B2)* .. 2,2
CHEM 124 Gen Chem for Engineering (B3/B4)* 4
CHEM 125 Gen Chem for Engrg (Add'l Area B)* 4
ENGL 149 Technical Writing for Engineers (A3)* 4
MATH 141,142 Calculus I, II (B1)* ... 4,4
MATH 143 Calculus III (Add'l Area B)* ... 4
MATH 241 Calculus IV ... 4
MATH 244 Linear Systems ... 4
Select one of the following: MATH 344; STAT 312, 321, 350 (B6)* 4
PHYS 141 General Physics IA ... 4
PHYS 132, 133 General Physics .. 4,4
Physical science electives ... 4,4

GENERAL EDUCATION (GE)
72 units required; 32 units are in Support.
See page 56 for complete GE course listing.
Minimum of 8 units required at the 300-400 level.
Area A Communication (8 units)
A1 Expository Writing ... 4
A2 Oral Communication ... 4
A3 Reasoning, Argumentation, and Writing * 4 units in Support 0

Area B Science and Mathematics (no add'l units req'd)
B1 Mathematics/Statistics * 8 units in Support 0
B2 Life Science *4 units in Support .. 0

B3 Physical Science* 4 units in Support .. 0
B4 One lab taken with either a B2 or B3 course 0
B5 (requirement for Liberal Arts students only) 0
B6 Upper-division Area B * 4 units in Support 0
Additional Area B units * 8 units in Support 0

Area C Arts and Humanities (16 units)
C1 Literature ... 4
C2 Philosophy ... 4
C3 Fine/Performing Arts ... 4
C4 Upper-division elective ... 4

Area D/E Society and the Individual (16 units)
D1 The American Experience (40404) ... 4
D2 Political Economy ... 4
D3 Comparative Social Institutions ... 4
D4 Self Development (CSU Area E) ... 4

ELECTIVES ... 0

CONCENTRATIONS OR INDIVIDUALIZED COURSE OF STUDY (select one)

Bioengineering Concentration
CSC 341 Numerical Engineering Analysis ... 4
ENGR 450 Special Topics in Bioengineering 4
IME 144 Introduction to Design and Manufacturing 4
MATH 344 Linear Analysis II .. 4
ME 326 Intermediate Dynamics .. 4
Select 12 units from the following: .. 12
BIO 431, 432, 442; CHEM 305, 371; CSC 471;
EE 336, 419; ENVE 304, 331, 421, 443; MATE 330; ME 328, 329, 401, 428, 445; STAT 312, 321, 350
Advisor approved electives ... 14

Biomedical Engineering Concentration
CHEM 312 Survey of Organic Chemistry ... 4
CHEM 313 Survey of Biochemistry and Biotechnology 5
ENGR 450 Special Topics in Bioengineering 4
IME 144 Introduction to Design and Manufacturing 4
MATE 425 Corrosion Engineering .. 4
Select 12 units from the following: .. 12
BIO 431, 432; BOT 426; CHEM 305, 306, 371, 473, 475,
CSC 473, 474; ENVE 304, 331; MATE 446; MATH 344; IME 319, 437; ME 326, 401, 422, 423, 445;
PHYS 315, 323; STAT 312, 321, 350
Advisor approved electives ... 13

Individualized Course of Study ... 46
Technical electives. A minimum of 34 units must be at 300-400 level.

1 ENGR 270 may be substituted for ENGR 112.
2 A minimum of 34 units at 300-400 level must be completed, in a
concentration, individual course of study or free electives, in addition to
those required in Major, Support and General Education, for a total of 60
upper division units.
Civil and Environmental Engineering

Department Chair, Gregg L. Fiegel
Charles Chadwell
Alypios E. Chatziioanou
Harold M. Cota
Jay S. DeNatale
Rakesh K. Goel
Garrett J. Hall
James L. Hanson
Stephen L. M. Hockaday
Daniel Jansen
Damian I. Kachlakev
Eric P. Kasper
Kurt C. K. Lo

Tryg J. Lundquist
H. Mallareddy
Sudeshna Mitra
Sara Moazzami
Robb E. S. Moss
Yarrow M. Nelson
Nirupam Pal
Ashraf Rahim
S. Somayaji
Edward C. Sullivan
Tracy L. Thatcher
Samuel A. Vigil

ACADEMIC PROGRAMS

BS Civil Engineering
BS Environmental Engineering
MS Civil and Environmental Engineering

BS Civil Engineering
Graduates of a civil engineering program must have the engineering skills needed to plan, design, construct, and maintain infrastructure and industrial facilities. In addition, graduates must have the broad education necessary to communicate effectively with other engineers, architects, planners, administrators, government officials, and the general public. The faculty and staff of the Civil Engineering program at Cal Poly understand these needs and take pride in preparing their students for the challenges associated with civil engineering practice.

The Civil Engineering program at Cal Poly has quickly grown into one of the largest and most respected programs in California and the nation. The program consistently attracts top student candidates because of its modern, well-equipped laboratories, the close interaction that occurs between undergraduates and full-time faculty, and a strong reputation among employers in the civil engineering and construction industries. Scientific depth is included within the curriculum for those students who are interested in graduate study.

The Civil Engineering program recognizes the importance of student organizations and strongly supports the American Society of Civil Engineers (ASCE) Student Chapter as well as Chi Epsilon, the national civil engineering honor society. These student groups sponsor opportunities for professional development, community service, and social activities which help to complement the formal academic program. The ASCE Student Chapter, an active member of the campus community, has been recognized as the nation’s most outstanding civil engineering student organization twice during the past decade.

The Civil Engineering program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET). The program’s mission is to prepare students for successful careers in civil engineering by providing a high quality, practice-oriented education that emphasizes design project experiences, “hands-on” laboratory activities, and teamwork. The program’s faculty, in consultation with civil engineering practitioners and alumni, have developed a number of educational objectives to support this mission. These objectives are:

- To prepare students for success in civil engineering practice by providing them with the knowledge, skills, and tools needed to solve engineering problems and develop design solutions;
- To prepare students to work effectively with others in their community by providing them with team-based instructional activities and frequent opportunities to sharpen their communication skills;
- To encourage students to understand the ethical and professional responsibilities of civil engineers and to appreciate the impact that their engineering solutions will have on the environment and society;
- To prepare students for professional licensure and advanced studies in civil engineering by introducing them to state-of-the-practice design procedures as well as current research findings; and
- To encourage students to understand and appreciate the value of a broad-based civil engineering education.

The undergraduate curriculum in civil engineering is designed to support the educational objectives. Therefore, the curriculum includes broad coverage of mathematics, engineering and basic sciences, liberal arts, humanities, and social sciences. The program also includes a number of required civil engineering courses that are designed to ensure that students become proficient in four areas of civil engineering: geotechnical, structural, transportation, and water resources.

All majors must complete a two-quarter senior design project that focuses on current civil engineering design...
procedures, standards and multiple realistic constraints. Topics related to interpersonal communication, teamwork, leadership, ethics, and professional practice are also covered so that students have an understanding of the issues and skills to become a successful design professional.

Flexibility within the curriculum allows students to select from a wide range of upper division civil engineering technical electives. Student use these technical electives to focus in one of the four areas of civil engineering noted above or to design a “general” curriculum that allows for a broad range of civil engineering interests. Students must formally consult with a faculty advisor prior to selecting and enrolling in upper division civil engineering technical electives.

The Civil Engineering program requires students to be “Multidisciplinary Certified” for graduation. This provides students an opportunity to practice skills associated with working on multidisciplinary teams. Such experience is important for practicing engineers, with the ever-increasing diversity of engineering science and applications. For Civil Engineering majors, this requirement is satisfied by taking a required course sequence, either CE 466/467 or CE 468/469. Visit the department web site for more information. Also see further discussion in the catalog under College of Engineering.

BS Environmental Engineering

The BS program in Environmental Engineering is concerned with the interrelation of people, materials, and processes in a complex and changing environment. The broad field of environmental engineering includes control of air and water pollution, industrial hygiene, environmental health and safety, solid waste, hazardous waste management, and pollution prevention.

The program offers a sound background in the fundamentals of thermodynamics, fluid mechanics, mass transfer, water resources and geotechnical engineering. The problem-oriented approach to instruction, in modern well-equipped laboratories, provides an excellent opportunity to gain understanding and experience of the discipline. The program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

The main focus of the program is to prepare graduates for practice in professional engineering. Thus, Cal Poly's “learn by doing” philosophy is emphasized by integrating design throughout the curriculum, especially in the numerous design-centered laboratories. In the required senior design project, which is completed in a two-quarter set of capstone courses, students demonstrate their understanding of engineering knowledge and their ability to apply that knowledge creatively to practical problems.

The Environmental Engineering program educational objectives are that its graduates will:

- Practice as professional engineers by gaining a thorough foundation in water and wastewater, air pollution, and solid and hazardous wastes.
- Pursue higher studies, research and life-long learning, and develop an appreciation of liberal arts and social sciences.
- Have a global awareness of environmental issues and use appropriate technologies to solve them.

The Environmental Engineering program requires students to be “Multidisciplinary Certified” for graduation. This provides students an opportunity to practice skills associated with working on multidisciplinary teams. Such experience is important for practicing engineers, with the ever-increasing diversity of engineering science and applications. For Environmental Engineering majors, this requirement is satisfied by taking a required course sequence, ENVE 466/467. Visit the department web site for more information. Also see further discussion in the catalog under College of Engineering.

An engineering approach to the subject enables graduates of the program to pursue careers in industry, consulting firms, and public agencies concerned with air and water pollution control, groundwater, potable water treatment, solid waste management, and hazardous waste management.

Various program constituencies, such as graduates and employers, are consulted periodically for input on the appropriateness as well as the attainment of the educational objectives. Other indicators such as student/alumni placement and success rates in the statewide fundamentals in engineering examination are also used to evaluate attainment.

The Society of Environmental Engineers offers technical programs and other activities, including field trips each year to study typical installations of systems. Student memberships also are available in the Air and Waste Management Association, the California Water Pollution Control Association, and the Water Environment Federation.

Blended BS + MS Civil and Environmental Engineering

The blended program provides motivated students with an accelerated route to an MS in Civil and Environmental Engineering, with simultaneous conferring of both bachelor’s and master’s degrees. Students in the blended program are provided with a seamless process whereby they can progress from undergraduate to graduate status.

Eligibility

Students majoring in BS Civil Engineering or BS Environmental Engineering may be eligible to pursue the blended program toward an MS in Civil and Environmental Engineering after completing all required support and CE/ENVE 300-level classes. Participation in the program is based on prior academic performance and other measures of professional promise, with a minimum GPA of 3.0. Please see page 75 for additional eligibility criteria.
Program of Study

Students originating in the BS Civil and Environmental Engineering programs are required to take Senior Design I and II (CE 466/467 or ENVE 466/467) and complete nine units of thesis (CE 599 or ENVE 599).

The blended program allows students to earn graduate credit for several of their senior electives, effectively decreasing the summed unit requirements for both degrees. A maximum of nine units can be shared between the B.S. and M.S. program requirements. Students in the blended program are required to complete a thesis.

BS CIVIL ENGINEERING

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 111</td>
<td>Introduction to Civil Engineering</td>
<td>1</td>
</tr>
<tr>
<td>CE 114</td>
<td>Intro CAD in Civil & Environmental Engr</td>
<td>4</td>
</tr>
<tr>
<td>CE 201</td>
<td>Mechanics of Materials (6) or CE 204, CE 207 Mechanics of Materials I, II</td>
<td>6</td>
</tr>
<tr>
<td>CE 221, 222</td>
<td>Fund Transportation Engr and Lab</td>
<td>3,2</td>
</tr>
<tr>
<td>CE 251</td>
<td>Numerical Methods in Civil Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CE 259</td>
<td>Civil Engineering Materials</td>
<td>2</td>
</tr>
<tr>
<td>CE 336</td>
<td>Water Resources Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CE 337</td>
<td>Hydraulics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CE 351</td>
<td>Structural Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CE 355</td>
<td>Reinforced Concrete Design</td>
<td>4</td>
</tr>
<tr>
<td>CE 356</td>
<td>Structural Steel Design</td>
<td>4</td>
</tr>
<tr>
<td>CE 381, 382</td>
<td>Geotechnical Engineering and Lab</td>
<td>4,1</td>
</tr>
<tr>
<td>CE 461, 462</td>
<td>or CE 466, 467 or CE 468</td>
<td>3,3</td>
</tr>
</tbody>
</table>

1 Advisor approved emphasis area to be selected from: general civil, geotechnical, structural, transportation, or water resources engineering...

1,2,3 Advisor approved technical electives...

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 213</td>
<td>* and ENGR/BRAE 213 (B2)*</td>
<td>2,2</td>
</tr>
<tr>
<td>BRAE 239</td>
<td>Engineering Surveying</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Gen Chem for Engineering (B3/B4)*</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Gen Chem for Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 149</td>
<td>Technical Writing for Engineers (A3)*</td>
<td>4</td>
</tr>
<tr>
<td>ENVE 331</td>
<td>Intro to Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 201</td>
<td>Physical Geology</td>
<td>3</td>
</tr>
<tr>
<td>MATE 210</td>
<td>Materials Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MATE 215</td>
<td>Materials Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>MATH 141, 142</td>
<td>Calculus I, II (B1)*</td>
<td>4,4</td>
</tr>
<tr>
<td>MATH 143</td>
<td>Calculus III (Add'l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 241</td>
<td>Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td>MATH 244</td>
<td>Linear Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>ME 211</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td>ME 212</td>
<td>Engineering Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 302</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 341</td>
<td>Fluid Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 141</td>
<td>General Physics IA (Add'l Area B)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132, 133</td>
<td>General Physics II, III</td>
<td>4,4</td>
</tr>
</tbody>
</table>

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 201</td>
<td>or CE 204, 207 Mechanics of Materials</td>
<td>6</td>
</tr>
<tr>
<td>CE 336</td>
<td>Water Resources Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CE 337</td>
<td>Hydraulics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CE 381</td>
<td>Geotechnical Engineering and Lab</td>
<td>4</td>
</tr>
<tr>
<td>CE 434</td>
<td>Groundwater Hydraulics and Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>ENVE 309</td>
<td>Noise and Vibration Control</td>
<td>3</td>
</tr>
<tr>
<td>ENVE 325</td>
<td>Environmental Air Quality</td>
<td>3</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

72 units required; 32 units are in Support.

1. See page 56 for complete GE course listing.
2. Minimum of 8 units required at the 300-400 level.

Area A Communication (8 units)

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2</td>
<td>Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3</td>
<td>Reasoning, Argumentation, and Writing *</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Area B units * 8 units in Support*</td>
<td>0</td>
</tr>
</tbody>
</table>

Area B Science and Mathematics (no add'l units req'd)

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Mathematics/Statistics * 8 units in Support*</td>
<td>0</td>
</tr>
<tr>
<td>B2</td>
<td>Life Science * 4 units in Support*</td>
<td>0</td>
</tr>
<tr>
<td>B3</td>
<td>Physical Science * 4 units in Support*</td>
<td>0</td>
</tr>
<tr>
<td>B4</td>
<td>One lab taken with either a B2 or B3 course (requirement for Liberal Arts students only)</td>
<td>0</td>
</tr>
<tr>
<td>B6</td>
<td>Upper-division Area B * 4 units in Support*</td>
<td>0</td>
</tr>
<tr>
<td>Additional Area B units * 8 units in Support*</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Area C Arts and Humanities (16 units)

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Literature</td>
<td>4</td>
</tr>
<tr>
<td>C2</td>
<td>Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>C3</td>
<td>Fine/Performing Arts</td>
<td>4</td>
</tr>
<tr>
<td>C4</td>
<td>Upper-division elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Area D/E Society and the Individual (16 units)

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>The American Experience (40404)</td>
<td>4</td>
</tr>
<tr>
<td>D2</td>
<td>Political Economy</td>
<td>4</td>
</tr>
<tr>
<td>D3</td>
<td>Comparative Social Institutions</td>
<td>4</td>
</tr>
<tr>
<td>D4</td>
<td>Self Development (CSU Area E)</td>
<td>4</td>
</tr>
</tbody>
</table>

ELECTIVES

0 196

BS ENVIRONMENTAL ENGINEERING

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 201</td>
<td>or CE 204, 207 Mechanics of Materials</td>
<td>6</td>
</tr>
<tr>
<td>CE 336</td>
<td>Water Resources Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CE 337</td>
<td>Hydraulics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CE 381</td>
<td>Geotechnical Engineering and Lab</td>
<td>4</td>
</tr>
<tr>
<td>CE 434</td>
<td>Groundwater Hydraulics and Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>ENVE 309</td>
<td>Noise and Vibration Control</td>
<td>3</td>
</tr>
<tr>
<td>ENVE 325</td>
<td>Environmental Air Quality</td>
<td>3</td>
</tr>
</tbody>
</table>

1 To be selected after consultation with academic advisor.

2 More than 4 units of advisor-approved coursework outside CE/ENVE is only permitted in special/unique cases, requires written justification by the student, and approval by the Department Chair.

3 No more than 4 total units of advisor-approved technical elective credit from CE 400, 500 and ENVE 400, 500 combined.

4 Please see www.eadvise.calpoly.edu for the current list of approved courses.
ENVE 331 Intro to Environmental Engineering 4
ENVE 411 Air Pollution Control.......................... 3
ENVE 416 Environmental Process Modeling......... 4
ENVE 421 Mass Transfer Operations.................. 3
ENVE 426 Air Quality Measurements................... 3
ENVE 434 Water Quality Measurements............... 4
ENVE 436 Intro Hazardous Waste Management...... 3
ENVE 438 Water & Wastewater Treatment Design...... 3
ENVE 439 Solid Waste Management.................... 3
ENVE 450 Industrial Pollution Prevention............ 4
ENVE 455 Environmental Health and Safety.......... 4
ENVE 466, 467 Senior Project Design Lab 2,2

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 127</td>
<td>General Chemistry I (B3/B4)*</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 128</td>
<td>General Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 129</td>
<td>General Chemistry III</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 312</td>
<td>Surv Org Chem (trans equiv CHEM 212)</td>
<td>5</td>
</tr>
<tr>
<td>CSC 231</td>
<td>Fortran or CSC 234 C/UNIX</td>
<td>2</td>
</tr>
<tr>
<td>EE 201</td>
<td>Electric Circuit Theory</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 149</td>
<td>Technical Writing for Engineers (A3)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 141, 142</td>
<td>Calculus I, II (B1)*</td>
<td>4,4</td>
</tr>
<tr>
<td>MATH 143</td>
<td>Calculus III (Add'l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 241</td>
<td>Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td>MATH 244</td>
<td>Linear Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>MCRO 221</td>
<td>Microbiology (B2)*</td>
<td>4</td>
</tr>
<tr>
<td>ME 211, 212</td>
<td>Engr Statics, Engr Dynamics</td>
<td>3,3</td>
</tr>
<tr>
<td>ME 341</td>
<td>Fluid Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 141</td>
<td>General Physics IA (Add'l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132, 133</td>
<td>General Physics II, III</td>
<td>4,4</td>
</tr>
<tr>
<td>STAT 312</td>
<td>Statistical Methods for Engineers (B6)*</td>
<td>4</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

72 units required; 32 units are in Support.

1 To be selected in accordance with the A.B.E.T. 24-unit and Culminating Engineering Design requirement, in consultation with your academic advisor.
2 No more than 4 units of ENVE 400 or CE 400 can be counted towards technical electives.
3 CHEM 124, 125 substitute for CHEM 127, 128.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4 Upper-division elective (PHIL 340 or FNR 360 recommended)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Area D/E: Society and the Individual (16 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 The American Experience (40404)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D2 Political Economy</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D3 Comparative Social Institutions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D4 Self Development (CSU Area E)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

MS Civil and Environmental Engineering

General Characteristics

The Master of Science program in Civil and Environmental Engineering has the following objectives:

- Job-entry education for the more complex areas of engineering, such as research and development, innovative design, systems analysis and design, and managerial engineering;
- Updating opportunities for practicing engineers;
- Graduate preparation for further study in engineering, leading to the Doctor of Engineering or Ph.D. degree.

Prerequisites

For admission as a classified graduate student, an applicant must hold a bachelor's degree in engineering or a closely related physical science with a minimum GPA of 3.0 in the last 90 quarter units (60 semester) attempted. Applicants are required to submit satisfactory scores for the General (Aptitude) Test of the Graduate Record Examination. An applicant who meets these standards but lacks prerequisite coursework may be admitted as a conditionally classified student and must make-up any deficiencies before advancement to classified graduate standing.

Information pertaining to specific requirements for admission to graduate standing (classified or conditionally classified) may be obtained from the Graduate Coordinator, Civil and Environmental Engineering Department.

Program of Study

Graduate students must file a formal study plan with their advisor, department, college and university graduate studies office by no later than the end of the quarter in which the 12th unit of approved courses is completed. The formal program of study must include a minimum of 45 units (at least 24 of which must be at the 500 level). With the graduate advisor's approval, students select their elective units in one of the following areas of study: geotechnical engineering, transportation and planning, or water resources and environmental engineering.

2007-2009 Cal Poly Catalog
The broad curriculum requirements for the MS in Civil and Environmental Engineering are:
* a core of 11 units as required;
* a minimum of 20 units of advisor approved electives within the major;
* a minimum of 8 units of advisor-approved electives outside the department;
* at least 24 units of the 45 unit program at the 500 level;
* a comprehensive written examination (non-thesis option) or an oral defense examination (thesis option).

Two program options are available:
Thesis option. 36 units of advisor-approved coursework, 9 units of thesis research/design, and an oral thesis defense examination administered by a panel of three faculty.

Non-thesis option. 45 units of advisor-approved coursework and a written comprehensive examination administered by a panel of three faculty (maximum of three opportunities to pass this examination). Not an option for the blended BS+MS program.

Units

Required Courses .. 11

- CE 591 Graduate Seminar I (1)
- CE 592 Graduate Seminar II (1)
- CE 599/ENVE 599 Design Project (Thesis) (9) or additional 9 units of advisor approved analysis and design electives within the major (non-thesis option) and Comprehensive Examination.

Advisor approved analysis and design electives within the major (normally to be selected from the following list after consultation with your academic advisor and the CE/ENVE graduate coordinator)... 20-26

- ENVE 400, 411, 416, 421, 434, 436, 438, 439, 443, 450, 455, 466, 467, 500, 535, 536, 542, 551, 552

Advisor approved electives outside the major
(to be selected after consultation with your academic advisor and the CE/ENVE graduate coordinator)... 8-14

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
</tr>
</tbody>
</table>

1 No more than 4 total units of advisor-approved technical elective credit from CE 400, 500 and ENVE 400, 500 combined.
Computer Engineering

Program Office
Engineering East Building (20), Room 215
(805) 756-1229 www.cpe.calpoly.edu

Director, Albert A. Liddicoat
David B. Braun
Christopher M. Clark
Fred W. DePierro
Diana M. Franklin
Joseph E. Grimes
James G. Harris
Lewis E. Hitchner
Martin E. Kaliski
C. Arthur MacCarley

Bryan Mealy
Phillip L. Nico
John A. Saghri
Richard S. Sandige
John S. Seng
Lynne A. Slivovsky
Hugh M. Smith
Daniel J. Stearns

ACADEMIC PROGRAM
BS Computer Engineering

The Bachelor of Science in Computer Engineering prepares students interested in the design and application of computers and computer-based systems. The program incorporates a firm foundation in both electrical engineering and computer science, with a focus on the integration of hardware and software systems.

The mission of the Computer Engineering Program (CPE) is to provide students with a well-rounded education encompassing the theory and practice of selected, balanced topics in electrical engineering and computer science, to enable students to contribute and continue their education in a wide range of computer-related engineering careers. The program seeks to emphasize “hands-on” experience, problem solving skills, the creative process and responsible action. Through professional development activities, faculty contribute to the advancement of the state-of-the-art, and strive to directly incorporate this experience in the classroom.

Four educational objectives inspire alumni of the Cal Poly Computer Engineering program to excel professionally:

1. Make positive contributions to society and the practice of computer engineering by applying foundational knowledge and the engineering process to solve engineering problems.
2. Work in an individual or team environment in a socially responsible manner.
3. Engage in lifelong learning through continued professional development or graduate studies.
4. Communicate effectively and demonstrate leadership.

In addition to the general abilities expected of College of Engineering graduates, computer engineering students are expected to graduate with:

- a knowledge of probability and statistics appropriate to computer engineering applications;
- a knowledge of discrete mathematics.

The Computer Engineering program requires students to be “Multidisciplinary Certified” for graduation. This provides students an opportunity to practice skills associated with working on multidisciplinary teams. Such experience is important for practicing engineers, with the ever-increasing diversity of engineering science and applications. Contact the Computer Engineering Department Office or visit the Computer Engineering web site for more information. Also see further discussion in the catalog under College of Engineering.

The program prepares graduates for professional practice in industry, as well as continued study in graduate school. Cal Poly’s “learn by doing” philosophy is emphasized by integrating design throughout the curriculum, especially in the numerous design-centered laboratories. In the required senior design project, which is completed in a two-quarter set of capstone courses, students demonstrate their understanding of engineering knowledge and their ability to apply that knowledge creatively to practical problems.

This integrated approach allows students to work effectively in such diverse areas as digital systems simulation and digital control systems. Knowledge and laboratory experience in computer architecture and structures provide the understanding necessary to design and build computer systems, computer networks and digital communications systems. A thorough knowledge of modern microprocessors enables the graduate to apply these machines in applications such as robotics and data acquisition. Twelve units of technical electives allow students the option to specialize in an area of special interest. For a complete list, please visit the technical electives selection at http://eadvise.calpoly.edu.

Current technical electives include courses in:
- computer architecture and system integration
- computer networks
- computer based controls and robotics
- software systems
- graphics and multimedia
- electronics implementation and VLSI

In addition to a sound theoretical background in computer engineering concepts, students experience practical design
courses intended to build problem solving skills. Laboratory courses supplement the program to develop "hands on" skills in all areas of study. Students are exposed to a wide variety of computing equipment: microprocessor development systems, workstations and personal computers, and advanced network hardware and software.

Active student groups of interest to computer engineering majors include the IEEE Computer Society, the IEEE Student Branch, the Association for Computing Machinery, and many other project-oriented student clubs and activities.

Blended and Graduate Programs
Graduates of the Computer Engineering Program are qualified for admission to Cal Poly master's degree programs in electrical engineering, computer science, general engineering, and biomedical engineering.

The opportunity also exists for advanced students to begin graduate study in these areas prior to completion of the BS degree, via a blended program. This provides a number of advantages to qualified students, and makes it possible for completion of both the BS and MS degrees in as little as five years. Computer engineering students participating in a blended program are permitted to fulfill the computer engineering senior project requirement with the master's degree thesis. Students must be prepared for engineering practice via the curriculum which culminates in a major design experience based on the knowledge and skills acquired in earlier coursework and incorporating engineering standards and realistic constraints, as listed in the ABET Engineering Criteria. Therefore, all "Blended BS + MS Program" students, even those students completing the Master of Science in Engineering, must have a master's thesis with this major design experience requirement. Further details are provided in the graduate supervisor assists the student in ensuring that this requirement is met. Further details are provided in the graduate study sections for each of these programs.

BS COMPUTER ENGINEERING
☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP
* = Satisfies General Education requirement

MAJOR COURSES
CPE 100 Computer Engineering Orientation 1
CPE 101 Fundamentals Computer Science I 4
CPE 102, 103 Fund Computer Science II, III 4,4
CPE 129, 169 Digital Design and Lab 3,1
CPE 229, 269 Comp Des/Assembly Lang Prog, Lab 3,1
CPE 315 Computer Architecture 4
CPE 316 Micro Controllers and Embedded Apps 4
CPE 329 Progr Logic/Micro-Based Sys Des 4
CPE 350 CPE Capstone Preparation 4
CPE 357 Systems Programming 4
CPE 450 CPE Capstone Project 4
CPE 453 Operating Systems I 4
CPE 461, 462 Senior Project I, II 3,2
CPE 464 Introduction to Computer Networks 4
CSC 141 Discrete Structures I 4
EE 112 Electric Circuit Analysis I 2
EE 211, 241 Electric Circuit Analysis II and Lab 3,1
EE 212, 242 Electric Circuit Analysis III and Lab 3,1
EE 228 Continuous-Time Signals and Systems 4
EE 306, 346 Semiconductor Device Electr, Lab 3,1
EE 307, 347 Digital Integrated Electronics and Lab 3,1
Advisor approved technical electives 12

SUPPORT COURSES
BIO 213 and ENGR/BRAE 213 (B2)* 2,2
CHEM 124 Gen Chem for Engineering (B3/B4)* 4
Approved CSC/EE/MATH/science elective 3
ENGL 149 Technical Writing for Engineers (A3)* 4
IME 156/IME 157/IME 458 2
MATH 141, 142 Calculus I, II (B1)* 4,4
MATH 143 Calculus III (Add'l Area B)* 4
MATH 241 Calculus IV .. 4
MATH 244 Linear Analysis I 4
ME 211 Engr Stats or MATE 210, 215 (4) 3
PHYS 141 General Physics IA (Add'l Area B) 4
PHYS 132, 133 General Physics II, III 4,4
PHYS 211 Modern Physics I 4
STAT 350 Prob/Random Processes Engr (B6)* 4

GENERAL EDUCATION (GE)
72 units required; 32 units are in Major/Support.
*See page 56 for complete GE course listing.
*Minimum of 8 units required at the 300-400 level.

Area A Communication (8 units)
A1 Expository Writing .. 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing * 4 units in Support 4

Area B Science and Mathematics (no add'l units reqd)
B1 Mathematics/Statistics * 8 units in Support 0
B2 Life Science * 4 units in Support 0
B3 Physical Science * 4 units in Support 0
B4 One lab taken with either a B2 or B3 course 0
B5 (requirement for Liberal Arts students only) 0
B6 Upper-division Area B * 4 units in Support 0
Additional Area B units * 8 units in Support 0

Area C Arts and Humanities (16 units)
C1 Literature .. 4
C2 Philosophy .. 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4

Area D/E Society and the Individual (16 units)
D1 The American Experience (40404) 4
D2 Political Economy ... 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4

ELECTIVES ... 0

196 2007-2009 Cal Poly Catalog
Computer Science

Department Chair, Ignatios Vakalis
John M. Bellardo
W. Chris Buckalew
Laurian M. Chirica
Christopher M. Clark
John B. Clements
Gene Fisher
Diana M. Franklin
Hasmik Gharibyan
Joseph E. Grimes
Michael L. Haungs
Lewis E. Hitchner
David S. Janzen
Aaron W. Keen
Franz J. Kurfess
Mei-Ling Liu
Phillip L. Nico
Cornel K. Pokorny
John S. Seng
Hugh Smith
Clinton A. Staley
Daniel J. Stearns
Clark S. Turner
Zoe J. Wood

ACADEMIC PROGRAMS
BS, MS Computer Science
BS Computer Engineering
BS Software Engineering
Computer Science Minor

The Computer Science Department educates students in the discipline of computer science and teaches them to apply their education to solve practical problems in a socially responsible way. To support the department’s educational mission, faculty engage in research and professional development.

In all of the department’s programs, laboratory experiences ensure that students have both a theoretical and practical understanding of computer science. Individual and team projects, culminating in the capstone experience of a senior project, reinforce concepts and provide students the opportunity to apply and communicate their knowledge.

The department has active student chapters of the Association for Computing Machinery, IEEE Computer Society and Upsilon Pi Epsilon (the national computer honor society). Student teams compete in national competitions and student organizations sponsor industry/student events.

The department, with industry support, provides a modern computing environment that includes the most current software tools running on a variety of workstations and servers. Projects in advanced courses are supported by specialized laboratories for databases, computer architecture, operating systems, software engineering, computer networks, computer graphics, and human/computer interaction.

BS Computer Science

The BS Computer Science program provides in-depth study of computer science fundamentals and practice, including programming concepts and languages, software engineering, operating systems and computer architecture.

In addition, the major offers a wide choice of technical electives that allows students to focus on particular areas of computer science and their application. Typical areas of emphasis include databases, distributed computing, software engineering, programming languages, graphical user interfaces, operating systems, computer networks, computer graphics, and artificial intelligence.

The curriculum is project-oriented and develops students’ ability to solve problems using modern computing concepts. Students can expect to complete many projects in a variety of programming languages and on a variety of computer systems. During their last year of study, students complete a senior project, either individually or as members of a team, spanning two academic quarters.

Graduates of the computer science program are well prepared to become successful professionals and to pursue graduate study. They are sought by the computer industry for positions as software developers, quality assurance and test engineers, and other technical positions in computer-related industries.

Graduates in computer science:

- Have a broad knowledge of computer science and substantial knowledge of at least one key area of computer science;
- Are prepared to be successful professionals, and, if they desire, are prepared to pursue graduate study;
- Think independently, acquire knowledge, and continue their development as professionals;
- Apply scientific and engineering methodology to the design, implementation, analysis, and evaluation of computer-based systems;
- Communicate effectively, both orally and in writing, and collaborate effectively in teams; and
- Are prepared for the ethical, societal, and global issues associated with the computing field.
The BS Computer Science program is accredited by the Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone: (410) 347-7700.

BS Software Engineering
The BS in Software Engineering prepares students to become software professionals who develop software products on time, within budget, and that meet customer requirements. Building on the fundamentals of computer science, the program focuses on practical aspects of building and deploying software systems in a socially responsible way. The program’s educational mission supports the faculty in research and professional development that keeps them current in their field and in touch with current industry practices and trends.

The hallmark of the program is “hands on” experience where students follow a curriculum that builds on traditional computer science but differs from the BS in Computer Science in the following ways:

1. Classes emphasize the team approach to building software and provide leadership opportunities for every student.
2. Classes place an emphasis on software processes and lifecycles.
3. Classes include significant learning in engineering and management areas such as quality assurance, testing, metrics, maintenance, configuration management and interpersonal management skills.
4. The curriculum has a stronger emphasis on mathematics and the use of engineering methods in software design.

The software engineering curriculum culminates in a year-long capstone sequence where the students work in teams to build a large software system. Students are required to develop an ability to work in a significant application domain through the requirement of an advisor approved cooperative education experience.

Department programs are designed to be flexible. Although freshmen choose their major when they apply for admission, students can easily switch among software engineering, computer engineering and computer science since the lower division curricula are similar.

The software industry increasingly requires both a software and an engineering background for their cutting edge projects. Graduates with a BS in Software Engineering can expect to find significant opportunities in software development and management, software engineering and marketing.

The Software Engineering program requires students to be “Multidisciplinary Certified” for graduation. This provides students an opportunity to practice skills associated with working on multidisciplinary teams. Such experience is important for practicing engineers, with the ever-increasing diversity of engineering science and applications. For Software Engineering majors, this requirement is satisfied in two ways: 1) all SE majors must complete CSC 402/405/406 wherein students work in teams to complete a project for an industrial partner in some applied discipline, and 2) all SE majors must complete a project that applies software engineering principles to some other discipline.

BS Computer Engineering
For information regarding this program, please refer to Computer Engineering. This program is jointly administered by the Computer Science Department and the Electrical Engineering Department.

Blended BS + MS Computer Science
The department offers an accelerated program for motivated, well-qualified students. The blended program allows BS Computer Science, BS Computer Engineering, and BS Software Engineering students to progress toward the Master’s degree while still undergraduates. The scheduling flexibility provided by the program enables students to complete the BS and MS degrees efficiently.

Eligibility
Students majoring in BS Computer Science, BS Software Engineering, and BS Computer Engineering are eligible to apply to the blended program if they meet the following minimum eligibility requirements:

- Junior status and completion of 20 units of CSC courses past CSC/CPE 103;
- Meet the minimum GPA requirement of 3.3; and
- Have not enrolled in senior project.

Participation in the program is based on prior academic performance and other measures of professional promise. Students are selected by a faculty committee.

Program of Study
Students in the blended program complete all courses required for the MS degree and all courses required for the BS except the senior project. Completion of the MS thesis may satisfy the senior project requirement. Please refer to your undergraduate degree program for any restrictions on the master’s thesis where a major design experience is required to complete the undergraduate degree.

Upon completion of the program, students are awarded the BS and the MS degrees at the same graduation ceremony and at the same time. Degrees are earned concurrently.

Computer Science Minor
Nearly all disciplines use the capabilities of computers. The minor consists of a core and upper-division courses selected in consultation with an advisor. The core provides common knowledge and skills needed by anyone who wishes to advance further in computer science. The remaining courses enable students to specialize in areas relevant to their goals.
The courses taken in the minor can be counted toward the student’s major, support and general education & breadth requirements. Admission to the minor is limited and selection is made based upon the applicant’s performance in the core courses. Students who intend to minor in computer science should consult the College of Engineering Advising Center website for GPA and course grade requirements for admission to the minor. In addition, they should contact the Advising Center for further information before planning to enter the minor.

Before formally applying, students must make an appointment at the College of Engineering Advising Center. The computer science minor is not open to CSC, CPE or Software Engineering (SE) major students. Questions concerning the minor should be directed to the Advising Center.

Curriculum for Computer Science Minor

Core courses (20)
CSC 101,102,103 Fund Computer Science I,II,III 4,4,4
CSC 141 Discrete Structures I 4
CSC 357 Systems Programming or CSC 353
Systems Programming for Software Engineers 4
Advisor approved courses 12
Choose from CSC/CPE upper-division courses open to CSC majors. Must be approved via the CSC minor form upon acceptance to the minor.

BS COMPUTER SCIENCE
☐ 60 units upper division ☐ GWR ☐ 2.0 GPA ☐ UUSCP
* = Satisfies General Education requirement

MAJOR COURSES
CSC 101 Fundamentals of Computer Science I 4
CSC 102 Fundamentals of Computer Science II..... 4
CSC 103 Fundamentals of Computer Science III 4
CSC 141 Discrete Structures I 4
CPE 129, 169 Digital Design and Lab 3,1
CPE 229, 269 Computer Design and Assembly
Language Programming, and Lab (3,1) or
CSC 225 Intro to Computer Organization (4) 4
CSC 300 Professional Responsibilities 4
CSC 307 Intro to Software Engineering (4) or
*CSC 308/309 Software Engineering I, II (4/4) 4/8
CSC 315 Computer Architecture 4
CSC 349 Design and Analysis of Algorithms 4
CSC 357 Systems Programming 4
CSC 430 Programming Languages I 4
CSC 431 Programming Languages II 4
CSC 445 Theory of Computing 4
CSC 453 Introduction to Operating Systems 4
CSC 491, 492 Senior Project Design Lab I, II 2,3
Advisor approved technical electives 24/20

SUPPORT COURSES
BIO 213 and ENGR/BRAE 213 (B2)* 2,2
ENGL 149 Technical Writing for Engineers (A3)* 4
MATH 141, 142 Calculus I, II (B1)* 4,4
STAT 321 Prob/Stats for Engrs/Scientist (B6)* 4
Approved support electives 8
(See www.eadvice.calpoly.edu for approved electives)

Mathematics/statistics electives. Select from 8
CSC 142; MATH 143, 206, 241, 245, 248, 306, 335, 336, 437, 470; STAT 322.

Science elective (Add'l Area B)* Select from BIO 111, 115, 151; BOT 121; CHEM 124;
MCRO 221, 224; PHYS 141 (no double counting of units).................. 4

Physical science electives (B3/4)* (Add'l Area B)* 12
CHEM 124, 125, 129 or PHYS 141, 132, 133

GENERAL EDUCATION (GE)
72 units required; 32 units are in Support.
→See page 56 for complete GE course listing.
→Minimum of 8 units required at the 300-400 level.

Area A Communication (8 units)
A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing * 4 units in Support................................. 0

Area B Science and Mathematics (no add'l units req’d)
B1 Mathematics/Statistics * 8 units in Support.... 0
B2 Life Science * 4 units in Support.............. 0
B3 Physical Science * 4 units in Support 0
B4 One lab taken with a B3 course
B5 (requirement for Liberal Arts students only)
B6 Upper-division Area B * 4 units in Support 0
Additional Area B units * 8 units in Support 0

Area C Arts and Humanities (16 units)
C1 Literature ... 4
C2 Philosophy .. 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4

Area D/E Society and the Individual (16 units)
D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4

ELECTIVES ... 0

89

*CSC 309 counts as technical elective.
Subject to CSC Department guidelines; contact the College of Engineering Advising Center (www.eadvice.calpoly.edu) for additional information and agreement form. Technical electives must be approved in advance.

2007-2009 Cal Poly Catalog
BS SOFTWARE ENGINEERING

- 60 units upper division
- GWR
- 2.0 GPA
- USCP

* = Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 101</td>
<td>Fundamentals Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>CSC 102, 103</td>
<td>Fund Computer Science II, III</td>
<td>4,4</td>
</tr>
<tr>
<td>CSC 141</td>
<td>Discrete Structures I</td>
<td>4</td>
</tr>
<tr>
<td>CSC 300</td>
<td>Professional Responsibilities</td>
<td>4</td>
</tr>
<tr>
<td>CSC 305</td>
<td>Individual Software Design & Dev</td>
<td>4</td>
</tr>
<tr>
<td>CSC 308</td>
<td>Software Engineering I</td>
<td>4</td>
</tr>
<tr>
<td>CSC 309</td>
<td>Software Engineering II</td>
<td>4</td>
</tr>
<tr>
<td>CSC 349</td>
<td>Design and Analysis of Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>CSC 353</td>
<td>Systems Programming for Software Engrs</td>
<td>4</td>
</tr>
<tr>
<td>CSC 402</td>
<td>Software Requirements Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CSC 405</td>
<td>Software Construction</td>
<td>4</td>
</tr>
<tr>
<td>CSC 406</td>
<td>Software Deployment</td>
<td>4</td>
</tr>
<tr>
<td>CSC 430</td>
<td>Programming Languages I</td>
<td>4</td>
</tr>
<tr>
<td>CSC 453</td>
<td>Intro to Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>CSC 484</td>
<td>User-Centered Interface Design & Dev.</td>
<td>4</td>
</tr>
<tr>
<td>CSC 491, 492</td>
<td>Senior Project Design Lab I, II</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Advisor approved cooperative education experience via CSC 400 or technical elective equivalent .. 4

Advisor approved technical electives.................................. 20

Subject to Computer Science Department guidelines; contact the College of Engineering Advising Center (www.ee.calpoly.edu/CENGAC) for additional information and agreement form. Technical electives must be approved in advance.

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 213</td>
<td></td>
<td>2,2</td>
</tr>
<tr>
<td>ENGL 149</td>
<td>Technical Writing for Engineers (A3)*</td>
<td>4</td>
</tr>
<tr>
<td>IME 314</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>IME 430</td>
<td>Quality Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

note: prerequisite waived for SE students

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 141, 142</td>
<td>Calculus I, II (B1)*</td>
<td>4,4</td>
</tr>
<tr>
<td>MATH 143</td>
<td>Calculus III (Add’l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 241</td>
<td>Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td>MATH 244</td>
<td>Linear Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>Select one from: MATH 240, 254, 330, 335, 336</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PSY 201/202</td>
<td>General Psychology (D4)*</td>
<td>4</td>
</tr>
<tr>
<td>PSY 350</td>
<td>Teamwork or PSY 351 Group Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>Science electives (B3/4)* (Add’l 4 units Area B)*</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Select either
- CHEM 124, 125, 129
- PHYS 141, 132, 133

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 312</td>
<td>Statistical Methods for Engineers (B6)*</td>
<td>4</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

72 units required; 36 units are in Major/Support.
See page 58 for complete GE course listing.
Minimum of 8 units required at the 300-400 level.

Area A Communication (8 units)

- A1 Expository Writing ... 4
- A2 Oral Communication ... 4
- A3 Reasoning, Argumentation and Writing * 4 units in Support.......................... 0

Area B Science and Mathematics (no add’l units req’d)

- B1 Mathematics/Statistics * 8 units in Support............. 0
- B2 Life Science * 4 units in Support.......................... 0
- B3 Physical Science * 4 units in Support..................... 0
- B4 One lab taken with a B3 course.............................. 0
- B5 (requirement for Liberal Arts students only).............. 0
- B6 Upper-division Area B * 4 units in Support 0
- Additional Area B units * 8 units in Support 0

Area C Arts and Humanities (16 units)

- C1 Literature ... 4
- C2 Philosophy ... 4
- C3 Fine/Performing Arts .. 4
- C4 Upper-division elective 4

Area D/E Society and the Individual (12 units)

- D1 The American Experience (40404) 4
- D2 Political Economy ... 4
- D3 Comparative Social Institutions 4
- D4 Self Dev (CSU Area E) * 4 units in Support 0

36

ELECTIVES .. 0

192

2007-2009 Cal Poly Catalog
MS COMPUTER SCIENCE

The MS program in Computer Science offers students the opportunity to prepare for careers in several areas of emphasis including software engineering, computer architecture, programming languages, theory of computing, operating systems, database systems, distributed computing, computer networks, artificial intelligence, computer graphics, and human-computer interaction. The program is designed for maximum flexibility to allow students to concentrate in one or more areas of study.

Admission to the program requires a baccalaureate degree from an accredited institution and good standing at the last college attended. During the last 90 quarter hours of study, the student must have earned a minimum grade point average of 3.0 if the undergraduate degree is in Computer Science, or 3.25 for other degrees. A satisfactory score on the Graduate Record Exam (GRE) is required. Foreign applicants must have a minimum TOEFL score of 550 (paper-based) or 213 (computer-based), plus a minimum TWE score of 4.5. Applicants must provide three letters of recommendation. Women and underrepresented minorities are strongly encouraged to apply for admission.

Qualified students who do not have an undergraduate degree in Computer Science may be admitted as unclassified students. Unclassified students must complete the necessary undergraduate coursework to be admitted to candidacy. While fulfilling the undergraduate requirements, unclassified students retain official status as graduate students in the University.

Unclassified students may advance to candidacy by completing each of the following undergraduate courses with a "B" or better. These courses do not count toward the graduate degree:

- CSC 103 Fundamentals of Computer Science III (4)
- CSC 307 Introduction to Software Engineering or CSC 308 Software Engineering I (4)
- CSC 315 Computer Architecture (4)
- CSC 349 Design and Analysis of Algorithms (4)
- CSC 353 Systems Programming for Software Engineers (4)
- CSC 430 Programming Languages I (4)
- CSC 445 Theory of Computation (4)
- CSC 453 Introduction to Operating Systems (4)

The department offers several graduate teaching assistantships. Preference is given to continuing graduate students and experienced teachers. Other grant, fellowship, scholarship and loan information can be obtained from the Financial Aid office.

Degree Requirements

Students must file a formal study plan with the Computer Science Department office no later than the end of the quarter in which they complete the first unit of coursework to be counted toward the degree. The formal study plan identifies specific courses to be taken to fulfill requirements of the MS degree. The formal study plan may be amended with approval of the graduate coordinator.

The MS degree requires at least 45 units beyond the undergraduate degree. Courses must be chosen according to the following requirements:

Curriculum for MS Computer Science

Select five courses from the following: 20
- CSC 508 Software Engineering I (4)
- CSC 509 Software Engineering II (4)
- CSC 520 Computer Architecture (4)
- CSC 530 Language and Translators (4)
- CSC 540 Theory of Computation II (4)
- CSC 550 Operating Systems (4)
- CSC 560 Database Systems (4)
- CSC 564 Computer Networks: Research Topics (4)
- CSC 568 Distributed Systems (4)
- CSC 569 Distributed Computing (4)
- CSC 570 Current Topics in Computer Science (2-4)
- CSC 580 Artificial Intelligence (4)
- CSC 581 Computer Support for Knowledge Management (4)

Thesis/Project and Seminar 9
- CSC 590 Graduate Seminar (3)
- CSC 599 Thesis (6)

Electives to be selected with Graduate Advisor's approval .. 16

For further information or advisement students should communicate with the Graduate Coordinator of the Computer Science Department.

Electrical Engineering

Department Chair, Michael M. Cirovic

Samuel O. Agbo
William L. Ahlgren
Dean Y. Arakaki
David B. Braun
Jerome R. Breitenbach
Fred W. DePiero
Dennis Derickson
Gary Granneman
James G. Harris
Michael Hawes
Xiaomin Jin
Martin E. Kaliski
Albert A. Liddicoat
C. Arthur MacCarley
Bryan J. Mealy
Ahmad Nafisi
Mahmood Nahvi
Wayne Pilkington
John A. Saghri
Richard S. Sandige
Ali O. Shaban
Lynne A. Slivovsky
Cheng Sun
Shyma C. Tandon
Taufik
Fei Wang
Michael T. Wollman
Xiao-Hua (Helen) Yu
Xiazheng (Jane) Zhang

ACADEMIC PROGRAMS
BS, MS Electrical Engineering
BS Computer Engineering

The Electrical Engineering Department offers a Bachelor of Science degree and a Master of Science degree in Electrical Engineering, and supports the Bachelor of Science degree in Computer Engineering. All degrees are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

The mission of the Electrical Engineering Department is to educate students to achieve excellence in the discipline of electrical engineering and to teach them to apply their education to solve practical problems in a socially responsible way. Students are prepared for careers of service, leadership, and distinction in engineering and other related fields using a participatory, learn-by-doing, and “hands-on” laboratory, project, and design centered approach. Students are encouraged to participate in lifelong learning in the presence of rapid technological change.

Diversity in the student, faculty and staff is embraced and enhances the quality and creativity of the campus experience and environment.

The primary educational objectives of the Electrical Engineering program are to prepare graduates to:

1. Excel in the electrical engineering profession;
2. Embrace life-long learning as a necessary component to remain current in their profession; and
3. Pursue graduate degrees for enhanced skills and opportunities.

In addition to the general abilities expected of college of engineering graduates listed on page 177, electrical engineering students are expected to graduate with:

- a knowledge of probability and statistics, including applications appropriate to the electrical engineering field;
- a knowledge of mathematics through differential and integral calculus, basic sciences, and engineering sciences necessary to analyze and design complex devices and systems containing hardware and software components; and
- a knowledge of advanced mathematics, typically including differential equations, linear algebra, complex variables, and discrete mathematics.

The Electrical Engineering program requires students to be “Multidisciplinary Certified” for graduation. This provides students an opportunity to practice skills associated with working on multidisciplinary teams. Such experience is important for practicing engineers, with the ever-increasing diversity of engineering science and applications. For Electrical Engineering majors, this requirement is satisfied by taking a required course, EE 255. Visit the Electrical Engineering website for more information. Also see further discussion in the catalog under College of Engineering.

The main focus of the program is to prepare graduates for practice in professional engineering. Thus, Cal Poly’s “learn by doing” philosophy is emphasized by integrating design throughout the curriculum in the numerous design-centered laboratories. In the required senior design project, students demonstrate their understanding of engineering knowledge and their ability to apply that knowledge creatively to practical problems.

The intent of the department is to prepare students for pursuing engineering solutions to urgent problems in reshaping the environment to meet human needs while being responsibly aware of all implications. The curriculum provides a sound theoretical background along with current, practical engineering knowledge. The student begins the major in the first quarter with orientation and generally has one or more major courses each quarter until graduation. The many laboratory courses provide practical experience and lead logically into design.

During their junior and senior years, students choose technical electives. Some courses deal with the development, design and application of circuits, devices
and systems for communication, computers, controls, information processing and display, and system instrumentation. Senior courses in this area provide specialized preparation in a selected area such as active and passive network synthesis, advanced communications systems, computer system design, microelectronic circuit engineering, microprocessor systems applications, microwave engineering, photonics, and solid state devices. Other courses deal with industrial process control systems, power electronics, and with generation, distribution, control and utilization of electric power. Senior elective courses in this area provide specialized preparation in a selected area such as advanced control systems, energy conversion, power system analysis, protection and stability and solid state motor control.

Industry recognizes that students who have completed specialized technical courses are early contributors in the workforce. Students wishing to pursue graduate work may select appropriate senior courses in keeping with this goal.

Laboratories are well-equipped to provide students with both hands-on instrumentation and design experiences. Involvement in faculty research is possible for outstanding students. Research areas include computer-aided education, advanced electronics for automotive and transportation applications, signal and image processing, electric vehicles, computer architecture and software systems, photonics, polymer electronics, power electronics, and electric power quality.

The Electric Power Institute, sponsored by the university and underwritten by major utility companies and electrical equipment manufacturers, offers advanced seminars and lectures in the electrical power field and provides limited student and faculty exchange opportunities.

Students are encouraged to participate in professional organizations and clubs such as: Institute of Electrical and Electronics Engineers (IEEE), Audio Engineering Society (AES), IEEE Computer Society (IEEE), Power Engineering Society (PES), Eta Kappa Nu (HKN), Society of Photo-Optical Instrumentation Engineers (SPIE), Student Electrical Engineering Council (SEEC), and Amateur Radio Club. The Department supports the concept of international education and encourages students to investigate opportunities for overseas study. For further information, see the Study Abroad programs.

BS Computer Engineering

For information regarding this program, please refer to Computer Engineering. This program is jointly offered by the Computer Science Department and the Electrical Engineering Department.

Blended BS + MS Electrical Engineering Honors Program

Students must be prepared for engineering practice via the curriculum which culminates in a major design experience based on the knowledge and skills acquired in earlier coursework and incorporating engineering standards and realistic constraints, as listed in the ABET Engineering Criteria. Therefore, all "Blended B.S. + M.S. Program" students, even those students completing the Master of Science in Engineering, must have a master’s thesis with this major design experience requirement included in order to complete the undergraduate degree.

The blended program is an honors program that provides a means for academically excellent students to complete the MS Electrical Engineering, with simultaneous conferring of both bachelor’s and master’s degrees. Students in the blended program are provided with a seamless process whereby they can progress from undergraduate to graduate status.

Eligibility

Students majoring in BS Electrical Engineering or Computer Engineering may be eligible to pursue the blended program after completing all required EE/CPE 300-level courses. Participation in the program is based on prior academic performance and other measures of professional promise. Students are selected by the Graduate Committee. See page 75 for the minimum university eligibility criteria; contact the EE Department for specific program eligibility criteria.

Program of Study

A feature of the program is to allow the use of a common project for fulfillment of both the Master’s Thesis (EE 599) and Senior Project (EE 461/462). A faculty advisor serves as the thesis committee chairperson and the senior project advisor. The unit requirements for either degree are unchanged. A student in this program, at his/her request, may be awarded the BS degree prior to the completion of the program, at a point when all requirements for the BS degree have been met, including an acceptable senior project report.

BS ELECTRICAL ENGINEERING

- 60 units upper division
- GWR
- 2.0 GPA
- USCP
- * = Satisfies General Education requirement

MAJOR COURSES

- EE 111, 151 Intro to Electrical Engineering & Lab 1,1
- EE 112 Electric Circuit Analysis I 2
- EE 129, 169 Digital Design and Lab 3,1
- EE 211, 241 Electric Circuit Analysis & Lab II 3,1
- EE 212, 242 Electric Circuit Analysis & Lab III 3,1
- EE 228 Continuous-Time Signals and Systems 4
- EE 229, 269 Computer Design and Assembly
 Language Programming and Lab 3,1
- EE 255, 295 Energy Conversion Electromag, Lab ... 3,1
- EE 302, 342 Classical Control Systems and Lab ... 3,1
EE 306, 346 Semiconductor Device Electronics and Lab 3,1
EE 307, 347 Digital Electronics and Integrated Circuits and Lab 3,1
EE 308, 348 Analog Electronics and Integrated Circuits and Lab 3,1
EE 314 Introduction to Communication Systems .. 3
EE 328 Discrete Time Signals and Systems and EE 368 Signals and Systems Laboratory 3,1
EE 329 Programmable Logic and Microprocessor-Based Systems Design 4
EE 335 Electromagnetic Fields and Transmission ... 4
EE 375 Electromagnetic Fields and Transmission Laboratory 1
EE 402 Electromagnetic Waves ... 4
EE 409, 449 Electronic Design and Lab ... 3,1
EE 460 Senior Project Preparation ... 2
EE 461 Senior Project I or EE 463 Senior Project Design Laboratory I 3
EE 462 Senior Project II or EE 464 Senior Project Design Laboratory II 2
Advisor approved technical electives ... 12
Select a minimum of 2 EE senior design laboratories and 2 EE senior design lectures.

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 213</td>
<td>and ENGR/BRAE 213 (B2)*</td>
<td>2,2</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Gen Chem for Engineering (B3/B4)*</td>
<td>4</td>
</tr>
<tr>
<td>CSC 101</td>
<td>Fundamentals of Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 149</td>
<td>Technical Writing for Engineers (A3)*</td>
<td>4</td>
</tr>
<tr>
<td>IME 156</td>
<td>Basic Electronics Manufacturing or IME 157 Electronics Manufacturing</td>
<td>2</td>
</tr>
<tr>
<td>MATH 141, 142</td>
<td>Calculus I, II (B1)*</td>
<td>4,4</td>
</tr>
<tr>
<td>MATH 143</td>
<td>Calculus III (Add'l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 241</td>
<td>Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td>MATH 244</td>
<td>Linear Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 141</td>
<td>General Physics IA (Add'l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132, 133</td>
<td>General Physics II, III</td>
<td>4,4</td>
</tr>
<tr>
<td>PHYS 211</td>
<td>Modern Physics I</td>
<td>4</td>
</tr>
<tr>
<td>STAT 350</td>
<td>Probability and Random Processes for Engineers (B6)*</td>
<td>4</td>
</tr>
</tbody>
</table>

Approved engineering support electives .. 9
Select at least 3 courses from list of approved courses (on file in EE Department)

GENERAL EDUCATION (GE)

- See page 56 for complete GE course listing.
- Minimum of 8 units required at the 300-400 level.

Area A Communication (8 units)

<table>
<thead>
<tr>
<th>Area A</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4 in Support</td>
<td>0</td>
</tr>
</tbody>
</table>

Area B Science and Mathematics (no additional units required)

<table>
<thead>
<tr>
<th>Area B</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Mathematics/Statistics</td>
<td>8 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B2 Life Science</td>
<td>4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B3 Physical Science</td>
<td>4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B4 One lab taken with either a B2 or B3 course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5 (requirement for Liberal Arts students only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6 Upper-division Area B</td>
<td>4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>Additional Area B units</td>
<td>8 units in Support</td>
<td>0</td>
</tr>
</tbody>
</table>

Area C Arts and Humanities (16 units)

<table>
<thead>
<tr>
<th>Area C</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Literature</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>C2 Philosophy</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>C3 Fine/Performing Arts</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>C4 Upper-division elective</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Area D/E Society and the Individual (16 units)

<table>
<thead>
<tr>
<th>Area D/E</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 The American Experience</td>
<td>(40404)</td>
<td>4</td>
</tr>
<tr>
<td>D2 Political Economy</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>D3 Comparative Social Institutions</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>D4 Self Development</td>
<td>(CSU Area E)</td>
<td>4</td>
</tr>
</tbody>
</table>

ELECTIVES

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>194</td>
</tr>
</tbody>
</table>

* 2007-2009 Cal Poly Catalog
MS ELECTRICAL ENGINEERING

General Characteristics
The Master of Science program in Electrical Engineering has the following objectives:

- Job-entry education for the more complex areas of engineering, such as research and development, innovative design, systems analysis and design, and managerial engineering;
- Updating and upgrading opportunities for practicing engineers;
- Graduate preparation for further study in engineering, leading to the Doctor of Engineering or Ph.D. degree;
- A base which allows graduates to maintain currency in their fields.

Prerequisites
For admission as a classified graduate student, an applicant must hold a bachelor’s degree in engineering or a closely related physical science with a minimum grade point average of 3.0 in the last 90 quarter units (60 semester units) attempted. Applicants for graduate engineering programs are required to submit satisfactory scores for the General (Aptitude) Test of the Graduate Record Examination. Foreign applicants must have satisfactory scores on the TOEFL and TWE exams. An applicant who meets these standards but lacks prerequisite coursework may be admitted as a conditionally classified student and must make up any deficiencies before advancement to classified graduate standing.

Information pertaining to specific requirements for admission to graduate standing (classified or conditionally classified) may be obtained from the Graduate Coordinator, Electrical Engineering Department.

Program of Study
Graduate students in this program must file a formal study plan with their advisor, department, college and university graduate studies office by no later than the end of the second quarter in the program. The formal program of study must include a minimum of 45 units (at least 28 of which must be at the 500 level and the remainder at the 400 level).

The broad curriculum requirements for the MS in Electrical Engineering are:

a) core of 16 units;
b) a minimum of 12 units of additional electrical engineering courses;
c) at least 17 units of approved electives;
d) at least 28 units of the 45 unit program at the 500 level.

Two program options are available for MS in Electrical Engineering students: a thesis program which requires coursework, a thesis and oral defense of thesis; or a non-thesis option which involves additional coursework and a comprehensive examination. The thesis option is strongly encouraged for all students.

Curriculum for MS Electrical Engineering

Core Courses .. 16
EE 525 Stochastic Processes for Engineers (4)
EE 563 Graduate Seminar (1) (1) (1)
EE 599 Design Project (Thesis) (1-9) units of major field graduate level courses and a comprehensive written examination

Additional Electrical Engineering Graduate Courses .. 12

To be selected from the following list: Not all courses listed are offered each academic year. Consult the EE Department for current information on course offerings
EE 502 Microwave Engineering (4)
EE 511 Electric Machines Theory (4)
EE 513 Control Systems Theory (4)
EE 514 Advanced Topics in Automatic Control (4)
EE 515 Discrete Time Filters (4)
EE 517 Information Theory (4)
EE 518 Power System Protection (4)
EE 519 Advanced Analysis of Power Systems (4)
EE 520 Solar-PV Systems Design (4)
EE 521 Computer Systems (4)
EE 522 Microproc-Based Digital Sys Design (4)
EE 523 Digital Systems Design (4)
EE 524 Solid State Electronics (3)
EE 526 Digital Communications (4)
EE 527 Advanced Topics in Power Electronics (4)
EE 528 Digital Image Processing (4)
EE 529 Microwave Device Electronics (3)
EE 530 Fourier Optics (4)
EE 533 Antennas (4)
EE 541 Advanced Microwave Laboratory (2)
EE 544 Solid-State Electronics Laboratory (1)

Approved Technical Electives (400-500 level) 17
May be selected from the course list above and other advisor approved technical electives.
Industrial & Manufacturing Engineering

Department Chair, Donald E. White
Sema E. Alptekin
Kurt Colvin
Tali Freed
H. Jo Anne Freeman
Roya Javadpour
Jose Macedo
Unny Menon
Jianbiao Pan
A. Reza Pouraghahabeger
Paul E. Rainey
Ahmad K. Seifoddini
Daniel J. Waldorf
Tao H. Yang

ACADEMIC PROGRAMS

BS, MS Industrial Engineering
BS Manufacturing Engineering

The mission of the Industrial Engineering and Manufacturing Engineering Programs at Cal Poly is “to educate students for successful and distinguished careers in industrial engineering, manufacturing engineering, and related fields using a learn-by-doing approach that stresses integrated processes, appropriate technologies, and enterprise competitive advantage.”

The Department focuses on programs that integrate engineering with a real concern for people. Our students study topics that lead to satisfying and productive careers, and also provide strong preparation for graduate work in many fields. Programs reflect the traditional strengths of Cal Poly through close interaction between students and faculty in classroom, laboratory, and other activities.

Department and university laboratories and computers are integrated into coursework to investigate, test, and apply theoretical principles learned in the classroom. The descriptions below provide details of the various programs.

BS Industrial Engineering

Industrial Engineering is the profession concerned with solving integrated engineering and management problems. The definition by the Institute of Industrial Engineers is as follows: “Industrial Engineering is concerned with the design, installation, and improvement of integrated systems of people, material, information, equipment, and energy by drawing upon specialized knowledge and skills in the mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design to specify, predict, and evaluate the results to be obtained from such systems.” Key objectives of industrial engineering are to improve the quality and productivity of creating and delivering goods and services and to act as the interface between technology and humans. Engineering methods and practical knowledge are used in formulating decision models for the optimum application of engineering and management principles.

The Bachelor of Science program in Industrial Engineering is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. The following objectives have been set for students completing the Industrial Engineering Program:

1. **Immediate Practice** – Graduates will make immediate contributions to the practice of industrial engineering or a related field by providing knowledge of contemporary issues and direct, hands-on experience with the modern tools and techniques of the discipline.

2. **Solid Engineering Foundations** – Graduates will have successful careers based on their ability to solve problems and make improvements through engineering design, experimentation, and application of scientific principles as well as their ability to analyze and critically evaluate their decisions.

3. **Broad Education** – Graduates will have careers of distinction and leadership based on their ability to communicate effectively, to contribute meaningfully to a team effort, and to understand the economic, societal, and ethical impacts of their decisions.

4. **Life-Long Learning** – Graduates will demonstrate the ability and desire to follow a life-long pursuit of personal fulfillment through education.

To meet these objectives, several specific outcomes have been identified for students in the Industrial Engineering Program in addition to the general abilities expected of College of Engineering graduates listed on page 177:

1. **Integrated Systems Design** – ability to design, develop, implement and improve integrated systems that include people, materials, information, equipment and energy.

2. **Evaluate Decisions** – ability to evaluate engineering decisions with respect to cost, quality, and productivity.

3. **Manufacturing Processes** – ability to recognize equipment, processes, and techniques used in major manufacturing industries.

The Industrial Engineering program requires students to be “Multidisciplinary Certified” for graduation. This provides students an opportunity to practice skills associated with working on multidisciplinary teams. Such experience is important for practicing engineers, with the ever-increasing demand for multidisciplinary teams in industry.
diversity of engineering science and applications, please contact the IME Department office or visit the IME website for more information. Also see further discussion in the catalog under College of Engineering.

Our main focus is to prepare graduates for practice in professional engineering. Thus, our “learn by doing” philosophy is emphasized in the curriculum by the large number of design-centered laboratories, integrating design throughout the curriculum, and the senior design project capstone design experience. In the required senior design project, which is completed in a two-quarter set of capstone courses, students demonstrate their understanding of engineering knowledge and their ability to apply that knowledge creatively to practical problems. Graduates can choose from a challenging range of career activities: operations research and analysis, production planning and scheduling, plant design, management, human factors engineering design, data processing and analysis, measurement, quality control and reliability assurance, technical economic planning, resource conservation, productivity measurement, increasing productivity using computer integrated manufacturing techniques, robotics, and, in general, systems analysis and design. The physical, engineering, and social sciences form the broad base for these endeavors.

The program is oriented to provide graduates with the capability of producing results with a minimum of additional training. Computer and hi-tech firms, health care and biomedical industries, aerospace/defense, entertainment, retail chains, farms, airlines, automotive, as well as government, service firms, traditional manufacturing industries, and consulting firms all employ graduates of this discipline. Graduates also are well prepared for successful graduate study.

BS Manufacturing Engineering

Manufacturing engineering is the profession that applies engineering analysis and methods to the production of all manufactured goods and services. The manufacturing engineer plans, develops, and optimizes the processes of production including methods of manufacture, and designs of tools and equipment for manufacturing. The emphasis is on both development and sustained operation of manufacturing systems, including computer-aided methods, automation, design for manufacture, production tooling, and material handling, as well as the processes and ancillary support systems of modern manufacturing.

The Bachelor of Science program in Manufacturing Engineering is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. The following objectives have been set for students completing the Manufacturing Engineering Program at Cal Poly:

1. **Immediate Practice.** Graduates make immediate contributions to the practice of manufacturing engineer-

2. **Solid Engineering Foundations** – Graduates will have successful careers based on their demonstrated ability to solve problems and make improvements through engineering design, experimentation, and application of scientific principles as well as their ability to analyze and critically evaluate their decisions.

3. **Broad Education** – Graduates will have careers of distinction and leadership based on their ability to communicate effectively, to contribute meaningfully to a team effort, and to understand the economic and ethical impacts of their decisions.

4. **Life-Long Learning** – Graduates will demonstrate the ability and desire to follow a life-long pursuit of personal fulfillment through education.

To meet these objectives, several specific outcomes have been identified for students in the Manufacturing Engineering Program in addition to the general abilities expected of College of Engineering graduates listed on page 177:

1. **Materials and Manufacturing Processes** – understanding of the properties of materials and how the materials behave when they are altered and influenced by processes of manufacture.

2. **Product, Process, and System Design** – understanding of the design of products and the equipment, tools, and environment necessary for their manufacture; understanding of the analysis, synthesis and control of manufacturing operations using statistical and calculus based methods, simulation, and information technology.

3. **Manufacturing Competitiveness** – understanding of the creation of competitive advantage through manufacturing planning, strategy, and control.

4. **Lab Experience** – ability to measure manufacturing process variables in a manufacturing laboratory and make technical inferences about the process.

The Manufacturing Engineering program requires students to be “Multidisciplinary Certified” for graduation. This provides students an opportunity to practice skills associated with working on multidisciplinary teams. Such experience is important for practicing engineers, with the ever-increasing diversity of engineering science and applications. Please contact the IME Department office or visit the IME website for more information. Also see further discussion in the catalog under College of Engineering.

In the required senior design project, which is completed in a two-quarter set of capstone courses, students demonstrate their understanding of engineering knowledge and their ability to apply that knowledge creatively to practical problems. Graduates typically work more directly with the manufacturing processes than do industrial engineers.
Emphasis is placed upon application of a basic knowledge of physics and materials. Knowledge of basic processes, mechatronics, tool design, and computer-aided manufacturing are applied directly to the problems of development and sustained operation of manufacturing systems. Graduates are prepared for job-entry at the professional level in the areas of CAD/CAM, process engineering, mechatronics, quality assurance, and production engineering. They also are well prepared for successful graduate study.

Blended BS+MS Engineering Program

Students must be prepared for engineering practice via the curriculum which culminates in a major design experience based on the knowledge and skills acquired in earlier coursework and incorporating engineering standards and realistic constraints, as listed in the ABET Engineering Criteria. Therefore, all “Blended BS + MS Program” students must have a master’s thesis with this major design experience requirement included in order to complete the undergraduate degree. Students may be eligible to pursue the blended program toward the MS in Industrial Engineering or the MS Engineering with a specialization in Integrated Technology Management. Please refer to the MS Engineering section of this catalog for more information and page 75 for eligibility criteria for blended programs.

GRADUATE PROGRAMS

The Industrial and Manufacturing Engineering Department participates in offering the following graduate programs:

- **MS Industrial Engineering**
- **MS Engineering with specialization in Integrated Technology Management**
- **Joint MBA/MS Engineering with specialization in Engineering Management**

BS INDUSTRIAL ENGINEERING

- **60 units upper division**
- **GWR**
- **USCP**
* = Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>IME 101</td>
<td>Intro Industrial & Manufacturing Engr.</td>
<td>1</td>
</tr>
<tr>
<td>IME 141</td>
<td>Manufacturing Processes: Net Shape</td>
<td>1</td>
</tr>
<tr>
<td>IME 144</td>
<td>Intro Design and Manufacturing</td>
<td>4</td>
</tr>
<tr>
<td>IME 156</td>
<td>Basic Electronics Manufacturing</td>
<td>2</td>
</tr>
<tr>
<td>IME 223</td>
<td>Work Design and Measurement</td>
<td>4</td>
</tr>
<tr>
<td>IME 239</td>
<td>Industrial Costs and Controls</td>
<td>3</td>
</tr>
<tr>
<td>IME 301</td>
<td>Operations Research I</td>
<td>4</td>
</tr>
<tr>
<td>IME 303</td>
<td>Project Organization and Management</td>
<td>4</td>
</tr>
<tr>
<td>IME 312</td>
<td>Data Management and System Design</td>
<td>4</td>
</tr>
<tr>
<td>IME 314</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>IME 319</td>
<td>Human Factors Engineering</td>
<td>3</td>
</tr>
<tr>
<td>IME 326</td>
<td>Engineering Test Design and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>IME 335</td>
<td>Computer-Aided Manufacturing I</td>
<td>4</td>
</tr>
<tr>
<td>IME 405</td>
<td>Operations Research II, III</td>
<td>4</td>
</tr>
<tr>
<td>IME 410</td>
<td>Inventory Control Systems</td>
<td>4</td>
</tr>
<tr>
<td>IME 420</td>
<td>Simulation</td>
<td>4</td>
</tr>
<tr>
<td>IME 421</td>
<td>Manufacturing Organizations</td>
<td>3</td>
</tr>
<tr>
<td>IME 429</td>
<td>Ergonomics Lab</td>
<td>1</td>
</tr>
<tr>
<td>IME 430</td>
<td>Quality Engineering</td>
<td>4</td>
</tr>
<tr>
<td>IME 441</td>
<td>Engineering Supervision I</td>
<td>1</td>
</tr>
<tr>
<td>IME 443</td>
<td>Facilities Planning and Design</td>
<td>4</td>
</tr>
<tr>
<td>IME 481, 482</td>
<td>Project Design Laboratory I, II</td>
<td>2,3</td>
</tr>
</tbody>
</table>

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 213</td>
<td>and ENGR/BRAE 213</td>
<td>2,2</td>
</tr>
<tr>
<td>CE 204</td>
<td>Mech Materials I/ME 341</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Gen Chem for Engineering (B3/B4)</td>
<td>4</td>
</tr>
<tr>
<td>CSC 232</td>
<td>Computer Programming/Scientists/Engrs</td>
<td>3</td>
</tr>
<tr>
<td>EE 201</td>
<td>Electric Circuits Theory</td>
<td>3</td>
</tr>
<tr>
<td>EE 321</td>
<td>Electronics</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 149</td>
<td>Technical Writing for Engineers (A3)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 141, 142</td>
<td>Calculus I, II (B1)*</td>
<td>4,4</td>
</tr>
<tr>
<td>MATH 143</td>
<td>Calculus III (Add'l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 241</td>
<td>Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td>MATH 244</td>
<td>Linear Analysis</td>
<td>4</td>
</tr>
<tr>
<td>ME 211</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td>ME 212</td>
<td>Engineering Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 302</td>
<td>Thermodyn/MATE 210 Materials Engr...</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 141</td>
<td>General Physics IA (Add'l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132, 133</td>
<td>General Physics II, III</td>
<td>4,4</td>
</tr>
<tr>
<td>STAT 321</td>
<td>Prob/Stats for Engrs/Scientists (B6)*</td>
<td>4</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

72 units required; 32 units are in Support.
→ See page 56 for complete GE course listing.
→ Minimum of 8 units required at the 300-400 level.

Area A Communication (8 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2</td>
<td>Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3</td>
<td>Reasoning, Argumentation, and Writing*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>units in Support</td>
<td>0</td>
</tr>
</tbody>
</table>

Area B Science and Mathematics (no addl units reqd)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Mathematics/Statistics * 8 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B2</td>
<td>Life Science * 4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B3</td>
<td>Physical Science * 4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B4</td>
<td>One lab taken with either a B2 or B3 course</td>
<td>0</td>
</tr>
<tr>
<td>B5</td>
<td>(requirement for Liberal Arts students only)</td>
<td>0</td>
</tr>
<tr>
<td>B6</td>
<td>Upper-division Area B * 4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Additional Area B units * 8 units in Support</td>
<td>0</td>
</tr>
</tbody>
</table>

Area C Arts and Humanities (16 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Literature</td>
<td>4</td>
</tr>
<tr>
<td>C2</td>
<td>Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>C3</td>
<td>Fine/Performing Arts</td>
<td>4</td>
</tr>
<tr>
<td>C4</td>
<td>Upper-division elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Area D/E Society and the Individual (16 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>The American Experience (40404)</td>
<td>4</td>
</tr>
<tr>
<td>D2</td>
<td>Political Economy</td>
<td>4</td>
</tr>
</tbody>
</table>
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4

40

ELECTIVES .. 0

196

BS MANUFACTURING ENGINEERING

- 60 units upper division
- 2.0 GPA
- GWR
- USCP
* = Satisfies General Education requirement

MAJOR COURSES
IME 101 Intro Industrial and Manufacturing Engr.. 1
IME 141 Manufacturing Processes: Net Shape. 1
IME 142 Manufacturing Processes: Mats Joining . 2
IME 144 Intro Design and Manufacturing.......... 4
IME 157 Electronics Manufacturing............... 4
IME 223 Work Design and Measurement.......... 4
IME 241 Process Design I 4
IME 314 Engineering Economics 3
IME 326 Engineering Test Design and Analysis . 4
IME 335 Computer-Aided Manufacturing I 4
IME 341 Tool Engineering I 4
IME 342 Manufacturing Systems Integration 3
IME 352 Manufacturing Process Design II 4
IME 356 Manufacturing Automation 4
IME 417 Supply Chain and Logistics Management 4
IME 418 Product-Process Design 4
IME 430 Quality Engineering 4
IME 455 Manufacturing Design and Implementation I 3
IME 481, 482 Senior Project Design Lab I, II 2,3
Advisor approved technical electives 12

78

SUPPORT COURSES
BIO 213 and ENGR/BRAE 213 (B2)* 2,2
CE 204 Mechanics of Materials I 3
CHEM 124 Gen Chem for Engineering (B3/B4)* 4
CHEM 125 Gen Chem for Engineering 4
CSC 232 Computer Programming for Scientists and Engineers 3
EE 201 Electric Circuits Theory 3
EE 251 Electric Circuits Lab 1
EE 321 Electronics 3
ENGL 149 Technical Writing for Engineers (A3)* 4
MATE 210 Materials Engineering 3
MATE 215 Materials Laboratory I 1
MATH 141, 142 Calculus I, II (B1)* 4,4
MATH 143 Calculus III (Add’l Area B)*......... 4
MATH 241 Calculus IV 4
MATH 244 Linear Analysis I 4
ME 211 Engineering Statics 3
ME 212 Engineering Dynamics 3
ME 302 Thermodynamics 3

PHYS 141 General Physics IA (Add’l Area B)* ... 4
PHYS 132, 133 General Physics II, III 4,4
STAT 321 Prob/Stats for Engrs/Scientists (B6)* 4

78

GENERAL EDUCATION (GE)
72 units required; 32 units are in Support.
> See page 56 for complete GE course listing.
> Minimum of 8 units required at the 300-400 level.

Area A Communication (8 units)
A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing * 4
 units in Support 0

Area B Science and Mathematics (no additional units required)
B1 Mathematics/Statistics * 8 units in Support ... 0
B2 Life Science * 4 units in Support 0
B3 Physical Science * 4 units in Support 0
B4 One lab taken with either a B2 or B3 course
B5 (requirement for Liberal Arts students only)
B6 Upper-division Area B * 4 units in Support ... 0
 Additional area units * 8 units in Support ... 0

Area C Arts and Humanities (16 units)
C1 Literature ... 4
C2 Philosophy ... 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4

Area D/E Society and the Individual (16 units)
D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4

40

ELECTIVES .. 0

196

MS INDUSTRIAL ENGINEERING

General Characteristics
The Master of Science program in Industrial Engineering has the following objectives:

- To help California industries in meeting their needs with respect to processes of design, optimization, and re-engineering and in competing globally, by educating and training engineers with advanced practical knowledge in the field of Industrial Engineering.

- To attract undergraduate engineers of all majors and provide education in the planning, engineering, optimization, and management of processes using the appropriate tools of Industrial Engineering.

- To further the mission and goals of the College of Engineering at Cal Poly with respect to graduate engineering education by maintaining a balance
between undergraduate and graduate educational opportunities in engineering that optimally supports the health of California industry.

Each student is strongly encouraged to work with a particular faculty member in selecting a thesis topic which is of personal interest to the student and the faculty member, and to choose a substantial number of elective courses that supports the issues addressed in the thesis or project.

Prerequisites

Students with earned undergraduate degrees in any engineering major are eligible for admission. A minimum grade point average of 3.0 in the last 90-quarter units (60 semester units) is required for admission.

All candidates seeking admission to the MSIE program are required to secure a minimum score in the GRE - General Test, as prescribed by the IME Department.

Program of Study

Graduate students must file a formal study plan with their advisor, department, college and the university graduate studies office by no later than the end of the quarter in which the 12th unit of approved courses is completed. The formal program of study must include a minimum of 45 units, of which a) at least 23 units must be at the 500 level; b) at least 24 units must be in the degree major with at least 18 units at the 500 level.

The broad curriculum requirements for the program are:

- a core of 16 units
- a comprehensive written examination (non-thesis option) or an oral defense examination (theses option)
- a minimum of 20 units of advisor approved electives

Curriculum for MS Industrial Engineering

Core Courses

IME 507 Graduate Seminar (2) (2)

Select 3 courses from the following:

IME 503 Applied Statistical Methods in Engineering (4)
IME 541 Advanced Operations Research (4)
IME 545 Advanced Topics in Simulation (4)
IME 556 Technological Project Management (4)
IME 580 Manufacturing Systems (4)
IME 599 Design Project (Thesis) (9) or additional 9 units of advisor approved electives (non-thesis option) and Comprehensive Examination

Advisor approved electives

Potential electives include:

IME 409 Economic Decision Systems (3)
IME 411 Production Systems Analysis (3)
IME 417 Supply Chain and Logistics Management (4)
IME 418 Product-Process Design (4)
IME 427 Process Optimization through Designed Experiments (4)
IME 430 Quality Engineering (4)
IME 431 Supplier Quality Engineering (4)
IME 458 Microelectronics and Electronics Packaging (4)
IME 500 Individual Study (1-4)
(up to a maximum of 6 units)
IME 503 Applied Statistical Methods in Engineering (4)
IME 516 Mechatronics Systems Analysis (4)
IME 520 Advanced Information Systems for Operations (4)
IME 526 Advanced Topics in Manufacturing System Design (4)
IME 541 Advanced Operations Research (4)
IME 542 Reliability Engineering II (4)
IME 543 Advanced Human Factors (4)
IME 544 Advanced Topics in Engineering Economy (4)
IME 545 Advanced Topics in Simulation (4)
IME 555 Computer-Integrated Manufacturing (4)
IME 556 Technological Project Management (4)
IME 558 Executive Seminars (4)
IME 559 Engineering Research/Development (4)
IME 560 Quality Engineering (4)
IME 570 Selected Advanced Topics (1-3)
IME 577 Engineering Entrepreneurship (4)
IME 580 Manufacturing Systems (4)
Materials Engineering

Department Office
Brown Engineering Bldg. (41), Rm 229
(805) 756-2568 FAX: (805) 756-2299
www.mate.calpoly.edu
e-mail: matedept@calpoly.edu

College of Engineering Advising Center
Engineering South (40), Room 115
(805) 756-1461

Department Chair, Katherine C. Chen
Trevor Harding Richard Savage
William L. Hughes Linda Vanasupa
Blair London Daniel W. Walsh
Paul E. Rainey

ACADEMIC PROGRAMS

BS Materials Engineering

Materials engineering is a field in which engineers use their knowledge of the relationship between a material’s structure and its properties in order to alter the structure to get the properties that are needed. Materials engineers contribute their expertise in virtually all areas of technology: from the nano-sized materials found in biomedical and microelectronic applications to the large-scale composites found in aerospace applications.

Because engineered products are often limited by materials issues (such as performance and manufacturability), materials engineers play a vital role on engineering design teams, working closely with other engineers. As part of these teams, they apply their knowledge of science, engineering, and state-of-the-art analytical instruments.

The majority of our graduates find employment in the biomedical, electronic, aerospace and petroleum industries. Some work as consultants for large or small organizations. Others become executives. A significant number of materials engineers are involved in research and development. Some of our graduates are entrepreneurs who have started their own consulting or manufacturing companies. Others are attorneys or physicians. Because of our broad-based curriculum, our graduates are able to excel in professions of their choosing.

The curriculum in materials engineering emphasizes practical applications as well as principles. The laboratories are constantly evolving, and our students benefit from frequent exposure to a wide variety of materials testing and analysis equipment. The program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. Our students have a reputation for being immediately productive in industry, and they are also actively sought by graduate programs throughout the country.

Program Mission and Goals

The mission of the materials engineering program is to create and sustain an integrated, effective engineering learning environment that develops students into educated and effective members of society.

Our primary goal is to provide students with a theoretically rigorous and "hands on" practice-oriented education that will enable graduates to be immediately productive in their careers. To attain this goal, the educational objectives of the program are to enable graduates to

1. Apply materials engineering principles to analyze and solve real-world engineering challenges.
2. Communicate and perform as effective engineering professionals in both individual and team-based project environments.
3. Work in an individual or team environment in a socially responsible manner.

The Materials Engineering program requires students to be "Multidisciplinary Certified" for graduation. The interdisciplinary nature of the materials field and our projects-based courses allows students to practice skills associated with working on multidisciplinary teams. Such experience is important for practicing engineers, with the ever-increasing diversity of engineering science and applications. Please contact the MATE Department Office or visit the MATE web site for more information. Also see further discussion in the catalog under College of Engineering.

Graduate Study

Graduates of the materials engineering program are qualified for admission to Cal Poly’s Master’s Degree Programs in Engineering with a Specialization in Materials. The opportunity also exists for advanced students to begin graduate study in these areas prior to completion of the BS degree, via a “blended 4+1” program. This opportunity provides a number of advantages to qualified students, and makes it possible for completion of both the BS and MS degrees in as little as 5 years. Materials engineering students participating in a blended 4+1 program are permitted to fulfill the materials senior project requirement with the master’s degree thesis. Because of the design emphasis of the senior project, a master’s thesis used to satisfy the senior project requirement must include a major
The thesis supervisor assists the student in ensuring that this requirement is met. Further details are provided in the graduate study sections for each of these programs.

BS MATERIALS ENGINEERING

- **GPA**: 2.0 GPA
- **USCP**: Satisfies General Education requirement
- **GE**: 60 units upper division
- **GWR**: 2.0 GPA

MAJOR COURSES

- MATE 110 Intro to Materials Engrg Design I........ 1
- MATE 120 Intro to Materials Engrg Design II........ 1
- MATE 130 Intro to Materials Engrg Design III..... 1
- MATE 210 Materials Engineering and MATE 215 Materials Laboratory I......................... 3,1
- MATE 222 Materials Selection for the Life Cycle and MATE 225 Materials Laboratory II........ 4,1
- MATE 232 Nanotechnology, Human Biology, Ethics & Society and MATE 235 Matls Lab III 4,1
- MATE 310 Noncrystalline Materials Systems........ 4
- MATE 330 Hybrid Materials Systems............. 4
- MATE 340 Electronic Materials Systems.......... 4
- MATE 350 Structural Materials Systems........ 4
- MATE 360 Metallurgical Materials Systems...... 4
- MATE 370 Process Design....................... 4
- MATE 481 Corporate Culture..................... 1
- MATE 482, 483, 484 Senior Project I, II, III 1,2,2

Select at least 3 courses from the following: 12
- BMED 530
- Technical breadth electives.......................... 8

See listing of approved courses on department website, http://mate.calpoly.edu

SUPPORT COURSES

- CE 204 Mechanics of Materials I..................... 3
- CHEM 127 General Chemistry (B3/B4)*............. 4
- CHEM 128 General Chemistry......................... 4
- CHEM 305 Physical Chemistry........................ 4
- CPE/CSC 101 Fundamentals of Computer Sci. I..... 4
- EE 201, 251 Electric Circuits Theory and Lab..... 3,1
- ENGL 149 Technical Writing for Engineers (A3)* 4
- IME 314 Engineering Economics (or IME 326)..... 3
- MATH 141, 142 Calculus I, II (B1)................ 4,4
- MATH 143 Calculus III (Add'l Area B)*........... 4
- MATH 241 Calculus IV............................... 4
- MATH 244 Linear Analysis I.......................... 4
- ME 211 Engineering Statics.......................... 3
- ME 343 Heat Transfer or ME 302 Thermodyn. 3
- PHYS 141 General Physics IA (Add'l Area B)*..... 4
- PHYS 132, 133 General Physics II, III............. 4,4

STAT 312 Statistical Methods for Engineers (B6) 4

1 Engineering Drawing and Manufacturing elective. 4

GENERAL EDUCATION (GE)

- **GE**: 72 units required; 28 units are in Support.
- See page 56 for complete GE course listing.
- Minimum of 8 units required at the 300-400 level.

Area A Communication (8 units)

- A1 Expository Writing 4
- A2 Oral Communication................................. 4
- A3 Reasoning, Argumentation, and Writing * 4 units in Support................................. 0

Area B Science and Mathematics (4 units)

- B1 Mathematics/Statistics * 8 units in Support..... 0
- B2 Life Science.. 4
- B3 Physical Science * 4 units in Support......... 0
- B4 One lab taken with either a B2 or B3 course
- B5 (requirement for Liberal Arts students only)
- B6 Upper-division Area B * 4 units in Support... 0
- Additional Area B units* 8 units in Support..... 0

Area C Arts and Humanities (16 units)

- C1 Literature.. 4
- C2 Philosophy... 4
- C3 Fine/Performing Arts............................. 4
- C4 Upper-division elective.......................... 4

Area D/E Society and the Individual (16 units)

- D1 The American Experience (40404)................ 4
- D2 Political Economy.................................. 4
- D3 Comparative Social Institutions................. 4
- D4 Self Development (CSU Area E).................. 4

ELECTIVES

1 Choose either IME 144 or a combination of ME 151 and one of IME 141, 142, 143, or IT 341.
ACADEMIC PROGRAMS
BS, MS Mechanical Engineering

Mission Statement
To impart knowledge in the art and science of mechanical engineering through a comprehensive curriculum true to the traditional Cal Poly learn-by-doing philosophy that produces mechanical engineers of high ethics and skill, fully prepared for entry into industry, government, graduate school and private enterprise.

Program Educational Objectives
A mechanical engineering graduate will:

- Be able to research, design, develop, test, evaluate, and implement engineering solutions to problems that are of a complexity encountered in professional practice.

- Be able to communicate and perform as an effective engineering professional in both individual and team-based project environments.

- Consider the ethical implications and societal impacts of engineering solutions.

- Continuously improve through lifelong learning.

Program Description
The profession of mechanical engineering is directed toward the design, manufacture, and system integration of a very wide variety of equipment ranging from manufacturing machinery and power generation equipment to consumer goods. Of central concern to mechanical engineers is the sound application of basic principles of solid mechanics, fluid mechanics and thermal sciences in the design, manufacture, and application of this equipment. Mechanical Engineering graduates obtain employment primarily with manufacturers, energy companies, consultants, and government agencies. Types of work performed by graduates include product design, mechanical design, testing, engineering management, engineering sales, design of manufacturing systems, and development of maintenance procedures. Mechanical Engineering graduates also often enhance their careers through graduate study in engineering, and some students also study engineering to build a scientific and technical foundation as a prelude to enrollment in medical, law, and business schools.

The focus of the Cal Poly Mechanical Engineering program is on education based on our "learn by doing" educational philosophy. Thus, the curriculum includes a large number of hands-on laboratories, integration of design throughout, and a senior project requirement for all students. Students are enrolled in engineering laboratories in all years of the curriculum. The program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.

The Mechanical Engineering Department is the home of the Donald E. Bently Center for Engineering Innovation. The center provides support for faculty, students, and visiting scholars for the advancement of research, education, and practice in mechanical engineering. A $6 million endowment to fund three professorships supports the center.

Upper division students in the General Concentration can choose professional elective courses from such courses as turbomachinery, robotics, mechatronics, composite materials, rotor dynamics, advanced mechanics, solar systems, internal combustion engines, heat and mass transfer, and courses emphasizing the petroleum, air conditioning, ventilating, and refrigeration industries. Students in the Mechatronics Concentration are prepared to enter the microprocessor based product design and factory automation job markets and to do advanced research in the areas of robotics, "intelligent" products and automated manufacturing. The HVAC&R Concentration prepares students for careers in the heating, ventilating, air-conditioning and refrigeration (HVAC&R) industry, with a focus on the design of mechanical systems for commercial and industrial buildings.
There are six organized student clubs associated with the Mechanical Engineering Department. These are student chapters of the American Society of Mechanical Engineers, Society of Petroleum Engineers, Society of Automotive Engineers, American Society of Heating, Refrigerating and Air Conditioning Engineers, Alternative Energy Club, and the Pi Tau Sigma honorary society. All of these clubs offer students active programs in professional and leadership activities.

Blended BS + MS Mechanical Engineering

The blended program provides motivated students with an accelerated route to the MS Mechanical Engineering, with simultaneous conferring of both bachelor's and master's degrees. Students in the blended program are provided with a seamless process whereby they can progress from undergraduate to graduate status. Two technical electives can be taken as an undergraduate and counted towards the master's degree.

Eligibility

Students majoring in BS Mechanical Engineering may be eligible to pursue the blended program toward the MS Mechanical Engineering. Participation in the program is based on prior academic performance and other measures of professional promise, with a minimum GPA of 2.5 required. Students are recommended for admission by a faculty committee. Please see 80 for eligibility criteria.

Two program options are available:

- **Thesis option.** 36 units of advisor-approved coursework, 9 units of research/design, and an oral thesis defense examination.

- **Non-thesis option.** 45 units of advisor-approved coursework and a written comprehensive examination.

BS MECHANICAL ENGINEERING

- 60 units upper division
- 2.0 GPA
- * = Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 134</td>
<td>Introduction to Mechanical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>ME 151</td>
<td>Engineering Design Communication I</td>
<td>2</td>
</tr>
<tr>
<td>ME 152</td>
<td>Engineering Design Communication II</td>
<td>2</td>
</tr>
<tr>
<td>ME 153</td>
<td>Intermediate Solid Modeling</td>
<td>1</td>
</tr>
<tr>
<td>ME 211</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td>ME 212</td>
<td>Engineering Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 234</td>
<td>Philosophy of Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 236</td>
<td>Thermal Measurements</td>
<td>3</td>
</tr>
<tr>
<td>ME 302</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 303</td>
<td>Thermal Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 318</td>
<td>Mechanical Vibrations</td>
<td>4</td>
</tr>
<tr>
<td>ME 326</td>
<td>Intermediate Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>ME 328</td>
<td>Introduction to Design</td>
<td>4</td>
</tr>
<tr>
<td>ME 329</td>
<td>Intermediate Design</td>
<td>4</td>
</tr>
<tr>
<td>ME 341</td>
<td>Fluid Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>ME 343</td>
<td>Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td>ME 346</td>
<td>Thermal Science Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ME 347</td>
<td>Fluid Mechanics II</td>
<td>4</td>
</tr>
<tr>
<td>ME 422</td>
<td>Mechanical Control Systems</td>
<td>4</td>
</tr>
<tr>
<td>ME 440</td>
<td>Thermal System Design</td>
<td>4</td>
</tr>
<tr>
<td>ME 463</td>
<td>Undergraduate Seminar</td>
<td>1</td>
</tr>
<tr>
<td>ME 481</td>
<td>Senior Project Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Concentration (see below)</td>
<td>19</td>
</tr>
</tbody>
</table>

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 213</td>
<td>Life Science for Engineers and ENGR/</td>
<td>4</td>
</tr>
<tr>
<td>BRAE 213</td>
<td>Bioengineering Fundamentals (B2)*</td>
<td>4</td>
</tr>
<tr>
<td>CE 204</td>
<td>Mechanics of Materials I</td>
<td>3</td>
</tr>
<tr>
<td>CE 207</td>
<td>Mechanics of Materials II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Gen Chem for Engineering I (B3/B4)*</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Gen Chem for Engineering II</td>
<td>4</td>
</tr>
<tr>
<td>CSC 231</td>
<td>Programming for Engineering Students</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>or CSC 234 C and Unix</td>
<td>2</td>
</tr>
<tr>
<td>EE 201, 251</td>
<td>Electric Circuit Theory and Lab</td>
<td>3, 1</td>
</tr>
<tr>
<td>EE 321, 361</td>
<td>Electronics and Lab</td>
<td>3, 1</td>
</tr>
<tr>
<td>ENGL 149</td>
<td>Technical Writing for Engineers (A3)*</td>
<td>4</td>
</tr>
<tr>
<td>IME 142</td>
<td>Mfg Processes: Materials Joining</td>
<td>2</td>
</tr>
<tr>
<td>IME 143</td>
<td>Mfg Processes: Material Removal</td>
<td>2</td>
</tr>
<tr>
<td>MATE 210</td>
<td>Materials Engineering and MATE 215</td>
<td>3, 1</td>
</tr>
<tr>
<td>MATH 141, 142</td>
<td>Calculus I, II (B1)*</td>
<td>4, 4</td>
</tr>
<tr>
<td>MATH 143</td>
<td>Calculus III (Add'l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 241</td>
<td>Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td>MATH 244</td>
<td>Linear Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 344</td>
<td>Linear Analysis II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>General Physics (Add'l Area B)*</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132, 133</td>
<td>General Physics II, III</td>
<td>4, 4</td>
</tr>
<tr>
<td></td>
<td>Manufacturing Processes elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(IME 141 or IT 341)</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

72 units required; 32 units are in Support.

→See page 56 for complete GE course listing.

→Minimum of 8 units required at the 300-400 level.

Area A Communication (8 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2</td>
<td>Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3</td>
<td>Reasoning, Argumentation, and Writing * 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>units in Support</td>
<td></td>
</tr>
</tbody>
</table>

Area B Science and Mathematics (no additional units required)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Mathematics/Statistics * 8 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B2</td>
<td>Life Science * 4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B3</td>
<td>Physical Science * 4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B4</td>
<td>One lab taken with either a B2 or B3 course</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>(requirement for Liberal Arts students only)</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>Upper-division Area B * 4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Additional Area B units* 8 units in Support</td>
<td>0</td>
</tr>
</tbody>
</table>
Area C Arts and Humanities (16 units)
C1 Literature .. 4
C2 Philosophy ... 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4

Area D/E Society and the Individual (16 units)
D1 The American Experience (40404) 4
D2 Political Economy .. 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4

ELECTIVES ... 0

CONCENTRATIONS (select one)

General Concentration
ME 428 Senior Project Design 3
EE 255 Energy Conversion Electromagnetics 3
EE 295 Energy Conversion Electromag Lab 1
Technical electives selected from emphasis area . 12

Heating, Ventilating, Air-Conditioning and Refrigerating Concentration (HVAC&R)
ME 359 Fundamentals of HVAC Systems 4
ME 456 HVAC Air and Water Distribution System Design .. 4
ME 457 Refrigeration Principles and Design 4
ME 458 Building Heating and Cooling Loads 4
ME 459 HVAC System Design 3

Mechatronics Concentration
ME 305 Introduction to Mechatronics 4
ME 405 Mechatronics 4
ME 423 Robotics: Fundamentals and Applications 4
ME 428 Senior Project Design 3
1 CPE 336/IME 356/ME 506 4

MS MECHANICAL ENGINEERING

Core Courses
ME 599 Design Project (Thesis) (2)(2)(5) or
9 units of approved technical electives and a comprehensive examination 9
Approved MATH/STAT/CSC courses 8

Select a minimum of 12 units from the following: 12
ME 501 Continuum Mechanics and Linear Elasticity (4)
ME 502 Finite Element Analysis (4)
ME 503 Inelastic Stress Analysis (4)
ME 506 System Dynamics (4)
ME 507 Mechanical Control System Design (4)
ME 517 Advanced Vibrations (4)
ME 518 Machinery Vibrations and Rotor Dynamics (4)
ME 531 Acoustics and Noise Control (4)
ME 540 Viscous Flow (4)
ME 541 Advanced Thermodynamics (4)
ME 542 Dynamics of Compressible Flow (4)
ME 551 Mechanical Systems Analysis (4)
ME 552 Advanced Heat Transfer I (4)
ME 553 Advanced Heat Transfer II (4)
ME 554 Computational Heat Transfer (4)
ME 579 Fluid Power Control (4)

Approved technical electives 16
(400 or 500-level ME or non-ME courses; maximum of 12 units of 400-level courses allowed) 45

1 Elective based on interests of students.
Sustainable Printing Practices
The printing industry has been working to reduce waste and to eliminate chemicals from its printing processes. The plates imaged on the Kodak Trendsetter Quantum laser platesetter go from the imaging device directly to the press without any chemical processing. The Trendsetter was donated in January 2007 by Kodak, from its Graphic Communications Group located in Burnaby, British Columbia.

Photo courtesy of Brian Lawler

90th Anniversary of Mustang Daily
The 2006-2007 academic year is a banner year for both the Journalism Department—whose student newspaper, Mustang Daily, turned 90—and the Graphic Communication Department, which celebrated its 60th anniversary. Student printers began publishing the first campus paper in 1916, and collaborative efforts between the two departments are still going strong today.

Photo courtesy of Terry J. San Filippo, College of Liberal Arts

Unveiling Ceremony
CLA's faculty and staff celebrate with Dean, Linda H. Halisky, and Associate Dean, Debra Valencia-Laver, at the September 2006 unveiling ceremony of the College of Liberal Arts sign, designed by Katherine McCormick (ART).

Photo courtesy of Rene Lowe (ART '04)
ACADEMIC PROGRAMS

Agricultural Communication........ Minor
Anthropology & Geography........ Minor
Art and Design...................... BFA
Art .. Minor
Child Development BA, Minor
Communication Studies BA, Minor
Comparative Ethnic Studies BA
Dance Minor
English BA, MA, Minor
Ethnic Studies Minor
French Minor
German Minor
Gerontology Minor
Graphic Communication BS, Minor
History BA, MA, Minor
International Relations Minor
Journalism BS
Latin American Studies Minor
Liberal Studies BA, BS
Linguistics Minor
Law and Society Minor
Modern Languages & Literatures.. BA
Music BA, Minor
Philosophy BA, Minor
Political Science BA
Psychology BS, MS, Minor
Public Policy MPP
Religious Studies Minor
Social Sciences BS
Sociology Minor
Spanish Minor
Theatre Arts BA, Minor
Values, Technology and Society... Minor
Western Intellectual Tradition.... Minor
Women's Studies Minor

The College of Liberal Arts (CLA) provides the opportunity to study in depth the record of imaginative and reflective human experience. Through papers, projects, and service, students are encouraged to develop the knowledge and skills to add to this record. As well, the college seeks to relate itself to the technological disciplines in a way that helps contribute to the solution of human problems from global and multidisciplinary perspectives. Accordingly, a wide range of courses is offered to serve every thoughtful individual without regard to specialized professional interests.

Four broad areas of knowledge are represented: the fine and performing arts, communications, humanities, and social sciences. While the college has great breadth and diversity, unity is found in a study of the most engaging subject of all – human endeavor. Whether the focus is on imagination, politics, creativity, or rationality, there is a settled purpose: to help each student know herself or himself, to understand human values and human potential, and to understand our society and its institutions.

Study abroad opportunities are strongly supported, and CLA faculty regularly offer classes in programs such as Cal Poly’s Summer Study in London, Thailand Study Program, Valladolid (Spain) Fall Program, and Australia Abroad Program. The College is excited to be involved with the new Peru Summer Study Program that complements the new minor in Latin American Studies. These study abroad programs are administered by the International Education and Programs Office. For further information, see page 22.

The college also offers interdisciplinary and international courses through its Humanities Program. Many humanities classes fulfill Cal Poly's general education requirements. For more information, contact the Humanities Program Office (Bldg 47, Room 28, 805 756-1206).

The College of Liberal Arts offers a wide range of learn-by-doing opportunities. Students from all majors participate in the musical ensembles, theater productions, and dance performances. The college supports the Central Coast Center for Arts Education and the University Art Gallery. Students contribute to publications that showcase their accomplishments in their major, such as the Art and Design Department’s Capstone, the English Department’s Byzantium, and the Ethnic Studies Department’s Osiyo. These publications are often printed by the student-run University Graphics Systems. Students also participate in co-curricular CLA activities, including KCPR Radio, Mustang Daily, Model United Nations, and intercollegiate debate.

The college has a major responsibility for activities that enhance the cultural and intellectual life of the university and the community. The college sponsors Cal Poly Arts, which offers a full range of cultural programs, including exhibits, concerts, literary presentations and dramatic productions, plus it fosters artistic development and accomplishment across the campus.
Art & Design

Department Chair, Clarissa Hewitt

Sky Bergman Mary LaPorte
Daniel Dove Enrica Lovaglio
Robert Howell Charmaine Martinez
Charles W. Jennings Kathryn McCormick
George D. Jercich Michael Barton Miller
Eric B. Johnson Jean Wetzel

ACADEMIC PROGRAMS

BFA Art and Design
Art Minor

The Bachelor of Fine Arts degree program in Art and Design offers a major with concentrations in graphic design, photography and digital imagery, and studio art. The BFA in Art and Design is accredited by the National Association of Schools of Art and Design.

The department has made a commitment to cultural diversity. Wherever possible, this commitment is evidenced by the inclusion of material which identifies significant multicultural influences on the content of the courses in our curriculum. Courses are available for all students to enrich their creativity, understanding, appreciation, and practical skills in art.

CONCENTRATIONS

All three concentrations support creative and aesthetic growth and require the development of technical skills as a foundation for personal direction and enrichment. Through team projects, students have the unique opportunity to experience the interaction and relationship of graphic design, photography and digital imagery, and studio art.

Graphic Design. Principles of basic design, typography and design history, with specialized courses in such topics as corporate identity, packaging graphics, web site design, advertising, editorial design and illustration. Emphasis is placed on the development of visual problem-solving methodology and acquisition of skills needed in the design profession. Coursework in computer imaging and interactive design allows for an exploration of new technology. The program culminates in the study of professional practices and the preparation of a professional portfolio.

Photography and Digital Imagery. A diversified and commercially oriented program stressing preparation for careers in advertising and illustration, portraiture, corporate and editorial photography, digital image making, and photographic history. Creative problem solving is stressed within the context of a variety of expressive projects, including studio and location lighting, traditional photographic processes, digital image making, large format photography, video and multimedia production, and advertising illustration. The program culminates in the creation of a professional portfolio and discussion of current professional practices.

Studio Art. A selective program designed for students seeking a broad based undergraduate education in the visual arts. The program is distinctive for its depth of required coursework in both two and three dimensional media. The upper division curriculum allows students to specialize in a discipline pertinent to their career choice in the visual arts. Courses in portfolio preparation, professional practices, and senior project prepare students to enter the work place or pursue advanced degrees. Some of the many career possibilities for our graduates include positions in industry, education, entertainment, illustration, and museum/gallery management. Cal Poly, with its learn-by-doing philosophy and its commitment to both the liberal arts and technology, provides a unique setting for studying the visual arts. Within this context, the students in this concentration are presented with an environment where imagination, intellectual rigor, self expression and skill development are expected and valued.

1 The Graphic Design concentration of the Art and Design Department is distinguished from the Design Reproduction Technology concentration of the Graphic Communication Department. By focusing on creative problem-solving and development of design and layout skills, the Graphic Design concentration leads to positions such as graphic designer, art director and creative director for advertising agencies, design studios and corporate design departments.

The Graphic Communication Department's Design Reproduction Technology concentration focuses on the technical and electronic aspects of transforming design into suitable fashion for reproduction in print media. The concentration leads to positions such as account executive, sales representative, estimator, production coordinator, and other positions requiring a technical understanding of design preparation and reproduction.
BFA ART AND DESIGN

☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP

* = Satisfies General Education requirement

MAJOR COURSES
ART 101 The Fundamentals of Drawing (C3)* 4
ART 105 Foundation: Color Theory 3
ART 106 Foundation: 2-Dimensional Design 3
ART 107 Foundation: 3-Dimensional Design 3
ART 121 Basic Digital Photography 3
ART 148 Beginning Sculpture 4
ART 182 Photographic Manipulation and Design 3
ART 209 Beginning Painting 3
ART 203 Art Theory and Practice 3
ART 211 Art History: Ancient-Renaissance 4
ART 212 Art History: Renaissance-Baroque 4
ART 222 Intermediate Photography 3
ART 312 Art History-20th Century Art 4

Art History. Select two courses from:
ART 310, 311, 316, 317, 318 4,4
ART 460 Professional Practices 2
ART 461 Senior Project 2
ART 462 Senior Portfolio Project 2
ART 463 Undergraduate Seminar 2
Concentration courses (see below) 58

General Education (GE)

72 units required; 4 units are in Major.
See page 56 for complete GE course listing.
Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (20 units)
B1 Mathematics/Statistics 8
B2 Life Science ... 4
B3 Physical Science 4
B4 One lab taken with either a B2 or B3 course
B5 elective
Area B elective (select one course from B1-B5) 4

Area C Arts and Humanities (12 units)
C1 Literature .. 4
C2 Philosophy ... 4
C3 Fine/Performing Arts *4 units in Major 0
C4 Upper-division elective 4

Area D/E Society and the Individual (20 units)
D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective 4

Area F Technology Elective (upper division)
4 units

Electives 0

Concentrations (select one)

Graphic Design Concentration
ART 183 Digital Illustration and Design 3
ART 184 Digital Book Making and Design 3
ART 201 Intermediate Drawing 3
ART 224 Introduction to Artificial Lighting for Photography 3
ART 232 Beginning Graphic Design 3
ART 313 Design History 4
ART 331 Typographic Design 3
ART 332 Symbology 3
ART 333 Corporate Identity 3
ART 430 Advanced Typographic Design 3
ART 431 Package Design 3
ART 432/435/486/487 3
ART 433 Editorial Design 3

Select 18 units from: (At least 3 units must be upper-division) Any Art courses not already required in the major core, GRC 101, GRC 203, 337 18

Photography and Digital Imagery Concentration
ART 184 Digital Book Making and Design 3
ART 224 Introduction to Artificial Lighting for Photography 3
ART 225 Digital Color Photography 3
ART 314 History of Photography 4
ART 324 Photographic Expression 4
ART 325 Advanced Camera Techniques 3
ART 326 Advanced Artificial Lighting 3
ART 327 Portraiture B/W 3
ART 329 Editorial and Corporate Photography 3
ART 427 Advertising Photography 3
ART 428 Portfolio Production Photography 1
ART 483 Digital Video 4
ART 486 Advanced Digital Image Making 3

Select 18 units from: Any ART course not already required in the major core, GRC 101, 202, TH 330 18
Studio Art Concentration

<table>
<thead>
<tr>
<th>Course/Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 201 Intermediate Drawing</td>
<td>3</td>
</tr>
<tr>
<td>ART 241 Glass Fusing and Forming</td>
<td>3</td>
</tr>
<tr>
<td>ART 245 Ceramics</td>
<td>3</td>
</tr>
<tr>
<td>ART 255 Jewelry Design</td>
<td>3</td>
</tr>
<tr>
<td>ART 260 Art Critique and Discourse</td>
<td>2</td>
</tr>
<tr>
<td>ART 301 Advanced Drawing</td>
<td>3</td>
</tr>
<tr>
<td>ART 302 Life Drawing</td>
<td>3</td>
</tr>
<tr>
<td>ART 309 Intermediate Painting</td>
<td>3</td>
</tr>
<tr>
<td>ART 348 Intermediate Sculpture</td>
<td>3</td>
</tr>
<tr>
<td>ART 353 Intermedia/Art</td>
<td>4</td>
</tr>
</tbody>
</table>

A minimum of 12 units (300-400 level) selected in studio classes in a specific discipline.: 12

Any ART course not already required in the major core (See course descriptions for repeatable units): 16

ART MINOR

The Art and Design Department offers a minor consisting of a required core and advisor approved electives. The electives include courses in 2D, 3D studio, and art history. Advice, working with an advisor, select their area(s) of interest. Advisors are: Clarissa Hewitt, George Jerchich, Michael Barton Miller or Jean Wetzel.

Required Core

<table>
<thead>
<tr>
<th>Course/Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 101 The Fundamentals of Drawing (C3)</td>
<td>4</td>
</tr>
<tr>
<td>ART 112 Survey of Western Art (C3)</td>
<td>4</td>
</tr>
<tr>
<td>ART 148 Beginning Sculpture I (C3)</td>
<td>4</td>
</tr>
<tr>
<td>ART 312 Art History–20th Century Art</td>
<td>4</td>
</tr>
</tbody>
</table>

ART advisor approved electives

Complete a minimum of 3 units from:

<table>
<thead>
<tr>
<th>Course/Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 201 Intermediate Drawing</td>
<td>3</td>
</tr>
<tr>
<td>ART 203 Art Theory and Practice</td>
<td>3</td>
</tr>
<tr>
<td>ART 209 Beginning Painting</td>
<td>3</td>
</tr>
<tr>
<td>ART 211 Art History – Ancient to Renaissance</td>
<td>4</td>
</tr>
<tr>
<td>ART 212 Art History – Renaissance through Baroque</td>
<td>4</td>
</tr>
<tr>
<td>ART 241 Glass Fusing and Forming</td>
<td>3</td>
</tr>
<tr>
<td>ART 245 Ceramics I</td>
<td>3</td>
</tr>
<tr>
<td>ART 255 Jewelry Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Complete a minimum of 11 units from:

(see course descriptions for repeatable units)

<table>
<thead>
<tr>
<th>Course/Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 301 Advanced Drawing</td>
<td>3</td>
</tr>
<tr>
<td>ART 302 Life Drawing I</td>
<td>3</td>
</tr>
<tr>
<td>ART 309 Intermediate Painting</td>
<td>3</td>
</tr>
<tr>
<td>ART 310 Art History–American Art</td>
<td>4</td>
</tr>
<tr>
<td>ART 311 Art History–Nineteenth Century</td>
<td>4</td>
</tr>
<tr>
<td>ART 313 Design History</td>
<td>4</td>
</tr>
<tr>
<td>ART 314 History of Photography (C4)</td>
<td>4</td>
</tr>
<tr>
<td>ART 316 Women as Subject and Object in Art History</td>
<td>4</td>
</tr>
<tr>
<td>ART 317 Asian Art Survey</td>
<td>4</td>
</tr>
<tr>
<td>ART 318 Asian Art Topics (C4)</td>
<td>4</td>
</tr>
<tr>
<td>ART 336 Exhibition Design/Museum Studies</td>
<td>3</td>
</tr>
<tr>
<td>ART 341 Introduction to Glassblowing</td>
<td>4</td>
</tr>
<tr>
<td>ART 345 Ceramics II</td>
<td>3</td>
</tr>
<tr>
<td>ART 348 Intermediate Sculpture</td>
<td>3</td>
</tr>
<tr>
<td>ART 353 Intermedia/Art</td>
<td>4</td>
</tr>
<tr>
<td>ART 355 Metalsmithing</td>
<td>3</td>
</tr>
<tr>
<td>ART 356 Jewelry Casting</td>
<td>3</td>
</tr>
<tr>
<td>ART 400 Special Problems (1-2)</td>
<td></td>
</tr>
<tr>
<td>ART 401 Contemporary Techniques and Issues in Drawing</td>
<td>3</td>
</tr>
<tr>
<td>ART 402 Life Drawing II</td>
<td>3</td>
</tr>
<tr>
<td>ART 406 Contemporary Issues in Painting</td>
<td>3</td>
</tr>
<tr>
<td>ART 409 Advanced Painting</td>
<td>3</td>
</tr>
<tr>
<td>ART 440 Advanced Selected Topics in Glass</td>
<td>4</td>
</tr>
<tr>
<td>ART 448 Advanced Topics in Sculpture</td>
<td>3</td>
</tr>
<tr>
<td>ART 455 Advanced Metalsmithing</td>
<td>3</td>
</tr>
</tbody>
</table>

2007-2009 Cal Poly Catalog
Communication Studies

Department Chair, James R. Conway
Bernard K. Duffy
Michael L. Fahs
Lorraine D. Jackson
Steven T. McDermott
Terrence C. Winebrenner
Raymond F. Zeuschner

ACADEMIC PROGRAMS

BA Communication Studies
Communication Studies Minor

Understanding the process of communication is no less important in today's Information Age than it was during the Golden Age of Athens, when skill in oral communication determined one's success in life. The study of speech as a means of influence, entertainment, and information was at the foundation of Western Civilization. A course of study in communication studies, always one that required a knowledge of many cognate fields like psychology and logic, is still interdisciplinary in nature. Faculty in communication studies teach aesthetic, historical, critical and empirical methods for understanding communication.

The aims of the discipline are both conceptual and practical. The study of communication embodies the concerns of rhetoric, one of the three original liberal arts. In broad terms, students who enroll in a liberal arts curriculum do so to develop the ability to analyze and reason critically, write and speak effectively, and appreciate the influences of culture upon their lives. The first goal of the department is to advance these objectives.

Courses in the modern discipline of communication studies focus on the history and theory of communication. The field embraces communication in all contexts: political, organizational, debate, small group, intercultural, instructional, mass media, and performance of literature. The emphasis on developing theoretical insights unites these various fields.

The department offers fully articulated major and minor programs. Through the use of advisor approved electives, the major can be shaped to assist students in preparing for their educational and career objectives. Students use a communication studies major to prepare for careers in business, advertising and public relations, theatre, law, education, the mass media, and the clergy. In addition to providing students with an option to select from a broad range of internships and the opportunity to participate in the Teaching Credential Program, the department houses an extensive program in competitive debate. It also offers individual and sequenced courses to develop practical skills in oral composition, critical thinking, and effective human communication.

COMMUNICATION STUDIES MINOR

A 28-unit minor is available for students who desire documented competency in Communication Studies. After completing the core courses listed below, students may select the remainder of their courses from an approved list. Copies of the list and further information and application forms are available in the Communication Studies Department office.

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 212</td>
<td>Interpersonal Communication</td>
<td>4</td>
</tr>
<tr>
<td>COMS 311</td>
<td>Communication Theory</td>
<td>4</td>
</tr>
<tr>
<td>COMS 322</td>
<td>Persuasion</td>
<td>4</td>
</tr>
<tr>
<td>COMS 330</td>
<td>Classical Rhetorical Theory or COMS 331</td>
<td>Contemporary Rhetorical Theory</td>
</tr>
</tbody>
</table>

Electives

12 units of Communication Studies courses, of which at least 8 units must be 300–400 level.

28

AGRICULTURAL COMMUNICATION MINOR

The minor is an interdisciplinary program administered by both the College of Agriculture, Food and Environmental Sciences and the College of Liberal Arts. The program consists of coursework in journalism, communication studies and agriculture. For more information, please see page 82 or contact the Coordinator for the Agricultural Communication Minor.
BA COMMUNICATION STUDIES
- 60 units upper division
- GWR
- 2.0 GPA
- USCP
* = Satisfies General Education requirement

MAJOR COURSES
Take one of the following courses:
- COMS 201 Advanced Public Speaking
- COMS 208 Performance of Literature
- COMS 226 Applied Argumentation
- COMS 212 Interpersonal Communication
- COMS 213 Organizational Communication
- COMS 217 Small Group Communication
- COMS 250 Forensic Activity
- COMS 311 Communication Theory
- COMS 312 Communication Research Methods
- COMS 322 Persuasion
- COMS 330 Classical Rhetorical Theory
- COMS 331 Contemporary Rhetorical Theory or COMS 435 American Political Rhetoric
- COMS 332 Rhetorical Criticism
- COMS 350 Advanced Forensic Activity
- COMS 385 Media Criticism or COMS 419 Media Effects
- COMS 460 Undergraduate Seminar
- COMS 461 Senior Project
COMS electives (300–400 level) to be selected with advisor approval
Only 4 units of supervised instruction, including COMS 400, COMS 450, and COMS 485, may be counted here.

SUPPORT COURSES
Upper division writing intensive class
Choose from the following:
- ENGL 302, 310, 386, or JOUR 407
- Modern language (121 or 122) or demonstration of comparable level of proficiency
- HIST 110 Western Civilization: Ancient to Renaissance
- HIST 111 Western Civilization: Reformation to Twentieth Century
- PSY 201 or PSY 202 General Psychology (D4)*
- STAT 217 Intro to Statistical Concepts and Methods (B1)*

GENERAL EDUCATION (GE)
- 72 units required; 8 units are in Support.
- See page 56 for complete GE course listing.
- Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
- A1 Expository Writing
- A2 Oral Communication
- A3 Reasoning, Argumentation, and Writing

Area B Science and Mathematics (16 units)
- B1 Mathematics/Statistics * 4 units in Support
- B2 Life Science
- B3 Physical Science
- B4 One lab taken with either a B2 or B3 course
- B5 elective
Area B elective (select one course from B1-B5)

Area C Arts and Humanities (16 units)
- C1 Literature
- C2 Philosophy
- C3 Fine/Performing Arts
- C4 Upper-division elective

Area D/E Society and the Individual (16 units)
- D1 The American Experience (40404)
- D2 Political Economy
- D3 Comparative Social Institutions
- D4 Self Development (CSU Area E) * 4 units in Support
- D5 Upper-division elective

Area F Technology Elective (upper division) (4 units)

ELECTIVES
- 23

Total units: 180
The department supports international education and encourages students to investigate opportunities for overseas study. For further information, see the Study Abroad programs.

BA ENGLISH
- 60 units upper division
- 2.0 GPA

* = Satisfies General Education requirement

MAJOR COURSES
- ENGL/HNRS 251 Great Books of World Literature: Classical and Ancient World (C1)*.... 4
- ENGL 203 Core I: Old English/Medieval 4
- ENGL 204 Core II: Renaissance 4
- ENGL 205 Core III: 1660-1798.......................... 4
- ENGL 290 Introduction to Linguistics.............. 4
- ENGL 303 Core IV: 1798–1865.......................... 4
- ENGL 304 Core V: 1865–1914.......................... 4
- ENGL 305 Core VI: 1914–Present........................ 4
- ENGL 461 Senior Project (in conjunction with a designated 400-level ENGL course)............... 1
- ENGL 300-level electives 8
- ENGL 400-level electives (minimum 12 units in literature).. 20

Students may select a creative writing emphasis with their 28 upper division ENGL units:

Fiction Writing Emphasis:
- ENGL 387 Fiction Writing (4)
- ENGL 487 Adv. Creative Writing: Fiction (4) (4)
- One 400-level modern or contemporary ENGL literature course in fiction (4)
- ENGL 300-level elective (4)
- ENGL 400-level literature electives (8)
- Senior project in a work or works of fiction

Poetry Writing Emphasis:
- ENGL 388 Poetry Writing (4)
- ENGL 488 Adv. Creative Writing: Poetry (4) (4)
- One 400-level modern or contemporary ENGL literature course in poetry (4)
- ENGL 300-level elective (4)
- ENGL 400-level literature electives (8)
- Senior project in a work or works of poetry

SUPPORT COURSES
- Foreign language (121 or 122) or demonstration of a comparable level of proficiency.............. 4

GENERAL EDUCATION (GE)
- 72 units required; 4 units are in Major.
- →See page 56 for complete GE course listing.
- →Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
- A1 Expository Writing 4
- A2 Oral Communication 4
- A3 Reasoning, Argumentation, and Writing 4
Area B Science and Mathematics (20 units)
- B1 Mathematics/Statistics 8
- B2 Life Science 4
- B3 Physical Science 4
- B4 One lab taken with either a B2 or B3 course
- B5 elective
- Area B elective (select one course from B1-B5) ... 4

Area C Arts and Humanities (12 units)
- C1 Literature *4 units in Major.................. 0
- C2 Philosophy 4
- C3 Fine/Performing Arts 4
- C4 Upper-division elective (not ENGL) 4

Area D/E Society and the Individual (20 units)
- D1 The American Experience (40404) 4
- D2 Political Economy 4
- D3 Comparative Social Institutions 4
- D4 Self Development (CSU Area E) 4
- D5 Upper-division elective 4

Area F Technology Elective (upper division)
- (4 units) .. 4
- ELECTIVES ... 47
 (minimum 7 units must be 300-400 level) 180

Recommended Sequence for Major Courses

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 134</td>
<td>COMS 101/102</td>
<td>ENGL 145</td>
<td>ENGL 251</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
</tr>
<tr>
<td>ENGL 290</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 303</td>
</tr>
<tr>
<td>ENGL 300-level elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 400-level elective</td>
</tr>
</tbody>
</table>

ENGLISH MINOR

Required Courses
- ENGL 253 Great Books III........................... 4
- ENGL 302 Writing: Advanced Composition or
- ENGL 326 Literary Criticism........................ 4
- ENGL 339 Introduction to Shakespeare 4
- ENGL 390 Linguistic Structure of Modern English
 or ENGL 395 History of the English Language 4

British Literature. Select one of the following ... 4
- ENGL 330, 331, 332, 333, 334, 335 (C4)*

American Literature. Select one of the following ... 4
- ENGL 340, 341, 342, 343, 346, 347 (C4)*
- Select one of the following courses 4
- ENGL 350, 351, 352 The Modern Novel, Poetry or
 Drama (C4)*

LINGUISTICS MINOR

Required Courses.
- ENGL 290 Introduction to Linguistics 4
- ENGL 391 Topics in Applied Linguistics 4
- ENGL 395 History of the English Language 4

Advisor Approved Electives. May include: 16
- ENGL 390 Linguistic Structure of Modern
 English (4) or ENGL 392 English Grammar for
 Writers and Teachers (4)
- ENGL 495 Topics in Applied Language Study (4)
- ENGL 497 Theories of Language Learning and
 Teaching (4)
- COMS 416 Intercultural Communication (4)
 (USCP)

CERTIFICATE PROGRAMS

Teaching English as a Second Language (TESL).
Provides individuals with specialized training to teach
successfully in a wide variety of ESL programs. Both
undergraduate and graduate students currently enrolled in
any degree program at Cal Poly may pursue this certificate.
The 30-unit TESL program provides a solid background in
theoretical and applied linguistics, cross-cultural
communication, second language acquisition, and methods
of TESL. The program is designed for two career options:
(1) The Post-Secondary/Adult option prepares individuals
to teach in college level and adult education programs.
Those wishing to teach at the college level are advised
that an MA in English or a related field is the usual
minimum requirement for full-time positions.
(2) The K-12 option prepares individuals having a single or
multiple subject credential to teach ESL in elementary
and secondary schools.

Technical Communication. Commercial, academic and
governmental organizations employ technical
communicators as writers, editors, public relations experts,
information designers, documentation and project managers, and as mixed media creators. The technical communicator is, first and foremost, an accomplished writer who produces clear, precise, timely, and effective prose. However, technical communicators also are adept at integrating texts and images into cohesive creations that exist equally well on paper and on the computer screen. Technical communicators write online and print computer documentation, create and manage complex sets of technical specifications, write overviews of scientific and technical processes, and produce a diverse range of documents that are used both by the expert and by the layperson. Technical communicators often serve as translators, interpreting the continually changing language of advanced technology into a language we can all easily understand.

The technical communication program is designed for women and men who desire careers in writing, editing, information design, publications management, and media development. The certificate program is available to Cal Poly students who are enrolled in an undergraduate or graduate degree program and is also available through Open University, offered by Cal Poly Continuing Education. This program requires the completion of approximately 30 units of work – roughly the same number of credits required for most minors. A current course list and more information about our program are available in the English Department office and at the Technical Communications Program website: http://www.cla.calpoly.edu/techcomm.

MASTER OF ARTS DEGREE IN ENGLISH

General Characteristics
This program includes the study of literary criticism, linguistics, theory of composition, and literature. It is designed to provide students with the knowledge and command of English that prepares them specifically for:

- teaching English at the secondary or community college levels;
- employment in business, industry, and government service where effective communication skills are demanded;
- self-directed development in writing;
- further graduate work at other institutions.

Prerequisites
Students admitted to the English MA Program must have a major or minor in English from an accredited institution (or the equivalent, as determined by the English Graduate Committee), have maintained a grade point average of 3.0 for the last 90 quarter units (60 semester units), and a writing sample submitted to the English Graduate Advisor. Non-native speakers should also submit TOEFL scores (Test of English as a Foreign Language). Students without an English major or minor may apply and be admitted conditionally, requiring them to take certain prerequisites prior to taking English graduate classes.

Program of Study
- 48 units of graduate work approved by the English Graduate Coordinator and the Graduate Committee;
- a grade point average of 3.0 or better in all courses taken subsequent to admission;
- two years of a foreign language (e.g., French, Spanish, German) or certification of the equivalent;
- a comprehensive examination at the end of 48 units of study.

All other requirements must be satisfied before the comprehensive examination is taken. Students elect an emphasis within the Master of Arts program: literature, linguistics, or composition.

Application
Application for admission and requests for further information should be directed to the Admissions Office. All applications should include a writing sample (a critical essay on a work of literature) and three letters of recommendation.

MA ENGLISH

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 501 Techniques of Literary Research</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 502 Seminar in Critical Analysis</td>
<td></td>
</tr>
<tr>
<td>Historical and Contemporary</td>
<td>4,4</td>
</tr>
<tr>
<td>ENGL 503 Graduate Introduction to Linguistics</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 505 Seminar in Composition Theory</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 511 Seminar in American Literary Periods</td>
<td>4,4</td>
</tr>
<tr>
<td>ENGL 512 Seminar in British Literary Periods</td>
<td>4,4</td>
</tr>
</tbody>
</table>

English Electives

12

Additional ENGL 400-and 500-level courses, to be selected from one of three emphasis areas: literature, composition or linguistics.

48
The Ethnic Studies Department uses inter- and multi-disciplinary approaches to study the lives of Indigenous, African, Latino/a, and Asian peoples in the United States within a global and postcolonial context. The Ethnic Studies curriculum provides students with unique forms of critical inquiry that advance their analysis of race, ethnicity, and cultural difference in an increasingly heterogeneous and complex world. Courses in Ethnic Studies examine how social hierarchies frame access to political power, allocate economic resources, and influence cultural expression. By critically exploring such issues, students develop not only a greater understanding of the legacy of racism, discrimination, and injustices in the United States, but also a greater appreciation for new and emerging knowledge about diverse American peoples and their global and transnational connections.

Housed in the College of Liberal Arts, the Ethnic Studies Department at Cal Poly encourages critical dialogue about race, ethnicity, postcoloniality, and transnationalism across the entire university curriculum, with special focus on concepts that integrate the arts, humanities, and social sciences, as well as the sciences and technology. The department offers a number of courses that fulfill both general education and United States Cultural Pluralism requirements. A minor in Ethnic Studies is open to all majors and provides a useful complement to the differing types of inquiry used in the wide variety of disciplines throughout the University.

ETHNIC STUDIES MINOR

An Ethnic Studies minor provides students with special competence in the histories and experiences of diverse communities and the critical skills with which to understand complex social issues. Students majoring in subjects across the university curriculum find Ethnic Studies useful, particularly when their interests require a deeper understanding of race, ethnicity, and diversity in the United States and beyond. The minor prepares students for careers in education, government, and community organizations; for entrance to professional schools in areas such as law, social work, and health; and for graduate studies in all areas of the arts and sciences.

Units

Core courses (12)

- ES 112 Race, Culture and Politics in the U.S. (D1) (USCP) .. 4
- ES 212 Global Origins of U.S. Cultures (D3) (USCP) .. 4
- ES 320 African American Cultural Images (D5) (USCP) or ES 321 Native American Cultural Images (USCP) or ES 322 Asian American Cultural Images (D5) (USCP) or ES 323 Mexican American Cultural Images (D5) (USCP) 4

Advisor approved electives 12

Electives reinforce and enhance student understanding of issues of culture, race, and gender. A minimum of 8 units must be 300-400 level.

24

MAJOR COURSES

- ES 112 Race, Culture and Politics in the U.S. (D1) (USCP) .. 4
- Choose any 3 courses (D3) (USCP) 12
 - ES 241 Survey of Indigenous Studies (4)
 - ES 242 Survey of Africana Studies (4)
 - ES 243 Survey of Latino/a Studies (4)
 - ES 244 Survey of Asian American Studies (4)
- ES 350 Gender, Race, Science & Technology (USCP) ... 4
- ES 390 Research Methodology in Comparative Ethnic Studies ... 4
ES 410 Advanced Topics in Comparative Ethnic Studies ... 4
ES 450 Fieldwork in Comparative Ethnic Studies ... 4
ES 461 Senior Project ... 4
Advisor Approved Electives ... 40

(Minimum 20 elective units must be 300-400 level.)
Minimum 20 units must be from courses offered by the Ethnic Studies Department. The remaining elective courses can be chosen from Ethnic Studies-related courses offered by other departments. (See an Ethnic Studies advisor for a list of qualifying courses.)

76

SUPPORT COURSES
Language other than English (all 8 units must be in the same language) 8
STAT 217 Introduction to Statistical Concepts and Methods (B1)*......................... 4

12

GENERAL EDUCATION (GE)
72 units required; 12 units are in Major/Support.
→See page 56 for complete GE course listing.
→Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
A1 Expository Writing ... 4
A2 Oral Communication ... 4
A3 Reasoning, Argumentation, and Writing ... 4

Area B Science and Mathematics (16 units)
B1 Mathematics/Statistics *4 units in Support.. 4
B2 Life Science ... 4
B3 Physical Science ... 4
B4 One lab taken with either a B2 or B3 course
B5 elective
Area B elective (select one course from B1-B5).. 4

Area C Arts and Humanities (16 units)
C1 Literature ... 4
C2 Philosophy ... 4
C3 Fine/Performing Arts .. 4
C4 Upper-division elective (not ES courses).. 4

Area D/E Society and the Individual (12 units)
D1 The American Experience (40404) *4 units in Major ... 0
D2 Political Economy ... 4
D3 Comparative Social Institutions *4 units in Major ... 0
D4 Self Development (CSU Area E) .. 4
D5 Upper-division elective (not ES courses) ... 4

Area F Technology Elective (upper division)
(4 units).. 4

60

ELECTIVES ... 32
(minimum 8 units must be 300-400 level) ... 180
Graphic Communication

Department Head, Harvey Robert Levenson
Penny K. Bennett Malcolm G. Keif
Michael L. Blum Brian P. Lawler
Kevin Cooper Kenneth L. Macro
Lorraine D. Donegan Xiaoying Rong

ACADEMIC PROGRAMS
BS Graphic Communication
Graphic Communication Minor

The Graphic Communication Department offers a curriculum leading to the Bachelor of Science degree. The curriculum is designed to prepare graduates for positions of responsibility in printing, electronic imaging, publishing, document systems, packaging, multimedia, and allied professions.

The program provides courses in general education together with a core of printing technology, Internet, electronic imaging, and management courses. Courses that are specific to the curricular concentrations are also provided. The student is introduced to all stages of the printing and imaging process and electronic media, and chooses a specialized concentration at the appropriate time. Students are educated for professional and leadership roles in graphic communication.

The BS in Graphic Communication is accredited by the Accreditation Council for Collegiate Graphic Communications, Inc. (ACCGC). ACCGC is an independent body dedicated to the improvement and recognition of collegiate level curricula in graphic communication.

The Graphic Communication Department occupies 33,000 square feet of floor space in the Graphic Arts Building. Theory and practice are taught in modern classrooms incorporating the latest in teaching aids. Fourteen well-equipped laboratories of graphic imaging equipment provide the student with diverse experiences in the practical aspects of the industry.

CONCENTRATIONS
Majors select one of the following concentrations based upon their interests and career goals.

Design Reproduction Technology. Emphasis on modern electronic graphic print and World Wide Web technology with an understanding of design aesthetics. Coursework includes color theory, two-dimensional design, and typography as applied to the publication of books, newspapers, magazines, and electronic documents.

Electronic Publishing and Imaging. Study of print media and emerging digital media for publishing such as the Internet, CD ROM and multimedia. In addition to the major requirements for graphic communication, coursework includes computer science, writing interactive documents and digital media. Students are prepared for careers in management of electronic imaging and publishing systems and with the hardware and software manufacturers that service the graphic communication industry.

Graphics for Packaging. Emphasis on digital file creation, technology and printing. This concentration is designed for students who desire a career in the growing field of package graphics and printing. This program provides students with the opportunity to learn all components of package graphics and print reproduction while also providing aspects of structural design and food packaging. Consumer and industrial print packaging is addressed.

Printing and Imaging Management. A flexible program for students interested in management careers in printing and digital imaging. In addition to the major requirements in graphic communication, coursework includes business law, accounting, marketing, and related management subjects. Graduates are in high demand in print media, e-commerce, document origination, and digital imaging management positions.

Individualized Course of Study. An opportunity to pursue a course of study that meets a student's individual needs and interests. This concentration consists of 29 units; a minimum of 18 units must be upper division and a minimum of 8 units must be Graphic Communication. The student selects the courses in consultation with the concentration coordinator and department head, and provide written justification for the courses and the way they constitute a cohesive, integrated program of study. The list of courses serves as a contract between the student and the Graphic Communication Department.

MBA, Graphic Communication Document Systems Management Specialization

In cooperation with the Orfalea College of Business, a student can earn an MBA with a graphic communication emphasis in document systems management. This program is designed to prepare professionals having diverse
backgrounds with a strong and advanced business orientation along with a grounding in graphic communication.

BS GRAPHIC COMMUNICATION

- 60 units upper division
- 2.0 GPA
- GWR
- USCP

* = Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRC 101</td>
<td>Introduction to Graphic Communication</td>
<td>3</td>
</tr>
<tr>
<td>GRC 201</td>
<td>Electronic Publishing Systems</td>
<td>3</td>
</tr>
<tr>
<td>GRC 202</td>
<td>Image Capture and Manipulation</td>
<td>3</td>
</tr>
<tr>
<td>GRC 203</td>
<td>Electronic Prepress</td>
<td>3</td>
</tr>
<tr>
<td>GRC 211</td>
<td>Substrates, Inks and Toners</td>
<td>4</td>
</tr>
<tr>
<td>GRC 218</td>
<td>Digital Typography</td>
<td>4</td>
</tr>
<tr>
<td>GRC 316</td>
<td>Flexographic Printing Technology</td>
<td>3</td>
</tr>
<tr>
<td>GRC 320</td>
<td>Managing Quality in the Graphic Arts</td>
<td>4</td>
</tr>
<tr>
<td>GRC 324</td>
<td>Binding, Finishing and Distribution Processes</td>
<td>3</td>
</tr>
<tr>
<td>GRC 328</td>
<td>Sheetfed Printing Technology</td>
<td>4</td>
</tr>
<tr>
<td>GRC 329</td>
<td>Web Offset and Gravure Printing Technologies</td>
<td>3</td>
</tr>
<tr>
<td>GRC 338</td>
<td>Digital Content Management and Variable Data Printing</td>
<td>4</td>
</tr>
<tr>
<td>GRC 361</td>
<td>Marketing and Sales Management for Print/Digital Media</td>
<td>4</td>
</tr>
<tr>
<td>GRC 402</td>
<td>Digital Printing and Emerging Technologies in Graphic Communication</td>
<td>3</td>
</tr>
<tr>
<td>GRC 403</td>
<td>Estimating for Print/Digital Media</td>
<td>4</td>
</tr>
<tr>
<td>GRC 411</td>
<td>Strategic Trends and Costing Issues in Print and Digital Media</td>
<td>4</td>
</tr>
<tr>
<td>GRC 421</td>
<td>Production Mgt for Print/Digital Media</td>
<td>4</td>
</tr>
<tr>
<td>GRC 422</td>
<td>Human Resource Management Issues for Print/Digital Media</td>
<td>4</td>
</tr>
<tr>
<td>GRC 460</td>
<td>Research Methods in Graphic Communication</td>
<td>2</td>
</tr>
<tr>
<td>GRC 461</td>
<td>Senior Project</td>
<td>3</td>
</tr>
<tr>
<td>GRC 472</td>
<td>Concentration courses (see below)</td>
<td>29</td>
</tr>
</tbody>
</table>

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSC 101</td>
<td>World of Chemistry (Area B)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 110</td>
<td>World of Chemistry or CHEM 111 Survey of Chemistry (B3&B4)</td>
<td>4/5</td>
</tr>
<tr>
<td>MATH 118</td>
<td>Pre-Calculus Algebra</td>
<td>4</td>
</tr>
<tr>
<td>MATH 120</td>
<td>Pre-Calculus Algebra and Trigonometry (B1)</td>
<td>4</td>
</tr>
<tr>
<td>STAT 217</td>
<td>Intro to Statistical Concepts and Methods (B1)</td>
<td>4</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

72 units required; 16 units are in Support.

See page 56 for complete GE course listing.

Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

- A1 Expository Writing |
- A2 Oral Communication |
- A3 Reasoning, Argumentation, and Writing |

Area B Science and Mathematics (4 units)

- B1 Mathematics/Statistics |
- B2 Life Science |
- B3 Physical Science |
- B4 One lab taken with B3 course |
- B5 elective |

Area B elective (select one course from B1-B5) |

4 units in Support |

Area C Arts and Humanities (16 units)

- C1 Literature |
- C2 Philosophy |
- C3 Fine/Performing Arts |
- C4 Upper-division elective |

Area D/E Society and the Individual (20 units)

- D1 The American Experience |
- D2 Political Economy |
- D3 Comparative Social Institutions |
- D4 Self Development (CSU Area E) |
- D5 Upper-division elective |

Area F Technology Elective (upper division) (4 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRC 451</td>
<td>Mgmt Topics in Graphic Communication</td>
</tr>
<tr>
<td>GRC 452</td>
<td>Emerging Digital Topics in Graphic Communication</td>
</tr>
<tr>
<td>GRC 453</td>
<td>Design Reproduction Topics in Graphic Communication</td>
</tr>
<tr>
<td>ENGL 411</td>
<td>New Media Arts I</td>
</tr>
<tr>
<td>ENGL 412</td>
<td>New Media Arts II</td>
</tr>
</tbody>
</table>

ELECTIVES

5-6 units

56 units total

CONCENTRATIONS (select one)

Design Reproduction Technology Concentration

ART 105 Foundation: Color Theory |
ART 106 Foundation: 2-Dimensional Design |
GRC 337 Consumer Packaging |
GRC 339 Digital Design and Production for Multiple Media |
GRC 439 Book Design Technology |
GRC 440 Magazine and Newspaper Design Tech |

2 Select 8 units from the following |

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRC 322</td>
<td>Advanced Digital Typography</td>
</tr>
<tr>
<td>GRC 429</td>
<td>Digital Media</td>
</tr>
<tr>
<td>GRC 451</td>
<td>Mgmt Topics in Graphic Comm.</td>
</tr>
<tr>
<td>GRC 452</td>
<td>Emerging Digital Topics in Graphic Communication</td>
</tr>
<tr>
<td>GRC 453</td>
<td>Design Reproduction Topics in Graphic Communication</td>
</tr>
<tr>
<td>ENGL 411</td>
<td>New Media Arts I</td>
</tr>
<tr>
<td>ENGL 412</td>
<td>New Media Arts II</td>
</tr>
</tbody>
</table>

1 MATH 116 and MATH 117 substitute for MATH 118 and are taught at a slower pace for those who need more review. MATH 117 satisfies GE Area B1.

2 Other courses as approved by academic advisor.

2007-2009 Cal Poly Catalog
Electronic Publishing and Imaging Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 234 C and UNIX</td>
<td>3</td>
</tr>
<tr>
<td>CSC electives (in addition to GE Area F)</td>
<td>8</td>
</tr>
<tr>
<td>GRC 331 Color Management & Quality Analysis</td>
<td>4</td>
</tr>
<tr>
<td>GRC 339 Digital Design and Production for Multiple Media</td>
<td>4</td>
</tr>
<tr>
<td>GRC 429 Digital Media</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 411 New Media Arts I</td>
<td>4</td>
</tr>
<tr>
<td>Advisor approved electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Graphics for Packaging Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRC 204 Introduction to Contemporary Print Management and Manufacturing</td>
<td>4</td>
</tr>
<tr>
<td>GRC 331 Color Management & Quality Analysis</td>
<td>4</td>
</tr>
<tr>
<td>GRC 337 Consumer Packaging</td>
<td>3</td>
</tr>
<tr>
<td>GRC 357 Specialty Printing Technologies</td>
<td>3</td>
</tr>
<tr>
<td>FSN 230 Elements of Food Processing</td>
<td>4</td>
</tr>
<tr>
<td>FSN 354 Packaging Function in Food Processing</td>
<td>3</td>
</tr>
<tr>
<td>IT 330 Fundamentals of Packaging</td>
<td>4</td>
</tr>
<tr>
<td>Advisor approved electives</td>
<td>29</td>
</tr>
</tbody>
</table>

Printing and Imaging Management Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRC 204 Introduction to Contemporary Print Management and Manufacturing</td>
<td>4</td>
</tr>
<tr>
<td>BUS 207 Legal Responsibilities of Business</td>
<td>4</td>
</tr>
<tr>
<td>BUS 212 Financial Accounting for Non-business Majors</td>
<td>4</td>
</tr>
<tr>
<td>BUS 382 Organizations, People and Technology</td>
<td>4</td>
</tr>
<tr>
<td>COMS 213 Organizational Communication</td>
<td>4</td>
</tr>
<tr>
<td>Select 9 units from the following:</td>
<td>9</td>
</tr>
<tr>
<td>GRC 337 Consumer Packaging</td>
<td>3</td>
</tr>
<tr>
<td>GRC 451 Management Topics in Graphic Communication</td>
<td>3</td>
</tr>
<tr>
<td>GRC 452 Emerging Digital Topics in Graphic Communication</td>
<td>3</td>
</tr>
<tr>
<td>BUS 303 Introduction to International Business</td>
<td>4</td>
</tr>
<tr>
<td>BUS 310 Introduction to Entrepreneurship</td>
<td>4</td>
</tr>
<tr>
<td>Other courses as approved by academic advisor</td>
<td></td>
</tr>
</tbody>
</table>

Individualized Course of Study

A minimum of 18 units must be upper division and a minimum of 8 units must be Graphic Communication. The student selects the courses in consultation with concentration coordinator and department head, and provide written justification for the courses and the way they constitute a cohesive, integrated program of study.

GRAPHIC COMMUNICATION MINOR

A minor in Graphic Communication benefits students interested in pursuing careers in graphic communication or who anticipate using graphic communication in another career. Students in the minor have a competitive edge when applying for many jobs by understanding concepts, and gaining knowledge and skills in computer applications and desktop publishing. Additionally, students develop an understanding of the interface between design and technology, document preparation, typography, and specifying the processes and materials for a broad range of printing, digital media, and publishing applications.

Information and application forms for this minor are available in the Graphic Communication Department office.

Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRC 101 Intro. to Graphic Communication</td>
<td>3</td>
</tr>
<tr>
<td>GRC 202 Image Capture and Manipulation</td>
<td>3</td>
</tr>
<tr>
<td>GRC 212 Substrates, Inks and Toners: Theory</td>
<td>3</td>
</tr>
<tr>
<td>GRC 218 Digital Typography</td>
<td>4</td>
</tr>
<tr>
<td>GRC 325 Binding and Finishing Processes: Theory</td>
<td>2</td>
</tr>
<tr>
<td>GRC 328 Sheetfed Printing Technology</td>
<td>4</td>
</tr>
<tr>
<td>GRC 377 Web and Print Publishing (Area F)</td>
<td>4</td>
</tr>
</tbody>
</table>

Approved Electives

(Approved by minor coordinator)

Select 3 units from the following:
- GRC 337 Consumer Packaging (3)
- GRC 357 Specialty Printing Technologies (3)
- GRC 361 Marketing and Sales for Print and Digital Media (4)
- GRC 451 Management Topics in Graphic Communication (3)
- GRC 452 Emerging Digital Topics in Graphic Communication (3)
- GRC 453 Design Reproduction Topics in Graphic Communication (3)
- GRC 470 Selected Advanced Topics (3)
- GRC 472 Applied Graphic Communication Practices (2) (repeatable)

1 Other courses as approved by academic advisor.
History

Department Chair, Carolyn J. Stefanco

Timothy M. Barnes Matthew Hopper
George Cotkin Daniel E. Krieger
Robert C. Detweiler Andrew D. Morris
Manzar Foroohar John Oriji
Craig Harlan John Snetsinger
Paul Hiltpold Tom R. Trice

ACADEMIC PROGRAMS

BA, MA History

History Minor

Historians study the past in its variety and complexity. With such an analysis, students of history gain multiple perspectives on the present and an aptitude to plan intelligently for the future. Although the lessons to be learned from the past are rarely simple, solutions to present-day problems rest on comprehension of historical forces and events. History deepens our understanding of other peoples and cultures. All courses offered in the History Department seek to examine the issues of race, gender, class, and cultural diversity.

A degree in history is excellent preparation for students interested in a teaching career, the legal profession, or advanced work in the discipline. Students wishing to become business executives, administrators, and public servants profit immensely by gaining the methodological skills of the historian. Historians learn to gather, synthesize, analyze, and interpret evidence; they become skilled in presenting their conclusions to a general audience in a lucid and logical manner.

The study of history and its method prepares students for a wide range of careers while also sensitizing them to the complexity and diversity of the past and present. History is an excellent foundation for a broadly based education in the liberal arts.

HISTORY MINOR

Students choosing to add a strong historical dimension to their major field may enroll in the minor program in history. The curriculum stresses reading and writing skills as well as the ability to weigh evidence and think critically. Details and application forms are available from the History Department.

Required courses Units
HIST 110 Western Civiliz: Ancient to Renaissance 4
HIST 111 Western Civiliz: Reformation to Twentieth Century 5
HIST 303 Research and Writing Seminar 5
History electives 16
Select from 300-400 level History courses 30

BA HISTORY

☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP
* = Satisfies General Education requirement

MAJOR COURSES

HIST 110 Western Civ: Ancient to Renaissance.. 4
HIST 111 W. Civ: Reformation to 20th Century.. 5
HIST 206 American Cultures or HIST 207 Freedom and Equality in American History (D1)* (USCP) 4
HIST 213 Mod Political Econ or HIST 214 Political Econ of Latin America & Middle East (D2)*..... 4
HIST 210 World History I or HIST 215 World History II (D3)*.. 4
HIST 303 Research and Writing Seminar in History 5
HIST 304 Historiography ... 4
HIST 460 Senior Project I... 2
HIST 461 Senior Project II... 2
History electives (any 300-400 level HIST courses) 12
Foreign language requirement, select one: FR 121, GER 121, SPAN 121 .. 4

62

SUPPORT COURSES

Electives (300-400, including History) 24

24

GENERAL EDUCATION (GE)

72 units required; 12 units are in Major.
→See page 56 for complete GE course listing.
→Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

A1 Expository Writing ... 4
A2 Oral Communication .. 4
A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (20 units)

B1 Mathematics/Statistics .. 8
B2 Life Science .. 4
B3 Physical Science ... 4
B4 One lab taken with either a B2 or B3 course

B5 elective

Area B elective (select one course from B1-B5) ... 4

If upper-division GE courses are used to satisfy Major or Support requirements, additional units may be required to complete the 180 total unit requirement.
MASTER OF ARTS DEGREE IN HISTORY

General Characteristics
The program in history emphasizes concentrated study in area specialties, with students gaining a thorough grounding in the latest historiography. In addition, the program maintains that historical study must be predicated upon sustained research, engagement with historical problems, and written communication. Completion of the MA program in history will allow students the following options:

- Teach history at the elementary, secondary, or community college level.
- Give students the critical skills and knowledge to enter into the worldwide information economy.
- Allow community members to expand their historical knowledge.
- Prepare students for transfer to Ph.D. programs at other universities.

Prerequisites
Admission to the MA program requires:

1. Possession of an undergraduate degree from an accredited college or university.
2. An overall grade point average of 3.0 for the last 90 units of their undergraduate work.
3. Submission of a writing sample, in the form of a senior project or upper division paper.
4. Related undergraduate coursework. Students without an undergraduate degree in history are required to demonstrate adequate preparation for graduate study in history, as determined by the Graduate Coordinator.

Program of Study
- 48 units of graduate work in areas specified (49 units for those students writing a MA Thesis).
- a grade point average of at least 3.0 after 12 units of graduate coursework.
- MA Thesis or Comprehensive Examinations in two distinct areas of study.

Foreign Language Study
Students are encouraged to learn and use foreign languages in the MA program. Students who plan further graduate study in history are particularly encouraged in this direction since proficiency in two foreign languages is usually required in doctoral programs.

Applications
Applications for admission and requests for further information should be directed to the Admissions Office or the Graduate Coordinator of the MA History program. All applications should include a writing sample (preferably an extended research paper), undergraduate transcripts, and two letters of recommendation.

MA HISTORY

There are two options for the MA degree in History, Comprehensive Exam or Thesis.

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 504 Graduate Study in History 4</td>
</tr>
<tr>
<td>History Seminars 20</td>
</tr>
<tr>
<td>Select 5 courses from the following. Each is repeatable up to 12 units.</td>
</tr>
<tr>
<td>HIST 505 Graduate Sem. in U.S. History (4-12)</td>
</tr>
<tr>
<td>HIST 506 Graduate Seminar in Modern European History (4-12)</td>
</tr>
<tr>
<td>HIST 507 Graduate Seminar in East Asian History (4-12)</td>
</tr>
<tr>
<td>HIST 508 Graduate Seminar in Latin American History (4-12)</td>
</tr>
<tr>
<td>HIST 509 Graduate Seminar in African History (4-12)</td>
</tr>
<tr>
<td>400-500 level HIST electives 16</td>
</tr>
</tbody>
</table>

400-level courses include extra work for graduate students. (All courses must be taken after student has been awarded an undergraduate degree and may not repeat undergraduate courses or their equivalent.)

Comprehensive Exam Option (total 48 units)

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 512 Supervised Reading for Comprehensive Exams (2)(2) 4</td>
</tr>
<tr>
<td>4 additional units of 400-500 HIST electives 4</td>
</tr>
<tr>
<td>Thesis Option (total 49 units)</td>
</tr>
<tr>
<td>HIST 599 Thesis (3) (3) (3) 9</td>
</tr>
</tbody>
</table>

48/49

1 If upper-division GE courses are used to satisfy Major or Support requirements, additional units may be required to complete the 180 total unit requirement.
Humanities

Director, Kathryn Rummell

ACADEMIC PROGRAMS

Values, Technology and Society Minor

The Humanities Program offers interdisciplinary and international classes in a wide variety of subject areas, from the ethical issues involved in technology, to the cultures of China, Japan, and Spain. Many humanities classes satisfy University general education and breadth requirements.

VALUES, TECHNOLOGY AND SOCIETY MINOR

The purpose of the minor is to increase understanding of how technology shapes and influences modern life. Students develop an increased understanding of the social, environmental, economic and political implications of technology in the twenty-first century. They are able to think critically about the intellectual, moral, and historical issues that technological developments pose for the future of humankind.

The courses in the minor provide an overview of technological issues, with an emphasis on the impacts technology has on organizations and society. Technology's impact on society is examined from a values and public policy perspective. Students are able to tailor their minor program to focus on specific issues through the selection of electives in technology, society, and values areas. The minor is available to students throughout the University regardless of students' technical backgrounds.

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 302</td>
<td>4</td>
</tr>
<tr>
<td>HUM 303</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 321</td>
<td>4</td>
</tr>
<tr>
<td>IME 320</td>
<td>4</td>
</tr>
</tbody>
</table>

| Elective Courses: | 12 |
| Select 12 units, at least one from each category |

Technology:
- AERO 310 Air and Space (4) (F)
- BRAE 348 Energy for a Sustainable Society (4) (F)
- CSC 302 Computers and Society (4) (F)
- HIST 354 History of Network Technology (4) (F)
- IT 301 Technological Issues: Metals Manufacturing and Society (4)
- ME 321 Solar Energy (4) (F)
- PSC 307 Nuclear Weapons in the Post-Soviet World (4) (F)
- PSC 320 Energy and the Environment for the New Millennium (4) (F)

Society:
- ANT 360 Human Cultural Adaptations (4)
- CRP 211 Cities: Form, Culture and Evolution (4)
- FNR 201 Introduction to Forest Ecosystem Management (3)
- POLS 320 Politics of Global Survival (4)
- POLS 451 Science, Technology and Public Policy (4)
- PSY 311 Environmental Psychology (4) (D5)
- PSY 494 Psychology of Technological Change (4)

Philosophy and Values:
- ENVE 330 Environmental Quality Control (4)
- GEOG 333 Human Impact on the Earth (4)
- HIST 358 Cloning (4) (F)
- HIST 359 Living in a Material World (4) (F)
- HUM 302 Human Values in Agriculture (4) (F)
- PHIL 339 Biomedical Ethics (4) (C4)
- PHIL 340 Environmental Ethics (4) (C4)
Journalism

Department Chair, George Ramos
Teresa Allen John Soares
Nishan R. Havandjian Douglas Swanson
Patrick Munroe

ACADEMIC PROGRAMS
BS Journalism

The Journalism Department offers a professional program leading to the Bachelor of Science degree in Journalism. All majors must complete the basic journalism core courses in addition to a sequence of courses selected from an identified track and a list of restricted electives from which they must choose in consultation with an academic advisor.

Of the 180 units required for a bachelor's degree, 120 quarter units must be taken in courses outside the major area of journalism/mass communication/communication. Each student is strongly encouraged to take a foreign language to satisfy his or her elective units. For media-related courses offered outside the major, students are required to consult with their academic advisor before enrolling in these classes.

All journalism majors are expected to serve as staff members of departmental communications media, including Mustang Daily, the student newspaper; CCPR, the student-run public relations firm; KCPR, the FM-stereo radio station; or the news and programming operations of CPTV, Cal Poly's TV station. They are also expected to participate in professional and scholarly organizations in their interests, in addition to applying acquired skills and developing professional abilities in an approved media internship. The department sponsors student chapters of the Society of Professional Journalists, Radio-Television News Directors Association, and the Public Relations Student Society of America.

BS JOURNALISM

- 60 units upper division
- 2.0 GPA
- GWR
- USCP

* = Satisfies General Education requirement

MAJOR COURSES

JOUR 203 Writing for the Media 4
JOUR 219 Mass Media in a Multicultural Society 4
JOUR 302 Mass Media Law 4
JOUR 390 Visual Communication for Mass Media 4
JOUR 401 Global Communication 4
JOUR 402 Journalism Ethics 4
JOUR 444 Media Internship 4
JOUR 460 Senior Project 4

Follow one of the following tracks 18
Broadcast Track (18)
JOUR 333, 346, 348 or 353

News Editorial Track (18)
JOUR 233, 304, 352, 407

Public Relations Track (18)
JOUR 312, 333 or 304, 342, 413, 415

Journalism Dept. electives.

8 units must be 300-400 level. To be selected from:
JOUR 201, 205, 331, 385, 410, 470 12

SUPPORT COURSES

Students are strongly encouraged to take foreign language courses as part of their non-journalism electives. These can be in any acceptable language discipline. No journalism or mass communication...

Department-approved upper division electives ...
At least 12 units must be in the College of Liberal Arts and/or College of Science and Mathematics. All courses must have a lecture component. Courses must be approved by your academic advisor and department chair.

GENERAL EDUCATION (GE)
72 units required.
→ See page 56 for complete GE course listing.

Area A Communication (12 units)
A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (20 units)
B1 Mathematics/Statistics 8
B2 Life Science .. 4
B3 Physical Science 4
B4 One lab taken with either a B2 or B3 course
B5 elective
Area B elective (select one course from B1-B5) ...

Area C Arts and Humanities (16 units)
C1 Literature ... 4
C2 Philosophy ... 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4

Area D/E Society and the Individual (20 units)
D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective 4

Area F Technology Elective (upper division) (4 units)

ELECTIVES ... 0

2007-2009 Cal Poly Catalog
Liberal Studies, an Undergraduate Teacher Preparation Program

Department Office
Science North (Bldg. 53), Room 211
805 756-2935 Fax: 805-756-2967

ACADEMIC PROGRAMS
BA, BS Liberal Studies

Liberal Studies is a pre-professional Subject Matter Teacher Preparation Program leading to enrollment in a Multiple Subject Credential Program. The mission of Liberal Studies is to ensure that students graduate with a strong liberal arts background and the necessary experience and content to prepare them for a teaching career. Successful completion of the major fulfills requirements for Elementary Teacher Subject Matter Preparation designated by the California Commission on Teacher Credentialing. This major is designed for individuals who plan on pursuing a Multi-Subject teaching credential (K-8). The Liberal Studies major is specifically designed to provide an exciting and rigorously challenging interdisciplinary course of study that integrates coursework in disciplines in eight subject matter areas: language arts, mathematics, science, history/social sciences, visual and performing arts, health, physical education, and human development. The Liberal Studies major provides the educational experience best suited for the prospective elementary teacher.

Note: All entering freshmen begin their Liberal Studies course of study in the BA program. They change their degree objective to BS in their junior year if they decide to pursue the “Blended” program in the Cal Poly College of Education. The “Blended” degree (BS) path is specially designed for students who want to complete the requirements for a Multi-Subject Teaching Credential at Cal Poly. The BA (non-blended) program prepares students to apply to teaching credential programs at other institutions.

Blended BS Liberal Studies/Multiple Subject Credential

This course of study allows students to “blend” into a multiple-subject credential program in the College of Education in their junior year. Students begin to take their educational methods classes as part of the requirements for this degree; complete their first student teaching experience, and then upon completion of the undergraduate degree requirements, may complete their credential and second student teaching experience in the College of Education. The difference between this course of study and the BA is that students in the “blended” program are simultaneously completing their undergraduate degree and moving towards completion of their multi-subject teaching credential through the College of Education. Upon completion they have both a bachelor of science degree and a teaching credential.

Emphasis Areas

All Liberal Studies students choose an emphasis area in art, art education, child development, language arts, life science, mathematics, music, performing arts, kinesiology, special education, physical science, social science or Spanish, or 16 advisor approved electives that constitute an individually-constructed depth of study. Students may obtain current emphasis area guidelines from the Liberal Studies Department office.

BA LIBERAL STUDIES

- 60 units upper division
- 2.0 GPA
- GWR
- USCP

* = Satisfies General Education requirement

MAJOR COURSES

(Courses in parentheses are recommended for Multiple Subjects Credential)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS 101</td>
<td>Orientation to Liberal Studies</td>
<td>1</td>
</tr>
<tr>
<td>LS 214</td>
<td>Constitutional Issues in History of U.S. and California Education</td>
<td>4</td>
</tr>
<tr>
<td>LS 230</td>
<td>Field Experience I</td>
<td>2</td>
</tr>
<tr>
<td>LS 250</td>
<td>Field Experience II</td>
<td>2</td>
</tr>
<tr>
<td>LS 270</td>
<td>Intro to Visual and Performing Arts Standards in the Elementary Classroom</td>
<td>4</td>
</tr>
<tr>
<td>LS 310</td>
<td>Storytelling: The Oral Tradition</td>
<td>4</td>
</tr>
<tr>
<td>LS 311</td>
<td>Visual Arts in the Elementary Classroom</td>
<td>4</td>
</tr>
<tr>
<td>LS 461</td>
<td>Senior Project Seminar</td>
<td>4</td>
</tr>
<tr>
<td>BIO 113</td>
<td>Animal Diversity & Ecology (B2&B4)*</td>
<td>4</td>
</tr>
<tr>
<td>BIO 114</td>
<td>Plant Diversity & Ecology (B2&B4)*</td>
<td>4</td>
</tr>
<tr>
<td>BIO 115</td>
<td>Animal/Human Structure & Function</td>
<td>4</td>
</tr>
<tr>
<td>CD/EDUC 207</td>
<td>The Learner's Development, Culture and Identity in Ed Settings</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 391</td>
<td>Topics in Applied Linguistics</td>
<td>4</td>
</tr>
<tr>
<td>HIST 208</td>
<td>Survey of California History</td>
<td>4</td>
</tr>
<tr>
<td>HIST 210</td>
<td>World History (D3)*</td>
<td>4</td>
</tr>
<tr>
<td>KINE 310</td>
<td>Concepts in Elementary Physical Ed</td>
<td>2</td>
</tr>
<tr>
<td>MATH 118</td>
<td>Pre-Calculus Algebra (B1)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 327</td>
<td>Math for Elementary Teaching I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 328</td>
<td>Math for Elementary Teaching II</td>
<td>4</td>
</tr>
</tbody>
</table>
MATH 329 Math for Elementary Teaching III 4
STAT 130 Intro to Statistical Reasoning or
STAT 217 Intro to Statistical Concepts and
Methods (B1)* 4
PSC 101 The Physical Environment: Matter and
Energy (B3&B4)* (or transfer of any GE B3
PHYS course) 4
PSC 102 Physical Environment: Atoms & Molecules
(or transfer of any chemistry course) 4
PSC 103 Physical Environment: Earth & Universe
(or transfer of any GEOL or ASTR course) 4
PSY 201/202 General Psychology (D4)* 4

Select 16 units from one of the following
approved emphasis areas. 8 units must be 300-
400 level 16
Art, Art Education, Child Development,
Language Arts, Life Science, Mathematics,
Music, Performing Arts, Kinesiology, Special
Education, Physical Science, Social Science, Spanish

SUPPORT COURSES
EDUC 310 Effective Teaching & Classroom Mgt:
Multicultural Perspective in K-3 & 4-8 Setting 4
EDUC 440 Educating Individuals with
Exceptional Needs 4
EDUC 480 Computer Based Curriculum 3
ENGL 360 Literature for Adolescents 4
KINE 250 Healthy Living 4
PSY 456/PSY 458/PSY 460 4

GENERAL EDUCATION (GE)
72 units required; 28 units are in Major.
See page 56 for complete GE course listing.
Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (no additional units reqd)
B1 Mathematics/Statistics * 8 units in Major 0
B2 Life Science * 4 units in Major 0
B3 Physical Science * 4 units in Major 0
B4 One lab taken with either a B2 or B3 course *
Select one course from B1-B5* 4 units in Major 0

Area C Arts and Humanities (16 units)
C1 Literature 4
C2 Philosophy 4
C3 Fine/Performing Arts 4
C4 Upper-division elective **see note below 4

Area D/E Society and the Individual (12 units)
D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions * 4 units in
Major 0
D4 Self Development (CSU Area E) * 4 units in
Major 0
D5 Upper-division elective
(GEOG 308 recommended) 4

Area F Technology Elective (upper division) 4

ELECTIVES 2

180

BS LIBERAL STUDIES

60 units upper division

2.0 GPA

GWR

USCP

Student must be admitted to the College of Education’s
Multiple Subject Credential Program in order to pursue the
BS Liberal Studies program. Those students not admitted
to this program complete the BA Liberal Studies. To com-
plete a Preliminary Multiple Subject Credential, EDUC
456 and EDUC 457 must be taken as a post-baccalaureate
student.

MAJOR COURSES

See BA Liberal Studies 107

**SUPPORT COURSES for the Blended Multiple
Subject Credential**
EDUC 310 Effective Teaching & Classroom Mgt:
Multicultural Perspective in K-3 & 4-8 Setting 4
EDUC 430 Teaching Reading and Language Arts
with a Multicultural Perspective 6
EDUC 431 Teaching Soc. Studies and the Arts 4
EDUC 432 Teaching Science and Math 4
EDUC 440 Educating Individuals with
Exceptional Needs 4
EDUC 454 Student Teaching I 7
EDUC 455 Student Teaching Seminar I 3
EDUC 480 Computer Based Curriculum 3
KINE 250 Health Education 4

39

GENERAL EDUCATION (GE)
72 units required; 24 units are in Major.
See page 56 for complete GE course listing.
Minimum of 12 units required at the 300-400 level.

See BA Liberal Studies 44

ELECTIVES 1

191

EDUC 456 Multiple Subject Student Teaching II 12
EDUC 457 Multiple Subject Student
Teaching Seminar II 2
And acceptance into Step B

Total for BS Liberal Studies and Credential 205

Note: Some ENGL classes in this category meet the GWR
requirement for students with junior standing. Students must complete
appropriate paperwork with course instructor to receive GWR credit.
Otherwise a test is available quarterly that students may take. ENGL 345-
347, 349, 381 meet the USCP requirement.
Modern Languages & Literatures

ACADEMIC PROGRAMS

BA Modern Languages and Literatures
French Minor
German Minor
Spanish Minor

The Modern Languages and Literatures Department offers coursework in French, German, and Spanish, as well as elementary Italian, Japanese and Mandarin. Instruction at all levels emphasizes communicative competence to prepare students for cultural, educational, literary and professional needs in California, throughout the United States and abroad. Audiovisual components are used in the classroom as well as in the language laboratory.

Students who wish to enroll in Spanish courses for the first time at Cal Poly, numbered 101 through 124, must take the Spanish Placement Examination prior to enrolling. Students who have never studied Spanish are exempt. Students should contact the Modern Languages and Literatures Department for test dates. The department strongly encourages students to follow its placement formula: one year of high school French, German, Italian or Japanese is equivalent to one quarter at Cal Poly.

The department supports the concept of international education and encourages students to investigate all opportunities for overseas study. The department works closely with the CSU’s International Programs to insure that all courses taken in an overseas experience count toward either major, support, minor, general education and/or free electives. The department also sponsors summer and single term (fall quarter) experiences abroad. Students interested in studying abroad should consult with the International Education and Programs Office and their assigned academic advisor.

The department is active in training students who wish to obtain a bilingual teaching credential. It administers the Bilingual Proficiency Examination in Spanish.

The department also supports such student clubs as C.U.L.T.U.R.E, the French Club, the German Club, the Circolo Italiano, the Latin American Studies Association, MEXA (Movimiento Estudiantil Xicano de Aztlán), and Tomo Dachi Kai.

The PolyLingual International Resource Center (PIRC) is the department's state-of-the-art digital language laboratory and multimedia production facility. Students and faculty members use the Center for class activities and presentations, and for drop-in language practice and curriculum development. The PIRC also houses the College of Liberal Arts MultiMedia Center (CLAMM), where students and faculty may create a cadre of projects for professional and academic development.

The curriculum for the Bachelor of Arts degree provides strong preparation for a career in single-subject teaching, multiple-subject teaching, business, government, and international affairs; it also provides preparation for graduate study in business administration, Chicano/Latino studies, comparative literature, ethnic studies, languages, Latin American studies, and other fields in the humanities social sciences, and various service areas.

FRENCH MINOR

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR 122 Intermediate French</td>
<td>4</td>
</tr>
<tr>
<td>FR 233 Critical Reading in French Literature (C1)</td>
<td>4</td>
</tr>
<tr>
<td>1 FR 301 Adv. French Composition and Grammar or 1 FR 302 Adv. French Conversation/Grammar</td>
<td>4</td>
</tr>
<tr>
<td>Electives to be chosen from the following:</td>
<td>12</td>
</tr>
<tr>
<td>FR 301 Adv. French Composition/Grammar (4)</td>
<td></td>
</tr>
<tr>
<td>FR 302 Adv. French Conversation/Grammar (4)</td>
<td></td>
</tr>
<tr>
<td>FR 305 Significant Writers in French (4) (C4) (repeatable to 8 units)</td>
<td></td>
</tr>
<tr>
<td>FR/FSN 322 French Food in French (4)</td>
<td></td>
</tr>
<tr>
<td>FR 350 French Literature in English Translation (4) (C4)</td>
<td></td>
</tr>
<tr>
<td>FR 470 Selected Advanced Topics (4) (repeatable to 8 units)</td>
<td></td>
</tr>
<tr>
<td>HUM 310 Humanities in World Cultures (French) (4) (C4)*</td>
<td>24</td>
</tr>
</tbody>
</table>

1 Not repeatable as elective units.
GERMAN MINOR

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER 122 Intermediate German</td>
<td>4</td>
</tr>
<tr>
<td>GER 233 Critical Reading-German Literature (C1)</td>
<td>4</td>
</tr>
<tr>
<td>GER 301 Adv. German Composition/Grammar or</td>
<td></td>
</tr>
<tr>
<td>GER 302 Adv. German Conversation/Grammar</td>
<td>4</td>
</tr>
</tbody>
</table>

Electives to be chosen from the following: 12

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER 301 Adv. German Composition/Grammar</td>
<td></td>
</tr>
<tr>
<td>GER 302 Adv. German Conversation/Grammar</td>
<td></td>
</tr>
<tr>
<td>GER 305 Significant Writers in German (C4)</td>
<td></td>
</tr>
<tr>
<td>GER 350 German Literature in English Translation (C4)</td>
<td></td>
</tr>
<tr>
<td>GER 470 Selected Advanced Topics (C4)</td>
<td></td>
</tr>
<tr>
<td>HUM 310 Humanities in World Cultures (German) (C4)</td>
<td>24</td>
</tr>
</tbody>
</table>

SPANISH MINOR

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 122 Fundamentals of Spanish or</td>
<td>4</td>
</tr>
<tr>
<td>SPAN 123 Spanish for Heritage Speakers</td>
<td>4</td>
</tr>
<tr>
<td>SPAN 124 Composition in Spanish</td>
<td>4</td>
</tr>
<tr>
<td>SPAN 233 Intro. to Hispanic Readings (C1)</td>
<td>4</td>
</tr>
</tbody>
</table>

Electives to be chosen from the following: 12

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 301 Advanced Composition in Spanish (C4)</td>
<td></td>
</tr>
<tr>
<td>SPAN 302 Advanced Conversation and Composition in Spanish (C4)</td>
<td></td>
</tr>
<tr>
<td>SPAN 305 Significant Writers in Spanish (C4)</td>
<td></td>
</tr>
<tr>
<td>SPAN 340 Chicano/a Authors (C4) (USCP)</td>
<td></td>
</tr>
<tr>
<td>SPAN 350 Hispanic Literature in English Translation (C4)</td>
<td></td>
</tr>
<tr>
<td>SPAN 351 Latino(a) Literature in the U.S. (C4) (USCP)</td>
<td></td>
</tr>
<tr>
<td>SPAN 402 Advanced Linguistics in Spanish</td>
<td></td>
</tr>
<tr>
<td>SPAN 410 Advanced Literature in Spanish</td>
<td></td>
</tr>
<tr>
<td>SPAN 416 Don Quixote (4)</td>
<td></td>
</tr>
<tr>
<td>SPAN 470 Selected Advanced Topics (C4)</td>
<td></td>
</tr>
<tr>
<td>HUM 310 Humanities in World Cultures (Spain, Mexico or Latin America) (C4)</td>
<td></td>
</tr>
<tr>
<td>HUM 312 Chicano/a Culture (4)</td>
<td>24</td>
</tr>
</tbody>
</table>

BA MODERN LANGUAGES & LITERATURES

- 60 units upper division
- 2.0 GPA
- GWR
- USCP

* Satisfies General Education requirement

MAJOR COURSES

Primary Language

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 121 Fundamentals of Spanish I</td>
<td>4</td>
</tr>
<tr>
<td>SPAN 122 Fundamentals of Spanish II or</td>
<td></td>
</tr>
<tr>
<td>SPAN 123 Spanish for Heritage Speakers</td>
<td>4</td>
</tr>
<tr>
<td>SPAN 124 Composition in Spanish</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 205 Introduction to Spanish Linguistics</td>
<td>4</td>
</tr>
<tr>
<td>SPAN 233 Intro. to Hispanic Readings (C1)*</td>
<td>4</td>
</tr>
<tr>
<td>SPAN 301 Advanced Composition in Spanish</td>
<td>4</td>
</tr>
<tr>
<td>SPAN 305 Significant Writers in Spanish</td>
<td>4</td>
</tr>
<tr>
<td>SPAN 402 Advanced Linguistics in Spanish</td>
<td>4</td>
</tr>
<tr>
<td>SPAN 410 Advanced Literature in Spanish</td>
<td>4</td>
</tr>
<tr>
<td>SPAN 416 Don Quixote</td>
<td></td>
</tr>
<tr>
<td>MLL 210 Intro. to Research Methods</td>
<td>4</td>
</tr>
<tr>
<td>MLL 460 Senior Project</td>
<td>4</td>
</tr>
<tr>
<td>Primary language/culture electives (300-400 level)</td>
<td>12</td>
</tr>
</tbody>
</table>

Secondary Language Concentration

Select secondary language in either French, German or other language as approved by Department Chair.

Introductory courses (101, 102, 103) 12
Intermediate courses (121, 122, 233) 12
Advanced course (300-400 level) 4

GENERAL EDUCATION (GE)

72 units required; 4 units in Major.
See page 56 for complete GE course listing.
Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (20 units)

B1 Mathematics/Statistics 8
B2 Life Science 4
B3 Physical Science 4
B4 One lab taken with either a B2 or B3 course 4
B5 elective 4

Area B elective (select one course from B1-B5)... 4

Area C Arts and Humanities (12 units)

C1 Literature *4 units in Major 0
C2 Philosophy 4
C3 Fine/Performing Arts 4
C4 Upper-division elective (not in Spanish) 4

Area D/E Society and the Individual (20 units)

D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective 4

Area F Technology Elective (upper division) 4

2 ELECTIVES 24

(minimum 8 units must be 300-400 level) 180

1 Not repeatable as elective units.
2 If upper-division GE courses are used to satisfy Major or Support requirements, additional upper division coursework may be required to satisfy the University’s 60-unit upper division requirement.
Music

Department Chair, W. Terrence Spiller

David Arriveé
Antonio G. Barata
Meredith Brammeier
Thomas H. Davies
Kenneth S. Habib

William V. Johnson
Alyson McLamore
Paul Rinzler
Craig H. Russell

ACADEMIC PROGRAMS

BA Music
Music Minor

The Bachelor of Arts in Music introduces a student to the role of music in today's world, helps form personal goals, and provides the discipline, skills and knowledge to accomplish those goals. The program develops musical skills, encourages creativity, and cultivates vision for the future. The University's polytechnic emphasis also provides an excellent opportunity to explore music in conjunction with a wide range of other fields. Graduates are prepared to begin specialized study at the graduate level and to enter a wide variety of professional careers.

The Music Department is a valuable resource for the non-music major. Its courses and performing ensembles are open to all students who wish to enrich their lives through music. Qualified students may explore the subject in depth have the opportunity to minor in music.

The Music Department also serves as a cultural center for both the university and the community through a program of public performances by student and faculty groups and through clinics, workshops, concerts, and lectures by outstanding individuals from outside the university.

Acceptance into the music major program requires a demonstrated ability on an instrument, in voice, or talent through other musical media.

Department Requirements

1. New students should contact the Music Department Office before their first term of enrollment to arrange for placement examinations for music theory, keyboard proficiency, musicianship (dictation, sight singing), and a performance audition for applied study placement and assignment to performing ensembles. Regardless of courses taken prior to coming to Cal Poly, students are required to remedy deficiencies before enrolling in advanced music theory or music history courses.

2. Each music major enrolled in at least 6 units of music courses must include a performance ensemble each quarter in order to qualify for applied study of voice or instruments. (See the Department for details regarding appropriate ensembles and applied study policies.) Each student enrolled in private instruction must take an applied music jury at the end of Spring Quarter.

3. Each student is required to attend a minimum of 6 concerts per quarter.

4. At the end of the sixth quarter of enrollment (third quarter of enrollment for transfer students) a student must take a mid-point evaluation to verify progress and potential in music. This test includes the following:

 • private performance skills (should be at the MU 250 level; tested through a jury)
 • musicianship skills up through the level of Musicianship III
 • knowledge of music theory up through the level of Theory II
 • piano proficiency (see No. 5 below)

5. Each student must pass a piano proficiency examination in order to graduate. The examination must be taken by the end of the sophomore year and if it is not passed, the student is expected to continue to enroll in piano until it is passed.

6. Use of Music Department instruments, scheduled practice rooms, electronic studio, or lockers requires a Music Use Fee. See the Music Department Office for details.

7. It is important that each student stay closely in touch with his/her advisor in order to progress through the music major program in the most efficient manner.

8. The Music Department is not able to offer the full complement of performing ensembles and private instruction during the Summer Quarter; it is important to take this into consideration when planning coursework for completion of the major.

A music major handbook giving complete details of the program, policies and forms is available from the Music Department.
BA MUSIC

- 60 units upper division
- 2.0 GPA

* = Satisfies General Education requirement

MAJOR COURSES

- MU 103 Music Theory I: Diatonic Materials 4
- MU 104 Musicianship I 2
- MU 105 Music Theory II: Chromatic Materials 4
- MU 106 Musicianship II 2
- MU 108 Musicianship III 2
- MU 121 Introduction to Non-Western Music 4
- MU 303 Music Theory III: Adv. Chromaticism 4
- MU 305 Music Theory IV: Contemporary Practices 4
- MU 311 Sound Design: Technologies 4
- MU 320 Music Research and Writing 4
- MU 325 (USCP)/MU 326/MU 336/MU 470 4
- MU 331 Music Middle Ages and Renaissance 4
- MU 332 Music Baroque and Early Classic Eras 4
- MU 431 Music of the Classic and Romantic Eras 4
- MU 432 Music of the Modern Era 4
- MU 461 Senior Project 3
- Approved music lecture courses (300-400 level) 12
- Major Ensemble at 100-level with advisor approval 6
- Major Ensemble at 300-level with advisor approval 3
- Applied Study ... 9

GENERAL EDUCATION (GE)

- 72 units required.
- Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

- A1 Expository Writing 4
- A2 Oral Communication 4
- A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (20 units)

- B1 Mathematics/Statistics 8
- B2 Life Science ... 4
- B3 Physical Science 4
- B4 One lab taken with either a B2 or B3 course 3
- B5 elective
- Area B elective (select one course from B1-B5) 4

Area C Arts and Humanities (16 units)

- C1 Literature ... 4
- C2 Philosophy ... 4
- C3 Fine/Performing Arts 4
- C4 Upper-division elective 4

Area D/E Society and the Individual (20 units)

- D1 The American Experience (40404) 4
- D2 Political Economy 4
- D3 Comparative Social Institutions 4

ELECTIVES

- 21

MUSIC MINOR

A minor is available to students who desire documented competency in music. An individualized curriculum based on the following guidelines is developed in consultation with a member of the music faculty. Students must complete one academic music lecture course at Cal Poly, such as MU 101 or MU 120, before applying for the minor. Information and application forms for the declaration of a Music minor are available in the Music Department Office.

Required Courses

Select one course from: .. 4
- MU 101 Introduction to Music Theory
- MU 103 Music Theory I: Diatonic Materials

Select three units from: 3
- MU 104 Musicianship I (2)
- MU 106 Musicianship II (2)
- MU 108 Musicianship III (2)

Any class piano, class voice, class guitar; instrumental and vocal ensembles

Select one of the following courses: 4
- MU 103 Music Theory I: Diatonic Materials (no credit if taken above as theory requirement)
- MU 105 Music Theory II: Chromatic Materials
- MU 114 Introduction to Composing
- MU 121 Introduction to Non-Western Musics
- MU 221 Jazz Styles (C3) (USCP)
- MU 229 Music of the 60s: War and Peace (C3), (USCP)
- MU 120 Music Appreciation 4

Upper division electives

Chosen from 300-400 level Music courses (or in some cases, specific courses offered by other departments); see NOTE below. A maximum of 3 units can be in upper-division performing ensembles.

NOTE

Each applicant for the Music Minor is expected to demonstrate his/her musical competency by way of a recital, original composition, concert review project, recording project, or other means as approved by the Music faculty.
Philosophy

Department Chair, Tal Scriven
Stephen W. Ball
A. C. W. Bethel
Linda Bomstad
Rachel Fern
Francisco Flores
Charles T. Hagen
Stephen Lloyd-Moffett
Todd Long
Joseph Lynch
Paul S. Miklowitz
Joseph K. Schear
Kendrick W. Walker

ACADEMIC PROGRAMS
BA Philosophy
Philosophy Minor
Religious Studies Minor

The Philosophy department at Cal Poly is one of the largest in the CSU system. It prides itself on excellence in teaching and the high standards met by its students. A degree in philosophy is one of the best preparations for graduate or professional school and the evidence for this is substantial. Nationally, philosophy majors outscore everyone but majors in mathematics and physics on the Law School Admissions Test (LSAT). Similar trends are also seen for scores in all sections of the Graduate Record Exam (GRE) and on the Graduate Management Admission Test (GMAT), the exam required by most MBA programs.

The reason for this is unsurprising. The study of philosophy requires the meticulous development of general analytical reasoning skills. Even students not planning to go on to graduate or professional school are well served by the analytical and verbal skills developed by the study of philosophy. The ability to communicate clearly and forcefully is increasingly rare and, as a result, increasingly sought after in the job market.

Students can pursue a curriculum leading to a Bachelor of Arts degree in Philosophy, including an optional concentration in Ethics and Society, and a curriculum leading to a minor in Religious Studies. An unusually large number of courses is offered in the history of philosophy, as well as courses in specific areas of philosophy (logic, ethics, metaphysics, epistemology), and courses that deal with the philosophical issues arising in other disciplines (e.g., philosophy of art and philosophy of science).

CONCENTRATIONS
Students may choose to complete 20 units of 300-400 level philosophy courses or the concentration.

Ethics and Society. Designed for students with an interest in pursuing professional careers in which they will need to address practical ethical issues, especially careers in business, medicine, politics and law.

Philosophy Electives. 20 units of 300-400 level philosophy courses.

PHILOSOPHY MINOR
The minor program in Philosophy is designed for students who want to add to their education an understanding of the history of philosophy and of philosophical issues relevant to their major field of study. It consists of 24 units (12 specified, 12 chosen from an approved list). Interested students are invited to contact the Philosophy Department Office for more information and application forms.

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 101 Introduction to Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 230 Philosophical Classics: Metaphysics and Epistemology (4) (C2)</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 231 Philosophical Classics: Social and Political Philosophy (4) (C2)</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 311 Greek Philosophy (4) (C4)</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 312 Medieval Philosophy (4) (C4)</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 313 Continental Philosophy: Descartes to Leibniz (4) (C4)</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 314 British Philosophy: Bacon to Mill (4) (C4)</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 315 German Philosophy: Kant to Nietzsche (4) (C4)</td>
<td>4</td>
</tr>
<tr>
<td>Additional courses may be chosen from PHIL 225 or any upper division Philosophy course, for a total of 8 units</td>
<td>8</td>
</tr>
</tbody>
</table>

Electives to be chosen from the following: 16
Select two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 311 Greek Philosophy (4) (C4)</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 312 Medieval Philosophy (4) (C4)</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 313 Continental Philosophy: Descartes to Leibniz (4) (C4)</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 314 British Philosophy: Bacon to Mill (4) (C4)</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 315 German Philosophy: Kant to Nietzsche (4) (C4)</td>
<td>4</td>
</tr>
</tbody>
</table>

RELIGIOUS STUDIES MINOR

The Religious Studies minor program is designed for students who want to enhance their understanding of the great religious traditions of the contemporary world and some of the social issues involving these religions. The minor consists of 24 units. Interested students are invited to contact the Philosophy Department Office for more information and application forms.

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELS 201 Religion, Dialogue and Society (D3)</td>
<td>4</td>
</tr>
<tr>
<td>RELS 301 Religions of Asia (4) (C4)</td>
<td>8</td>
</tr>
<tr>
<td>RELS 302 Monotheisms: Judaism, Christianity, and Islam (4) (C4)</td>
<td>4</td>
</tr>
<tr>
<td>RELS 304 Judaism (4) (C4)</td>
<td>4</td>
</tr>
<tr>
<td>RELS 306 Hinduism (4) (C4)</td>
<td>4</td>
</tr>
</tbody>
</table>

2007-2009 Cal Poly Catalog
RELS 307 Buddhism (4) (C4)
RELS 310 Christianity (4) (C4)
RELS 311 Islam (4) (C4)

Select one of the following.. 4

PHIL 320 Asian Philosophy (4) (C4)
PHIL 342 Philosophy of Religion (4) (C4)
PSY 339 Psychology of Religion (4)
SOC 377 Sociology of Religion (4) (D5)

Select one of the following.. 4

RELS/WS 370 Religion, Gender and Society (4)
(RELS) (USCP)
RELS 372 Spiritual Extremism: Asceticism,
Mysticism and Madness (4) (C4)
RELS 374 Religion and Violence (4) (C4)
RELS 400 Special Problems for Advanced
Undergraduates (1-2)
RELS 470 Special Topics in Religious
Studies (1-4)

Electives (any additional RELS course)............................. 4

24

BA PHILOSOPHY

☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP

* = Satisfies General Education requirement

MAJOR COURSES

PHIL 101 Introduction to Philosophy 4
PHIL 225 Symbolic Logic .. 4
PHIL 230 Philosophical Classics: Metaphysics and
Epistemology (C2)*.. 4
PHIL 231 Philosophical Classics: Social and
Political Philosophy... 4
PHIL 311 Greek Philosophy 4
PHIL 313 Continental Philosophy: Descartes to
Leibniz.. 4
PHIL 314 British Philosophy: Bacon to Mill.............. 4
PHIL 315 German Philosophy: Kant to Nietzsche... 4
PHIL 321 Philosophy of Science 4
PHIL 331 Ethics.. 4
PHIL 411 Metaphysics... 4
PHIL 412 Epistemology.. 4
PHIL 460 Senior Project I....................................... 2
PHIL 461 Senior Project II..................................... 2

Concentration (see below) or 300–400 level PHIL
electives .. 20

GENERAL EDUCATION (GE)

72 units required; 4 units are in Major.
See page 56 for complete GE course listing.
Minimum of 12 units required at the 300–400 level.

Area A Communication (12 units)

A1 Expository Writing ... 4
A2 Oral Communication ... 4
A3 Reasoning, Argumentation, and Writing........... 4

Area B Science and Mathematics (20 units)

B1 Mathematics/Statistics 8
B2 Life Science .. 4
B3 Physical Science ... 4
B4 One lab taken with either a B2 or B3 course
B5 elective

Area B elective (select one course from B1-B5) 4

Area C Arts and Humanities (12 units)

C1 Literature .. 4
C2 Philosophy * 4 units in Major 0
C3 Fine/Performing Arts .. 4
C4 Upper-division elective (not in PHIL) 4

Area D/E Society and the Individual (20 units)

D1 The American Experience (40404) 4
D2 Political Economy .. 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective (Not PHIL courses) 4

Area F Technology Elective (upper division)
(4 units) ... 4

Area G Concentration Elective (upper division)
(5 units) ... 68

Area H Concentration Elective (upper division)
(5 units) ... 68

Area I Concentration Elective (upper division)
(5 units) ... 68

Area J Concentration Elective (upper division)
(5 units) ... 68

Electives ... 40

CONCENTRATION OR ELECTIVES

Select either the following concentration or 20 units of
300–400 level PHIL electives.

Ethics and Society Concentration 20

Select five of the following courses:

PHIL 322 Philosophy of Technology (4)
PHIL 332 History of Ethics (4)
PHIL 333 Political Philosophy (4)
PHIL 334 Philosophy of Law (4)
PHIL 335 Social Ethics (4) (USCP)
PHIL 336 Ethics, Gender and Society (4) (USCP)
PHIL 337 Business Ethics (4)
PHIL 338 Ethics and Education (4)
PHIL 339 Biomedical Ethics (4)
PHIL 340 Environmental Ethics (4)
PHIL 341 Professional Ethics (4)

Philosophy Electives

300–400 level PHIL electives 20

2007-2009 Cal Poly Catalog
Political Science

Department Chair, Jean M. Williams
Craig Arceneaux Dianne N. Long
Alesha E. Doan Carl E. Lutrin
Chris Den Hartog Matthew J. Moore
Ronald Den Otter Allen K. Settle
Anika C. Leithner Linda Shepherd

ACADEMIC PROGRAMS

BA Political Science
International Relations Minor
Law and Society Minor
Master of Public Policy (MPP)

The Political Science Department offers instruction leading to the Bachelor of Arts degree in Political Science and a Master of Public Policy degree. Through the required and elective courses, the department seeks to expand each student's comprehension of the political process, and to develop those understandings and skills which are essential for effective citizenship and for leadership positions in the public and private sectors.

In addition to the undergraduate major and the graduate program, the department offers minors in International Relations and Law and Society. Beyond that, the department provides students in all curricula within the university with an understanding of the operations of local, state, and national government and the processes by which the individual and community interact in the several levels of government. The department supports internship opportunities in local, state, and federal agencies in addition to applied public policy research opportunities through the Cal Poly Institute for Policy Research.

CONCENTRATIONS

American Politics. Study of American governmental institutions, politics, and policies. Provides students with a broad knowledge of the American political system that can prepare them for careers in public service, such as campaign advisors or policy analysts.

International Affairs. Study of international and comparative politics, politics of developing areas, and U.S. foreign policy. Prepares students for careers in government, business, and related agencies which deal with international relations and also prepares students for graduate studies.

Pre-Law. Study of American constitutional law, civil liberties, jurisprudence and judicial process. Prepares students for careers in the several fields of law. Some students may seek admission to law school to continue their preparation for the legal profession. Others may seek careers in law-related professions such as law enforcement, judicial administration and legal assistance.

Individualized Course of Study. As an option to one of the concentrations, students with varying backgrounds and interests may pursue a course of study which meets their individual needs and interests. A minimum of 28 units of coursework are selected by the student and approved by the student's academic advisor. 17 of these must be at the 300-400 level and 16 units must carry a POLS prefix.

INTERNATIONAL RELATIONS MINOR

The minor consists of required coursework and advisor approved electives. Details are available from the Political Science Department.

Required courses
- POLS 225 Introduction to International Relations 4
- POLS 229 Introduction to Comparative Politics 4
- Choose four of the following: 16
 - POLS 308 Collective Violence and Conflict Resolution (4)
 - POLS 324 International Relations Theory (4)
 - POLS 328 Politics of Developing Countries (4)
 - POLS 381 Peace and War (4)
 - POLS 383 Politics of the European Union (4)
 - POLS 382 Comparative Foreign Policy (4)
 - POLS 426 International Organizations and Law or POLS 427 Politics of the Global Economy (4)
- Advisor approved electives.................................... 4
 28

LAW AND SOCIETY MINOR

The minor consists of required coursework and advisor approved electives. Details are available from the Political Science Department.

Required courses
- POLS 341 American Constitution 4
- POLS 345 Judicial Process............................... 4
- Select two from the following: 8
 - POLS 334 Jurisprudence (4)
 - POLS 343 Civil Rights in America (4)
 - POLS 344 Civil Liberties (4)
- Advisor approved electives.................................... 12
 28

Department Office
Faculty Office Bidg. (47), Room 14-A
805 756-2984

2007-2009 Cal Poly Catalog
BA POLITICAL SCIENCE

- 60 units upper division
- 2.0 GPA
- * Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 112</td>
<td>American and California Govt (D1)*</td>
<td>4</td>
</tr>
<tr>
<td>POLS 180</td>
<td>Political Inquiry</td>
<td>4</td>
</tr>
<tr>
<td>POLS 225</td>
<td>Introduction to International Relations</td>
<td>4</td>
</tr>
<tr>
<td>POLS 229</td>
<td>Introduction to Comparative Politics</td>
<td>4</td>
</tr>
<tr>
<td>POLS 230</td>
<td>Basic Concepts of Political Thought</td>
<td>4</td>
</tr>
<tr>
<td>POLS 360</td>
<td>Political Analysis</td>
<td>5</td>
</tr>
<tr>
<td>POLS 481</td>
<td>Senior Project Seminar or POLS 461, 462 Senior Project I, II</td>
<td>4</td>
</tr>
</tbody>
</table>

- Concentration courses or individualized course of study: 12 units

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 110/111</td>
<td>Western Civilization</td>
<td>4-5</td>
</tr>
<tr>
<td>Geography/Anthropology/Sociology elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ENGL 302, ENGL 310 or English GE C4 course</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>STAT 221 Intro to Probability and Statistics (B1)*</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

- 72 units required; 8 units in Support
- Minimum of 12 units required at the 300-400 level

Area A Communication (12 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2</td>
<td>Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3</td>
<td>Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
</tbody>
</table>

Area B Science and Mathematics (16 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Mathematics/Statistics * 4 units in Support</td>
<td>4</td>
</tr>
<tr>
<td>B2</td>
<td>Life Science</td>
<td>4</td>
</tr>
<tr>
<td>B3</td>
<td>Physical Science</td>
<td>4</td>
</tr>
<tr>
<td>B4</td>
<td>One lab taken with either a B2 or B3 course</td>
<td>4</td>
</tr>
</tbody>
</table>

- Area B elective (select one course from B1-B5): 4 units

Area C Arts and Humanities (16 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Literature</td>
<td>4</td>
</tr>
<tr>
<td>C2</td>
<td>Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>C3</td>
<td>Fine/Performing Arts</td>
<td>4</td>
</tr>
<tr>
<td>C4</td>
<td>Upper-division elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Area D/E Society and the Individual (16 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>American Exp. (40404) * 4 units in Major</td>
<td>0</td>
</tr>
<tr>
<td>D2</td>
<td>Political Economy</td>
<td>4</td>
</tr>
<tr>
<td>D3</td>
<td>Comparative Social Institutions</td>
<td>4</td>
</tr>
<tr>
<td>D4</td>
<td>Self Development (CSU Area E)</td>
<td>4</td>
</tr>
<tr>
<td>D5</td>
<td>Upper-division elective (Not POLS courses)</td>
<td>4</td>
</tr>
</tbody>
</table>

- Area F Technology Elective (upper division): 4 units

CONCENTRATIONS (select one)

Select a concentration or individualized course of study.

American Politics Concentration

- POLS 315 The American Presidency: 4 units
- POLS 319 United States Congress: 4 units
- POLS 341 Constitutional Law: 4 units

- Choose any three of the following: 12 units
 - POLS 316 Political Participation
 - POLS 317 Campaigns and Elections
 - POLS 337 American Political Thought
 - POLS 375 California Politics

- POLS 419 Social Movements and Political Protest: 4 units
- POLS 471 Urban Politics: 4 units

International Affairs Concentration

- POLS 382 Comparative Foreign Policy: 4 units
- POLS 420 Contemporary U.S. Foreign Policy: 4 units
- POLS 426 International Organizations and Law: 4 units

Pre-Law Concentration

- POLS 341 American Constitutional Law: 4 units
- POLS 334 Jurisprudence: 4 units
- POLS 343 Civil Rights in America: 4 units
- POLS 344 Civil Liberties: 4 units
- POLS 345 Judicial Process: 4 units

- Advisor approved electives: 8 units

- Advisor approved electives: 4 units

ELECTIVES

- 29-30 units
- 180 units

2007-2009 Cal Poly Catalog
MASTER OF PUBLIC POLICY

General Characteristics

The Master of Public Policy degree program (MPP) is professionally oriented, and open to students who wish to pursue analytic careers in government and nonprofit organizations or in organizations related to public policy regulations. The program is structured to prepare graduates with competence to function in a general context of policy, as well as in analysis. The core courses cover statistics, public policy, public policy analysis, quantitative methods, public finance, policy internship, and graduate seminar.

The MPP program is designed to meet the needs of those who have earned baccalaureate degrees in a variety of disciplines, including, but not limited to, economics, history, political science, social sciences, psychology, city and regional planning, business administration, education, environmental studies, and natural resource management.

The program is two years in duration for students taking 8 or more units per term. It consists of 55 approved units (not including courses necessary to compensate for deficiencies). Because of the sequencing of courses, students admitted to the program are expected to begin study in the fall quarter. The degree culminates in the second year with a two-term seminar (POLS 590) where analytical projects are undertaken. Both group reports and individual papers are developed, presented, and discussed. The program offers students opportunities to develop close working relationships with faculty. Self-directed study, tailored to student interest and needs, is encouraged.

Prerequisites

Students entering the program are expected to bring with them backgrounds in certain basic subject areas or to make up deficiencies in these areas after admission. These include the following Cal Poly course or its equivalent: STAT 221 Introduction to Probability and Statistics.

Admission Requirements

1. Possession of a baccalaureate degree from an accredited college or university;
2. A grade point average of not less than 2.75 in all undergraduate coursework or not less than 3.00 in all upper division coursework;
3. Related undergraduate coursework or work experience;
4. The quality of previous educational and professional experiences measured by:
 a. Biographical and career data (resumes, examples of reports, letters of recommendation, etc.), and
 b. Professional training in fields such as budgeting, management, and supervision in the public, health, or nonprofit sectors.
5. For applicants whose preparatory education is principally in a language other than English, a TOEFL score of 550 or higher (or 213 on the new conversation scale for the computer-based TOEFL exam).

Program of Study

Graduate students must file a formal study plan with their major professor, graduate committee, department, college and university graduate studies office no later than the end of the quarter in which the twelfth unit of approved courses is completed. The formal program of study must include a minimum of 55 units (at least 43 of which must be at the 500 level).

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 510</td>
<td>Research Design</td>
<td>4</td>
</tr>
<tr>
<td>STAT 512</td>
<td>Statistical Methods</td>
<td>4</td>
</tr>
<tr>
<td>POLS 515</td>
<td>Public Policy</td>
<td>4</td>
</tr>
<tr>
<td>POLS 516</td>
<td>Public Finance</td>
<td>4</td>
</tr>
<tr>
<td>POLS 518</td>
<td>Public Policy Analysis</td>
<td>4</td>
</tr>
<tr>
<td>POLS 560</td>
<td>Quantitative Methods</td>
<td>5</td>
</tr>
<tr>
<td>POLS 586</td>
<td>Policy Internship</td>
<td>8</td>
</tr>
<tr>
<td>POLS 590</td>
<td>Graduate Seminar</td>
<td>8</td>
</tr>
</tbody>
</table>

Electives

Additional 400 and 500-level courses, to be selected with graduate advisor’s approval. At least 6 units must be at the 500 level.

55
ACADEMIC PROGRAMS

BS Child Development
BS, MS Psychology
Child Development Minor
Gerontology Minor
Psychology Minor

The department consists of faculty with degrees in psychology, family studies, human development and education who direct programs leading to BS Child Development, BS Psychology, MS Psychology, and minors in Child Development, Psychology and Gerontology.

In addition, courses are offered which fulfill general education requirements, support other programs and serve as a personal development resource for all university students. These courses are designed to acquaint students with the facts, theories and contemporary trends in psychology and child development and how these principles can be incorporated into a more meaningful understanding of oneself and of one's interactions with others. The department supports the concept of international education and encourages students to investigate opportunities for overseas study. For further information, see the Study Abroad programs.

CHILD DEVELOPMENT MINOR

The minor is designed to give students in Liberal Studies and other majors a broad knowledge base in child development. Biological, cognitive, social, and emotional development are examined with opportunities to explore development in the contexts of family and culture. The minor builds upon students' critical thinking skills by stressing the research base of the current knowledge in the field. This minor complements one's training in majors such as Liberal Studies, Psychology, or Recreation Administration by its emphasis on approaching child development as a coherent whole and as a scientific area of study. An application form must be approved by a Child Development Minor advisor.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD/EDUC 207 or CD 209 or PSY 256</td>
<td>4</td>
</tr>
<tr>
<td>CD 324 Guiding Children</td>
<td>4</td>
</tr>
<tr>
<td>CD 329 Research Methods - Child Development</td>
<td>4</td>
</tr>
<tr>
<td>CD 350 Developmental Issues in Education</td>
<td>4</td>
</tr>
<tr>
<td>PSY 201 or PSY 202 General Psychology (D4)</td>
<td>4</td>
</tr>
<tr>
<td>STAT 217 Intro to Statistical Concepts/Methods</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

CD 208, 210, PSY/CD 306, PSY 419, 420, 421, 456, 460

GERONTOLOGY MINOR AND CERTIFICATE

An interdisciplinary minor that prepares students in various majors whose careers will be directly or indirectly related to gerontology. The certificate program is available to upgrade the skills and increase the knowledge of persons already in the field of gerontology. Coursework includes the psychological, biological, and social aspects of aging; changing roles; stress related problems; and an understanding of the impact of an aging population on social, economic, and political institutions. Among the requirements for admission to the program is a minimum GPA of 3.00. All applicants are reviewed by the faculty coordinator.

Required core

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINE 408 Exercise/Health Promotion for Sr Adults</td>
<td>4</td>
</tr>
<tr>
<td>PSY 318 Psychology of Aging (D5)</td>
<td>4</td>
</tr>
<tr>
<td>SOC 326 Sociology of the Life Cycle</td>
<td>4</td>
</tr>
<tr>
<td>FSN 315 Nutrition in Aging</td>
<td>4</td>
</tr>
</tbody>
</table>

Advisor approved electives (choose two) 8

May be selected from: ANT 344; BIO 302, 305; COMS 418; PHIL 339; PSY 256, 310, 317, 459

Gerontology-related Fieldwork 4

May be fulfilled as an elective in the student's major or it may be challenged due to previous work.

PSYCHOLOGY MINOR

The minor provides students with a broad background in the principles of psychology in order to develop an appreciation of the human element in the world around them, complement their professional training, and enhance their personal development and interpersonal effectiveness. Students whose primary job responsibilities will require dealing with people should find employment opportunities increased and career advancement enhanced. Interested students are encouraged to
contact the Psychology and Child Development Department for information and application forms. An application form must be approved by a Psychology Minor advisor. **Minimum of 16 units 300-400 level courses required.**

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 201/202 General Psychology (D4)</td>
<td>4</td>
</tr>
<tr>
<td>STAT 217/221/251 (B1) or STAT 321 (B6)</td>
<td>4-5</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td>8</td>
</tr>
<tr>
<td>PSY 252/PSY 254/PSY 256 (4) (only one can be counted in the minor)</td>
<td></td>
</tr>
<tr>
<td>PSY 305 Personality (4)</td>
<td></td>
</tr>
<tr>
<td>PSY 340 Biopsychology (4) (B5)</td>
<td></td>
</tr>
<tr>
<td>PSY 405 Abnormal Psychology (4)</td>
<td></td>
</tr>
</tbody>
</table>

PSY elective courses (300–400 level)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
</table>

BS CHILD DEVELOPMENT

The Child Development major is designed for students who are interested in working with children in formal and informal educational settings. The major provides a background in how children learn and develop and serves as preparation for working in infancy through middle school programs. It prepares students for employment as developers of educational resources and software and for graduate study in teaching credential, child development, and child psychology programs.

The Child Development major is designed to enable students to develop a program of study suited to meet their individual needs. After completing major courses in child development, they will, with the assistance of an advisor, develop a personal program of study by selecting advisor approved electives, free electives, two internships, and a senior project and become part of a learning community of faculty and students engaged in a collaborative learning process. Each student graduates with a BS in Child Development and a minor in Psychology with the filing of a minor application form.

Goals of the Child Development major are for students to:

- Learn about children, how they learn and develop physically, emotionally, socially, and intellectually, and how adults can facilitate or hinder the process.
- Gain experience working with children of different ages in different settings.
- Develop expertise in the use of educational technology through developing competencies in accessing, processing, and disseminating information through the use of computers and video technology.
- Develop an understanding of multicultural and anti-bias issues and how to lead children into a celebration of cultural pluralism, transmitting ideals of fairness and respect.
- Develop skills in leadership and team and community building.

BS CHILD DEVELOPMENT

- 60 units upper division
- GWR
- 2.0 GPA
- USCP

* = Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD 102 Orientation to the Child Dev. Major</td>
<td>1</td>
</tr>
<tr>
<td>CD 130 Supervised Study of Children</td>
<td>4</td>
</tr>
<tr>
<td>CD 208 Infant and Toddler Development</td>
<td>4</td>
</tr>
<tr>
<td>CD 209 Early Childhood Development</td>
<td>4</td>
</tr>
<tr>
<td>CD 210 Middle Childhood</td>
<td>4</td>
</tr>
<tr>
<td>CD/PSY 254 Family Psychology</td>
<td>4</td>
</tr>
<tr>
<td>CD/PSY 306 Adolescence</td>
<td></td>
</tr>
<tr>
<td>CD 308 Preschool Laboratory: Applications of Learning, Development, and Technology</td>
<td>4</td>
</tr>
<tr>
<td>CD 309 Learning, Development & Technology I</td>
<td>4</td>
</tr>
<tr>
<td>CD 310 Learning, Development & Technology II</td>
<td>4</td>
</tr>
<tr>
<td>CD 311 Learning, Development & Technology III</td>
<td>4</td>
</tr>
<tr>
<td>PSY 323 The Helping Relationship</td>
<td>4</td>
</tr>
<tr>
<td>CD 324 Guiding Children</td>
<td>4</td>
</tr>
<tr>
<td>CD 329 Research Methods-Child Development</td>
<td>4</td>
</tr>
<tr>
<td>CD 330 Supervised Internship</td>
<td>4</td>
</tr>
<tr>
<td>PSY 351 Group Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>CD 401 Perspectives on Childhood Education</td>
<td>4</td>
</tr>
<tr>
<td>CD 430 Advanced Internship</td>
<td>4</td>
</tr>
<tr>
<td>CD 461 Senior Project Seminar</td>
<td>2</td>
</tr>
<tr>
<td>CD 462 Senior Project</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>73</td>
</tr>
</tbody>
</table>

SUPPORT COURSES

* = Satisfies General Education requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 302 Human Genetics (B5)*</td>
<td>4</td>
</tr>
<tr>
<td>FSN 210 Nutrition</td>
<td>4</td>
</tr>
<tr>
<td>PSY 201/PSY 202 General Psychology (D4)*</td>
<td>4</td>
</tr>
<tr>
<td>PSY 305/340/456/460</td>
<td>4</td>
</tr>
<tr>
<td>STAT 217 Intro to Statistical Concepts and Methods (B1)*</td>
<td>4</td>
</tr>
<tr>
<td>Advisor approved electives</td>
<td>16</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

72 units required; 12 units are in Support.

See page 56 for complete GE course listing.

Minimum of 12 units required at the 300-400 level.

<table>
<thead>
<tr>
<th>Area A Communication (12 units)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area B Science and Mathematics (12 units)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Mathematics/Statistics * 4 units in Support</td>
<td>4</td>
</tr>
<tr>
<td>B2 Life Science</td>
<td>4</td>
</tr>
<tr>
<td>B3 Physical Science</td>
<td>4</td>
</tr>
<tr>
<td>B4 One lab taken with either a B2 or B3 course</td>
<td>2</td>
</tr>
</tbody>
</table>

B5 elective

Area B elective (select one course from B1-B5)

* 4 units in Support
Area C Arts and Humanities (16 units)
 C1 Literature ... 4
 C2 Philosophy ... 4
 C3 Fine/Performing Arts 4
 C4 Upper-division elective 4
Area D/E Society and the Individual (16 units)
 D1 The American Experience (40404) 4
 D2 Political Economy 4
 D3 Comparative Social Institutions 4
 D4 Self Development (CSU Area E) * 4 units in Support 0
 D5 Upper-division elective (not PSY courses) 4
Area F Technology Elective (upper division)
 (4 units) .. 4

 ELECTIVES ... 11
 180

BS PSYCHOLOGY

The Psychology major offers a broad preparation in the science of psychology, with concentrations in Applied Social Psychology, Counseling and Family Psychology, and Developmental Psychology. Theoretical approaches, research techniques, laboratory experiences and internships are hallmarks of the psychology program.

Graduates often pursue careers in mental health programs, social services agencies, public health settings, education institutions, and personnel-related settings. Many majors go on to graduate work in such fields of psychology as: counseling, developmental, family, social, clinical or experimental.

CONCENTRATIONS

Applied Social Psychology. Methods and principles of social psychology relevant to occupations in business and industry, government agencies, and nonprofit organizations. Careers include research, evaluation of social intervention programs, management, consultation to business and government agencies, and social activism. In addition to the various areas of psychology, students are prepared for graduate study in human resources management, public administration, and related disciplines.

Developmental Psychology. Prepares students for careers in human service agencies, health care settings, and special needs programs. Students study the nature of human development throughout the life span and learn to use psychological and developmental principles to assess and analyze behavior and to implement behavior change. Students are prepared for graduate study in psychology and related fields.

Counseling and Family Psychology. Interdisciplinary study that provides knowledge and experience necessary for a variety of careers in family, social, educational, clinical, and other health-related service agencies in the public and private sectors. Appropriate for students who wish to work in such settings, and who desire an applied approach to understanding and modifying individual, interpersonal, and family systems. Students are prepared for graduate study in clinical psychology, counseling psychology, social work, and marriage and family counseling.

Individualized Course of Study. Permits students to pursue a course of study which meets their individual needs and interests. Courses are selected by the student with the advice and approval of the student’s academic advisor and department chair.

BS PSYCHOLOGY

- 60 units upper division
- 2.0 GPA
- GWR
- USCP

* = Satisfies General Education requirement

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 201/PSY 202 General Psychology (D4)*</td>
<td>4</td>
</tr>
<tr>
<td>PSY 252 Social Psychology</td>
<td>4</td>
</tr>
<tr>
<td>PSY/CD 254 Family Psychology</td>
<td>4</td>
</tr>
<tr>
<td>PSY 256 Developmental Psychology</td>
<td>4</td>
</tr>
<tr>
<td>PSY 305 Personality</td>
<td>4</td>
</tr>
<tr>
<td>PSY 323 The Helping Relationship</td>
<td>4</td>
</tr>
<tr>
<td>PSY 329 Research Methods in Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSY 333 Quant. Research Meth.-Behavioral Sci</td>
<td>3</td>
</tr>
<tr>
<td>PSY 340 Biopsychology (B5)*</td>
<td>4</td>
</tr>
<tr>
<td>PSY 405 Abnormal Psychology</td>
<td>4</td>
</tr>
<tr>
<td>Supervised Fieldwork and/or Research Internship</td>
<td>5,5</td>
</tr>
</tbody>
</table>

Select two courses from the following:

- PSY 448, 449, 453, 454 | 5,5 |
- PSY 457 Memory and Cognition | 4 |
- PSY 458 Learning | 4 |
- PSY 461 Senior Project Seminar | 1 |
- PSY 462 Senior Project | 3 |
- PSY electives (300-400 level) | 12 |
- Concentration or individualized course of study | 28 |

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 302 Human Genetics</td>
<td>4</td>
</tr>
<tr>
<td>STAT 217/STAT 251/STAT 252 (B1)*</td>
<td>4</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

- 72 units required; 12 units are in Major/Support.
- See page 56 for complete GE course listing.
- Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
</tbody>
</table>

Area B Science and Mathematics (12 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Mathematics/Statistics * 4 units in Support</td>
<td>4</td>
</tr>
<tr>
<td>B2 Life Science</td>
<td>4</td>
</tr>
<tr>
<td>B3 Physical Science</td>
<td>4</td>
</tr>
<tr>
<td>B4 One lab taken with either a B2 or B3 course</td>
<td>4</td>
</tr>
</tbody>
</table>

2007-2009 Cal Poly Catalog
CONCENTRATIONS OR ELECTIVES (select one)

Applied Social Psychology Concentration
- PSY 302 Behavior in Organizations ... 4
- PSY 360 Applied Social Psychology .. 4

Select 2 of the following: ... 8
- PSY 311 Environmental Psychology (4)
- PSY 317 Psychology of Stress (4)
- PSY 350 Teamwork (4) or PSY 351 Group Dynamics (4)
- PSY 352 Conflict Resolution: Violent and Non-Violent (4)
- PSY 359 Appl. Psychology Research Methods (4)
- PSY 432 Psychological Testing (4)
- PSY 465 Cross-Cultural Issues in Psychology (4)
- PSY 494 Psychology of Technological Change (4)

Advisor approved concentration electives 12

Counseling and Family Psychology Concentration
- PSY 370 Intro. Clinical & Counseling Psychology 4

Select 3 of the following: ... 12
- PSY 330 Behav. Effects Psychoactive Drugs (4)
- PSY 413 Parent-Child Relationships (4)
- PSY 432 Psychological Testing (4)
- PSY 450 Family Intervention (4)
- PSY 456 Behavioral Disorders in Children (4)
- PSY 460 Child Abuse and Neglect (4)

Advisor approved concentration electives 12

Developmental Psychology Concentration
- PSY 419 Self and Identity ... 4
- PSY 420 Social and Emotional Development 4
- PSY 421 Cognitive Development ... 4
- PSY 459 Lifespan Theories .. 4

Advisor approved concentration electives 12

Individualized Course of Study .. 28

Courses are selected by the student with the approval of the student's academic advisor and the department chair. The ICS may include a Cal Poly minor, course prerequisites for graduate study, foreign language courses, and/or a coherent group of courses including a minimum of two upper division psychology courses and no more than nine units of lower division courses.

MS IN PSYCHOLOGY

General Characteristics
The Master of Science in Psychology is a 90-quarter unit professional degree program designed to provide the state of California with highly competent master-level clinicians who are academically prepared to obtain the marriage and family therapy (MFT) license. The program places a heavy emphasis on clinical skill training and applied experience that begins early in the program and culminates with an intensive supervised internship in a community mental health setting.

Admission to the Program
In addition to the general requirements of the University, specific requirements for admission to classified graduate standing are:

- an acceptable baccalaureate degree from an institution accredited by a regional association;
- a minimum grade point average of 3.0 in the last 90 quarter units (60 semester units) attempted;
- satisfactory performance on the General Tests (Verbal, Quantitative, Analytical) of the Graduate Record Examination (GRE); the GRE Advanced Test in Psychology is not required;
- four letters of recommendation;
- autobiographical information;

Related work or volunteer experience is highly desirable as is having received professional counseling.

Prerequisites. Coursework in abnormal psychology, abnormal child psychology, personality, introductory statistics, and research methods in psychology (or related discipline). Candidates who have not completed such courses are not denied admission to the University, but are required to remove deficiencies within three quarters of admission.

Classified Standing. For admission as a classified graduate student, a student shall have a minimum grade point average of 3.0 in the last 90 quarter units (60 semester units) attempted and shall have earned an acceptable baccalaureate
degree from an institution accredited by a regional association. Additionally, the student must have satisfactorily met the professional, personal, scholastic, and other standards for graduate study, including qualifying examinations, as the appropriate university authorities may prescribe. Only those applicants who show promise of success and fitness are admitted, and only those who continue to demonstrate a satisfactory level of scholastic competence and who possess appropriate personal qualities are eligible to continue in the program.

Conditionally Classified Standing. The student may enroll in a graduate degree curriculum if in the opinion of the M.S. Program Committee the student can remedy any deficiencies by additional preparation.

Advancement to Candidacy. Advancement to master’s degree candidacy requires completion of a minimum of 30 quarter units of required courses in residence, specified in a formal program of study, with a minimum grade point average of 3.0, fulfillment of the Graduation Writing Requirement, and the formal recommendation of the M.S. Program Committee. Students must maintain a minimum GPA of 3.0 in all coursework completed subsequent to admission to the program.

PROGRAM OF STUDY
The student must maintain a grade point average of 3.0 (B) or better in all courses taken subsequent to program admission. Calculation of the grade point average includes all grades, though only the units in courses with grades of A, B, or C are counted to satisfy requirements for the degree. Required courses with a grade of D or F must be repeated.

All candidates must meet the current Graduation Writing Requirement.

Forty-five quarter units must be completed in residence. Transfer credits are allowed if acceptable for master's degree credit at the offering institution and approved by the M.S. Program Committee.

The Master of Science degree in Psychology requires a culminating experience that includes either the completion of a thesis or the supervised comprehensives. Each candidate must file a formal program of study by the end of the first quarter as a classified graduate student. The professional and personal growth of each graduate student is of major importance; consequently, candidates are encouraged to seek the experience of personal therapy. Students must be very aware of course prerequisites and check the catalog carefully to assure enrollment in required courses.

MFT LICENSING
The Master of Science in Psychology is designed to meet the educational requirements for the Marriage and Family Therapist license (MFT) in the State of California. Students are advised to acquire and read the laws governing MFT licensure from the Board of Behavioral Science Examiners, 1625 North Market Blvd., Suite S-200, Sacramento, CA 95834. See the program coordinator for the procedure required for application for this license. State documents must be filed by the applicant within 30 days of program graduation.

Grades. If a candidate for University recommendation for MFT licensure has more than one grade of C or lower among the courses to be verified for the Board of Behavioral Sciences, that form will not be approved by the Chief Academic Officer Designee of Cal Poly.

Field Experience. Field experience or internship courses represent the student’s demonstration of the clinical skills basic to marriage, family and child counseling. A student who receives a grade of NC in field experience is on probation regarding continuation in the program. A second grade of NC disqualifies the student from the program and University recommendation for the license. Further candidates may be disqualified from this program for academic-related actions judged by the M.S. Program Committee to reflect unethical, unprofessional or incompetent clinical skills.

CURRICULUM FOR MS PSYCHOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSY 450</td>
<td>Family Intervention</td>
<td>4</td>
</tr>
<tr>
<td>PSY 459</td>
<td>Lifespan Theories</td>
<td>4</td>
</tr>
<tr>
<td>PSY 504</td>
<td>Psychopharmacology</td>
<td>4</td>
</tr>
<tr>
<td>PSY 555</td>
<td>Counseling and Communication</td>
<td>4</td>
</tr>
<tr>
<td>PSY 556</td>
<td>Multicultural Counseling & Psych</td>
<td>4</td>
</tr>
<tr>
<td>PSY 558</td>
<td>Career Counseling</td>
<td>4</td>
</tr>
<tr>
<td>PSY 560</td>
<td>Individual Therapy: Theory & Appl.</td>
<td>4</td>
</tr>
<tr>
<td>PSY 564</td>
<td>Ethics and the Law: MF Therapy</td>
<td>4</td>
</tr>
<tr>
<td>PSY 565</td>
<td>Diagnosis/Treatment Psychopathology</td>
<td>4</td>
</tr>
<tr>
<td>PSY 566</td>
<td>Group Therapy: Theory and Application</td>
<td>4</td>
</tr>
<tr>
<td>PSY 569</td>
<td>Counseling Clinic Practicum</td>
<td>3,3</td>
</tr>
<tr>
<td>PSY 571</td>
<td>Family Therapy: Theory and Application</td>
<td>4</td>
</tr>
<tr>
<td>PSY 572</td>
<td>Child/Adolescent Therapy: Theory & Appl.</td>
<td>4</td>
</tr>
<tr>
<td>PSY 574</td>
<td>Psychological Assessment</td>
<td>4</td>
</tr>
<tr>
<td>PSY 575</td>
<td>Gender, Couple & Sexual Dysfunction</td>
<td>4</td>
</tr>
<tr>
<td>PSY 576</td>
<td>Traineeship: Marital & Family Counseling</td>
<td>16</td>
</tr>
<tr>
<td>PSY 585</td>
<td>Research Methods-Counseling Psychology</td>
<td>4</td>
</tr>
<tr>
<td>PSY 590</td>
<td>Research Appl. Psych. & Human Services</td>
<td>4</td>
</tr>
<tr>
<td>PSY 599</td>
<td>Thesis or approved electives and written comprehensive examination</td>
<td>4</td>
</tr>
</tbody>
</table>

1 Must register for thesis credit each quarter of advisement.
Social Sciences

Department Chair, Barbara L. Mori

Anthropology: Sociology:
Barbara E. Cook
Terry L. Jones
Patrick C. McKim
Stacey L. Rucas
James W. Coleman
Harold R. Kerbo
John A. McKinstry
Barbara L. Mori
Leo W. Pinard II
Richard A. Shaffer
Mahlia Zulfacar

ACADEMIC PROGRAMS
BS Social Sciences
Anthropology-Geography Minor
Latin American Studies Minor
Sociology Minor

The Social Sciences Department provides a broadly based, multicultural and multidisciplinary perspective on humanity, society, the environment and development. Since the BS degree program in Social Science consists of courses in anthropology, geography and sociology, students have an opportunity to examine human experience from a variety of viewpoints. In anthropology, humanity is studied from both the biological and cultural dimensions, emphasizing the diversity of our species in the present as well as the past. Geography focuses on global and regional patterns of the natural environment and human activities on the Earth, and the processes that change and link places. It bridges the physical and social sciences, and provides technical tools to assess environmental and social issues. Sociology coursework explores the nature and dynamics of human societies and the interrelationship between individuals and their social groups. The department also offers minors in Sociology, Anthropology/Geography, and Latin American Studies.

The department offers general education courses that provide an understanding of the complexity and diversity of the world's peoples and their problems. Some courses focus on American society, emphasizing issues of class, race, ethnicity and gender. Other courses have an international orientation, dealing with both the past and present diversity of the world's societies, economies, politics, religions, and physical environments. Courses are also offered that stress environmental problems and sustainability on both local and global levels.

CONCENTRATIONS
Students may select one of the following concentrations or the individualized course of study.

Criminal Justice. Prepares students for careers in law, law enforcement, corrections, detention, probation, parole and other criminal justice agencies.

Cross-Cultural Studies and International Development. Prepares students for careers in a wide range of cross-cultural contexts: international development agencies, the public health field, intercultural education, plus numerous careers overseas in private industries.

Environmental Studies and Sustainability. Provides students with a conceptual understanding of human environmental relationships and resource utilization. Current environmental issues are explained and evaluated in a global and historical context. Students learn the importance of sustainable land use practices and techniques for their successful implementation. Applied and technical skills important to assessing the environment and promoting sustainability are emphasized. This concentration prepares students for careers in resource based industries, resource recycling, environmental education, environmental monitoring and planning, and in government.

Human Ecology. Students learn about the natural environment, human behavioral and cultural systems, and the complex interrelationships between the three. Incorporating broad spatial and temporal perspectives, both non-indigenous and indigenous societies are considered with an emphasis on the latter. Students acquire knowledge and skills related to global and regional climate and physical geography, human evolution, cultural ecology, behavioral ecology, prehistoric and recent environmental change, indigenous cultures of the new world, methods for analyzing climate change and related human responses in the present and past.

Individualized Course of Study. An opportunity to pursue a course of study which meets their individual needs and interests. It consists of 28 units at the 300–400 level. The student selects the courses in consultation with advising faculty and provides a written justification for the courses and the way they constitute a cohesive, integrated study. The list of courses is a contract between the student and the Department.

Organizations. Students learn to apply the general principles of human behavior to the understanding of modern organizations. It prepares them for careers in business, government or non-governmental organizations.

Social Services. Provides the general principles of human social behavior and specialized professional courses to prepare for careers in the helping professions such as social work and counseling.

Teaching. With additional coursework as prescribed by the College of Education, students may pursue the Multiple Subject Credential (for elementary school teachers) or the Single Subject Credential for secondary school social science teachers of history, geography, political science and economics. For more information regarding teacher credential programs, please see the College of Education section.
Other Concentrations. With prior consultation and approval of the Social Sciences Department and the department offering the concentration, students may select one of the following: Pre-Law, or International Affairs (Political Science), Management, or International Business (Orfalea College of Business).

ANTHROPOLOGY-GEOGRAPHY MINOR
The minor provides the broadest possible spatial and cultural knowledge of our world. The program consists of foundation courses and directed electives that allow flexibility for students to tailor the program to meet their individual interests and goals. The objectives of the minor are to increase students awareness of: (1) cultural and ecological diversity of the earth's surface; (2) inter-relationships between peoples of varying cultures; (3) interactions of different cultures with their resource habitats and environmental alteration; and (4) methodologies and technologies used to evaluate cultures and environments. The goal is to instill a respect for cultural diversity and environmental sustainability. A minimum of 14 units must be upper division and taken at Cal Poly.

Foundation Courses... 12
 ANT 250 Biological Anthropology (B2)
 GEOG 250 Physical Geography
 Select one: ANT 201 (D3), 202 (D3), GEOG 150 (D3)

Ecological Courses (select one)... 4
 ANT 360 (D5); GEOG 301 (D5), 325, 333

Global and Regional Courses (select one).................................. 4
 ANT 320, 325 (D5), 330 (D5), 415 (USCP), 450;
 GEOG 300 (D5), 308 (D5), 340, 360, 370 (D5), 401

Special Topics (select one).. 4
 ANT 309, 310, 311, 312, 325, 344, 345 (D5), 401, 433; ENVE 324;
 GEOG 414, 415

Technical Skills (select one).. 4
 GEOG 318, 328, 440

LATIN AMERICAN STUDIES MINOR
Latin America is a region of critical importance to the United States, and California in particular. The minor provides students with a broad understanding of Latin America, as well as its cultural, political, and economic connection to California and the United States. This knowledge is increasingly important for careers in education, healthcare, social services, agriculture, law enforcement, business, and tourism. The minor has a strong interdisciplinary and international focus. It also promotes critical thinking skills and enhances the appreciation of diversity as students confront issues relevant to Latin America and US-Latin American relations.

Required courses... 28

GEOG 150 Intro to Cultural Geography (4) (D3)
HIST 340 History of Modern Latin America (4)
HUM 310 Humanities in World Cultures (subtitles:
 Culture of Latin America or of Mexico) (C4) (4)
POLS 328 Politics of Developing Areas (4)

Advisor Approved Electives... 8
A minimum of 14 units at the 300-400 level required in the minor.

SOCIODY MINOR
The minor provides students with a broad understanding of contemporary society with a focus on the analysis of social change. The objectives of the program are to increase awareness of the: (1) nature of international social, economic and political structures and their consequences; (2) social results of emerging technology; (3) changes in family life, especially the role of women; and (4) changing ethnic mix in California and the United States and its implications. Coursework includes the study of the shifting demographic patterns in society, emerging life styles, the increase in the percentage of elderly in the population, and the nature of specific subculture influences.

Required courses... 28

SOC 110 Comparative Societies (D3)......... 4
SOC 111 Social Problems ... 4
SOC 309 World Systems and Its Problems 4
SOC 315 Global Race & Ethnic Relations (D5) or
 SOC 316 American Ethnic Minorities (USCP) 4
SOC 323 Social Stratification..

Electives (At least 4 units at 300-400 level)................................. 8

BS SOCIAL SCIENCES
☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP
* = Satisfies General Education requirement

MAJOR COURSES

Required courses.. 28

ANT 201 Cultural Anthropology (D3)*........... 4
ANT 202 World Prehistory .. 4
ANT 250 Biological Anthropology (B2)*........ 4
Anthropology electives (300-400 level)............ 4
GEOG 150 Intro. to Cultural Geography 4
GEOG 250 Physical Geography...................... 4
GEOG 318 Applications in GIS 4
GEOG 333 Human Impact on the Earth 4
Geography electives (300-400 level).............. 4
SOC 110 Comparative Societies 4
SOC 111 Social Problems ..
SOC 323 Social Stratification..
SOC 355 Social Data Collection and Analysis 4
SOC 421 Social Theory..
SOC 451 Senior Project I 2
SOC 462 Senior Project II 2
Sociology electives (300-400 level).............. 4
STAT 217/221 Intro. Statistics (B1)*............ 4/5
Concentration or individualized course of study . 28

2007-2009 Cal Poly Catalog
GENERAL EDUCATION (GE)
72 units required; 12 units are in Major.
See page 56 for complete GE course listing.
Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
A1 Expository Writing .. 4
A2 Oral Communication ... 4
A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (12 units)
B1 Mathematics/Statistics * 4 units in Major 4
B2 Life Science * 4 units in Major 0
B3 Physical Science ... 4
B4 One lab taken with either a B2 or B3 course 4
Area B elective (select one course from B1-B5) ... 4

Area C Arts and Humanities (16 units)
C1 Literature ... 4
C2 Philosophy .. 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4

Area D/E Society and the Individual (16 units)
D1 The American Experience (40404) 4
D2 Political Economy ... 4
D3 Comparative Social Institutions * 4 units in Major 0
D4 Self Development (CSU Area E) 4
D5 Upper-division elective (Not ANT, GEOG, SOC courses) 4

Area F Technology Elective (upper division) (4 units) 4

ELECTIVES ... 24/25

CONCENTRATION OR INDIVIDUALIZED COURSE
OF STUDY (select one)

Criminal Justice Concentration
SOC 402 Crime and Violence 4
SOC 406 Juvenile Delinquency 4
SOC 412 Criminal Justice 4
SOC 440 Internship ... 8
Applications and Issues courses to be selected from: SOC 316, SOC 413; SOCS 440 or other approved electives (internship units not to exceed 12 in concentration) 8

Cross-Cultural Studies and International Development Concentration
ANT 360 Human Cultural Adaptation 4
GEOG 308 Global Geography 4
GEOG 370 Geography of Latin America 4
SOC 309 The World System and Its Problems [or SOC 218 or SOC 315] 4
Problems and Issues courses to be selected from 8
ANT 309, 312, 320, 325, 330, 344, 345, 401, 415; GEOG 301, 325, 328, 414; SOC 315, 350
Advisor approved elective 4

Environmental Studies and Sustainability Concentration
GEOG 301 Geography of Resource Utilization 4
GEOG 325 Climate and Humanity 4
GEOG 328 Applications in Remote Sensing 4
Advisor approved electives 16

Human Ecology Concentration
ANT 345 Human Behavioral Ecology 4
ANT 360 Human Cultural Adaptation 4
GEOG 308 Global Geography 4
GEOG 325 Climate and Humanity 4
Applications and Issues courses to be selected from: ANT 309, 310, 311, 312, 320, 325, 330, 344, 415; BIO 263, 301; CRP 211, 334; GEOG 301, 317, 340, 370, 414, 415, 440 12

Organizations Concentration
Select 20 units from the following courses: 20
SOC 310 Self, Organizations and Society (4)
SOC 350 Social Organization of Modern Japan (4)
SOC 395 Sociology of Complex Organizations (4)
SOCS 440 Internship (4)
BUS 382 Organizations, People and Technology (4)
BUS 384 Human Resource Management (4)
BUS 387 Organizational Behavior (4) or PSY 302 Behavior in Organizations (4)
Advisor approved courses 8

Social Services Concentration
SOC 301 Social Work and Social Welfare Inst 4
SOC 316 American Ethnic Minorities (USCP) 4
SOC 413 Methods of Social Work 4
SOCS 440 Internship .. 8
Advisor approved course(s) 8

Teaching Concentration
GEOG 308 Global Geography 4
GEOG 340 Geography of California 4
PSY 306 Adolescence ... 4
POLS 343 Civil Rights in America (USCP) 4
SOC 316 American Ethnic Minorities (USCP) 4
SOCS 400 Special Problems for Adv. Undergrads 1
EDUC 300 Intro. to the Teaching Profession 3
Select one course from the following: 4
ECON 304, HIST 320, 321, 322 28

Individualized Course of Study 28
300-400 level courses selected in consultation with advising faculty. A written justification for the courses selected and the way they constitute a cohesive, integrated study is required. One-half of courses selected are to be from major (major prefixes) and one-half related approved courses.
The courses offered by the Theatre and Dance Department provide students with well-balanced programs of study, integrating practical production work with classes that examine the principles, theoretical aspects, and historical development of dance and theatre.

A full range of studio dance courses are offered. They include ballet, modern, jazz, ballroom, and folk. Composition and dance production are available, as well as courses designed for future elementary and secondary teachers of dance. The department also provides general education and breadth courses in the areas of dance history and dance appreciation.

Students who major in theatre study dramatic literature, technical theatre, design, playwriting, acting, and directing. Participation in main-stage productions, as actors and members of the production staff, is a major aspect of each student's training. In addition, the department offers general education courses in introductory theatre, theatre history and literature, and specialized study of theatre such as Women's Theatre, World Drama, and Black Theatre.

The department also acts as a cultural focus for the campus and community. An annual dance concert is presented under the auspices of the Orchesis Dance Company. Every spring a student-directed dance concert is also produced. Each quarter the department presents a dramatic production. Recent productions include: One Flew Over the Cuckoo’s Nest; Guys and Dolls; Accidental Death of an Anarchist; Proof. The department also produces original works; sponsors guest lecturers and career days; and manages a program of student-directed works, the theatre program’s active alumni association, and entertainment industry field trips and internships.
B5 elective
Area B elective (select one course from B1-B5)...

Area C Arts and Humanities (8 units)
C1 Literature ... 4
C2 Philosophy .. 4
C3 Fine/Performing Arts * 4 units in Major........ 0
C4 Upper-division elective * 4 units in Major 0

Area D/E Society and the Individual (20 units)
D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective 4

Area F Technology Elective (upper division) (4 units) 4

ELECTIVES ... 28
(At least 4 units must be upper division)

DANCE MINOR
The Dance Minor consists of 30 units designed to provide the student with a well-balanced program in the art and education of dance. Admission to the minor is contingent upon a departmental interview and review. Students must have more than a 2.0 GPA.

Core courses
DANC 134 Beginning Ballroom Dance
or DANC 234 Intermediate Ballroom Dance 2
DANC 221 Dance Appreciation (C3) 4
DANC 231 Intermediate Ballet 2
DANC 232 Intermediate Modern Dance 2
DANC 321 Cultural Influences on Dance in America (C4) (USCP) .. 4
DANC 340 Dance Composition 4
DANC 381 Dance for KINE/Dance Minors 4

Elective courses to be selected from: 8
(at least 3 elective units must be upper division)
DANC 130 Pilates/Physicalmind Conditioning Method (2-6)
DANC 135 International Folk Dance (2-6)
DANC 139 Beginning Tap (2-6)
DANC 233 Intermediate Jazz (2-6)
DANC 234 Intermediate Ballroom Dance (2-6)
DANC 311 Dance in American Musical Theatre (4) (C4)
DANC 331 Advanced Ballet and Repertory (2-6)
DANC 332 Modern Dance Repertory (2-6)
DANC 345 Choreography (4-12)
DANC 346 Dance Production (4-12)
DANC 400 Special Problems for Undergrads (1-8)
DANC 470 Selected Advanced Topic (1-8)
DANC 471 Selected Advanced Laboratory (1-8)

THEATRE MINOR
The Theatre Minor is designed to provide the student with a sound foundation in the major aspects of theatre. This program assures each student of a balanced program in the major areas of theatre, and it allows for a degree of specialization in an area of the student's choice. Students should discuss their interests with department faculty.

Admission to the minor is contingent upon a departmental interview and review. Students must have more than a 2.0 GPA.

Core courses
Units
TH 210 Introduction to Theatre (C3) 4
TH 230 Stagecraft 4
TH 320 Black Theatre (C4) (USCP) 4
TH 360 Theatre in the US or TH 390 World Drama 4

Electives:
Select 4 units from the following: 4
TH 220 Acting Methods (4)
TH 227 Theatre History: Classical (4)
TH 228 Theatre History: 18th Century to Contemporary (4)
TH 240 Improvisational Theatre (4)
TH 250 Costume and Craft Construction (4)
TH 260 Voice and Diction for the Stage (4)

Select 8 units from the following 8
TH 310 Women's Theatre (4) (C4)
TH 330 Stagecraft (4)
TH 345 Rehearsal and Performance (4–8)
TH 370 Costume History (4)
TH 380 Children's Drama (4)
TH 432 Introduction to Stage Design: Costume (4)
TH 434 Intro. Stage Design: Lighting and Sound (4)

30

2007-2009 Cal Poly Catalog
Western Intellectual Tradition

Professor and Director, John C. Hampsey

Program Office
Faculty Offices North (Bldg. 47), Room 26S
805 756-2239

WESTERN INTELLECTUAL TRADITION MINOR

This minor is designed to appeal to not only majors in the College of Liberal Arts and the College of Science and Mathematics, but complements a cross section of students in major programs from throughout the university community. It focuses on the major accomplishments of the Western intellectual tradition through courses that trace the development of literary expression, philosophical, and scientific thought, and historical understanding from their beginnings to the modern world. Courses in the minor provide direct experience with significant works of the Western tradition, and also expose students to crucial ideas and themes that shaped Western thought and culture. Such exposure cultivates the intellectual skills of analysis and creative expression, and promotes an understanding of the inherent intellectual debate and diversity within the Western Intellectual Tradition.

Prerequisites. Students must have completed one year of calculus (MATH 143) or the second year of a foreign language (FR 122, GER 122 or SPAN 122). The prerequisites reflect the centrality of both mathematics and language to the Western intellectual tradition. Mathematics pervades the modern world and has a particularly close connection with the human capacity for learning. To study a language other than English is to study English as well, and promotes insight into language in general as the articulation of experience and the discourse of reason.

Courses used to satisfy the required 12 units in Group A and 16 in Group B must be chosen outside the student’s major and from at least two disciplines in each group.

Group A .. 12

Select 12 units from the following:
Great Books World Literature (C1)*:
ENGL 251, 252, 253
Western Civilization:
HIST 110 or 111
Philosophical Classics (C2)*:
PHIL 230 or 231
PHYS 211 Modern Physics I (4)
POLS 230 Basic Concepts of Political Thought (4)

Group B .. 16

Select 16 units from the following:
British Literature (C4)*:
ENGL 330, 331, 332, 333, 334, 335
Shakespeare (C4)*:
ENGL 338 or 339
American Literature (C4)*:
ENGL 340, 341, 342
History:
HIST 307 (D5)*, 436, 451, 452, 453, 454
MATH 419 Introduction to the History of Mathematics (4)
Philosophy (C4)*:
PHIL 311, 312, 313, 314, 315, 332, 421
Political Thought:
POLS 330, 337
SPAN 416 Don Quixote (4)
Women's Studies

Director, Mary A. Armstrong
The following faculty participate in the Women’s Studies program and hold academic rank in a department outside the program:

- **Art and Design**
 - Jean Wetzel

- **English**
 - Mary A. Armstrong
 - Johanna Rubba
 - Linda Halisky
 - Kathryn Rummell
 - Brenda Helmbrecht
 - Debora Schwartz
 - Carol MacCurdy
 - Catherine Waitinas

- **Ethnic Studies**
 - Victor Valle

- **History**
 - Kathleen Cairns
 - Tom Trice
 - Carolyn Stefano

- **Kinesiology**
 - Camille O’Bryant

- **Music**
 - Alyson McLamore

- **Philosophy**
 - Rachel Fern

- **Political Science**
 - Jean Williams

- **Psychology and Child Development**
 - Shawn Burn
 - Laura King
 - Patrice Engle

- **Social Sciences**
 - Barbara Mori

- **Communication Studies**
 - Lorraine Jackson
 - B. Christine Shea

- **Theatre**
 - Pamela Malkin

WOMEN'S STUDIES MINOR PROGRAM

The Women’s Studies Minor provides a thorough, interdisciplinary background in feminist thought and theory. Core (required) and elective courses interrogate the history and evolution of ideas about gender and sexual identity, and engage with these issues on multiple levels of inquiry. The Minor encourages active student learning and emphasizes sophisticated analysis of how gender and sexuality, as well as race, ethnicity and class (and other markers of identity) shape women’s and men’s lives. The program embraces the intellectual perspectives of faculty and students across the spectrum of Cal Poly’s majors and colleges.

The Minor is housed within the College of Liberal Arts, and its courses are offered by Art and Design, English, Ethnic Studies, History, Kinesiology, Music, Philosophy, Political Science, Psychology and Child Development, Social Sciences, Communication Studies, Theatre and Dance, and Women’s Studies.

Required Courses (20) Units

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 301 Intro to Women's Studies</td>
<td>(D5) (USCP)</td>
<td>4</td>
</tr>
<tr>
<td>WS 311 Women in Cross-Cultural Perspective</td>
<td>(D5)</td>
<td>4</td>
</tr>
<tr>
<td>or WS 401 Seminar in Women's Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or WS 340 Sexuality Studies</td>
<td>(D5)</td>
<td>4</td>
</tr>
</tbody>
</table>

Elective Courses

Students select 8 units from the approved list of elective courses in consultation with their Women’s Studies faculty advisor.

- COMS 421 Gender and Communication (4)
- ENGL 345 Women Writers of the Twentieth Century (C4) (USCP)
- ENGL 349 Gender in 20th Century Lit. (C4) (USCP)
- ENGL The English Department offers topics courses, such as ENGL 439 Significant British Writers: Woman as Hero or the Novel of Female Development (4), ENGL 449 Significant American Writers: African American Women Writers (4), ENGL 459 Significant World Writers: Literature and the Goddess (4), ENGL 469 Women’s Rhetoric: Definitions, Contexts, Issues (4), and ENGL 495 Language and Gender (4), which are approved as electives for the Women’s Studies minor. See a Women’s Studies advisor for topics courses.
- ES 300 Chicano/a Non-Fiction Lit. (4) (C4) (USCP)
- ES 325 African Amer. Women’s Experiences (4) (USCP)
- HIST 458 Gender & Sexuality in Modern Europe (4)
- KINE 323 Sport and Gender (D5) (USCP)
- MU 328 Women in Music (4) (C4)
- PHIL 336 Ethics, Gender and Society (C4) (USCP)
- POLS 310 Politics of Ethnicity & Gender (4) (USCP)
- POLS 457 Politics of Reproductive Policy (4)
- PSY 314 Psychology of Women (4)
- SOC 311 Sociology of Gender (4)
- SOC 351 Women in East Asia (4)
- TH 310 Women’s Theatre (4) (C4)
- WS 311 Women in Cross-Cultural Perspective (D5) (USCP)
- WS/ART 316 Women as Subject & Object in Art Hist (4)
- WS/RELS 370 Religion Gender & Society (4) (USCP)
- WS 340 Sexuality Studies (4) (D5)
- WS/ES 350 Gender, Race, Science & Technology (D5) (Area F)
- WS 400 Special Problems for Adv. Undergrads (1-4)
- WS 401 Seminar in Women’s Studies (4)
- WS/HIST 434 Amer. Women’s History to 1870 (4)
- WS/HIST 435 American Women’s History from 1870 (4) (USCP)

2007-2009 Cal Poly Catalog
Conservation and Sustainable Uses of Tropical Plants

Biology students taking a course in tropical botany stand among the roots of a large Ficus tree at the National Tropical Botanical Garden, on the island of Kauai, Hawaii. Kauai is home to some of the most unique and endangered plants in the world. In addition to topics in tropical botany and ecology, students learn about sustainable uses of native Hawaiian plants and their conservation.

The Cal Poly Center for Coastal Marine Sciences (CCMS) Pier Facility at Avila Beach

The Cal Poly CCMS pier is located 12 miles from the main campus, allowing routine class and research use of the facility. This pier enhances research and learning opportunities for a large number of students, faculty, ocean instrumentation companies, and U.S. and international visiting scientists. Research efforts are focused on long term environmental monitoring and coastal marine processes.

College of Science & Mathematics

Photos courtesy of the College of Science and Mathematics
College of

Science and Mathematics

Faculty Offices East (25), Room 229
(805) 756-2226

Philip S. Bailey, Dean
Roxy L. Peck, Associate Dean

ACADEMIC PROGRAMS

Biochemistry BS
Biological Sciences BS, MS
Biology Minor
Biotechnology Minor
Chemistry BS
Environmental Studies Minor
Geology Minor
Kinesiology BS, MS
Mathematics BS, MS, Minor
Microbiology BS, Minor
Physics BA, BS, Minor
Polymers and Coatings Science ... MS
Statistics BS, Minor

The mission of the College of Science and Mathematics is to facilitate learning, understanding, and appreciation of science and mathematics as a basis for creative endeavors, intellectual pursuits, careers, and critical consideration of issues confronting society. The College has two equally important roles: (1) to provide specialized coursework for students enrolled in the College's undergraduate, graduate and minor programs, and (2) to provide support and breadth courses in science and mathematics for all students of the university. In cooperation with the College of Education, the College also offers programs leading to teaching credentials in mathematics, physical education, and three subjects in science – biology, chemistry and physics.

The College of Science and Mathematics has a tradition and reputation for excellence in teaching and is dedicated to undergraduate instruction. The College provides a student-centered learning environment consistent with the University's "learn by doing" philosophy. In laboratories, students have access to modern instrumentation and computer technology. Classroom instruction is done in relatively small classes so that a personal approach by instructors is possible. Because of the College's large role in offering support courses to the rest of the university community, the number of faculty in each department is relatively large and favors student-faculty interaction, both inside and outside of the classroom.

STUDENT SERVICES

The College Office acts on various student-initiated petitions (change of major, curriculum substitutions, withdrawal from the university). In addition, the office has the dual function of counseling those on academic probation and notifying those undergraduate students who are eligible each quarter for the Dean's Honor List.

FACULTY ADVISING

Faculty members take an active role in academic and career advising. Students are encouraged to obtain academic advising prior to registration each quarter. The advisor-student relationship becomes important especially when the student needs a letter of reference for a potential employer or needs career advice.

ADVISING CENTER

Anya Bergman, Advisor
Kristi Weddige, Advisor
Rebecca Westmoreland, Administrative Coordinator
Science North (Bldg. 53), Room 219
(805) 756-2615
www.calpoly.edu/~cosamac

The College of Science and Mathematics Advising Center provides academic advising services to all students within the college. These services include help with scheduling classes and developing long-range academic plans, career advising; information on university policies and procedures, special programming to facilitate student success, and referral of students to other campus offices.

The Advising Center also has a library of materials for student use. This includes information on the health professions, graduate schools, job opportunities, internships, study abroad, and catalogs from junior colleges and other four-year institutions. Most student-related forms – curriculum substitutions, concentration forms, graduation evaluation forms – are also available.
HEALTH PROFESSIONS ADVISING CENTER

Kristi Weddige, Advisor
Science North (Bldg. 53), Room 219
(805) 756-2840
www.calpoly.edu/~cosamac/health

The Health Professions Advising Center provides advising to all students at Cal Poly interested in entering a health professions career. Support includes health careers advising; assistance in applying to internships, summer programs and research opportunities; and development of the application to professional school. Pre-health professions students are also advised to contact the Health Professions Peer Advisors and the members of the Health Professions Resource Committee.

APPLYING TO GRADUATE SCHOOL

College of Science and Mathematics faculty have earned advanced degrees from a wide variety of universities and are excellent sources for information and advice about graduate programs, prerequisites and application procedures. Applications to graduate programs should be made in the fall for admission to the following fall term. The Graduate Record Exam (GRE) should be taken early in the application cycle. Generally, two or more letters of reference from faculty are required. Most Ph.D. granting institutions offer financial support in the form of teaching assistantships and research fellowships.

BIOTECHNOLOGY MINOR

The Biotechnology Minor consists of a core of required courses and restricted elective courses. Advising for students in the Biotechnology Minor takes place in the student's major department, including selection of restricted electives and preparation of an agreement form listing specific courses to satisfy the requirements for the minor. The Biotechnology Minor Form is available from the Dean’s Office or the Advising Center in the College of Science and Mathematics. Final approval of the minor is by the Program Coordinator in the College of Science and Mathematics.

The minor is open to any major except Biochemistry, Microbiology, and Biological Sciences with the Molecular and Cellular Biology concentration.

Biological Sciences students preparing for the minor should take CHEM 316, 317, and 371 to fulfill the organic chemistry and biochemistry requirements in their major.

<table>
<thead>
<tr>
<th>Core courses (15-21)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 161, MCRO 221, MCRO 224, or BOT 121</td>
<td>4-5</td>
</tr>
<tr>
<td>BIO 303, BIO 351, or CHEM 373</td>
<td>3-5</td>
</tr>
<tr>
<td>CHEM 313 or CHEM 371</td>
<td>5</td>
</tr>
<tr>
<td>Laboratory elective: ASCI 403, BIO/CHEM 375, BOT 450 or CHEM 474</td>
<td>2-5</td>
</tr>
<tr>
<td>SCM 201 Orientation to Biotechnology</td>
<td>1</td>
</tr>
</tbody>
</table>

Restricted electives: 7–13

(See below for choices)

Animal Biotechnology:
ASCI 403 Applied Biotech in Animal Science (5)
ASCI 406 Applied Animal Embryology (5)
ASCI 503 Advanced Molecular Techniques in Animal Science (4)
DSCI 330 Artificial Insemination and Embryo Biotech (4)
VS 340 Immunology and Diseases (4)

Bioinformatics:
BIO/CHEM 441 Bioinformatics Applications (4)
CSC/CPE 448 Bioinformatics Algorithms (4)

Cell and Molecular Biology/Microbial Biotechnology:
BIO 452 Cell Biology (4)
BIO/CHEM 375 Molecular Biology Laboratory (2)
BIO 426 Immunology (4)
BIO 476 Gene Expression Laboratory (2)
CHEM 472 Plant Biochemistry (3)
CHEM 473 Immunochecmistry (3)
CHEM 474 Protein Techniques Laboratory (2)
CHEM 528 Nutritional Biochemistry (3)
MCRO 225 General Microbiology II (5)
MCRO 320 Emerging Infectious Diseases (3)
MCRO 402 General Virology (5)
MCRO 433 Microbial Biotechnology (3)

Engineering-related Biotechnology:
BRAE 448 Bioconversion (4)
ENVE 443 Bioenvironmental Engineering (4)
ENGR 581, 582, 583 Biochemical Engineering I, II, III (4, 4, 4)

Ethics:
PHIL 339 Biomedical Ethics (4)
SCM 451 Ethics in the Sciences (3)

Pharmaceutical Biotechnology:
CHEM 377 Chemistry of Drugs and Poisons (3)
CHEM 477 Biochemical Pharmacology (3)

Plant Biotechnology:
BOT 323 Plant Pathology (4)
BOT 324 Ornamental and Forest Pathology (4)
BOT 450 Plant Biotechnology Laboratory (2)
CHEM 472 Plant Biochemistry (3)
ENVIRONMENTAL STUDIES MINOR

Students who complete a minor in Environmental Studies will be able to:

- Analyze, explain, and evaluate environmental issues from both scientific/technical and social/political/economic perspectives.
- Integrate and synthesize knowledge from multiple disciplines.
- Explain and apply the methodologies and approaches that different disciplines bring to bear on complex problems.
- Work productively and effectively with students from other disciplines and with other points of view.
- Confront and grapple with real issues of contemporary significance.
- Gain employment or pursue further study that emphasizes interdisciplinary knowledge and skills.

More information about the Environmental Studies Minor, including Subject Area Electives appropriate for students in each of the colleges, can be obtained from the College of Science and Mathematics Dean’s Office in Building 25, Room 229C. Subject Area Electives must be approved in advance by an advisor for the minor.

*Satisfies General Education requirement.

Units

Subject Area Electives

Select one course from each subject area. Electives must be approved in advance by an advisor for the minor.

- **Biology and ecology: select one**
 - BIO 112 (B5)*, 227 (B2)*, 301, 325; FNR 306, 319 (B5)*
 - Units: 4

- **Earth science: select one**
 - ERSC 144; GEOG 250; GEOL 102 (B3)*; PHYS 313; PSC 201 (B5)*; SS 202
 - Units: 3-4

- **Energy and pollution: select one**
 - BRAE 348 (F)*; ENVE 324 (F)*, 330, 331; ME 321 (F)*; PHYS 310; PSC 320 (F)*
 - Units: 3-4

- **Social, political, and ethical issues: select one**
 - CRP 404; ECON 431; HUM 303 (C4)*; PHIL 340 (C4)*; POLS 325 (D5)*, 333 (F)*; REC 302; SOC 431; UNIV 333 (F)*
 - Units: 3-4

- **Environmental planning, management, and sustainability: select one**
 - AG/HUM/UNIV 330 (F)*; AG 360 (F)*; CRP 336; EDES 406; FNR 202; GEOG 301 (D5)*, 333; LA 321
 - Units: 3-4

- **Elective**
 - Choose one additional 300-400 level course from the above lists.
 - Units: 4

- **Capstone Course**
 - AG/BUS/EDES/ENGR/HUM/SCM/UNIV 350
 - The Global Environment (F)*
 - Units: 4

Total Units: 24-28
Biological Sciences

Department Chair, Michael A. Yoshimura
Nikki L. Adams
Frederick P. Andoli
Michael W. Black
Robert J. Brown
Raul J. Cano
Jaime S. Colomé
Alvin A. De Jong
Susan L. Elrod
Pat M. Fidopiastis
Dennis F. Frey
David V. Grady
Michael T. Hanson
Kenneth J. Hillers
Edward T. Himelblau
V. L. Holland
Peter T. Jankay
Elena L. Keeling
David J. Keil
Christopher L. Kitts
Anthony E. Knable
Charles A. Knight
Mark Kubinski
Kingston L. Leong
Mark A. Moline
Royden Nakamura
Elizabeth K. Perryman
David S. Pilliod
Matthew K. Ritter
Scott J. Steinmaus
Emily N. Taylor
Lars Tomanek
Francis X. Villablanca
Larisa K. Vredevoe
Dirk R. Walters
Archie M. Waterbury
Dean E. Wendt
Candace R. Winstead
Po Sai Marie Yeung

ACADEMIC PROGRAMS

BS, MS Biological Sciences
BS Microbiology
Biology Minor
Microbiology Minor

The department offers complete undergraduate programs leading to Bachelor of Science degrees in Biological Sciences and Microbiology, and minors in Biology and Microbiology. For qualified students, a graduate program is available leading to the Master of Science degree. In addition, courses are offered to satisfy biology requirements in other academic majors.

The Biological Sciences department teaches courses with the following prefixes: BIO (Biology), BOT (Botany), MCRO (Microbiology), and ZOO (Zoology).

The department is housed in modern facilities equipped with up-to-date instrumentation. Cal Poly's geographical setting offers unusual opportunities for studying representative plants and animals of both Northern and Southern California. Graduates of the various programs enter fields in teaching; medical laboratory technology; public health; biotechnology research and manufacturing; wildlife management; agriculture; industry; and private, state, and national park and forest services. A significant number enter graduate or professional schools for advanced study of botany, entomology, micro-biology, plant pathology, zoology, marine sciences, veterinary science, cell and molecular biology, medicine, and dentistry. The department offers courses required for preprofessional training in medicine and paramedical fields. In the teaching area, all state requirements may be met with an academic major in biological sciences leading to a credential in secondary teaching.

The department supports the concept of international education and encourages students to investigate opportunities for overseas study. For further information, see Study Abroad Programs.

Students majoring in Biological Sciences or Microbiology may take advantage of opportunities to participate in research projects. Special opportunities are available through the Environmental Biotechnology Institute (EBI) that is developing biological tools to address environmental concerns through collaborative interdisciplinary research and education; the Center for Coastal Marine Science (CCMS) that promotes and facilitates basic and applied studies of coastal marine systems for the purposes of addressing environmental concerns and fostering hands-on learning through discovery and outreach; the Undergraduate Biotechnology Laboratory (UBL), which is co-funded by Cal Poly and the National Science Foundation to provide undergraduates with hands-on experience with biotechnology; and Estero Conservation Alliance (ECA), which provides students with opportunities to work with local environmental organizations to enhance the Morro Bay National Estuary and its watershed. In addition, there are many opportunities to work with individual faculty members in areas such as conservation, genetics and biology, behavioral ecology, endangered species, infectious disease mechanisms, developmental biology, and plant pathology, genetics and physiology.

Biological Sciences Major

With the curricular concentrations described below, this degree offers students a broad education in biology from molecules to ecosystems. It is suitable for preprofessional preparation in the biomedical fields, teaching, technical competency in the concentrations offered, certification as an Associate Ecologist, Fisheries Biologist, or Associate Wildlife Biologist, or as a base for work toward post-baccalaureate studies. Students are encouraged to take BIO 100 Orientation to Biological Sciences (1 unit) their first quarter to help them learn about their chosen degree program, concentration choices, career options, study skills, and departmental opportunities.

Department Office
Fisher Science Hall (33), Room 273
(805) 756-2788
Email address: bio@calpoly.edu
www.calpoly.edu/~bio

2007-2009 Cal Poly Catalog
Curricular Concentrations

Anatomy-Physiology. Designed for students who are interested in the biological sciences with an emphasis in the structure and function of animals and especially for preprofessional students interested in the health sciences.

Ecology. The study of ecology spans a wide breadth of habitats, from terrestrial to marine, and multiple scales of organization, from microbial interactions to global processes. As such, the ecology concentration allows flexibility for students to design a program to fit their interests and career goals within this broad discipline. The concentration emphasizes collection and analysis of data to better understand the factors that affect the distribution and abundance of organisms. In many contexts, these results are used to identify and solve environmental problems. Graduates may pursue careers in education, ecological consulting, planning or coordination, habitat restoration, or environmental law. A graduate may be academically qualified for professional certification as an Associate Ecologist by the Ecological Society of America.

Field and Wildlife Biology. Field and Wildlife biologists understand the factors that affect the distribution and abundance of terrestrial plants and animals. Emphasis is on identification of organisms in the field with the intent of developing a conceptual understanding of community structure and wildlife habitats. By appropriate selection of electives, students in the Wildlife Biology emphasis are academically prepared to apply for professional certification as an Associate Wildlife Biologist by the Wildlife Society. The emphasis also includes management of both game and non-game wildlife species. The Field Biology emphasis educates students to have an intimate understanding of biological diversity, and provides students with a broader training of plants and animals and their ecological interrelationships in the field. The Field and Wildlife Biology concentration prepares students for graduate training or for professional employment in public or private agencies dealing with field inventories of biological diversity. Graduates may pursue careers as field biologists, outdoor educators, park naturalists, biological resource scientists, biology teachers, environmental consultants, or wildlife conservation biologists.

General Biology. Gives the student a broad training in biology and provides a background for various careers in biology, graduate study, or a single-subject teaching credential in biological sciences.

Marine Biology and Fisheries. Prepares students for advanced training or professional employment in public or private agencies concerned with marine sciences, freshwater ecology, fisheries biology, fisheries management, or related fields. By judicious selection of electives, the student is academically prepared to apply for professional certification as a Fisheries Biologist by the American Fisheries Society.

Molecular and Cellular Biology. Designed for students who are interested in how genes and their products work to create cellular structures, activities and interactions in organisms ranging from microbes to plants and animals. This concentration augments the diverse biological sciences curriculum with laboratory courses in nucleic acid and protein techniques, along with additional courses in bioinformatics, industrial microbiology, immunology, virology, and plant biotechnology. An understanding of molecular and cellular biology is a cornerstone for various biotechnology, medical, and pharmaceutical industries as well as for graduate or professional study in biology, microbiology, biochemistry, the health professions, or other related fields. Students electing this concentration are not eligible for the Biotechnology Minor.

Systematics and Biodiversity. Prepares students for advanced training or professional employment in public or private agencies that deal with the identification, relationships, and classification of organisms. Students develop an understanding of biological diversity, its origins, its significance, and how it is described and organized. Graduates may pursue careers in education, biotic inventories and assessment, museums, herbaria, zoos, and botanic gardens.

Microbiology Major
Cal Poly is one of the few California State University or University of California universities offering a laboratory-intensive Bachelor of Science degree in Microbiology. The Microbiology major consists of a core of freshman courses that provide students with a basic foundation in key biological principles and includes an introduction to organismal, cellular, and molecular biology, as well as evolution, ecology and biodiversity. In the sophomore year, majors are provided with a solid training in the manipulation of microorganisms, as well as an understanding of microbial cell structure and function, metabolism, genetics, and ecology.

In the junior and senior years, majors take specialized courses in medical microbiology, immunology, microbial physiology, genetics, virology, and cell biology. During this time students also choose elective courses related to individual student interests and career goals in close consultation with their faculty advisor. Such goals may include graduate school, professional studies or post-baccalaureate employment in applied areas such as industrial microbiology, food and dairy microbiology, and biotechnology, as well as in public health microbiology, epidemiology, or medical laboratory technology.

Biotechnology Minor
For information regarding the Biotechnology Minor, please see College of Science and Mathematics Section.
BIOLOGY MINOR

The purpose of the minor is to help students from other disciplines acquire increased factual and conceptual knowledge in biology, an increased understanding of scientific methods and techniques used to study biology, and an increased ability to analyze biological topics in the news or in various jobs. Biological issues are important throughout modern life and particularly relevant in many careers, including those in health-related businesses, agriculture, several engineering disciplines, city planning, teaching K-12 students, journalism, political science, psychology, and statistics. Students in more closely related majors such as biochemistry or kinesiology may also be interested in strengthening their biology background. In addition, an enhanced biology background helps students become better educated citizens regarding a variety of controversial issues (e.g., genetically-modified organisms in agriculture, human cloning, genetic discrimination, the pressures of population growth). Students may choose courses in environmental biology or in human biology and biotechnology, or may choose to take courses in several areas.

Required Courses.

Choose 1 of the following combinations of courses 12-13

BIO 160 Diversity and the History of Life (4)
BIO 161 Introduction to Cell and Molecular Biology (4) (B2&B4)
BIO 162 Intro to Organismal Form and Function (5) or BIO 263 Intro Ecology and Evolution (4)

OR

BIO 113 Animal Diversity and Ecology (4) (B2&B4)
BIO 114 Plant Diversity and Ecology (4) (B2&B4) or BOT 121 General Botany (4) (B2&B4)
BIO 115 Animal/Human Structure and Function (4) or BIO 111 General Biology (4) (B2&B4)
MCRO 221 Microbiology (4) (B2&B4)

The first combination (BIO 160, BIO 161, BIO 162 or BIO 263) is recommended and provides the prerequisites for many courses offered in the department. Other introductory courses may be substituted with approval by the Biology Minor Coordinator.

Advisor Approved Electives 15-16

Students must obtain prior approval from the Biology Minor Coordinator.

Choose a minimum of 15-16 units from 300-400 level courses in BIO, BOT, MCRO or ZOO to create a cohesive set of courses that reflect a particular focus in biology, for a total of at least 28 units. Suggested combinations of courses in particular areas of biology are available in the department.

MICROBIOLOGY MINOR

This minor is designed to give students from majors in which microbiology may be an important component increased exposure to factual information, concepts, and skills in order to provide those students a more complete understanding of the roles of microorganisms as they pertain to studies in their chosen major. The emphasis areas of the minor allow students in the allied health and related fields to expand their breadth of knowledge in microbial diseases, transmission and prevention, and immunologic responses. Students in applied fields of study such as Food and Dairy Sciences and various aspects of agriculture can gain additional information in pertinent topics such as microbial involvement in water and wastewater treatment; the role of microorganisms in recycling of nutrients and soil fertility; microbial roles in food processing, spoilage, production; and disease transmission.

Required Courses.

MCRO 221 Microbiology (B2&B4) or MCRO 224 General Microbiology (B2&B4) 4/5
MCRO 225 General Microbiology II 5
MCRO 423 Medical Microbiology (for Medical/Health Science emphasis area) or MCRO 424 Microbial Physiology (for Applied and Environmental emphasis area) 5

Emphasis area courses 11-12

Select courses from one of the following emphasis areas:

Medical/Health Sciences
MCRO 320, 342, 402, 424,
BIO 426, ZOO 425, 428

Applied and Environmental Sciences
MCRO 342, 421, 423, 433, 436, SS 422

26
BS BIOLOGICAL SCIENCES

- 60 units upper division
- GWR
- 2.0 GPA
- USCP

*M = Satisfies General Education requirement

Course sequencing: See flowcharts at www.calpoly.edu/~cosamac

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 160 Diversity & the History of Life</td>
<td>4</td>
</tr>
<tr>
<td>BIO 161 Intro to Cell & Molecular Bio (B2&B4)*</td>
<td>4</td>
</tr>
<tr>
<td>BIO 162 Intro to Organismal Form & Function</td>
<td>5</td>
</tr>
<tr>
<td>BIO 263 Introductory Ecology and Evolution</td>
<td>4</td>
</tr>
<tr>
<td>BIO 351 Principles of Genetics</td>
<td>5</td>
</tr>
<tr>
<td>BIO 414 Evolution</td>
<td>4</td>
</tr>
<tr>
<td>BIO 461 Senior Project – Research Proposal</td>
<td>2</td>
</tr>
<tr>
<td>BIO 462 Senior Project – Research</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Biological Diversity: .. 4
 - BIO 328, BIO 415, BOT 313, BOT 323, BOT 334, BOT 433, BOT 437, MCRO 224, MCRO 402, ZOO 321, ZOO 322, ZOO 323, ZOO 329, ZOO 335, ZOO 336, ZOO 341, ZOO 425

2. Ecology: BIO 318, BIO 325, BOT 326, MCRO 436 4

3. Physiology: BIO 361, BIO 434, BIO 435 4

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 127 General Chemistry (B3&B4)*</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 128, 129 General Chemistry</td>
<td>4, 4</td>
</tr>
<tr>
<td>CHEM 312 Survey of Organic Chemistry or CHEM 316 Organic Chemistry I</td>
<td>4, 4</td>
</tr>
<tr>
<td>MATH 161, 162 Calculus/Life Sciences I, II (B1)*</td>
<td>5, 4</td>
</tr>
<tr>
<td>PHYS 121, 122, 123 College Physics I, II, III...</td>
<td>4, 4, 4</td>
</tr>
<tr>
<td>STAT 218 Appl Statistics-Life Sciences (B1)*</td>
<td>4</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

- 72 units required; 16 units are in Major/Support.
- See page 56 for complete GE course listing.
- Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
</tbody>
</table>

Area B Science and Mathematics (no add'l units req'd)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Mathematics/Statistics</td>
<td>8 units in Support... 0</td>
</tr>
<tr>
<td>B2 Life Science</td>
<td>4 units in Major... 0</td>
</tr>
<tr>
<td>B3 Physical Science</td>
<td>4 units in Support... 0</td>
</tr>
<tr>
<td>B4 One lab taken with either a B2 or B3 course</td>
<td>0</td>
</tr>
</tbody>
</table>

Area C Arts and Humanities (20 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Literature</td>
<td>4</td>
</tr>
<tr>
<td>C2 Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>C3 Fine/Performing Arts</td>
<td>4</td>
</tr>
<tr>
<td>C4 Upper-division elective</td>
<td>4</td>
</tr>
<tr>
<td>Area C elective (Choose one course from C1-C4)</td>
<td>4</td>
</tr>
</tbody>
</table>

Area D/E Society and the Individual (20 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 The American Experience (40404)</td>
<td>4</td>
</tr>
<tr>
<td>D2 Political Economy</td>
<td>4</td>
</tr>
<tr>
<td>D3 Comparative Social Institutions</td>
<td>4</td>
</tr>
</tbody>
</table>

- D4 Self Development (CSU Area E) 4
- D5 Upper-division elective 4
- Area F Technology Elective (upper division)(4 units) 4

ELECTIVES

<table>
<thead>
<tr>
<th>Electives</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives</td>
<td>56</td>
</tr>
</tbody>
</table>

Concentrations (select one)

Anatomy and Physiology Concentration

BIO 432 Vertebrate/Human Anatomy & Phys I 5
BIO 433 Vertebrate/Human Anatomy & Phys II 5
BIO 452 Cell Biology 4
CHEM 371 Biochemical Principles or CHEM 313 Survey of Biochemistry and Biotechnology 5
Advisor approved electives 20

Ecology Concentration

Ecology (Choose 4 courses) 15-17
BIO 318, BIO 328, BIO 415, BIO 434, BIO 444, BOT 326, MCRO 436, ZOO 423, ZOO 437
Methodology (Choose 3 courses) 10-12
BIO/CHEM 375, BIO 419, FNR/GEOG/LA 318, FNR 416, STAT 313, STAT 419
Advisor approved electives 10-14

Field and Wildlife Biology Concentration

BOT 313 Taxonomy of Vascular Plants 4
BOT 433 Field Botany 4
ZOO 321 Mammalogy 4
ZOO 323 Ornithology 4
Emphasis Area (choose one) 23

Field Biology Emphasis

- ZOO 335 General Entomology (4)
- ZOO 341 Herpetology (4)
- ZOO 437 Animal Behavior (4)
- BIO 318/ZOO 322/ZOO 423 (4)
- Advisor approved electives (7)

Wildlife Biology Emphasis

- BIO 327 Wildlife Biology Methods (5)
- BIO 427 Wildlife Management (4)
- BIO 444 Population Ecology (3)
- FNR 416 Environmental Impact Analysis/Mgmt (4)
- FNR 203 Resource Law Enforcement (3)
- STAT 313 Applied Experimental Design & Regression Models (4)

1. Students in the Molecular and Cellular Biology concentration should take MCRO 224 to fulfill this requirement.
2. Students in the Ecology concentration should take BIO 325 to fulfill this Ecology requirement.
3. Students in the Ecology concentration should take BIO 435 to fulfill this Physiology requirement.
4. Students in the Molecular and Cellular Biology concentration should take CHEM 316 to fulfill this requirement.
5. Guidelines are available for advisor approved electives in most concentrations. See your faculty advisor for assistance.
General Biology Concentration

BIO 452 Cell Biology .. 4
CHEM 313 Survey of Biochem and Biotech 5
Anatomy/Physiology ... 4
BIO 432, BIO 433, BIO 434, BIO 435, BIO 436, BOT 335, MCRO 424, ZOO 422

Botany .. 4
BOT 313, BOT 323, BOT 334, BOT 335, BOT 433, BOT 437

Microbiology ... 3-5
BIO 426, MCRO 224, MCRO 225, MCRO 320, MCRO 342, MCRO 402, MCRO 421, MCRO 433, MCRO 436, ZOO 428

Zoology ... 4
BIO 318, BIO 328, ZOO 321, ZOO 322, ZOO 323, ZOO 329, ZOO 335, ZOO 336, ZOO 341, ZOO 425

Advisor approved electives .. 13-15

Marine Biology and Fisheries Concentration

BIO 328 Marine Biology .. 5
BIO/CHEM 375 Molecular Biology Laboratory 2
BOT 437 Phycology ... 4
STAT 313 Applied Experimental Design and Regression Models ... 4
ZOO 322 Ichthyology .. 4
ZOO 336 Invertebrate Zoology 4

Advisor approved electives .. 16

Molecular and Cellular Biology Concentration

BIO/CHEM 375 Molecular Biology Laboratory 2
BIO 452 Cell Biology .. 4
CHEM 317 Organic Chemistry II 5
CHEM 371 Biochemistry ... 5
CHEM 372 Metabolism .. 3
CHEM 474 Protein Techniques Laboratory or
BIO/CHEM 476 Gene Expression Laboratory 2

Choose 8 units from the following 8
BIO 405, BIO/CHEM 441, BOT 450, CHEM 473 or BIO 426, MCRO 402, MCRO 433, SCM 201

Advisor approved electives .. 10

Systematics and Biodiversity Concentration

BIO 343 Principles of Systematic Biology 4
BIO/CHEM 375 Molecular Biology Laboratory 2
BIO 415 Biogeography .. 4
BIO/CHEM 441 Bioinformatics Applications 4
STAT 313 Applied Experimental Design and Regression Models ... 4

STAT 419 Applied Multivariate Statistics 4

Advisor approved electives .. 17

BS MICROBIOLOGY

☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP

* = Satisfies General Education requirement

Course sequencing: See flowcharts at www.calpoly.edu/cosamac

MAJOR COURSES

BIO 160 Diversity & the History of Life 4
BIO 161 Introduction to Cell & Molecular Biology
(B2&B4)* .. 4
BIO 263 Introductory Ecology and Evolution 4
BIO 351 Principles of Genetics 5
BIO 426 Immunology .. 4
BIO 452 Cell Biology .. 4
MCRO 224 General Microbiology I 5
MCRO 225 General Microbiology II 5
MCRO 402 General Virology 4
MCRO 423 Medical Microbiology 5
MCRO 424 Microbial Physiology 5
MCRO 461 Senior Project - Research Proposal or
BIO 462 Senior Project - Research 2

Advisor approved electives .. 18

3 SUPPORT COURSES

CHEM 127 General Chemistry (B3&B4)* 4
CHEM 128, 129 General Chemistry I, II 4, 4
CHEM 316 Organic Chemistry I 5
CHEM 317 Organic Chemistry II 5
CHEM 371 Biochemical Principles 5
MATH 161 Calculus for the Life Sciences I (B1)* 4
PHYS 121, 122, 123 College Physics I, II, III 4, 4, 4
STAT 218 Applied Statistics-Life Sciences (B1)* 4

GENERAL EDUCATION (GE)

72 units required; 16 units are in Major/Support.

See page 56 for complete GE course listing.

Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

A1 Expository Writing ... 4
A2 Oral Communication ... 4
A3 Reasoning, Argumentation, and Writing 4

Area B Science and Mathematics (no add'l units req'd)

B1 Mathematics/Statistics * 8 units in Support 0
B2 Life Science * 4 units in Major 0

1 Students planning to earn a single subject credential for teaching Biology should take BIO 432 and MCRO 320 and contact the credential advisor to identify other required courses.

2 Guidelines are available for advisor approved electives in most concentrations. See your faculty advisor for assistance.

3 Students planning to attend graduate or professional schools are strongly advised to meet with their advisors to ensure that they meet necessary prerequisites for entry into these programs. Additional courses in math and chemistry may be necessary.

4 CHEM 313 may be substituted, with advisor approval, for students not planning to pursue graduate school, or a health professions career.
B3 Physical Science * 4 units in Support.............. 0
B4 One lab taken with either a B2 or B3 course

* Area C Arts and Humanities (20 units) *
C1 Literature .. 4
C2 Philosophy .. 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4
Area C elective (Choose one course from C1-C4) 4

Area D/E Society and the Individual (20 units)
D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area E) 4
D5 Upper-division elective 4

Area F Technology Elective (upper division) (4 units) 4

ELECTIVES .. 8

56

180

MASTER OF SCIENCE DEGREE IN BIOLOGICAL SCIENCES

General Characteristics
This degree offers a broad background in the biological sciences. The program is designed to offer sufficient breadth and depth to strengthen the student's academic understanding and improve competence for: (a) many types of biological work that require advanced training beyond the bachelor's degree; (b) employment in industry and/or civil service; (c) teaching biological sciences at the elementary, secondary, and community college levels; (d) independent research in the field of specialization; or (e) continued graduate work at other institutions.

Prerequisites
Admission as a conditionally classified or classified student in this program requires a minimum grade point average of 3.0 in the last 90 quarter units attempted, satisfactory scores on the Graduate Record Examination, and letters of recommendation from persons knowing your academic potential. Advancement to candidacy requires a satisfactory background in biology, and completion of 12 units of courses specified in an informal study plan with a minimum grade point average of 3.0.

Information pertaining to specific departmental requirements for admission to graduate standing—classified or graduate standing—conditionally classified may be obtained from the Director of the Graduate and Research Committee (Graduate Coordinator) of the Biological Sciences Department.

Program of Study
The formal program of study for the degree must include 45 units of committee-approved graduate work, at least 30 units of which must be at the 500 level. At least 18 units of the formal program of study must be completed after the student has been advanced to candidacy. A grade point average of 3.0 or better is required in all courses taken as a graduate student. Two approaches to the M.S. degree in Biological Sciences are possible. The requirements for these two approaches are listed below.

CURRICULUM FOR MS BIOLOGICAL SCIENCES

<table>
<thead>
<tr>
<th>Thesis Plan</th>
<th>Coursework Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

All 45 units must be acceptable for graduate credit and in accordance with Graduate Guidelines of the Biological Sciences Department. For further information, students should communicate with the Chair of the Biological Sciences Department or with the Director of the Graduate and Research Committee.
Department Chair, Christina A. Bailey

Philip S. Bailey Dane R. Jones
Seth Bush Hima Joshi
Jennifer Carroll Eric J. Kantorowski
Albert C. Censullo David L. Keeling
Robert S. Cichowski Kevin B. Kingsbury
Leland S. Endres Corinne Lehr
Raymond Fernando Lisa M. Lindert
Thomas G. Frey John F. Marlier
John W. F. Goers Grace Ann Neff
Anya Goodman Margaret (Peggy) S. Rice
Derek E. Gragson Rod W. Schoonover
John P. Hagen Michael G. Silvestri
Chad E. Immoos Jan W. Simek
Ralph A. Jacobson Nanine A. Van Draanen

ACADEMIC PROGRAMS

BS Biochemistry
BS Chemistry
MS Polymers and Coatings Science

The Chemistry and Biochemistry Department has two roles in the university: to provide professional education for students who are majors in chemistry and biochemistry and who plan careers in the natural sciences and related fields, and to provide instruction in the fundamentals of chemistry to students with majors in fields related to chemistry, especially in the life sciences, agriculture, and engineering.

The Chemistry and Biochemistry Department provides curricula leading to the Bachelor of Science in Chemistry, the Bachelor of Science in Biochemistry, the Bachelor of Science in Biochemistry with a concentration in Polymers and Coatings, the Bachelor of Science in Biochemistry with a concentration in Molecular Biology, and the Master of Science in Polymers and Coatings Science. The BS in Chemistry and the concentration in Polymers and Coatings are certified by the American Chemical Society. An option in Chemical Education designed for aspiring teachers in secondary schools is also available.

The baccalaureate curricula in biochemistry and chemistry include required courses in general chemistry, analytical chemistry, inorganic chemistry, organic chemistry, biochemistry and physical chemistry. Advanced undergraduates choose electives from courses that cover a broad range of specialized topics, such as environmental chemistry, geochemistry, glass chemistry, immunochemistry, nutritional biochemistry, advanced organic and physical chemistry, pharmacology, and polymer chemistry. The curricula emphasize laboratory work, especially current techniques and the use of instrumentation in all fields of chemistry. The programs provide opportunities for independent research under faculty guidance, including a requirement for a senior project. A senior project may consist of pure or applied research in chemistry or biochemistry, or it may involve interdisciplinary work with another field such as art, biology, civil or environmental engineering, psychology, or soil science. Under the department's cooperative education program, bachelor's degree candidates may work full-time in industry or government for one or two quarters, for pay and academic credit.

Career opportunities for chemists are increasing. There are openings in traditional areas such as clinical chemistry, environmental analysis, the health professions, industrial research and production, pharmacology, toxicology, product quality control, and teaching at the secondary or university level. Newer opportunities lie in related areas such as library science, market research, patent law, and safety engineering. There is a rapidly increasing number of career opportunities in the expanding fields of biotechnology and polymers and coatings. Students completing a concentration in either molecular biology or in polymers and coatings are prepared for direct entry into these careers, as well as for postgraduate education in a professional specialty.

Students interested in teaching at the secondary level can follow an accelerated path that leads to a bachelor’s degree in either chemistry or biochemistry and a teaching credential. Interested students should contact the single subject teaching credential advisor in the Department of Chemistry and Biochemistry for more information.

Curricular Concentrations

Polymers and Coatings. Includes the required courses in the chemistry or biochemistry curriculum and electives in the area of polymers, coatings, surface chemistry and materials engineering. The concentration gives students the background and practical experience to move into a rewarding career in a wide range of fields including textiles, paints and varnishes, rubber, plastics, adhesives and resins.

Molecular Biology. Offers courses which investigate the chemical nature of biological molecules related to genes and their expressed products. It augments the already
strong biochemistry curriculum by emphasizing laboratory techniques in nucleic acid and protein manipulation along with elective courses exploring the fields of bioinformatics, industrial microbiology, pharmacology, and cell biology. Molecular biology is essential for modern applications of biotechnology in the agricultural, pharmaceutical, and medical industries and in pursuing research in all biochemistry related disciplines. It not only prepares students for advanced degrees in biology, microbiology, and biochemistry, but also for the large number of jobs in the biotechnology industry in California.

Biotechnology Minor
For information regarding the Biotechnology minor, see College of Science and Mathematics section.

BS CHEMISTRY
- 60 units upper division
- 2.0 GPA
- * = Satisfies General Education requirement
- Course sequencing: See flowcharts at www.calpoly.edu/~cosamac

MAJOR COURSES
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 127</td>
<td>General Chemistry (B3 & B4)*</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 128</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 129</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 313</td>
<td>Survey of Biochemistry and Biotechnology or CHEM 371 Biochemical Principles</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 316</td>
<td>Organic Chemistry I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 317</td>
<td>Organic Chemistry II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 318</td>
<td>Organic Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 319</td>
<td>Advanced Organic Chemistry Lab</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 331</td>
<td>Quantitative Analysis</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 351</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 352</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 353</td>
<td>Physical Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 354</td>
<td>Physical Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 357</td>
<td>Physical Chemistry III Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 439</td>
<td>Instrumental Analysis</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 459</td>
<td>Undergraduate Seminar (2) or SCM 491 Student Teacher Seminar (1) (1)</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 461</td>
<td>Senior Project Report</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 481</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 484</td>
<td>Inorganic Chemistry Lab</td>
<td>2</td>
</tr>
</tbody>
</table>

Advanced advisor approved chemistry electives to complete major, or concentration: 15-18

SUPPORT COURSES
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 161</td>
<td>Intro to Cell & Molecular Biology (B2)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 141</td>
<td>Calculus I, II, III (B1)*</td>
<td>4,4,4</td>
</tr>
<tr>
<td>MATH 241</td>
<td>Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td>MATH 245</td>
<td>or 200-400 level STAT or CSC course</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 141</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 133</td>
<td>General Physics III</td>
<td>4</td>
</tr>
<tr>
<td>Physics elective (200-level and above)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)
- 72 units required; 16 units are in Major/Support.
- See page 56 for complete GE course listing.
- Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
- A1 Expository Writing
- A2 Oral Communication
- A3 Reasoning, Argumentation, and Writing

Area B Science and Mathematics (no additional units are required)
- B1 Mathematics/Statistics *
- B2 Life Science *
- B3 Physical Science *
- B4 One lab taken with either a B2 or B3 course

Area C Arts and Humanities (20 units)
- C1 Literature
- C2 Philosophy
- C3 Fine/Performing Arts
- C4 Upper-division elective
- Area C elective (Choose one course from C1-C4)

Area D/E Society and the Individual (20 units)
- D1 The American Experience
- D2 Political Economy
- D3 Comparative Social Institutions
- D4 Self Development (CSU Area E)
- D5 Upper-division elective

Area F Technology Elective (upper division)
- (4 units)

ELECTIVES
- 5-8

56

180

Polymers and Coatings Concentration
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 444</td>
<td>Polymers and Coatings I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 445</td>
<td>Polymers and Coatings II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 446</td>
<td>Surface Chemistry of Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 447</td>
<td>Polymers and Coatings Lab I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 448</td>
<td>Polymers and Coatings Lab II</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 449</td>
<td>Internship in Polymers and Coatings</td>
<td>2</td>
</tr>
<tr>
<td>MATE 210</td>
<td>Materials Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

18

1. Students should take CHEM 331 during their second year.
2. SCM 491 only for students pursuing Single-Subject Teaching Credential.
3. See department for advanced electives list.
BS BIOCHEMISTRY

- 60 units upper division
- GWR
- 2.0 GPA
- USCP

* = Satisfies General Education requirement

Course sequencing: See flowcharts at www.calpoly.edu/cosamac

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 127</td>
<td>General Chemistry (B3 & B4)*</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 128</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 129</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 316</td>
<td>Organic Chemistry I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 317</td>
<td>Organic Chemistry II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 318</td>
<td>Organic Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 319</td>
<td>Advanced Organic Chemistry Lab</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 331</td>
<td>Quantitative Analysis</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 351</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 352</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 353</td>
<td>Physical Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 354</td>
<td>Physical Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 371</td>
<td>Biochemical Principles</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 372</td>
<td>Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 373</td>
<td>Molecular Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Select one course from:
 - CHEM 375 Molecular Biology Laboratory, or
 - CHEM 474 Protein Techniques Laboratory

2. Select one course from:
 - CHEM 375, 4391, 4742; BIO 361, 476

3. CHEM 459 Undergraduate Seminar (2) or SCM 491 Student Teacher Seminar (1)(1)(1)

4. CHEM 461 Senior Project Report

5. Advanced advisor approved chemistry electives to complete major, or concentration | 12-23 |

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 161</td>
<td>Intro to Cell & Molecular Biology (B2)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 141, 142, 143 Calculus I, II, III (B1)*</td>
<td>4,4,4</td>
<td></td>
</tr>
<tr>
<td>PHYS 121, 122, 123 College Physics or PHYS 141, 132, 133 General Physics</td>
<td>4,4,4</td>
<td></td>
</tr>
<tr>
<td>MCRO 224</td>
<td>General Microbiology I or BIO 452 Cell Biology</td>
<td>4-5</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

- 72 units required; 16 units are in Major/Support.
- See page 36 for complete GE course listing.
- Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2</td>
<td>Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3</td>
<td>Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
</tbody>
</table>

Area B Science and Mathematics (no add'l units req'd)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Mathematics/Statistics * 8 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B2</td>
<td>Life Science * 4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B3</td>
<td>Physical Science * 4 units in Major</td>
<td>0</td>
</tr>
<tr>
<td>B4</td>
<td>One lab taken with either a B2 or B3 course</td>
<td></td>
</tr>
</tbody>
</table>

Area C Arts and Humanities (20 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Literature</td>
<td>4</td>
</tr>
<tr>
<td>C2</td>
<td>Philosophy</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>Fine/Performing Arts</td>
<td>4</td>
</tr>
<tr>
<td>C4</td>
<td>Upper-division elective</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>Upper-division elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Area D/E Society and the Individual (20 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>The American Experience (40404)</td>
<td>4</td>
</tr>
<tr>
<td>D2</td>
<td>Political Economy</td>
<td>4</td>
</tr>
<tr>
<td>D3</td>
<td>Comparative Social Institutions</td>
<td>4</td>
</tr>
<tr>
<td>D4</td>
<td>Self Development (CSU Area E)</td>
<td>4</td>
</tr>
<tr>
<td>D5</td>
<td>Upper-division elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Area F Technology Elective (upper division) (4 units)

ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3 Fine/Performing Arts</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C4 Upper-division elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Area C elective (Choose one course from C1-C4)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area D/E Society and the Individual (20 units)</td>
<td></td>
<td>56</td>
</tr>
</tbody>
</table>

Concentrations (select one)

Molecular Biology Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 377</td>
<td>Drugs and Poisons</td>
<td>3</td>
</tr>
<tr>
<td>BIO/CHEM 441</td>
<td>Bioinformatics Applications</td>
<td>4</td>
</tr>
<tr>
<td>BIO 452</td>
<td>Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>SCM 201</td>
<td>Orientation to Biotechnology</td>
<td>1</td>
</tr>
<tr>
<td>Advisor approved electives</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

4. Select at least 11 units from the following:
 - CHEM 472 Plant Biochemistry (3)
 - CHEM 473 Immunochemistry (3)
 - CHEM 477 Biochemical Pharmacology (3)
 - BOT 450 Plant Biotechnology (2)
 - MCRO 225 General Microbiology II (5)
 - MCRO 320 Emerging Infectious Diseases (3)
 - MCRO 402 Virology (4)
 - MCRO 424 Microbial Physiology (5)
 - MCRO 433 Microbial Technology (3)
 - MCRO 436 Environmental Microbiology (4)
 - CPE/CSC 448 Bioinformatics Algorithms (4)
 - ENGR 581/582/583 Biochemical Engineering (4)(4)(4)
 - SCM 451 Ethics in the Sciences (3)

23

Polymers and Coatings Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 444</td>
<td>Polymers and Coatings I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 445</td>
<td>Polymers and Coatings II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 446</td>
<td>Surface Chemistry of Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 447</td>
<td>Polymers and Coatings Lab I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 448</td>
<td>Polymers and Coatings Lab II</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 449</td>
<td>Internship in Polymers and Coatings</td>
<td>2</td>
</tr>
<tr>
<td>MATE 210</td>
<td>Materials Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

18

1. Students should take CHEM 331 as soon as possible after completing CHEM 129.
2. Required for Molecular Biology concentration.
3. Excess units count as approved advanced Biochemistry electives.
4. SCM 491 only for students pursuing Single-Subject Teaching Credential.
5. See department for advanced electives list for Biochemistry major.
MASTER OF SCIENCE DEGREE IN POLYMERS AND COATINGS SCIENCE

General Characteristics
A pilot program, the MS in Polymers and Coatings Science offers a unique, focused program closely tied to industry. Students gain academic preparation in polymers and coatings science through lecture and laboratory courses, then undertake a rigorous industrial internship. While on the internship students specialize and develop advanced skills through directed study in areas related to their internship work. The program is designed to prepare students for challenging careers in the polymers and coatings industry. The program also provides excellent background for doctoral studies in areas related to polymer and coatings science. This program is unique in California and relies on the close relationship between the department and the polymers and coatings industry for its success.

Prerequisites
Students entering the program must have a bachelor's degree from an accredited institution with a minimum grade point average of 2.5 in the last 90 quarter units attempted. Applicants with majors in chemistry, biochemistry, materials engineering, chemical engineering or related fields generally meet the prerequisites for courses in the program. Applicants with degrees in other areas may need to take supplemental courses in organic and physical chemistry and can be admitted conditionally. For information concerning additional departmental requirements, the student should contact the Graduate Advisor in the Chemistry and Biochemistry Department.

Advancement to candidacy requires completion of 12 units of an approved study plan with a minimum grade point average of 3.0.

Blended BS + MS Program in Chemistry or Biochemistry (BS) and Polymers and Coatings Science (MS)
The blended program provides motivated students with an accelerated route to the MS in Polymers and Coatings Science, with simultaneous conferring of both bachelor's and master's degrees. Students in the blended program are provided with a seamless process whereby they can progress from undergraduate to graduate status.

Eligibility
Students majoring in chemistry or biochemistry may be eligible to pursue the blended program toward the MS in Polymers and Coatings Science. Participation in the program is based on prior academic performance and other measures of professional promise, with a minimum GPA of 2.5 required (3.0 recommended). Students are generally selected for the blended program by a faculty committee during the junior year. Please see the catalog description on Blended Programs for eligibility criteria.

Students may begin taking the required graduate courses in either their junior or senior year depending on their preparation. Students may not pursue both the Concentration in Polymers and Coatings and the MS in Polymers and Coatings Science. Students pursuing the concentration take the 400-level polymers and coatings courses while those pursuing the MS degree take the 500-level polymers and coatings courses. Students cannot receive credit for both 400 and 500-level courses in the same topic.

Students in the blended program are eligible to apply for the Graduate Internship upon completion of the required graduate-level chemistry courses.

units

Required courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 544</td>
<td>Polymer Physical Chemistry and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 545</td>
<td>Polymer Synthesis and Mechanisms</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 547</td>
<td>Polymer Characterization and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 548</td>
<td>Polymer Synthesis Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 550</td>
<td>Coatings Formulation Principles</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 551</td>
<td>Coatings Formulation Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 570</td>
<td>Directed Graduate Study</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 598</td>
<td>Graduate Internship</td>
<td>3</td>
</tr>
</tbody>
</table>

Restricted Electives
12 units approved electives (400-500 level) chosen from: CHEM, MATE, Bioengineering, STAT 512 or STAT 513.

Examples of courses satisfying the elective requirement include:
- CHEM 405 Advanced Physical Chemistry
- CHEM 420 Advanced Organic Chemistry
- CHEM 439 Instrumental Analysis
- CHEM 446 Surface Chemistry of Materials
- CHEM 470 Selected Advanced Topics
- MATE 530 Biomaterials
- MATE 560 Thin Film Processing
- ENGR 450 Special Topics in Bioengineering
- IME 556 Technological Project Management

Students may take other approved management course satisfactorily complete the comprehensive examinations.
Kinesiology

Department Chair, Gerald E. DeMers
Robert Clark Camille P. O'Bryant
Steven C. Davis Andrew J. Proctor
Kellie Green Hall Susan M. Puhl
Joanne Hunter Michael A. Sutliff
Kristine Z. Jankovitz J. Kevin Taylor
Raymond Nakamura

ACADEMIC PROGRAMS

BS, MS Kinesiology

The Kinesiology Department offers undergraduate and graduate degree programs in kinesiology. The department also contributes to the general education and elective needs of all students by providing health education, kinesiology, physical education and first aid/CPR courses. Due to its ideal geographical location, the University has become a center for workshops held by many of the state's health and physical education organizations.

Kinesiology is housed in a large complex that was opened in 1993. The Kinesiology building provides state of the art laboratory and office space for the department. The Kinesiology Department also has shared interest in the Recreation Center that provides access to quality activity facilities.

The BS in Kinesiology is a broad based program offering students curricular choices for a wide range of career opportunities. Concentrations include teaching, and exercise science and health promotion. Students also have the option of choosing an individualized course of study.

CURRICULAR CONCENTRATIONS

Exercise Science and Health Promotion. Incorporates the scientific and clinical knowledge of exercise science, health education and nutrition as applied in preventive, clinical and commercial health promotion settings. Graduates work in a wide range of enterprises that include worksite health promotion, clinical exercise physiology, cardiac rehabilitation, commercial fitness, public, private and nonprofit health agencies. The concentration provides three tracks that prepares students to take external national certification examinations.

Teaching. Prepares students to meet subject matter competency required for application to the Single Subject Credential program in physical education. In order to meet subject matter competency and to apply for the credential program, students must take specific courses. Please see an advisor for specific requirements.

Individualized Course of Study. Students may choose coursework related to a specific career goal in areas such as occupational therapy, nursing, or physician’s assistant. This individualized course of study (ICS) requires 38 advisor-approved units in addition to other required courses. Only 12 units of previous coursework may be included in an ICS program. Those individuals who come to Cal Poly intending to apply to graduate school in one of the other health profession areas may need to take extra courses in addition to their specific major and concentration.

BS KINESIOLOGY

- 60 units upper division
- 2.0 GPA
- GWR
- USCP

* = Satisfies General Education requirement
Course sequencing: See flowcharts at www.calpoly.edu/~cosamac

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINE 208</td>
<td>KINE 229 Professional Activity</td>
<td>6</td>
</tr>
<tr>
<td>KINE 250</td>
<td>Health Education (D4)* or KINE 255 Personal Health: A Multicultural Approach (D4)* (USCP)</td>
<td>4</td>
</tr>
<tr>
<td>KINE 270</td>
<td>Orientation to Kinesiology</td>
<td>4</td>
</tr>
<tr>
<td>KINE 280</td>
<td>First Aid/CPR</td>
<td>1</td>
</tr>
<tr>
<td>KINE 301</td>
<td>Functional Muscle Anatomy</td>
<td>1</td>
</tr>
<tr>
<td>KINE 302</td>
<td>Biomechanics</td>
<td>4</td>
</tr>
<tr>
<td>KINE 303</td>
<td>Physiology of Exercise</td>
<td>4</td>
</tr>
<tr>
<td>KINE 307</td>
<td>Adapted Physical Activity</td>
<td>4</td>
</tr>
<tr>
<td>KINE 402</td>
<td>Motor Learning and Control</td>
<td>4</td>
</tr>
<tr>
<td>KINE 411</td>
<td>Psycho/Social Aspects of Physical Act</td>
<td>4</td>
</tr>
<tr>
<td>KINE 451</td>
<td>Nutrition for Fitness and Sport</td>
<td>5</td>
</tr>
<tr>
<td>KINE 461</td>
<td>Senior Project (1) or KINE 462 Honors Senior Project (2-4)</td>
<td>1-4</td>
</tr>
<tr>
<td>MATH 118</td>
<td>Pre-Calculus Algebra (B1)* (MATH 116 and MATH 117 are equivalent)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 121</td>
<td>College Physics 1 (B3 & B4)*</td>
<td>4</td>
</tr>
</tbody>
</table>

1 Students following the Exercise Science and Health Promotion Concentration are to take KINE 211, KINE 219, KINE 220, KINE 227 and KINE 228, and one additional unit from KINE 208-229.
STAT 217 Intro to Statistical Concepts and Methods or STAT 218 Applied Statistics-Life Sciences (B1)* .. 4
ZOO 331, 332 Human Anatomy & Physiol I, II (transfer equivalent ZOO 231, 232) 5,5
Concentration courses (see below) (B2)* 48-59

112-126

GENERAL EDUCATION (GE)
72 units required; 20 units are in Major/Support.
→See page 56 for complete GE course listing.
→Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)
A1 Expository Writing 4
A2 Oral Communication 4
A3 Reasoning, Argumentation, and Writing........ 4

Area B Science and Mathematics (no add'l units req'd)
B1 Mathematics/Statistics * 8 in Major 0
B2 Life Science * 4 in Major 0
B3 Physical Science * 4 in Major 0
B4 One lab taken with either a B2 or B3 course

Area C Arts and Humanities (20 units)
C1 Literature ... 4
C2 Philosophy ... 4
C3 Fine/Performing Arts 4
C4 Upper-division elective 4
Area C elective (Choose one course from C1-C4) 4

Area D/E Society and the Individual (16 units)
D1 The American Experience (40404) 4
D2 Political Economy 4
D3 Comparative Social Institutions 4
D4 Self Development (CSU Area D) * 4 in Major 0
D5 Upper-division elective 4

Area F Technology Elective (upper division) (4 units)
... 4

Area D/E Technology Elective (upper division) (4 units) .. 52

ELECTIVES .. 2-16

180

CONCENTRATIONS (select one)
1 Exercise Science and Health Promotion Concentration

Required courses (27)
KINE 218 Aquatics 2
KINE 304 Pathophysiology and Exercise 3
KINE 319 Measurement and Evaluation in Kine 4
KINE 401 Managing Kinesiology Programs 3
KINE 408 Exercise and Health Promotion for Senior Adults 4
KINE 434 Planning Health Promotion Programs: Theory and Practice 4
KINE 463 Clinical and Worksite Health Promotion Field Work 3
BIO 111/BIO 115/BIO 161 (B2/B4)* 4

Students select one of the following tracks 26-32

1 Students following the Exercise Science and Health Promotion Concentration are to take KINE 211, KINE 219, KINE 220, KINE 227 and KINE 228, and one additional unit from KINE 208-229.

2 Students interested in careers in the health professions should take CHEM 127 in lieu of CHEM 111, BIO 121 in lieu of BIO 111, PHYS 121 in lieu of PHYS 104.
MASTER OF SCIENCE DEGREE IN KINESIOLOGY

General Characteristics
The degree program is designed to offer advanced study in kinesiology which qualifies students to enter the field at occupational levels requiring a master's degree. The program offers the increased depth and quality needed for teaching physical education at the secondary and community college levels, and positions in corporate, private, and governmental agencies as well as those in clinical preventative and/or rehabilitative health settings.

Areas of Emphasis
Students may select one of the following areas of emphasis which is most compatible with career and personal objectives.

Exercise Science and Health Promotion
This emphasis is an extension of the Exercise Science and Health Promotion Concentration under the BS degree program in Kinesiology. It prepares students to work in the health promotion field in diversified settings, including corporate, club, private, and governmental agencies. It also qualifies graduates to pursue clinically oriented positions in preventative and rehabilitative health programs as well as providing students with an excellent background for further postgraduate study.

Physical Education and Sport Studies
This emphasis is offered for students who wish advanced preparation for elementary, secondary, or college positions in physical education and coaching. It is oriented toward a practical application and offers an opportunity for the in-depth study needed for (a) teaching physical education at all levels; (b) coaching at the secondary and post-secondary levels, as well as with private and municipal agencies; and (c) continued graduate work at other institutions.

Individual Course of Study
Students develop programs of study that meet their projected career goals. Approval must come from the students’ advisors and the department graduate coordinator. To be approved, students must present, in writing, proposals describing the interest area they intend to study. Students must have a strong focus outside the two traditional graduate emphases listed above. If students are interested in pursuing a degree beyond the MS, they may develop a course of study which best prepares them academically for further study. The thesis option is highly recommended.

Conditionally Classified Standing
Applicants to the MS degree program in Kinesiology should have an undergraduate degree in Kinesiology or equivalent academic preparation. Those applicants with undergraduate deficiencies must remove these deficiencies through coursework or examination before Advancement to Candidacy and may do this while enrolled as a graduate student at Cal Poly.

Information pertaining to specific requirements for admission may be obtained from the graduate coordinator of the kinesiology program (www.calpoly.edu/~pek, and select “Master of Science”).

Classified Standing
For admission to classified standing, an applicant must have an undergraduate major in kinesiology or equivalent academic preparation as determined by the departmental coordinator of graduate studies and a minimum grade point average of 2.75 in the last 90 units of undergraduate work. Students below a 2.75 GPA may appeal to the graduate coordinator to be "conditionally" accepted. This latter procedure involves a review process and a specified contract to be successfully completed before admission to classified standing.

Advancement to Candidacy
For Advancement to Candidacy a student shall have:
- successfully completed all conditionally classified requirements
- successfully completed the Graduation Writing Requirement
- filed a Formal Study Plan
- maintained a minimum 3.0 GPA for all course work completed on the formal study plan

At least 18 units must be completed after advancement to candidacy.

Requirements for the Degree
The formal program of study must include 45 units of approved graduate work; at least 33 of these units must be completed at the 500 level in Kinesiology.

All candidates must meet the current Graduation Writing Requirement.

Each candidate must successfully complete a comprehensive examination before the degree is granted. This examination may take one of two forms: (1) those students presenting a masters thesis or project must successfully defend the thesis or project in an oral examination, or (2) those students not presenting a masters thesis or project must pass an oral examination dealing with general current knowledge of the profession and coursework taken toward the degree requirements. If the degree requirements are not completed within 7 years, the student may need to complete additional requirements.

Up to 12 units may be taken in 400-level courses with advisor approval, provided these courses were not required as part of the undergraduate degree program. Graduate students taking 400-level courses are required to complete assignments beyond those normally required of undergraduate students and are graded against more rigorous standards than those applied to undergraduate students in the same course. A maximum of 12 advisor approved units may be taken outside of the Kinesiology Department.
Curriculum For MS Kinesiology

Required courses.. 24-26
KINE 501 Evaluation of Current Studies (3)
KINE 510 Health Behavior Change (3)
KINE 517 Research Methods in Kinesiology (3)
KINE 522 Advanced Biomechanics (3)
KINE 525 Adv Motor Learning & Control (3)
KINE 530 Adv Physiology of Exercise (4)
KINE 581 Grad Seminar in Kinesiology (1-3)
STAT 513 Applied Experimental Design and Regression Models (4)

Area of Emphasis or course of study 10-16
Choose one of the following:

Exercise Science and Health Promotion (16)
KINE 503 Current Health Issues (3)
KINE 504 Advanced Pathophysiology and Exercise (3)
KINE 511 Management and Administration in Kinesiology Settings (3)
KINE 534 Planning Health Promotion Programs: Theory and Practice (4)
KINE 536 Advanced Electrocardiography (4)

Physical Education and Sport Studies (10)
KINE 505 Introduction to Issues, Ethics and Policies in Teaching (1)
KINE 511 Management and Administration in Kinesiology Settings (3)
KINE 526 Sport and Exercise in Society (3)
KINE 539 Observation and Analysis of Teaching Physical Education and Coaching Sports (3)

Individual Course of Study (16)
Advisor and graduate coordinator approved electives

Advisor approved electives or thesis 3-11

For more detailed information or advisement, contact the Coordinator of Graduate Studies for Kinesiology.
Mathematics

Department Chair, Kent E. Morrison

Steven J. Agronsky
John M. Alongi
Estelle L. Basor
Joseph E. Borzellino
Paul F. Choboter
Susan M. Cooper
H. Arthur DeKleine
Kelly Delp
Gwen L. Fisher
Stuart Goldenberg
Harvey C. Greenwald
Todd A. Grundmeier
Caixing Gu
Donald G. Hartig
Alan W. Holz
J. Myron Hood
Goro C. Kato
Anton Kaul
Colleen M. Kirk
George M. Lewis
Elsa Medina
Anthony Mendes
James R. Mueller
Linda J. Patton
Don P. Rawlings
Dylan Q. Retsek
Benjamin P. Richert
Kate J. Riley
Marian E. Robbins
Jonathan E. Shapiro
Mark Stankus
Lawrence Sze
Raymond D. Terry
Todor Todorov
John Van Eps
Matthew E. White

ACADEMIC PROGRAMS

BS, MS Mathematics

Mathematics Minor

The Mathematics Department offers a complete undergraduate program of courses leading to a Bachelor of Science degree in mathematics. It also offers a program of courses for students who wish to minor in mathematics, as well as graduate courses for programs of study leading to a Master of Science degree. The mix of pure and applied mathematics in these courses increases both the usefulness of and the demand for graduates with a degree in mathematics. In addition, the Mathematics Department offers courses that serve all departments in the university.

The undergraduate program for math majors contains a central core of courses. These courses give a solid basis for advanced work that is tailored to fit the needs and objectives of each individual student. Advanced coursework is chosen in close consultation with faculty advisors.

The rich variety of courses available in the department permits the student not only to obtain a broad exposure to those fields of mathematics which are most useful in the physical sciences and engineering, but also to obtain experience with the mathematics that is used in business, management sciences, and operations research.

Students wishing to prepare for a career teaching mathematics in middle or senior high school should choose the concentration in teaching. The courses in the concentration, coupled with the other required courses in the major, fulfill the prerequisites for the California Commission on Teacher Credentialing.

All of these programs provide a strong mathematical foundation for the student contemplating the pursuit of an advanced degree in mathematics.

MATHEMATICS MINOR

Students may earn a minor in mathematics by completing a coordinated course of study. The program consists of a core of required courses, followed by two tracks of advanced work, to be chosen in concert with a student's career objectives. Interested students should contact the Mathematics Department for individual advisement.

I. Required courses ... 8

A. MATH 206 Linear Algebra I (4) or MATH 244

B. MATH 248 Methods of Proof in Mathematics (4)

II. Complete two tracks .. 16

A track consists of two courses from one of the groups A-J. Completion of all four courses in either group K or L is considered two tracks. Some tracks have additional mathematics prerequisites.

A. MATH 304 Vector Analysis (4)

B. MATH 306 Linear Algebra II (4)

C. MATH 335 Graph Theory (4)

D. MATH 408 Complex Analysis I (4)

E. MATH 412 Introduction to Analysis I (4)

F. MATH 416 Differential Equations II (4)

G. MATH 431 Mathematical Optimization I (4)

H. MATH 440 Topology I (4)

I. MATH 442 Euclidean Geometry (4)

J. MATH 451 Numerical Analysis I (4)

2007-2009 Cal Poly Catalog
K. MATH 341 Theory of Numbers (4)
 MATH 419 Intro. to History of Mathematics (4)
 MATH 481 Abstract Algebra I (4)
 MATH 482 Abstract Algebra II (4)

L. MATH 304 Vector Analysis (4)
 MATH 344 Linear Analysis II (4)
 MATH 416 Differential Equations II (4)
 MATH 418 Partial Differential Equations (4)

III. Mathematics electives 6

BS MATHEMATICS

☐ 60 units upper division ☐ GWR
☐ 2.0 GPA ☐ USCP
* = Satisfies General Education requirement
Course sequencing: See flowcharts at www.calpoly.edu/~cosamac

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 141 Calculus I (B1)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 142 Calculus II (B1)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 143 Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 202 Orientation to the Mathematics Major</td>
<td>1</td>
</tr>
<tr>
<td>MATH 206 Linear Algebra I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 241 Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td>MATH 242 Differential Equations I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 248 Methods of Proof in Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>MATH 306 Linear Algebra II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 336 Combinatorial Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>MATH 412 Introduction to Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 459 Senior Seminar</td>
<td>4</td>
</tr>
<tr>
<td>MATH 461 Senior Project I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 462 Senior Project II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 481 Abstract Algebra I</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Work in Major or Concentration</td>
<td>32-34</td>
</tr>
</tbody>
</table>

Total: 85-87

SUPPORT COURSES

Choose one of the following tracks: 8

- CSC/CPE 101 and CSC/CPE 102 or
- CSC/CPE 235 and CSC/CPE 236 or
- CSC/CPE 101 and CSC/CPE 236

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 141 General Physics IA</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132 General Physics II (B3 & B4)*</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 133 General Physics III</td>
<td>4</td>
</tr>
<tr>
<td>STAT 301 Statistics I</td>
<td>4</td>
</tr>
<tr>
<td>STAT 302/STAT 325/STAT 425</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 28

GENERAL EDUCATION (GE)

72 units required; 12 units are in Major/Support.
See page 56 for complete GE course listing.
Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 12

Area B Science and Mathematics (4 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Mathematics/Stat * 8 units in Major/Support</td>
<td>0</td>
</tr>
<tr>
<td>B2 Life Science</td>
<td>4</td>
</tr>
<tr>
<td>B3 Physical Science * 4 units in Support</td>
<td>0</td>
</tr>
<tr>
<td>B4 One lab taken with either a B2 or B3 course</td>
<td>4</td>
</tr>
</tbody>
</table>

Area C Arts and Humanities (20 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Literature</td>
<td>4</td>
</tr>
<tr>
<td>C2 Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>C3 Fine/Performing Arts</td>
<td>4</td>
</tr>
<tr>
<td>C4 Upper-division elective</td>
<td>4</td>
</tr>
<tr>
<td>Area C elective (Choose one course from C1-C4)</td>
<td>4</td>
</tr>
</tbody>
</table>

Area D/E Society and the Individual (20 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 The American Experience (40404)</td>
<td>4</td>
</tr>
<tr>
<td>D2 Political Economy</td>
<td>4</td>
</tr>
<tr>
<td>D3 Comparative Social Institutions</td>
<td>4</td>
</tr>
<tr>
<td>D4 Self Development (CSU Area E)</td>
<td>4</td>
</tr>
<tr>
<td>D5 Upper-division elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Area F Technology Elective (upper division)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4 units)</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 7-5 180

ELECTIVES

Total: 85-87

Advanced Work in Major

1. Complete either of the following courses 4
 CSC/CPE 103 Fundamentals of Computer Science III (4) or
 MATH 350 Mathematical Software (4)

2. Complete two tracks from the following four subject areas 16
 A track consists of two paired courses representing depth of study with a particular focus. Each track chosen must belong to a different subject area A-D.

 A. MATH 341 Theory of Numbers (4) and MATH 482 Abstract Algebra II (4)
 MATH 406 Linear Algebra III (4) and MATH 482 Abstract Algebra II (4)
 MATH 335 Graph Theory (4) and MATH 437 Game Theory (4)

 B. MATH 413 and MATH 414 Introduction to Analysis II, III (4)(4)
 MATH 408 and MATH 409 Complex Analysis I, II (4)(4)
 MATH 408 Complex Analysis I (4) and MATH 413 Introduction to Analysis II (4)

 C. MATH 440 and MATH 441 Topology I, II (4)(4)
 MATH 304 Vector Analysis (4) and MATH 404 Introduction to Differential Geometry (4)
 MATH 416 Differential Equations II (4) and
 MATH 417 Discrete Dynamical Systems (4)
 MATH 442 Euclidean Geometry (4) and
 MATH 443 Modern Geometries (4)

2007-2009 Cal Poly Catalog
D. MATH 304 Vector Analysis (4) and MATH 418 Partial Differential Equations (4)
MATH 344 Linear Analysis II (4) and MATH 416 Differential Equations II (4)
MATH 451 and MATH 452 Numerical Analysis I, II (4)
MATH 431 and MATH 432 Mathematical Optimization I, II (4)

3. Complete 12 additional units from the following courses

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
</table>

4. Advanced work must include at least two of the following courses:
MATH 341, 344, 413, 414, 406, 440, 441, 482

Mathematics Teaching Concentration

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>SCM 300 Early Field Experience, Science/Math</td>
</tr>
<tr>
<td></td>
<td>MATH 300 Technology in Mathematics Education</td>
</tr>
<tr>
<td></td>
<td>MATH 341 Theory of Numbers</td>
</tr>
<tr>
<td></td>
<td>MATH 419 Intro to the History of Mathematics</td>
</tr>
<tr>
<td></td>
<td>MATH 423 Advanced Mathematics for Teaching</td>
</tr>
<tr>
<td></td>
<td>MATH 442 Euclidean Geometry</td>
</tr>
<tr>
<td></td>
<td>MATH 443 Modern Geometries</td>
</tr>
<tr>
<td></td>
<td>MATH 482 Abstract Algebra II</td>
</tr>
<tr>
<td></td>
<td>Select 4 units from the following: MATH 304, 335, 344, 404, 406, 408, 413, 416, 417, 431, 437, 440, 451, 470, IME 301, PHYS 301, 302, 323, 405, STAT 425</td>
</tr>
</tbody>
</table>

Master of Science Degree in Mathematics

General Characteristics
The master of science program in mathematics prepares students to enter careers in government, industry or teaching. A student who completes the degree is qualified and eligible to teach at the community college level. Many of the graduates of the program also pursue further graduate study at Ph.D.-granting institutions.

Prerequisites
Prerequisite to entering the program with a classified or conditionally classified status, the student must have a bachelor's degree from an accredited institution with a minimum grade point average of 2.5 in the last 90 quarter units attempted. Applicants with majors in other areas or applicants with deficiencies in their undergraduate background may be admitted conditionally. For information concerning additional requirements, the student should contact the Graduate Coordinator in the Mathematics Department.

Advancement to candidacy requires completion of 12 units of an approved study plan with a minimum grade point average of 3.0 and satisfactory completion of the preliminary examinations in analysis and algebra.

Blended BS+MS Mathematics
The blended program provides motivated students with an efficient way to complete a BS and MS in mathematics with both degrees being conferred simultaneously. Students are provided with ample advising to ensure a seamless transition from undergraduate to graduate status.

Eligibility
Students majoring in mathematics may apply for the blended program as early as their junior year after completing at least two upper-division mathematics classes and before they have completed 180 units. The Graduate Committee evaluates each applicant individually.

Acceptance into the program is based on prior academic performance and the applicant's promise to successfully complete the master's program. See 80 for additional eligibility criteria.

Program of Study
Students must complete the requirements of both the undergraduate and master's program of study for a total of 225 units. However, they are advised to take the undergraduate courses most suitable as preparation for the master's program. They should take the graduate preliminary written examinations at the time they complete the appropriate courses, even possibly before they have graduate status.

Finally, the senior project, if sufficiently complex, may be extended into a graduate thesis. This last option is particularly attractive to students participating in one of the many undergraduate summer research programs available at either Cal Poly or other universities, since the research can then be used as a basis for the senior project and master's thesis.

Curriculum for MS Mathematics

Required courses
- MATH 520 & MATH 521 Applied Analysis I, II (4)(4)
- MATH 530 & MATH 531 Discrete Math with Applications I, II (4)(4)
- MATH 540 & MATH 541 Topology I, II (4)(4)
- MATH 550 Real Analysis (4)
- MATH 560 Field Theory (4)

Electives
Select additional units at the 400 or 500 level as approved by the Graduate Committee.

Satisfactory Completion of the Comprehensive Examinations

2007-2009 Cal Poly Catalog
ACADEMIC PROGRAMS

BA Physics
BS Physics
Geology Minor
Physics Minor

The Physics Department offers the Bachelor of Arts and the Bachelor of Science degrees in Physics.

The department provides a comprehensive laboratory program. Facilities include specialized laboratories in electrical measurements, optics, solid state physics, nuclear and atomic physics. Student activities include a chapter of the national Society of Physics Students and a chapter of the national physics honor society, Sigma Pi Sigma.

High school students planning to major in physics should include in their high school program as much as possible of the following: eight semesters of college preparatory mathematics, two of physics, and two of chemistry.

BA Physics

The BA in Physics provides the student with a solid foundation in physics. Its primary purpose is to serve students who plan to pursue a career teaching science at the high school level and those who plan a career in science related fields for whom a physics background would be an asset. Students considering a career in teaching should consult with the department advisor early.

The curriculum has fewer required upper division courses than the BS, which allows the student to choose from an extensive list of electives in consultation with an academic advisor. In addition, the BA provides an attractive option for students in related disciplines who wish to pursue a double major.

BS Physics

The BS in Physics is the appropriate choice for those students planning a career in industry or government laboratories, and those seeking a strong foundation in physics for graduate study.

Students have the choice of selecting one of the specialized concentrations or following the general physics curriculum, which offers a variety of elective coursework. All offer good preparation for graduate study in physics. The electronics concentration is designed for students wishing to acquire a working knowledge of electronics to use in experimental physics. The electro-optics concentration provides a background in optical devices and techniques used in this rapidly expanding field.

GEOLOGY MINOR

The Geology Minor is offered in conjunction with the Earth and Soil Sciences Department. It provides a background useful for careers in environmental consulting or geotechnical fields. Interested students should consult with a geology advisor.

Prerequisites for the minor are SS 121, CHEM 111 or CHEM 128, and PHYS 132.

Required Courses.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 201</td>
<td>Physical Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 241</td>
<td>Physical Geology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>GEOL 305</td>
<td>Fundamentals of Seismology</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 415</td>
<td>Structural Geology</td>
<td>4</td>
</tr>
<tr>
<td>GEOL/ERSC 401</td>
<td>Field-Geology Methods</td>
<td>4</td>
</tr>
<tr>
<td>GEOL/ERSC 402</td>
<td>Geologic Mapping</td>
<td>4</td>
</tr>
<tr>
<td>ERSC 223</td>
<td>Rocks and Minerals</td>
<td>4</td>
</tr>
<tr>
<td>ERSC 323</td>
<td>Geomorphology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>28</td>
</tr>
</tbody>
</table>

PHYSICS MINOR

The Minor in Physics provides the student with the opportunity to build on the introductory physics core courses with a coordinated set of electives which are based on interests and career objectives selected in consultation with a physics advisor. It consists of 24 units in physics and astronomy (of which 12 units must be upper division).

Required Courses.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 133</td>
<td>General Physics</td>
<td>4</td>
</tr>
<tr>
<td>(Prerequisite: PHYS 141 or PHYS 131 and MATH 142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 211</td>
<td>Modern Physics I</td>
<td>4</td>
</tr>
</tbody>
</table>
Physics/Astronomy electives: Minimum 12 units must be upper division, including at least one of the following courses:
- PHYS 301 Thermal Physics (3)
- PHYS 302 Classical Mechanics I (4)
- PHYS 323 Optics (5)
- PHYS 405 Quantum Mechanics I (4)
- PHYS 408 Electromagnetic Fields and Waves I (4)
- PHYS 412 Solid State Physics (3)

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 141 General Physics IA</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132 General Physics II (B3 & B4)*</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 133 General Physics III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206 Instrumentation in Experimental Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 211 Modern Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 212 Modern Physics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 256 Electrical Measurements Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 301 Thermal Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 302 Classical Mechanics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 323 Optics</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 405 Quantum Mechanics I or PHYS 412 Solid State Physics</td>
<td>3-4</td>
</tr>
<tr>
<td>PHYS 461 Senior Project I or PHYS 463 Senior Project - Lab Research I</td>
<td>2</td>
</tr>
</tbody>
</table>

Select one from the following:
- PHIL 321 Philosophy of Science (4) (C4*),
- PHIL 421 Phil. of Space, Time and Matter (4), or
- SCM 451 Ethics in the Sciences (3)

Area B Science and Mathematics (4 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Mathematics/Statistics * 8 in Major</td>
<td>0</td>
</tr>
<tr>
<td>B2 Life Science</td>
<td>4</td>
</tr>
<tr>
<td>B3 Physical Science * 4 in Major</td>
<td>0</td>
</tr>
<tr>
<td>B4 One lab taken with either a B2 or B3 course</td>
<td></td>
</tr>
</tbody>
</table>

Area C Arts and Humanities (20 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Literature</td>
<td>4</td>
</tr>
<tr>
<td>C2 Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>C3 Fine/Performing Arts</td>
<td>4</td>
</tr>
<tr>
<td>C4 Upper-division elective</td>
<td>4</td>
</tr>
<tr>
<td>Area C elective (Choose one course from C1-C4)</td>
<td>4</td>
</tr>
</tbody>
</table>

Area D/E Society and the Individual (20 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 The American Experience (40404)</td>
<td>4</td>
</tr>
<tr>
<td>D2 Political Economy</td>
<td>4</td>
</tr>
<tr>
<td>D3 Comparative Social Institutions</td>
<td>4</td>
</tr>
<tr>
<td>D4 Self Development (CSU Area E)</td>
<td>4</td>
</tr>
<tr>
<td>D5 Upper-division elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Area F Technology Elective (upper division) (4 units)

ELECTIVES

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-29</td>
</tr>
</tbody>
</table>

BS PHYSICS

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 141 General Physics IA</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132 General Physics II (B3 & B4)*</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 133 General Physics III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 202 Physics on the Computer</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206 Instrumentation in Experimental Phys.</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 211 Modern Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 212 Modern Physics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 256 Electrical Measurements Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 301 Thermal Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 302 Classical Mechanics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 323 Optics</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 340 Quantum Physics Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 341 Quantum Physics Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 342 Quantum Physics Laboratory III</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 405 Quantum Mechanics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 408 Electromagnetic Fields and Waves I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 461 Senior Project I or PHYS 463 Senior Project - Lab Research I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 462 Senior Project II or PHYS 464 Senior Project - Lab Research II</td>
<td>2</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

- 72 units required; 16 units are in Major.
- See page 56 for complete GE course listing.
- Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
</tbody>
</table>

Area B Science and Mathematics (4 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Mathematics/Statistics * 8 in Major</td>
<td>0</td>
</tr>
<tr>
<td>B2 Life Science</td>
<td>4</td>
</tr>
<tr>
<td>B3 Physical Science * 4 in Major</td>
<td>0</td>
</tr>
<tr>
<td>B4 One lab taken with either a B2 or B3 course</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Literature</td>
<td>4</td>
</tr>
<tr>
<td>C2 Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>C3 Fine/Performing Arts</td>
<td>4</td>
</tr>
<tr>
<td>C4 Upper-division elective</td>
<td>4</td>
</tr>
<tr>
<td>Area C elective (Choose one course from C1-C4)</td>
<td>4</td>
</tr>
</tbody>
</table>

Area D/E Society and the Individual (20 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 The American Experience (40404)</td>
<td>4</td>
</tr>
<tr>
<td>D2 Political Economy</td>
<td>4</td>
</tr>
<tr>
<td>D3 Comparative Social Institutions</td>
<td>4</td>
</tr>
<tr>
<td>D4 Self Development (CSU Area E)</td>
<td>4</td>
</tr>
<tr>
<td>D5 Upper-division elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Area F Technology Elective (upper division) (4 units)

ELECTIVES

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-29</td>
</tr>
</tbody>
</table>

BS PHYSICS

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 141 General Physics IA</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 132 General Physics II (B3 & B4)*</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 133 General Physics III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 202 Physics on the Computer</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206 Instrumentation in Experimental Phys.</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 211 Modern Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 212 Modern Physics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 256 Electrical Measurements Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 301 Thermal Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 302 Classical Mechanics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 323 Optics</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 340 Quantum Physics Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 341 Quantum Physics Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 342 Quantum Physics Laboratory III</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 405 Quantum Mechanics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 408 Electromagnetic Fields and Waves I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 461 Senior Project I or PHYS 463 Senior Project - Lab Research I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 462 Senior Project II or PHYS 464 Senior Project - Lab Research II</td>
<td>2</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

- 72 units required; 16 units are in Major.
- See page 56 for complete GE course listing.
- Minimum of 12 units required at the 300-400 level.

Area A Communication (12 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
</tbody>
</table>
CHEM 127 General Chemistry 4
CHEM 128 General Chemistry 4
MATH 141 Calculus I (B1)* 4
MATH 142 Calculus II (B1)* 4
MATH 143 Calculus III 4
MATH 241 Calculus IV 4
MATH 244 Linear Analysis I 4
MATH 304 Vector Analysis 4
MATH 344 Linear Analysis II 4
Advanced Physics electives or Concentration courses (see below) 19

<table>
<thead>
<tr>
<th>Area</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Communication (12 units)</td>
<td></td>
</tr>
</tbody>
</table>
| | A1 Expository Writing | 4
| | A2 Oral Communication | 4
| | A3 Reasoning, Argumentation, and Writing | 4
| | Total |
| B | Science and Mathematics (4 units) |
| | B1 Mathematics/Statistics * 8 units in Major | 0
| | B2 Life Science | 4
| | B3 Physical Science * 4 units in Major | 0
| | B4 One lab taken with either a B2 or B3 course |
| | Total |
| C | Arts and Humanities (20 units) |
| | C1 Literature | 4
| | C2 Philosophy | 4
| | C3 Fine/Performing Arts | 4
| | C4 Upper-division elective | 4
| | Area C elective (Choose one course from C1-C4) | 4
| | Total |
| D/E | Society and the Individual (20 units) |
| | D1 The American Experience (40404) | 4
| | D2 Political Economy | 4
| | D3 Comparative Social Institutions | 4
| | D4 Self Development (CSU Area E) | 4
| | D5 Upper-division elective | 4
| | Total |
| F | Technology Elective (upper division) (4 units) |
| | Total | 60

<table>
<thead>
<tr>
<th>Area</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
</table>
| E | ELECTIVES | 8
| | Total | 180

ADVANCED PHYSICS ELECTIVES OR CONCENTRATION

Select either the advanced physics electives or one of the concentrations.

Advanced Physics Electives

Select one of the following: PHYS 424 or MATH 418.

In addition, select courses at the 300 or 400 level with the prefixes PHYS, GEOL, MATH, STAT or CSC (but not CSC 302 nor CSC 310). One of the following may also be chosen: CSC 101, 231, 234. At least 9 of these elective units must have the PHYS prefix. All courses must be taken for a letter grade.

For students anticipating an industrial career, PHYS 357, 412, 413, 423, and 452 are suggested electives.

For students anticipating graduate work in physics PHYS 303, 401, 406, 409, 424, and MATH 408 are suggested electives. In addition, PHYS 357 is suggested for students who anticipate becoming experimental physicists.

Electronics Concentration

Students are not to be allowed to enroll in EE 228 until they have a) completed PHYS 357 and MATH 344, and b) received the approval of advisors in both Physics and Electrical Engineering. Students are then allowed to enroll in EE courses with physics courses substituting for EE prerequisites.

- PHYS 357 Advanced Instrumentation in Experimental Physics .. 3
- EE 228 Continuous-Time Signals and Systems .. 4
- EE 302 Classical Control Systems ... 3
- EE 328 Discrete Time Signals and Systems ... 3
- EE 342 Control Systems Laboratory .. 1
- EE 368 Signals and Systems Laboratory ... 1
- EE 336 Microprocessor System Design or EE 306 and EE 346 Semiconductor Device Electronics and Laboratory .. 4

Electro-optics Concentration

Students are not to be allowed to enroll in EE 228 until they have a) completed PHYS 357 and MATH 344, and b) received approval of advisors in both Physics and Electrical Engineering. Students are then allowed to enroll in EE courses with physics courses substituting for EE prerequisites.

- PHYS 357 Advanced Instrumentation in Exp Physics .. 3
- PHYS 423 Advanced Optics ... 4
- EE 228 Continuous-Time Signals and Systems .. 4
- EE 403 Fiber Optics Communication .. 3
- EE 418 Photonic Engineering ... 3
- EE 443 Fiber Optics Laboratory ... 1
- EE 458 Photonic Engineering Laboratory .. 1

2007-2009 Cal Poly Catalog
Statistics

Department Chair, Robert K. Smidt

Matthew A. Carlton
Beth L. Chance
James C. Daly
Jay L. Devore
Jimmy A. Doi
Ulric J. Lund
Karen J. McGaughey
Roxy L. Peck
Steven Rein
Allan J. Rossman
Andrew A. Schaffner
Jeff C. Sklar
Kent D. Smith
John H. Walker

ACADEMIC PROGRAMS

BS Statistics
Statistics Minor

The Statistics Department has two primary purposes—to offer introductory statistics courses to students from many different majors at Cal Poly, and to offer a curriculum of diverse statistics courses for those students pursuing a Bachelor of Science degree in Statistics or a minor in the discipline.

In this age of high technology it has become increasingly easy to record and store information resulting from experiments, surveys, and historical studies. It is the responsibility of the professional statistician to determine the best ways to collect, summarize and analyze these data. Because of the increasing number of quantitative studies that are conducted in fields ranging from medicine to agriculture to business, the professional statistician is in great demand.

It has been projected that the job market for those with substantial statistical training remains healthy into the foreseeable future. Recent graduates of the program at Cal Poly are working for companies in fields as varied as insurance, aircraft manufacturing, banking, computer manufacturing, and pharmaceutical development.

The statistics degree program requires students to have a solid foundation in mathematics and computer science. With this basis the students take courses in the following areas—analysis of variance, regression analysis, statistical use of computers, sampling methods, experimental design, analysis of categorical data, multivariate analysis, time series and forecasting, probability, and mathematical statistics. In the various courses the students make use of computing facilities available at Cal Poly.

Throughout the program faculty encourage students to work on practical, realistic problems that require the understanding of all aspects of the data acquisition and analysis process.

STATISTICS MINOR

The Statistics minor program allows students from across the University to acquire substantial statistical skills that can be applied in their own disciplines.

Select one of the following introductory sequences ... 8–9

• STAT 217 Introduction to Statistical Concepts and Methods (4) and STAT 313 Applied Experimental Design and Regression Models (4)
• STAT 218 Applied Statistics-Life Sciences (4) and STAT 313 Applied Experimental Design and Regression Models (4)
• STAT 221 Intro Probability and Statistics (5) and STAT 313 Applied Experimental Design and Regression Models (4)
• STAT 251 Statistical Inference for Mgmt. I (4) and STAT 252 Statistical Inference for Mgmt. II (5)
• STAT 301 Statistics I (4) and STAT 302 Statistics II (4)
• STAT 312 Statistical Methods for Engineers (4) and STAT 323 Design and Analysis of Experiments (4)
• STAT 321 Probability and Statistics for Engineers and Scientists (4) and STAT 322 Statistical Analysis for Engineers and Scientists (4)

1 Select two from the following .. 8
STAT 323 Design and Analysis of Experiments (4)
STAT 324 Applied Regression Analysis (4)
STAT 330 Statistical Computing I: SAS (4)

STAT 400-level electives .. 8
(excluding STAT 400, STAT 465, STAT 470, STAT 485, STAT 495)

Select one course from outside the Statistics Department, with the approval of the Statistics Department Minor Coordinator, that has substantial statistical applicability .. 3–4

1 Students entering the minor who take STAT 312 as their initial course must stake STAT 324 and STAT 330 in this category.
BS STATISTICS

- 60 units upper division
- GWR
- 2.0 GPA

* = Satisfies General Education requirement

Course sequencing: See flowcharts at www.calpoly.edu/~cosamac

MAJOR COURSES

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 150</td>
<td>Introduction to Statistical Investigations</td>
<td>4</td>
</tr>
<tr>
<td>MATH 141</td>
<td>Calculus I (B1)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Calculus II (B1)*</td>
<td>4</td>
</tr>
<tr>
<td>MATH 143</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 206</td>
<td>Linear Algebra I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 241</td>
<td>Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td>STAT 301</td>
<td>Statistics I</td>
<td>4</td>
</tr>
<tr>
<td>STAT 302</td>
<td>Statistics II</td>
<td>4</td>
</tr>
<tr>
<td>STAT 323</td>
<td>Design and Analysis of Experiments I</td>
<td>4</td>
</tr>
<tr>
<td>STAT 324</td>
<td>Applied Regression Analysis</td>
<td>4</td>
</tr>
<tr>
<td>STAT 325</td>
<td>Introduction to Probability Models</td>
<td>4</td>
</tr>
<tr>
<td>STAT 330</td>
<td>Statistical Computing I: SAS</td>
<td>4</td>
</tr>
<tr>
<td>STAT 425</td>
<td>Probability Theory</td>
<td>4</td>
</tr>
<tr>
<td>STAT 426</td>
<td>Estimation and Sampling Theory</td>
<td>4</td>
</tr>
<tr>
<td>STAT 427</td>
<td>Mathematical Statistics</td>
<td>4</td>
</tr>
<tr>
<td>STAT 461</td>
<td>Senior Project I</td>
<td>1</td>
</tr>
<tr>
<td>STAT 462</td>
<td>Senior Project I</td>
<td>2</td>
</tr>
<tr>
<td>STAT 465</td>
<td>Statistical Communication and Consulting</td>
<td>4</td>
</tr>
</tbody>
</table>

1 CSC, MATH, STAT electives ... 11-12
Statistics electives (400 level) .. 12

SUPPORT COURSES

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC/CPE 235</td>
<td>Fundamentals of Computer Science for Scientists and Engineers or CSC/CPE 101</td>
<td>4</td>
</tr>
<tr>
<td>MATH 248</td>
<td>Methods of Proof in Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>Advisor approved technical electives</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL EDUCATION (GE)

72 units required; 8 units are in Major.

→ See page 56 for complete GE course listing.
→ Minimum of 12 units required at the 300-400 level.

<table>
<thead>
<tr>
<th>Area A Communication (12 units)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Expository Writing</td>
<td>4</td>
</tr>
<tr>
<td>A2 Oral Communication</td>
<td>4</td>
</tr>
<tr>
<td>A3 Reasoning, Argumentation, and Writing</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area B Science and Mathematics (8 units)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Mathematics/Statistics * 8 units in Major</td>
<td>0</td>
</tr>
<tr>
<td>B2 Life Science</td>
<td>4</td>
</tr>
<tr>
<td>B3 Physical Science</td>
<td>4</td>
</tr>
<tr>
<td>B4 One lab taken with either a B2 or B3 course</td>
<td></td>
</tr>
</tbody>
</table>

Area C Arts and Humanities (20 units)

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Literature</td>
<td>4</td>
</tr>
<tr>
<td>C2 Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>C3 Fine/Performing Arts</td>
<td>4</td>
</tr>
<tr>
<td>C4 Upper-division elective</td>
<td>4</td>
</tr>
<tr>
<td>Area C elective (Choose one course from C1-C4)</td>
<td>4</td>
</tr>
</tbody>
</table>

Area D/E Society and the Individual (20 units)

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 The American Experience (40404)</td>
<td>4</td>
</tr>
<tr>
<td>D2 Political Economy</td>
<td>4</td>
</tr>
<tr>
<td>D3 Comparative Social Institutions</td>
<td>4</td>
</tr>
<tr>
<td>D4 Self Development (CSU Area E)</td>
<td>4</td>
</tr>
<tr>
<td>D5 Upper-division elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Area F Technology Elective (upper division)

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 units</td>
<td>64</td>
</tr>
</tbody>
</table>

ELECTIVES

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-10</td>
</tr>
<tr>
<td>180</td>
</tr>
</tbody>
</table>

1 Selected from the following: CSC/CPE 102, 236; CSC 342; MATH 242, 306, 335, 336, 406, 412, 431, 437, 451; STAT 400 level courses.
Continuing Education and University Outreach

ACADEMIC PROGRAMS

Interdisciplinary Studies .. BA
Management .. Certificate
Paralegal Studies ... Certificate
Wine Industry .. Certificate

The following degrees and certificates are offered in cooperation with other academic units:

Doctor of Education .. College of Education
Master of Business .. Orfalea College of Administration Business
Master of Science in Agriculture College of Agriculture
Gerontology Certificate ... College of Liberal Arts
Technical Communication Certificate College of Liberal Arts

Continuing Education and University Outreach (CE&UO) advances the academic and public service mission of Cal Poly beyond the traditional undergraduate and graduate college experience. Its goal is to increase access to the intellectual resources of the University by developing and offering a wide range of innovative lifelong learning opportunities to the citizens of California and the nation. Educational programs are offered in a variety of learning formats including classroom instruction, distance learning, and client centered services both on- and off-campus.

Information on programs and current offerings is listed in Outreach which is published three times a year and at www.continuing-ed.calpoly.edu.

Distance Learning. Challenges of time and distance often make it impractical for individuals to travel to campus for classroom-based education opportunities. To address this problem, CE&UO offers many programs in a distance learning format. These programs cover a wide range of subjects including applied technology, graphic communications, business, medical office training and math preparation. They are offered in varied formats from CDs to internet-based instruction. A complete listing of programs and courses is available at www.continuing-ed.calpoly.edu/distance_learning.html.

Open University. This option enables adequately prepared members of the community to enroll in regular Cal Poly courses on a space available basis. Open University is a non-degree registration option. Limits as to the number of credits earned through Open University may apply when seeking admission to a degree program. Enrollment forms and guidelines for registering may be obtained from CE&UO two weeks prior to the beginning of each quarter.

Osher Lifelong Learning Institute (OLLI). Established through a gift from the Bernard Osher Foundation, the Institute offers to people 50 years of age or older the opportunity for continued learning. Programs range from two three-hour discussions to multi-day travel programs. Topics and programs change each term and are led by OLLI members, Cal Poly faculty, and experts in their respective area. Information on current programs and how to join is available at www.continuing-ed.calpoly.edu/hoher.html.

Programs for Professionals. For those desiring upgrade skills or knowledge, CE&UO offers a wide range of educational opportunities ranging from complete certificate programs to one-day seminars. Certificate programs are offered in Microsoft certifications, paralegal studies, supervision, technical communications and wine industry. New certificates are being planned; updated information is available on CE&UO’s web site.

Corporate and Organizational Training. CE&UO will customize training to meet the specific needs of a business, corporation, or organization. This process starts with a needs assessment and continues through design, implementation and evaluation. Past clients include PG&E, the State of California, and the Forest Service.
Interdisciplinary Studies
Jespersen Hall (116), Room 101
805 756-2053
www.adultdegreeprogram.calpoly.edu

Coordinator, Rose Whitworth
Affiliated Faculty
The following faculty participate in the Adult Degree Program and hold academic rank in departments outside Continuing Education and University Outreach.

Doris V. Derelian
Susan R. Duffy
James R. Keese
Jose Montelongo

Dennis R. Parks
Thomas R. Trice
Daniel Villegas

ACADEMIC PROGRAM
BA Interdisciplinary Studies
The Adult Degree Program (ADP) offers the Bachelor of Arts degree in Interdisciplinary Studies. The program offers an intellectually stimulating curriculum in a format structured for working adults who are balancing careers, family responsibilities, and civic obligations. The intended audience is individuals who have completed high school at least six years prior to entering the program, have the motivation and intellectual skills to succeed in a part-time, structured, undergraduate degree program, and whose personal educational goals will be achieved through an interdisciplinary studies program. The program utilizes a cohort model and classes are offered weekday evenings.

The BA in Interdisciplinary Studies is offered by Continuing Education and University Outreach as a Special Session degree program. As such, the program carries a separate fee schedule. Please view the Adult Degree Program website for current fee information at www.adultdegreeprogram.calpoly.edu.

The BA Interdisciplinary Studies curriculum consists of three major parts: interdisciplinary studies courses; major courses from other academic departments; and 12 units of upper-division General Education courses. Students must complete a total of at least 180 units, of which a minimum of 60 upper-division units must be taken through the Adult Degree Program at Cal Poly.

Admissions
Students seeking admission to the program must:

1) have completed at least 90 quarter units (60 semester hours), be CSU eligible, and be CSU General Education or IGETC Certified;
2) write a personal, lifelong learning goals statement, not exceeding four pages, documenting how the program will help them achieve their personal, professional, and long-term educational goals; and
3) provide at least three letters of recommendation from individuals who can attest to their ability to be successful in a part-time, structured, undergraduate degree program.

Admissions are on a rolling admissions basis. Deadlines for the submission of application materials are posted on the Adult Degree Program web site at www.adultdegreeprogram.calpoly.edu.

University Requirements
Students must meet the general graduation requirements as described on page 53 of the catalog, including the Graduation Writing Requirement, U. S. Cultural Pluralism requirement, 2.0 GPA and academic residence requirements.

BA INTERDISCIPLINARY STUDIES

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 units upper division</td>
<td></td>
</tr>
<tr>
<td>GWR</td>
<td></td>
</tr>
<tr>
<td>2.0 GPA</td>
<td></td>
</tr>
<tr>
<td>USCP</td>
<td></td>
</tr>
</tbody>
</table>

Major Courses

- IS 101 Orientation to IS and the University 3
- IS 301 Critical Issues Seminar 4.4
- IS 302 Analytical Skills Seminar 4
- IS 450 Adv. Investigation Seminar 5
- IS 460 Capstone Project 6
- Select one course from the following eight areas: 32
 - Applied technology (4)
 - Business (4)
 - Communications/English (4)
 - Ethnic studies/US Cultural Pluralism (4)
 - Fine and performing arts (4)
 - Philosophy/religion (4)
 - Science or nutrition (4)
 - Social science (4)
- Five additional courses selected by the Faculty Program Committee 20

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
</tr>
</tbody>
</table>

Upper-Division General Education Courses

Arts and humanities (C4) 4
Society/Individual (D5) 4
Technology (Area F) 4

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
</tr>
</tbody>
</table>

Transferred Units 90

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>
Intercollegiate Athletics is administered as a separate department, though students participating on its teams receive academic credit for their efforts in courses offered through the Kinesiology Department.

All twenty teams compete at the NCAA Division I level. The football program competes in the Great West Football Conference (I-AA), wrestling competes in the PAC 10 Conference, and women's indoor track and field competes in the Mountain Pacific Sports Federation. The balance of the men's and women's programs are in the Big West Conference.

The California State University is committed to providing equal opportunities to men and women CSU students in all campus programs, including intercollegiate athletics.

<table>
<thead>
<tr>
<th>Alison Cone, Director</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>John Azevedo</td>
<td>Richard Ellerson</td>
</tr>
<tr>
<td>Hugh Bream</td>
<td>Paul Holocher</td>
</tr>
<tr>
<td>Kevin Bromley</td>
<td>Larry Lee</td>
</tr>
<tr>
<td>Scott Cartwright</td>
<td>Justin McGrath</td>
</tr>
<tr>
<td>Jenny Condon</td>
<td>Tom Milich</td>
</tr>
<tr>
<td>Mark Conover</td>
<td>Faith Mimnaugh</td>
</tr>
<tr>
<td>Terry Crawford</td>
<td>Jon Stevenson</td>
</tr>
</tbody>
</table>

2007-2009 Cal Poly Catalog
Colleges, Departments, Units and Course Prefixes

COLLEGE OF AGRICULTURE, FOOD AND ENVIRONMENTAL SCIENCES
- Agriculture AG, WVIT
- Agribusiness AGB
- Agricultural Education and Communication AGC, AGED
- Animal Science ASCI
- BioResource and Agricultural Engineering BRAE
- Dairy Science DSCI
- Earth and Soil Sciences ERSC, SS
- Food Science and Nutrition FSN
- Horticulture and Crop Science CRSC, ERSC, FRSC, PPSC, VS
- Military Science MSL
- Natural Resources Management FNR, REC

COLLEGE OF ARCHITECTURE AND ENVIRONMENTAL DESIGN
- Environmental Design EDES
- Architectural Engineering ARCE
- Architecture ARCH
- City and Regional Planning CRP
- Construction Management CM
- Landscape Architecture LA

ORFALEA COLLEGE OF BUSINESS
- Business BUS
- Economics ECON
- Graduate Programs GSA, GSB
- Industrial Technology IT

COLLEGE OF EDUCATION
- Education EDUC

COLLEGE OF ENGINEERING
- Engineering ENGR
- Aerospace Engineering AFRO
- Biomedical and General Engineering BMED
- Civil and Environmental Engineering CE, ENVE
- Computer Engineering CPE
- Computer Science CSC
- Electrical Engineering EE
- Industrial and Manufacturing Engineering IME
- Materials Engineering MATE
- Mechanical Engineering ME

COLLEGE OF LIBERAL ARTS
- Art and Design ART
- Communication Studies COMS
- English ENGL
- Ethnic Studies ES
- Graphic Communication GRC
- History HIST
- Humanities HUM
- Journalism JOUR
- Liberal Studies LS
- Modern Languages and Literatures FR, GER, ITAL, JPNS, MLL, SPAN, MU
- Music PHIL, RELS
- Philosophy POLS
- Political Science CD, PSY
- Psychology and Human Development ANT, GEOG, SOC, SOCS
- Social Sciences DANC, TH, WS
- Theatre and Dance WS
- Women's Studies WS

COLLEGE OF SCIENCE AND MATHEMATICS
- Science and Mathematics SCM
- Biological Sciences BIO, BOT, MCRO, ZOO
- Chemistry and Biochemistry CHEM
- Kinesiology KINE, PE
- Mathematics MATH
- Physics ASTR, GEOL, PHYS, PSC, STAT
- Statistics STAT
- Theatre and Dance WS
- Women's Studies WS

ATHLETICS
- PEM, PEW

CONTINUING EDUCATION
- IS

UNIVERSITY HONORS
- HNRS, HNRC

UNIVERSITY LIBRARY
- LIB

UNIVERSITY STUDIES
- UNIV
Course Descriptions

Courses are listed alphabetically by prefix abbreviation, as listed below.

Some courses will be shown as cross-listed in the title line. These courses cannot be repeated for credit under the separate prefixes.

All credits are in quarter units. Cal Poly operates on a four quarter system.

Certain courses may have miscellaneous course fees. Please see the Schedule of Classes for more information.

<table>
<thead>
<tr>
<th>PREFIX</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG</td>
<td>Geography</td>
</tr>
<tr>
<td>GEOL</td>
<td>Geology</td>
</tr>
<tr>
<td>GER</td>
<td>German</td>
</tr>
<tr>
<td>GRC</td>
<td>Graphic Communication</td>
</tr>
<tr>
<td>GSA</td>
<td>Graduate Studies–Accounting</td>
</tr>
<tr>
<td>GSB</td>
<td>Graduate Studies–Business</td>
</tr>
<tr>
<td>HCS</td>
<td>Horticulture and Crop Science</td>
</tr>
<tr>
<td>HIST</td>
<td>History</td>
</tr>
<tr>
<td>HNRC</td>
<td>Honors Contract</td>
</tr>
<tr>
<td>HNRS</td>
<td>Honors</td>
</tr>
<tr>
<td>HUM</td>
<td>Humanities</td>
</tr>
<tr>
<td>IME</td>
<td>Industrial and Manufacturing Engineering</td>
</tr>
<tr>
<td>IS</td>
<td>Interdisciplinary Studies</td>
</tr>
<tr>
<td>IT</td>
<td>Industrial Technology</td>
</tr>
<tr>
<td>ITAL</td>
<td>Italian</td>
</tr>
<tr>
<td>JPNS</td>
<td>Japanese</td>
</tr>
<tr>
<td>JOUR</td>
<td>Journalism</td>
</tr>
<tr>
<td>KINE</td>
<td>Kinesiology</td>
</tr>
<tr>
<td>LA</td>
<td>Landscape Architecture</td>
</tr>
<tr>
<td>LIB</td>
<td>Library</td>
</tr>
<tr>
<td>LS</td>
<td>Liberal Studies</td>
</tr>
<tr>
<td>MATE</td>
<td>Materials Engineering</td>
</tr>
<tr>
<td>MATH</td>
<td>Mathematics</td>
</tr>
<tr>
<td>MCRB</td>
<td>Microbiology</td>
</tr>
<tr>
<td>ME</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>MLL</td>
<td>Modern Languages and Literatures</td>
</tr>
<tr>
<td>MSL</td>
<td>Military Science Leadership</td>
</tr>
<tr>
<td>MSL</td>
<td>Military Science Leadership</td>
</tr>
<tr>
<td>MU</td>
<td>Music</td>
</tr>
<tr>
<td>PE</td>
<td>Physical Education</td>
</tr>
<tr>
<td>PEM</td>
<td>Physical Education Men</td>
</tr>
<tr>
<td>PEW</td>
<td>Physical Education Women</td>
</tr>
<tr>
<td>PHIL</td>
<td>Philosophy</td>
</tr>
<tr>
<td>PHYS</td>
<td>Physics</td>
</tr>
<tr>
<td>PM</td>
<td>Poultry Management</td>
</tr>
<tr>
<td>POLS</td>
<td>Political Science</td>
</tr>
<tr>
<td>PPSC</td>
<td>Plant Protection Science</td>
</tr>
<tr>
<td>PSC</td>
<td>Physical Science</td>
</tr>
<tr>
<td>PSY</td>
<td>Psychology</td>
</tr>
<tr>
<td>REC</td>
<td>Recreation Administration</td>
</tr>
<tr>
<td>RELS</td>
<td>Religious Studies</td>
</tr>
<tr>
<td>SCM</td>
<td>College of Science and Mathematics</td>
</tr>
<tr>
<td>SOC</td>
<td>Sociology</td>
</tr>
<tr>
<td>SOCS</td>
<td>Social Sciences</td>
</tr>
<tr>
<td>SPAN</td>
<td>Spanish</td>
</tr>
<tr>
<td>SS</td>
<td>Soil Science</td>
</tr>
<tr>
<td>STAT</td>
<td>Statistics</td>
</tr>
<tr>
<td>TH</td>
<td>Theatre</td>
</tr>
<tr>
<td>UNIV</td>
<td>University</td>
</tr>
<tr>
<td>VGSC</td>
<td>Vegetable Science</td>
</tr>
<tr>
<td>VS</td>
<td>Veterinary Science</td>
</tr>
<tr>
<td>WS</td>
<td>Women's Studies</td>
</tr>
<tr>
<td>WVIT</td>
<td>Wine and Viticulture</td>
</tr>
<tr>
<td>ZOO</td>
<td>Zoology</td>
</tr>
</tbody>
</table>

2007-2009 Cal Poly Catalog
AERO–AEROSPACE ENGINEERING

AERO 102 General Aviation (4)
Fundamentals of flight aerodynamics and principles. Introduction to power systems, instrumentation, flight planning, modern air navigation, weather data interpretation, flight computer uses, meteorology. Hands-on cockpit/task familiarization. Private pilot's examination preparation. Not a technical elective for engineering students. Field trip may be required. 4 lectures.

AERO 103 Instrument Aviation (4)
Introduction to advanced aircraft instrumentation, flight planning, interpretation of weather data, and meteorology. Instrument navigation, uses of flight computer, subjects covered in instrument pilot's examination. Not acceptable as technical elective to engineering students. 4 lectures. Prerequisite: Private pilot certification.

AERO 121 Aerospace Fundamentals (2)
Introduction to the engineering profession including the aeronautical and aerospace fields. Engineering approach to problem-solving and analysis of data obtained from experiments. Basic nomenclature and design criteria used in the aerospace industry. Applications to basic problems in the field. 1 lecture, 1 laboratory.

AERO 200 Special Problems for Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units. Prerequisite: Consent of department head.

AERO 215 Introduction to Aerospace Design (2)
Introduction to problem solving techniques and team-centered design projects in aerospace engineering. Primary emphasis on the solution of design problems in aerospace engineering using computers. 2 laboratories. Prerequisite: AERO 121, MATH 143. Recommended: CSC 111, IME 144.

AERO 240 Additional Engineering Laboratory (1–4) (CR/NC)
Total credit limited to four units. Credit/No Credit grading. 1–4 laboratories.

AERO 300 Aerospace Engineering Analysis (5)
Analytical methods for aerospace engineering problems. Topics include vector calculus, linear algebra, differential equations, Laplace transforms and Fourier series. Computer tools and numerical methods as applied to problems in aerodynamics, structures, stability and control and astronautics. 4 lectures, 1 laboratory. Prerequisite: PHYS 133, ME 211. Corequisite: MATH 244.

AERO 301, 302, 303 Aerothermodynamics I, II, III (4) (4) (4)
Properties and characteristics of fluids, fluid statics and dynamics, the thermodynamic relations, laminar and turbulent flows, subsonic and supersonic flows as applied to flight vehicles. Introduction to heat transfer. 4 lectures, fall, winter and spring. Prerequisite: ME 211, AERO 300.

AERO 304 Experimental Aerothermodynamics (2)
Laboratory experiments verify the momentum and energy equations. Fan performance, boundary layer measurements, disturber performance, and induction pump performance experiments are evaluated. 1 lecture, 1 laboratory. Prerequisite: ENGL 149. Concurrent: AERO 302.

AERO 306 Aerodynamics and Flight Performance (4)

AERO 307 Experimental Aerodynamics (2)
Wind tunnel testing of basic aerodynamic properties of airfoils, finite wings, aircraft or spacecraft models, and vehicle flight performance. Emphasis on both static and dynamic responses of aircraft. Various measurement techniques, data reduction schemes, and analysis methods. 2 laboratories. Prerequisite: AERO 302, AERO 306, ENGL 149.

AERO 310 Air and Space (4) (Also listed as HNRS 310)
GE Area F
Technological innovations that have led to modern aircraft and spacecraft as viewed from an historical perspective. Development of aerodynamics, propulsion systems, light-weight structures, and control systems. How aviation has affected, and been affected by, history. Impact of aviation on society, including civil and military aircraft/spacecraft. Federal regulation of aviation, including air traffic control and airlines. Future developments in air and space technology. 4 lectures. Prerequisite: Completion of GE Area B and junior standing.

AERO 320 Fundamentals of Guidance and Control (4)
Introduction to state-space and transfer function models for aircraft, spacecraft, missiles, and helicopters. Elementary classical and modern analysis techniques using computers. 4 lectures. Prerequisite: AERO 215, AERO 300. Concurrent: ME 212.

AERO 331 Aerospace Structural Analysis I (4)
Deflection analysis. Principles of fictitious displacement, virtual work, and unit load method. Energy methods: Castigliano’s theorem, Maxwell-Betti reciprocal theorem, minimum principles, Rayleigh-Ritz’s method and Galerkin’s method. Stress analysis of aircraft and spacecraft components. 4 lectures. Prerequisite: AERO 300, CE 207, and ME 212.

AERO 360 Creative Problem Solving in Engineering Design (2)
The creative problem solving process for an engineering design team. How to explore context and causes as part of defining a design problem; the principles of brainstorming, synthesis, and judgment. Role of iteration, implementation, and communication. Importance of a diverse view, including: customers, products, processes, systems, ethics, and professional responsibility. Team-based applications to case studies and real-world engineering design problems. 2 laboratories. Prerequisite: PSY 350.

AERO 400 Special Problems for Advanced Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 8 units.

AERO 401 Propulsion Systems (4)
Power plant types, components, characteristics, and requirements. Principles of thrust and energy utilization. Thermodynamic processes and performance of turboprop, turboshaft, turbofan, turbojet, ramjet, and rocket engines. 3 lectures, 1 laboratory. Prerequisite: AERO 303, CHEM 124.

AERO 405 Supersonic and Hypersonic Aerodynamics (4)
Review of gas dynamics, shock-wave and boundary-layer interaction, aerodynamic design. 2-dimensional supersonic flows around thin airfoil; finite wing in supersonic flow. Local surface inclination methods for high-speed flight, boundary-layer and aerodynamic heating, viscous interactions. 4 lectures. Prerequisite: AERO 301, AERO 306.

AERO 407 Reentry Aerodynamics (4)

AERO 409 Flight Test (4)
Overview of flight tests, test equations, and supporting facilities. Principles of team-centered flight testing with applications to performance, stability and control, and avionics systems testing. Test planning, instrumentation, data analysis and reports. 2 lectures, 2 laboratories. Prerequisite: AERO 306. Concurrent: AERO 320.

AERO 416 Principles of Rotary Wing Flight (4)

AERO 419 Simulation of Aerospace Vehicles and Systems (4)
Overview of flight simulators, aerospace avionics systems, and supporting facilities including simulation equations for flight mechanics and land navigation. Team-centered projects, reports, and presentations are
emphasized with a strong focus on computer simulation of piloted flight. 2 lectures, 2 laboratories. Prerequisite: AERO 420.

AERO 420 Stability and Control of Aerospace Vehicles (4)
Stability and control derivatives, reference frames, steady-state static analysis and perturbed dynamic analysis for aircraft and spacecraft. Transfer function, state-space, and modal representations of system dynamics in response to control inputs. Design guidelines and introduction to augmentation systems. 4 lectures. Prerequisite: AERO 306, AERO 320, and ME 212.

AERO 421 Experimental Integrated Control System Analysis (1)
Implementation of elementary control analysis techniques to design and build control systems for integrated aerospace vehicles, structures and thermal systems. Analysis of sensors and actuators as applied to control problems and data acquisition. Extended use of modern computational controller design tools and data analysis. 1 laboratory. Prerequisite: AERO 420.

AERO 431 Aerospace Structural Analysis II (4)
Basic equations of elasticity with applications to typical aerospace structures. Concepts studied: include analysis of aircraft and aerospace structures; airworthiness and airframe loads; structural constraints; elementary aeroelasticity; structural instability; introduction to modern fatigue; fracture mechanics; and composite structures analysis. 4 lectures. Prerequisite: AERO 331.

AERO 432 Advanced Composite Structures Analysis (4)

AERO 433 Experimental Stress Analysis (1)
Employing the knowledge of stress analysis and aerospace structural analysis in an individual and group design project dealing with aerospace structures. 1 laboratory. Prerequisite: AERO 331, AERO 431.

AERO 435 Aerospace Numerical Analysis (4)

AERO 443, 444, 445 Aircraft Design I, II, III (4) (3) (3)
Preliminary layout of a typical aircraft vehicle using design and calculation techniques developed in previous aerospace engineering courses. Design of a flight vehicle, including its structures and systems. Preparation of necessary drawings and report. AERO 443: 2 lectures, 2 laboratories. AERO 444 and 445: 3 laboratories. Prerequisite: Senior standing, IME 144, AERO 215, AERO 303, AERO 306, AERO 331, AERO 405, AERO 420, AERO 431. Concurrent: AERO 401. Open to students enrolled in the multidisciplinary design minor.

AERO 446 Introduction to Space Systems (4)
Basic satellite types and their applications. Major subsystems of a satellite system. Space environment, propulsion system, power system, structural design, spacecraft dynamics and attitude control, orbit mechanics, thermal control, communications, and ground segments. Spacecraft integration and testing. May also be available to offsite locations (Distance Education). 4 lectures. Prerequisite: ME 212, AERO 220.

AERO 447, 448, 449 Spacecraft Design I, II, III (4) (3) (3)
Preliminary layout of typical space vehicle using design and calculation techniques developed in previous aerospace engineering courses. Design of selected components and preparation of necessary drawings. AERO 447: 2 lectures, 2 laboratories. AERO 448 and 449: 3 laboratories. Prerequisite: IME 144, AERO 215, AERO 303, AERO 331, AERO 420, AERO 431, AERO 446, AERO 451, senior standing. Concurrent: AERO 401. Open to students enrolled in the multidisciplinary design minor.

AERO 450 Introduction to Aerospace Systems Engineering (4)
Aerospace systems and subsystems. Systems integration. Development of system requirements. Analysis, modeling and simulation of complex systems. Project management. Cost analysis. Optimization and trade studies. 4 lectures. Prerequisite: Senior standing or consent of instructor.

AERO 451 Spaceflight Dynamics I (4)

AERO 452 Spaceflight Dynamics II (4)
Orbital motion, perturbing forces. Asphericity of the earth, aerodynamic drag, third-body tidal forces, etc. Eike and Cowell solution techniques. Restricted 3-body problem. Satellite attitude dynamics, rigid body-symmetric and asymmetric semirigid bodies. Attitude control, spinning/fixed gravity gradient. 4 lectures. Prerequisite: AERO 451.

AERO 461, 462 Senior Project I, II (2) (3)
Selection and completion of a project which is typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 150 hours total time. Prerequisite: Senior standing.

AERO 463, 464, 465 Senior Project Laboratory I, II (2) (3)
Selection and completion of a project by individuals or teams which is typical of problems which graduates must solve in their fields of employment. Project involves, but is not limited to, physical modeling and testing of integrated design and may include students from other disciplines. Formulation of outline, literature review, and project schedule. AERO 463: 2 laboratories. AERO 464: 3 laboratories. Prerequisite: Senior standing. Note: although AERO 463, 464 substitute for AERO 461, 462, students may not use repeat credit for the purpose of increasing GPA.

AERO 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

AERO 471 Selected Advanced Laboratory (1-4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories. Prerequisite: Consent of instructor.

AERO 493 Cooperative Education Experience (2) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 6 units. Prerequisite: Consent of instructor.

AERO 494 Cooperative Education Experience (6) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 18 units. Prerequisite: Sophomore standing and consent of instructor.

AERO 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. A more fully developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 24 units. Prerequisite: Sophomore standing and consent of instructor.
AERO 500 Individual Study (1-4)
Advanced study planned and completed under the direction of a member of
the department faculty. Open only to graduate students who have
demonstrated ability to do independent work. Enrollment by petition. Total
credit limited to 12 units. Prerequisite: Consent of department head, graduate advisor and supervising faculty member.

AERO 510 Systems Engineering I (4) (Also listed as IME 510)
Project management. Scheduling and budgeting. Queuing theory. Process
control and life-cycle cost analysis. Contracts and negotiation. 4 lectures.
Prerequisite: Graduate standing or consent of instructor.

AERO 511 Systems Engineering II (4) (Also listed as IME 511)
Risk management. Design strategies to meet system/mission requirements.
Design for supportability, manufacturability, reliability, etc. Quality
function development and quality control concepts. 4 lectures. Prerequisite:
AERO 510 or IME 510, graduate standing or consent of instructor.

AERO 512 Aerospace Vehicle Software Applications (4)
Computer system requirements for aerospace vehicles. Typical aerospace
vehicle computer architectures. Software testing, verification and validation.
Vehicle automatic systems. Risks and benefits of vehicle autonomous
operations. Integration of software with vehicle subsystems. Software
development cost/schedule estimation. 4 lectures. Prerequisite: AERO 450,
AERO 446. Graduate standing or consent of instructor.

AERO 515 Continuum Mechanics (4)
Vectors and tensors stress analysis. Analysis of deformation. Velocity fields
and compatibility conditions. Constitutive equations. Isotropy. Mechanical
properties of real fluids and solids. Field equations and boundary conditions
in fluid mechanics problems and applications in elasticity. Active
remodeling of structures. 4 seminars. Prerequisite: Graduate standing or
consent of instructor.

AERO 519 Fundamentals of Vehicle Dynamics and Control (4)
Fundamentals of particle and rigid body dynamics as they apply to
aerospace vehicles. Kinematic variables and coordinate transformations.
Attitude dynamics. Fundamentals of feedback control and its application to
Prerequisite: Graduate standing or consent of instructor. Not open to
students with credit in AERO 451 and AERO 452.

AERO 520 Applied Airplane Aerodynamics (4)
Fundamentals of analytic aerodynamics; potential flow, Kutta-Joukowski
theorem. Schwarz-Christoffel transformation, lifting line theory, thin wing
theory, three-dimensional lift and drag of wings, slender body theory. Panel
methods. Boundary-layer effects on aerodynamics. Viscous flow. 4
seminars. Prerequisite: AERO 305, MATH 502, graduate standing or
consent of instructor.

AERO 521 Missile and Launch Vehicle Aerodynamics (4)
The aerodynamics of missile configurations in subsonic, transonic,
supersonic, and hypersonic flows. Slender bodies and wings at high angles
of attack. Asymmetric flow separation and vortex shedding. Wing-body
interactions. Control effectiveness. Drag prediction methods and
aerodynamic heating. The impact of low observability on aerodynamic
design. Missile configuration design. 4 lectures. Prerequisite: AERO 405,
graduate standing, or consent of instructor.

AERO 522 Boundary-Layer Theory (4)
Concept of boundary-layer, Boundary-layer equations, similarity
transformation, integral and differential methods for steady, two-
dimensional laminar and turbulent boundary layers. 4 lectures. Prerequisite:
AERO 302, graduate standing or consent of instructor.

AERO 523 Turbulence (4)
Flow physics of turbulence. Turbulence scales and structures. Reynolds
equations. Vorticity dynamics. Energy production, convection, and
dissipation. Similarity rules and turbulence modeling for jets, wakes, mixing
and boundary layers. Effect of turbulence on noise, combustion, heat
transfer, and flow control. 4 lectures. Prerequisite: AERO 302, graduate
standing or consent of instructor.

AERO 524 Low Gravity Fluid Dynamics and Heat Transfer (4)
Low gravity environment. Mass, momentum and energy transport equations.
Combustion and flame propagation. Turbulence. Fluid management in
space. Students are expected to do self-study and make a presentation for
the seminar. 3 lectures, 1 seminar. Prerequisite: AERO 301, AERO 302, and
AERO 303, graduate standing or consent of instructor.

AERO 525 Computational Fluid Dynamics (4)
Classification of partial differential equations. Numerical methods
applicable to the solution of elliptic, parabolic, and hyperbolic partial
differential equations. Consideration of accuracy and stability of numerical
methods. Application to the fundamental equations of fluid dynamics, grid
generation, turbulence modeling. 4 lectures. Prerequisite: AERO 303,
graduate standing or consent of instructor.

AERO 526 Spacecraft Thermal/Fluid Control (4)
Satellite thermal/fluid control hardware. Governing equations for flow and
heat transfer. Surface tension and liquid/vapor interface. Heat transfer by
free convection, forced convection and radiation in low-gravity
Fluid management in space. 4 lectures. Prerequisite: AERO 301, AERO
302, and AERO 303, or graduate standing.

AERO 530 Inelastic Structural Analysis (4)
Inelastic stress analysis. Yield criteria. Strain hardening. Plastic straining
plains. Plastic strain problems and analysis and introduction to
viscoplasticity. 3 lectures, 1 laboratory. Prerequisite: Graduate standing or
consent of instructor.

AERO 532 Advanced Aerospace Composite Design (4)
Behavior of composite materials. Bending, buckling, and vibration of
laminated plates. Fatigue and fracture mechanics analysis of composite
structures. Optimum design of composite pressure vessels. 2 seminars, 2
laboratories. Prerequisite: Graduate standing or consent of instructor.

AERO 533 Finite Elements for Aerospace Structural Analysis (4)
Overview of theoretical and applied methods of finite element analysis for
aerospace structures including composite and light weight structures. Topics
include basic equations of elasticity, solutions of linear systems of equations
transformation, global stiffness matrix, Bernoulli-Euler element, plane stress
triangles, finite element formulation, isoparametric elements, alternative
formulation, eigenvalue problems and dynamic analysis. 3 lectures, 1
laboratory. Prerequisite: AERO 431.

AERO 534 Aerodynamic Structural Dynamics Analysis (4)
Fundamentals of structural dynamics and aeroelasticity of flight vehicles.
Undamped and damped, free and forced vibration of a single and multi
degree-of-freedom linear systems. Finite elements and vibration analysis.
3 lectures, 1 laboratory. Prerequisite: Graduate standing or consent of
instructor.

AERO 535 Advanced Aerospace Structural Analysis (4)
Types of failure. Theories of failure. Stability of structures. Advanced flight
vehicle and fracture mechanics analysis and design. Fundamentals and
applications of modern fatigue analysis in the aerospace industry. 3 lectures,
1 laboratory. Prerequisite: Graduate standing or consent of instructor.

AERO 540 Elements of Rocket Propulsion (4)
Thrust and impulse equations, propellant composition and mixture ratios,
nozzle expansion ratios, solid and liquid propellant combustion, internal
ballistics, thermo-chemical computations, chemical kinetics, and combus-
tion instability, nozzle design and exhaust plumes. 4 seminars. Prerequisite:
AERO 303, AERO 401, graduate standing or consent of instructor.

AERO 541 Air Breathing Propulsion (4)
Aerothermodynamics of propulsion systems, power plant selection and
design, on-off design performance, component characterization, component
design, component matching, optimization, and introduction to power plant
and airframe integration systems for aircraft. 4 seminars. Prerequisite:
AERO 401, graduate standing or consent of instructor.

2007-2009 Cal Poly Catalog
Fundamental principles of flight control design and the application of the Cooper-Harper test and evaluation tool to modern aerospace vehicles. Human factors, issues, and automation, case study of the space shuttle. 3 lectures, 1 laboratory. Prerequisite: AERO 420, graduate standing or consent of instructor.

AERO 551 Global Positioning Satellite Navigation Systems (4)
Principles of Global Positioning Satellite navigation systems. Kalman filter design and application to integrated navigation and guidance systems. Statistical evaluation and test methods in aerospace. Interactive computer simulations. 3 lectures, 1 laboratory. Prerequisite: AERO 420, graduate standing or consent of instructor.

AERO 552 Advanced Control of Spacecraft and Aircraft (4)
Model following and digital control of aerospace craft, including dynamic estimation of vehicle states using Kalman filters and adaptive compensation. Team-centered projects involving optimal attitude control in deep space, hovering vehicles, and aeroelastic systems. Survey of non-linear, fuzzy, and neural net controllers for aerospace applications. 2 lectures, 2 laboratories. Prerequisite: AERO 420, graduate standing or consent of instructor.

AERO 553 Advanced Linear Control Theory (4)
Advanced linear control theory techniques and analytic and computational analysis. State space system representation, solutions to linear dynamic systems, stability analysis, full-state and output feedback, controllability and observability and advanced control topics. Computational methods applied to problems in stability and control of dynamic systems. 4 lectures. Prerequisite: AERO 320, graduate standing or consent of instructor.

AERO 555 Piloted Flying Qualities of Aerospace Vehicles (4)
Flying qualities prediction from flight test data and reduced-order analytical models of vehicles, systems, and human pilots. Application of the Cooper-Harper flight test scale to fly-by-wire aircraft, the space shuttle, and remotely controlled vehicles include rotorcraft, Team-centered projects, reports, and presentations are required. 2 lectures, 2 laboratories. Prerequisite: AERO 420.

AERO 560 Spacecraft Dynamics and Control (4)
Orbit determination and control. Orbit maneuvering and rendezvous. Attitude control of rigid spacecraft via reaction wheels, control moment gyros and thrusters. Modeling, analysis and control of flexible spacecraft. 4 lectures. Prerequisite: AERO 420, AERO 452, AERO 553, graduate standing or consent of instructor.

AERO 561 Vehicle Integration and Testing (2)
Space vehicle integration requirements and procedures. Clean room requirements and operations. Quality control and inspection. Qualification and acceptance testing requirements. Test equipment. Vibration and shock testing. Space environment and thermal-vac testing. Development of test procedures. 1 lecture, 1 laboratory. Prerequisite: AERO 446. AERO 450 recommended. Graduate standing or consent of instructor.

AERO 562 Space Operations (2)
Launch operations and vehicle integration with launch vehicle. In-orbit operations and maneuvers. Spacecraft tracking. Telemetry and command. Ground systems. Failure detection and identification. Emergency operations. 1 lecture, 1 laboratory. Prerequisite: AERO 446. AERO 450 recommended. Graduate standing or consent of instructor.

AERO 565 Advanced Topics in Aircraft Design (4)
Application of advanced analytic engineering methods to aircraft design problems. Analysis and synthesis of advanced topics related to design of aircraft. 4 lectures. Prerequisite: AERO 522, AERO 530 and AERO 550, graduate standing or consent of instructor. Concurrent: AERO 520.

AERO 566 Advanced Topics in Spacecraft Design (4)
Application of advanced engineering tools to the design of space vehicles. System architecture and mission design. Concept of operations. Requirements development and flow down. System and subsystems trade studies and preliminary design. 4 lectures. Prerequisite: AERO 450, AERO 446, graduate standing or consent of instructor.

AERO 567 Launch Vehicle and Missile Design (4)
Basic launch vehicle/missile types. Launch vehicle subsystems and their interactions. Vehicle requirements development and flow down. Payload accommodations. System and subsystems trade studies and preliminary design. 4 lectures. Prerequisite: AERO 401, AERO 450, AERO 446, graduate standing or consent of instructor.

AERO 570 Selected Advanced Topics (4)
Directed group study of selected topics for graduate students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 lectures. Prerequisite: Graduate standing or consent of instructor.

AERO 571 Selected Advanced Laboratory (1-4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1-4 laboratories. Prerequisite: Graduate standing or consent of instructor.

AERO 572 Topics in Aircraft Manufacturing and Fabrication (1)
Selected topics for assembling aircraft and aircraft components, including empennage, wing fuselage, engine, flight controls, avionics, finishing work, and flight testing. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 laboratory. Prerequisite: Junior standing and consent of instructor.

AERO 593 Cooperative Education Experience (2) (CR/NC)
Advanced study analysis and part-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

AERO 594 Cooperative Education Experience (6) (CR/NC)
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

AERO 595 Cooperative Education Experience (12) (CR/NC)
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. A fully-developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

AERO 599 Thesis (Design Project) (1-9)
Each individual or group will be assigned a project for solution under faculty supervision as a requirement for the master's degree, culminating in a written report/thesis. Prerequisite: Graduate standing.

AG—AGRICULTURE

AG 200 Special Problems for Undergraduates (1-2) (CR/NC)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Credit can only be used to satisfy free electives. Credit/No Credit grading only. Prerequisite: Consent of rodeo coach/instructor.

AG 243 Competitive Intercollegiate Rodeo (2) (CR/NC)
Beginning through advanced skills in the event areas of college rodeo. Areas include saddle bronc, bareback, and bull riding; calf, team, and breakaway roping; steer wrestling, goat tying, and barrel racing. Minimum of 10 hours of laboratory per week. Total credit limited to 8 units. Credit/No Credit grading. Enrollment limited to those qualified to compete in intercollegiate rodeo. Consent of coach required.
AG 250 Computer Application to Agriculture (3)
Microcomputers and commercial software used in agricultural industries. Word processing, spreadsheets, data base management programs, and programs applied to agriculturally oriented problems. 3 lectures.

AG 301 Agriculture and American Life (4)
Overview of agriculture and effect on American life; wise use of natural resources; animal and plant production; role of machines, labor, and chemicals in producing food and fiber; processing and marketing of commodities; nature of farm life; leadership development in agriculture. Not open to students with majors in agriculture. 4 lectures. Prerequisite: Junior standing.

AG 315 Organic Agriculture (4)
Origins, application, regulation and technology of organic agriculture. Theoretical and practical issues surrounding organic agriculture from a cross-disciplinary perspective. Topics include the history of the organic movement; current regulation and certification; and field management practices and technologies. Features industry guest lecturers. 3 lectures, 1 activity. Prerequisite: Junior standing and completion of GE Area B.

(Also listed as HUM/UNIV 330)
Scientific investigation of the natural features of the Cal Poly landscape and their transformations by land management technology. Analysis of the environmental, economic, social, and political effects of agricultural, resource extraction and construction technology on that landscape. Emphasis on the educational, land-use and long term planning issues of technology presented by this case study. 4 lectures. Prerequisite: Completion of GE Areas A and B, and junior standing.

AG 339 Internship in Agriculture (1-12) (CR/NC)
Selected students will spend up to 12 weeks with an approved agricultural firm engaged in production or related business. Time will be spent applying and developing production and managerial skills and abilities. One unit of credit may be awarded for each full week of completed and reported internship. Credit/No Credit grading. Prerequisite: Consent of internship instructor.

AG 350 The Global Environment (4)
(Also listed as BUS/EDES/ENGR/HUM/SCM/UNIV 350)
Interdisciplinary investigation of how human activities impact the Earth's environment on a global scale. Examination of population, resource use, climate change, and biodiversity from scientific/technical and social/economic/historical/political perspectives. Use of remote sensing maps. Sustainable solutions. 3 lectures, 1 activity. Prerequisite: Completion of GE Areas A and B and junior standing.

AG 360 Holistic Management (4)
Application of holistic management, a goal-oriented, value-driven framework for making decisions that are ecologically, economically, and socially sound. Impact of technology and other tools on ecosystem processes. Holistic approach to management, especially of land-based resources, aimed toward greater biodiversity and sustainability. 3 lectures, 1 laboratory. Prerequisite: Completion of GE Area B, and junior standing. Not open to students with credit in AG 450.

AG 400 Special Problems for Advanced Undergraduates (1-2) (CR/NC)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Credit/No Credit grading only. Prerequisite: Consent of rodeo coach/instructor.

AG 439 Internship in Integrated Ranch Operations (6-12) (CR/NC)
Work experience in all activities/projects associated with the production of crops, livestock and timber at Swanton Pacific Ranch. Students will be responsible for all activities associated with ranch operation including supervising. For students working and living at Swanton Pacific Ranch. Credit/No Credit grading only. Total credit limited to 18 units. Prerequisite: Senior or graduate standing and consent of instructor.

AG 450 Applied Holistic Management (4)
Application of holistic management, a goal-oriented, value-driven framework for making decisions that are ecologically, economically, and socially sound. Impact of technology and other tools on ecosystem processes. Holistic approach to management, especially of land-based resources, aimed toward greater biodiversity and sustainability. 3 lectures, 1 laboratory. Prerequisite: Any life science course, and junior standing. Not open to students with credit in AG 360.

AG 452 Issues Affecting California Agriculture (4)
Interactive seminars with speakers from government and industry covering policy and regulations affecting California agriculture. Students develop an understanding of agricultural policy and work in teams to develop a public presentation and position paper on a significant issue. Field trip to Sacramento required. 4 seminars. Prerequisite: Completion of GE Area D2 (ECON 201 or ECON 222 recommended), and junior standing.

AG 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

AG 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

AG 500 Individual Study (1-6)
Advanced independent study planned and completed under the direction of a member of the college faculty. Total credit limited to 6 units. Prerequisite: Consent of department head, graduate advisor and supervising faculty member.

AG 539 Graduate Internship in Agriculture (1-9)
Application of theory to the solution of problems of agricultural production or related businesses in the field. Analyze specific management problems and perform general management assignments detailed in a contract between the student, the firm or organization, and the faculty advisor before the internship commences. Degree credit limited to 6 units. Prerequisite: Consent of internship instructor.

AG 581 Graduate Seminar (1) (CR/NC)
Advanced topics in agriculture and natural resources. Group study of current research and industry trends. Invited speakers covering a variety of topics. Total credit limited to 3 units. 1 hour seminar. Prerequisite: Graduate standing or consent of instructor.

AG 585 Cooperative Education Experience (6) (CR/NC)
Advanced study analysis and part-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Total credit limited to 9 units. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

AG 595 Cooperative Education Experience (12) (CR/NC)
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Total credit limited to 9 units. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

AG 598 Reading and Conference (1-12) (CR/NC)
Systematic development of an agricultural thesis research project including literature searches, reports and experimental design. Repeatable for up to 12 units. Credit/No Credit grading only. Prerequisite: Graduate standing and instructor consent.
AG 599 Thesis (1-9)
Systematic research of a significant problem. Thesis will include problem identification, significance, methods, data analysis, and conclusion. Students must enroll every quarter in which facilities are used or advising is received. Degree credit limited to 6 units. Prerequisite: Graduate standing and consent of instructor.

AGB—AGRIBUSINESS

AGB 101 Introduction to Agribusiness (4)
Orientation to the agribusiness sector of agriculture. An overview of the breadth, size, scope and management aspects of the agricultural business complex. 3 lectures.

AGB 105 Economic Calculus Laboratory (1) (CR/NC)
Facilitated study and discussion of theory, problems and application of calculus in economics. Credit/No Credit grading only. 1 activity. Corequisite: Concurrent enrollment in AGB 313.

AGB 200 Special Problems for Undergraduates (1--2) (CR/NC)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Credit can only be used to satisfy free electives. Credit/No Credit grading only. Prerequisite: Consent of department head.

AGB 202 Sales, Communication and Leadership in Agribusiness (4)
Self-management, communication, and interpersonal skills necessary in developing managerial abilities, leadership qualities, and facilitating teamwork within the agribusiness sector. Industry opportunities ranging from input and output products and services along with government and special interest groups will be surveyed. 4 lectures. Prerequisite: AGB 101.

AGB 212 Agricultural Economics (4)
Theoretical development of factors affecting demand and supply for food and fiber and for agricultural inputs. Methods of selecting optimal levels of agricultural production and consumption variables. Evaluation of market structure and price formulation for agricultural products and resources. 4 lectures.

AGB 214 Agribusiness Financial Accounting (4)
Principles of financial accounting in agribusiness. Preparation for understanding and interpreting financial statements. Exploration of financial reporting standards to provide an understanding of how financial events are reflected in financial statements. The importance of social responsibility in accounting. The accounting cycle, from transactions posting to financial statements through spreadsheet applications. 3 lectures, 1 activity. Prerequisite: Sophomore standing.

AGB 301 Food and Fiber Marketing (4)
Food and fiber marketing, examining commodity, industrial, and consumer product marketing from a managerial viewpoint. Global perspective in understanding consumer needs and developing the knowledge of economic, political, social and environmental factors that affect food and fiber marketing systems. 4 lectures. Prerequisite: AGB 212/ECON 201.

AGB 302 Agricultural Associations and Cooperatives (4)
Purpose, kinds, organization and management of agricultural cooperatives. Evaluating cooperative performance. Emphasis on California cooperatives, international agricultural cooperatives, and strategic alliances. One-day field trip visiting agricultural cooperatives included. 4 lectures. Prerequisite: AGB 301.

AGB 303 Introduction to the Horse Racing Industry (4)
Descriptive analysis of horse racing industry: breeding farms, race tracks, trade associations, training issues, and auction sales. Industry structure, economic flows, contributions to state and local taxes, and racing law. Cultural influences of racing in Europe, Australasia, and Latin America. 4 lectures. Prerequisite: Junior standing.

AGB 310 Agribusiness Credit and Finance (4)
Financing California's agricultural industry. Sources of credit and types of loans used by agribusinesses. Costs of credit. Financial analysis of agricultural borrowers. Future and present value techniques used in evaluating agricultural investments. Agricultural financial management. Financial capital markets and leasing. 4 lectures. Prerequisite: One quarter of accounting or AGB 321.

AGB 312 Agricultural Policy (4)
Agricultural policy objectives and formulation, resource allocation and production adjustments. Survey of State and Federal agricultural policies as they influence the planning and practices of agribusiness. 4 lectures. Prerequisite: AGB 212; ECON 222.

AGB 313 Agricultural Economic Analysis (4)
Advanced agricultural microeconomics with emphasis on mathematical problem solving; production and cost functions, single and multiple input allocation, agricultural output combinations, agricultural market structures, and economies of size. 4 lectures. Prerequisite: AGB 212, MATH 221.

AGB 314 Fair and Fair Facility Management (4)
Fundamentals of the year round operation of a fair facility to include rental opportunities, master planning, and maintenance. Principles and procedures in planning, organizing, operating, and evaluating a fair. One day field trip required. 4 lectures. Prerequisite: Upper division standing.

AGB 315 Land Economics (4)
Economics of agricultural and rural land use. Incorporates production economics with welfare theory to explore society's implicit and explicit land use decisions and problems in California, the West and nationwide. Incorporates land use planning and its implicit economic content. 4 lectures. Prerequisite: AGB 312 and AGB 313.

AGB 317 Agriculture-Consumer Relationships (2)
Basic facts, public opinion and ways of developing greater understanding of agriculture, its nature, characteristics, problems and relationship to nonfarm persons. Consumer education programs and procedures. 2 seminars. Prerequisite: Upper division standing.

AGB 318 Global Agricultural Marketing and Trade (4)
Analysis of international marketing opportunities for agricultural products. Strategies for enhancing the performance of U.S. agricultural exports/imports. Impact of government trade policies and regulations, distribution systems, and the changing consumer. 4 lectures. Prerequisite: AGB 301, 312.

AGB 321 Farm Records (4)
Fundamentals of record keeping, kinds of records, inventory, depreciation, payrolls, cash and accrual basis of income tax reporting, financial statements and analysis. 3 lectures, 1 activity. Prerequisite: AGB 212/ECON 201.

AGB 322 Principles of Agribusiness Management (4)
Organization and operation of agribusinesses. Identification of factors affecting profitability. Evaluation of the business for increased efficiency and profit. Application of budgeting to representative firms and independent analysis of an agribusiness. 3 lectures, 1 activity. Prerequisite: AGB 212 and AGB 214 or AGB 321.

AGB 323 Agribusiness Managerial Accounting (4)
Agribusiness management with an emphasis on using accounting procedures that will provide useful information in making management decisions, setting objectives, and controlling operations. 3 lectures, 1 activity. Prerequisite: AGB 214.

AGB 324 Agricultural Property Management and Sales (4)
Economic, legal and real estate principles in the investment, development, mortgaging and transferring of agricultural real estate. 3 lectures, 1 activity. Prerequisite: AGB 310 or consent of instructor.

AGB 336 Rural Property Appraisal (4)
Methods of rural appraisal, including farms, ranches and other rural properties, use of county records, appraisal practice on different types of rural properties, discussions with professional appraisers. 3 lectures, 1 activity. Prerequisite: AGB 310.

AGB 331 Farm Accounting (4)
Application of commercial accounting process to farm and ranch accounting problems. Emphasis on accounting systems that facilitate financial statement presentation, tax preparation and ADP enterprise analysis. Income tax laws pertaining to agriculture. 3 lectures, 1 activity. Prerequisite: AGB 214.
AGB 336 Commodity Markets in Agribusiness (4)
Commodity market history, performance, and use in management of agribusiness. Techniques of analysis, hedging, speculation with applications to the agricultural business firm. 4 lectures. Prerequisite: AGB 212 and ECON 222, or consent of instructor.

AGB 339 Internship in Agribusiness (1-12) (CR/NC)
Selected students will spend up to 12 weeks with an approved agricultural firm engaged in production or related agribusiness. Time will be spent applying and developing agribusiness functional and managerial skills and abilities. One unit of credit may be allowed for each full week of completed and reported internship. Degree credit limited to 6 units. Credit/No Credit grading only. Prerequisite: Consent of internship instructor.

AGB 360 Agribusiness Information Technology (4)
Use of information technologies and advanced computer applications in agribusiness decision-making. Information search and retrieval technologies. Computer languages and programs developed as tools to assist in agribusiness problem-solving. 4 lectures. Prerequisite: AGB 212/ECON 201.

AGB 370 World Food Economy (4)
International agricultural production, economics, and distribution. Comparative and competitive advantage in world agriculture. Food security issues and regional analysis of agriculture policies. The future of agriculture from a global perspective. 4 lectures. Prerequisite: AGB 312 and AGB 313.

AGB 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department head or instructor.

AGB 401 Managing Cultural Diversity in Agricultural Labor Relations (4) - USCP
Agricultural labor trends and problems as determined by changes occurring in farming and farm related industries. Labor-management relations in agriculture; principles and procedures in organizing and managing the agricultural business personnel program. 4 lectures. Prerequisite: Senior standing.

AGB 404 Food Retail Management (4)
Uses and techniques in management of perishable and non-perishable food commodities at the retail level. Issues in traditional versus new models of retail with emphasis on the marketing mix. Introduction to vendor, category and shelf management. 4 lectures. Prerequisite: AGB 301.

AGB 405 Agribusiness Marketing Research Methods (4)
Agrolicultural marketing research data collection and analysis. Emphasis on food sector market segmentation, product positioning, new product testing, sales forecasting, and marketing plan development through secondary and primary data sources. Experimental research design and implementation. 4 lectures. Prerequisite: STAT 221, AGB 301.

AGB 406 Agribusiness Marketing Planning (4)
Client centered course where self-managed teams develop agribusiness marketing plan. Emphasis on developing presentation skills. Integration of marketing mix, particularly promotional elements in developing agribusiness marketing strategy emphasized. 4 lectures. Prerequisite: AGB 405.

AGB 407 Agribusiness Marketing Plan Internship (4)
A minimum of 120 hours spent with an approved agricultural marketing firm. Development of an agribusiness marketing plan. Integration of marketing mix, particularly promotional elements in developing agribusiness marketing strategy emphasized. Presentation of the marketing plan to corporate management and instructor. Prerequisite: AGB 339.

AGB 409 California Agricultural Law (3)
Historical and current sources of law, examination of judicial systems, application of contracts, agency, labor law, torts, property and water law, partnerships, corporations and corporate finance applicable to agricultural enterprises. 3 lectures. Prerequisite: BUS 207, senior standing or consent of instructor.

AGB 410 Agricultural Lending (4)
Structure and performance of the agricultural lending industry. Advanced agricultural loan analysis and risk assessment. Agricultural loan documentation, securitization of farm loans, and farm bankruptcy. Exploration of interest rate impacts on agricultural lending. 4 lectures. Prerequisite: AGB 214, AGB 310 and senior standing.

AGB 412 Advanced Agricultural Policy (4)
Agricultural resource allocation issues with emphasis on policies that impact the production of food and fiber and inputs used in their production. Special topics in agricultural resource allocation stressing issues and policies emphasizing economic externalities. 4 lectures. Prerequisite: AGB 312, AGB 315, AGB 370, and AGB 421 or AGB 433.

AGB 418 Seminar in U.S./World Agricultural Trade Issues (2)
Comparative analysis of agricultural infrastructures and trade policies of major U.S. trading partners within specific world regions (e.g., Latin America, Asia Pacific, Europe, etc.). Particular emphasis on cultural and geo-political influences on the development of world agricultural policies. The Schedule of Classes will list topic selected. 2 seminars. Prerequisite: AGB 318.

AGB 421 Agribusiness Operations Analysis (4)
Principles and procedures in agricultural business operations analysis and research. Evaluation of programs and problems to achieve optimal decisions. Production and financial data, statistics, pricing, costs, inventories, production level, and plant expansion or contraction. 4 lectures. Prerequisite: AGB 313, STAT 221.

AGB 422 Logistics in Global Agribusiness (4)
Scope and elements of the agribusiness logistics system including supply and distribution channels, transportation, inventory, warehousing, packaging, and order processing. 4 lectures. Prerequisite: AGB 318, STAT 221.

AGB 427 Agricultural Estate Planning (2)
Principles of estate planning with special emphasis on needs of owners of closely held farming businesses. How wills, property ownership, gifts, trusts and continuation agreements affect estate plans. 2 seminars. Prerequisite: Upper division standing.

AGB 433 Agricultural Price Analysis (4)
Application of statistical tools for price analysis. Emphasis on price making process for specific agricultural commodities. Utilization of USDA and CDFA market price reports and production estimate data in price forecasting and analysis. 2 two-hour lectures. Prerequisite: STAT 221 and AGB 313.

AGB 435 Linear Programming in Agriculture (4)
Application of linear programming to decision making by contemporary farm businesses. Solutions by graphical and mathematical models including appropriate computer software. Economic interpretation of solutions. Applications for multi-product, multi-function farms. Includes introduction to goal and risk programming, transportation models, and multi-period programming. 4 lectures. Prerequisite: AGB 313.

AGB 440 Field Studies in Agribusiness (2)
Visitation to selected agribusinesses. Organization, operation, services and problems considered. Prerequisite: Senior standing or consent of instructor. Can only be taken once for credit in the major.

AGB 442 Agricultural Policy Resolution (4)
Local, state, national, and international agricultural policy issues. Extensive research on one or two policy issues. Work with various policy groups at the local and state level to assist in analyzing a policy issue, and observe how the analysis is used to develop possible consensus among the different stakeholders to be affected by the policy. Review of entire process upon completion. 4 lectures. Prerequisite: AGB 412.

AGB 443 Branded Wine Marketing (4)
Wine pricing as it relates to quality, packaging, and service. Distribution options with emphasis on the three tier system, promotional strategies, including public relations, mass media advertising, personal selling, and...
direct marketing. Domestic and international marketplaces. 4 lectures.
Prerequisite: AGB 301 or BUS 346 or consent of instructor.

AGB 444 Wine Compliance and Market Analysis (4)
Legal aspects of wine marketing with emphasis on Federal (BATF)
requirements. Application of statistical theory to the collection, interpre-
tation, and forecasting of wine and grape industry data with emphasis on
production and sales. Introduction to standard accounting ratios. 4 lectures.
Prerequisite: STAT 221 or STAT 222 or equivalent.

AGB 445 Produce Marketing (2)
Directed group study of fresh fruit and vegetable marketing. Includes
analysis of terminal markets, retail marketing (supermarkets, farmer's
markets, roadside stands), limited preserving and ripening, grading and
inspection, economics of transportation, international marketing. 2
seminars. Prerequisite: Senior standing and AGB 301.

AGB 446 Wine Market Analysis (2)
Application of statistical theory to collection and interpretation of
production/sales data. Also includes introduction to forecasting and decision
theory. Financial ratios and industry averages. 2 seminars. Prerequisite:
AGB 301 or consent of instructor.

AGB 447 Wine Distribution and Pricing (2)
Wine distribution channels with emphasis on agents, brokers, distributors,
and retailers. Inventory management and distribution cooperatives.
Domestic and international shipping regulations. The impact of price on
distribution will be highlighted. 2 seminars. Prerequisite: AGB 301 or
consent of instructor.

AGB 448 Governmental Wine Regulations and Compliance (2)
Legal aspects of wine marketing. Emphasis on federal (BATF) requirements
as well as the operation and/or use of state tax laws and state monopolies
that tend to restrict the free movement of wine. 2 seminars. Prerequisite:
Consent of instructor.

AGB 449 Wine Promotion and Packaging (2)
All types of mass media promotional strategies and complete coverage of
the following areas: personal selling, publicity, public relations, direct
marketing, and direct promotions. Label design, packaging, and point of
sale promotions. Ethics for responsible advertising. 2 seminars. Prerequisite:
AGB 446 or consent of instructor.

AGB 450 Agribusiness Strategy Formulation (4)
Development of strategy for farms and farm related businesses where
uncontrollable environment makes output and results highly unpredictable;
emphasis on the total enterprise. Case analysis. 4 lectures. Prerequisite:
Senior standing and AGB 323.

AGB 451 Strategy and Cases in International Agribusiness (4)
Exploration of environment, opportunities, and strategic challenges in the
rapidly changing global food and fiber system. Developing coordination and
control, challenges of worldwide management of functional areas of
agribusiness. Focus is practical and managerial through extensive use of
case studies. 4 lectures. Prerequisite: Senior standing, AGB 318, AGB 323.

AGB 452 Agricultural Market Structure and Strategy (4)
Development of skills for quantity and price determination in a noncom-
petitive setting. Emphasis on examining the agribusiness industry structures
that exist and their effects on decision-making. The use of game theory
demonstrated as a strategy formulation tool. 4 lectures. Prerequisite: AGB
313.

AGB 455 Advanced Fair Management Seminar (2)
Advanced studies in fair management with emphasis on budgets, contracts,
entertainment, carnivals, exhibit programs, crowd control, master planning
maintenance. 2 seminars. Prerequisite: AGB 314.

AGB 456 Crop Management Problems (4)
Management problems of crop farms and orchards. Crop enterprise costing
procedures, equipment costing and replacement, scheduling of operations to
obtain efficiencies. Determination of most profitable rotations and levels of
input use. Includes whole farm budget development and analysis. 4 lectures.
Prerequisite: AGB 322 and senior status.

AGB 457 Livestock Management Problems (4)
Analysis of actual livestock enterprise. Budgeting a ranch by enterprises.
Analysis of internal problems such as bull purchase economics, feed buying
chart, feedyard economics, cattle price relationships, livestock systems.
Includes whole farm budget development and analysis. 4 lectures.
Prerequisite: AGB 322 and senior status.

AGB 458 Dairy Management Problems (4)
Analysis of actual dairy enterprise. Budgeting a dairy farm by enterprises.
Analysis of problems such as load by load milk-feed analysis, value of milk
quotas, most profitable concentrate to hay feeding. Includes whole farm
budget development and analysis. 4 lectures. Prerequisite: AGB 322 and
senior status.

AGB 460 Research Methodology in Agribusiness (2)
Empirical application of the scientific method as it relates to the design and
development of Senior Project. Research plan is developed. First quarter of
Senior Project. 2 seminars. Prerequisite: Senior standing and AGB 313.

AGB 461 Senior Project (2)
Completion of a project under faculty supervision. Research topics or
projects typical of problems which graduates must solve in the agricultural,
food and fiber industries. Project results are presented in a formal report.
Minimum 60 hours total time. Prerequisite: Senior standing and AGB 460.

AGB 463 Senior Seminar (2)
Individual or group presentation for discussion of subjects and problems
within the agribusiness field. The Schedule of Classes will list topic
selected. Total credit limited to 4 units. 2 seminars. Prerequisite: Senior
standing.

AGB 485 Cooperative Education Experience in Agribusiness (6)
(CR/NC)
Part-time work experience with an approved Agribusiness firm engaged in
production or related business, industry or governmental agency. Positions
are paid and usually require relocation and registration in course for two
consecutive quarters. Formal report and evaluation by work supervisor
required. Total credit limited to 16 units. Degree credit limited to 6 units.
Credit/No Credit grading only. Prerequisite: Sophomore standing and
consent of instructor.

AGB 489 Cooperative Education Experience in Agribusiness (12)
(CR/NC)
Full time work experience with an approved Agribusiness firm engaged in
production or related business, industry or governmental agency. Positions
are paid and usually require relocation and registration in course for two
consecutive quarters. Formal report and evaluation by work supervisor
required. Total credit limited to 16 units. Degree credit limited to 6 units.
Credit/No Credit grading only. Prerequisite: Sophomore standing and
consent of instructor.

AGB 500 Individual Study in Agribusiness (1–6)
Advanced independent study planned and completed under the direction of
a member of the Agribusiness faculty. Total credit limited to 6 units.
Prerequisite: Consent of department head, graduate advisor and supervising
faculty member.

AGB 510 International Development and Agribusiness (4)
Integration of agricultural development economics, developing economies,
markets, and agribusiness with social and institutional limitations. 4
seminars. For students in MS in Agriculture Program/ Specialization in
Agribusiness. Prerequisite: Graduate standing or consent of instructor.

AGB 514 Agribusiness Managerial Leadership and Communication
(4)
Current issues in agriculture addressed through the case analysis method.
Emphasis on communication skills and leadership qualities, identifying key
success requirements. 4 seminars. Prerequisite: Graduate standing or
consent of instructor.
AGB 539 Graduate Internship in Agribusiness (1–9)
Application of theory to the solution of problems of agricultural production or related business in the field of Agribusiness. Analyze specific management problems and perform general management assignments detailed in a contract between the student, the firm or organization, and the faculty advisor before the internship commences. Degree credit limited to 6 units. Prerequisite: Consent of internship instructor.

AGB 543 Agribusiness Policy and Program Analysis (4)
Economic, political, and social objectives of domestic agricultural policies and programs. Consequences of government's policies and programs to control production, allocate resources, support market prices, and provide benefits to food and fiber producers, marketers, and consumers. Topical analysis of current efforts of government to direct agriculture. 4 seminars. Prerequisite: Graduate standing or consent of instructor.

AGB 554 Food System Marketing (4)
Major issues facing the food system marketer. Vertical and horizontal linkages, pricing in agricultural markets, management of price risk through futures markets and hedging, and public policy and consumer impacts on the system. Student involvement through case studies simulations, and presentations. 4 seminars. Prerequisite: Graduate standing or consent of instructor.

AGB 555 Technological and Economic Change in Agribusiness (4)
Ramiﬁcations and impacts in agribusiness from technological and economic changes. Emphasis on speciﬁc agribusiness ﬁrms and their managerial process of dealing with problems and opportunities in the operational environments of economic, technology, political, global, domestic and marketing. 4 seminars. Prerequisite: Graduate standing, or consent of instructor.

AGB 563 International Agribusiness Trade: Cases and Theory (4)
Changing agricultural trade dynamics in a world economy. Evaluation of ﬁrm and government policy strategies in interacting with and expending markets for agricultural trade. Emphasis on environmental and sustainable trade issues. 4 seminars. Prerequisite: Graduate standing or consent of instructor.

AGB 570 Selected Topics in Agribusiness (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1 to 4 seminars. Prerequisite: Graduate standing or consent of instructor.

AGB 571 Selected Advanced Laboratory in Agribusiness (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Consent of instructor.

AGB 585 Cooperative Education Experience in Agribusiness (6)
Advanced study, analysis and part-time work experience in the field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Total credit limited to 9 units. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

AGB 595 Cooperative Education Experience in Agribusiness (12)
Advanced study, analysis and full-time work experience in the field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Total credit limited to 9 units. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

AGB 599 Thesis in Agribusiness (1–9)
Systematic research of a significant problem in Agribusiness. Thesis will include problem identification, significance, methods, data analysis, and conclusion. Students must enroll every quarter in which facilities are used or advisement is received. Degree credit limited to 6 units. Prerequisite: Graduate standing and consent of instructor.

AGC—AGRICULTURAL COMMUNICATION

AGC 400 Advanced Special Problems in Agricultural Communication (1–4)
Individual investigation, research, studies or surveys of selected problems in Agricultural Communication/Agricultural Education. Total credit limited to 8 units, with a maximum of 4 units per quarter. Prerequisite: Consent of department head.

AGC 407 Agricultural Publications (4)
Integration of writing, editing, and layout skills in producing agricultural publications. Emphasis on using computer applications in desktop publishing. Total credit limited to 9 units; may be in same term. 2 lectures, 2 activities. Prerequisite: AG 250, CSC 113, or JOUR 205.

AGC 426 Presentation Methods in Agricultural Communication (4)
Development, delivery and evaluation of effective means of communication by use of a variety of presentation methods and the use of technology for effective communication. 2 lectures, 2 activities. Prerequisite: COMS 101.

AGC 461 Senior Project I (1)
Empirical application of the scientiﬁc method as it relates to the selection of a project under faculty supervision. Projects typical of problems that graduates must solve in their field of employment. Minimum 30 hours total time. Prerequisite: AGED 460.

AGC 462 Senior Project II (1)
Completion of a project begun in AGED 461 under faculty supervision. Projects typical of problems that graduates must solve in their field of employment. Project results are presented in a formal report. Minimum 30 hours total time. Prerequisite: AGED 461 or consent of instructor.

AGC 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

AGC 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1-4 laboratories. Prerequisite: Consent of instructor.

AGC 500 Individual Study in Agricultural Communication (1–3)
Advanced independent study planned and completed under the direction of a member of the Agricultural Education and Communication faculty. Total
AGC 539 Graduate Internship in Agricultural Communication (1–9)
Application of theory to the solution of problems of agricultural production or related business in the field of Agricultural Communication. Analyze specific management problems and perform general management assignments detailed in a contract between the student, the firm or organization, and the faculty advisor before the internship commences. Degree credit limited to 6 units. Prerequisite: Consent of internship instructor.

AGC 570 Selected Topics in Agricultural Communication (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1 to 4 seminars. Prerequisite: Graduate standing or consent of instructor.

AGC 571 Selected Advanced Laboratory in Agricultural Communication (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Consent of instructor.

AGC 580 Special Problems in Agricultural Communication (1–3)
Individual study of modern issues and problems conducted through research, planning and development. Field problems and in-service study in agricultural industry encouraged. Final written report required. Total credit limited to 9 units with not more than 3 units in any one quarter. Prior approval of instructor required.

AGC 581 Graduate Seminar in Agricultural Communication (3)
Group study of selected developments, trends and issues in the field of Agricultural Communication. 3 seminars. Prerequisite: Graduate standing or consent of instructor.

AGED—AGRICULTURAL EDUCATION

AGED 102 Personal Assessment (2) (CR/NC)
Designed to increase the student's academic, career, and personal self-assessment as it relates to the educational process. Study skill methods, campus academic regulations, available resources and issues that face many university students. Credit/no credit grading only. 2 activities.

AGED 200 Special Problems in Agricultural Education (1–4)
Individual investigation, research, studies or surveys of selected problems in Agricultural Communication/Agricultural Education. Total credit limited to 8 units, with a maximum of 4 units per quarter. Prerequisite: Consent of department head.

AGED 202 Introduction to Agricultural Education (2)
Overview of agricultural education career pathways including goals and purposes. Kinds of classes and types of programs. Qualifications essential to success in teaching agriculture. Planned program of studies to meet requirement for teaching agricultural science and related disciplines. 2 lectures.

AGED 220 Agriculture Youth Conferences (2) (CR/NC)
Problems encountered and practices applied during the conduct of the annual FFA State Convention. Methods, procedures and materials adapted for use by the student in developing the committee system to produce conferences, conventions and workshops of all kinds and sizes. Total credit for AGED 220 and AGED 221 limited to 6 units. Credit/No Credit grading only. 2 activities. Prerequisite: Consent of instructor.

AGED 221 Agriculture Youth Conferences (3) (CR/NC)
Problems encountered and practices applied during the conduct of the annual FFA State Convention. Methods, procedures and materials adapted for use by the student in developing the committee system to produce conferences, conventions and workshops of all kinds and sizes. Total credit for AGED 220 and AGED 221 limited to 6 units. Credit/No Credit grading only. 3 activities. Prerequisite: Consent of instructor.

AGED 330 FFA and Supervised Agriculture Programs (6)
Implementation processes and operational procedures for initiating, conducting and integrating FFA activities and SOE Programs appropriate to community, school and student needs. Demonstration, application and observation of practices and techniques utilized by agriculture instructors in conducting organized classroom, shop, school farm, laboratory and home visit instruction in agriculture, FFA and SOE activities. 3 activities, and supervised work. Prerequisite: AGED 202.

AGED 339 Internship in Agricultural Education (1–12) (CR/NC)
Selected Agricultural Education students will spend up to 12 weeks with an approved agricultural firm engaged in production or related business. Time will be spent applying and developing production and managerial skills and abilities. One unit of credit may be allowed for each full week of completed and reported internship. Degree credit limited to 6 units. Credit/No Credit grading only. Prerequisite: Consent of internship instructor.

AGED 400 Advanced Special Problems in Agricultural Education (1–4)
Individual investigation, research, studies or surveys of selected problems in Agricultural Communication/Agricultural Education. Total credit limited to 8 units, with a maximum of 4 units per quarter. Prerequisite: Consent of department head.

AGED 404 Agricultural Leadership (3)
Emphasis upon equipping current and prospective leaders in agriculture with the background and skills to achieve their potential. Class members will assess their status as leaders and identify means to improve their effectiveness. Focus on the theoretical underpinnings of human motivation, personal leadership, and organizational development. 2 lectures, 1 activity. Prerequisite: PSY 201 or PSY 202.

AGED 410 Computer Applications in Agricultural Education (2)
Development of computer literacy for teaching agriculture. Analysis and specialization of hardware. Instruction in digital technology, TI network systems and software applicable to vocational agriculture. Will be Level I certified, which is required for teaching credential candidates. Prerequisite: AG 250 or CSC 110 and consent of instructor.

AGED 422 Organizing and Teaching K-6 Standards (4)
Objectives, content, techniques, materials, and recent trends of successful application of agricultural literacy and awareness to K-6 grade level standards. Ongoing projects, individual and group, allow for exploration and understanding of agriculture as a theme to teach all of the content areas, as well as assist in understanding the educational standards accompanying each lesson, 4 lectures. Prerequisite: Liberal Studies Preservice candidate.

AGED 424 Organizing and Teaching Agriculture (3)
Determining course objectives, content, and calendar for use by the teacher in classroom, shop and field instruction while assigned to community schools. Concurrent with student teaching. 3 activities. Prerequisite: AGED 438 and consent of instructor.

AGED 438 Instructional Processes in Agricultural Education (4)
Principles of specific agricultural teaching methods and developmentally appropriate pedagogy. Daily and unit lesson plans that adopt content, teaching methods, and assessment for English Learners and students with special needs. Class demonstrations in teaching procedures, analysis, assessment and reflection. 2 lectures, 2 activities. Prerequisite: AGED 330, EDUC 412, EDUC 414 and EDUC 416 or consent of instructor.

AGED 440 Student Teaching in Agricultural Education (6–12) (CR/NC)
Off-campus assignment to a selected cooperating public school. Participation in all phases of agriculture teacher duties and activities including departmental organization and administration. Prior approval and appointment necessary. Total credit limited to 18 units. Credit/No Credit grading only.
AGED 441 Student Teaching Practicum (2)
Problems encountered and practices applied during student teaching. Methods, procedures and materials adapted for use by the teacher concurrent with student teaching. 2 activities. Prerequisite: Consent of instructor.

AGED 460 Research Methodology in Agricultural Education and Communication (1)
Introduction of the research process and topic selection as it relates to the design and development of the senior project within the Agricultural Sciences major. 1 lecture. Prerequisite: Junior standing.

AGED 461 Senior Project I (1)
Empirical application of the scientific method as it relates to the selection of a project under faculty supervision. Projects typical of problems that graduates must solve in their field of employment. Minimum 30 hours total time. Prerequisite: AGED 460.

AGED 462 Senior Project II (1)
Completion of a project begun in AGED 461 under faculty supervision. Projects typical of problems that graduates must solve in their field of employment. Project results are presented in a formal report. Minimum 30 hours total time. Prerequisite: AGED 461 or consent of instructor.

AGED 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

AGED 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Consent of instructor.

AGED 481 Developing Digital Presentations for Instruction in Agricultural Education (1)
Directed group study and individualized projects in the design and development of digital presentations in technical agriculture for use in teaching and program public relations. Total credit limited to 3 units. 1 laboratory. Prerequisite: admission to credential program.

AGED 482 Teaching Resources and Curriculum Design (1)
Traditional academic and student-centered approaches to gaining resources and curriculum design. Methods of using, and the development of the knowledge and skills related to planning, implementation and assessing the high school agriculture curriculum. Organization and management and their relationship to education effectiveness and productivity. 1 lecture. Prerequisite: student teacher candidate.

AGED 500 Individual Study in Agricultural Education (1–3)
Advanced independent study planned and completed under the direction of a member of the Agricultural Education and Communication faculty. Total credit limited to 6 units. Prerequisite: Consent of department head, graduate advisor and supervising faculty member.

AGED 513 Field Experience—Vocational Agriculture (1–3)
Practice and techniques in management and supervision of vocational agriculture programs. Relationships among students, staff, community and school groups. Budgeting, staffing, records, reporting. Student activities and Future Farmers of America programs. Total credit limited to 6 units. Prerequisite: Prior approval and appointment.

AGED 520 Program Development in Agricultural Education (3)
Development of up-to-date approaches to a total integrated program based on occupational opportunities and community needs. Philosophy, organization and administration of agricultural education programs. Development in such areas as curriculum, supervised occupational experience, Future Farmers of America, and summer programs. 3 seminars.

AGED 522 Instructional Programs in Agricultural Mechanics (3)
Organizing the vocational agriculture mechanics curriculum and determining course content. Student demonstrations and presentations; evaluation and analysis. 1 seminar, 2 laboratories.

AGED 525 Organizing Instruction for Growing and Selling Horticulture Products (3)
Skills and techniques of propagation and production of horticulture crops. Scheduling, growing media, construction and use of forcing structures, and plant identification. Marketing plans and promotions. Teaching methods, curriculum development, and identification of resources and materials for horticultural instruction. 3 lectures. Prerequisite: HCS 120 or EHS 230, and senior or graduate standing. Open to agricultural educators or credential students only.

AGED 530 Developing FFA and Supervised Agricultural Experience Programs in Secondary Education (3)
Integrating FFA and supervised agricultural experience programs into the curriculum. Career development event implementation; record book usage; officer and committee training; recruitment; retention; retreat and leadership training. Current national and state initiatives and experiential learning opportunities in the workplace and entrepreneurial settings. Prerequisite: senior or graduate standing. Not open to students with credit in AGED 330. 3 lectures.

AGED 539 Graduate Internship in Agricultural Education (1–9)
Application of theory to the solution of problems of agricultural production or related business in the field of Agricultural Education. Analyze specific management problems and perform general management assignments detailed in a contract between the student, the firm or organization, and the faculty advisor before the internship commences. Degree credit limited to 6 units. Prerequisite: Consent of internship instructor.

AGED 570 Selected Topics in Agricultural Education (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1 to 4 seminars. Prerequisite: Graduate standing or consent of instructor.

AGED 571 Selected Advanced Laboratory in Agricultural Education (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Consent of instructor.

AGED 581 Graduate Seminar in Agricultural Education (3)
Group study of selected developments, trends and issues in the field of Agricultural Education. 3 seminars. Prerequisite: Graduate standing or consent of instructor.

ANT–ANTHROPOLOGY

ANT 201 Cultural Anthropology (4) GE D3
Contemporary human cultures throughout the world. General patterns sought within the diversity of individual cultures. Includes such topics as: family organization; gender roles; adaptation to the environment; systems of economic exchange; political organization and leadership; religious beliefs and values; ethnicity and cultural pluralism; impact of Western culture on the developing world. 4 lectures.

ANT 202 World Prehistory (4) GE D3
Development of the diverse human cultures of both the Old and New Worlds from the emergence of the first human ancestors (hominins) to the
dawn of history; biological evolution, global cultural development, and adaptation before the advent of writing. 4 lectures.

ANT 250 Biological Anthropology (4)
GE B2
Biological aspects of human unity and diversity. Primate and human evolution, including anatomical, physiological and behavioral adaptations. Origin and diversity of modern races. 4 lectures.

ANT 309 Elements of Archaeology (4)
Archaeological method and theory covering the history and development of archaeological thought, approaches to data recovery, dating and analysis of artifacts and ecofacts, the construction of models of prehistoric human behavior through application of archaeological and anthropological theories. 4 lectures. Prerequisite: ANT 201 or ANT 202, or consent of instructor.

ANT 310 Archaeological Field Methods (4)
Hands-on introduction to the methods and techniques of archaeology with an emphasis on reconnaissance and survey. Training in artifact and ecofact identification with a focus on lithic technology. Practical experience in orienteering, map-reading, and simple cartography. Methodological approaches to both academic research questions and compliance with environmental planning mandates. 3 lectures, 1 laboratory. Prerequisite: ANT 202 or ANT 309, or consent of instructor.

ANT 311 Archaeological Laboratory Methods (4)
Hands-on introduction to the methods employed in post-field processing, classification, analysis, and preservation of archaeological materials. Compilation of quantitative and qualitative information in data base format to assist in the classification and interpretation of faunal remains and artifacts. 3 lectures, 1 laboratory. Prerequisite: ANT 309 or ANT 310.

ANT 312 Introduction to Cultural Resources Management (4)
Contemporary issues in the preservation of archaeological, historic, and ethnographic resources within the framework of legally mandated environmental planning. Introduction to federal, state, and local legislation pertinent to the identification, evaluation, and treatment of cultural resources. A history of preservation legislation, culminating with detailed discussion of Section 106 of the National Historic Preservation Act and the California Environmental Quality Act. 4 lectures. Prerequisite: ANT 301, ANT 202 or ANT 309, or consent of instructor.

ANT 320 California's Native Past (4)
Overview of the paleoenvironment, prehistory, archaeology, and ethnography of Native California. The last 12,000 years of California's past from the arrival of the first human beings to the establishment of Spanish settlements in 1769 and the demise of native societies. 4 lectures. Prerequisite: ANT 201, or ANT 202, or consent of instructor.

ANT 325 Pre Columbian Mesoamerica (4)
Cultures of Mesoamerica (Mexico and Central America) from earliest times to the Spanish Conquest. Olmec, Teotihuacan, Zapotec, Maya and Aztec civilizations. Major topics include religion, politics, warfare, art, writing, calendrics, ecology and trade. 4 lectures. Prerequisite: Completion of GE Area A, one course in D2 and one course in D3. Social Sciences majors will not receive GE Area D5 credit.

ANT 330 Indigenous South Americans (4)
Indigenous peoples of South America from the past to the present. Cross-cultural study of small-banded societies, tribes and large civilization states located from the Amazon basin to the Altiplano. Comparison of current state of indigenous rights and place in modern society. 4 lectures. Prerequisite: Completion of GE Area A and completion of two lower-division Area D courses.

ANT 344 Sex, Death, and Human Nature (4)
How Darwinian processes of differential reproduction and mortality influence human interests, passions and behaviors. Theories of inclusive fitness, parental investment and senescence. Sex differences, sexual attraction, life histories, violence and aggression, including rape, homicide and infanticide. 4 lectures. Prerequisite: Completion of GE Area A, one course in D3 and one course in D4. Social Sciences majors will not receive GE Area D5 credit.

ANT 345 Human Behavioral Ecology (4)
GE D5
Biological and cultural influences of natural and sexual selection on individual behavior. Ecological effects on human behavior to reproduce and acquire resources. Scientific method for understanding foraging behavior, group living, social skills, kinship, parenting, religion, and mating. Cross-cultural, cross-sex, and cross-species comparisons. 4 lectures. Prerequisite: Completion of GE Area A, one course in B2 and one lower-division Area D course.

ANT 360 Human Cultural Adaptations (4)
GE D5
Social and cultural evolution from Paleolithic times to the present. Interactions of demographic, economic and ecological factors are emphasized. Main topics include human nature/culture, sex and gender, cooperation and conflict, the "agricultural revolution", state formation, social inequality and globalization. 4 lectures. Prerequisite: Completion of GE Area A, one course in D2 and one course in D3. Social Sciences majors will not receive GE Area D5 credit.

ANT 415 Native American Cultures (4)
USCP
Survey of Native American cultures from earliest times to present, emphasizing regional diversity in traditional lifeways. Origins of New World peoples, domestication, war, social organization, trade and gender roles. 4 lectures. Prerequisite: One upper division ANT course or consent of instructor.

ANT 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topics selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

ARCE—ARCHITECTURAL ENGINEERING

Note: All ARCE majors must obtain a grade of C- or better in ARCE courses that are prerequisites for other ARCE courses.

ARCE 211 Structures I (3)
Introduction to the role of structures in the making of buildings. Introduction to statics and creation of simple three-dimensional structures. Development of skills to analyze structures composed of axial force (truss) members. 2 lectures, 1 activity. Prerequisite: For ARCE majors: PHYS 131, MATH 142; for ARCH and CM majors: PHYS 121 or PHYS 131, MATH 142 or MATH 182.

ARCE 212 Structures II (3)
Introduction to the role of structures in the making of buildings. Introduction to shear and moment diagrams using the principles of statics and the application of the diagrams to simple three-dimensional structures. Development of skills, particularly free body diagrams, to analyze structures composed of bending (beams) members. 2 lectures, 1 activity. Prerequisite: ARCE 211.

ARCE 221 Elementary Structures (3)
Forces on building structures. Static equilibrium and stability of structural systems. Shear and bending moment diagrams. 3 lectures. Prerequisite: PHYS 131, MATH 142.

ARCE 222 Introduction to Mechanics of Structural Members (3)
Stress-strain relationships. Stresses and deformations in structural members due to axial force, shear, torsion, and moment. 3 lectures. Prerequisite: ARCE 221.
ARCE 223 Mechanics of Structural Members (4)

ARCE 225 Dynamics (3)
Dynamics of particles and rigid bodies. Introduction to vibrations of spring/mass/damper systems. 3 lectures. Prerequisite: ARCE 211 or ARCE 221 and MATH 241.

ARCE 226 Structural Systems for Architects (3)
Concepts of structural stability. Load flow, framing schemes and building configuration related to vertical and lateral loads. For architecture and construction management students. 3 lectures. Prerequisite: ARCE 212 or ARCE 222.

ARCE 227 Structures III (2)
Continuation of selected concepts covered in ARCE 211 and ARCE 212. Advanced topics in two-dimensional and three-dimensional equilibrium of structural building systems. 2 lectures. Prerequisite: ARCE 222 or ARCE 212.

ARCE 240 Additional Engineering Laboratory (1–2)
Total credit limited to 4 units, with a maximum of 2 units per quarter. 1 or 2 laboratories.

ARCE 257 Structural CAD for Building Design (2)
Emphasis on the use of computer graphics software to represent a building's structural system and its individual elements. 1 lecture, 1 laboratory. Prerequisite: ARCH 123, CM 211.

ARCE 302 Structural Analysis (4)
Analysis of statically indeterminate structures using virtual work, slope deflection, the force method and moment distribution. Analysis of structural systems using approximate methods and influence lines. 4 lectures. Prerequisite: ARCE 223 and ARCE 227. Concurrent: ARCE 352.

ARCE 303 Steel Design I (3)
Analysis and design of steel structural members subjected to bending, shear and axial forces. 3 lectures. Prerequisite: ARCE 227. Concurrent: ARCE 302 and ARCE 371.

ARCE 304 Timber Design (3)
Analysis and design of timber structural members subjected to bending, shear, and axial forces. Wood diaphragms, shear walls and their connections. 3 lectures. Prerequisite: ARCE 223, ARCE 227, and ARCE 371.

ARCE 305 Masonry Design (2)
Design of load-bearing walls, shear walls, columns and beams in masonry. 2 lectures. Prerequisite: ARCE 223, ARCE 227 and ARCE 371.

ARCE 306 Matrix Analysis of Structures (3)
Analysis of statically indeterminate structures by direct stiffness method including continuous beams, plane trusses, and frames. Introduction to finite-element methods. 3 lectures. Prerequisite: ARCE 302. Concurrent: ARCE 353.

ARCE 311 Structures for Landscape Architects (3)
Structural concepts related to landscape architecture. Design of retaining walls, decks, trellises, bridges and large-scale covered spaces. 3 lectures.

ARCE 315 Small Scale Structures (4)
Introduction to structures that use timber and steel as the primary construction material. Introduction to gravity load carrying systems and lateral load resisting systems using steel and concrete elements. Development of skills to analyze structures using free body diagrams and the concept of load flow. 4 lectures. Prerequisite: ARCE 226.

ARCE 316 Large Scale Structures (4)
Introduction to structures that use steel and concrete as the primary construction material. Introduction to gravity load carrying systems and
ARCE 412 Dynamics of Framed Structures (3)
Analysis of structures subjected to dynamic loads with single- and multi-
degrees of freedom. Development of techniques for analysis of structures in
response to time varying loads. 3 lectures. Prerequisite: ARCE 225 or ME
212, MATH 244, CSC 341 and ARCE 306.

ARCE 414 Precast Concrete (3)
Precast and prestressed concrete principles, materials and techniques of
construction. Design of basic precast elements and connections and
prestressed concrete fundamentals as applied to precast concrete. Design
potentials, aesthetics, cost and construction time as related to buildings and
other structures. 3 laboratories. Prerequisite: ARCE 444.

ARCE 421 Soil Mechanics (3)
Principles of soil mechanics, including rudiments of geology, soil
classification, gravimetric and volumetric relations, compaction, methods
and testing, shear strength of soil and strength theories. 2 lectures, 1
laboratory. Prerequisite: ARCE 212 or ARCE 222, GEOL 201.

ARCE 422 Foundation Design (3)
Soil-bearing capacity; sizing and design of spread footings. Design and
analysis of earth-retaining structures. Analysis of the stability of slopes. 3
lectures. Prerequisite: ARCE 421.

ARCE 423 Advanced Foundation Design (3)
Design, analysis, and construction issues related to shallow and deep
foundation systems, mat foundations, retaining walls, and grade beams.
Studies investigation the impact of sub-grade structural systems on building
behavior and cost. 3 laboratories. Prerequisite: ARCE 422 and ARCE 444.

ARCE 444 Reinforced Concrete Laboratory (3)
Theory and design of basic reinforced concrete elements: non-sneler
columns, beams, tee beams and one way slabs. 3 laboratories. Prerequisite:
ARCE 371 and ARCE 302.

ARCE 445 Prestressed Concrete Design Laboratory (3)
Design and analysis of prestressed concrete structures. 3 laboratories.
Prerequisite: ARCE 444.

ARCE 446 Advanced Structural Systems Laboratory (3)
Concepts and issues involved in the design of complex structures including
tall buildings, shells, arches and tension structures. 3 laboratories.
Prerequisite: ARCE 226 or ARCE 371.

ARCE 447 Advanced Reinforced Concrete Laboratory (3)
Advanced topics in the design of reinforced concrete structures with
emphasis on isolated and combined foundations, retaining walls, seismic-
resistant ductile frames and yield line theory. 3 laboratories. Prerequisite:
ARCE 444.

ARCE 448 Seismic Rehabilitation Laboratory (3)
Overview of the general rehabilitation process and philosophy. Evaluation
and analysis of existing structures to determine expected performance due
to seismic loads. Development of basic rehabilitation strategies for
buildings. 3 laboratories. Prerequisite: ARCE 303, ARCE 304, ARCE 305,
ARCE 412, ARCE 444.

ARCE 451 Timber and Masonry Structures Design and
Constructability Laboratory (3)
Timber and masonry framed project incorporating structural system
configuration and selection, structural analysis for gravity and lateral loads,
and construction drawings and specifications. Integration of building
services and architectural design, constructability issues, and relationships
between construction methods and cost. 3 laboratories. Prerequisite: ARCE
257, ARCE 444, and ARCE 372 or ARCE 451. Cannot be taken concurrently
with ARCE 372 or ARCE 451.

ARCE 453 Senior Project Laboratory (3)
Projects by individuals or teams under faculty supervision that go beyond
topics covered in the ARCE curriculum. Projects may include analysis,
design, experimental testing, research, or construction. Interdisciplinary
projects encouraged. 3 laboratories. Prerequisite: ARCE 371, ARCE 451 or
ARCE 452, ARCE 483.

ARCE 460 Collaborative Design Laboratory (1)
Investigation of the collaborative nature of the design process as it relates to
the structural engineer and architect. Development of skills necessary to
create a successful design team through the development of specific projects.
Total credit limited to 2 units. 1 laboratory. Prerequisite: ARCE 371 and
ARCE 372 or ARCE 451 or ARCE 452.

ARCE 470 Selected Advanced Toples (1–4)
Directed group study of selected topics for advanced students. Open to
undergraduate and graduate students. The Schedule of Classes will list topic
selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent
of instructor.

ARCE 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students.
Open to undergraduate and graduate students. The Schedule of Classes will
list topic selected. Total credit limited to 8 units. 1–4 laboratories.
Prerequisite: Consent of instructor.

ARCE 480 Senior Seminar (1)
Discussion of selected topics that are of current interest to the structural
engineering profession. 1 seminar. Prerequisite: Senior standing.

ARCE 483 Seismic Analysis and Design (4)
Introduction to dynamic response analysis of building structures with
emphasis on earthquake ground motion. Earthquake resistant design of
buildings in accordance with building codes. Application of computer
programs and physical models for seismic design. Laboratory studies
utilizing physical models for studying the behavior of building structures
subjected to simulated ground motions. 3 lectures, 1 activity. Prerequisite:
ARCE 372, ARCE 412.

ARCE 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other
areas of student career interest. Positions are paid and usually require
relocation and registration in course for two consecutive quarters. Formal
report and evaluation by work supervisor required. Total credit limited to 16
units. Credit/No Credit grading only. Credits to not count toward graduation
in the ARCE Degree Program. Prerequisite: Sophomore standing and
consent of department head.

ARCE 490 History of Structures (3)
Understanding the social, scientific, and symbolic importance of landmark
structures. Emphasis on post industrial revolution structures; Gothic
churches also studied. 3 lectures. Prerequisite: Junior standing.

ARCE 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other
areas of student career interest. Positions are paid and usually require
relocation and registration in course for two consecutive quarters. Formal
report and evaluation by work supervisor required. Total credit limited to 16
units. Credit/No Credit grading only. Credits to not count toward graduation
in the ARCE Degree Program. Prerequisite: Sophomore standing and
consent of instructor.

ARCE 501 Advanced Structural Mechanics (3)
Principles, concepts, and techniques of advanced structural mechanics.
Studies of displacement, strain, stress, strain-displacement relation and
constitutive models in three dimensions. Failure criteria. Introduction into
energy principles and approximate solutions. 3 lectures. Prerequisite: ARCE
306, ARCE 353.
ARCE 502 Nonlinear Structural Behavior I (3)

ARCE 503 Nonlinear Structural Behavior II (3)

ARCE 504 Finite Element Method for Building Structures (3)

ARCE 511 Structural Systems Behavior (3)
Design, performance, and construction issues related to structural systems. Further development of design and analysis techniques necessary for performance based engineering of structural systems. Assessment of advantages and limitations of different structural forms and systems. 3 laboratories. Prerequisite: ARCE 371, ARCE 403, ARCE 452, ARCE 483.

ARCE 521 Architectural Structures (3)
Static and dynamic loads, structural equilibrium and stability, structural configurations and systems, response to dynamic loads, behavior of structures. 2 seminars, 1 activity. Prerequisite: Graduate standing in Architecture.

ARCE 522 Structural Systems (3)
Exploration of the relationship between structural systems and architectural form. Understanding of structural stability and structural order is developed through construction of a series of small scale models. Historical perspectives are presented along with the effects of available materials and technology on structural possibilities. 3 seminars. Prerequisite: Graduate standing in Architecture.

ARCE 523 Seismic Design for Architects (3)
Introduction to the earthquake resistant design of buildings. Observed behavior of buildings during earthquakes. Recent developments of seismic design procedures, provisions, and building codes. Influence of architectural form on seismic response. 3 lectures. Prerequisite: Graduate standing in Architecture.

ARCE 598 Structural Engineering Design Project (3)
Independent development, research, and conclusion of a graduate project by individuals or teams specializing in the area of architectural or structural engineering. Projects may include graduate students from other disciplines. Students shall enroll in 3 quarters. Total credit limited to 9 units. 3 laboratories. Prerequisite: ARCE 371, ARCE 403, ARCE 452, ARCE 483.

ARCH~ARCHITECTURE

ARCH 101 Survey of Architectural Education and Practice (2) (CR/NC)
Exploration of the major paradigms which have guided the development of architectural education and the profession. Survey of the roles of the architects and an introduction to curricula and programs designed to prepare students for careers in architecture. Credit/No Credit grading only. 2 lectures.

ARCH 105 Architectural Practice I (1)
Shop safety, machine and tool operation and small-scale design and construction. 1 laboratory. Corequisite: ARCH 121 or ARCH 131.

ARCH 106 Materials of Construction (2)
Use and application of construction processes and materials. 2 lectures.

ARCH 111 Introduction to Drawing and Perspective (3)
Basic techniques used in graphic communication. Orthographic and isometric projection. Mechanical perspective, shades and shadows. 3 laboratories.

ARCH 121 Design and Drawing 1.1 (3)
An introduction to the issues, concepts, processes and skills pertaining to two- and three-dimensional design and the freehand and constructed representation and visual communication of ideas, objects and environments. 3 laboratories. Concurrent: EDES 101.

ARCH 122 Design and Drawing 1.2 (3)
Continuation of ARCH 121 plus the issues, concepts, processes and skills pertaining to color theory and the design and visual communication of architectural space. 3 laboratories. Prerequisite: ARCH 121 or ARCH 131.

ARCH 123 Design and Drawing 1.3 (3)
Continuation of ARCH 121 and ARCH 122 plus the issues, concepts, processes and skills pertaining to color theory and the design and visual communication of architectural form, space and organizations. 3 laboratories. Prerequisite: ARCH 122 or ARCH 132.

ARCH 131 Design and Visual Communication 1.1 (4)
An introduction to the issues, concepts, processes and skills pertaining to two- and three-dimensional design and the freehand and constructed representation and visual communication of ideas, objects and environments. Purchase of a laptop computer, software and peripherals is highly recommended to participate in this course. 4 laboratories. Corequisite: ARCH 105; concurrent: EDES 101.

ARCH 132 Design and Visual Communication 1.2 (4)
Continuation of ARCH 131 plus the issues, concepts, processes and skills pertaining to color theory and the design and visual communication of architectural space. Purchase of a laptop computer, software and peripherals is highly recommended to participate in this course. 4 laboratories. Prerequisite: ARCH 131.

ARCH 133 Design and Visual Communication 1.3 (4)
Continuation of ARCH 131 and ARCH 132 plus the issues, concepts, processes and skills pertaining to the analysis and design of architectural form, space and organizations. Purchase of a laptop computer, software and peripherals is highly recommended to participate in this course. 4 laboratories. Prerequisite: ARCH 132.

ARCH 160 Digital Tools for Architecture (4)
Substantive introduction to the use of digital tools in architectural design and visual communication in the areas of 3-D modeling, 2-D drawing, image editing and page layout. 4 seminars.

ARCH 202 Creative Problem-Solving (3)
Techniques for stimulating creative behavior applied to general and environmental problems. Development of problem-solving and decision-making skills and knowledge. 3 lectures.

ARCH 204 Architectural Theory (3)
Theories of architectural design. 3 lectures. Prerequisite: EDES 101.

ARCH 207 Environmental Control Systems I (4)

ARCH 217 History of World Architecture: Prehistory – Middle Ages (4)
GE C3
Architecture and urbanism in the ancient world, from prehistory to the Middle Ages. Social, cultural and physical conditions that influenced the built environment to the Mediterranean basis, plus Europe, Asia, Africa and Pre-Columbian America. 4 lectures.

2007-2009 Cal Poly Catalog
ARCH 218 History of World Architecture: Middle Ages – 18th Century (4) GE C3
World architecture and urbanism from the Middle Ages until the end of the 18th century Baroque. Social, cultural and physical conditions which influenced the built environment of Europe, Asia, and the Pre-Columbian and Colonial Americas. 4 lectures.

ARCH 219 History of World Architecture: 18th Century – Present (4) GE C3
Architecture and urbanism of the modern world, from the 18th century to the present. Social, cultural and physical conditions influencing the built environment of Europe, Asia, Africa and the Americas. 4 lectures.

ARCH 221 Architectural Design Fundamentals 2.1 (3)
Continuation of ARCH 123 or ARCH 133 in terms of materiality, structure and function and the theories, concepts, processes and skills pertaining to the design of architectural form, space and organizations. 3 laboratories. Prerequisite: ARCH 123 or ARCH 133.

ARCH 222 Architectural Design Fundamentals 2.2 (3)
Continuation of ARCH 221 plus the theories, concepts, processes and skills pertaining to site, context and climate as determinants that shape the built environment. 3 laboratories. Prerequisite: ARCH 221.

ARCH 231 Architectural Practice (3)
Wood construction methods and processes. Construction documents used as communication medium for such methods and processes. 1 lecture, 2 activities. Prerequisite: ARCH 106 plus ARCH 122 or ARCH 132 or ARCH 111. Corequisite: ARCH 252.

ARCH 240 Additional Architectural Laboratory (1–2)
Total credit limited to 4 units, with a maximum of 2 units per quarter. 1 or 2 laboratories.

ARCH 241 Architectural Practice 2.1 (4)
The language, principles and materials of construction with an emphasis on the origin, history, and application of traditional and emergent materials. 2 lectures, 2 activities. Prerequisite: ARCH 123 or ARCH 133. Corequisite: ARCH 251.

ARCH 242 Architectural Practice 2.2 (4)
A continuation of ARCH 241 with an emphasis on the fundamental aspects of construction systems and the basics of construction documentation. 2 lectures, 2 activities. Prerequisite: ARCH 241. Corequisite: ARCH 252.

ARCH 250 Computer Applications (3)
Introduction to the application of computers in architecture. History of computing and its use in architectural practice, hardware options, operating systems, electronic mail, databases, programming languages, graphics systems, survey and use of selected applications in architecture. 2 lectures, 1 laboratory.

ARCH 251 Architectural Design 2.1 (5)
Continuation of ARCH 123 or ARCH 133 in terms of materiality and the theories, concepts, processes and skills pertaining to the analysis and design of architectural form, space and organizations to communicate intended concepts and meanings. 5 laboratories. Prerequisite: ARCH 123 or ARCH 133; corequisite: ARCH 241.

ARCH 252 Architectural Design 2.2 (5)
Continuation of ARCH 251 plus the theories, concepts, processes and skills pertaining to light, construction and function as determinants that shape the built environment and support communication of intended concepts and meanings. 5 laboratories. Prerequisite: ARCH 251, ARCH 241; corequisite: ARCH 242.

ARCH 253 Architectural Design 2.3 (5)
Continuation of ARCH 251 and ARCH 252 plus the theories, concepts, processes and skills pertaining to context, structure and climate as determinants that shape the built environment and support the communication of intended concepts and meanings. 5 laboratories. Prerequisite: ARCH 252, ARCH 242 and ARCH 160; corequisite: ARCH 207.

ARCH 270 Selected Topics (1–4)
Directed group study of selected topics. The Schedule of Classes will list topic selected. Open to first-, second-, third-year students. Total credit limited to 8 units. 1 to 4 lectures.

ARCH 302 Theories of Architectural Design (3)
Theories of architecture and their application in architectural design. 3 lectures. Prerequisite: ARCH 253.

ARCH 307 Environmental Control Systems 2 (4)
Theory and application of climate, energy use and comfort as determinants of architectural form in large-scale buildings. Emphasis on architectural and mechanical methods of ventilating, cooling, heating, lighting, acoustics, and water and waste systems for internal-load dominated buildings. 2 lectures, 2 activities. Prerequisite: ARCH 207. Concurrent: ARCH 352.

ARCH 310 Architectural Design Methods and Theories (4)
Analysis of design process, methods of analysis, synthesis, and evaluation in design. Relation between methods used and theories of design. 4 lectures. Prerequisite: ARCH 253.

ARCH 313 Advanced Delineation (2)
Analysis of design process, methods of analysis, synthesis, and evaluation in design. Relation between methods used and theories of design. 4 lectures. Prerequisite: ARCH 253.

ARCH 316 California Architecture and the California Dream (3)
Development of California Architecture as the symbolic expression of the myth of the California Dream. Focus on tracing California's unique contribution to architecture and urban patterns in the United States. 3 lectures. Prerequisite: ENGL 134.

ARCH 320 Topics in Architectural History (4) GE C4
In-depth examination of a significant subject, movement or period in architectural history, theory and criticism. The material covered will vary depending upon the topic. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 lectures. Prerequisite: GE Area A1 and one of the following Area C3 courses: ARCH 217, 218, 219, or ART 112. Architecture majors will not receive GE C4 credit.

ARCH 326 Native American Architecture and Place (4) (Also listed as ES 326) GE C4 USCP
The role of culture and setting in the construction of spatial, material and landscape concepts and artifacts, through the introduction of selected North American cultures, with focus from 1300 AD through contemporary time. 4 lectures. Prerequisite: GE Areas A, C1 and C2.

ARCH 337 Photographic Presentation (2)
Media presentations in architecture with emphasis on black and white and color print presentation, formats, and techniques applicable to architecture subjects and to design communication. 1 lecture, 1 laboratory. Prerequisite: ARCH 123 or ARCH 133.

ARCH 339 Video Presentations in Architecture (2) (CR/NC)
Video presentations in architecture with emphasis on video format and creative camera and editing techniques as applicable to subjects in architecture and design communication. Open to students in CAED. Credit/No Credit grading only. 1 lecture, 1 laboratory. Prerequisite: ARCH 123 or ARCH 133.

ARCH 340 Architectural Photography (4)
Photography specifically related to architecture and design. Advancement of students' technical skills in communicating design through the medium of photography. 2 lectures, 2 laboratories. Prerequisite: ARCH 337.

ARCH 341 Architectural Practice 3.1 (4)
Concepts, methods and processes pertaining to the detailing and construction of masonry, steel, concrete and combination structures. 2 lectures, 2 activities. Prerequisite: ARCH 242 and ARCH 253. Corequisite: ARCH 351.
ARCH 342 Architectural Practice 3.2 (4)
Continuation of ARCH 341 content plus the concepts, methods and processes pertaining to the preparation of outline specifications, production of design development drawings, life safety, systems integration and cost estimating. 2 lectures, 2 activities. Prerequisite: ARCH 341. Corequisite: ARCH 353.

ARCH 351 Architectural Design 3.1 (5)
Continuation of ARCH 253. Development and exploration of architectural theories, building systems, and design processes involved in creating appropriate architecture on a sensitive site; implications of the site as building form generator. 5 laboratories. Prerequisite: ARCE 212, ARCH 253, ARCH 207 and PHYS 122 or PHYS 132, or consent of department head. Corequisite: ARCH 341.

ARCH 352 Architectural Design 3.2 (5)
Continuation of ARCH 351. Development and exploration of architectural theories, building systems, and design processes involved in creating appropriate sustainable architecture with an emphasis on ecological and environmental concerns. 5 laboratories. Prerequisite: ARCH 351, ARCH 341. Corequisite: ARCH 307.

ARCH 353 Architectural Design 3.3 (5)
Continuation of ARCH 352. Development and exploration of architectural theories, building systems, and design processes involved in creating appropriate architecture with an emphasis on socio-cultural and space planning/life safety concerns. 5 laboratories. Prerequisite: ARCH 352, ARCH 307. Corequisite: ARCH 342.

ARCH 363 Off-Campus Orientation Seminar (2) (CR/NC)
Preparation for off-campus architectural study programs includes cultural orientation, an introduction to basic language skills, travel and housing protocols as well as academic and financial advising. Credit/No Credit grading only. Total credit limited to 4 units, with a maximum of 2 units per quarter. 2 seminars. Prerequisite: Consent of instructor.

ARCH 400 Special Problems for Advanced Undergraduates (1–2) (CR/NC)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Credit/No Credit grading only.

ARCH 401 Toward a Barrier-Free Environment (3)
Exploring the interface between the built environment and human behavior. Physical and psychological design determinants. Attitudes towards deviancy, accessible environments and persons with disabilities. Legal, ethical, human factors. 3 lectures. Prerequisite: Junior standing or consent of instructor.

ARCH 407 Environmental Control Systems 3 (4)
Theory and application of mechanical and electrical systems for comfort. Emphasis on internal-load dominated buildings. Consideration of artificial lighting, H.V.A.C. systems, acoustics, water and waste systems. 4 lectures. Prerequisite: ARCH 307.

ARCH 413 The Built Environment: Issues and Education (3)
Identification of major issues in the design and creation of the built environment. Strategies for developing instructional units related to critical thinking and problem solving in the K-12 school setting. 1 lecture, 2 activities. Prerequisite: Junior standing.

ARCH 420 Seminar in Architectural History, Theory and Criticism (4)
Special topics based on the exploration of specific approaches, periods of time, and cultural or geographic areas. The Schedule of Classes will list topic selected. Total credit limited to 12 units; repeatable in same term. 4 seminars. Prerequisite: 4th year standing and ARCH 217, ARCH 218, and ARCH 219, or consent of instructor.

ARCH 441 Professional Practice (3)
A critical analysis of the roles and responsibilities of the architect in providing comprehensive services to the client from project acquisition and inception to project delivery and closeout. 3 lectures. Prerequisite: ARCH 342 and ARCH 353.

ARCH 442 Professional Practice (3)
Case study of an architectural project that addresses selected professional practice issues presented in ARCH 441. 3 lectures. Prerequisite: ARCH 342 and ARCH 353.

ARCH 443 Professional Practice (4)
A critical analysis of the roles and responsibilities of the architect in providing comprehensive services to the client from project acquisition and inception to project delivery and closeout and the process and requirements for internship development and attainment of registration. 2 lectures, 2 activities. Prerequisite: ARCH 342, ARCH 353.

ARCH 445 Urban Design in Architecture (3)
Design role of the urban architect. Economic, environmental and technological forces impacting on architectural practice in urban areas. 3 lectures. Prerequisite: ENGL 134.

ARCH 446 The Small Scale Master Builder (4)
Principles of practice as owner-designer-builder, selling or leasing products. Comparison with traditional practice. Potential income, constraints on design decisions, and ethics. Analysis of factors and methods relevant to such practice, including financing, taxes, accounting, market analysis, and development potential. Starting with little or no capital. 4 lectures. Prerequisite: Fourth-year standing.

ARCH 447 Design Regulations (4) (Also listed as CRP 447)
Practical application of fundamental zoning, subdivision, design/development standards, and building codes in the design review process, either in the form of a proposed development project or preparation of ordinances, codes, standards, and/or guidelines to apply to a project. 4 lectures. Prerequisite: Fourth year standing, or consent of instructor.

ARCH 450 Digital Design and Visualization (5)
Theory, principles and techniques of computer aided architectural or product design, visualization, and digital animation. Utilization of desk-top computers and 2-D and 3-D software as integrated tools for development of a comprehensive computer enhanced design process. 5 laboratories. Prerequisite: For architecture majors, all prerequisites required by the year and course level for which the student is seeking credit; for non-architecture majors, junior standing or permission of instructor; for local professionals not seeking academic credit, permission of instructor.

ARCH 451 Architectural Design 4.1 (5)
Problems of increasing architectural complexity involving the comprehensive integration of architectural theory, design processes, and building systems with emphasis placed on multifunctional singular buildings. 5 laboratories. Prerequisite: ARCE 316, ARCH 353, ARCH 342, or consent of department head.

ARCH 452 Architectural Design 4.2 (5)
Problems of increasing architectural complexity involving the comprehensive integration of architectural theory, design processes, and building systems with emphasis placed on multifunctional projects. 5 laboratories. Prerequisite: ARCE 316, ARCH 353, ARCH 342, or consent of department head.

ARCH 453 Architectural Design 4.3 (5)
Problems of increasing architectural complexity involving the comprehensive integration of architectural theory, design processes, and building systems with emphasis placed on multifunctional projects in an urban context. 5 laboratories. Prerequisite: ARCE 316, ARCH 353, ARCH 342, or consent of department head.

ARCH 457 Computer Graphics in Architecture (4)
Two-dimensional drawing systems in architectural practice with particular emphasis on office productivity in the production side of the design process; includes drawing database administration, local area networks, management and cost issues. 2 lectures, 2 laboratories. Prerequisite: Fourth year standing.

2007-2009 Cal Poly Catalog
ARCH 460 Advanced Computer Graphics in Architecture (3)
Advanced methods in the application of computer graphics and multi-media techniques in architectural design. 2 lectures, 1 activity. Prerequisite: ARCH 133 or ARCH 160 or consent of instructor.

ARCH 461 Advanced Computer-Aided Design in Architecture (3)
Advanced applications of computers in architectural design with emphasis on utilizing intelligent tools in the design process. 2 lectures, 1 activity. Prerequisite: ARCH 457 or equivalent and consent of instructor.

ARCH 462 Topics in Architectural Practice (3)
Selected topics addressing various aspects of Architectural Practice for advanced students in CAED. Topics may include strategic planning, managing quality, ethics, and legal considerations. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 6 units; repeatable in same term. 3 lectures. Prerequisite: ARCH 342 or consent of instructor.

ARCH 463 Undergraduate Seminar (2) (CR/NC)
Discussion and lectures on problems of practice in architecture. Professional ethics. Students present organized material on some subject of interest in architecture. Total credit limited to 6 units. 2 seminars. Prerequisite: Fourth-year standing in architecture. Credit/No Credit grading only.

ARCH 464 Computer Applications in Design (3)
Exposure to all aspects of two-dimensional computer-aided design. Introduction to three-dimensional CAD through the use of AUTOCAD 12 software. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 3 lectures. Prerequisite: Junior standing and current participation in Washington Alexandria Architectural Consortium off-campus program.

ARCH 465 Design Related Media (3)
The role of various media of visual communication as tools of documentation, analysis and creation in the design visual environment. Skills in graphics, photography, product design, film, video techniques, and printmaking graphics will be developed in specific relation to environmental design study and presentation. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 3 lectures. Prerequisite: Junior standing and current participation in Washington Alexandria Architectural Consortium off-campus program.

ARCH 466 Topics in Architectural History and Theory (3)
Design from its beginning with the crafts design period to its expression of industrial design in its present form. Various stages in the evolution of design explored through analyzing the influence and contributions of leading artists. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 3 lectures. Prerequisite: Junior standing and current participation in Washington Alexandria Architectural Consortium off-campus program.

ARCH 467 Undergraduate Research (3)
Architecture and urban theoretical intentions and results in the context of the Capitol of the United States—Washington, DC. This theoretical and historical study will not occur within the confines of the classroom, but directly within the "laboratory" of the city. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 3 lectures. Prerequisite: Junior standing and current participation in Washington Alexandria Architectural Consortium off-campus program.

ARCH 468 Advanced Environmental Building Systems (3)
Technologies which provide a "well building" environment by engaging in: weather protection; thermal/moisture control; natural and artificial lighting; and electrical and other "energy source" utility service. 3 lectures. Prerequisite: Junior standing and current participation in Washington Alexandria Consortium off-campus program.

ARCH 469 Topics in Design Methods (3)
Relationship of art and architecture addressed to encourage critical debate. Historically, the "art" and the "architecture" were not as polarized as today. Both historical perspective and practical issues concerning collaboration. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 3 lectures. Prerequisite: Junior standing and current participation in the Washington Alexandria Architectural Consortium off-campus program.

ARCH 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

ARCH 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories. Prerequisite: Consent of instructor.

ARCH 472 Housing Design Concepts (3)
For students preparing for further study or practice relating to housing, urban design and new communities. This course will address design objectives, concepts, and current theories and forms in housing and mixed-use projects. 3 lectures. Prerequisite: Third-year standing or consent of instructor.

ARCH 477 Advanced Topics in Environmental Architecture (4)
Theory and application of methods used to address energy and ecological issues of integrated building and site design. The Schedule of Classes will list topic selected. Total credit limited to 12 units, repeatable in same term. 4 seminars. Prerequisite: ARCH 307.

ARCH 480 Special Studies in Architecture (1–12)
Special issues and problems through research, field trips, design projects, and other forms of investigation and involvement. Course requirements are determined prior to each individual project through a contractual agreement between students and department. The departmental Off Campus Study Guidelines apply except when superseded by guidelines and practices of the London Study Program of the College of Liberal Arts. Total credit limited to 36 units. Prerequisite: Junior standing.

ARCH 481 Senior Architectural Design Project (5)
Comprehensive building design and research project in an architectural concentration area. Demonstration of professional competency in integration of architectural theory, principles and practice with creative, organizational and technical abilities in architectural programming, design and design research. Total credit limited to 15 units. 5 laboratories. Prerequisite: 5th-year standing or consent of department head.

ARCH 485 Cooperative Education Experience (4 or 8) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

ARCH 492 Senior Design Thesis (3)
Development of the framework and format of a thesis project proposal related to the specific design option. Work to include: research topic, intent, scope, methodology, assumptions, outline of work program and documentation. To be taken concurrently with first quarter of ARCH 481. 3 seminars. Prerequisite: 5th year standing or consent of instructor.

ARCH 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

ARCH 501 Environmental Control Systems (3)
Comparative analysis and evaluation of mechanical and electrical building systems in high-rise and special purpose low-rise buildings. 3 seminars. Prerequisite: ARCH 407.
ARCH 510, 511 Environmental Design Methods 1, 2 (3) (3)
Application of systematic, step-by-step procedures to rational and intuitive judgmental tasks. Methods for formulation, idea production, evaluation, and testing applied to planning, testing, design information systems, communication between designer and client, user participation in design, and other current topics. 511 focuses on specific problem area among topics and may be repeated up to 9 units. 3 lectures. Prerequisite: Graduate standing.

ARCH 513 Natural Architectural Lighting (3)
Perception and awareness of light; natural light as generator of urban spaces and building forms. Principles of design in lighting fundamentals and techniques. 3 lectures. Prerequisite: ARCH 407 or consent of instructor.

ARCH 519 Theory of Architecture (3)
Comparative analysis of the major historic influences which have contributed to the development of architectural design theories. The Schedule of Classes will list topic selected. Total credit limited to 9 units. 1 lecture, 2 seminars. Prerequisite: ARCH 319 or graduate standing.

ARCH 521 Graduate Architectural Design Project (5)
Comprehensive building design and research project in an architectural concentration area. Demonstration of professional competency in integration of architectural theory, principles and practice with creative, organizational and technical abilities in architectural programming, design and design research. Total credit limited to 15 units. 5 laboratories. Prerequisite: ARCH 407, ARCH 441, ARCH 442, ARCH 451, ARCH 452, ARCH 453 and 5th-year standing.

ARCH 531 Habitation (3)
Habitability standards and concepts significant for architectural design and practice. Behavioral analysis of habitats, facilities and urban systems. Design and development of structures and systems responsive to human needs. Habitability and environmental specifications, human factors, human engineering, behavioral sciences. 3 seminars. Prerequisite: ARCH 303, ARCH 453 or consent of instructor.

ARCH 532 Quantitative Methods in Architecture (3)
Roles of research in environmental design analysis. Approaches to research, hypothesis testing, data banks, and information systems for design. Use of research findings in various decision-making systems. 3 seminars. Prerequisite: Graduate standing.

ARCH 533 Architectural Programming (3)
Information management in the design process. Techniques for gathering, analyzing, and transforming data for use as design information. Variety of approaches to pre-design planning. 3 seminars. Prerequisite: ARCH 453.

ARCH 537 Principles of Development (3)
Theory and application of the architect's role in real estate development. Topics include financing, corporate structuring, feasibilities, market studies, and proposal presentation. Emphasis on the influence of design on the success of the development process. 3 seminars. Prerequisite: Graduate standing in Architecture, or consent of instructor.

ARCH 551 Architectural Design (5)
Professional initiative and responsibility in integrating architectural design theory and practice with fields influencing the total environment. Building types considered as the coordinating factor. Total credit limited to 15 units with no more than 5 units in any one quarter. 5 laboratories. Prerequisite: Graduate standing.

ARCH 561 Advanced Design (3)
Continuation of ARCH 551. Advanced studies integrating architectural design theory and practice with fields influencing the shaping of the total environment. Total credit limited to 9 units. 3 laboratories. Prerequisite: Graduate standing.

ARCH 563 Professional Seminar (2)
Problems and topics in the field of the architectural profession. Seminar drawn upon expertise of visiting professionals in addition to topics presented by regular faculty and students. 2 seminars. Prerequisite: Graduate standing.

ARCH 580 Seminar in Theory of Architecture (3)
Directed group study of selected topics in the theory of architecture for graduate students. The Schedule of Classes will list specific topics selected. Total credit limited to 9 units. 3 seminars. Prerequisite: ARCH 453.

ARCH 592 Graduate Design Thesis (3)
Development of the framework and format of a thesis project proposal related to the specific design option. Work to include: research topic, intent, scope, methodology, assumptions, outline of work program and documentation. To be taken concurrently with first quarter of ARCH 521. 3 seminars. Prerequisite: 5th year standing or consent of instructor.

ARCH 598 Master's Design Project (3–6)
Completion of a master project demonstrating in-depth research ability at a graduate level. Total credit limited to 9 units. 3 or 6 laboratories. Prerequisite: Consent of graduate advisor.

ARCH 599 Master's Thesis (3–6)
Completion of a thesis embodying original research in an area of environmental design. Total credit limited to 9 units. Prerequisite: Consent of graduate advisor.

ART

ART 101 The Fundamentals of Drawing (4) GE C3
Introduction to the artistic practice and cultural value of drawing from the Renaissance to the 21st Century. Emphasis and expansion of the practical skills of observation, rendering, and understanding the signs of meaning produced in visual art. Development of formal techniques, media experimentation, and content creation through personal expression. Exercizes to encourage growth in technical skill, conceptual innovation, critical thinking, and visual communication. 1 lecture, 3 activities.

ART 105 Foundation: Color Theory (3) (formerly ART 132)
Basic design color theory developed through exercises in hue, value and intensity. 1 lecture, 2 activities.

ART 106 Foundation: 2-Dimensional Design (formerly ART 131)
Basic design theory in black, white, greys and color covering the visual elements and principles in two dimensions. 1 lecture, 2 activities. Prerequisite: ART 105.

ART 107 Foundation: 3-Dimensional Design (formerly ART 134)
Core course in research and application of principles, elements and criticism of three-dimensional design concepts. 1 lecture, 2 laboratories. Prerequisite: ART 106.

ART 111 Introduction to Art (4) GE C3
Designed to acquaint the non-art major with painting, sculpture, drawing, crafts, architecture and printmaking. Development of vocabulary, analytic skills, and research techniques for the understanding of art objects. 4 lectures.

ART 112 Survey of Western Art (4) GE C3
History of major art movements in western civilization from ancient art to the twentieth century. Representative periods of western culture, such as the ancient world, the Middle Ages, the Renaissance, and the modern world. 4 lectures.

ART 121 Basic Digital Photography (3) (formerly ART 221)
Fundamental techniques in photography. Mechanics of digital cameras and equipment, optics, composition, filters, and subject content. Understanding photographic principles. Digital camera required. 2 lectures, 1 laboratory.

ART 148 Sculpture (4) GE C3
Exploration of three dimensional form through problems in modeling, casting, carving, and techniques of assembly. Historical and contemporary concepts as applied to the discipline of sculptural styles. 1 lecture, 3 activities.

ART 182 Photographic Manipulation and Design (3)
Introduction to photographic image manipulation software for design, photography and studio students. Fundamental technical skills of current
software and their potential for content creation, invention and expression. 2 lectures, 1 laboratory.

ART 183 Digital Illustration and Design (3)
Introduction to digital illustration. Fundamental technical skills and their potential for content creation, invention and expression. 2 lectures, 1 laboratory. Prerequisite: ART 182.

ART 184 Digital Book Making and Design (3)
Introduction to book making. Fundamental technical skills of current software as well as their potential for content creation, invention, and expression. Desktop publishing as well as the creation of fine art books. 2 lectures, 1 laboratory. Prerequisite: ART 182, ART 183.

ART 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.

ART 201 Intermediate Drawing (3)
Development of additional drawing techniques with emphasis on form content, pictorial space, B/W media, color, mixed media and composition. 3 activities. Prerequisite or concurrent: ART 101, 106, or consent of instructor.

ART 203 Art Theory and Practice (3)
Contemporary issues in art and design, linking "ideas" in art theory to problem-solving. Emphasis on developing creative content through knowledge of contemporary critical thinking, aesthetics, techniques, and vocabulary. 3 activities. Prerequisite: ART 101 and ART 148.

ART 209 Beginning Painting (3)
Introduction to technical and formal problems in painting. Physical characteristics of paint, various tools and substrates. Projects emphasize creative understanding of pictorial space, color and concept. 3 activities. Prerequisite: ART 101 and ART 105 or consent of instructor.

ART 211 Art History—Ancient to Renaissance (4)
Development of art from antiquity to the early stages of the Renaissance in Europe. Particular emphasis on European art with appropriate references to sources from antiquity which have been particularly influential on European painting and sculpture. Comparison of relevant parallel examples of the art of non-European cultures. 4 lectures.

ART 212 Art History—Renaissance through Baroque Eras (4)
The significant visual expressions of Northern and Southern European art of the Renaissance and Baroque period. Relevant parallel examples of the art of non-European cultures. 4 lectures.

ART 222 Intermediate Photography (3)
Control of tonal range using 35mm cameras and available daylight illumination. Assignments encourage development of composition and visual communication skills. Emphasis on "photographic seeing" and professional quality enlargements. 2 lectures, 1 laboratory. Prerequisite: ART 121 or equivalent.

ART 224 Introduction to Artificial Lighting for Photography (3)
Studio lighting is used to introduce the student to contemporary professional studio photography. Quality developing and printing skills are required. Introduction to current examples of professional studio lighting. 2 lectures, 1 laboratory. Prerequisite: ART 222.

ART 225 Digital Color Photography (3) (formerly ART 322)
Fundamental techniques in digital color photography. Theory of color in expression and communication, visual concepts, and digital photography vocabulary. Survey of contemporary color photography and digital image making. 2 lectures, 1 laboratory. Prerequisite: ART 222.

ART 232 Beginning Graphic Design (3)
Basic terminology, studio skills, assembly methods, photographic reproduction processes, and specification for graphic designers. Familiarization with the various services available. 2 lectures, 1 laboratory. Prerequisite: ART 107 and ART 182.

ART 241 Introduction to Glass Fusing and Forming (3)
Studio course in the creative processes of fusing, forming, and assembling glass. Introduction to the use of line, color, and texture related to glass as a transparent or opaque material. Total credit limited to 6 units. 1 lecture, 2 laboratories. Prerequisite: ART 101 and ART 107 or ART 148 or consent of instructor.

ART 245 Ceramics I (3)
Studio course in basic clay working with emphasis on design quality, hand building, and use of the potter's wheel. 1 lecture, 2 laboratories. Prerequisite: ART 107 or consent of instructor.

ART 255 Jewelry Design (3)
Studio course in nonferrous metal techniques including cutting, forming, soldering, and forging with emphasis on creative design solutions. 3 activities. Prerequisite: ART 107 or consent of instructor.

ART 260 Art Critique and Discourse (2)
Developing an individual "body" of artwork. Rigorous critiques, lectures, and seminar-style discussions aimed at forming a "process" for discussing artwork. 2 activities. Prerequisite: ART 101, ART 107, and ART 148.

ART 301 Advanced Drawing (3)
Development of advanced methods and techniques in the study of form, color media, content, and developing an individual artistic "voice" in drawing. Emphasis on problem-solving, critical thinking, and the contemporary discourse in drawing. Total credit limited to 9 units. 3 activities. Prerequisite: ART 201, ART 203 and ART 209, or consent of instructor.

ART 302 Life Drawing I (3)
Development of methods and techniques in the study of form and structure as it relates to human proportion and anatomy analysis. Total credit limited to 6 units. 3 activities. Prerequisite: ART 201.

ART 309 Intermediate Painting (3)
Continuation of study of technical and formal problems in painting. Expanded study of physical characteristics of paint, tools, and substrates. Emphasis on the creative process from concept to finished art. Contemporary issues in painting introduced. The Schedule of Classes will list topic selected. Total credit limited to 9 units. 3 activities. Prerequisite: ART 209, or consent of instructor.

ART 310 Art History—American Art (4)
Major historical periods of American art from the colonial period to the present. Special emphasis will be given to the broader notion of American art as a process of developing an identity of the varied historical and sociological forces that have shaped images in American art. 4 lectures. Prerequisite: One lower division art history course or consent of instructor.

ART 311 Art History—Nineteenth Century Art (4)
History of painting and sculpture from the French Revolution to the beginning of the 20th century. Significant movements such as Neo-Classicism, Romanticism, Realism, Impressionism and Post-Impressionism. 4 lectures. Prerequisite: One lower division art history course, or consent of instructor.

ART 312 Art History—Twentieth Century Art (4)
History of major art movements from the beginning of the twentieth century to the present. Major emphasis will be placed on Fauvism, Cubism, Expressionism, Dada, Surrealism, and the period of Post-World War II art to that of contemporary twenty-first century art. 4 lectures. Prerequisite: ART 211 or ART 212 or consent of instructor.

ART 313 Design History (4)
Survey of design from the Victorian era to the present, including major philosophies and movements, political, social, cultural, and technological trends that influenced designers in the 20th century. 4 lectures. Prerequisite: Any lower division art history course.

ART 314 History of Photography (4)
In-depth survey of the artistic and cultural achievements in photography from its invention to the present day. Significant photographers, the
evolution of aesthetic criteria in the context of other visual arts as well as social/cultural impact. 4 lectures. Prerequisite: Completion of GE Areas A and C3. Art and Design majors will not receive GE C4 credit.

ART 316 Women as Subject and Object in Art History (4)
(Also listed as WS 316)
Exploration of the role of women in the visual arts. Women as artists, women as portrayed in art, and feminist theory as it applies to the study of the visual arts and art history. 4 lectures. Prerequisite: ART 111, ART 112 or consent of instructor.

ART 317 Asian Art Survey (4)
Survey of the traditional arts of Asia – primarily India, China and Japan. Emphasis on the connections between the visual arts in Asia and the philosophical, social and cultural environments in which they arose. 4 lectures. Prerequisite: ART 111 or ART 112, or ART 211, or consent of instructor.

ART 318 Asian Art Topics: National, Religious, and Intellectual Movements (4)
In-depth examination of significant art movements in Asia. Each topic will focus on the development of art in Asia within the context of a specific geographical or theoretical framework. Details will vary depending on topic. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 4 lectures. Prerequisite: Completion of GE Areas A and C3. Art and Design majors will not receive GE C4 credit.

ART 324 Photographic Expression (4)
Emphasis on personal expression and developing style, introduction to symbology, visual source development and the work of contemporary creative photographers. 2 lectures, 2 laboratories. Prerequisite: ART 222.

ART 325 Advanced Camera Techniques (3)
Advanced camera techniques using large format film and/or digital cameras. Use of architectural exteriors, interiors, landscapes and simple studio setups to assist mastery of large format cameras. Other topics include perspective and sharpness correction, lighting (available and artificial), digital imaging and studio equipment. High quality imaging for commercial application emphasized. 2 lectures, 1 laboratory. Prerequisite: ART 224.

ART 326 Advanced Artificial Lighting (3)
Professional techniques with large format cameras. Advanced studio and location photography, using professional quality halogen and electronic flash equipment. Topics include studio lighting for glass and metal, food, interiors, and product photography. 2 lectures, 1 laboratory. Prerequisite: ART 325.

ART 327 Portraiture (3)
Studio and environmental portraiture. Emphasis on light ratios/patterns; posing; personality portrayal. 2 lectures, 1 laboratory. Prerequisite: ART 224.

ART 329 Editorial and Corporate Photography (3)
Creating, lighting and executing editorial assignments. Producing photography for corporate needs, i.e. annual reports, brochures and in-house publications. Emphasis on selecting subject matter and handling lights. 2 lectures, 1 laboratory. Prerequisite: ART 326.

ART 331 Typographic Design (3)
Principles of letterforms and how these principles affect the communication of ideas through graphic design. Analysis of type style, structure, and form. Computer applications are required for appropriate problems. 3 activities. Prerequisite: Junior standing. ART 107, ART 184, ART 232, or consent of instructor.

ART 332 Symbology (3)
Use of symbolism and metaphor in graphic design. Communication of complex or abstract concepts with connotative/denotative imagery. Development of ideas from research, reference materials, and the imagination. Computer applications are required for appropriate problems. 3 activities. Prerequisite: ART 331, junior standing.

ART 333 Corporate Identity (3)
Design and implementation of corporate logos. Development of a graphic standards manual for use of identity in diverse applications. For Art and Design majors only. Computer applications are required for appropriate problems. 3 activities. Prerequisite: ART 107, ART 332, junior standing.

ART 335 Digital 3D Modeling and Design (4)
Development of skills and techniques in the use of three-dimensional design and modeling via digital technology. Capabilities of current software in the design and modeling of three-dimensional forms. 2 lectures, 2 activities. Prerequisite: ART 107 and ART 182, or consent of instructor.

ART 336 Exhibition Design/Museum Studies (3)
Theory and applied principles of exhibition design for art objects in the museum or gallery setting. Class responsible for planning and installing actual gallery exhibitions. Total credit limited to 9 units. 2 lectures, 1 laboratory. Prerequisite: ART 148, ART 107, or consent of instructor.

ART 341 Glassblowing (4)
Survey of history of glass and introduction to contemporary glass art, presented through visual examples in slide/lecture format. Development of tools and forming processes introduced while student develops 3-dimensional projects. Total credit limited to 8 units. 3 lectures, 1 activity. Prerequisite: ART 101, ART 148 and ART 241; or consent of instructor.

ART 345 Ceramics II (3)
Studio course in hand, wheel, mold, extruder, jigger, and press forming skills. Design of single and multiple forms and kiln firing procedures. Total credit limited to 9 units. 3 activities. Prerequisite: ART 148, or ART 107, or ART 254 or consent of instructor.

ART 348 Intermediate Sculpture (3)
Intermediate sculpture course in expressive use of form with modeling, casting, carving, and/or assembly. Total credit limited to 9 units. 1 lecture, 2 laboratories. Prerequisite: ART 107 and ART 148, or consent of instructor.

ART 353 Intermedia/Art (4)
Studio course emphasizing individual and collaborative creative exploration with project content derived from student's experience. Focus on using traditional as well as new genres of artistic expression such as site specific installations, video art, book works, and performance art. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 lecture, 3 activities. Prerequisite: ART 101, ART 106, and ART 148, or consent of instructor.

ART 355 Metalsmithing (3)
Studio course investigating intermediate fabrication including raising, box construction and masonite dye. Exploration of surface design techniques for nonferrous metals. Emphasis on creative design solutions to problems. Total credit limited to 9 units. 3 activities. Prerequisite: ART 255, or consent of instructor.

ART 356 Jewelry Casting (3)
Studio course investigating intermediate fabrication including raising, box construction and masonite dye. Exploration of surface design techniques for nonferrous metals. Emphasis on creative design solutions to problems. Total credit limited to 9 units. 3 activities. Prerequisite: ART 255, or consent of instructor.

ART 401 Contemporary Techniques and Issues in Drawing (3)
Advanced contemporary drawing techniques with focus on investigation of contemporary issues and creating a body of work for portfolio and exhibition. Total credit limited to 9 units. 3 activities. Prerequisite: ART 203, ART 301.

ART 402 Life Drawing II (3)
Advanced problems in life drawing. Advanced methods and techniques in the study of the human form as it relates to proportion, anatomy analysis and composition. Total credit limited to 6 units. 3 activities. Prerequisite: ART 302.
ART 406 Contemporary Issues in Painting (3)
Focused investigation into contemporary topics in painting, with connections made to traditional approaches. Formal concerns (color, space, light, composition) balanced with conceptual development. Topics may include, but are not limited to, the human figure, landscape, and technological influences. The Schedule of Classes will list topic selected. Total credit limited to 9 units. 3 activities. Prerequisite: ART 309 or consent of instructor.

ART 409 Advanced Painting (3)
Advanced problems in painting. Emphasis on the creative process from concept to finished art. Investigation of traditional, non-traditional and explorative work. To encourage development of personal approach. Total credit limited to 9 units. 3 activities. Prerequisite: ART 309, or consent of instructor.

ART 427 Advertising Photography (3)
Applied principles of design and color to produce a photograph that sells an idea, product, or service. Both traditional and digital applications used. Joint projects with ART 432, Advertising Design. Emphasis on thinking, planning, interpreting, and presenting an idea photographically. 2 lectures, 1 laboratory. Prerequisite: ART 326 and senior standing.

ART 428 Portfolio Production Photography (1)
Physical production of final portfolio for the graduating senior in photography concentration. 1 laboratory. Prerequisite: ART 427 and senior standing; concurrent enrollment in ART 462 required.

ART 430 Advanced Typographic Design (3)
Advanced principles of letterform design and modification related to the communication of ideas. Continuation of analysis of type characteristics. Emphasis on computer application to the typographic design processes. 3 activities. Prerequisite: ART 333 and senior standing.

ART 431 Package Design (3)
Study of package and graphic design for projects. Projects address research, analysis, designer development and implementation. For Art and Design majors only. Computer applications are required for appropriate problems. 3 activities. Prerequisite: ART 232, ART 333 and senior standing.

ART 432 Advertising Design (3)
Development of print advertising from concept to final presentation. Emphasis on art direction, photo direction and copywriting. For Art and Design majors only. Computer applications are required for appropriate problems. 3 activities. Prerequisite: ART 431 and senior standing.

ART 433 Editorial Design (3)
Design of editorial material, printed collateral, magazine layouts and annual reports. For Art and Design majors only. Computer applications are required for appropriate problems. 3 activities. Prerequisite: ART 431 and senior standing.

ART 435 Illustration (3)
Development of concept and illustration techniques for use in graphic design and advertising. Total credit limited to 6 units. For Art and Design majors only. 3 activities. Prerequisite: ART 209, ART 302, ART 333.

ART 440 Advanced Selected Topics in Glass (4)
Continued exploration into the expressive use of glass as a creative medium. Topics may include glass casting, glass blowing, cane work, mold making, and kiln work. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 2 lectures, 2 activities. Prerequisite: ART 241 or ART 341, or consent of instructor.

ART 448 Advanced Topics in Sculpture (3)
Studio course specializing in three dimensional form. Materials include clay, plaster, metal, or wood. Course content will be selected from various topics that are representational, abstraction, non-objective, or conceptual. The Schedule of Classes will list topic selected. Total credit limited to 9 units; may be in same term. 3 activities. Prerequisite: ART 348.

ART 455 Advanced Metalsmithing (3)
Studio course investigation advanced methods of metalsmithing, using non-ferrous metals including fabrication, raising, masonite-die, and casting. Emphasis on creative design solutions. Total credit limited to 9 units. 3 activities. Prerequisite: ART 355 or ART 356 or consent of instructor.

ART 460 Professional Practices (2)
Professional practices in the art, photography, and design fields, including legal and ethical issues, taxes, contracts, fees and copyrights. Current job opportunities are researched and a business plan is prepared. Course lectures augmented by visiting professionals. For Art and Design majors only. 2 lectures. Prerequisite: Senior standing.

ART 461 Senior Project (2)
Selection and completion of a project under faculty super-vision. Minimum of 90 hours time. Results presented in a formal report. Prerequisite: Senior standing and ART 460.

ART 462 Senior Portfolio Project (2)
Preparation of portfolio system for entrance into the professional job market or graduate school. 2 activities. Prerequisite: Senior standing and ART 461.

ART 463 Undergraduate Seminar (2)
Analysis of selected problems and topics for undergraduates. 2 seminars. Prerequisite: Senior standing.

ART 465 Contemporary Photography Seminar (2)
Survey of significant photographers and developments in the field since 1950. The interaction between photography and the other visual arts as well as its social impact during this period. Student presentations on selected research topics. Total credit limited to 4 units. 2 seminars. Prerequisite: ART 314.

ART 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

ART 471 Selected Advanced Laboratory (1-4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories. Prerequisite: Consent of instructor.

ART 474 Collaborative Studio: Rendering, Animation and Modeling (4)
A collaborative visualization and design studio focusing on rendering, animation and modeling. Emphasis on effective communication of ideas, product, or service. Both traditional and digital applications used. Joint projects with ART 432, Advertising Design. Emphasis on thinking, planning, interpreting, and presenting an idea photographically. 2 lectures, 2 laboratories. Prerequisite: Consent of instructor.

ART 483 Digital Video (4)
Video and computer generated multimedia presentation scripting, editing, storyboarding and sound cutting. Emphasis on effective communication using presentation techniques and application software to create high impact applications. 2 lectures, 2 laboratories. Prerequisite: ART 182.

ART 484 Animation and Interactive Design (3)
Creation of in-depth animations and interactive presentations. Advanced scripting, storyboarding and interactive communication techniques. 2 lectures, 1 laboratory. Prerequisite: ART 182.

ART 486 Advanced Digital Image Making (3)
Expressive possibilities of latest image manipulation software. Advanced capabilities of this software explored with focus on development of conceptual and expressive abilities in the digital medium. Total credit limited to 8 units. 2 lectures, 1 laboratory. Prerequisite: ART 182 and senior standing.
ART 487 Web Design (3)
Planning and implementation of web sites. Focus on site structure, navigation, HTML, animation, and design considerations. Art and Design majors only. Total credit limited to 6 units. 2 lectures, 1 laboratory. Prerequisite: ART 182 and senior standing.

ART 488 Advanced Web Design (3)
Conceptual and technical objectives: the development of the theoretical skills necessary to design a successful web user interface, information architecture and visual identity for digital projects, and the development of technical skills necessary to design advanced interactivity with Macromedia Flash and JavaScript. 2 lectures, 1 laboratory. Prerequisite: Art and Design majors only, ART 484, ART 487 and senior standing.

ART 489 Advanced Interactive Media Art (3)
Advanced topics in the digital media field such as interface design, information architecture techniques, digital typography and interactive storytelling. Survey of new applications of design for the new media, and the development of digital portfolio pieces. 2 lectures, 1 laboratory. Prerequisite: ART 488, or consent of instructor.

ART 494 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 12 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

ART 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

ASCI–ANIMAL SCIENCE

ASCI 101 Introduction to the Animal Sciences (2) (CR/NC)
Economic, environmental and societal impact of the livestock, poultry and horse industries. Basic terminology, anatomy, and physical requirements of animals. Career and academic planning. Co-curricular, extra-curricular, and post-graduate opportunities. Required of all first-time students in the Animal Science Department. Credit/No Credit grading only. 2 lectures.

ASCI 112 Principles of Animal Science (4) GE B2
Economic and environmental roles of animal production and companionship to society. Introductory nutrition, genetics, reproduction, behavior, growth and development, animal products, biosecurity, and food processing and safety of animals. 4 lectures. Does not count for GE B2 for ASCI majors.

ASCI 200 Special Problems for Undergraduates (2–3) (CR/NC)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 3 units per quarter. Credit/No Credit grading only. Prerequisite: Consent of instructor.

ASCI 203 Animal Parasitology (3) (Also listed as VS 203)
Identification, life cycles, prevention and control of the common external and internal parasites causing economic loss in livestock. 3 lectures. Prerequisite: BIO 111 or BIO 161.

ASCI 211 Meat Science (4)
Muscle food processing methods and operations. Conversion of muscle to meat. Meat inspection, grading, composition, curing, preservation, food safety and related topics. Carcass beef, pork, and lamb processed into consumer ready products. 3 lectures, 1 laboratory.

ASCI 212 Livestock Show Management (3)
Application of the management and operations of Cal Poly's Western Bonanza Livestock Show. Principles and procedures in planning, organizing, financing, promoting and managing a major livestock show and the fair industry. Total credit limited to 6 units. 1 lecture, 2 activities. Not open to students with credit for ASCI 412 or ASCI 413.

ASCI 214 Equine Management (2)
Application of safety, risk reduction, horsemanship skills. Develop a working equine/human relationship. Selection and application of nutrition, equipment, preventive health and farrier program, and equitation skills. 2 laboratories. Prerequisite: Consent of instructor.

ASCI 216 Meat Grading and Evaluation (2)
Factors related to carcass quality and yield. USDA meat grading principles and practices. Judging of carcass and wholesale cuts. Field trip to meat packing plants required. 1 lecture, 1 laboratory. Prerequisite: ASCI 211.

ASCI 220 Introductory Animal Nutrition and Feeding (4)
Nutrient digestion and absorption; basic functions of major nutrient classes; NRC feed classification and feedstuff characteristics; Van Soest system of fiber analysis and practical applications; feed processing: effects on feeds and nutrient availability; nutrient requirements of animals; diet formulation techniques. 3 lectures, 1 laboratory. Prerequisite: ASCI 112.

ASCI 221 Introduction to Beef Production (4)
Survey of industry characteristics, breeds, market classes, production systems, and current issues facing the beef industry. 3 lectures, 1 laboratory. Prerequisite: ASCI 112 or ASCI 231.

ASCI 222 Systems of Swine Production (4)
Structure of the pork industry in the U.S.; production standards and new technologies; breed systems. Market classification, product quality and quality assurance. Swine behavior and husbandry systems; biosecurity, health and feeding systems and management. 3 lectures, 1 laboratory. Prerequisite: ASCI 112 or ASCI 231.

ASCI 223 Systems of Sheep Management (4)
Sheep industry overview, populations, trends, cultural implications, breed identification, nutritional, reproductive, health, and marketing management of sheep. 3 lectures, 1 laboratory. Prerequisite: ASCI 112 or ASCI 231.

ASCI 224 Equine Science (4)
History, status of the horse industry, breeds. Application of management skills, safety, conformation evaluation, hoof and leg conformation and care. Understanding equine behavior. Insurance and tax ramifications. Pedigree analysis. Alternate therapies. 3 lectures, 1 laboratory. Prerequisite: ASCI 112 or ASCI 231.

ASCI 225 Introduction to Poultry Management (4) (Also listed as PM 225)
Introduction to modern techniques in poultry production, processing, marketing and price discovery. Consumption trends, breeds and consumer grades. Laboratory application of management skills, health care, keeping of production and accounting records and processing techniques. 3 lectures, 1 laboratory.

ASCI 226 Livestock Evaluation (3)
Utilization of objective and subjective estimation measures in establishing economic worth of domestic animals of the three meat animal species and horses. 1 lecture, 2 laboratories.

ASCI 227 Companion Animal Science (4)
Companion animal anatomy and physiology, reproduction, nutrition, behavior, management, common parasites, and infectious diseases. Scientific method in studying the human-animal bond. Application of biological concepts to problems related to companion animals. Trends in pet industry including animal welfare issues. 3 lectures, 1 laboratory. Prerequisite: ASCI 112.

ASCI 228 Equine Evaluation (2)
Appraisal of equine breeds at halter and in performance classes. Evaluate horse classes, decide their order of placement, and then orally justify these decisions to a judge. The relationship of equine anatomy and physiology on competitive performance. 2 laboratories.
ASCI 229 Anatomy and Physiology of Farm Animals (4)
(Also listed as VS 229) (formerly VS 223)
Comprehensive overview of the principal systems of farm animals using an integrative, systemic approach to learning the homeostasis of mammalian organisms so the information can be applied to their daily care and management. 3 lectures, 1 laboratory. Prerequisite: BIO 111 or BIO 161.

ASCI 231 General Animal Science (3)
Relationship of animal agriculture to society and the economy and their role for human use and consumption. Discussion of nutrition, reproduction and management of beef cattle, sheep, swine and horses. Credit not allowed for Animal Science majors. 3 lectures.

ASCI 232 General Animal Science Laboratory (1)
Basic handling skills of livestock; introductory selection of livestock; basic feedstuff identification and processing; and health care practices. 1 laboratory.

ASCI 260 Preparation of Livestock for Shows and Sales (2)
Techniques, equipment and knowledge necessary in order to properly condition, groom, and present beef cattle or horses for evaluation and merchandising. Total credit limited to 4 units. 2 laboratories.

ASCI 265 Equine Behavior and Training (3)
Training of weanling and yearling horses at halter. Selection of proper attire for the handler and equipment for the horse. Application of safe, behavioral training techniques enabling the horse to accept handling, farrier and health care. 3 activities.

ASCI 290 Animal Production and Management Enterprise (1-4)
(CR/NC) (Also listed as PM 290)
Beginning field experience in animal production systems. May include health, nutrition, reproduction, management, processing, budgeting, and/or marketing exercises. Total degree credit for ASCI 290/ASCI 490 limited to 6 units. Credit/No Credit grading only. 1-4 lectures. Prerequisite: Consent of instructor.

ASCI 304 Animal Breeding (3)
Application of genetic principles for livestock improvement. Improving production through a study of selection techniques, mating systems, and performance evaluation using current technology. 3 lectures. Prerequisite: BIO 302 or BIO 303 or BIO 351.

ASCI 305 Game Bird Propagation and Management (3)
(Also listed as PM 305)
Habitat needs, management and propagation of North American game bird species in the wild and in captivity. Reproduction, nutrition and maintenance of flock health as practiced by commercial game bird operations. 3 lectures. Prerequisite: ASCI/PM 225.

ASCI 310 Technical Veterinary Skills (4)
(Also listed as VS 310)
Restraint and handling of animals, physical examination, necropsy procedure, basic wound management, applied pharmacology. Reproduction and herd health programs. 3 lectures, 1 laboratory. Prerequisite: VS/ASCI 229.

ASCI 311 Advanced Beef Cattle System Management (4)
Management principles for the sustainability of commercial beef cattle operations. Systems approach for goal setting, financial analysis, range management, breeding systems, nutrition, health programs, marketing, and production practices to enhance profitability of commercial cow-calf operations. 3 lectures, 1 laboratory. Prerequisite: ASCI 221 or consent of instructor.

ASCI 312 Production Medicine (3)
(Also listed as VS 312)
Basic disease concepts. Fundamentals of immunology and therapeutics. Disease prevention principles, infectious and non-infectious. Pre-harvest food safety and milk and meat quality assurance. Herd health management programs for production efficiency and product quality. 3 lectures. Prerequisite: ASCI 223 or ASCI 225 or PM/ASCI 225 or ASCI 224 or ASCI 227; and VS/ASCI 229.

ASCI 315 Equine Biomechanics (4)
Anatomy and physiology of the equine hoof and limb. An understanding of the art and science of the farrier's work. Evaluation of proper hoof care, trimming, and shoeing. Foot and leg conformation as it relates to sound locomotion. 3 lectures, 1 activity. Prerequisite: ASCI 224 or equivalent. Recommended: VS/ASCI 229.

ASCI 320 Physiological Chemistry of Animals (4)
Interactions between the biological and chemical reactions in livestock. Physiology explained at the organ, tissue and cellular level as it relates to the whole animal system. 4 lectures. Prerequisite: CHEM 312 or CHEM 316, VS/ASCI 229.

ASCI 321 Zoonoses and Veterinary Public Health Concerns (4)
(Also listed as VS 321) (formerly VS 320)
Public health concerns including: animal and bird diseases which may be transmitted to people; pre-harvest food safety and handling concerns; and environmental public health hazards. 3 lectures, 1 activity. Prerequisite: BIO 111 or BIO 161.

ASCI 324 Advanced Equine Evaluation (2)
Application of deductive and inductive logical processes in appraising the relative merit of individual horses in halter and performance through the application, development and refinement of deductive and inductive logical processes. Oral and written expression of the selection rationale. 2 laboratories. Prerequisite: ASCI 228 or consent of instructor.

ASCI 325 Egg Production, Processing and Distribution (4)
(Also listed as PM 325)
Management of replacement pullets and laying hens including flock scheduling, vaccination and handling procedures, nutrition management, costs of operation and production projections. Quality determination, processing, sales and distribution of shell eggs and egg products. 3 lectures, 1 laboratory. Prerequisite: ASCI/PM 225.

ASCI 326 Advanced Livestock Evaluation (2)
Application of deductive and inductive logical processes in appraising the relative merit of individual animals within a group sample. Oral expression of the selection rationale. 2 laboratories. Prerequisite: ASCI 226.

ASCI 329 Principles of Range Management (3)
Characteristics, history and multiple uses of rangeland. Principles of range plant physiology and ecology in relation to range condition, trend, utilization and improvement practices. Principles of proper grazing practices and nutrition of livestock. 3 lectures. Prerequisite: One course each in soil science, animal science and botany or crop science.

ASCI 330 Poultry Meat Production and Processing (4)
(Also listed as PM 330)
Modern production techniques for the poultry meat industry. Management of hatcheries, broiler and/or turkey meat production, processing and further processing. 3 lectures, 1 laboratory. Prerequisite: ASCI/PM 225.

ASCI 333 Equine Reproduction (5)
Management of the breeding farm, breeding problems, diseases, study of estrus cycles, servicing the mare, handling stallions. Breeding systems, teasing, embryo transfer, ultrasound pregnancy diagnosis, new developments in breeding technology. 4 lectures, 1 laboratory. Prerequisite: ASCI 224 and VS/ASCI 229.

ASCI 339 Internship in Animal Science (1-12) (CR/NC)
Selected Animal Science students will spend up to 12 weeks with an approved agricultural firm engaged in production or related business. Time will be spent applying and developing production and managerial skills and abilities. One unit of credit may be allowed for each full week of completed and reported internship. Degree credit limited to 6 units. Credit/No Credit grading only. Prerequisite: Consent of internship instructor.

ASCI 342 Poultry Business Management (4)
(Also listed as PM 342) (formerly PM 345)
Organization and management of vertically integrated poultry operations. Personnel management, cash flow analysis, cash vs. accrual accounting, structuring of financial statements, projecting product outputs and cash flow
needs, employee benefit programs and insurance needs for poultry companies. 4 lectures. Prerequisite: PM/ASCI 225.

ASCI 344 Equine and Human Communication (3)
Behavior of the horse and its relationship with people. Learning, motivation, social behavior and communication with techniques to improve the safety and understanding between people and horses. 3 activities. Prerequisites: ASCI 214, or consent of instructor.

ASCI 345 Equine Behavior Modification (5)
Advanced principles of equine behavior modification for training young horses under saddle. Identifying differences in individual horse's abilities, techniques to teach horses to respond to different stimuli, management of young equine athlete. 5 activities. Prerequisite: ASCI 344 and consent of instructor.

ASCI 346 Equine Nutrition (3)
Equine digestion, diet development considerations and evaluations, nutritional management, and the relationship of specific topics to recommended feeding practices, research data, and nutritional portfolios. Information is based on recent advances in horse nutrition and the National Research Council's Nutrient Requirements for Horses. 3 distance learning course. 3 lectures. Prerequisite: ASCI 224 and ASCI 220.

ASCI 347 Equine Exercise Physiology (3)
Applied physiology of the exercising horse. Examine different physiological systems: muscular, cardiovascular, respiratory, and nutritional. Gait analysis, lameness, and treatment. The athletic horse: sports medicine, conditioning, drugs, and necropsy evaluation. A distance learning course. 3 lectures. Prerequisite: ASCI 224 and/or VS/ASCI 229 or consent of instructor.

ASCI 350 Applied Nonruminant Nutrition (4)
Comparison of nonruminant and ruminant digestive systems, nutrient requirements, risk management for ingredients, formulation and nutritional management. Influence of growth and production curves, consumption patterns, and feeding management in commercial poultry and swine industries. Feed manufacturing and governmental regulations. 3 lectures, 1 laboratory. Prerequisite: ASCI 220 or DSCI 101.

ASCI 351 Reproductive Physiology (4)
Reproductive anatomy of male and female farm animals. General endocrinology and systemic physiology. Endocrine system effects on the various aspects of reproduction, such as: gametogenesis, estrus, gestation, parturition, mothering and seasonality. Introduction to reproductive biotechnology and embryo manipulation. 3 lectures, 1 laboratory. Prerequisite: VS/ASCI 229.

ASCI 355 Ruminant Nutrition (4)

ASCI 360 Poultry Industry Seminar (3) (Also listed as PM 360)
New trends, management techniques and governmental regulations, special problems and research developments related to the poultry industry. 3 seminars. Prerequisite: PM/ASCI 225, PM/ASCI 330 and VS/ASCI 440.

ASCI 384 Processed Meat Products (4)
Physical, chemical and functional characteristics of meat food raw materials. Science and technology of value-added processing including curing, sausage manufacture, low moisture products, and restructuring. Quality assurance and related current industry topics. 3 lectures, 1 laboratory. Prerequisite: ASCI 211 and junior standing.

ASCI 400 Special Problems for Advanced Undergraduates (2-4) (CR/NC)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 4 units per quarter. Credit/No Credit grading only. Prerequisite: consent of instructor.

ASCI 403 Applied Biotechnology in Animal Science (5)
Coverage of current resources, techniques and methodologies used in animal research and biotechnology as well as experimental design, model assessment, and data interpretation with application to an experimental setting in the laboratory. 3 lectures, 2 laboratories. Prerequisite: BIO 161, BIO 162, upper division genetics course or consent of instructor.

ASCI 405 Domestic Livestock Endocrinology (4)
Endocrine system and its role in the homeostasis of the animal. Use of hormones in increasing productivity of domestic animals. Endocrinology of reproduction, growth, metabolism and immunology. Discussions of cost-benefit relationships in the use of hormones. 4 lectures. Prerequisite: VS/ASCI 229.

ASCI 406 Applied Animal Embryology (5)
Technology of promoting oocyte development, fertilization, culturing, cryopreservation and micromanipulation of embryos. Mouse, cattle and horse embryos used for learning the techniques involved in embryology. 3 lectures, 2 laboratories. Prerequisite: ASCI 212, AGB 314 and consent of instructor.

ASCI 412 Advanced Livestock Event Planning (3)
Organization and planning for the Western Bonanza Junior Livestock Show. Establishment of committee assignments and show manager responsibilities. Corporate partnerships established and fund raising begun. Planning for activities and guest speakers and new student recruitment. Total credit limited to 6 units. 1 lecture, 2 activities. Prerequisite: ASCI 212, AGB 314 and consent of instructor.

ASCI 413 Advanced Livestock Event Management (1)
Student management of the Western Bonanza Junior Livestock Show. Leadership skills, team building, media relations, use of computer applications, livestock and fair industry contacts and mentoring to new students. Application of knowledge learned in ASCI 412. Total credit limited to 2 units. 1 activity. Prerequisite: ASCI 412 and consent of instructor.

ASCI 415 HACCP for Meat and Poultry Operations (3)
Using Hazard Analysis and Critical Control Point (HACCP) principles to develop regulatory inspection plans for meat and poultry operations; development and use of prerequisite programs; microbiological and process overviews. 3 lectures. Prerequisite: ASCI 384 or PM/ASCI 330 or consent of instructor.

ASCI 420 Animal Nutrition (3)
Metabolism of proteins, carbohydrates, lipids, minerals, vitamins and water, and the relationship of nutrient utilization to animal production. 3 lectures. Prerequisite: ASCI 220 and ASCI 320.

ASCI 425 Meat Industry Study Tour (2)
Study tour of commercial meat businesses. Livestock harvest and carcass fabrication, further meat processing, retail and food service operations. Personnel, processing procedures, regulatory standards, industry specifications and current issues. Travel for 4 days. 2 activities. Prerequisite: ASCI 211.

ASCI 430 Animal Feed Processing (4)
Management of feed manufacturing for poultry/swine, dairy/beef, and companion animals. General operation of a processing facility including process flow, raw materials receiving, particle reduction, mixing, pelleting, packaging and delivery. State and federal regulations. 3 lectures, 1 laboratory. Prerequisite: ASCI 112 or consent of instructor.

ASCI 438 Systemic Animal Physiology (4) (Also listed as VS 438)
Homeostatic relationships of organ systems. Cardiovascular, respiratory, urogenital and neuro-endocrinological functions. 3 lectures, 1 laboratory. Prerequisite: VS/ASCI 229, CHEM 313 or CHEM 371, or ASCI 320.

ASCI 440 Immunology and Diseases of Animals (4) (Also listed as VS 440)
Introduction to immune system, including innate and acquired immunity of domesticated animals. Application of immunological analyses and examination of current disease issues in domesticated animals. 3 lectures, 1 laboratory. Prerequisite: VS/ASCI 229. Recommended: ASCI 320, CHEM 371 or equivalent.
ASCI 450 Computer Applications in Animal Science: Spreadsheet Analysis (4)
Development of spreadsheets relating to livestock production. Integration of
database and analytical techniques. Cost-benefit analyses of livestock pro-
duction systems. 2 lectures, 2 activities. Prerequisite: AG 250 or CSC 110.

ASCI 455 Advanced Equine Reproductive Technologies (4)
Assisted reproductive technologies in horses; use of gametes from normal
and sub-fertile horses; manipulation of sub-fertile horses, donor and
recipient mares; manipulation of endocrine system; embryo utilization;
cryobiology of gametes and embryos; assessment of high-risk mare, fetus,
and neonate. 3 lectures, 1 laboratory. Prerequisite: ASCI 333; ASCI 351;
ASCI 405 and ASCI 406 recommended.

ASCI 461 Senior Project Planning (1) (CR/NC)
Evaluation of project options and expectations. Selection of a project and an
appropriate advisor. Primary objective: completion of a senior project
proposal and outline signed by the senior project advisor, detailing the
scope of the project, resources required, and timeline for completion. Online
course. Credit/No Credit grading only. Prerequisite: Junior standing.

ASCI 462 Senior Project (2)
Selection and completion of a project under faculty supervision. Projects
typical of problems which graduates must solve in their fields of
employment. Project results are presented in a formal report. Minimum 60
hours. Prerequisite: ASCI 461.

ASCI 463 Undergraduate Seminar (2)
Major developments in the chosen field of the student. Discussion of new
developments, policies, practices, and procedures. Each individual is
responsible for the development and presentation of a topic in the chosen
field. 2 seminars. Prerequisite: Senior standing and ASCI 462.

ASCI 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to
undergraduate and graduate students. The Schedule of Classes will list topic
selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent
of instructor.

ASCI 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students.
Open to undergraduate and graduate students. The Schedule of Classes will
list topic selected. Total credit limited to 8 units. 1 to 4 laboratories.
Prerequisite: Consent of instructor.

ASCI 476 Issues in Animal Agriculture (3)
Exploration of social, political and environmental forces which will affect
livestock production in the future. Roles played by advocacy groups and the
media in influencing consumer demands and management practices. 3
seminars. Prerequisite: Upper division standing.

ASCI 480 Advanced Integration of Livestock and Meat Production (4)
Integration of domestic livestock systems and meat production. Advanced
concepts in science and technology of animal management, growth
enhancement, harvest and processing related to product safety and quality. 3
lectures, 1 laboratory. Prerequisite: ASCI 211 and ASCI 221; or equivalent
course.

ASCI 485 Cooperative Education Experience in Animal Science (6)
(CR/NC)
Part-time work experience with an approved Animal Science firm engaged
in production or related business, industry or governmental agency.
Positions are paid and usually require relocation and registration in course
for two consecutive quarters. Formal report and evaluation by work
supervisor required. Total credit limited to 6 units. Degree credit limited to
6 units. Credit/No Credit grading only. Prerequisite: Sophomore standing
and consent of instructor.

ASCI 490 Advanced Animal Production and Management Enterprise (1–4) (CR/NC) (Also listed as PM 490)
Advanced field experience in animal production systems. May include
health, nutrition, reproduction, management, processing, budgeting, and/or
marketing exercises as well as management decision-making opportunities.
Total degree credit for ASCI 290/ASCI 490 limited to 6 units. Credit/No
Credit grading only. 1-4 lectures. Prerequisite: Consent of instructor.

ASCI 495 Cooperative Education Experience in Animal Science (12) (CR/NC)
Full time work experience with an approved Animal Science firm engaged
in production or related business, industry or governmental agency.
Positions are paid and usually require relocation and registration in course
for two consecutive quarters. Formal report and evaluation by work
supervisor required. Total credit limited to 16 units. Degree credit limited to
6 units. Credit/No Credit grading only. Prerequisite: Sophomore standing
and consent of instructor.

ASCI 500 Individual Study in Animal Science (1–6)
Advanced independent study planned and completed under the direction of
a member of the Animal Science faculty. Total credit limited to 6 units.
Prerequisite: Consent of department head, graduate advisor and supervising
faculty member.

ASCI 503 Advanced Molecular Techniques in Animal Science (4)
Advanced molecular laboratory techniques in animal science. Topics
include analyses of cellular and metabolic regulation, gene expression, gene
activation and regulation, gene construct design, transgenesis, knockout
animal models. 2 lectures, 2 laboratories. Prerequisite: ASCI 403 or
equivalent course.

ASCI 540 Advanced Immunology and Diseases of Animals (4)
(Also listed as VS 540)
In-depth analysis of the immune system, including molecular basis for
immunity of domesticated animals. Application of immunological assays,
and application of scientific method to examine immunity and disease in
domesticated animals. Not open to students with credit in VS 440. 3
lectures, 1 laboratory. Prerequisite: VS/ASCI 229 or ASCI 320 or CHEM 371
or equivalent; STAT 218 or equivalent; or consent of instructor.
Corequisite: VS/ASCI 541.

ASCI 541 Advanced Animal Immunology Laboratory (1)
(Also listed as VS 541)
Laboratory complement to VS 540. Independent research projects, including
hypothesis development, experimental design, data collection and analyses,
and written and oral presentations. 1 laboratory. Corequisite: VS/ASCI 540.

ASCI 555 Advanced Equine Reproductive Technologies (4)
Assisted reproductive technologies in horses; use of gametes from normal
and sub-fertile horses; manipulation of sub-fertile horses, donor and
recipient mares; manipulation of endocrine system; embryo utilization;
cryobiology of gametes and embryos; assessment of high-risk mare, fetus,
and neonate. 3 lectures, 1 laboratory. Prerequisite: ASCI 333; ASCI 351;
ASCI 405 and ASCI 406 recommended. Not open to students with credit in
ASCI 455.

ASCI 570 Selected Topics In Animal Science (1–4)
Directed group study of selected topics for advanced students. Open to
undergraduate and graduate students. The Schedule of Classes will list topic
selected. Total credit limited to 12 units. 1 to 4 seminars. Prerequisite:
Graduate standing or consent of instructor.

ASCI 581 Graduate Seminar in Animal Science (1–4) (CR/NC)
Current findings and research problems in the field and their application to
the industry. Credit/No Credit grading only. Total credit limited to 12 units.
1-4 seminars. Prerequisite: Graduate standing and consent of instructor.

ASTR—ASTRONOMY AND
ASTROPHYSICS

ASTR 101 Introduction to the Solar System (4) GE B3
Descriptive astronomical properties of the Earth, Moon, other planets and
their satellites. Comets, asteroids and other members of the Solar System.
Theories of the formation of the Solar System. Opportunities for telescope
observations of the Moon and planets. Not open to students who have completed or are taking ASTR 301, ASTR 302, or PHYS 132. 4 lectures.

ASTR 102 Introduction to the Stars and Galaxies (4)
GE B3
Descriptive astronomical properties of the Sun, stars, galaxies and interstellar material. Expanding universe and cosmological models. Opportunities for telescope observations of the stars and constellation identification. Not open to students who have completed or are taking ASTR 112, ASTR 301, ASTR 302, or PHYS 132. ASTR 101 is not a prerequisite. 4 lectures.

ASTR 112 Introduction to the Stars and Galaxies (4)
GE B3 & B4
Descriptive astronomical properties of the Sun, stars, galaxies and interstellar material. Exploration of cosmological models of an expanding universe. Laboratory activities include real and virtual astronomical viewing and experiments. Not open to students who have completed or are taking ASTR 102, ASTR 301, ASTR 302, or PHYS 132. ASTR 101 is not a prerequisite. 3 lectures, 1 activity.

ASTR 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

ASTR 301 The Solar System (3)
Quantitative and descriptive properties of the Solar System including the physics of the planets, their satellites, comets and interplanetary media. Possible origins of the Solar System. Not open to students who have completed ASTR 101. 3 lectures. Prerequisite: PHYS 132 or PHYS 123.

ASTR 302 Stars and Galaxies (3)
Quantitative and descriptive properties of the stars, galaxies and interstellar media; including stellar structure and evolution, structure and make-up of galaxies and cosmological models. Not open to students who have completed ASTR 102. 3 lectures. Prerequisite: PHYS 132 or PHYS 123. ASTR 301 is not a prerequisite.

ASTR 326 Relativity and Cosmology (3)
Introduction to the basic ideas of Einstein's theories of relativity and cosmology: The structure and evolution of the universe. The principle of relativity, the speed of light, gravity and the equivalence principle. Curved spacetime, black holes, the expanding universe, the Big Bang, and nucleosynthesis. 3 lectures. ASTR 302 is not a prerequisite. Prerequisite: PHYS 122 or PHYS 132.

ASTR 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

BIO—BIOLOGY

BIO 100 Orientation to Biological Sciences (1) (CR/NC)
Introduction to Biological Sciences faculty, department and campus resources, research opportunities, possible careers, studying science, and current topics in biology. Credit/No Credit grading only. 1 lecture.

BIO 111 General Biology (4)
GE B2 & B4
Principles of cellular biology, heredity, ecology, biological diversity, and evolution, with emphasis on their relationships to human affairs. Not open to students who have completed BIO 115 or BIO 161. 3 lectures, 1 laboratory.

BIO 112 Environmental Biology and Conservation (4)
GE B5
A biologically centered exploration of our planet focusing on natural resource conservation and contemporary environmental issues. Interactions between components of the biosphere and impacts of human society on interrelationships within ecosystems. Trends in natural resource conservation and biodiversity preservation. 4 lectures.

BIO 113 Animal Diversity and Ecology (4)
GE B2 & B4
Animal diversity and ecology in aquatic and terrestrial communities including structural and functional adaptations of animals to their environment. Identification of common invertebrate and vertebrate animals. Field experience in local ecosystems. Saturday field trips. 2 lectures, 2 laboratories.

BIO 114 Plant Diversity and Ecology (4)
GE B2 & B4
Plant diversity and ecology in aquatic and terrestrial plant communities including adaptations of plants to their environment. Identification of common, local native plants and plant communities, uses of native plants by Native Americans, and human impacts on native plant communities. Saturday field trips. 2 lectures, 2 laboratories.

BIO 115 Animal/Human Structure and Function (4)
GE B2 & B4
Possible origins of the Solar System. Not open to students who have completed ASTR 153 or ASTR 162. 3 lectures, 1 laboratory. Recommended prerequisite: A course in chemistry.

BIO 160 Diversity and the History of Life (4)
Overview of the history, diversity and genetic relatedness of life on Earth; broad-scale evolutionary framework of the organization and expansion of life on Earth. 2 lectures, 2 laboratories.

BIO 161 Introduction to Cell and Molecular Biology (4)
GE B2 & B4
Fundamentals of cellular biology with an emphasis on the molecular perspective of life: metabolism, photosynthesis, cell structure and reproduction, meiosis, immunology, classical and molecular genetics, gene regulation. 3 lectures, 1 laboratory. Recommended prerequisite: BIO 160 and one college-level introductory chemistry course.

BIO 162 Introduction to Organismal Form and Function (5)
Fundamentals of the structure and physiology of cells, tissues, and organs of plants and animals: energy acquisition and food distribution, gas exchange and fluid transport, and sensing and responding to the environment. 3 lectures, 2 laboratories. Prerequisite: BIO 161 or consent of instructor. Recommended: One college-level introductory chemistry course.

BIO 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Intended for lower division students in the Biological Sciences Department. Total credit limited to 4 units, with a maximum of 2 units per quarter. Credit does not apply to any concentration in the Biological Sciences Department. 1-2 laboratories. Prerequisite: Consent of department chair.

BIO 213 Life Science for Engineers (2)
GE B2
Fundamentals of life sciences: energetics, cell biology, molecular and classical genetics, microbiology, organismal biology, and ecology. For engineering students only. 2 lectures. Prerequisite: MATH 142 and CHEM 124. Co-requisite: ENGR/RAE 213.

BIO 227 Wildlife Conservation Biology (4)
GE B2

BIO 232 Nanotechnology, Human Biology, Ethics and Society (4)
(Also listed as MATE 232)
Focus on four nanotechnology examples as focal points for themes of nanoscale science and technology, human biology, society, ethics, and systems thinking: gold nanoshells for cancer treatment; molecular manufacturing; tissue engineering of a vital organ; and a microfluidic glucose sensor. The focal points provide natural contexts for learning biology at the cellular level, the molecular level, the organ level and the biological systems level, respectively. 4 lectures. Prerequisite: GE Areas B1, B2, B3.
BIO 253 Orientation to the Health Professions (1) (CR/NC)
Participation in hospital activities and mental health services. Intended for medically oriented students. Total credit limited to 6 units with a maximum of 1 unit per quarter. Credit/No Credit grading only. 1 activity. Prerequisite: Instructor's consent and one course in college biology.

BIO 263 Introductory Ecology and Evolution (4)
Basic concepts in ecology and evolution. Relationships among organisms in populations, communities and ecosystems, structures and dynamics of populations, communities and ecosystems, ecosystem inputs and energy flows, nutrient cycling, biogeography, population genetics, evolution, patterns of biodiversity and issues in conservation biology. 3 lectures, 1 laboratory. Prerequisite: BIO 161 or consent of instructor. Recommended: BIO 160 and BIO 162.

BIO 301 Environmental Science and Human Ecology (4)
Introduction to natural processes regulating renewable and non-renewable physical, chemical, and biological resources. Human population ecology and the influence and interactions of human populations on/with physical, chemical, and non-human biological resources. Principles of management, environmental science, and conservation biology that lead to equilibrium or self-sustaining conditions. 4 lectures. Prerequisite: BIO 160, 162.

BIO 302 Human Genetics (4) GE B5
Basic principles of human inheritance, including the transmission of genetic traits, chromosomal abnormalities and their effects, gene structure and function, mutations and mutagenic agents, cancer genetics, population genetics, and principles of genetic counseling. 4 lectures. Prerequisite: One course from GE Area A1 (Recommended: STAT 217 or STAT 218), and one course from GE Area B2.

BIO 303 Survey of Genetics (4)
Principles of heredity and variation, including transmission, population and quantitative genetics; introduction to molecular mechanisms of inheritance. 4 lectures. Prerequisite: One quarter of college biology. Recommended: STAT 218 or equivalent.

BIO 305 Biology of Cancer (4) GE B5
Introduction to the causes, characteristics and treatment of human cancer. Topics include effects of carcinogens and radiation; the genetics of cancer; molecular, cellular and physiological changes in common cancers; conventional chemotherapy and new treatments. Not open for major credit in Biological Sciences, Microbiology or Biochemistry. 4 lectures. Prerequisite: One course for GE Area B2 in Biology.

BIO 306 Applications of Biological Concepts (4)
Applications of basic biological concepts with special reference to how these concepts can be presented and developed in elementary schools. Emphasis is on hands-on activities, problem solving and computer assisted instruction modules in biology. 3 lectures, 1 laboratory. Prerequisite: Two of the following: BIO 113, BIO 114, BIO 115.

BIO 307 World Aquaculture: Applications, Methodologies and Trends (4) GE Area F
Life histories and habitats of important species of fishes, invertebrates and algae. Methodologies for the commercial propagation of specific forms. Global and regional coverage, including socioeconomic trends, controversies and applications in developed and less developed regions of the world. 3 lectures, 1 activity. Prerequisite: One course in biology (BIO, ZOO, BOT or MICRO prefix), completion of GE Area B1 and junior standing. Not open for major credit in Biological Sciences (or Ecology and Systematic Biology majors on prior catalogs).

BIO 317 The World of Spatial Data and Geographic Information Technology (4) GE Area F (Also listed as FNR/GEOG/LA 317)
Basic foundation for understanding the world through geographic information and the tools available to utilize spatial data. Application of Geographic Information Systems (GIS) and related technologies, including their scientific basis of operation. 3 lectures, 1 activity. Prerequisite: Any CSC course, completion of GE Area B, and junior standing.

BIO 318 Freshwater Ecology (4) (formerly BIO 418)
Biological, physical, and chemical dynamics of aquatic systems surrounded by land including lakes, streams, wetlands, and estuaries. 3 lectures, 1 laboratory. Prerequisite: BIO 263 or consent of instructor. Recommended: College-level course in chemistry.

BIO 325 General Ecology (4)
Relationships between organisms and their physical, chemical, and biological environment in terrestrial and aquatic habitats. Laboratory emphasis on field studies. Occasional field experiences may require participation during non-scheduled times. 3 lectures, 1 laboratory. Prerequisite: BIO 160, BIO 162, and BIO 263, or consent of instructor.

BIO 327 Wildlife Biology Methods (5)
Methods for gathering information for management of wildlife. Use of the literature, inventory of plants and animal populations, use of maps, sexing and aging, trapping, handling, and marking techniques, physiological indices, and radio telemetry. 3 lectures, 2 laboratories. Prerequisite: BIO 325 or equivalent.

BIO 328 Marine Biology (5)
Introduction to the functional biology of marine plants and animals and the processes that underlie their distribution and abundance in open oceans, coastal regions, estuaries, and wetlands. 3 lectures, 2 laboratories. Several field trips. Prerequisite: BIO 160, BIO 162, BIO 263.

BIO 334 Principles of Systematic Biology (4)
Introduction to the concepts, methods, and data used to define and recognize the units of biological diversity, including a survey of various types of molecular and morphological data and computer programs used in their analysis. 3 lectures, 1 laboratory. Prerequisite: BIO 160, BIO 162, BIO 263, BIO 351 and STAT 218 or equivalent.

BIO 351 Principles of Genetics (5)
Principles of genetics and genetic analysis, including underlying molecular mechanisms. Subjects include gene structure and function, inheritance patterns, regulation of gene expression, mutation, recombination, recombinant DNA technology, and an introduction to population genetics. 5 lectures. Prerequisite: BIO 161 and CHEM 312 or CHEM 316. Recommended: BIO 263 and STAT 218.

BIO 356 Principles of Physiology (4)
Fundamental principles of general and organs systems physiology, including composition and concentration of cellular and other body fluids, categories of movement (e.g., diffusion, membrane transporters), energy (thermodynamics, metabolic), enzymes, and membrane potentials with application to whole organisms. Introduction to physiological measurement techniques. 2 lectures, 2 laboratories. Prerequisite: BIO 162, and CHEM 312 or CHEM 316.

BIO 375 Molecular Biology Laboratory (2) (Also listed as CHEM 375)
Introduction to techniques used in molecular biology and biotechnology; DNA extraction, characterization, cloning, Southern blotting, reverse transcription, polymerase chain reaction, and sequencing analysis. 2 laboratories. Prerequisite: BIO 161, and BIO 351 or CHEM 373.

BIO 391 Field Quarter I – Field Ecology (4)
Field studies of terrestrial and aquatic ecosystems of California. Investigation of habitat diversity, environmental factors, composition and functional biology, and seasonal progression of animal and plant communities. Several extended field trips. 2 lectures, 2 laboratories. Prerequisite: BIO 160, BIO 162, BIO 263 and BIO 325; corequisite: BIO 392, BIO 393, BIO 400 (2 units).

BIO 392 Field Quarter II – Field Botany (4)
Terrestrial and aquatic plant communities of California. Field identification of native and introduced plants in nature. Factors affecting plant distribution and relationships. Several extended field trips. 2 lectures, 2 laboratories. Prerequisite: BIO 160, BIO 162, BIO 263, and BIO 325; corequisite: BIO 391, BIO 393, BIO 400 (2 units); recommended: BOT 313. Students completing BIO 392 will not be able to receive degree credit for BOT 433 as well.
BIO 393 Field Quarter III – Field Zoology (4)
Terrestrial and aquatic animal communities of California. Natural history, population and community ecology, and identification of vertebrates and invertebrates. Determinants of animal distribution. Major mechanisms determining diversity. Several extended field trips. 2 lectures, 2 laboratories. Prerequisite: BIO 160, BIO 162, BIO 263 and BIO 325; corequisite: BIO 391, BIO 392, BIO 400 (2 units).

BIO 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. 1-2 laboratories. Prerequisite: Consent of department chair.

BIO 401 Conservation Biology (4)
Principles of conservation biology; practical solutions to current threats to biodiversity in terrestrial, freshwater, and marine environments. 3 lectures, 1 laboratory. Prerequisite: BIO 325 or equivalent.

BIO 405 Developmental Biology (5)
Events and mechanisms of embryonic development, including fertilization, morphogenesis, cell differentiation, and organogenesis, with emphasis on differential gene expression in model organisms. 3 lectures, 2 laboratories. Prerequisite: BIO 162, and BIO 303 or BIO 351.

BIO 414 Evolution (4)
Scientific evaluation of the theories, mechanisms, and patterns of biological evolution. 4 lectures. Prerequisite: BIO 263 or equivalent, and BIO 303 or BIO 351. Recommended: BIO 325 or equivalent.

BIO 415 Biogeography (4)
Plant and animal distribution patterns in relation to past and present physical and biotic factors; survey of major biomes with major emphasis on North and South America. 4 lectures. Prerequisite: BIO 263.

BIO 419 Ecological Methodology (4)
Introduction to quantitative methods used in ecology with an emphasis on the design and analysis of field studies. Population estimates, sampling design and analysis, and the determination of community structure. 3 seminars, 1 activity. Prerequisite: STAT 218 or equivalent. Recommended: BIO 263, BIO 325 or BOT 326, or consent of instructor.

BIO 421 Wetlands (4) (Also listed as FNR/SS 421)
The formation, characteristics, and functions of wetlands. Genesis of hydric soils. Plant adaptations to saturated soils. Wetlands as wildlife habitat. Policies and social issues associated with wetlands. The procedures of wetland delineations. 3 lectures, 1 laboratory. Prerequisite: CHEM 128, BOT 313, SS 321.

BIO 424 Organizing and Teaching Life Sciences (4)
Objectives, content, techniques, material, and recent trends of successful instruction in secondary school biology, including strategies for English language learners (ELL) and special needs students. 4 lectures. Prerequisite: Consent of instructor.

BIO 426 Immunology (4)
Principles of molecular and cellular immunology. Emphasis on molecular regulation of immune cell development, including generation of unique receptors, lymphocyte signal transduction and selection, programmed cell death and regulation of immune responses. Discussion and demonstration of roles of immunology in disease and as diagnostic tools. 3 lectures, 1 laboratory. Prerequisite: BIO 351 or consent of instructor. Recommended: Biochemistry course.

BIO 427 Wildlife Management (4)
Important habitats, such as riparian, wetlands, and habitat features important to wildlife, such as vegetation types and snags. Basic concepts of wildlife management. Emphasis on planning and designing habitats to meet the needs of wildlife. 3 lectures, 1 laboratory. Prerequisite: BIO 325 or equivalent.

BIO 432 Vertebrate/Human Anatomy and Physiology I (5)
Anatomy and physiology of the skeletal, muscular, nervous (central and peripheral) systems, and sense organs of vertebrates, with an emphasis on human systems. Not open to students with credit in ZOO 331. 3 lectures, 2 laboratories. Prerequisite: BIO 361 or consent of instructor.

BIO 433 Vertebrate/Human Anatomy and Physiology II (5)
Anatomy and physiology of the digestive, circulatory, urinary, endocrine, and reproductive systems, with an emphasis on human systems. Not open to students with credit in ZOO 332. 3 lectures, 2 laboratories. Prerequisite: BIO 361 or consent of instructor.

BIO 434 Environmental Physiology (4)
Comparative physiological mechanisms involved in the regulation of oxygen uptake, water and ion balance, and temperature regulation in animals. Emphasis is placed on physiological adaptations which maintain or restore homeostasis in animals which are subjected to environmental changes. 3 lectures, 1 laboratory. Prerequisite: BIO 162, CHEM 312 or CHEM 316. Recommended: CHEM 325 and BIO 361.

BIO 435 Plant Physiology (4)
Consideration of the principal physiological and biochemical processes of plants with emphasis on water relations, mineral nutrition, photosynthesis, and the physiology of plant development. 3 lectures, 1 laboratory. Prerequisite: BOT 121 or BIO 162; recommended: CHEM 312 or CHEM 316.

BIO 437 Marine Resources (4)
Biological, historical, current, and potential marine resources including both technical means used to harvest and biological factors important in achieving a sustainable yield. Identification, life histories, ecology, culture, and economics of pertinent organisms. 3 lectures, 1 laboratory. Prerequisite: BIO 160, BIO 162, and BIO 263 or consent of instructor.

BIO 438 Aquaculture (4)
Propagation and rearing of fishes, invertebrates and algae from marine, freshwater, and estuarine habitats. Current methodologies and general life histories. Global perspective including aquacultural development in developed and developing countries. 3 lectures, 1 laboratory. Prerequisite: BIO 160, BIO 162, and BIO 263 or consent of instructor.

BIO 441 Bioinformatics Applications (4) (Also listed as CHEM 441) (formerly BIO 447)
Introduction to new problems in molecular biology and current computer applications for genetic database analyses. Use of software for: nucleic acid, genome and protein sequence analysis; genetic databases, database tools; industrial applications in bioinformatics; ethical and societal concerns. 3 lectures, 1 laboratory. Prerequisite: One course in college biology (BIO 111 or BIO 161 recommended). Recommended: BIO 303, BIO 351 or CHEM 373.

BIO 444 Population Ecology (3)
Growth, fluctuations, balance, and natural mechanisms controlling terrestrial wildlife populations. 3 lectures. Prerequisite: BIO 325 or equivalent.

BIO 450 Undergraduate Laboratory Assistantship (1–4) (CR/NC)
Assisting the instructor in teaching and supervising undergraduate laboratories in the Biological Sciences Department. Total credit limited to 8 units, with a maximum of 4 units per quarter. Credit/No Credit grading only. Prerequisite: Consent of instructor and department chair.

BIO 452 Cell Biology (4)
Introduction to cell structure and function, energy conversions, protein sorting, signaling, cytoskeleton, cell adhesion, and the cell cycle. 3 lectures, 1 laboratory. Prerequisite: BIO 351 or CHEM 373 and CHEM 312 or CHEM 317. Recommended: Course in biochemistry.

BIO 461 Senior Project – Research Proposal (2)
Completion of a research proposal and literature review, including analysis of experimental results from published peer-reviewed articles in biology. Written and oral presentations. 2 activities. Prerequisite: Junior standing or consent of instructor.

BIO 462 Senior Project – Research (2)
Completion of a research project or equivalent in the biological sciences, selected and conducted in consultation with an instructor. Results are presented in written reports. 2 laboratories. Prerequisite: Junior standing and consent of instructor. BIO 400, BIO 461 or MCRO 461 are recommended.
BIO 463 Honors Research (2)
Completion of advanced research in the biological sciences, selected and conducted in consultation with an instructor. Results presented as a written report and/or oral presentation in a public forum. 2 laboratories. Prerequisite: BIO 462, consent of instructor, and department chair approval.

BIO 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

BIO 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topics selected. Total credit limited to 8 units. 1 to 4 laboratories. Prerequisite: Consent of instructor.

BIO 472 Current Topics in Biological Research (1–4)
Applications of biological research topics. Discussions of how selected discoveries in biological research formed the basis for, and were developed into, practical applications, currently accepted theories, generally utilized techniques or decisions affecting society and political policies. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1-4 seminars. Prerequisite: Junior standing or consent of instructor.

BIO 476 Gene Expression Laboratory (2) (Also listed as CHEM 476)
Heterologous gene expression of a recombinant protein in a microbial system: gene cloning, construction of expression plasmid, DNA sequence analysis, transformation of microbial host, selection and analysis of transformed host cells, expression and purification of recombinant protein. 2 laboratories. Prerequisite: BIO/CHM 375; CHM 313 or CHM 371; MCR 433.

BIO 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

BIO 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

BIO 500 Individual Study (1–3)
Advanced study planned and completed with the approval of and under the direction of a member of the department faculty. A written scholarly presentation of the results of each BIO 500 project must be included in the graduate student's departmental file. Not open for credit to students in the thesis program. Total credit limited to 3 units. 1-3 laboratories. Prerequisite: Graduate standing in Biological Sciences and consent of instructor.

BIO 501 Molecular and Cellular Biology (4)
Principles of molecular and cellular biology including gene function and regulation, energetics, protein trafficking, cytoskeleton, signaling, adhesion, and the cell cycle. 3 lectures, 1 laboratory. Prerequisite: Graduate standing in Biological Sciences or consent of instructor.

BIO 502 Biology of Organisms (4)
Principles of and current topics in organismal biology, with an emphasis on physiology (including organ systems), behavior, and responses to the environment. 3 lectures, 1 laboratory. Prerequisite: BIO 501 and graduate standing in Biological Sciences, or consent of instructor.

BIO 503 Population Biology (4)
Considerations of theory and practice in population ecology, evolutionary biology, and systematics. 3 lectures, 1 laboratory. Prerequisite: Graduate standing in Biological Sciences or consent of instructor.

BIO 511 Trends in Biology (1) (CR/NC)
Recent trends in the field of biology for graduate students new to the Biological Sciences master's degree program. Overview of current faculty research to help students choose a thesis project and mentor. Credit/No Credit grading only. 1 activity. Prerequisite: Graduate standing in Biological Sciences or consent of instructor.

BIO 515 History of Biology (3)
Analysis of historical attempts to solve biological problems. 3 seminars.

BIO 524 Developmental Biology Seminar (2)
Principles and selected topics in developmental biology. Issues of differentiation, morphogenesis, and pattern formation; specific topics chosen by participants. 2 seminars. Prerequisite: Graduate standing in Biological Sciences or consent of instructor. Recommended: BIO 501.

BIO 531 Theory and Prediction in Ecology (3)
Directed group study and lectures on selected topics in ecology. Emphasis on an in-depth study of a restricted topic. 3 seminars. Prerequisite: Graduate standing in Biological Sciences or consent of instructor.

BIO 542 Multivariate Biometry (4)
Studies in continuous multivariate statistics, including the multivariate normal model, principal components and factor analysis, discriminant analysis, clustering, and canonical correlation. Use of MINITAB and SAS throughout. 4 lectures. Prerequisite: Two courses in statistics or consent of instructor.

BIO 570 Selected Topics in Biology (1–4)
Directed group study of selected topics for graduate students. The Schedule of Classes will list topics for selection. Total credit limited to 12 units. 1 to 4 seminars. Prerequisite: Graduate standing in Biological Sciences or consent of instructor.

BIO 575 College Teaching Practicum (1-2) (CR/NC)
Part-time teaching assignment in an undergraduate college classroom. Includes teaching and related activities under the supervision of a professor in Biological Science. Total credit limited to 4 units. Credit/No Credit grading only. 1-2 activities. Prerequisite: Graduate standing and evidence of satisfactory preparation in biology. Department chair and graduate coordinator's approval required.

BIO 585 Cooperative Education Experience (6) (CR/NC)
Advanced study, analysis and part-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Total credit limited to 9 units. Credit/No Credit grading only. Prerequisite: Graduate standing in Biological Sciences and consent of instructor.

BIO 590 Seminar in Biology (1)
Problems and topics in advanced biology selected according to the interest and needs of the students enrolled. Total credit limited to 5 units. 1 activity. Prerequisite: Graduate standing in Biological Sciences or consent of instructor.

BIO 595 Cooperative Education Experience (12) (CR/NC)
Advanced study, analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Total credit limited to 9 units. Credit/No Credit grading only. Prerequisite: Graduate standing in Biological Sciences and consent of instructor.

BIO 599 Thesis (3)
Individual research under the general supervision of the faculty, leading to a graduate thesis of suitable quality. Total credit limited to 9 units. 3
laboratories. Prerequisite: Graduate standing in Biological Sciences; consent of instructor, and consent of thesis committee.

BMED—BIOMEDICAL ENGINEERING

BMED 111 Biomedical Engineering Calculations (3)
General introduction to bioengineering application of basic engineering science applied to topics in biomechanics, bioinstrumentation, biomaterials, biotechnology, and related areas. Application of the concepts and methods of science, mathematics and engineering to problems in biomedical engineering. 3 lectures. Corequisite: MATH 142 or consent of instructor.

BMED 212 Introduction to Biomedical Engineering Design (3)
General introduction to bioengineering design, including examples of engineering analysis and design applied to representative topics in biomechanics, bioinstrumentation, biomaterials, biotechnology, and related areas. Review of technological needs, design methodology, testing procedures, statistical analysis, governmental regulation, evaluation of costs and benefits, quality of life, and ethical issues. 2 lectures, 1 laboratory. Prerequisite: MATH 143 or consent of instructor.

BMED 310 Biomedical Engineering Management and Analysis (4)
Fundamentals of biomedical engineering analysis. Use and application of tools and analytical methods used by bioengineers. 3 lectures, 1 laboratory. Prerequisite: ME 211 or consent of instructor.

BMED 400 Special Problems for Advanced Undergraduates (2-4)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 8 units. Prerequisite: ME 212, junior standing and consent of department chair.

BMED 410 Biomechanics (4)
Introduction to physiological systems, with emphasis on structure and function of major tissues and organs. Application of mechanics to understand the behavior of these tissues and organs at gross and microscopic levels. Bioelastic solids. Rigid body biomechanics. Biofluids, basic mechanical properties of collagen and elastin, bone, cartilage, muscles, blood vessels, and other living tissues. Application of continuum mechanics to hard and soft tissues. Biomechanical engineering design for clinical applications. 3 lectures, 1 laboratory. Prerequisite: ME 212, BMED 310 or consent of instructor.

BMED 420 Principles of Biomaterials Design (4)

BMED 425 Biomedical Engineering Transport (4)

BMED 430 Biomedical Modeling and Simulation (4)
Finite element methods for anatomical modeling and boundary value problems in the biomechanics of tissues and biomedical devices. Nonlinear biodynamics, heat flow, cardiac impulse propagation, anatomic modeling, and biomechanics. 2 lectures, 2 laboratories. Prerequisite: BMED 420 or consent of instructor.

BMED 440 Bioelectronics and Instrumentation (4)
Analog and digital circuits in bioinstrumentation. Biomedical signals in continuous and discrete systems. Sampling and digital signal processing. Ultrasound, MRI, CT, Bioelectromagnetics. Electrokinesis. Biophysical phenomena, transducers, and electronics as related to the design of biomedical instrumentation. Potentiometric and amperometric signals and amplifiers. Biopotentials, membrane potentials, chemical sensors. Mechani-

cal transducers for displacement, force and pressure. Temperature sensors. Flow sensors. Light-based instrumentation. Electrical safety. 3 lectures, 1 laboratory. Prerequisite: EE 201, BMED 310 or consent of instructor.

BMED 450 Contemporary Issues in Biomedical Engineering (4)
Current and evolving topics in biomedical engineering, including medical and industrial applications. Exploration of contemporary issues in biomedical engineering, including technical and societal implications. The Schedule of Classes will list topics selected. Total credit limited to 16 units. 4 lectures. Prerequisite: Senior standing in Biomedical Engineering.

BMED 455, 456 Bioengineering Design I, II (4) (4)
Preparation of formal engineering reports on a series of engineering analysis and design problems illustrating methodology from various branches of applied mechanics as applied to bioengineering problems. Statistical analysis. Governmental regulations. Bioethical issues. 2 lectures, 2 laboratories. Prerequisite: ME 341, BMED 410 or consent of instructor.

BMED 460 Engineering Physiology (4)
Physiology for biomedical engineering students, with an emphasis on control mechanisms and engineering principles. Engineering aspects of basic cell functions; biological control systems; muscle; neural; endocrine, and circulatory systems, digestive, respiratory, renal, and reproductive systems; regulation of metabolism, and defense mechanisms. 3 lectures, 1 laboratory. Prerequisite: ZOO 331 or equivalent, BMED 310 or consent of instructor.

BMED 481 Senior Project Design Laboratory I (2)
Selection and development of project by individuals or teams which is typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning, scheduling and research. Formulation of outline, literature review, and project schedule. 2 laboratories. Prerequisite: MATH 244, IME 314, ME 302 or consent of instructor.

BMED 482 Senior Project Design Laboratory II (2)
Continuation of BMED 481. Completion of project by individuals or teams which is typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning, scheduling and research. Formulation of outline, literature review, and project schedule. 2 laboratories. Prerequisite: BMED 481 or consent of instructor.

BMED 500 Individual Study (2-4)
Individual investigation, research, studies or surveys of selected problems. Advanced study planned and conducted under the direction of faculty. Open to graduate students who have demonstrated the ability to do independent work. Total credit limited to 8 units. Prerequisite: Graduate standing and consent of department chair.

BMED 512 Biomedical Engineering Horizons (4)
Examination of the advances in nanotechnology, micro-electro-mechanical systems, materials and clinical technology. Relationship between modern medical achievements and advances in engineering and science, the biomedical engineering industry, and the use of technology in a human context. 4 lectures. Prerequisite: Graduate standing, MATH 143, CHEM 125, PHYS 131, BIO 161 or consent of instructor.

BMED 520 Introduction to Biomedical Engineering (4)
Advanced treatment of the basic engineering sciences in the biomedical engineering context. For the student who has had little prior exposure to biomedical engineering, but has either a strong engineering or a strong science background. 4 lectures. Prerequisite: Graduate standing.

BMED 530 Biomaterials (4) (Also listed as MATE 530)
Structure-function relationships for materials in contact with biological systems. Interactions of materials implanted in the body. Histological and hemological considerations including foreign body responses, inflammation, carcinogenicity, thrombosis, hemolysis, immunogenic and toxic properties. Microbial interaction with material surfaces, degradation. 4
lectures. Prerequisite: BIO 213, ENGR 213, MATE 210 and graduate standing or consent of instructor.

BMED 550 Current and Evolving Topics in Biomedical Engineering (4)

Current topics in biomedical engineering, including medical and industrial applications. Exploration of detailed technical treatment of contemporary issues in biomedical engineering, and examination of technical and societal implications of these subjects. The Schedule of Classes will list topics selected. Total credit limited to 8 units. 4 lectures. Prerequisite: Graduate standing in biomedical engineering or consent of department chair.

BMED 563 Biomedical Engineering Graduate Seminar (2)

Selected topics of interest to biomedical engineering and other graduate students. Open to graduate students and selected seniors. A forum to share information about research and research tools; an opportunity to discuss topics of interest with professionals in the field, academics, and other graduate students. The Schedule of Classes will list topic selected. Total credit limited to 4 units. 1 seminar, 1 laboratory. Prerequisite: Graduate standing or consent of instructor.

BMED 591 Thesis Project Design Laboratory I (2)

Selection and development of project by individuals or team which is typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning, scheduling and research. Formulation of outline, literature review, and project schedule. 2 laboratories. Prerequisite: Graduate standing.

BMED 592 Thesis Project Design Laboratory II (2)

Continuation of BMED 591. Completion of project by individuals or team which is typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning, scheduling and research. Formulation of outline, literature review, and project schedule. 2 laboratories. Prerequisite: BMED 591 or consent of instructor.

BMED 599 Design Project (Thesis) (1-9)

Selection by individual or group, with faculty guidance and approval, of topic for independent research or investigation resulting in a thesis or project to be used to satisfy the degree requirement. An appropriate experimental or analytical thesis or project may be accepted. Total credit limited to 9 units. Prerequisite: Graduate standing.

BOT—BOTANY

BOT 121 General Botany (4) GE B2 & B4

The anatomy, physiology, reproduction, and importance of seed plants. 2 lectures, 2 laboratories.

BOT 221 California Plants and Plant Communities (4)

Introduction to the horticultural characteristics and landscape design potential of California native plants, California plant communities, and associated vascular plants. Includes experiences in field identification, basic planting design, installation techniques, and maintenance requirements. Required field trips. 2 lectures, 2 laboratories. Prerequisite: BIO 114 or BOT 121 or consent of instructor.

BOT 238 Central Coast Flora and Vegetation (3)

Field identification of native plants and plant communities of the California Central Coast. Factors that affect plant growth in natural environments. 2 lectures, 1 laboratory. Prerequisite: BOT 121.

BOT 264 Diversity of Plants and Algae (4)

Structure, reproduction, ecology, evolution and the economic significance of the major groups of plants and algae. 2 lectures, 2 laboratories. Prerequisite: BIO 162 or BOT 121 or consent of instructor.

BOT 311 Plants, People and Civilization (4) GE BS

Human uses of plants for food, beverage, medicine, fiber, recreation, and rituals. Uses of plants by different cultures throughout the world and the social, economical, and environmental importance of plants in our lives. 3 lectures, 1 laboratory. Prerequisite: One course from GE Area B2.

BOT 313 Taxonomy of Vascular Plants (4)

Introduction to classification and identification of vascular plants, emphasizing major plant families; field and herbarium techniques. 2 lectures, 2 laboratories. Prerequisite: BIO 162 or BOT 121.

BOT 323 Plant Pathology (4)

Comprehensive study of the causes and effects of disease in plants. Designed to lead to an understanding of the science and modern control methods. 2 lectures, 2 laboratories. Prerequisite: BIO 162 or BOT 121.

BOT 324 Ornamental and Forest Pathology (4)

Causes and effects of diseases of important ornamental and forest plants, disease agents (life cycle, host range, environmental relationships), and modern approach to control. 2 lectures, 2 laboratories. Prerequisite: BIO 162 or BOT 121.

BOT 326 Plant Ecology (4)

Plant communities, population dynamics, and effects of the following environmental factors on plant growth and development: soil, water, temperature, light, atmosphere, topography, organisms, and fire. 3 lectures, 1 laboratory. Prerequisite: BIO 114, BIO 162, or BOT 121.

BOT 329 Plants, Food, and Biotechnology (4)

GE Area F (Also listed as HCS 329)

Phylogenetic relationships of the plant kingdom as illustrated by comparative morphology of the vascular plants including living and fossil forms. 2 lectures, 2 laboratories. Prerequisite: BIO 160, BOT 162 and BOT 313.

BOT 334 Morphology of Vascular Plants (4)

Phylogenetic relationships of the plant kingdom as illustrated by comparative morphology of the vascular plants including living and fossil forms. 2 lectures, 2 laboratories. Prerequisite: BIO 162 or BOT 121.

BOT 335 Plant Anatomy (4)

Microscopic study of vascular plants dealing with the origin, development and structure of cells, tissues and organs. 2 lectures, 2 laboratories. Prerequisite: BIO 162 or BOT 121.

BOT 431 Advanced Plant Pathology (4)

Methods, instruments, and materials used in diagnosis of plant diseases and in plant disease research. 2 lectures, 2 laboratories. Prerequisite: BOT 323 or BOT 324.

BOT 433 Field Botany (4)

Field studies of California's diverse vegetation and flora. Factors affecting the distribution of plants and plant communities and their ecological relationships. Identification of plants and plant communities in the field. Several field trips required including two weekend trips to California's deserts and mountains. 2 lectures, 2 laboratories. Prerequisite: BOT 313 or consent of instructor.

BOT 437 Phylogeography (4)

Comprehensive examination of the ecology, life histories, functional morphology, physiology, and taxonomy of marine and freshwater algae. Laboratories emphasize species endemic to the central coast of California. 2 lectures, 2 laboratories. Prerequisite: BIO 162.

BOT 450 Plant Biotechnology Laboratory (2) (Also listed as HCS 450)

Application of genetic engineering technology to plants; methods of plant tissue culture and transformation. 2 laboratories. Prerequisite: BIO 303 or BIO 351 or CHEM 373.

BRAE—BIORESOURCE and AGRICULTURAL ENGINEERING

BRAE 121 Agricultural Mechanics (2)

Identification and use of tools and materials; shop safety; tool sharpening and care; concrete mixes and materials; simple electric wiring; metal work;
BRAE 124 Small Engines (2)
Operating principles of the small internal combustion engine. Maintenance and trouble-shooting applications of small power units to all types of engine applications. Repair procedures related to economic justifications. 1 lecture, 1 laboratory.

BRAE 128 Careers in Bioresource and Agricultural Engineering (2)

BRAE 129 Laboratory Skills and Safety (1)
Introduction to fabrication and construction materials used in the field of Agricultural Engineering. Fabrication skills in the development of wood, metal, concrete projects, and creative design. Strength tests of wood, fasteners, concrete, and student design projects. 1 laboratory. Prerequisite: BRAE and ASM majors only.

BRAE 133 Engineering Design Graphics (2)
Visual communication in engineering design and problem solving. Principles of freehand sketching, engineering graphics, and computer-aided-drafting. Perspective and orthographic sketching, orthographic drawing with instruments and computer, applied descriptive geometry. 2 laboratories.

BRAE 141 Agricultural Machinery Safety (3)
Evaluation of safe tractor and equipment operation. Supervised field operation emphasizing the safe and efficient performance of modern farm and utility-industrial equipment. 2 lectures, 1 laboratory.

BRAE 142 Agricultural Power and Machinery Management (4)
Evaluation of agricultural machinery and tractor power performance. Equipment studied includes primary and secondary tillage tools, grain drills, row crop planters, sprayers, grain and forage harvesters, and specialty crop harvesters. Emphasis on management, selection, cost analysis using computers and efficient operation of agricultural machinery. 3 lectures, 1 laboratory. Prerequisite: MATH 116 or equivalent.

BRAE 143 Power and Machinery (4)
Performance of tractors and machinery. Evaluation of tillage, planting, and harvesting operations. Analysis and development of optimum mechanical systems. Use of microcomputers for evaluation, analysis, and report presentation. 3 lectures, 1 laboratory. Prerequisite: BRAE 128, MATH 119 or equivalent.

BRAE 151 CAD for Agricultural Engineering (1)
Computer aided drafting on a desktop personal computer using AutoCAD software. Drawing setup. 2-D projections including automatic dimensioning and hatching. Isometric construction, drawing layers, library symbols. Use of 3-D drawing software. 1 laboratory. Prerequisite: BRAE 133 or equivalent.

BRAE 152 3-D Solids Modeling (1)
Introduction to 3-dimensional solids modeling using state-of-the-art software. Model generation and modification of associative properties, assembly modeling, extrusions and revolutions. 1 laboratory. Prerequisite: BRAE 133, BRAE 151 or equivalent courses.

BRAE 200 Special Problems for Undergraduates (1–4)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 8 units, with a maximum of 4 units per quarter. Prerequisite: Consent of department head.

BRAE 201 Enterprise Project (1–4) (CR/NC)
Introductory experience in a bioresource/agricultural engineering or agricultural systems management project. Project participation is subject to approval by the department head and the Cal Poly Corporation. Credit/No Credit grading only. Prerequisite: BRAE 129 or consent of instructor.

BRAE 203 Agricultural Systems Analysis (3)
Agricultural Systems Analysis investigates the interrelationships between sub-components in an overall system. Problem solving algorithms, network analysis, project planning techniques, and optimization. 2 lectures, 1 laboratory. Prerequisite: MATH 118 or equivalent.

BRAE 213 Bioengineering Fundamentals (2) (Also listed as ENGR 213)

BRAE 216 Fundamentals of Electricity (4)
Application of electricity in BioResource and Agricultural Engineering, including basic electric circuits. Will include wiring materials, code regulations, electrical measurements, R-L-C circuit fundamentals, system planning, motors, basic electronics, and an introduction to computer usage. 3 lectures, 1 laboratory. Prerequisite: BRAE 128, BRAE 129, MATH 142, PHYS 131.

BRAE 231 Agricultural Building Construction (3)
Development of practical skills in carpentry and light construction. Selection of materials. Agricultural buildings repaired, constructed, or modified during laboratory periods. 1 lecture, 2 laboratories. Prerequisite: BRAE 129 or consent of instructor.

BRAE 232 Agricultural Structures Planning (4)
Planning of facilities required in production systems. Materials and processes used in construction of agricultural structures. Environmental factors affecting crop storage structures and animal housing. Design of structural environments to meet the needs of commodities, animals, and plants. 3 lectures, 1 laboratory. Prerequisite: BRAE 151, PHYS 132.

BRAE 234 Introduction to Mechanical Systems in Agriculture (4)
Introduction to elements used in the mechanical transmission of power and force in agricultural systems. Power transmission using v-belts, roller chain, gear and shaft drives, hydraulic actuators. Linear and nonlinear actuation devices including linkages, cams, and hydraulic/pneumatic cylinders. 3 lectures, 1 laboratory. Prerequisite: BRAE 128, BRAE 129, PHYS 131.

BRAE 236 Principles of Irrigation (4)
Land grading design, operation, management, and evaluation of irrigation methods. 3 lectures, 1 laboratory. Prerequisite: MATH 141, BRAE 239, SS 121, a computer programming course.

BRAE 237 Introduction to Engineering Surveying (2)
An introduction to basic field note keeping as well as the use of steel tapes, automatic levels, total stations and survey tools. Training in the procedures for differential and profile leveling; angle measurement and traversing. Hands-on experience with the use of GPS for surveying. An understanding in computations to determine direction, elevations, and earthwork volumes. Practice in map reading and building layout. 1 lecture, 1 laboratory. Prerequisite: MATH 119 or equivalent.

BRAE 239 Engineering Surveying (4)
Development of proper field note taking and procedures for measuring using automatic levels, total stations and GPS systems. Understanding in the procedures and computations for differential leveling, profiles, traversing, triangulation and topographic surveys. Computations in traverse adjustment, contour mapping, earthwork volumes, curve alignments and building layout. Understanding in map reading, the use of datums, photogrammetry, CAD design and boundary law. 2 lectures, 2 laboratories. Prerequisite: MATH 119 or equivalent.

BRAE 240 Agricultural Engineering Laboratory (1)
Individual projects. Total credit limited to 4 units. 1 laboratory. Prerequisite: Consent of instructor.

BRAE 247 Forest Surveying (2) (Also listed as FNR 247)
Use and care of tapes, staff compass, abney levels, theodolites, and GPS receivers. Keeping field notes, measurements by tape. Closed and open
traverse by compass and theodolite. Turning angles and determining
directions of lines. Map reading and public land description. GPS
measurements. 1 lecture, 1 laboratory. Prerequisite: MAPE Score G,
prerequisite or concurrent: FNR 215.

BRAE 301 Hydraulic and Mechanical Power Systems (4)
Selection, application and use of hydraulic components and mechanical
power transmission equipment. Use of standardized circuit design
procedures. 3 lectures, 1 laboratory. Prerequisite: PHYS 121.

BRAE 302 Servo Hydraulics (4)
Application of microcomputers and programmable logic controllers to
hydraulic, pneumatic and mechanical systems. Theory, instrumentation and
sensors used in process and control systems used in agricultural equipment.
3 lectures, 1 laboratory. Prerequisite: BRAE 216 or BRAE 324 and BRAE
234 or BRAE 301.

BRAE 312 Hydraulics (4)
Static and dynamic characteristics of liquids, flow in open and closed
channels, uniform and nonuniform flow, flow measurement, pumps. 3
lectures, 1 laboratory. Prerequisite: PHYS 132, ME 211.

BRAE 320 Principles of Bioresource Engineering (4)
(formerly BRAE 226)
Theory and applications of bioprocess technology in biological and
agricultural systems. Engineering properties of biological materials and
organisms. Basic unit operations, fluid mechanics and heat/ mass transfer as
applied to bioprocess technology. Special requirements of agricultural and
biological processes. 3 lectures, 1 laboratory. Prerequisite: BRAE 128,
BRAE 232, BRAE 236, CHEM 125, PHYS 132, BIO 213 and BRAE 213
or ENGR 213, or MCRO 221.

BRAE 321 Agricultural Safety (3)
Principles of agricultural safety. Accident causation and prevention, hazard
identification and abatement, laws and regulations. Machinery, electrical,
chemical, livestock, shop and fire safety. Safety program development. 2
lectures, 1 activity. Prerequisite: Junior standing.

BRAE 324 Principles of Agricultural Electrification (4)
Applications of DC/AC electricity in agriculture. National Electric Code
regulations. The wiring of agricultural structures and electrical distribution.
Series, parallel and series-parallel circuits, R-L-C circuits, electric motors,
electronics. 3 lectures, 1 laboratory. Prerequisite: MATH 119 or MATH
120, PHYS 121.

BRAE 325 Agricultural Energy Systems (3)
Use of energy systems in modern agriculture with a focus on the economic
and moral dilemmas facing our technological society. 2 lectures, 1
laboratory. Prerequisite: PHYS 121, BRAE 142.

BRAE 326 Energy Systems for Agriculture (3)
Theory and application of energy sources and systems. Covering such
sources as heat systems, biomass, direct energy conversion, and power
application to the soil. 2 lectures, 1 laboratory. Prerequisite: BRAE 143,
ME 211, ME 302. ME 302 may be taken concurrently.

BRAE 328 Measurements and Computer Interfacing (4)
Transducers and engineering measurements in agricultural engineering.
Covering transducer characteristics, signal processors and controllers,
instrumentation techniques, and the use of the computer in the measure-
ment and control of typical engineering problems. 3 lectures, 1 laboratory.
Prerequisite: PHYS 206, PHYS 256, a computer programming course.

BRAE 331 Irrigation Theory (3)
Plant-water-soil relations using evapotranspiration, plant stress, soil
moisture deficiency, frequency and depth of irrigation, salinity, infiltration,
drainage and climate control. 3 lectures. Prerequisite: BRAE 236, or BRAE
340.

BRAE 335 Internal Combustion Engines (4)
Principles of operation of internal combustion engines. Theory of opera-
tion and diagnosis evaluation and repair of small engines, gasoline and diesel
engines and economics of operation, use and repair. Power analy-sis and
application. 3 lectures, 1 laboratory. Prerequisite: Junior standing.

BRAE 337 Landscape Irrigation (3)
Design of landscape irrigation systems including soil factors, hydraulics,
site information, selection of system components, back flow prevention,
plumbing codes and cost estimating. 2 lectures, 1 laboratory. Prerequisite:
SS 121 or consent of instructor.

**BRAE 339 Internship in BioResource and Agricultural Engineering
(1–12) (CR/NC)**
Students will spend up to 12 weeks with an approved agricultural firm
engaged in production or related business. Time will be spent applying and
developing production and managerial skills and abilities. One unit of credit
may be allowed for each full week of completed and reported internship.
Degree credit limited to 6 units. Credit/No Credit grading only. Prerequisite:
Consent of internship instructor.

BRAE 340 Irrigation Water Management (4)
GE Area F
Soil-plant-water relationships; evapotranspiration; irrigation schedules;
salinity and drainage; irrigation efficiency. Water measurement; soil
moisture measurement; irrigation systems and practical constraints affecting
scheduling. California water supply and budget; water rights; local, state
and federal water institutions; California water issues. 3 lectures, 1
laboratory. Prerequisite: Junior standing, completion of GE Area A1, A3,
and Area B, including Math 118 or better.

BRAE 342 Agricultural Materials (4)
Physical properties of agricultural materials and their measurement.
Strength of materials, material flow and transport, material deformation,
shape and size classification, moisture relationships and biological
interactions. Interactions between agricultural materials, the environment
and equipment used to handle them. 3 lectures, 1 laboratory. Prerequisite:
PHYS 121, CHEM 110 or CHEM 111, SS 121.

BRAE 343 Mechanical Systems Analysis (4)
Use of statics and dynamics to make original calculations, plans, sketches,
graphics, drawings, schemes and layouts for the fabrication and
construction of machines. 3 lectures, 1 laboratory. Prerequisite: MATH 119,
BRAE 203, BRAE 301 or concurrent. Junior standing.

BRAE 344 Fabrication Systems (4)
Fabrication systems including cutting, sawing, shearing, bending, welding,
grinding, cleaning, painting and proper safety procedures. Experimental
projects to include team design and construction, presentation, organiza-
tion, and evaluation. 2 lectures, 2 laboratories. Prerequisite: BRAE 343.

BRAE 345 Aerial Photogrammetry and Remote Sensing (3)
Object recognition, three-dimensional equipment, and interpreta-
tion of aerial photographs. Print alignment, stereoscopic viewing, scales, elevation
determination, and application. Orthophotos and their relationship to
Geographic Information Systems (GIS). Application of aerial photos to
regional studies. 2 lectures, 1 laboratory. Prerequisite: MATH 119.

BRAE 348 Energy for a Sustainable Society (4)
GE Area F
Study of how the transition can be made from fossil fuels to renewable
energy sources including hydro, biomass, solar, wind, and energy
conservation. Environmental, economic, and political consequences of a
renewable energy-based sustainable society. 3 lectures, 1 activity.
Prerequisite: Completion of GE Area B and junior standing.

BRAE 400 Special Problems for Advanced Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems
in agriculture. Total credit limited to 8 units, with a maximum of 4 units per
quarter. Prerequisite: Consent of department head.

BRAE 401 Enterprise Project Management (1–4) (CR/NC)
Advanced experience in a bioresource/agricultural engineering or
agricultural systems management project. Project leadership and
management are stressed. Project participation is subject to approval by the
department head and the Cal Poly Corporation Credit/No Credit grading
only. Prerequisite: BRAE 201 or consent of instructor.

BRAE 403 Agricultural Systems Engineering (4)
Engineering and economic principles combined with mathematical
optimization techniques to evaluate parameters in agricultural production
and processing systems. Project planning techniques, linear and nonlinear
modeling, response surface methodology. Professional responsibilities in

2007-2009 Cal Poly Catalog
Agricultural Engineering including ethics, patents, copyrights, liability. 3 lectures, 1 laboratory. Prerequisite: ECON 201/211; MATH 242 or MATH 244.

BRAE 405 Chemigation (1)
Fertilizer and chemical injection through irrigation systems. Hardware, fertilizer compounds, and distribution uniformity. Matching chemicals and equipment to specific irrigation methods. Safety. 1 laboratory. Prerequisite: BRAE 236 or BRAE 340.

BRAE 414 Irrigation Engineering (4)
Design of on-farm irrigation systems; micro, surface, and sprinkler irrigation systems; canals and pumps; economic and strategies of pipe design; pipeline protection. 3 lectures, 1 laboratory. Prerequisite: BRAE 331 or BRAE 340; BRAE 312 or course in hydraulics with a grade of C or better.

BRAE 415 Hydrology (4)
Collection, organization and use of precipitation and runoff data, flood frequency, stream gauging and use of hydrograph, principles of groundwater and flood routing, sizing and economics of soil and water conservation structures. 3 lectures, 1 laboratory. Prerequisite: Junior standing, MATH 141, and SS 121 or consent of instructor.

BRAE 418, 419 Agricultural Systems Management I, II (4) (4)
Project management of agricultural systems. Emphasis placed on a team approach to problem solution. Case studies and student projects used to explore the following topics: project leadership, project organization, communication, needs assessment, feasibility studies, cost analysis, decision making, solution implementation, and evaluation. BRAE 418: 3 lectures, 1 laboratory. BRAE 419: 2 lectures, 2 laboratories. Prerequisite: BRAE 203, AGB 301, AGB 310 and ENGL 148. For BRAE 419: BRAE 418.

BRAE 421 Equipment Engineering (3)
Design and construction of specialized agricultural components and equipment. 2 lectures, 1 laboratory. Prerequisite: BRAE 328, CE 205, ME 212.

BRAE 422 Equipment Engineering (4)
Design and construction of specialized agricultural components and equipment. 2 lectures, 2 laboratories. Prerequisite: BRAE 421.

BRAE 425 Computer Controls for Agriculture (3)
Computer activated controls as applied to agricultural machinery, agricultural structures, processing and irrigation industries. Encompassing control logic to evaluate stability behavior of systems of computer interfacing, data input and control output. 2 lectures, 1 laboratory. Prerequisite: BRAE 324, CSC 110 or CSC 119 or AG 250 or CSC 232.

BRAE 427 Agricultural Process Engineering (3)
Agricultural engineering principles applied to air, water, air-water mixtures, drying, heating, refrigeration, fluid flow, size reduction, fan laws and materials handling. 2 lectures, 1 laboratory. Prerequisite: BRAE 312, BRAE 430, ME 302.

BRAE 430 Finite Element Analysis (3)
Introduction to the theory of finite element analysis and its application to drainage, pipe flow, roof and vegetable damage predictions, structural strength, heat transfer, and other agricultural engineering applications. 2 lectures, 1 laboratory. Prerequisite: CE 204, MATH 242 or MATH 244, ME 302.

BRAE 432 Agricultural Buildings (4)
Selection of buildings, storage units, and related equipment for production agriculture. Economics and functionality of various designs and construction materials. Environmental factors affecting crop storage and animal housing. 3 lectures, 1 laboratory. Prerequisite: PHYS 121, BRAE 342, BRAE 343.

BRAE 433 Agricultural Structures Design (4)
Structural analysis and design of agricultural service and processing buildings. Emphasis on use of wood, metals, and reinforced concrete in light construction. 3 lectures, 1 laboratory. Prerequisite: BRAE 232, CE 205.

BRAE 435 Drainage (4)
Relevant principles of hydrology and porous media flow. Flow nets, wells and ground water, design of simple surface and sub-surface drains. 3 lectures, 1 laboratory. Prerequisite: Junior standing, BRAE 312, BRAE 331, or BRAE 340 or SS 432 and consent of instructor.

BRAE 437 Conservation Engineering (3)
Engineering solutions of soil and water conservation problems. Applications of engineering fundamentals of hydraulics, hydrology, and soils used in the design and construction of soil and water conservation structures. 2 lectures, 1 laboratory. Prerequisite: BRAE 312, BRAE 415, SS 121, or consent of instructor.

BRAE 438 Drip/Micro Irrigation (4)
Drip/micro irrigation hardware and management. Emphasizes agricultural drip/micro irrigation with some landscape application. Filtration, emitters, chemical injection, agronomic constraints, and scheduling. Field trip(s) included. 3 lectures, 1 laboratory. Prerequisite: BRAE 236 or BRAE 340.

BRAE 439 Vineyard Water Management (4)
Management of rain and irrigation water in vineyards. Irrigation scheduling, managing water stress, climate control with irrigation methods commonly used. Management for wine, table grapes, and raisins. 3 lectures, 1 laboratory. Prerequisite: BRAE 340 or BRAE 236.

BRAE 440 Agricultural Irrigation Systems (4)
On-farm irrigation system evaluation and management. Drip, micro-spray, furrow, border strip, sprinkler systems. Irrigation efficiency and uniformity. Pumping costs. For non-AE majors only. 3 lectures, 1 laboratory. Prerequisite: BRAE 340 or consent of instructor.

BRAE 446 CAD Software for Land Modeling (2)
Techniques for preparing data for geographic information systems using TERRAMODEL. Digital data from surveying, orthophotography, and government data sources will be entered, displayed, edited and translated for use in other software packages. Transformation of coordinate systems. Earthwork and hydrologic examples. 1 lecture, 1 laboratory. Prerequisite: BRAE 239.

BRAE 447 Advanced Surveying with GIS Applications (4)
Collecting field data; processing the data; generating graphical representation of the data; design based on the data and laying out the design in the field; and available record resources for use in GIS systems and their accuracy. 2 lectures, 2 laboratories. Prerequisite: BRAE 239.

BRAE 448 Bioconversion (4)
Biological, thermal and physical techniques for converting biomass into useful energy forms for agriculture and industry. Laboratory exercises include experiments with anaerobic digestion of animal wastes into methane, ethanol fermentation of grains and composting of agricultural residues. Technical and economic feasibility of biofuels. 3 lectures, 1 laboratory. Prerequisite: MATH 118 (or MATH 116 and MATH 117) or equivalent, or consent of instructor.

BRAE 452 Legal Aspects/Data Accuracy for GIS (3)
Research of boundary descriptions, record maps, and existing survey data. Value and implications of the data. Local and state requirements and restrictions on use of data. Procedures for incorporation of data into Arc/Info. 2 lectures, 1 laboratory. Prerequisite: BRAE 237 or BRAE 239.

BRAE 460 Senior Project Organization (1)
Selection and organization of senior project. Involves time management, research techniques, budgeting and project presentation. Documentation of multidisciplinary team experience. 1 lecture. Prerequisite: For BRAE majors: ENGL 149; for ASM majors: ENGL 148; for BRAE and ASM majors: junior standing and 240 verified hours of advisor approved paid and/or volunteer experience subsequent to entering Cal Poly.

BRAE 461, 462 Senior Project I, II (2) (2)
Solution of an engineering or systems management problem in agriculture. May involve research methodology, problem statement, analysis, synthesis, project design, construction, and evaluation. Project requires 150 hours with a minimum of faculty supervision. Prerequisite: BRAE 460.
BRAE 463 Undergraduate Seminar (1)
Group discussion of current agricultural engineering topics presented by individual members of the class and visitors. Placement opportunities and requirements. 1 seminar.

BRAE 464 Professional Practice (3)
Contracts, specifications, and legal aspects of agricultural engineering. Safety and human factors. Engineering ethics and professional registration. 3 lectures. Prerequisite: Senior standing.

BRAE 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

BRAE 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Consent of instructor.

BRAE 481 Advanced Agricultural Mechanics (2)
Advanced shop skills. Carpentry, electricity, plumbing, surveying, power mechanics, tractor equipment operation and maintenance. 1 lecture, 1 laboratory. Prerequisite: Agricultural teacher candidates starting/returning from student teaching, senior or graduate standing or consent of instructor.

BRAE 485 Cooperative Education Experience in BioResource and Agricultural Engineering (6) (CR/NC)
Part-time work experience with an approved BioResource and Agricultural Engineering firm engaged in production or related business, industry or governmental agency. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Degree credit limited to 6 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

BRAE 495 Cooperative Education Experience in BioResource and Agricultural Engineering (12) (CR/NC)
Full time work experience with an approved BioResource and Agricultural Engineering firm engaged in production or related business, industry or governmental agency. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Degree credit limited to 6 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

BRAE 500 Individual Study (1–3)
Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Enrollment by petition. Total credit limited to 6 units, repeatable in same term. Prerequisite: Consent of instructor.

BRAE 521 Systems Analysis of Agricultural Systems (4)
Principles and methods of creative problem solving and systems analysis as applied to the design of agricultural systems. Problem solving using the engineering design process to analyze the need, establish boundaries, and generate creative alternative solutions. Examples worked through in feasibility analysis, transportation and network problems, linear programming, project planning, human factors and ergonomics, and system analysis with an emphasis on optimum system operation. 3 lectures, 1 laboratory. Prerequisite: Consent of instructor.

BRAE 522 Instrumentation Control/Microprocessors (4)
Engineering input/output instrumentation for sensing and controlling functions through data acquisition, analysis and response to agricultural processing. 3 lectures, 1 laboratory. Prerequisite: BASIC language programming or consent of instructor.

BRAE 529 Small Farm Mechanization (3)
Principles of farm machinery used for tillage, seeding, weeding, harvesting and transport of agricultural crops. Small-scale equipment, suitable for subsistence farming in developing countries. Small tractors, hand tools, animal power, and fuel from renewable sources. 2 lectures, 1 laboratory. Prerequisite: BRAE 143 or equivalent, graduate standing, or consent of instructor.

BRAE 532 Water Wells and Pumps (4)
Water well drilling, design, and development. Pump characteristics and system head. Series and parallel operation. Design of pump intakes. Variable speed electric drives and engines. Pump testing. 3 lectures, 1 laboratory. Prerequisite: Consent of instructor.

BRAE 533 Irrigation Project Design (4)
Engineering solutions and social aspects of improved water delivery to farms and canal automation. Flow measurement. Water user associations. Unsteady canal and pipeline controls. PID controls and modeling. 3 lectures, 1 laboratory. Prerequisite: BRAE 340, hydraulics/fluid mechanics.

BRAE 570 Selected Topics in BioResource and Agricultural Engineering (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1 to 4 seminars. Prerequisite: Graduate standing or consent of instructor.

BRAE 571 Selected Advanced Laboratory in BioResource and Agricultural Engineering (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Consent of instructor.

BRAE 581 Graduate Seminar in BioResource and Agricultural Engineering (3)
Group study of current problems of the bioresource and agricultural engineering industry; current experimental and research findings as applied to field of bioresource and agricultural engineering. The Schedule of Classes will list topic selected. Total credit limited to 9 units, 3 seminars. Prerequisite: Graduate standing or consent of instructor.

BRAE 599 Thesis in BioResource and Agricultural Engineering (1–9)
Systematic research of a significant problem in bioresource and agricultural engineering. Thesis will include problem identification, significance, methods, data analysis, and conclusion. Students must enroll every quarter in which facilities are used or advisement is received. Degree credit limited to 6 units. Prerequisite: Graduate standing and consent of instructor.

BUS–BUSINESS

BUS 100 Student Orientation and College Success (2) (CR/NC)
Designing a successful four-year plan for graduation. Orientation of all OCOB majors to student’s academic program including development of four-year graduate plan and orientation to the OCOB mission and values. Exploration of skills needed for success: time management, adjustment to college life, study skills, career planning and concentration selection, diversity in school, business and beyond, and academic politics. Credit/No Credit grading only. 1 lecture, 1 activity.

BUS 200 Special Problems for Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units. Prerequisite: Consent of area coordinator.

BUS 207 Legal Responsibilities of Business (4)
Examination of the American legal system and important legal principles for business operations, such as those involved with contracts, torts, agency, business organizations, and employment. Emphasis on how legal principles help define socially responsible conduct. Case studies. 4 lectures.
BUS 212 Financial Accounting for Nonbusiness Majors (4)
Introduction to financial accounting theory and practice with an emphasis on financial statement preparation and analysis. Not open to Business majors. 4 lectures.

BUS 214 Financial Accounting (4)
Principles of financial accounting for Business majors. The course prepares students to understand and interpret financial statement information. Financial reporting standards are explored to give students an understanding of how financial events are reflected in financial statements. The course explores the importance of social responsibility in accounting through spreadsheet applications and Internet resources. 4 lectures.

BUS 215 Managerial Accounting (4)
Applications of accounting for making business decisions. Content includes planning and control issues including cost behavior, budget preparation, performance reporting; addresses social responsibility and employee motivational and behavioral considerations. Preparation of spreadsheet applications useful for decision-making. 4 lectures. Prerequisite: Demonstrated competency in electronic spreadsheet, word processing, and presentation applications. BUS 212 or BUS 214 or equivalent.

BUS 290 Business Programming (4)
Fundamentals of computer programming related to business applications. Application development using graphical user interface controls, variables, data types, and input/output with text files. 4 lectures.

BUS 302 International and Cross Cultural Management (4)
Dimensions of culture and its variations within and across nations. Impact of culture on managing in a global context. Development of managerial competencies requisite to working in and supervising multicultural groups in international corporations. Frameworks for analyzing cultural and contextual influences on organizational behavior, culture shock and readjustment, expatriation and repatriation, cultural change and innovation, intercultural conflict, and ethical dilemmas. Case studies, behavioral simulations, self-assessments and fieldwork. 4 lectures. Prerequisite: GE Area A, C1, C2, D1-D4, ECON 222, and BUS 207, or consent of instructor.

BUS 303 Introduction to International Business (4)
Special terms, concepts, and institutions associated with the environment in which international companies operate. Students will be enabled to understand, analyze and offer solutions to global business problems. 4 lectures. Prerequisite: A grade of C- or better in ECON 222.

BUS 308 Business Law II (4)
Legal aspects of management decisions, including problems arising in sales, commercial paper, personal property and bailments, secured transactions, bankruptcy, and securities regulation, with emphasis on the uniform commercial code. Case studies. 4 lectures. Prerequisite: BUS 207 or equivalent.

BUS 310 Introduction to Entrepreneurship (2-4)
Role and impact of entrepreneurship; characteristics and traits of entrepreneurs; social, economic, cultural and policy conditions conducive to entrepreneurship; entrepreneurial thinking; opportunity identification and assessment; the management team; organizational and legal issues; business models; acquiring social and financial capital; managing startup to growth; entrepreneurial behavior in existing organizations; realizing and harvesting value. Total credit limited to 4 units. 4 lectures. Prerequisite: BUS 207 or equivalent.

BUS 311 Managing Technology in the International Legal Environment (4)
Analysis of U.S. and international laws regarding technological innovations from economic, social and political perspectives. Copyrights, patents, trademarks, trade secrets, contracts, products liability and privacy. The Internet, computer programs and biotechnology. 4 lectures. Prerequisite: Completion of GE Areas A, D1 and D2. Business Administration majors will not receive GE Area D5 credit.

BUS 319 Accounting Information Systems (4)
Comprehensive coverage of manual and computerized accounting processes and internal controls. Documenting information systems. Identifying control weaknesses within information systems to comply with Sarbanes-Oxley Act. 3 lectures, 1 activity. Prerequisite: BUS 214.

BUS 320 Taxation of Business Entities (4)
Federal income taxation of the various forms of business entities. Introduction to broad range of tax concepts and types of taxpayers. Role of taxation in the business decision-making process. 4 lectures. Prerequisite: BUS 212 or BUS 214 and BUS 319 or consent of instructor.

BUS 321, 322 Intermediate Accounting I, II (4) (4)
Comprehensive coverage of financial reporting issues. BUS 321 covers financial statements, assets other than investments and intangibles, and liabilities. BUS 322 covers investments, intangibles, equities, revenue recognition and the Cash Flows Statement. 4 lectures. Prerequisite: BUS 321: BUS 214; BUS 319; BUS 322: BUS 321 with minimum grade of C-.

BUS 342 Fundamentals of Corporate Finance (4)
Theory and applications of financing business operations. Financial management of current and fixed assets from internal and external sources. Analysis, planning, control, and problem solving. Some discussion of corporate social responsibility in the context of corporate objective functions. The use of technology in the form of financial calculators and/or spreadsheets. 4 lectures. Prerequisite: A grade of C- or better in all of the following: ECON 222, MATH 221, STAT 252, BUS 215.

BUS 343 Quantitative Methods in Finance (4)
Basic mathematical foundations for advanced courses in finance: mathematical finance – dealing with elementary materials (time value of money, single multiple period portfolio choice, and application of arbitrage), and risk management – dealing with value-at-risk, stressing current industry practices. 4 lectures. Prerequisite: STAT 252.

BUS 346 Principles of Marketing (4)
Introduction of the marketing process: identifying target markets; developing and launching products or services; and managing pricing, promotion, and distribution strategies. Focus on leveraging technologies that result in innovation and impact marketing practice. Recognition that markets are global. Ethics and social responsibility in marketing decision-making. 4 lectures. Prerequisite: A grade of C- or better in all of the following: ECON 222, BUS 207. Prerequisite for Industrial Technology majors/minors: ECON 201.

BUS 350 The Global Environment (4) GE Area F
(Also listed as AG/EDES/ENGR/HUM/SCM/UNIV 350)
Interdisciplinary investigation of how human activities impact the Earth’s environment on a global scale. Examination of population, resource use, climate change, and biodiversity from scientific/technical and social/economic/historical/political perspectives. Use of remote sensing maps. Sustainable solutions. 3 lectures, 1 activity. Prerequisite: Completion of GE Areas A and B and junior standing.

BUS 360, 361 Undergraduate Integrated Core Curriculum I, II (12) (12)
The foundation knowledge and skills required of all business concentrations. Integration of accounting, finance, marketing, operations management, government and social influences. Organizational behavior and international topics in one two-quarter curriculum, based on the approved business core. 10 lectures, 2 activities per course. Prerequisite: BUS 207, BUS 214, BUS 215, BUS 391, ECON 221, ECON 222, MATH 221, STAT 251, STAT 252.

BUS 382 Organizations, People, and Technology (4)
Organizations as sociotechnical systems. Examination of macro dimensions of organizations including environment, mission, goals, structure, people, technology, and internal management systems and processes. Case analysis, experiential class activities. Application to technology-oriented business settings. 4 lectures. Prerequisite: GE Area A, C1, C2, D1-D4.

BUS 384 Human Resources Management (4)
Introduction to functional areas of the discipline including staffing, compensation, employee development and labor relations. Additional workplace issues addressed include performance and human capital management, employer legal and social responsibility for employee
wellbeing, managing a diverse/global workforce, and using human resource information systems. 4 lectures. Prerequisite: GE Area A, C1, C2, D1-D4, ECON 221 and BUS 207.

BUS 386 Employee Performance and Knowledge Management (4)
Needs assessment, including organization, person, and task or competency analysis. Design, delivery and evaluation of employee training and human resource development in knowledge-based organizational settings. Performance management and feedback systems; development of learning organizations; human resource information systems (HRIS) applications in career management and training administration. 4 lectures. Prerequisite: BUS 384.

BUS 387 Organizational Behavior (4)
Application of behavioral, social and organizational science concepts to management. Exploration of the interactions between individuals and the organizations in which they work and live. Individual, interpersonal, team, intergroup and organizational levels of analysis included in topics such as expectations, perception, communications, creativity, leadership style, cultural and ethical behavior, group dynamics, team effectiveness and work design. 4 lectures. Prerequisite: GE Area A, C1, C2, D1-D4, ECON 221 and BUS 207. Recommended: STAT 252.

BUS 390 Data Structures for Business Systems (4)
The use of algorithmic processes related to business practices. Analysis techniques for managing data structures such as lists, stacks, queues and trees. Algorithms to perform common programming tasks such as sorting, searching and hashing. Emphasis on the use of data structures from object class libraries in projects and exercises. 4 lectures. Prerequisite: CPE/CSC 101 or CSC 237 (with a grade of C- or better), or BUS 290 (with a grade of C- or better), or consent of instructor.

BUS 391 Information Systems (4)
Computer applications in business and industry. Information systems and integrated systems concepts, computer hardware and software, strategic uses of information systems, databases, data warehousing, decision support systems and artificial intelligence, network basics, electronic commerce, systems development, ethical use of information, employing technology in a socially responsible manner, and emerging trends and technologies in information systems. 4 lectures. Prerequisite: BUS 215.

BUS 393 Database Systems in Business (4)
Design, development, testing, and implementation of databases for business applications. Data modeling with entity relationship diagrams (ERD) and class diagrams (UML). Data normalization, data integrity, the effect of business rules on data normalization. Advanced queries using structured query language (SQL). Database application development culminating in a database project. 4 lectures. Prerequisite: BUS 390 or CSC 103 and BUS 391.

BUS 394 System Analysis and Design (4)
Systems analysis and design. Project team creation and performance monitoring. Systems development life cycle and project management, process modeling using data flow diagrams, data modeling with E/R diagrams, CASE tools, object modeling with UML, and prototype development. 4 lectures. Prerequisite or concurrent: BUS 393 (grade of C- or better).

BUS 395 Systems Design and Implementation (4)
Systems design and implementation, with focus on project management and incorporating software quality into the software development process, including software testing. 4 lectures. Prerequisite: BUS 393 and BUS 394 (both with a minimum grade of C- or better).

BUS 400 Special Problems for Advanced Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units. Prerequisite: Senior standing or consent of instructor.

BUS 401 Seminar in General Management and Strategy (4)
Application of interdisciplinary skills to business and corporate strategy formulation and implementation. Analysis of interdependence between external environments and internal systems. Focus on responsibilities, tasks, and skills of general managers, including socially responsible behavior and governance. Case studies, group problem solving. Capstone course of Business core curriculum. 4 seminars. Prerequisite: A grade of C- or better in all 300-level Business core courses, BUS 342, BUS 346, IT 371, BUS 387, BUS 391, and senior standing.

BUS 402 International Business Management (4)
Managerial concepts and techniques for analysis and decision making within international businesses. Environmental and organizational factors influencing multinational operations. Assessing international market opportunities and entry modes. Complexities of multinational management strategy, structure and systems, especially during initial stages of internationalization. Case studies and simulations. 4 lectures. Prerequisite: BUS 342, BUS 346, BUS 387 or consent of instructor.

BUS 403 Advanced Seminar in International Management (4)
Integration of management concepts within complex multinational organizations. Interdisciplinary approach to identifying and assessing multinational and global competitive environments and strategies; structuring and managing interdependent multinational operations; addressing conflicts between domestic and international policies and practices in multinational enterprises. Case studies, simulations, group analysis and problem solving. 4 seminars. Prerequisite: BUS 302 and BUS 402 or consent of instructor.

BUS 404 Governmental and Social Influences on Business (4)
Analysis from legal, economic, political, and ethical perspectives, of the changing domestic and international environments of the business enterprise. Topics include administrative law, agencies and regulatory policy, antitrust law, public policy analysis, business-government relations, and corporate responsibility. Case studies. 4 lectures. Prerequisite: BUS 207 and ECON 222.

BUS 405 Joint Ventures and Alliances (4)
Examination of joint ventures and alliances between organizations, using cross-cultural, interdisciplinary perspective. Alliance motives, types and traits. Processes for partner selection, negotiation, structure, operation, and performance assessment of international and cross-cultural alliances. Lectures, case studies, and simulation. 4 lectures. Prerequisite: BUS 342, BUS 346, and BUS 387.

BUS 406 Managing Mergers, Acquisitions and Divestitures (4)
Issues associated with analyzing, negotiating, and managing mergers, acquisitions and divestitures (MADS) using cross-cultural, interdisciplinary perspective. Rationale for decision to pursue MADS and processes for identifying targets; valuing and negotiating MADS; staffing and human resource management issues; strategic control and integration; and cross-cultural conflict and divided loyalties in domestic and international MADS. Lectures, case studies and simulation. 4 lectures. Prerequisite: BUS 342, BUS 346, and BUS 387.

BUS 407 Managing People in Global Markets (4)
Impact of cultural and strategic differences on management of people in multinational organizations. Critical human resource issues in domestic and international operations. 4 lectures. Prerequisite: BUS 387.

BUS 409 Law of Real Property (4)
Legal problems of acquisition, ownership and transfer of real property. Contracts, agency, estates, and co-ownership, mortgages and deeds, covenants, conditions, and restrictions, easements, landlord-tenant, and zoning. 4 lectures. Prerequisite: Senior standing.

BUS 410 The Legal Environment of International Business (4)
U.S., foreign, and international law affecting international business transactions. U.S. and foreign cultural, ethical, and political norms and legal institutions, and their effect on law and business. 4 lectures. Prerequisite: BUS 207 and ECON 222.

BUS 412 Advanced Managerial Accounting (4)
Product costing systems including hybrid costing systems, management control systems, cost allocation, activity based costing, cost information for decision making, new manufacturing environments, and strategic control.
systems. International dimension integrated in the course content. 4 lectures. Prerequisite: BUS 215.

BUS 416 Volunteer Income Tax Assistance (4)
Coverage of the deductions and credits applicable to individuals. Training and practice in the preparation of state and federal income tax returns. Under supervision of qualified professionals, tax preparation sites are operated to provide free tax assistance to community residents. 2 lectures, 2 activities. Prerequisite: BUS 320 or equivalent, senior standing.

BUS 417 Taxation of Corporations and Partnerships (4)
Comparative study of the taxation of C corporations and flow-through tax entities, including S corporations, partnerships and limited liability companies. 4 lectures. Prerequisite: BUS 320 or equivalent.

BUS 418 Listening to the Customer (4)
A project-oriented introduction to exploratory, secondary, and qualitative methods. Access and use of secondary sources of information that support marketing decision making and lead to a carefully crafted research plan. Emphasis on qualitative marketing research techniques, with the goal of setting the stage for additional data collection. 4 lectures. Prerequisite: BUS 346.

BUS 419 Strategic Marketing Measurement (4)
Gathering, analyzing, and reporting information critical for marketing decision making. Focus on primary data collection and analysis techniques including experimental design, descriptive statistics, chi-square analysis, ANOVA, and regression. Other methods may include data mining, GIS, and customer relations management (CRM). 4 lectures. Prerequisite: BUS 418, STAT 252.

BUS 420 Advanced Financial Reporting (4)
Comprehensive coverage of selected advanced financial accounting and reporting topics. Topics include revenue recognition, software development costs, employee stock option plans, pensions and postretirement benefit plans, accounting for income taxes, leases, specialized inventory issues and advanced consolidation issues. 4 lectures. Prerequisite: BUS 322.

BUS 422 Government and Not-For-Profit Entities (4)
Accounting and reporting by state and local governments and not-for-profit entities. State and local governmental topics include: fund structures, budgetary accounting, the modified accrual basis of accounting, reporting entity issues. Not-for-profit topics include: financial and reporting concepts and practices, contributions, restricted resources, endowments. 4 lectures. Prerequisite: BUS 321.

BUS 424 Professional Accounting (4)
Development of the accounting profession. Past, present and future. Emphasis on contemporary issues confronting the professional accountant and his/her social and ethical responsibilities and opportunities. 4 lectures. Prerequisite: Consent of instructor.

BUS 425 Auditing (4)
Survey of the auditing environment including institutional, ethical, and legal liability dimensions. Introduction to audit planning, assessing materiality and audit risk, collecting and evaluating audit evidence, considering the internal control structure, substantive testing, and reporting. 4 lectures. Prerequisite: BUS 322.

BUS 427 International Accounting (4)
Consideration of conceptual, managerial, professional and institutional issues of international accounting. 4 lectures. Prerequisite: BUS 321 or equivalent.

BUS 428 Accounting Policy (4)
Role of management in establishing and directing accounting policy. Coverage includes impact of management decisions on external reporting and taxes and the impact of financial reporting requirements on management decisions. 4 seminars. Prerequisite: BUS 322.

BUS 429 Accounting Process Analysis (4)
Coverage of revenue, purchasing, human resources and payroll, integrated production, and general ledger and business reporting processes in enterprise systems. A risk management approach to evaluate key business and accounting processes. E-business concepts. 3 lectures, 1 activity. Prerequisite: BUS 215 and BUS 321 with a minimum grade of C-.

BUS 430 Internship/Cooperative Education (2–12) (CR/NC)
Work experience in business, industry, government and other areas of student career interest. Periodic written progress reports, final report, and evaluation by work supervisor required. Credit/No Credit grading. Total credit limited to 16 units. Prerequisite: Approval of area chair, junior standing, and a CPSLO cumulative GPA of at least 2.5 without being on academic probation.

BUS 431 Security Analysis and Portfolio Management (4)
In-depth analysis of equity market and its instruments. Detailed study of leading stock valuation models. Impact of changes in the firm's fundamentals and in macroeconomic factors on stock prices. Brief introduction to equity and index derivatives. 4 lectures. Prerequisite: BUS 342.

BUS 432 Insurance Planning and Risk Management (4)
Introduction to insurance planning and risk management and its role in financial planning. Key concepts include determining risk exposure and selecting insurance products. Legal aspects of property and liability policy, life, health, and social insurance. 4 lectures. Prerequisite: BUS 342.

BUS 433 International Finance (4)
Financial management of international business. International capital and money markets, international financial institutions, special problems in evaluating direct foreign investment, and financial techniques used in international business operations. 4 lectures. Prerequisite: BUS 342.

BUS 434 Real Estate Finance (4)
Analyses of real estate financing techniques and funding sources for development projects. Effects of federal, state, and local taxes on real estate investments. In-depth investigation and computer analyses of real estate investment projects. 4 lectures. Prerequisite: BUS 342.

BUS 435 Real Estate Investment (4)
Intensive investigation and computer analysis of real estate investment opportunities. Problems in real estate and property management. 4 lectures. Prerequisite: BUS 342.

BUS 436 Entrepreneurial Finance (4)
Process of financing new and fast-growing firms. Readings on the venture capital process, from seed capital through the initial public offering. Valuation of firms seeking venture capital, and those planning their initial public offering. Valuing convertible securities. Real options valuation. 4 seminars. Prerequisite: BUS 342.

BUS 437 Retirement and Estate Planning (4)
Retirement planning and employee benefits; Social Security and Medicare; types of retirement plans; qualified plan characteristics; distribution options; and group insurance benefits. Trusts, power of attorney, and probate. 4 lectures. Prerequisite: BUS 342.

BUS 438 Advanced Corporate Finance (4)
Corporate finance with an emphasis on managing the corporation to create shareholder value. Detailed treatment of topics such as capital budgeting, capital structure, economic value-added, corporate distribution policy, financial distress, and mergers and acquisitions. 4 lectures. Prerequisite: BUS 431 and BUS 439.

BUS 439 Fixed Income Securities and Markets (4)
Development of analytical skills for properly valuing fixed income securities. Bond pricing, yields and volatility; interest rate term structure and yield curve; securities, market structure, and analytical techniques; bond portfolio strategies and an introduction to interest rate derivatives. 4 lectures. Prerequisite: BUS 342.

BUS 440 Commercial Bank Management (4)
Analysis of the management of a commercial bank as a profit-making entity. Emphasis put on cases in bank management, especially those which deal with the management of a bank's asset and liability structure. 4 lectures. Prerequisite: BUS 342 and ECON 337.
BUS 441 Computer Applications in Finance (4)
A combination lecture/computer lab course focusing on computer acquisition of financial data and the subsequent application of financial theory and analysis to this data so as to facilitate financial decision making. 3 lectures, 1 activity. Prerequisite: BUS 342.

BUS 442 Introduction to Futures and Options (4)
An in-depth analysis of derivatives markets and instruments. Emphasis on the valuation of futures, options, swaps, and other derivative securities. 4 seminars. Prerequisite: BUS 431.

BUS 443 Case Studies in Finance (4)
Development of analytical and decision-making techniques in applying financial theory to business management problems. Emphasizes working capital management, financial analysis and forecasting, mergers and acquisitions, and other current topics in finance, including financial ethics. Cases are used to emphasize practical problems. 4 lectures. Prerequisite: BUS 431, BUS 438, and BUS 439.

BUS 444 Financial Engineering and Risk Management (4)
Advanced course synthesizing concepts from corporate finance, derivative securities, statistics, and computer science. Emphasis on both computer programming in a matrix programming language (Matlab) to solve practical risk management and valuation problems, and analytical training in the area of stochastic calculus, and its application to derivative security pricing. Practical applications of derivatives for controlling risk in an international corporate environment. 4 lectures. Prerequisite: BUS 343, BUS 422 or BUS 433, CSC 234 or equivalent.

BUS 445 Ethics and Behavioral Finance (4)
Contemporary theoretical and empirical issues including agency theory, reputation building, game theory, and financial ethics. Discussion of the application of ethics theory to financial decisions. May include lectures, case analyses, student presentations, and guest speakers. 4 lectures. Prerequisite: BUS 342.

BUS 446 International Marketing (4)
Basic skills and tools needed to evaluate the cultural factors that impact the acceptance of products and services in markets around the world. Building of an understanding of global marketing strategy. 4 lectures. Prerequisite: BUS 346.

BUS 451 Product Development and Launch (4)
Building of project-based skills in developing new products and planning for their launch. Major phases of product development: opportunity identification, product design and positioning, pre-market testing and forecasting, and launch marketing. Introduction to data-gathering methods used to design well differentiated and successful products. 4 lectures. Prerequisite: BUS 419.

BUS 452 Product Management (4)
Development of project-based skills in managing products in the growth, maturity, and decline stages of their life cycles. Emphasis on the distribution, pricing, and communication strategies required to maintain distinctive product advantages. Product modification, product line strategies, and pruning. 4 lectures. Prerequisite: BUS 419.

BUS 454 Developing and Presenting Marketing Projects (4)
Client-based course providing an opportunity to apply marketing abilities. Teams draw upon research, analytical, and strategic marketing skills to develop an actionable plan that addresses a critical marketing challenge faced by an organization. Deliverables include research findings and written and verbal presentation to the organization and instructor. 4 lectures. Prerequisite: BUS 451 and BUS 452.

BUS 455 Marketing Management (4)
Integration of key marketing concepts using tools such as computer simulations, readings, and/or case studies. Development and implementation of strategic and tactical decisions for companies and brands. 4 lectures. Prerequisite: BUS 451 and BUS 452.

BUS 456 Industrial Customer Interfacing (4)
Focus on managing aspects of the customer interface for strategic advantage. Emphasis on building and maintaining customer data bases. Establishing and maintaining customer service centers. Providing technical support services. Conference and trade show planning and development. 4 lectures. Prerequisite: BUS 346 or consent of instructor.

BUS 461, 462 Senior Project I, II (2) (2)
Selection and analysis of a problem under faculty supervision. Problems typical of those which graduates must solve in their fields of employment. Formal report is required. Minimum 120 hours total time. Prerequisite: Senior standing.

BUS 463 Senior Project: Applied Accounting and Auditing Research (4)
Practice with multiple authoritative accounting and auditing databases, actual published financial reports, and business writing. Real world accounting and auditing issues, including revenue recognition and ethics issues. Federal and state regulation of securities transactions. Prerequisite: Senior standing, BUS 322 and Graduation Writing Requirement.

BUS 464 Applied Senior Project Seminar (4)
Selection and analysis of business problems and opportunities in directed individual or group-based projects. Problems typical to those which graduates could encounter in their fields of employment. Formal report required. 4 seminars. Prerequisite: Senior standing.

BUS 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

BUS 471 Compensation (4)
Design and management of compensation systems. Job analysis, job evaluation, wage and salary surveys, incentive systems, gainsharing, benefit administration, pay equity and legal regulation. Simulation and case study development of a wage structure, pay level and individual raise policies, administrative controls, salary and program budgets. 4 lectures. Prerequisite: BUS 384 and STAT 252, or equivalent.

BUS 472 Labor Relations (4)
Union organizing. Negotiation and administration of collective agreements. Simulation of bargaining, grievance, and arbitration processes. 4 lectures. Prerequisite: BUS 384 or equivalent.

BUS 473 Employment Law (4)
Federal and state labor policy as expressed in common law, relevant statutes, and executive orders. Effects upon employees, management, protected groups, and the public. Current rules analyzed in a contemporary and historical context. Understanding important workplace and employment problems. 4 lectures. Prerequisite: BUS 207, BUS 384 or equivalent.

BUS 474 Independent Study in Accounting (4)
Individual investigation, research, study or survey of selected topics in accounting, auditing or taxation. Total credit limited to 8 units, repeatable in the same term. The Schedule of Classes will list topic selected. Prerequisite: BUS 322.

BUS 475 Staffing (4)
Processes by which individuals and organizations become matched to form the employment relationship. Specific issues related to human resources planning, internal and external recruitment and selection. 4 lectures. Prerequisite: BUS 384 and STAT 252, or equivalent.

BUS 477 Organization Development Programs (4)
Analysis of development programs in organizations. Review of development and trends in the field of organizational development. Application of behavioral and organizational science knowledge and social technology to programs in organizations for the purpose of improving effectiveness and sustainability. 4 seminars. Prerequisite: BUS 387 and BUS 382 or consent of instructor.
BUS 478 Organization Design Programs (4)
Impact of changing business environment and strategy on design of organizations. Organization design programs, including design models, redesign processes, and guiding principles. Case studies, current redesign projects and field studies. 4 lectures. Prerequisite: BUS 382 or consent of instructor.

BUS 479 Purchasing and Materials Management (4)
Role and scope of the procurement function and concept of an integrated materials management process. Relations with functional departments. Purchasing structure and processes in business and service organizations. Global concept of international purchasing. Measuring purchasing performance. 4 lectures. Prerequisite: ECON 222 and IT 371.

BUS 483 Seminar in Managerial Consultation (4)
Management consulting in the private and public sectors. Analysis of substantive and process skills required to provide independent and objective advice to clients. Application of consulting knowledge and skills to real client problems and facilitation of change. 4 seminars. Prerequisite: BUS 382 and BUS 387.

BUS 484 Corporate Training (4)
Developing and managing curriculum for an industrial setting. Developing a philosophy, assessing resources, developing and sequencing objectives, developing and properly using materials in training, evaluating and reporting effectiveness. Managing people and resources within this process in an industrial setting. 4 lectures. Prerequisite: Senior standing.

BUS 486 Human Resource Information Systems (4)
Application of computers to the management of human resources. Human resource decision support systems and routine transaction processing. Ethical use of information systems in managing the human resource function. Basic system design decisions. Use of information systems to support traditional human resource functional areas. Exposure to enterprise-wide, integrated software. 4 lectures. Prerequisite: BUS 384 and BUS 391.

BUS 488 Planning and Managing New Ventures (4)
The purpose and process of business planning and the challenges of managing a start-up enterprise. Preparation of a complete business plan: management and organization; product or service; marketing; finance; operating and control systems; growth. 4 seminars. Prerequisite: Senior standing.

BUS 489 Negotiation for Managers (4)
Theory and practice of negotiation in the management of enterprise, including ethical issues in negotiation and the impact of culture on negotiation. 4 lectures. Prerequisite: BUS 387.

BUS 491 Modeling and Analysis Using Computer Simulation (4)
Modeling organizational systems and processes such as computer networks, transportation systems, manufacturing systems, retail systems, etc. Developing computer simulation models and animation of systems to provide decision support in selecting system design alternatives. Applying quantitative methods to model uncertainty and conduct statistical performance analysis. 4 lectures. Prerequisite: BUS 391, STAT 251 or equivalent.

BUS 494 Enterprise Information Systems (4)
Information systems in an integrated business environment. Collaborative learning with teams analyzing, designing, implementing and evaluating enterprise software. Determine and implement organizational policies and procedures to assure system performance. Coverage of business processes in the areas of accounting, procurement, human resource, production customer relationship and supply chain management. Ethical use of information systems in managing businesses. Role of information systems in conducting business in a socially responsible manner. 4 lectures. Prerequisite: BUS 391.

BUS 495 Software Testing (4)
Theory and practice of software testing, including state-of-the-art practices, design issues, staffing issues, test management issues, and other related areas. Software testing tools utilized for applications testing, and test management. 4 lectures. Prerequisite: BUS 391 and CPE/CSC 101 or CSC 237 (with a grade of C- or better), or consent of instructor.

BUS 496 Electronic Commerce (4)
Focus on the technology of electronic commerce, including programming, development environments and security, through a series of lectures, guest speakers, demonstrations, exercises and case studies. Networking, client/server computing, and web/database design concepts. Working e-commerce application required at end of course. 4 lectures. Prerequisite: BUS 391, CPE/CSC 101 or CSC 237 (with a grade of C- or better), BUS 390.

BUS 498 Directed Topics in Information Systems (4)
Specialized Information Systems (IS) topic selected from the IS areas of current interest. Intended for advanced IS concentration students who want to learn and acquire in-depth IS knowledge and skills. The Schedule of Classes will list topic selected. 4 lectures. Prerequisite: IS concentration students only, and consent of instructor.

BUS 499 Data Communications and Networking (4)
Combines the fundamental concepts of data communications and networking with practical applications in business. Provides a basic understanding of the technical and managerial aspects of business telecommunication. Introduction to data communications and applications and technical fundamentals, and to network products, technologies, applications, and services. 4 lectures. Prerequisite: BUS 391, or consent of instructor.

BUS 501 Managerial Accounting and Managerial Economics (1)
Accounting portion of course covers applications of accounting to management decision-making, planning, and control. Cost behavior analysis, budgets, performance reporting, plus motivational and behavioral considerations. Economics portion of course covers demand and supply analysis, static and dynamic market equilibrium analysis, and elasticities. 5 lectures. Prerequisite: Graduate standing.

BUS 502 Managerial Finance and Managerial Economics II (4)
Finance portion of course covers short-term financial management, investment decisions, and cost of capital determination. Economics portion of course covers consumer choice analysis, theory of the firm, production theory, and market structures. 4 lectures. Prerequisite: BUS 501.

CD—CHILD DEVELOPMENT

CD 102 Orientation to the Child Development Major (1)
Introduction to the child development major, self-assessments, career opportunities, university and community resources, and the program at Cal Poly. 1 lecture. Prerequisite: CD majors only or consent of instructor.

CD 109 Parenting (2)
Philosophies and techniques explored out of which an individual can devise an effective parenting style. Basic skills for parent effectiveness. 2 lectures.

CD 130 Supervised Study of Children (4)
Faculty supervised experience with young children. Participant observation, data collection skills, planning and conducting activities for individuals and groups in educational or childcare facilities.

CD 200 Special Problems for Undergraduates (1–4)
Supervised investigation, including a written report, of a topic chosen with prior approval of instructor. Total credit limited to 6 units, with a maximum of 4 units per quarter.

CD 207 The Learner's Development, Culture and Identity in Educational Settings (4) (Also listed as EDUC 207)
Theoretical background of child and early adolescent development within diverse cultural settings and implications for the teaching-learning process. Observations of children in everyday settings. 3 lectures, 1 activity. Prerequisite: PSY 201 or PSY 202.

CD 208 Infant and Toddler Development (4)
Human development from conception through the second year of life. Examination of theory and research in multiple domains of development. Consideration of environments and activities which enhance the emerging capabilities of infants and toddlers. 4 lectures.

2007-2009 Cal Poly Catalog
CD 209 Early Childhood Development (4)
Human development from conception through early childhood. Discussion and analysis of research and theory regarding physiological, cognitive and psychosocial domains of development, especially as they apply to working with young children and families in educational settings. 4 lectures. Prerequisite: CD 209 or PSY 202, or consent of instructor.

CD 210 Middle Childhood (4)
Examination of research and theory regarding physical, cognitive, and psychosocial development in middle and late childhood, and the implications for work with youth in educational settings. 4 lectures. Prerequisite: CD 209.

CD 254 Family Psychology (4) (Also listed as PSY 254)
Introduction to research and theory on family relationships and behavior across the lifespan. Contextual influences, diversity of family forms, and topics such as love, mate selection, marital quality, parenting, gender, household work, divorce, and remarriage. 4 lectures. Prerequisite: PSY 201 or PSY 202.

CD 306 Adolescence (4) (Also listed as PSY 306)
Psychological analysis of the years from prepubescence to young adulthood. Current research on behavior and development during adolescence with emphasis on physical, affective, cognitive, sociocultural, historical, family, peer and school aspects of life during the post-child, pre-adult years. 4 lectures. Prerequisite: PSY 201 or PSY 202, junior standing.

CD 308 Preschool Laboratory: Applications of Learning, Development, and Technology (4) (formerly CD 312)
Teaching experience with children in a preschool laboratory setting. Participant planning, execution and evaluation of age-appropriate activities. Observation is used as the basis for planning for the development of the whole child. A special multimedia project completed in conjunction with CD 309, CD 310 or CD 311. 4 laboratories. Prerequisite: CD 209, or consent of instructor. Co-requisite: CD 309, CD 310 or CD 311.

CD 309 Learning, Development, and Technology I (4)
Introduction to relationship between development and learning, and to application of developmental principles to the creation of age appropriate curriculum. Principles illustrated through examination of sensory-motor development and appropriate activities for promoting gross motor, fine motor, perceptual, and volitional development. 4 activities. Prerequisite: CD 209, computer literacy (Recommended: CSC 232, CSC 113 or CSC 118).

CD 310 Learning, Development, and Technology II (4)
Examination of developmental learning and the activities, organizational practices, and methods which promote or hinder it, with a special examination of the influence of development in the process of children learning to read. 4 activities. Prerequisite: CD 309.

CD 311 Learning, Development, and Technology III (4)
Examination of the concept of learning competence and its relation to creativity. 4 activities. Prerequisite: CD 310.

CD 324 Guiding Children (4)
Group process and guidance techniques for adults working with children in family, community, and educational settings. Examination of cases which require the application of theory to practical situations typically encountered by adults working with children. 4 lectures. Prerequisite: CD 130, CD 209, or consent of instructor.

CD 329 Research Methods in Child Development (4)
Introduction to research methods in child development. Critically evaluating research literature, generating research questions, and conducting observations and interviews with children and adolescents. 3 lectures, 1 activity. Prerequisite: CD 209 or PSY 256 or CD/EDUC 207, STAT 217.

CD 330 Supervised Internship (4) (CR/NC)
Faculty-supervised internship. Role of professional apprentice is experienced and analyzed by each student. Credit/No Credit grading only. Prerequisite: CD major, CD 308, CD 309, CD 324, PSY 323, KINE 280 or equivalent first aid certification, junior standing and consent of instructor.

CD 350 Developmental Issues in Education (4)
Current issues concerning how human beings develop and learn. Topics may include motivation, intelligence, peer relations, creativity, learning competence, moral development, and the implications these topics have for education. 4 lectures. Prerequisite: CD 209 or PSY 256 or CD/EDUC 207.

CD 390 Career Planning (2) (CR/NC) (Also listed as PSY 390)
Individual career and graduate school planning. Current employment issues for college graduates such as career profiles, trends and work environments. Credit/No Credit grading only. 2 seminars. Prerequisite: Junior standing or consent of instructor.

CD 400 Special Problems for Advanced Undergraduates (1–4)
Supervised investigation, including a written report, of a topic chosen with prior approval of instructor. Total credit limited to 6 units, with a maximum of 4 units per quarter. Prerequisite: Junior standing.

CD 401 Perspectives on Childhood Education (4)
Past, present and future perspectives in theory and practice of childhood education. Analysis of current research issues and applications. 4 seminars. Prerequisite: CD 310, CD 329, CD 330 or consent of instructor.

CD 404 Administration of Children’s Programs (4)
Organization and administration of programs for young children, preschool and child care centers. Staffing, finance, equipment, records, program evaluations, regulations, public policy and community relations. 4 lectures. Prerequisite: CD 209.

CD 430 Advanced Internship (4) (CR/NC)
Faculty-supervised preprofessional experience in a career-related setting which complements the CD 330 internship. Such roles as master teacher, caseworker, therapeutic intern, administrative aide or program specialist are experienced and analyzed by each student. Credit/No credit grading only. Prerequisite: CD major, CD 330, and consent of instructor.

CD 461 Senior Project Seminar (2)
Senior project expectations and skills. Students work alone or in groups to identify appropriate topics, methods and content for the senior project; to be presented in a series of progress reports. 2 seminars. Prerequisite: CD major, completion of GWR, CD 309, CD 329, and consent of instructor.

CD 462 Senior Project (2)
Completion of a project under faculty supervision. Prerequisite: CD 461.

CD 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

CE–CIVIL ENGINEERING

CE 111 Introduction to Civil Engineering (1) (CR/NC)
Broad overview of the field of civil engineering, including professional societies and their student chapters, professional licensing and registration, professional codes of ethics, the elements of engineering design, and the scope of analysis and design activities undertaken by private- and public-sector civil design professionals. Credit/No Credit grading only. 1 lecture.

CE 114 Introduction to CAD in Civil and Environmental Engineering (4)
The Civil and Environmental Engineering design process. Use of AutoCAD to illustrate and quantify design alternatives. Practice in creating and evaluating typical designs drawn from different specialty areas of the field. Related topics in information technology. 2 lectures, 2 laboratories. Prerequisite: MATH 141; CSC 110 or equivalent or passing score on qualifying test of basic computer skills.
CE 200 Special Problems for Undergraduates (1–2) (CR/NC)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Credit/No Credit grading only. Prerequisite: Consent of department chair.

CE 201 Mechanics of Materials (6)
Stresses, strains, and deformations associated with torsion, axial, shear, moment, and pressure vessel loadings. Combined loadings and principle representations of the states of stress and strain at a point. Basic failure criteria. Introduction to stability including buckling of columns. Equivalent in content to CE 204 and CE 207. 6 lectures. Prerequisite: ME 211.

CE 204 Mechanics of Materials I (3)
Stresses, strains, and deformations associated with axial, torsional, and flexural loading of bars, shafts, and beams. Analysis of elementary determinate and indeterminate mechanical and structural systems. 3 lectures. Prerequisite: ME 211.

CE 206 Strength of Materials Laboratory (1)
Introduction to experimental stress analysis. Verification of analytical equations through strain gage measurements of axially, torsionally, and flexurally loaded specimens. 1 laboratory. Prerequisite or concurrent: CE 201 or equivalent (CE 205 from prior catalogs).

CE 207 Mechanics of Materials II (3)
Combined stress states including torsion, axial, shear, moment, and pressure vessel loadings. Principle stress/strain states. Basic failure criteria. Analysis of beam forces, moments, deflections, and rotations. Introduction to stability concepts including column buckling. 3 lectures. Prerequisite: CE 204.

CE 211 Fundamentals of Transportation Engineering (3)
The characteristics and functions of highway, air, rail, transit and other modes of urban and intercity transportation. Fundamentals of transportation design, operations, and planning. Evaluation of costs, benefits, and environmental considerations. 3 lectures. Prerequisite: MATH 141.

CE 222 Fundamentals of Transportation Engineering Laboratory (2)
Application of principles of transportation planning, operations, and design. Emphasis on urban transportation planning and operations, and the design of urban and intercity highway and rail facilities. Experimental determination of the physical and mechanical properties of pavement materials through laboratory and field testing. Analysis of data and preparation of testing reports. 2 laboratories. Prerequisite or concurrent: CE 221.

CE 240 Additional Engineering Laboratory (1-2) (CR/NC)
Special assignments undertaken by students who need or wish to acquire abilities supplementary to their standard pattern of courses. Assignments must be primarily of shop or laboratory nature. Work done with minimum faculty supervision. Total credit limited to 6 units. Credit/No Credit grading only. 1-2 laboratories.

CE 251 Numerical Methods in Engineering (4)
Concepts from numerical analysis and basic programming theory introduced in the context of engineering applications. Topics include the application of programming constructs, finite precision calculations, vectors, matrices, eigenvalues/vectors, linear systems, linear programming, basic nonlinear systems, differential equations, plotting, statistics, least squares, and approximations. 3 lectures, 1 laboratory. Prerequisite: CE 114 and MATH 244.

CE 259 Civil Engineering Materials (2)
Experimental determination of mechanical properties of concrete, asphalt, and soils as required for engineering applications. Experimental verification of assumptions made in mechanics of materials procedures. Use of strain measuring devices. Preparation of technical reports. 2 laboratories. Prerequisite: CE 204.

CE 336 Water Resources Engineering (4)
Hydraulics of pile flow. Open channel flow, groundwater, and hydrology. 4 lectures. Prerequisite: ME 341.

CE 337 Hydraulics Laboratory (1)
Application of basic fluid dynamic principles to various mechanical systems. Exposure to experimental problems and techniques with guided laboratory projects related to civil engineering discipline. 1 laboratory. Prerequisite: ME 341.

CE 351 Structural Analysis (4)
Analysis for member forces and deflections of determinate and indeterminate structures, including trusses, beams, and frames. General theorems, influence diagrams, and energy methods. 3 lectures, 1 laboratory. Prerequisite: CE 251 and either CE 201 or CE 207.

CE 355 Reinforced Concrete Design (4)
Analytical and design principles of reinforced concrete in designing civil engineering systems. Origin of code requirements. Fundamentals of proportioning. Details of elements and structural systems. 3 lectures, 1 laboratory. Prerequisite: CE 259, CE 351.

CE 356 Structural Steel Design (4)
Design and behavior of the elements of steel structures. Design and analysis of bolted, welded and eccentric connections. Proportioning of members and connections. Introduction to plastic design, end plate connection, composite construction, shear connections and design of composite beams. 3 lectures, 1 laboratory. Prerequisite: CE 351.

CE 381 Geotechnical Engineering (4)
Engineering geology, elementary mass-volume relations, clay-water interaction, soil classification, soil compaction, geostatic stress distributions, 1-D and 2-D steady-state flow, shear strength under drained and undrained conditions. 4 lectures. Prerequisite: CE 207 and ME 341. Concurrent: CE 382 (CE majors only).

CE 382 Geotechnical Engineering Laboratory (1)
Use of standard laboratory test methods to determine physical, mechanical, and hydraulic properties of soil. 1 laboratory. Co-requisite: CE 381.

CE 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

CE 401 Linear Elasticity (4)

CE 402 Advanced Strength of Materials (4)
Development of reduced order theories such as torsion, beams and columns from the general three-dimensional continuum. Application and limitation of these theories are discussed. Similarities are drawn between analytical formulas and code base rules and/or formulas. 4 lectures. Prerequisite: CE 351.

CE 405 Concrete Materials (4)
Supplementary cementitious materials and chemical admixtures and their incorporation into concrete mix design. Design and testing of concrete for durability and other specialized properties. 3 lectures, 1 laboratory. Prerequisite: CE 259.

CE 407 Structural Dynamics (4)
Effect of vibration and transient loads on structural elements. Dynamics load factors, support motion, damping and natural frequencies of multidimensional structural systems. Modal analysis. 3 lectures, 1 laboratory. Prerequisite: CE 351, ME 212.

CE 421 Traffic Engineering (4)
Principles of traffic circulation on highway systems and other modes. Traffic control. Traffic data collection and analysis. Capacity analysis. Traffic modeling. New technologies. 3 lectures, 1 laboratory. Prerequisite: CE 221 or consent of instructor.
CE 422 Highway Geometrics and Design (4)
Alignment location and safe geometric design of highways. Earthwork and drainage related to highway. Theory and practice in design of alignments, highway cross-sections, intersections, interchanges, and freeways in urban and rural areas. Application of advanced computer software to highway geometrics. 2 lectures, 2 laboratories. Prerequisite: CE 221 or consent of instructor.

CE 423 Intelligent Transportation Systems (4)
Specification and operation of Intelligent Transportation Systems (ITS). Traffic surveillance and control systems including applications to freeways, urban streets, rural highways, and public transportation. Standards include the National Architecture for ITS. 3 lectures, 1 laboratory. Prerequisite: CE 221, graduate standing, or consent of instructor.

CE 424 Public Transportation (4)
Interdisciplinary aspects of public transportation problems, systems-team design approach to solutions. History and present state of public transportation; role of public transportation in urban environment; legislative, political, social, and economic aspects of public transportation systems. Methodology and procedures for transit planning. Review of transit studies. 3 lectures, 1 laboratory. Prerequisite: CE 221 or consent of instructor.

CE 431 Coastal Hydraulics I (3)
Waves and their characteristics, types of waves, wave wave theories, orbital velocities, reflection of waves, wave diffraction, wave refraction, application of linear theory to wave forces on cylindrical structures, submerged pipelines and vertical flat barriers (sea walls), wave uprush, rubble mound breakwaters. 3 lectures. Prerequisite: ME 341.

CE 432 Coastal Hydraulics II (3)
Reformed breaker height determination, wave runup analysis using a reformed breaker height. Wave setup analysis, Pile height determination. Criteria for types of breaking waves. Revetment analysis, rip-rap revetment design, wave forces on piling. 3 lectures. Prerequisite: CE 431.

CE 434 Groundwater Hydraulics and Hydrology (3)

CE 440 Hydraulic Systems Engineering (4)
Water and wastewater flows. Design of water distribution systems, transmission and storage reservoirs, wastewater collection systems, and storm water systems. Pumps and pump systems, flow measurements. Water sources for municipal supply. 3 lectures, 1 laboratory, Co-requisite: CE 336.

CE 452 Analysis and Seismic Design of Reinforced Concrete (4)
Emphasis placed on reinforced concrete behavior and seismic design. Topics include moment curvature analysis and plastic hinge modeling, strut and tie, design of structural walls, design of concrete moment frames and seismic detailing. 4 lectures. Prerequisite: CE 454; Recommended: concurrent: CE 557.

CE 454 Structural Design (4)
Design of reinforced concrete, steel and timber structures. Loading standards, code design methods, connection design. Comprehensive design projects. 2 lectures, 2 laboratories. Prerequisite: CE 351, CE 355, CE 356.

CE 455 Design of Timber Structures (4)
Analysis and design of temporary structures with emphasis on timber structures, construction methodology, and material behavior. Topics include: physical and mechanical properties of structural lumber, lateral load paths; diaphragms; formwork design; connections; structural stability; and combined load design. 3 lectures, 1 laboratory. Prerequisite: CE 355 or CE 453.

CE 456 Seismic Principles for Civil and Environmental Engineers (4)
Basic principles in seismic analysis and design of civil and environmental systems. Seismological aspects of earthquakes. Simple concepts in structural dynamics. Simplified code-based analysis and design. 4 lectures. Prerequisite: CE 207. Not open to students with credit in CE 557.

CE 457 Bridge Engineering (4)

CE 458 Fiber Reinforced Polymer (FRP) Design (4)
Properties and mechanical characteristics of Fiber Reinforced Polymer (FRP) composite materials; applications in civil engineering structures as primary or secondary reinforcement; and design techniques based on newly developed ACI 440 design guidelines and worldwide experience in FRP design. 3 lectures, 1 laboratory. Prerequisite: CE 351 and CE 355. Concurrent: CE 356.

CE 459 FRP Strengthening of Reinforced Concrete Structures (4)
Flexural and shear strengthening reinforced and prestressed concrete members using fiber reinforced polymer composite plates and laminates; seismic repair and rehabilitation of columns, slabs, beams and structures. Focus on design philosophy and design methodology, based on the current understanding of FRP-strengthening techniques. 3 lectures, 1 laboratory. Prerequisite: CE 355.

CE 461, 462 Senior Project I, II (2) (2)
Completion of a 120-hour integrated civil research, analysis, and/or design project that is representative of those encountered in professional practice. Prerequisite: Senior standing and consent of the supervising faculty member.

CE 464 Professional Practice (3)
Examination of the non-technical issues that are dealt with on a regular basis by the design professional, including professional ethics, marketing and business development, professional engagement, personnel and project management, risk management, professional liability insurance, and dispute resolution. 3 seminars. Prerequisite: Senior standing.

CE 466 Senior Design I (3)
Work on multi-disciplinary teams to complete an integrated civil design project. Focus of formal instruction on selected topics in geotechnical, structural, transportation, and water resources engineering design. Topics, related to interpersonal communication, teamwork, leadership, ethics, and professional practice, addressed to promote understanding of the non-technical issues and skills that must be mastered to become a successful design professional. 2 lectures, 1 laboratory. Prerequisite: CE 221, CE 222, CE 336, CE 337, CE 355, CE 356, CE 381, CE 382, senior standing, and consent of instructor.

CE 467 Senior Design II (3)
Continuation of CE 466. Continuation of work on multi-disciplinary teams to complete an integrated civil design project. Focus of formal instruction on technical and non-technical issues. Summarization of team project results in formal written reports and oral presentations. 2 lectures, 1 laboratory. Prerequisite: CE 466.

CE 468, 469 Community Engineering Senior Design I, II (3) (3)
Two-part series. Student teams work in cooperation with a local community organization to complete an integrated civil design project. Projects representative of those encountered in professional practice. Focus on professional as well as design issues. Volunteer service required. 2 lectures, 1 laboratory. Prerequisite: CE 221, CE 222, CE 336, CE 337, CE 355, CE 356, CE 381, CE 382, senior standing, and consent of instructor.

CE 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

CE 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories. Prerequisite: Consent of instructor.
CE 481 Analysis and Design of Shallow Foundations (4)

CE 482 Conventional Subsurface Exploration (4)
Subsurface exploration and sampling techniques. Laboratory analysis of material variability. Preparation of subsurface exploration reports. 2 lectures, 2 laboratories. Prerequisite: CE 481.

CE 486 Introduction to Geological Engineering (4)
Identification and characterization of consolidated geologic materials for the purpose of civil analysis and design. Interpretation of geologic maps, cross sections, and reports. Interpretation of aerial photography. Engineering considerations important in dealing with transported soils. 4 lectures. Prerequisite: CE 381, CE 382, and GEOL 201.

CE 487 Design of Foundations and Slopes in Rock (4)

CE 488 Engineering Risk Analysis (4)
Introduction to the basic concepts of probability theory, statistics, and decision theory as they pertain to problems in civil and environmental engineering. Emphasis placed on the use of probabilistic modeling, Bayesian statistics, risk analysis, and decision theory. 4 lectures. Prerequisite: CE 381 and STAT 312.

CE 493 Cooperative Education Experience (2) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 6 units. Prerequisite: Sophomore standing and consent of instructor.

CE 494 Cooperative Education Experience (6) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 18 units. Prerequisite: Sophomore standing and consent of instructor.

CE 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. A more fully developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 24 units. Prerequisite: Sophomore standing and consent of instructor.

CE 500 Individual Study (1-3)
Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Enrollment by petition. Prerequisite: Consent of department chair, graduate advisor and supervising faculty member.

CE 501 Advanced Matrix Analysis of Structures I (4)
Matrix terminology and operations. Matrix procedures for analysis of two-dimensional frameworks. Development of stiffness, flexibility and mixed methods. Development of algorithms and programs for use in the analysis of structural frameworks. Discussion of modeling issues and limitations. 3 lectures, 1 laboratory. Prerequisite: CE 351 or consent of instructor.

CE 502 Advanced Matrix Analysis of Structures II (4)
Matrix procedures for analysis of three-dimensional frameworks. Development of algorithms and programs for use in the analysis of structural frameworks. Additional topics to include: member releases, nonprismatic members, elastic supports, offset connections and oblique supports. 3 lectures, 1 laboratory. Prerequisite: CE 501 or consent of instructor.

CE 504 Advanced Finite Element Analysis I (4)

CE 505 Advanced Finite Element Analysis II (4)
Finite element theory and analysis for multi-dimensional equations. Variational formulations and their significance. Isoparametric formulation and numerical integration. Development of two and three-dimensional finite element algorithms using industry based software. Discussion modeling issues and limitations. 3 lectures, 1 laboratory. Prerequisite: CE 504.

CE 521 Airfield and Highway Pavement Designs (4)
Theories, principles, and procedures in the structural design of highway and airfield pavements. Design of flexible and rigid pavements. Performance of flexible and rigid pavements in the field and the characterization of pavement materials. Practical and direct exposure to laboratory testing of pavement materials. 3 lectures, 1 laboratory. Prerequisite: CE 221, CE 259, CE 381, graduate standing or consent of instructor.

CE 522 Advanced Transportation Design (4)
Application of computers to advanced highway and transportation systems design and geometrics. Use of computers for the solution of transportation facility design problems. 2 lectures, 2 laboratories. Prerequisite: CE 221, graduate standing, or consent of instructor.

CE 523 Transportation Systems Planning (4)
Planning of urban and regional multimodal transportation systems. Modeling of transportation networks and travel demand. Travel survey design. Urban data systems. Evaluation of alternatives based on economic, social, technological, and other factors. 2 lectures, 2 laboratories. Prerequisite: CE 221, graduate standing, or consent of instructor.

CE 524 Pavement Performance and Management Systems (4)
Introduction to pavement management; pavement distress data collection; deflection measurements and analysis; pavement performance modeling; pavement structure design; maintenance planning and rehabilitation strategies; prioritization and optimization; computer applications in pavement management. 2 lectures, 2 laboratories. Prerequisite: CE 221, CE 222, CE 259.

CE 525 Airport Planning and Design (4)
Historical background of aviation and airport development; financing; estimating demand; aircraft characteristics; airport capacity; airspace and air traffic control; site selection; airport configuration; geometric design of landing area; planning and development of terminal areas; lighting; pavement design and drainage. 3 lectures, 1 laboratory. Prerequisite: CE 221, graduate standing, or consent of instructor.

CE 527 Sustainable Mobility (4)
Presentation and analysis of concepts and designs for sustainable mobility from a global-to-local, interdisciplinary perspective, including pedestrians, bicyclists, and public transportation. Addresses economy, environment, and equity (social issues) through lectures, panels, excursions and a planning/design project in San Luis Obispo County. 3 lectures, 1 laboratory. Prerequisite: Graduate standing or consent of instructor.

CE 528 Transportation Analysis (4)
Principles of engineering systems analysis and applications to transportation using examples from different modes. Identification of transportation benefits, costs, user and non-user impacts, transportation cost models, pricing, and optimization. 3 lectures, 1 laboratory. Prerequisite: CE 221, graduate standing, or consent of instructor.

CE 529 Modeling and Simulation in Transportation (4)
Theory and operation of transportation systems, the systems approach, simulation techniques. Use of available software packages. Simulation...
model development, calibration and use. 2 lectures, 2 laboratories. Prerequisite: CE 221, graduate standing, or consent of instructor.

CE 533 Advanced Water Resources Engineering (3)
Matrix and simulation methods in hydrology, statistical studies in hydrology and their applications to civil engineering problems. Generalized hydrologic characteristics. Hydrologic simulation, computer applications, urban and small watershed hydrology, macroscopic and microscopic approach. Storm water management models. Hydrologic design. 3 lectures. Prerequisite: CE 336 or graduate standing.

CE 535 Water Resources Systems Planning and Analysis (3)
Water resources planning, development, system analysis and optimization. Dynamic programming, multi-objective water resource systems. 3 lectures. Prerequisite: CE 336.

CE 536 Computer Applications in Water Resources with Geographic Information Systems (GIS) (4)
Modeling, design and analysis of water, wastewater, stormwater systems. Integration of water resource systems with Geographic Information Systems (GIS). 3 lectures, 1 laboratory. Prerequisite: CE 336 and CE 440.

CE 537 Groundwater Contamination (3)
Sources and types of groundwater contamination, contamination transport mechanisms. Sorption and other chemical reactions. Numerical modeling of contaminant transport. Nonaqueous phase liquids. Groundwater remediation and design. 3 lectures. Prerequisite: CE 114; co-requisite: CE 434 or equivalent.

CE 555 Advanced Civil Engineering Materials Laboratory (2)
Fundamental properties of new and advanced materials. Experimental techniques. Fracture characteristics and composite response of cement matrix composites. New materials and products to advanced applications such as automation. 2 laboratories. Prerequisite: CE 259 or graduate standing.

CE 557 Seismic Analysis and Design for Civil Engineers (4)
Extension of the basic principles of structural dynamics to analysis of civil structures (buildings, bridges, tanks, etc.) to earthquake loading. Code based (Uniform Building Code and AASHTO) earthquake resistant design of civil structures. 3 lectures, 1 laboratory. Prerequisite: CE 407.

CE 559 Prestressed Concrete Design (4)
Advanced analysis, design and behavior of prestressed and postcast concrete elements and structures. Origin of code requirements. Detailed design of prestressed concrete components of civil engineering systems for buildings and highway construction. Creep and shrinkage of concrete and relaxation of steel applied to prestressing losses. 4 lectures. Prerequisite: CE 355 or graduate standing.

CE 570 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 seminars. Prerequisite: Graduate standing or consent of instructor.

CE 571 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Graduate standing or consent of instructor.

CE 573 Public Works Administration (3)
Management and engineering of infrastructure and related systems in public jurisdictions. Utility systems, streets and highways, illumination, distribution systems, etc. Personnel management, financing, public relations, and contract management. 3 seminars. Prerequisite: Graduate standing or consent of instructor.

CE 574 Computer Applications in Civil Engineering (3)
Overview of computer application, hardware and software alternatives, use of selected application programs, CAD, microcomputers, management and application of resources. 1 lecture, 2 laboratories. Prerequisite: Graduate standing or consent of instructor.

CE 581 Advanced Geotechnical Engineering (4)
Advanced topics in saturated flow, unsaturated flow, and consolidation. Stress-strain-deformation response of soils under both drained and undrained loading. Conventional and advanced laboratory strength testing. 3 lectures, 1 laboratory. Prerequisite: CE 481 or graduate standing.

CE 582 Geotechnical In Situ Testing (4)
Standard penetration, cone penetration, and flat-plate dilatometer testing. Equipment operation and maintenance. Interpretation of SPT/CPT/DMT sounding data. Stratigraphic analysis. CPT/DMT-based analysis and design of shallow and deep foundations. 2 lectures, 2 laboratories. Prerequisite: CE 481 or graduate standing.

CE 583 Geotechnical Earthquake Engineering (4)

CE 584 Lateral Support Systems (4)
Classical and modern earth pressure theories. Lateral earth pressure calculations for general subsurface conditions. Analysis and design of reinforced concrete cantilever walls, sheetpile walls, soldier-pile walls, tie-back walls, and mechanically-stabilized earth. Computer-aided analysis and design. 4 lectures. Prerequisite: CE 481 or graduate standing.

CE 585 Slope Stability Analysis (4)

CE 586 Analysis and Design of Deep Foundations (4)
Bearing capacity and settlement analysis of drilled shafts and driven piles. Analysis and design of single piles and pile groups for vertical, lateral, and combined loading. Construction procedures, field inspection, and load testing. Computer-aided analysis and design. 4 lectures. Prerequisite: CE 481 or graduate standing.

CE 588 Ground Improvement (4)
Ground improvement applications investigated for modification of geomechanical and hydraulic properties of soils. Engineering properties of soft ground and high water content materials; mechanical, chemical, and thermal stabilization investigated for foundation and environmental remediation applications. 4 lectures. Prerequisite: CE 381, CE 382, and CE 481.

CE 589 Geosynthetics Engineering (4)
Geosynthetics applications within civil engineering. Design content for geotechnical, geoenvironmental, and transportation applications. Manufacturing processes, material properties, interaction with soils, and service conditions. 4 lectures. Prerequisite: CE 481.

CE 591 Graduate Seminar I (1)
Current research activities and analysis/design philosophies in civil and environmental engineering practice. 1 seminar. Prerequisite: Graduate standing.

CE 592 Graduate Seminar II (1)
Current research activities and analysis/design philosophies in civil and environmental engineering practice. Development of oral and written presentation skills. 1 seminar. Prerequisite: CE 591 and graduate standing.

CE 593 Cooperative Education Experience (2) (CR/NC)
Advanced study analysis and part-time work experience in student’s career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.
CE 594 Cooperative Education Experience (6) (CR/NC)
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

CE 595 Cooperative Education Experience (12) (CR/NC)
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. A fully-developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

CE 599 Design Project (Thesis) (1-9)
Each individual or group will be assigned a project for solution under faculty supervision as a requirement for the master's degree, culminating in a written report/thesis. Prerequisite: Graduate standing.

CHEM—CHEMISTRY

CHEM 106 Introductory Chemistry (3)
Introductory course in chemistry. Measurement, metric system, properties of matter, chemical symbols, atomic structure, chemical formulas, nomenclature, chemical equations, the mole concept, stoichiometry. Not open to students who have credit in a college chemistry course. 3 lectures.

CHEM 110 World of Chemistry (4) GE B3 & B4
The fundamentals of chemical cause and effect—structure/function relationships. The basic principles of chemistry and their applications to solving human problems in organic materials science, biochemistry, toxicology, environmental science, agriculture, nutrition, and medicine. Not open to students majoring in Chemistry or Biochemistry. 3 lectures, 1 laboratory. Prerequisite: Passing score on the ELM examination for MATH 116 eligibility, or an ELM exemption, or MATH 104.

CHEM 111 Survey of Chemistry (5) GE B3 & B4
Introduction to atomic theory, chemical reactions, bonding, stoichiometry, nomenclature, and solutions. Intended for students who are preparing for CHEM 212/312. Not open to students with credit for CHEM 127. 4 lectures, 1 laboratory. Prerequisite: High school chemistry or CHEM 106 or equivalent, and passing score on the ELM examination for MATH 116 eligibility, or an ELM exemption, or MATH 104.

CHEM 124 General Chemistry for the Engineering Disciplines I (4) GE B3 & B4
General chemistry concepts presented using a materials science approach with engineering applications. Thermochemistry, bonding, solid-state structures, fundamentals of organic chemistry including polymers. Classwork is presented in an integrated lecture-laboratory format, with an emphasis on computer-based data acquisition, collaborative methods and multimedia-based presentation. Equivalent to 3 lectures, 1 laboratory. Prerequisite: High school chemistry or CHEM 106 or equivalent, and passing score on the ELM examination for MATH 116 eligibility, or an ELM exemption, or MATH 104.

CHEM 125 General Chemistry for the Engineering Disciplines II (4) GE B3 & B4
A continuation of general chemistry designed for engineering students. Topics include solution chemistry, thermodynamics, kinetics, equilibrium, acids and bases, electrochemistry, and nuclear chemistry. Integration of laboratory with theoretical concepts. Use of computers for data acquisition and multimedia resources. Guided inquiry and collaborative methods emphasized. 3 lectures, 1 laboratory. Prerequisite: CHEM 124 or consent of course coordinator.

CHEM 127 General Chemistry I (4) GE B3 & B4
Introduction to atomic theory, chemical reactions, bonding, stoichiometry, nomenclature, gas laws, colligative properties, colloids and solutions. Intended primarily for students whose majors are in the College of Science and Mathematics. 3 lectures, 1 laboratory. Prerequisite: High school chemistry or CHEM 106 or equivalent, and passing score on the ELM examination for MATH 116 eligibility or an ELM exemption or MATH 104.

CHEM 128 General Chemistry II (4)
Continuation of CHEM 127. Oxidation-reduction reactions, electrochemistry, kinetics, equilibria, thermodynamics, acids and bases. Intended primarily for students whose majors are in the College of Science and Mathematics. 3 lectures, 1 laboratory. Prerequisite: CHEM 127.

CHEM 129 General Chemistry III (4)
Acid and base equilibria, buffers, transition elements, solubility, complex ions, hybridization, nuclear chemistry. Laboratory study of the chemical properties and semi-micro qualitative analysis of the representative group elements of the periodic table. 3 lectures, 1 laboratory. Prerequisite: CHEM 125 or CHEM 128.

CHEM 200 Special Problems for Undergraduates (1-3)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: CHEM 111, CHEM 124, or CHEM 127 and consent of department chair.

CHEM 201 Undergraduate Research (1-3) (CR/NC)
Laboratory research under faculty supervision. Credit/No Credit grading only. Total credit limited to 6 units. 1-3 laboratories. Prerequisite: Consent of instructor.

CHEM 212 Introduction to Organic Chemistry (5)
Introduction to the fundamentals of organic chemistry nomenclature and selected reactions for the major functional groups. Promotes an understanding of how the structure and reactions of selected organic molecules relate to living systems and our environment. CHEM 212 accepted in lieu of CHEM 312, but not for upper division credit. Not open to students with credit in CHEM 312, CHEM 216/316. 4 lectures, 1 laboratory. Prerequisite: CHEM 111 or CHEM 128 or equivalent.

CHEM 216 Introduction to Organic Chemistry I (5)
Basic principles of the bonding, isomerism and stereochemistry in compounds of carbon. Essentials of organic nomenclature. Representative reactions and mechanisms for selected aliphatic and aromatic compounds. Introduction to the physical analysis and synthesis of organic compounds. CHEM 216 accepted in lieu of CHEM 316, but not for upper division credit. Not open to students with credit in CHEM 316. 4 lectures, 1 laboratory. Prerequisite: CHEM 111 or CHEM 125 or CHEM 128.

CHEM 217 Introduction to Organic Chemistry II (5)
Properties and reactions of carbonyl compounds, alcohols, and organic halides with an overview of the mechanisms of the reactions. Introductory concepts and applications of infrared and NMR spectroscopy. CHEM 217 accepted in lieu of CHEM 317, but not for upper division credit. Not open to students with credit in CHEM 317. 2 lectures, 2 laboratories. Prerequisite: CHEM 216/316.

CHEM 218 Introduction to Organic Chemistry III (3)
Properties and reactions of amines, heterocyclic and aromatic compounds with an overview of the mechanisms of the reactions. Introductory concepts and applications of ultraviolet spectroscopy and mass spectrometry. CHEM 218 accepted in lieu of CHEM 318, but not for upper division credit. Not open to students with credit in CHEM 318. 3 lectures. Prerequisite: CHEM 217/317.

CHEM 231 Introduction to Quantitative Analysis (5)
Fundamental theory for common titrimetric and spectrophotometric methods in analytical chemistry. Essentials of chemical equilibria as it applies to titration curves. The laboratory focuses on precision and accuracy for common, practical methods in analytical chemistry. CHEM 231 accepted in lieu of CHEM 331, but not for upper division credit. Not open to students with credit in CHEM 331. 3 lectures, 2 laboratories. Prerequisite: CHEM 129.
CHEM 252 Laboratory Glassblowing (1)
Techniques of glassblowing applied to the making of simple laboratory apparatus. 1 laboratory. Prerequisite: CHEM 112 or CHEM 124.

CHEM 305 Physical Chemistry for Engineers (4) GE B6
Fundamentals and applications of chemical thermodynamics of particular interest to engineers. Chemical and phase equilibria. 4 lectures. Prerequisite: PHYS 123 or PHYS 133, CHEM 125 or CHEM 129, MATH 143.

CHEM 312 Survey of Organic Chemistry (5)
Structure, isomerism, nomenclature, fundamental reactions of major functional groups and applications of organic chemicals in agriculture, medicine, industry, and the home. Not open to students with credit in CHEM 212 or CHEM 216/316. 4 lectures, 1 laboratory. Prerequisite: CHEM 111 or CHEM 127 or equivalent.

CHEM 313 Survey of Biochemistry and Biotechnology (5)
Chemistry of biomolecules including carbohydrates, proteins, fats, vitamins, enzymes and hormones. Basic molecular biology with applications to biotechnology and genetic engineering. Practical intermediary metabolism of prokaryotic and eukaryotic systems. 4 lectures, 1 laboratory. Prerequisite: CHEM 212/312 or equivalent.

CHEM 316 Organic Chemistry I (5)
Structure, bonding, nomenclature, isomerism, stereochemistry and physical properties of organic compounds. Introduction to spectroscopy. Reactions and mechanisms of alkanes, alkenes, alkynes, cycloalkanes and aromatic compounds. Laboratory techniques in organic preparations. 4 lectures, 1 laboratory. Prerequisite: CHEM 111 or CHEM 125 or CHEM 128.

CHEM 317 Organic Chemistry II (5)
Reactions and reaction mechanisms of organic halides, alcohols, phenols, epoxides, ethers, carboxylic acids and their derivatives, aldehydes, ketones; acidity and basicity; infrared and NMR spectroscopy. 3 lectures, 2 laboratories. Prerequisite: CHEM 216/316.

CHEM 318 Organic Chemistry III (3)
Chemistry of amines, aromatic compounds, heterocycles, macromolecules, some biomolecules, carbanions, rearrangement and ultraviolet and mass spectrometry. 3 lectures. Prerequisite: CHEM 217/317.

CHEM 319 Advanced Organic Chemistry Laboratory (2)
Practice in multiple step organic synthesis, column chromatography, vacuum distillation, enzymes as chemical reagents, inert atmosphere techniques, introduction to FT NMR spectroscopy and mass spectrometry, survey of organic chemical literature. 2 laboratories. Prerequisite: Concurrent or prior enrollment in CHEM 218/318.

CHEM 331 Quantitative Analysis (5)
Theory and application of chemical equilibrium to analytical problems. Survey of important analytical methods with stress placed on the theory and application associated with titrimetric and spectrophotometric analysis. 3 lectures, 2 laboratories. Prerequisite: CHEM 129.

CHEM 341 Environmental Chemistry: Water Pollution (3)
Chemical aspects of water and water pollution: alkalinity; acid deposition, particularly relating to lake and stream acidification and forest decline; drinking water treatment and TMDs; wastewater treatment; detergents, builders, and eutrophication; pesticides; other toxic organic compounds such as PCBs and dioxin; hazardous wastes; toxic elements such as Pb, Hg, Sn, Cd, and Se. 3 lectures. Prerequisite: CHEM 129 and CHEM 212/312 or CHEM 216/316.

CHEM 342 Environmental Chemistry: Air Pollution (3)
Chemical aspects of the atmosphere and air pollution: greenhouse effect and global climate change; CFCs, the ozone layer, and the ozone hole; carbon monoxide, nitrogen oxides, and photochemical smog, particulate matter; radon, asbestos, indoor air pollution; sulfur oxides and acid deposition, particularly relating to atmospheric reactions and control options. 3 lectures. Prerequisite: CHEM 129 and CHEM 212/312 or CHEM 216/316.

CHEM 349 Chemical and Biological Warfare (4) GE Area F
History, development, and use of chemical and biological warfare (CBW). Chemical and biological disarmament. Production and destruction of CBW agents. Uses of CBW. CBW terrorism. Ethics of CBW. 2 lectures, 2 seminars. Prerequisite: Completion of GE Area B, including a chemistry course (CHEM), a course in biology (BIO, MCRO or ZOO), and junior standing.

CHEM 350 Chemical Safety (1)
Laboratory regulations, equipment hazard analysis, hazardous chemicals, classification of chemicals, toxic materials handling, reaction hazards, radiation, emergency procedures, safety management programs and legal concerns. Includes project. 1 lecture. Prerequisite: CHEM 212/312 or equivalent.

CHEM 351 Physical Chemistry I (3)
Basic physical chemistry for the study of chemical and biochemical systems. Kinetic-molecular theory, gas laws, principles of thermodynamics. Not open to students with credit in CHEM 305. 3 lectures. Prerequisite: CHEM 129, PHYS 122 or PHYS 132, MATH 143.

CHEM 352 Physical Chemistry II (3)
Application of physical chemistry to chemical and biochemical systems. Electrochemistry, kinetics, viscosities, surface and transport properties. 3 lectures. Prerequisite: CHEM 305 or CHEM 351.

CHEM 353 Physical Chemistry III (3)
Principles and applications of quantum chemistry. Chemical bonding and molecular structure. Spectroscopy and diffraction. 3 lectures. Prerequisite: CHEM 352.

CHEM 354 Physical Chemistry Laboratory (2)
Experimental studies of gases, solutions, thermochromy, chemical and phase equilibria, electrochemistry, chemical and enzyme kinetics, computational methods and applications to chemistry and biochemistry. Use of applicable literature and databases. 2 laboratories. Prerequisite: CHEM 231/331 and CHEM 352.

CHEM 357 Physical Chemistry III Laboratory (1)
Experimental and computational investigations of quantum chemistry, spectroscopy, symmetry and statistical chemistry. 1 laboratory. Corequisite: CHEM 353.

CHEM 371 Biochemical Principles (5)
Chemistry and function of major cellular constituents: proteins, lipids, carbohydrates, and membranes. 4 lectures, 1 laboratory. Prerequisite: CHEM 212/312 or CHEM 217/317. Recommended: CHEM 231/331.

CHEM 372 Metabolism (3)
Intermediary metabolism, regulation and integration of metabolic pathways, bioenergetics, photosynthesis, electron transport, nitrogen fixation, biochemical function of vitamins and minerals. 3 lectures. Prerequisite: CHEM 371.

CHEM 373 Molecular Biology (3)

CHEM 375 Molecular Biology Laboratory (2)
(Also listed as BIO 375)
Introduction to techniques used in molecular biology and biotechnology: DNA extraction, characterization, cloning, Southern blotting, reverse transcription, polymerase chain reaction, and sequencing analysis. 2 laboratories. Prerequisite: BIO 161, and BIO 351 or CHEM 373.

CHEM 377 Chemistry of Drugs and Poisons (3)
Introduction to pharmacology and toxicology: history, sources, development and testing, physical and chemical properties, biochemical and physiological effects, mechanisms of action, and the therapeutic uses and toxicology of common drugs and poisons. 3 lectures. Prerequisite: CHEM 313 or CHEM 371 or consent of instructor.

2007-2009 Cal Poly Catalog
CHEM 385 Geochemistry (3)
Application of chemical principles to terrestrial and extraterrestrial systems. Formation of the elements; chemical influences on the earth's formation; chemical evolution studies; age-dating techniques; reactions in sea water; petroleum and ore formation; distribution and movement of the elements. 3 lectures. Prerequisite: CHEM 216/316, CHEM 231/331.
CHEM 400 Special Problems for Advanced Undergraduates (1–3)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 3 units per quarter. 1-3 laboratories. Prerequisite: Junior standing and consent of department chair.
CHEM 401 Advanced Undergraduate Research (1–3) (CR/NC)
Laboratory research under faculty supervision. Credit/No Credit grading only. Total credit limited to 6 units. 1-3 laboratories. Prerequisite: Consent of instructor. 4 units may be applied to approved chemistry electives.
CHEM 405 Advanced Physical Chemistry (3)
Selected advanced topics in physical chemistry, which may include statistical mechanics, computational chemistry, nonequilibrium thermodynamics, lasers in chemistry, solid-state and/or advanced spectroscopy. Total credit limited to 6 units. 3 lectures. Prerequisite: CHEM 353 or consent of instructor.
CHEM 419 Bioorganic Chemistry (3)
Methods of investigating reaction mechanisms, mechanisms of chemical catalysis, organic models of enzymes, chemistry of vitamins that serve as enzyme cofactors, chemistry of the phospholipid group, synthesis of biomolecules. 3 lectures. Prerequisite: CHEM 218/318.
CHEM 420 Advanced Organic Chemistry—Synthesis (3)
CHEM 439 Instrumental Analysis (5)
Theory, practice and method selection of modern instrumental analytical techniques, including spectroscopic, electrochemical, chromatographic and thermal methods. Current industrial applications. Laboratory work emphasizes optimization of experimental parameters. 3 lectures, 2 laboratories. Prerequisite: CHEM 231/331, CHEM 354. Recommended: CHEM 353.
CHEM 441 Bioinformatics Applications (4) (Also listed as BIO 441) (formerly BIO 447)
Introduction to new problems in molecular biology and current computer applications for genetic database analyses. Use of software for: nucleic acid, genome and protein sequence analysis; genetic databases, database tools; industrial applications in bioinformatics; ethical and societal concerns. 3 lectures, 1 laboratory. Prerequisite: One course in college biology (BIO 111 or BIO 161 recommended). Recommended: BIO 303, BIO 351 or CHEM 373.
CHEM 443 Organic Chemistry Concepts for Materials Engineering (1) (CR/NC)
Introduction to organic chemistry of polymers and basic methods of polymer analysis. Designed for students with little or no organic chemistry background. Not open to Chemistry or Biochemistry majors. Credit/No Credit grading only. 1 activity. Prerequisite: CHEM 125 or CHEM 129; corequisite: CHEM 444.
CHEM 444 Polymers and Coatings I (3)
Physical properties of polymers and coatings and their measurement. Molecular weight averages, glass transition, thermodynamics of polymers. Viscoelastic properties, rheology, molecular weight determination. Thermal analysis, spectroscopic analysis, mechanical testing. 3 lectures. Prerequisite: CHEM 217/317 or concurrent enrollment in CHEM 445.
CHEM 445 Polymers and Coatings II (3)
Introduction to polymerization methods and mechanisms. Chemistry of initiators, catalysts and inhibitors. Uses of representative polymer types. Synthesis, film formation, structure and properties of polymers commonly used in coatings and adhesives. 3 lectures. Prerequisite: CHEM 217/317.
CHEM 446 Surface Chemistry of Materials (3)
(Also listed as MATE 446)
Surface energy. Capillarity, solid and liquid interface, adsorption. Surface areas of solids. Contact angles and wetting. Friction, lubrication and adhesion. Relationship of surface to bulk properties of materials. Applications. 3 lectures. Prerequisite: CHEM 305 or CHEM 351 or course in engineering thermodynamics.
CHEM 447 Polymers and Coatings Laboratory I (2)
CHEM 448 Polymers and Coatings Laboratory II (2)
CHEM 449 Internship in Polymers and Coatings (2)
Selected students will spend up to 12 weeks with an approved polymers and coatings firm engaged in production or related business. Time will be spent applying and developing production and technical skills and abilities in the polymers and coatings industry. Prerequisite: CHEM 217/317 or consent of instructor.
CHEM 455 FT-NMR Laboratory (1) (CR/NC)
Basic theory and operation of the high-field Fourier transform nuclear magnetic resonance spectrometer. Credit/No Credit grading only. Not open to students with credit for CHEM 458. 1 laboratory. Prerequisite: CHEM 319.
CHEM 458 Instrumental Organic Qualitative Analysis (3)
Separation, purification, and identification of organic molecules using chemical and instrumental methods, including nuclear magnetic resonance, infrared and ultraviolet spectroscopy and mass spectroscopy, and techniques in high resolution FT-NMR. 1 lecture, 2 laboratories. Prerequisite: CHEM 319.
CHEM 459 Undergraduate Seminar (2)
Oral presentation of current developments in chemistry based on current literature. Searching for, organizing and presenting developments from current literature in chemistry and biochemistry. Preparation for employment and for independent work, including senior project, in chemistry and biochemistry. 2 seminars. Prerequisite or corequisite: CHEM 318 and junior standing.
CHEM 461 Senior Project Report (1)
Completion of a senior project report under faculty supervision. Minimum 30 hours time commitment. Prerequisite: CHEM 459 and consent of instructor.
CHEM 463 Honors Research (1)
Advanced laboratory research. Results are presented in a poster session or other public forum. 1 laboratory. Prerequisite: CHEM 461 and consent of instructor.
CHEM 465 College Teaching Practicum (1–2) (CR/NC)
Teaching assignment in an undergraduate college classroom. Includes teaching and related activities under the direction of a permanent faculty member in the Department of Chemistry and Biochemistry. Total credit limited to 4 units. Prerequisite: Junior standing, CHEM 231/331 (or permission of instructor), evidence of satisfactory preparation in chemistry. Department chair approval required.
CHEM 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: CHEM 305, or CHEM 351, or CHEM 217/317 or consent of instructor.

2007-2009 Cal Poly Catalog
CHEM 471 Selected Advanced Laboratory (1-4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1-4 laboratories. Prerequisite: Consent of instructor.

CHEM 472 Plant Biochemistry (3)
Application of plant biochemistry, molecular biology and physiology to topics, including plant secondary metabolism, defense mechanisms, drought tolerance, functional genomics, advanced photosynthesis, circadian rhythms, manipulation of plants for improved nutrition, other current research topics. 3 lectures. Prerequisite: CHEM 313 or CHEM 371 or BIO 435.

CHEM 473 Immunochemistry (3)
Theory and practice of immunochemistry including the structure, genetics, chemical modification and production of antibodies, immunochromatography techniques and the biochemistry of the immune defense process. Not open to students with credit in BIO 426, 3 lectures. Prerequisite: CHEM 371 or consent of instructor. Recommended: CHEM 373 or BIO 351.

CHEM 474 Protein Techniques Laboratory (2)
Experiments in protein affinity chromatography, electrophoresis and blotting, immunoprecipitation techniques, antibody-enzyme conjugation, and immunossay. 2 laboratories. Prerequisite: CHEM 371 or consent of instructor.

CHEM 476 Gene Expression Laboratory (2) (Also listed as BIO 476)
Heterologous gene expression of a recombinant protein in a microbial system: gene cloning, construction of expression plasmid, DNA sequence analysis, transformation of microbial host, selection and analysis of transformed host cells, expression and purification of recombinant protein. 2 laboratories. Prerequisite: BIO/CHEM 375; CHEM 313 or CHEM 371; MICRO 433.

CHEM 477 Biochemical Pharmacology (3)
Consideration of current selected topics in pharmacology and drug targeting. 3 lectures. Prerequisite: CHEM 377 or consent of instructor.

CHEM 478 Pharmaceutical Development (3)
Process of drug development from research clinical candidate to market. Chemical process development, including synthesis optimization, scale up, pilot plant work, manufacturing, and good manufacturing procedure (GMP’s). Role of pharmacists in drug development, including various forms of formulation, analytical development requirements, and quality assurance. Project planning and timeline management, clinical trials, and regulatory affairs, including FDA filings. 3 lectures. Prerequisite: CHEM 318.

CHEM 481 Inorganic Chemistry (3)
A systematic study of chemical and physical properties of inorganic compounds based on periodic groupings with emphasis on chemical bonding and structure. Topics will include coordination chemistry and kinetics, organometallic chemistry, advanced acid-base relationships and bonding theories plus other selected topics. 3 lectures. Prerequisite: CHEM 352, and CHEM 231/331 or consent of instructor.

CHEM 484 Inorganic Chemistry Laboratory (2)
Laboratory techniques in inorganic chemistry. Synthetic and analytic techniques as applied to inorganic and organometallic chemistry. 2 laboratories. Prerequisite: CHEM 481.

CHEM 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. 2 units only applicable to approved chemistry electives. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

CHEM 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. 2 units only applicable to approved chemistry electives. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

CHEM 500 Special Problems for Graduate Students (1-3)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 6 units, with a maximum of 3 units per quarter. Prerequisite: Graduate standing and consent of department chair.

CHEM 528 Nutritional Biochemistry (3)
Nutritional aspects of biochemistry. Lecture, library research and student presentations. Topics include vitamins and minerals, essential and energy providing nutrients, deficiency, degenerative and genetic diseases of metabolism. Emphasis on current research and controversy. 3 seminars. Prerequisite: CHEM 313 or CHEM 372 or consent of instructor.

CHEM 544 Polymer Physical Chemistry and Analysis (3)
Physical properties of polymers and coatings and their measurement; molecular weight averages, glass transition, thermodynamics of polymers, viscoelastic properties, rheology; molecular weight determination, thermal analysis, spectroscopic analysis, mechanical testing, atomic force microscopy. Not open to students with credit in CHEM 444. 3 lectures. Prerequisite: CHEM 351.

CHEM 545 Polymer Synthesis and Mechanisms (3)
Polymerization methods and mechanisms; chemistry of initiators, catalysts and inhibitors; use of representative types; synthesis, film formation, structure and properties of polymers commonly used in coatings and adhesives. Polymer nomenclature. Not open to students with credit in CHEM 445. 3 lectures. Prerequisite: CHEM 317 or equivalent.

CHEM 547 Polymer Characterization and Analysis Laboratory (2)

CHEM 548 Polymer Synthesis Laboratory (2)

CHEM 550 Coatings Formulation Principles (3)
Formulation of modern coatings. Raw materials including resins, solvents, pigments, and additives. Formulation principles for solvent-borne and high solids coatings, water-borne coatings, powder coatings, radiation cure coatings and architectural coatings. Regulatory issues; VOC’s. Coating properties, film formation, film defects, application methods, color and color acceptance. 3 lectures. Prerequisite: CHEM 444 or CHEM 544.

CHEM 551 Coatings Formulation Laboratory (2)

CHEM 570 Directed Graduate Study (3)
Directed graduate study in specialized advanced topics related to graduate internship. Topics developed jointly by faculty research advisor and industrial research supervisor. Available only to students while on graduate industrial internship. Topics chosen to highlight the industrial experience. Student expected to work independently and report weekly to
faculty advisor and industrial supervisor. Total credit limited to 9 units.
Corequisite: CHEM 598.

CHEM 598 Graduate Internship (3)
Supervised industrial graduate internship in polymers and coatings science. Provides students with industrial research experience. Requires approval of graduate advisor. Students engage in industrial research and development at an approved industry, make regular reports back to graduate advisor, and present formal report and seminar on work each quarter. Total credit limited to 9 units. Prerequisite: CHEM 545, CHEM 547, CHEM 548, CHEM 550, CHEM 551.

CM—CONSTRUCTION MANAGEMENT

CM 211 Construction Drawings and Specifications (4)
Basic skills and techniques required to produce construction drawings and specifications conforming to current building codes and standards, including using manual drawing techniques and Computer Aided Drafting. Laboratory assignments develop visualization skills in order to examine the integration of construction systems, architectural conventions, organization of working drawings and specifications. 4 laboratories. Prerequisite: Consent of department head and ARCH 105 and ARCH 106.

CM 212 Fundamentals of Construction Management (3)
Introduction to the fundamental concepts of construction management. Primary areas of focus are quantity surveying and basic scheduling techniques. Additional topics of study to include work activity durations and sequencing, and computer applications in scheduling. 3 laboratories. Prerequisite: CM 211.

CM 221 Concrete Technology (3)
Modern concepts which form the basis for solutions to problems of concrete construction. Includes significant developments in concrete chemistry and strength theory. Concrete mix design, physical properties of concrete, use of admixtures, concrete batching, curing and testing. Includes physical testing of designed mixes. 2 lectures, 1 laboratory. Prerequisite: ARCH 105 and ARCH 106.

CM 315 Fiscal and Project Feasibility (4) (Also listed as CRP 315)
Analysis of the revenue streams and costs involved in project development. Impact analysis of costs and revenues on private and public sectors included. Construction of pro-formas for various project types. 3 lectures, 1 laboratory. Prerequisite: Completion of GE Area D2.

CM 325 Construction Management Practices (3)
Overview of construction methods, building systems, construction and contract documents, cost estimating and scheduling and other practices used in the contracting process. For non-majors. 2 lectures, 1 activity. Prerequisite: Minimum junior standing or consent of instructor.

CM 331 Construction Accounting (3)
Fundamentals of construction accounting principles to include income recognition, job cost control, cash flow analysis and associated cost reports. 3 lectures. Prerequisite: BUS 215, and either BUS 212 or BUS 214.

CM 332 Evaluation of Cost Alternatives (3)
Basic principles of economic evaluations using fundamental concepts of time value of money to compare cost alternatives related to construction, design, and real property development. 3 lectures. Prerequisite: Completion of GE Area D2 and MATH 142 or MATH 182.

CM 333 Construction Contracts and Law (3)
Legal and contractual aspects of the construction industry. Topics of study to include the different types of contracts and clauses associated with the various project delivery systems. 3 lectures. Prerequisite: BUS 207.

CM 341 Residential Construction Practices (3)
Materials, methods, and techniques associated with residential and light commercial construction operations. Topics of study to include shallow foundation systems, structural framing systems (timber and masonry), roofing systems, and exterior and interior finish systems. 3 laboratories. Prerequisite: CM 212.

CM 342 Commercial Construction Practices (3)
Materials, methods, and techniques associated with large commercial construction operations. Topics of study to include earth retaining and foundation systems, structural framing systems (steel and concrete), roofing and exterior cladding systems, conveyance systems, and interior finish systems. 3 laboratories. Prerequisite: CM 212.

CM 343 Heavy Civil Construction Practices (3)
Materials, methods and techniques associated with heavy civil construction operations. Topics of study to include earthwork and associated heavy equipment, roadway work, bridge work, and various other types of heavy civil construction operations. 3 laboratories. Prerequisite: CM 212 and CM 221.

CM 350 Computer Applications in Construction Management (2)
Application of computer systems to control construction operations in the building industry. Development of construction management games. 2 lectures. Prerequisite: CSC 110 or ARCH 250.

CM 352 Electrical Systems for Buildings (3)
Materials, methods and techniques associated with the construction and installation of electrical power systems, lighting systems, and other wiring systems within the building. Additional topics of study to include electrical power generation and distribution to the building. 3 laboratories. Prerequisite: CM 212.

CM 353 Mechanical Systems for Buildings (3)
Materials, methods and techniques associated with the construction and installation of HVAC (Heating, Ventilating, and Air Conditioning) systems, plumbing systems and fire suppression systems within the building. Additional topics of study to include domestic water supply to the building and drainage systems (storm drains and sewers) from the building. 3 laboratories. Prerequisite: CM 212.

CM 364 Construction Jobsite Management (3)
Procedures, methods and documentation associated with project level management of the construction process. Administrative roles and managerial relationships among the various members of the project team, primarily contractors, designers and owners. 3 laboratories. Prerequisite: CM 212.

CM 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.

CM 430 Collaborative Process (3) (Also listed as EDES 430)
A comprehensive set of tools and practices that allow for high performance, interdisciplinary collaborative teams to focus on extraordinary outcomes at each step of project development, including planning, design, bidding, permitting, construction and management phases. 3 activities. Prerequisite: Minimum junior standing or consent of instructor.

CM 431 Integrated Project Services (3) (Also listed as EDES 431)
Overview of project delivery methods with an emphasis on trends in integrated services project delivery. Integrated services entity organization structures, process variations, procurement and selection methodologies. Integration of planning, design and construction efforts to achieve maximum project quality and value. 3 laboratories. Prerequisite: Minimum senior standing.

CM 432 Design-Build Project Management (3)
Management issues applicable to the design and construction integration method of project delivery. Project sponsor/project advocate techniques, monitoring the evolving design, detecting and controlling change, early warning systems, cost trending, schedule impacts, cost impacts, systems integration, contract modifications, procurement, contingencies, quality, and overall process control. 3 activities. Prerequisite: Minimum junior standing.
CM 435 Capital Projects Planning (4)
Planning, programming, and management requirements of owner and end
users in relationship to the design and construction of capital projects,
improvements, and facilities; Identification of facility requirements, and
coordination of the physical workplace, its people, and the work of the
organization with the design and construction process. 4 activities.
Prerequisite: CM 332, CM 431.

CM 443 Management of the Construction Firm (3)
Applications of strategic management techniques and business strategy for
the long-range direction of the construction firm. 3 activities. Prerequisite:
CM 341, CM 342, CM 343, CM 352, CM 353 and CM 364.

CM 444 Concrete Formwork and Other Temporary Structures (3)
Materials, methods and techniques associated with concrete formwork
construction. Design and analysis of vertical and horizontal formwork
systems. Additional topics of study to include temporary earth retainage
systems (large excavations and trenches), dewatering systems, access
scaffolding, and various other temporary structures utilized in building
construction. 3 activities. Prerequisite: CM 341, CM 342, CM 343, CM
352, CM 353 and CM 364, and ARCE 226.

CM 452 Project Controls (3)
Planning, organization, scheduling, and control of construction projects
including cost control and resource control. Use of Critical Path Method
(CPM) in planning and scheduling computer applications for CPM. 3
laboratories. Prerequisite: CM 341, CM 342, CM 343, CM 352, CM 353
and CM 364.

CM 454 Construction Estimating (3)
Methods, procedures and computer applications associated with estimating
the costs of construction projects. Additional topics of study to include
analysis of the bidding process and conceptual estimating. 3 laboratories.
Prerequisite: CM 341, CM 342, CM 343, CM 352, CM 353 and CM 364.

CM 461, 462 Senior Project I, II (2) (1-2)
Selection and completion of a comprehensive project under faculty
supervision. Problems to involve the student's technical and creative skills.
Student proposal must be submitted and approved by project advisor and
department head prior to registration for course. Construction and team
projects encouraged. Prerequisite: Consent of project advisor and depart-
ment head. See department for additional guidelines and requirements.

CM 463 Senior Project: Professional Practice for Constructors (3)
Practical application of construction management theory and practice
solving problems related to the built environment. 3 laboratories.
Prerequisite: CM 452 and CM 454.

CM 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to
undergraduate and graduate students. The Schedule of Classes will list topic
selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite:
Consent of instructor.

CM 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students.
Open to undergraduate and graduate students. The Schedule of Classes
will list topic selected. Total credit limited to 8 units. 1–4 laboratories.
Prerequisite: Consent of instructor.

CM 475 Real Property Development Principles (4)
Development process and its major actors: investors, developers,
government agencies, environmental and local stakeholders; their
development roles, objectives, approaches. Basics of urban markets and
economies, financing, regulation, public planning; value added, contractual,
environmental and community context factors. 4 lectures. Prerequisite:
Minimum junior standing.

CM 485 Cooperative Education Experience (3-6) (CR/NC)
Full-time work experience in an area directly related to the construction
industry for 3 months. Positions are paid and usually require relocation
and registration in course for one quarter. Registration in course is required
at start of work experience. Formal report and evaluation by work supervisor
required. Credit/No Credit grading only. May be repeated for credit. Total
credit limited to 16 units. See department for additional requirements.
Prerequisite: Consent of instructor.

CM 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in an area directly related to the construction
industry for 6 months. Positions are paid and usually require relocation for
two consecutive quarters. Registration in course is required at start of work
experience. Formal report and evaluation by work supervisor required.
Credit/No Credit grading only. May be repeated for credit. Total credit
limited to 16 units. See department for additional requirements.
Prerequisite: Consent of instructor.

CM 531 Construction Cost and Material Control (3)
Advanced theory and practice of cost and material control for construction
projects. Emphasis on computer applications. 2 lectures, 1 activity.
Prerequisite: CM 331 or consent of instructor.

CM 533 Case Histories in Contract Administration (3)
Common points of disputes between design professional, owner, and
contractor. Methods of avoidance and dispute resolution. 3 activities.
Prerequisite: CM 333, 4th year architectural practice or consent of
instructor.

CM 542 Advanced Construction Estimating (3)
Advanced theory and practice of cost estimating techniques. Includes
standard, conceptual and parameter estimating; bidding strategies, value
engineering concepts, and risk analysis. Emphasis on computer applica-
tions. 2 lectures, 1 activity. Prerequisite: CM 454 or consent of instructor.

CM 552 Construction Project Scheduling (3)
Basic and advanced network scheduling techniques as applied to
architectural building projects. Emphasis on computer applications. 2
lectures, 1 activity. Prerequisite: CM 542 or consent of instructor.

CM 570 Selected Advanced Topics in Construction Management (4)
Directed study of selected topics in Construction Management. The
Schedule of Classes will list topic selected. Total credit limited to 12 units.
4 seminars. Prerequisite: Graduate standing or consent of instructor.

COMS—COMMUNICATION STUDIES

COMS 101 Public Speaking (4) (Also listed as HNRS 101) (Also listed as ENGL/HNRS 145) GE A2
Introduction to the principles of public speaking. Practical experience in
the development, presentation, and critical analysis of speeches to inform,
to persuade, and to advocate. Not open to students with credit in COMS
102. 4 lectures.

COMS 102 Principles of Speech Communication (4) GE A2
Introduction to the fundamentals and principles which underlie effective
speech communication. Practical experience in various types of speaking
situations: informative speaking, persuasive speaking, and panel
discussion. Not open to students with credit in COMS 101. 4 lectures.

COMS 126 Argument and Advocacy (4) GE A3
The nature of critical thinking as applied in written and oral argument.
Analysis of inductive and deductive reasoning. Analysis of reasoning,
argument, forms of support and fallacies of argument and language.
Instructor in and practical experience in writing sound persuasive
arguments and engaging in oral argumentation assignments. 4 lectures.
Prerequisite: Completion of GE Area A1 or A2.

COMS 145 Reasoning, Argumentation, and Writing (4)
(Also listed as ENGL/HNRS 145) GE A3
The principles of reasoning in argumentation. Examination of rhetorical
principles and responsible rhetorical behavior. Application of these princi-
pies to written and oral communications. Effective use of research methods,
and sources. 4 lectures. Prerequisite: Completion of GE Area A1 or A2.

COMS 201 Advanced Public Speaking (4)
Further consideration of the principles of public address. Advanced
practice in manuscript, extemporaneous, and impromptu speaking. 4
lectures. Prerequisite: COMS 101 or COMS 102.
COMS 208 Performance of Literature (4) GE C3
Poetry, prose, nonfiction and dramatic literature performed to communicate the levels of meaning within each work to the audience. Communication Studies majors will not receive GE C3 credit. 4 lectures. Prerequisite: Completion of GE Areas A and C1.

COMS 212 Interpersonal Communication (4)
Introduction to the interaction process in two-person (dyadic) communication settings. Emphasis on the functions of varying messages in the initiation, development, maintenance and termination of personal relationships. 4 lectures. Prerequisite: COMS 101 or COMS 102.

COMS 213 Organizational Communication (4)
Introduction to communication within the organization and between the organization and its environment. Effects of networks, superior/subordinate message patterns, team building, climate, message flow patterns and distortion on organizational effectiveness. 4 lectures. Prerequisite: COMS 101 or COMS 102.

COMS 217 Small Group Communication (4)
Basic principles and techniques of small group communication. Survey of the importance of discussion in contemporary society, including study of and practice in informal group discussion, panel discussion, symposium, and forum. 4 lectures. Prerequisite: Completion of GE Area A3.

COMS 226 Applied Argumentation (4)
Intermediate level course in the theory and practice of everyday argument. Select theories of argumentation, and practical experience arguing in a wide variety of contexts. 4 lectures. Prerequisite: Completion of GE Area A.

COMS 250 Forensic Activity (2)
Introduction to competitive debate activities. Research, analysis, and debating about contemporary issues. Any student who wishes to receive academic credit for participation in such activities during the quarter should enroll. Total credit limited to 6 units. 2 laboratories. Prerequisite: COMS 101 or COMS 102 or equivalent experience.

COMS 301 Business and Professional Communication (4)
Communication skills and functions for all levels of organizational employees. Interviewing, oral briefings, motivational and conference speaking. 4 lectures. Prerequisite: COMS 101 or COMS 102.

COMS 308 Group Performance of Literature (4) GE C4
Examination and experience in the various modes of group performance of literature: Readers Theatre, Chamber Theatre, Story Theatre. Scripting; directing; performing and critiquing of group performance of literature. 4 lectures. Prerequisite: Completion of GE Areas A, C3 and junior standing. Communication Studies majors will not receive GE C4 credit.

COMS 311 Communication Theory (4)
Survey of human communication theories including interpersonal, small group, organizational, persuasion, nonverbal, intercultural, and media. Philosophical foundations for understanding communication from a social science perspective. 4 lectures. Prerequisite: Completion of GE Area A.

COMS 312 Communication Research Methods (4)
Exploration of communication research strategies and methodologies. Basic methods of designing research in empirical communication studies. 4 lectures. Prerequisite: COMS 311 and STAT 217, junior standing. For majors only.

COMS 315 Intergroup Communication (4)
Survey of theory and research concerning language and communication between various social groups (e.g., age, sex, race, sexual orientation), with an emphasis on understanding the role verbal, nonverbal, and mass communication plays in identity formation and differentiating group members. 4 lectures. Prerequisite: Completion of GE Area A.

COMS 317 Technology and Human Communication (4)
Impact of technological change upon human communication. Past, present, and future technological developments that have affected how humans communicate. Emphasis on new communication technologies. 4 lectures. Prerequisite: Completion of GE Area B, and junior standing.

COMS 320 Persuasion (4)
Theory of persuasion with particular emphasis on social psychological principles of influence. Analysis of various forms of persuasion, social influence and propaganda. 4 lectures. Prerequisite: Completion of GE Area A.

COMS 330 Classical Rhetorical Theory (4)
Early development of rhetorical theory in Greco-Roman civilization. Analysis of the canons of rhetoric. Rhetorical thought of Sophists, Isocrates, Plato, Aristotle, Cicero and Quintilian. 4 lectures. Prerequisite: Completion of GE Area A requirements and junior standing.

COMS 331 Contemporary Rhetorical Theory (4)
Rhetoric's role in contemporary culture. Issues: political advocacy; science, technology and mass persuasion; ethics and rhetoric. Representative theorists: Burke, Weaver, Richards, Toulmin and McLuhan. 4 lectures. Prerequisite: Completion of GE Area A and junior standing.

COMS 332 Rhetorical Criticism (4)
Theory and method used in the analysis and evaluation of rhetorical discourse. Study of critical essays. Practice in interpreting and evaluating persuasive discourse. 4 lectures. Prerequisite: Junior standing, COMS 330.

COMS 335 Advanced Forensic Activity (2)
Advanced participation in intercollegiate speech activities. Intercollegiate tournament competition, judging speech competition and other communication-related public service on campus and in the community. Total credit limited to 6 units. 2 laboratories. Prerequisite: COMS 250.

COMS 358 Media Criticism (4)
Theory and method used in analyzing media from critical, rhetorical, and cultural perspectives. Practice in interpreting and evaluating news, advertising, prime-time television, the Internet, and other mass-mediated texts, with special attention to relationships among media, identity, and political action. 4 lectures. Prerequisite: Completion of GE Area A, and junior standing.

COMS 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units. Prerequisite: Consent of instructor, junior standing.

COMS 413 Advanced Organizational Communication (4)
Describing and measuring the organization's human message system. Planning and implementing communication training and development for the organization. New functions, careers and opportunities for the communication professional. 4 lectures. Prerequisites: Junior standing, COMS 301.

COMS 416 Intercultural Communication (4) USCP
Examination and clarification of cultural aspects of communication within and among ethnic groups. 4 lectures. Prerequisite: Completion of GE Area A.

COMS 418 Health Communication (4)
Communication in health contexts. Topics include interpersonal communication (e.g., health professional/patient), group and organizational communication (e.g., health-related groups), and mass communication (e.g., persuasive health campaigns). Open to all majors and valuable to laypersons who are consumers of health care, and pre-health professionals. 4 lectures. Prerequisite: Completion of GE Area A, and junior standing.

COMS 419 Media Effects (4)
Effects of media on the individual. Influence of mediated message producers, production technologies, and message content. Empirical approaches to data collection using experimental and survey techniques. 4 lectures. Prerequisite: Completion of GE Area A and junior standing.

COMS 420 Nonverbal Communication (4)
Influence of kinesic, proxemic, artifactual, olfactory, paralinguistic and environmental factors in human communication. Theory, research and practice in nonverbal communication. 4 lectures. Prerequisite: Completion of GE Area A.
COMS 421 Gender and Communication (4)
Examination of gender in a variety of communication contexts. Concepts presented will help students understand the theory and practice of communication with members of the same and opposite sex. 4 lectures.
Prerequisite: Completion of GE Area A and junior standing.

COMS 424 Classroom Communication (4)
Exploration of classroom communication development. Student-teacher-parent interaction. Communication style, environmental stimuli, dialectical differences and bilingualism, measurement of communication competence. 4 lectures. Prerequisite: Junior standing, Completion of GE Area A.

COMS 435 American Political Rhetoric (4)
Role of oratory in American political and social history since Lincoln. Historical and rhetorical analyses of important political speeches delivered by presidents, activists, demagogues, and leaders of social movements. 4 lectures. Prerequisite: Junior standing.

COMS 450 Internship: Speech Communication (2–4) (CR/NC)
Supervised practicum and application of principles and theories of communication in organizational settings. Total credit limited to 8 units. Credit/No Credit grading only. Prerequisite: Junior standing, 2.5 GPA, and consent of instructor.

COMS 460 Undergraduate Seminar (1)
Discussion and design of individual projects, oral reports on material in current professional writings. 1 seminar. Prerequisite: Completion of COMS 311, COMS 312, COMS 330 and COMS 332, and junior standing.
For majors only.

COMS 461 Senior Project (3)
Completion of approved project under faculty supervision. Project results are presented in a formal written report. Minimum 90 hours total time. Prerequisite: COMS 460. For majors only.

COMS 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Junior standing, Completion of GE Area A.

COMS 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: 2.5 GPA and consent of instructor.

CPE–COMPUTER ENGINEERING

CPE 100 Computer Engineering Orientation (1) (CR/NC)
Introduction to the computer engineering discipline. Success skills and curricular information. Career paths and opportunities. Professional aspects of engineering and computer science. Interaction with upper division students, alumni, faculty and staff. Introduction to computer software and hardware. Credit/No Credit grading only. 1 lecture.

CPE 101 Fundamentals of Computer Science I (4) (Also listed as CSC 101)
Basic principles of algorithmic problem solving and programming using methods of top-down design, stepwise refinement and procedural abstraction. Basic control structures, data types, and input/output. Introduction to the software development process: design, implementation, testing and documentation. The syntax and semantics of a modern programming language. Credit not available for students who have taken CSC/CPE 108. 3 lectures, 1 laboratory. Prerequisite: MATH 118 (or equivalent) with a grade of C- or better, and basic computer literacy (CSC 100 or CSC 232 or equivalent).

CPE 102 Fundamentals of Computer Science II (4) (Also listed as CSC 102)
Basic design, implementation, testing, and documentation of object-oriented software. Introduction to classes, interfaces, inheritance, algorithms (sort, search, recursion), abstract data types, data structures (lists, stacks, queues), file I/O, and exceptions. Credit not available for students who have taken CSC/CPE 108. 3 lectures, 1 laboratory.
Prerequisite: CSC/CPE 101 with a C- grade or better and either MATH 141 or MATI 221 with a C- grade or better. Corequisite: CSC 141.

CPE 103 Fundamentals of Computer Science III (4) (Also listed as CSC 103)
Introduction to data structures and analysis of algorithms. Abstract data types. Specification and implementation of advanced data structures. Theoretical and empirical analysis and proofs of properties of recursive and iterative algorithms. Software performance evaluation and testing techniques. 3 lectures, 1 laboratory. Prerequisite: CPE 102 with a C- grade or better and CSC 141 with a C- grade or better.

CPE 108 Accelerated Introduction to Computer Science (4) (Also listed as CSC 108)
Accelerated introduction to basic principles of algorithmic and object-oriented problem solving and programming. Introduction to programming language concepts including control structures, data types, classes, and inheritance. Program design principles. Use and implementation of algorithms (searching, sorting, recursion) and data structures (lists, stacks, and queues). Intended for students with experience in algorithmic problem solving and using basic control structures and data types in a modern programming language (CSC/CPE 101), but who are not ready for CSC/CPE 102. Credit not available for students who have taken CSC/CPE 102. 3 lectures, 1 laboratory. Prerequisite: Math 118 (or equivalent) with a grade of C- or better, significant experience in computer programming, and consent of instructor. Corequisite: CSC 141.

CPE 129 Digital Design (3) (Also listed as EE 129)

CPE 169 Digital Design Laboratory (3) (Also listed as EE 169)
Experiments to analyze and design combinational and sequential logic circuits with discrete ICs and PLDs. Introduction to laboratory equipment such as the logic state analyzer for testing circuits. Introduction to a hardware description language for logic simulation and design. 1 laboratory. Prerequisite: An orientation course in student’s major (EE 111/151 for EE students, CPE 100 for CPE students). CPE/CSC 101.
Concurrent: CPE 129.

CPE 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.

CPE 229 Computer Design and Assembly Language Programming (3) (Also listed as EE 229)
Design and implementation of digital computer circuits via CAD tools for programmable logic devices (PLDs). Basic computer design with its data path components and control unit. Introduction to assembly language programming of an off-the-shelf RISC-based microcontroller. 3 lectures. Prerequisite: CPE 129/169 with a C- grade or better. Concurrent: CPE 269.

CPE 235 Fundamentals of Computer Science for Scientists and Engineers I (4) (Also listed as CSC 235)
Introduction to the fundamentals of computer programming with an emphasis on mathematical, scientific and engineering applications: principles of algorithmic problem solving and procedural programming using a modern programming language, data types, elementary data structures, input/output and control structures. Not a substitute for
CSC/CPE 101 for CSC/CPE majors or minors. 3 lectures, 1 laboratory. Prerequisite: MATH 141 or MATH 161 with a grade of C- or better, or consent of instructor.

CPE 236 Fundamentals of Computer Science for Scientists and Engineers II (4) (Also Listed as CSC 236)
Further study of computer program development with an emphasis on mathematical, scientific and engineering applications. Introduction to more complicated data types and structures. Practice of more complicated techniques of procedural programming. Introduction to the principles of object-oriented programming using a modern programming language. Detailed discussion of lists and classic list algorithms, algorithm analysis, multidimensional arrays, records, dynamic data structures, file input/output, classes. Not a substitute for CSC/CPE 102 for CSC/CPE majors or minors. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 235 with a grade of C- or better, or consent of instructor.

CPE 237 Introduction to Computer Science with Applications I (4) (Also Listed as CSC 237)
Introduction to the fundamentals of computer science using a modern programming language. Includes principles of algorithmic problem solving, data types, elementary data structures, input/output, control structures, classes and methods. Not a substitute for CSC/CPE 101 for CSC/CPE majors or minors. 3 lectures, 1 laboratory. Prerequisite: MATH 221 or STAT 252 with a grade of C- or better, or consent of instructor.

CPE 238 Introduction to Computer Science with Applications II (4) (Also Listed as CSC 238)
Continuation of CPE 237. Intermediate study of computer program development using a modern object oriented (OO) programming language. Further study of OO principles including inheritance and interfaces. Introduction to implementation of Graphical User Interfaces, multi-media, streams, database connection, and scripting. Not a substitute for CPE/CSC 102 or for CSC/CPE majors or minors. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 237 with a grade of C- or better.

CPE 269 Computer Design and Assembly Language Programming Laboratory (1) (Also Listed as EE 269)
Experiments to design and test digital computer circuits and systems with programmable logic devices (PLDs). Design projects to implement a basic computer with data path components and control. Assembly language programming projects for an off-the-shelf RISC-based microcontroller. 1 laboratory. Prerequisite: CPE 129&169 with a C-grade or better. Concurrent: CPE 229.

CPE 270 Computer Graphics Applications (4) (Also Listed as CSC 270)
Use of common graphics applications packages. Business graphics, figure editing, animation and image editing, photorealistic image generation, scientific visualization and multimedia. 2 lectures, 2 activities.

CPE 300 Professional Responsibilities (4) (Also Listed as CSC 300)
The responsibilities of the computer science professional. The ethics of science and the IEEE/ACM Software Engineering Code of Ethics. Quality tradeoffs, software system safety, intellectual property, history of computing and the social implications of computers in the modern world. Applications to ethical dilemmas in computing. Technical presentation methods and practice. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 307 or CSC/CPE 309.

CPE 305 Individual Software Design and Development (4) (Also Listed as CSC 305)
Practical software development skills needed for construction of mid-sized production-quality software modules, using the CSC upper division programming language. Topics include inheritance, exceptions, and memory and disk-based dynamic data structures. Students must complete an individual programming project of mid-level complexity. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 353 or CSC/CPE 357.

CPE 307 Introduction to Software Engineering (4) (Also Listed as CSC 307)
Requirements, specification, design, implementation, testing and verification of large software systems. Study and use of the software process and software engineering methodologies. Working in project teams. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103 with a grade of C- or better, and CSC/CPE 357. Not open to students with credit in CSC/CPE 308.

CPE 308 Software Engineering I (4) (Also Listed as CSC 308)
Principles for engineering requirements analysis and design of large complex software systems. Software process models. Methods of project planning, tracking, documentation, communication, and quality assurance. Analysis of engineering tradeoffs. Group laboratory project. Technical oral and written presentations. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103 with a grade of C- or better, and CSC/CPE 357 or CSC/CPE 353.

CPE 309 Software Engineering II (4) (Also Listed as CSC 309)
Continuation of the software lifecycle. Methods and tools for the implementation, integration, testing and maintenance of large software systems. Software development and test environments. Software quality assurance. Group laboratory project. Technical presentation methods and practice. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 308.

CPE 315 Computer Architecture (4) (Also Listed as CSC 315)
In-depth study of the instruction set architecture and hardware design of a specific CPU. Introduction to pipelines, input/output and multi-processors. Computer abstractions and performance measurement. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103 and either CPE/EE 229 or CSC 225.

CPE 316 Micro Controllers and Embedded Applications (4) (Also Listed as CSC 316)
Introduction to micro controllers and their applications as embedded devices. Hardware/software tradeoffs, micro controller selection, use of on-chip peripherals, interrupt driven real-time operation, A/D conversion, serial and parallel communications, watch-dog timers, low power operation and assembly language programming techniques. 3 lectures, 1 laboratory. Prerequisite: CPE/CSC 315 or CPE/EE 329.

CPE 329 Programmable Logic and Microprocessor-Based Systems Design (4) (Also Listed as EE 329)
Design, implementation and testing of programmable logic microprocessor-based systems. Hardware/software tradeoffs (such as timing analysis and power considerations), system economics of programmable logic and microprocessor-based system design. Interfacing hardware components (such as ADCs/DACs, sensors, transducers). 3 lectures, 1 laboratory. Prerequisite: EE 307&347 with a C-grade or better, CPE 229&269 with a C-grade or better.

CPE 336 Microprocessor System Design (4) (Also Listed as EE 336)
Introduction to microcontrollers and integrated microprocessor systems. Emphasis on the Intel 8051 and Motorola 68HC12 families and derivatives. Hardware/software trade-offs, system economics, and functional configurations. Interface design, real-time clocks, interrupts, A/D conversion, serial and parallel communications, watch-dog timers, low power operation, and assembly language programming techniques. Architecture and design of sampled data and digital control systems. Case studies of representative applications. 3 lectures, 1 laboratory. Prerequisite: CPE/CSC 319 and CSC 357.

CPE 350 CPE Capstone Preparation (4)
Definition and specification of a system to be constructed in CPE 450; requirements elicitation techniques, research and data gathering methods; project planning, time and budget estimating; project team organization. Ethics and professionalism. 3 lectures, 1 laboratory. Prerequisite: CPE 359, may be concurrent.

CPE 353 Systems Programming for Software Engineers (4) (Also Listed as CSC 353)
Assembly language and C programming; I/O and systems level programming; interrupt handlers. Technical elective credit not allowed for CSC/CPE majors. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103 with a grade of C- or better.

CPE 357 Systems Programming (4) (Also Listed as CSC 357)
C programming language from a system programming perspective. Standard C language including operators, I/O functions, and data types in

2007-2009 Cal Poly Catalog
the context of system functions. Unix commands, shell scripting, file system, editors. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103 with a grade of C- or better, and either CSC 225 or CSC/CPE 229.

CPE 365 Introduction to Database Systems (4)
(Also listed as CSC 365)
Basic principles of database management systems (DBMS) and of DBMS application development. DBMS objectives, systems architecture, database models with emphasis on Entity-Relationship and Relational models, data definition and manipulation languages, the Structured Query Language (SQL), database design, application development tools. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103.

CPE 366 Database Modeling, Design and Implementation (4) (Also listed as CSC 366)

CPE 369 Distributed Computing I (4) (Also listed as CSC 369)
Introduction to distributed computing paradigms and protocols: interprocess communications, group communications, the client-server model, distributed objects, and Internet protocols. Emphasis on distributed software above the operating system and network layers. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 357 or CSC/CPE 353.

CPE 400 Special Problems for Advanced Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units. Prerequisite: Consent of instructor.

CPE 402 Software Requirements Engineering (4)
(Also listed as CSC 402)
Software requirements elicitation, analysis and documentation. Team process infrastructure and resource estimation to support appropriate levels of quality. Software architectural design. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 307 or CSC/CPE 309; CSC/CPE 305.

CPE 405 Software Construction (4) (Also listed as CSC 405)
Design and construction of sizeable software products. Technical management of software development teams. Software development process models, software design, documentation, quality assurance during development, software unit and integration testing; CASE tools, development environments, test tools, configuration management. 3 lectures, 1 laboratory. Prerequisite: CPE/CSC 402.

CPE 406 Software Deployment (4) (Also listed as CSC 406)
Deployment of a sizeable software product by a student team. Software maintenance and deployment economic issues. Management of deployed software: version control, defect tracking and technical support. 3 lectures, 1 laboratory. Prerequisite: CPE/CSC 405.

CPE 409 Current Topics in Software Engineering (4)
(Also listed as CSC 409)
Selected topics in software engineering. Topics may include program generation, quality assurance, formal methods, software metrics, design methods, testing, or software development processes. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 309 or CSC/CPE 307.

CPE 415 Microcomputer Systems (4)
Recent advances in microcomputer architectures. RISC, parallel processing advances, and component communication. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 315.

CPE 416 Autonomous Mobile Robots (4) (Also listed as CSC 416)
Theory and application of concepts relevant to autonomous mobile robots. Sensor and actuator interfacing, programming mobile robots, mobile robot configurations, software architectures and algorithms. 3 lectures, 1 laboratory. Prerequisite: CPE/EE 329 or both CSC/CPE 315 and CSC/CPE 357 or consent of instructor.

CPE 427 Digital Computer Subsystems (4) (Also listed as EE 427)
Design of components and subsystems in digital computers. Use of modern techniques and devices (CPLDs and FPGAs) in implementation. Consideration given to cost/speed tradeoffs. Implementation of a basic digital computer using pre-designed subsystems. 3 lectures, 1 laboratory. Prerequisite: CPE 329 with a C- grade or better.

CPE 430 Programming Languages I (4) (Also listed as CSC 430)
Construction of the front end of a compiler including lexical analysis, syntactic analysis, typo checking, and formal semantics. Introduction to regular languages, finite automata, and context-free grammars. 3 lectures, 1 laboratory. Prerequisite: CSC 349 and either CSC/CPE 357 or CSC/CPE 353.

CPE 431 Programming Languages II (4) (Also listed as CSC 431)
Language principles and design issues: bindings, conversion, parameter passing, and dynamic semantics. Language implementation: intermediate code representation, memory management, code optimization, and code generation. Functional programming languages. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 430.

CPE 432 Digital Control Systems (3) (Also listed as EE 432)
Theory and applications of digital computers in linear control systems. Discrete time methods are used in analysis and design studies. Digital control systems are synthesized. 3 lectures. Prerequisite: EE 302 & ECE 427 with a C- grade or better. Prior background in discrete time systems, e.g., EE 328, EE 368 recommended. Concurrent: CPE 472.

CPE 435 Introduction to Object Oriented Design Using Graphical User Interfaces (4) (Also listed as CSC 435)
Principles of object-oriented design, with emphasis on use of these principles in the design of graphical interfaces. Comparison and contrasting of two major object-oriented languages and their corresponding GUI class libraries. Language-independent object-oriented design methods, and application of these methods in the construction of a GUI-based project. 3 lectures, 1 laboratory. Prerequisite: CPE 103, with a grade of C- or better, or equivalent and CPE 305.

CPE 438 Digital Computer Systems (3) (Also listed as EE 438)
Design of computer ALU's, microprogram controllers, memory systems, and I/O controllers. Use of LSI components in CPU design. Microprogram and nanoprogram development. 3 lectures. Prerequisite: CPE 427 or consent of instructor.

CPE 439 Computer Peripheral Interfacing (4) (Also listed as EE 439)
Systems-level design and implementation of common computer peripheral devices with emphasis placed on controller and interface aspects. Use of standard and softcore microcontroller platforms with communications to discrete peripherals with I2C, SPI, CAN, and other common bus interfaces. 3 lectures, 1 laboratory. Prerequisite: CPE/EE 329 with a C- grade or better, or consent of instructor.

CPE 448 Bioinformatics Algorithms (4) (Also listed as CSC 448)
Introduction to the use of computers to solve problems in molecular biology. The algorithms, languages, and databases important in determining and analyzing nucleic and protein sequences and their structure. 3 lectures, 1 laboratory. Prerequisite: Consent of instructor or the following: CSC/CPE 103, with a grade of C- or better, or BIO 447 and senior standing.

CPE 449 Current Topics in Algorithms (4) (Also listed as CSC 449)
Selected aspects of the verification, analysis and design of algorithms. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 lectures, 1 laboratory. Prerequisite: CSC 349.

CPE 450 CPE Capstone Project (4)
Team-based design, construction and deployment of an embedded system that includes a custom-built computer. Technical management of product development teams. Technical documentation, configuration management, quality assurance, integration and systems testing. Professionalism. 3 lectures, 1 laboratory. Prerequisite: CPE 350.
CPE 453 Introduction to Operating Systems (4)
(Also listed as CSC 453)
Introduction to sequential and multiprogramming operating systems; kernel calls, interrupt service mechanisms, scheduling, files and protection mechanisms, conventional machine attributes that apply to operating system implementation, virtual memory management, and I/O control systems. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 305 or both CSC/CPE 315 and CSC/CPE 357.

CPE 454 Implementation of Operating Systems (4)
(Also listed as CSC 454)
Design and implementation of multiprogramming kernels, systems programming methodology, interprocess communications, synchronization, device drivers and network access methods. 3 lectures, 1 laboratory. Prerequisite: CPE 453.

CPE 456 Introduction to Computer Security (4)
(Also listed as CSC 456)
Survey of topics in computer system and network security, including protection, access control, distributed access control, operating system security, applied cryptography, network security, firewalls, secure coding practices, and case studies from real-world systems. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 453 and either CSC 300 or CPE 350.

CPE 458 Current Topics in Computer Systems (4)
(Also listed as CSC 458)
Selected aspects of design, implementation and analysis of networks, advanced operating and distributed systems. Topics may include process management, virtual memory, process communication, context switching, file system designs, persistent objects, process and data migration, load balancing, security and networks. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 453.

CPE 461, 462 Senior Project I, II (3) (2)
Selection and completion of an individual or team project in laboratory environment. Project results are presented in a formal report. CPE 461: 3 laboratories; prerequisite: CPE 550. CPE 462: 2 laboratories; prerequisite: CPE 450.

CPE 464 Introduction to Computer Networks (4)
(Also listed as CSC 464)
Computer network architectures, communications protocol standards; services provided by the network; historical and current examples presented. 3 lectures, 1 laboratory. Prerequisite: STAT 312 or STAT 321 or STAT 350 and either CSC/CPE 357 or CSC/CPE 305.

CPE 465 Advanced Computer Networks (4) (Also listed as CSC 465)
Advanced topics in computer networks; greater detail of protocol standards and services provided by the network; focus on current industry and research topics. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 464 and CSC/CPE 453.

CPE 468 Database Management Systems Implementation (4)
(Also listed as CSC 468)
Data structures and algorithms used in the implementation of database systems. Implementation of data and transaction managers: access methods interfaces, concurrency control and recovery, query processors and optimizers. Introduction to implementation of distributed database systems. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 365.

CPE 469 Distributed Computing II (4) (Also listed as CSC 469)
Continued exploration of topics in distributed computing in greater depth, with emphasis on design patterns and team projects. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 369.

CPE 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

CPE 471 Introduction to Computer Graphics (4)
(Also listed as CSC 471)
Graphics software development and use of APIs for 3D graphics. The graphics pipeline, modeling, geometric and viewing transforms, lighting and shading, rendering, interaction techniques and graphics hardware. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 353 or CSC/CPE 357.

CPE 472 Digital Control Systems Laboratory (1)
(Also listed as EE 472)
Design and programming of microprocessor-based digital controls for electro-mechanical plants. Topics include digital control laws, translation of transfer functions into algorithms, assembly language programming, real-time software design, sample rate selection, finite word-length considerations. 1 laboratory. Concurrent: CPE 432.

CPE 473 Advanced Rendering Techniques (4)
(Also listed as CSC 473)
Illumination models, reflectance, absorption, emissance, Gouraud shading, Phong shading, raytracing polyhedra and other modeling primitives, coherence, acceleration methods, radiosity, form factors, advanced algorithms. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 471.

CPE 474 Computer Animation (4) (Also listed as CSC 474)
Basic and advanced algorithms for generating sequences of synthetic images. Interpolation in time and space, procedural and keyframe animation, particle systems, dynamics and inverse kinematics, morphing and video. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 471.

CPE 475 Real-Time 3D Computer Graphics Software (4)
(Also listed as CSC 475)
Basic and advanced algorithms for real-time, interactive, 3D graphics software. Modeling (polygon mesh, height field, scene graph), real-time rendering and shading (visibility processing, LOD, texture and light maps), collision detection (bounding volumes, complexity management), interactive controls, multi-player game technology, game engine architecture. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 471.

CPE 476 Current Topics in Computer Graphics (4)
(Also listed as CSC 476)
Selected aspects of the design, implementation and analysis of computer graphics. Topics may include rendering, modeling, visualization, animation, virtual reality, computer vision, multimedia, and perception issues. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 471.

CPE 478 Current Topics in Computer Graphics (4)
(Also listed as CSC 478)
In-depth treatment of knowledge representation, utilization and acquisition in a programming environment. Emphasis on the use of domain-specific knowledge to obtain expert performance in programs. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 480.

CPE 480 Artificial Intelligence (4) (Also listed as CSC 480)
Programs and techniques that characterize artificial intelligence. Programming in a high level language. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103 with a grade of C- or better.

CPE 481 Knowledge Based Systems (4) (Also listed as CSC 481)
In-depth treatment of knowledge representation, utilization and acquisition in a programming environment. Emphasis on the use of domain-specific knowledge to obtain expert performance in programs. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 480.

CPE 482 Advanced Topics in Systems for Computer Engineering (4)
Selected aspects of design, implementation, verification and analysis of advanced computer systems. Topics may include computer systems, embedded systems, robotics, mechatronics, haptics, human computer interfaces, digital control, digital signal processing, wireless computing, real time operating systems, and networks. The Schedule of Classes will list topic selected. Total credit limited to 8 units, repeatable in same term. 3 lectures, 1 laboratory. Prerequisite or concurrent: CPE 350, or consent of instructor.

CPE 483 Current Topics in Human-Computer Interaction (4)
(Also listed as CSC 483)
Selected aspects of the field of human-computer interaction. Topics may include dynamic information visualization, universal access, social impact of technology usage, educational technology, human cognition and performance studies, and extended usability evaluation techniques. The
Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 484.

CPE 484 User-Centered Interface Design and Development (4)
(Also listed as CSC 484)
Introduction to the importance of user-centered principles in the design of good interfaces and effective human-computer interaction. Topics include: study of human characteristics affected by interface design, effective requirements data collection and analysis, user-centered approaches to software engineering, and evaluation of interface and interaction quality. 3 lectures, 1 laboratory. Prerequisite: Junior standing and CSC/CPE 307 or CSC/CPE 308.

CPE 489 Current Topics in Artificial Intelligence (4)
(Also listed as CSC 489)
Selected aspects of the design, implementation and analysis of advanced systems and concepts in the area of artificial intelligence. Topics may include knowledge representation, reasoning, learning, or planning, and specific techniques like intelligent agents, genetic algorithms, semantic web, or robotics. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 480.

CPE 493 Cooperative Education Experience (2) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 6 units. Prerequisite: Sophomore standing and consent of instructor.

CPE 494 Cooperative Education Experience (6) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 18 units. Prerequisite: Sophomore standing and consent of instructor.

CPE 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. A more fully developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 24 units. Prerequisite: Sophomore standing and consent of instructor.

CPE 496 Computer Architecture (4) (Also listed as CSC 496)
Comparative study and design of multiprocessor, dataflow, RISC, high level language and other new computer architectures. VLSI processor design techniques. 3 seminars, 1 laboratory. Prerequisite: CPE 481 and graduate standing, or consent of instructor.

CPE 497 Computer Networks: Research Topics (4)
(Also listed as CSC 497)
Exploration of advanced topics in emerging computer networking technologies; focus on leading edge computer network research topics. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 484 and graduate standing, or consent of instructor.

CPE 499 Distributed Computing (4) (Also listed as CSC 499)
Principles and practices in distributed computing: interprocess communications, group communications, client-server model, distributed objects, message queue system, distributed services, mobile agents, object space, Internet protocols. Distributed algorithms: consensus protocols, global state protocols. Fault tolerance: classification of faults, replication. Not open to students with credit in CSC/CPE 369 or CSC/CPE 464. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 357 or CSC/CPE 353 and graduate standing, or consent of instructor.

CPE 500 Artificial Intelligence (4) (Also listed as CSC 500)
Current research in the field of artificial intelligence with emphasis on cooperative agents, distributed agents, and decision making in complex, concurrent environments. AI programming in a distributed environment. 3 lectures, 1 laboratory. Prerequisite: CPE 481.

CPE 581 Computer Support for Knowledge Management (4)
(Also listed as CSC 581)
Use methods and techniques that computer-based systems can provide to make the management of knowledge and information in digital form easier for the user. Emphasis on support for knowledge-intensive activities performed by users. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 481.

CRP—CITY AND REGIONAL PLANNING

CRP 101 Introduction to the Profession of City and Regional Planning (1) (CR/NC)
Introduction to what professional planners do in the public and private sectors and how they help manage growth and change. Credit/No Credit grading only. 1 lecture.

CRP 201 Basic Graphic Skills (4)
Basic techniques used in graphic communication for representation of the real world on two-dimensional planes. Use of scale, drawing conventions, orthographic and isometric projections, perspective drawings. Sketching, delineation and rendering including the use of black and white and color techniques. 4 laboratories.

CRP 202 Urban Design Studio I (4)
Exploring elements and principles of environmental design. Understanding the form and character of the designed urban environment. Introduction to problem analysis and problem solving in environmental design. Implications of design decisions and solutions on urban context. Assignments of object, project and system scale in an urban context. 4 laboratories. Prerequisite: CRP 201.

CRP 203 Urban Design Studio II (4)
Applications of basic design fundamentals and skills to the design of environments through design exercises applied to planning. Problem analysis and problem solving skills as applied to environmental design issues. 4 laboratories. Prerequisite: CRP 202.

CRP 211 Cities: Form, Culture and Evolution (4)
Historical overview of the evolution of cities – how the form and function of cities evolved among different societies from antiquity to contemporary times. Includes early cities in Mesopotamia, Central America; Greece and Rome; Renaissance, Baroque; and North and South America. 4 lectures.

CRP 212 Introduction to Urban Planning (4)
Understanding the issues of contemporary urban growth and change. Development of theories of urban planning and design. Introduction to zoning, planning regulations and codes, and professional practice. Relationship of environmental design disciplines, citizen groups, and individuals to urban planning. 4 lectures.

CRP 213 Population, Housing and Economic Applications (4)
Collection, organization, and presentation of information and data related to population, housing and employment. Analytical applications to estimate population over time, housing demand by type and income and employment by standard classification. Application of urban economic theory related to jobs and housing. 4 lectures. Prerequisite: CRP 212, ECON 201 or consent of instructor.

CRP 214 Land Use and Transportation Studies (4)
How cities and regions work. Relationship between human activities and patterns of land use and circulation. Spatial analysis and location theories. Methods for conducting studies to describe, analyze, and map land uses. Regional-scale transportation analysis, traffic impact studies, and multimodal transportation plans. 4 lectures. Prerequisite: CRP 212.

CRP 215 Planning for and with Multiple Publics (4)
(Also listed as ES 215)
USCP
How the social/spatial relationships among racial/ethnic and gender groups are expressed in terms of human settlement patterns, civic involvement and everyday negotiations. Ways in which segregation and marginalization are
expressed in western and non-western contexts. 4 lectures. Prerequisite: Completion of GE Area D1.

CRP 216 Computer Applications for Planning (2)
Introduction to the use of computer applications for planners. Includes spreadsheets, statistical applications, database, geographic information systems, and graphics. 1 lecture, 1 laboratory.

CRP 240 Additional Planning Laboratory (1–2)
Total credit limited to 4 units, with a maximum of 2 units per quarter. 1 or 2 laboratories.

CRP 310 Community Development and Civic Life (4)
Examination of role of citizen in the planning, design and development of communities. Development of informed, responsible participation in civic life by a diverse citizenry committed to democratic principles. Focus on land use, transportation, and environmental issues. 4 lectures. Prerequisite: Completion of GE Areas A, D1 and D3.

CRP 314 Planning Theory (3)
Theories of planning. Role of planner in society, purpose of planning, administrative framework in which planning takes place. Alternative approaches to planning, values, ethics in planning. 3 lectures. Prerequisite: CRP 212.

CRP 315 Fiscal and Project Feasibility (4) (Also listed as CM 315)
Analysis of the revenue streams and costs involved in project development. Impact analysis of costs and revenues on public and private sectors included. Construction of pro-formas for various project types. 3 lectures, 1 laboratory. Prerequisite: Completion of GE Area D2.

CRP 334 Cities in a Global World (4) GE D5
Examination of the changes in the social and spatial organization of urban settlements in the twenty-first century caused by the urbanization and globalization processes. Comparative analysis of the traditional and contemporary cities in the Pacific Rim, South America and Eastern Europe. 4 lectures. Prerequisite: Completion of Area A and two courses from D1, D2, D3, D4. City and Regional Planning majors will not receive GE Area D5 credit.

CRP 336 Introduction to Environmental Planning (4)
Theories, institutional frameworks, and technologies used in environmental planning for human settlements. Comparative study of practices at international, national, bioregional and state/local levels. Impact assessment technologies used in impact analysis for plan administration. Application of environmental mitigation to community planning. 4 lectures. Prerequisite: CRP 212.

CRP 338 Digital Cities (4) GE Area F
Explores changes in urban form and urban experience associated with advances in digital technology. Implications for the design of places and the distribution of economic and social benefit. Lecture-discussions and opportunities to explore technology initiatives in community building. 4 lectures. Prerequisite: Junior standing; completion of Area B.

CRP 341 Community Design Laboratory (4)
Built environment of the suburb. Urban theories and design methods related to suburban development. Technical aspects of subdivision site planning. 4 laboratories. Prerequisite: CRP 203, or consent of instructor.

CRP 342 Environmental Planning Methods (4)
Case studies and applications of theory and methods to regional and environmental systems. Interrelationships between natural, economic, and social and political systems. Application of California Environmental Quality Act and environmental impact assessment methods. Environmental equity and sustainable bioregions. 2 lectures, 2 laboratories. Prerequisite: CRP 336 or consent of instructor.

CRP 375 Technology and the Environment: A Seminar on Contemporary Issues (4) (Also listed as HNRS 375)
Interdisciplinary exploration of significant environmental issues (local, regional, national, or global) where technology is a major cause and/or offers a possible solution. 4 seminars. Prerequisite: Completion of GE Area A and two courses from Areas D1, D2, D3. Honors Program membership or nomination by CRP department head.

CRP 400 Special Problems for Advanced Undergraduates (1–2)
Individual or group investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.

CRP 402 Contemporary Urban Design in the Americas (4)
Study of contemporary urban design in North, Central and South America through the detailed examination of major cities and country case studies. Analysis of the cultural, social and political factors influencing the practice of urban design and its major trends in different countries. 4 lectures. Prerequisite: ENGL 134.

CRP 404 Environmental Law (3) (Also listed as FNR 404)
Analysis and critique of the law governing use and protection of natural resources with focus on the legal institutions entrusted with the public duty of protecting the environment. 3 lectures. Prerequisite: Senior standing, or consent of instructor.

CRP 408 Water Resource Law and Policy (3) (Also listed as FNR 408)
Detailed examinations of the various legal systems of water use, regulation and management in California and the United States. Discussion of the key concepts and principles of state, federal and interstate water quantity and quality control; focusing on issues and problems, why conflicts occur and how solutions evolve. 3 lectures. Prerequisite: FNR 302 or instructor approval, senior standing.

CRP 409 Planning Internship (2–4) (CR/NC)
Work experience as a supervised employee in a planning-related agency or private firm. Prior contract specifying the product of internship required between student, agency and faculty. Thirty hours work experience per unit of credit. Total credit limited to 4 units. Credit/No Credit grading. Prerequisite: Consent of instructor.

CRP 410, 411 Community Planning Laboratory I, II (5) (5)
Application of planning theory to the community, its components, and to the city and its region. Relationships of city spaces and structures. Emphasis on developing basic planning studies and plan-making. Field trips. Individual, team, and interdisciplinary approaches utilizing digital methods for analysis and presentation. 5 laboratories. CRP 410 prerequisite: LA 213, CRP 203, CRP 213, CRP 214, CRP 336, CRP 341 or consent of instructor. CRP 411 prerequisite: CRP 342, CRP 410, or consent of instructor.

CRP 412 Plan Implementation (4)
Theory and practice of plan implementation. Regulation and non-regulatory approaches to plan implementation, including development regulation, economic development, growth management, habitat conservation planning, capital improvement planning, redevelopment programs, and transportation system management. The California Specific Plan will serve as the course model. 4 lectures. Prerequisite: CRP 212 and third-year standing, or consent of instructor.

CRP 420 Land Use Law (4)
Public controls protecting natural environmental systems. Land use and environmental controls. Review of control mechanisms. State and federal legislation. Legal implications of controls, public planning and policy issues. 4 lectures. Prerequisite: senior standing, or consent of instructor.

CRP 427 Local Economic Development Planning (3)
Processes, skills and approaches for planning local economic development. Analysis of theoretical principles and assumptions underlying local economic development programs. Practical applications of alternative strategies and techniques for implementing economic development. 3 seminars. Prerequisite: Senior standing or consent of instructor.

CRP 430 Public Sector Planning Practice (3)
Relationships of planning agencies to other governmental bodies, public agencies and citizen groups. The public planning agency and the private practitioner. Public and personnel relations. Current topics in public sector planning practice. 3 lectures. Prerequisite: CRP 212.
CRP 435 Transportation Theory (3)
Circulation and transportation elements of the General Plan. Transportation planning theory, methods and tools related to systematic analysis of city and regional transportation problems including environmental impact assessment. Application of techniques for assessing transportation systems, gravity models, route selections, land use models and relationship to transportation. 3 seminars. Prerequisite: CRP 212, senior standing or consent of instructor.

CRP 436 Collaborative Planning (4)
Focus on processes and skills of citizen participation and consensus building. Application of mediation and negotiation techniques. Use of collaboration in forming visions of the future and reaching agreements among multiple interests. Use of group process skills to establish effective communication and agreements. Organizing and operating public meetings. 3 lectures, 1 laboratory. Prerequisite: CRP 212 or graduate standing or consent of instructor.

CRP 438 Pollution Prevention and Control (4)
Interdisciplinary exploration of policy and planning associated with pollution prevention and control, including institutional, legal, economic, political, social, and technology-related aspects. Includes hands-on activity in small groups. 4 lectures. Prerequisite: Senior standing or consent of instructor.

CRP 442 Housing and Planning (3)
Understanding housing issues, policies and programs from a planning perspective. Analysis of the economic underpinnings of land markets and housing markets, housing plans, finance, public programs, affordable housing. 3 seminars. Prerequisite: Upper division standing.

CRP 444 Infrastructure and Planning Management (4)
Basic infrastructure systems necessary to support urban development. Basic components of systems and how they are planned, financed and managed. 4 seminars. Prerequisite: Senior standing.

CRP 446 Development Review and Entitlement (4)
Application of zoning regulations, subdivision ordinances, design standards, building codes, exactions, fees, and related requirements within the development review process leading to land use entitlement. Land development is evaluated from permit application submittal to condition compliance during the plan check, construction, and operational phases of a project. 4 lectures. Prerequisite: Upper division standing.

CRP 447 Design Regulations (4) (Also listed as ARCH 447)
Practical application of fundamental zoning, subdivision, design/development standards, and building codes in the design review process, either in the form of a proposed development project or preparation of ordinances, codes, standards, and/or guidelines to apply to a project. 4 lectures. Prerequisite: Fourth year standing, or consent of instructor.

CRP 453 Planning and Design Laboratory (4)
Selected advanced laboratory applications, including urban and regional design. 4 laboratories. Prerequisite: CRP 341, CRP 342.

CRP 457 Planning Information Systems (3)
GIS applications using computer-based systems in gathering, managing and analyzing information pertinent to planning. Development of skills in systematic data acquisition, processing and maintenance with applied planning problems within the convenient medium of GIS and general information systems. 2 seminars, 1 laboratory. Prerequisite: Upper-division standing and completion of a basic GIS course (FNR 318, GEOS 316, or LA 318), and consent of instructor.

CRP 458 Local Hazard Mitigation Planning and Design (4)
Creation of safer, more resilient cities through systematic application of urban disaster risk reduction and regeneration planning principles and methods. Integration of insights from the design, resource management, and urban administration professions for minimizing disaster losses and improving recovery activities. 4 lectures. Consent of instructor. Prerequisite: GE Areas D2, D3 and F or consent of instructor.

CRP 461, 462 Senior Project I, II (2, 2)
Research and problem analysis in planning. Selection and completion of a project under faculty supervision. Projects typical of problems addressed in planning practice. Project results presented in a formal report. To be completed in two quarters. Minimum 120 hours time. Prerequisite: CRP 341, CRP 342.

CRP 463 Senior Project Professional Practice (4)
Practical applications of city and regional planning theory and practice solving problems related to the built environment. Assembly of project documents and reports that meet the senior project requirement. 4 seminars. Prerequisite: CRP 410 and senior standing.

CRP 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

CRP 471 Selected Advanced Laboratory (1-4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1-4 laboratories. Prerequisite: Consent of instructor.

CRP 472 Planning Colloquium (1) (CR/NC)
Lecture and discussion by faculty members and invited guests on controversial or topical planning related subject matter at campus and/or off-campus locations. Topics to be announced in advance by CRP Department. Total credit limited to 3 units. Credit/No Credit grading only. 1 seminar. Prerequisite: Upper division standing.

CRP 483 Special Studies in City and Regional Planning (1-12)
Study of special issues and problems through field research and other forms of investigation and involvement in an off-campus setting. Requirements determined prior to individual project through contractual arrangement between the student and the department. Departmental Off-Campus Study Program guidelines apply. The Schedule of Classes will list topic selected. Prerequisite: Junior standing.

CRP 500 Individual Study (2-3)
Independent research, studies, or surveys of selected subjects. Total credit limited to 9 units. Prerequisite: Graduate standing with minimum of 12 core units.

CRP 501 Foundations of Cities and Planning (4)
Principles of Regional Planning (4)
Theories and methods of contemporary city and regional planning. Origins and historical development of principles of city and regional planning. Effects of relaxing natural, economic and infrastructure limiting factors on city form. 4 lectures. Prerequisite: Graduate standing.

CRP 505 Principles of Regional Planning (4)
History, development and major philosophical approaches of regions and regional planning, both in urban-centered and resource-based regions. Effects of relaxing natural, economic and infrastructure limiting factors on growth and development of regions. Normative hierarchical emphasis of contemporary regional planning compared to emerging paradigms that alter the regional/local planning relationship. 4 seminars. Prerequisite: Graduate standing or consent of instructor.

CRP 510 Planning Theory (4)
Theory of planning. Development of contemporary planning thought from varying sources and perspectives. Political and social context of planning. Alternative professional roles, and planning processes. Values and ethical issues in planning. 4 seminars. Prerequisite: Graduate standing or consent of instructor.

CRP 512 Introduction to Visual Communication and GIS (4) (CR/NC)
Introduction to geographic information systems (GIS) as a tool for analyzing and managing spatial information pertinent to planning. Introduction to various drawing media and delineation techniques for planners, including three-dimensional visualization and graphic skills.
Integration of visual and digital media in presentations. Credit/No Credit grading only. 4 laboratories. Prerequisite: Graduate standing.

CRP 513 Planning Research Methods (4)
Application of research design to planning issues. Comparison of case study, comparative and problem-solving methods. Primary and secondary data sources, including field survey techniques. 3 seminars and supervised work. Prerequisite: Graduate standing, STAT 221 or equivalent, or consent of instructor.

CRP 514 Computer Applications for M.C.R.P. (2)
Microcomputer applications used by planners. Focus on planners' adaptations of spreadsheets, statistical applications, data base systems, graphic presentation. 2 laboratories. Prerequisite: Graduate standing.

CRP 515 Planning Presentation and Communication Techniques (3)
Basic techniques used in effective planning presentations. Introduction to various drawing media and delineation techniques for planners, three-dimensional visualization, graphic skills. Integration of visual and electronic media in presentations. 3 laboratories. Prerequisite: Graduate standing.

CRP 516 Methods of Data Analysis (4)
Problem recognition, data selection, analysis and synthesis with applications of system design, statistical techniques and symbolic modeling to urban design and regional growth and development policies. 3 seminars, 1 laboratory. Prerequisite: Graduate standing or consent of instructor.

CRP 518 Public Policy Analysis (4)
Analysis of the social, economic, environmental, political contexts of public policy decisions. Public policy issues and use of concepts and tools related to monitoring and assessment. 4 lectures. Prerequisite: CRP 501 or POLS 360 or consent of instructor.

CRP 520 Feasibility Studies in Planning (4)
Fundamental analysis for assessing feasibility of public and private development projects. Principles and techniques for analyzing markets and assessing cash flow for individual projects. Economic, fiscal and tax impacts as factors determining public participation in private projects. 4 seminars. Prerequisite: CRP 501 or consent of instructor.

CRP 525 Plan Implementation (4)
Theory and practice of plan implementation. Regulatory and non-regulatory frameworks for plan implementation. Growth management, development regulation, capital improvement programs, redevelopment. 4 seminars. Prerequisite: CRP 501 or consent of instructor.

CRP 530 Planning Agency Management (3)
Preparation for mid-level and higher positions in public planning agencies and private firms. Applications of organization theory to planning agencies and firms. Work programs, staff development, budgets, contracting, proposal preparation, conflict management. Relationships with other agencies and firms, clients, public and media. 3 seminars. Prerequisite: CRP 501, CRP 510 or consent of instructor.

CRP 535 Land Use and Planning Law (4)
The role of law in the planning and regulation of land use. Constitutional constraints on land use regulation. Legal and policy issues for environmental protection and public administration. Relevant legislation and case law. 4 lectures. Prerequisite: Graduate standing, or consent of instructor.

CRP 545 Principles of Environmental Planning (4)
Environmental planning as a field of inquiry and action. Review and application of policies and techniques used in environmental planning, especially within the land use planning context. Application of California Environmental Quality Act and environmental impact assessment methods. 3 seminars, 1 laboratory. Prerequisite: Graduate standing or consent of instructor.

CRP 548 Principles of Urban Development and Design (4)
Introduction to the philosophy and theory particular to urban development and design. Exploration of evaluation criteria and critical analysis of the environmental role related to physical design requirements. Spatial and form relationships, scale, human activities, concept formation, visual organization of the city, landscaping and architecture. 4 seminars. Prerequisite: Graduate standing or consent of instructor.

CRP 552 Community and Regional Planning Studio I (4)
Application of planning theory and methods to community and regional planning projects. Structured for research, analysis, synthesis, and implementation practice. Interrelationships of natural and built environments, transportation systems, and economic and social conditions at various planning scales. Includes field trips and individual, team and interdisciplinary approaches. 2 seminars, 2 laboratories. Prerequisite: CRP 501, CRP 525, or consent of instructor.

CRP 553 Project Planning Laboratory (4)
Project-scale planning problems. Arranging structures, circulation systems, utilities and plant material on natural and urban sites to support human activity while minimizing disruption to natural systems. Includes planned unit developments, waterfronts, hillside, campuses and commercial centers. Field trips. 2 lectures, 2 laboratories. Prerequisite: CRP 512 or consent of instructor.

CRP 554 Community and Regional Planning Studio II (4)
Application of planning theory and methods to community and regional planning projects. Structured for research, analysis, synthesis, and implementation practice. Interrelationships of natural and built environments, transportation systems, and economic and social conditions at various planning scales. Includes field trips, and individual, team and interdisciplinary approaches. 3 seminars and supervised work. Prerequisite: CRP 554, or consent of instructor.

CRP 556 Community and Regional Planning Studio III (4)
Application of planning theory and methods to community and regional planning projects. Individual faculty-assigned laboratory work leading to the completion of a professional quality project focused on a real-world planning task. Structured for research, analysis, synthesis and implementation practice. 3 seminars and supervised work. Prerequisite: CRP 554, or consent of instructor.

CRP 570 Selected Topics in Planning (4)
Directed group study of selected planning topics. Total credit limited to 12 units. 4 seminars. Prerequisite: Graduate standing or consent of instructor.

CRP 596 Professional Project (2-4)
Individual research under the supervision of the faculty, leading to completion of a professional project based on a real world planning task or carefully constructed simulation. Must be taken in all quarters requiring supervision; minimum of 6 units required for degree. Total credit limited to 8 units. Prerequisite: CRP 513, and consent of the graduate program coordinator.

CRP 597 Policy, Planning and Management (4)
This course provides a synthesis of the MCRP program. Expansion and integration of material on planning principles, practice, theory and quantitative methods. 4 seminars. Prerequisite: CRP 409, CRP 510, CRP 516, CRP 518, CRP 525, CRP 530, CRP 535, CRP 552 and CRP 554.

CRP 599 Thesis (2-4)
Individual research under the general supervision of the faculty, leading to a graduate thesis. Must be taken in all quarters requiring supervision; minimum of 6 units required for degree. Total credit limited to 8 units. Prerequisite: CRP 513, and consent of the graduate program coordinator.

CRSC—CROP SCIENCE

CRSC 123 Forage Crops (4)
CRSC 132 California Field Crops (4)
Production, adaptation, distribution, and utilization of five economically significant field crops: alfalfa, corn, cotton, potatoes, and rice. Field trips to production areas. 3 lectures, 1 laboratory. Prerequisite: HCS 120.

CRSC 202 Enterprise Project (2-4) (CR/NC)
Beginning field experience in production and marketing of an agronomic crop, under faculty supervision. Project participation is subject to approval by the department head and the Cal Poly Corporation. Degree credit limited to 4 units. Credit/No Credit grading only. 1 lecture, variable practicum.

CRSC 203 Organic Farming Enterprise Project (2-4) (CR/NC)
Beginning field experience in production and marketing of organic vegetable and fruit crops, under faculty supervision. Project participation subject to approval by department head and Cal Poly Corporation. Degree credit limited to 4 units. 2-4 units of independent study. Credit/No Credit grading only.

CRSC 244 Precision Farming (4)
Precision agriculture applications. Integrating GIS, GPS, and remote sensing technologies with site-specific farming practices to optimize agricultural productivity. Field trip required. 3 lectures, 1 laboratory. Prerequisite: HCS 120 or other 100-200 level CRSC/FRSC/HCS/VGSC course.

CRSC 333 Greenhouse Vegetable Production (4)
Development, practices, history, and future of crop production in greenhouses. Research applications, commercial applications, production problems, marketing, and economics. Special emphasis on growing transplants in greenhouses and use of nutrient solutions. Field trips to a commercial greenhouse operation and/or analysis lab required. 3 lectures, 1 laboratory. Prerequisite: CHEM 111, SS 221, VGSC 190 or consent of instructor. Students cannot receive degree credit in both CRSC 333 and EHS 340.

CRSC 402 Enterprise Project Management (2-4) (CR/NC)
Advanced experience in production of an agronomic crop. Development of a plan for field operations, a marketing plan, and a budget. Management decision-making. Project participation is subject to approval by the department head and the Cal Poly Corporation. Degree credit limited to 4 units. Credit/No Credit grading only. 1 lecture, variable practicum. Prerequisite: CRSC 202, and consent of instructor.

CRSC 411 Experimental Techniques and Analysis (4)
Principal experimental designs used in agriculture and methods of statistical analysis of data collected from each. Statistical software. Field practice in planning and layout of typical experiments. 3 lectures, 1 laboratory. Prerequisite: Junior standing and MATH 118 or equivalent, and STAT 218 or consent of instructor.

CRSC 421 Oil and Fiber Crops (4)
Culture, harvest, grading, and marketing of cotton, soybean, sunflower, safflower, and other oil and fiber crops. Field trips to major centers of production and marketing required. 3 lectures, 1 laboratory. Prerequisite: CRSC 132, PPSC 321 and BOT 121.

CRSC 422 Tropical and Subtropical Crop and Fruit Production (4)
(Also listed as FRSC 422)
Production, distribution and utilization of major agronomic, vegetable, fruit and nut crops of economic importance in tropical and subtropical areas. Weather systems, climates, soils, and cropping systems of tropical and subtropical areas. Field trip required. 3 lectures, 1 laboratory. Prerequisite: 100/200-level plant production course, or consent of instructor.

CRSC 445 Cropping Systems (4)
Classification and description of agricultural systems of the world. Cropping systems as land management plans. Systems approaches to improvement of agricultural situations. Consideration of human factors and the agroecosystem in efforts to create a more sustainable agriculture. Field trip required. 3 lectures, 1 activity. Prerequisite: SS 121 and BOT 121, or HCS 120, or BOT 326, or consent of instructor.

CRSC 581 Graduate Seminar in Crop/Fruit Production (3)
Group study of current problems, trends and research results pertaining to production or marketing of field, vegetable or fruit crops. 3 seminars. Prerequisite: Graduate standing.

CRSC 599 Thesis in Crop Science (1-9)
Systematic research of a significant problem in Crop Science. Thesis will include problem identification, significance, methods, data analysis, and conclusion. Students must enroll every quarter in which facilities are used or advisement is received. Degree credit limited to 6 units. Prerequisite: Graduate standing and consent of instructor.

CSC–COMPUTER SCIENCE

CSC 100 Computer Science Orientation (2)
Introduction to the computer science discipline for majors. Computer problem solving and the use of computers. Success skills for computer science majors. Career paths and opportunities. Interaction with upper division students and faculty. 2 seminars. Prerequisite: Computer science major or minor or software engineering major.

CSC 101 Fundamentals of Computer Science I (4)
(Also listed as CPE 101)
Basic principles of algorithmic problem solving and programming using methods of top-down design, stepwise refinement and procedural abstraction. Basic control structures, data types, and input/output. Introduction to the software development process: design, implementation, testing and documentation. The syntax and semantics of a modern programming language. Credit not available for students who have taken CSC/CPE 108. 3 lectures, 1 laboratory. Prerequisite: MATH 118 (or equivalent) with a grade of C- or better, and basic computer literacy (CSC 100 or CSC 232 or equivalent).

CSC 102 Fundamentals of Computer Science II (4)
(Also listed as CPE 102)
Basic design, implementation, testing, and documentation of object-oriented software. Introduction to classes, interfaces, inheritance, algorithms (sort, search, recursion), abstract data types, data structures (lists, stacks, queues), file I/O, and exceptions. Credit not available for students who have taken CSC/CPE 108. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 101 with a C- grade or better and either MATH 141 or MATH 221 with a C- grade or better. Corequisite: CSC 141.

CSC 103 Fundamentals of Computer Science III (4)
(Also listed as CPE 103)
Introduction to data structures and analysis of algorithms. Abstract data types. Specification and implementation of advanced data structures. Theoretical and empirical analysis and proofs of properties of recursive and iterative algorithms. Software performance evaluation and testing techniques. 3 lectures, 1 laboratory. Prerequisite: CPE 102 with a C- grade or better and CSC 141 with a C- grade or better.

CSC 108 Accelerated Introduction to Computer Science (4)
(Also listed as CPE 108)
Accelerated introduction to basic principles of algorithmic and object-oriented problem solving and programming. Introduction to programming language concepts including control structures, data types, classes, and inheritance. Program design principles. Use and implementation of algorithms (searching, sorting, recursion) and data structures (lists, stacks, queues). Intended for students with experience in algorithmic problem solving and using basic control structures and data types in a modern programming language (CSC/CPE 101), but who are not ready for CSC/CPE 102. Credit not available for students who have taken CSC/CPE 102. 3 lectures, 1 laboratory. Prerequisite: Math 118 (or equivalent) with a grade of C- or better, significant experience in computer programming, and consent of instructor. Corequisite: CSC 141.

CSC 110 Computers and Computer Applications: Windows (3)
The computer as a problem-solving tool. A working introduction to microcomputers and fundamental computer concepts. Use of applications software. Credit not allowed for CSC or Software Engineering majors. 2
CSC 113 Computers and Computer Applications: Macintosh (3)
The computer as a problem-solving tool. A working introduction to microcomputers and fundamental computer concepts. Use of applications software. Credit not allowed for CSC, Software Engineering majors. 2 lectures, 1 activity. Prerequisite: Passing score on ELM examination, or an ELM exemption, or credit in MATH 104.

CSC 119 Information Retrieval and Management (4)
Use of applications software, including database software, to create and manage information. Credit not allowed for CSC or Software Engineering majors. 4 lectures. Prerequisite: Passing score on ELM examination, or an ELM exemption, or credit in MATH 104.

CSC 141 Discrete Structures I (4)
Introduction to structures of computer science: logic, sets, relations, functions, graphs and trees. Propositional and predicate logic. Applications of predicate logic to preconditions, postconditions, and proof techniques. Introduction to complexity of algorithms. 4 lectures. Corequisite: CSC/CPE 102. Prerequisite: MATH 118 and MATH 119, or high school equivalent, and CSC/CPE 101 or equivalent.

CSC 142 Discrete Structures II (4)

CSC 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.

CSC 225 Introduction to Computer Organization (4)
Introduction to computer systems. Simple instruction set architecture and the computer hardware needed to implement that architecture. Machine and assembly language programming. 3 lectures, 1 laboratory. Prerequisite: CPE 129 & 169; CSC/CPE 102.

CSC 231 Programming for Engineering Students (2)
Programming techniques and procedures with applications to engineering problems. Introduction to numerical methods and simulation. Credit not allowed for CSC, Software Engineering or CPE majors. 2 activities. Prerequisite: MATH 142 or MATH 132; PHYS 121 or PHYS 131.

CSC 232 Computer Programming for Scientists and Engineers (3)
Computer programming, with an emphasis on procedural programming, taught using a language hosted by applications commonly used in science and engineering. Credit not allowed for CSC, CPE or Software Engineering majors. 2 lectures, 1 activity. Prerequisite: MATH 118 or equivalent.

CSC 234 C and Unix (3)
The C programming language and the UNIX programming environment. Operators, standard I/O functions, strings, pointers and arrays, data types and storage classes. Unix shell programming and basic I/O system calls. Credit not allowed for CSC, Software Engineering or CPE majors. 3 lectures. Prerequisite: MATH 142 or MATH 132.

CSC 235 Fundamentals of Computer Science for Scientists and Engineers I (4) (Also listed as CPE 235)
Introduction to the fundamentals of computer programming with an emphasis on mathematical, scientific and engineering applications: principles of algorithmic problem solving and procedural programming using a modern programming language, data types, elementary data structures, input/output and control structures. Not a substitute for CSC/CPE 101 for CSC/CPE majors or minors. 3 lectures, 1 laboratory. Prerequisite: MATH 141 or MATH 161 with a grade of C- or better, or consent of instructor.

CSC 236 Fundamentals of Computer Science for Scientists and Engineers II (4) (Also listed as CPE 236)
Further study of computer program development with an emphasis on mathematical, scientific and engineering applications. Introduction to more complicated data types and structures. Practice of more complicated techniques of procedural programming. Introduction to the principles of object-oriented programming using a modern programming language. Detailed discussion of lists and classic list algorithms, algorithm analysis, multidimensional arrays, records, dynamic data structures, file input/output, classes. Not a substitute for CSC/CPE 102 for CSC/CPE majors or minors. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 235 with a grade of C- or better, or consent of instructor.

CSC 237 Introduction to Computer Science with Applications I (4) (Also listed as CPE 237)
Introduction to the fundamentals of computer science using a modern programming language. Includes principles of algorithmic problem solving, data types, elementary data structures, input/output, control structures, classes and methods. Not a substitute for CSC/CPE 101 for CSC/CPE majors or minors. 3 lectures, 1 laboratory. Prerequisite: MATH 221 or STAT 252 with a grade of C- or better, or consent of instructor.

CSC 238 Introduction to Computer Science with Applications II (4) (Also listed as CPE 238)
Continuation of CSC 237. Intermediate study of computer program development using a modern object oriented (00) programming language. Further study of 00 principles including inheritance and interfaces. Introduction to implementation of Graphical User Interfaces, multi-media, streams, database connection, and scripting. Not a substitute for CSC 102 or for CSC/CPE majors or minors. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 237 with a grade of C- or better.

CSC 239 Selected Programming Languages (4)
A programming language selected from languages of current interest. Intended for students who want to learn another programming language. The Schedule of Classes will list selected language. 3 lectures, 1 laboratory. Prerequisite: Knowledge of a programming language.

CSC 270 Computer Graphics Applications (4) (Also listed as CPE 270)
Use of common graphics applications packages. Business graphics, figure editing, animation and image editing, photorealistic image generation, scientific visualization and multimedia. 2 lectures, 2 activities.

CSC 300 Professional Responsibilities (4) (Also listed as CPE 300)
The responsibilities of the computer science professional. The ethics of science and the IEEE/ACM Software Engineering Code of Ethics. Quality tradeoffs, software system safety, intellectual property, history of computing and the social implications of computers in the modern world. Applications to ethical dilemmas in computing. Technical presentation methods and practice. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 307 or CSC/CPE 309.

CSC 302 Computers and Society (4) GE Area F
Social, ethical, political and technological implications and effects of computers in the modern world. Examination of the benefits and side-effects of computer applications and automation. Case study review and analysis. 4 lectures. Prerequisite: Completion of GE Area B, and junior standing.

CSC 303 Teaching Computer Science (2)
Practical coverage of educational techniques appropriate for tutoring in CSC/CPE undergraduate courses, including Socratic methods for tutoring of technical topics, design of test questions and grading rubrics, and lecture presentation. Intended for CSC/CPE/SE students interested in tutoring, grading, or a career in teaching computer science. 1 lecture, 1 laboratory. Prerequisite: CSC/CPE 103, with a grade of C- or better, or equivalent. Not available for technical elective credit.

CSC 305 Individual Software Design and Development (4) (Also listed as CPE 305)
Practical software development skills needed for construction of mid-sized production-quality software modules, using the CSC upper division
programming language. Topics include inheritance, exceptions, and memory and disk-based dynamic data structures. Students must complete an individual programming project of mid-level complexity. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 353 or CSC/CPE 357.

CSC 307 Introduction to Software Engineering (4) (Also listed as CPE 307)
Requirements, specification, design, implementation, testing and verification of large software systems. Study and use of the software process and software engineering methodologies; working in project teams. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103 with a grade of C- or better, and CSC/CPE 357. Not open to students with credit in CSC/CPE 308.

CSC 308 Software Engineering I (4) (Also listed as CPE 308)
Principles for engineering requirements analysis and design of large complex software systems. Software process models. Methods of project planning, tracking, documentation, communication, and quality assurance. Analysis of engineering tradeoffs. Group laboratory project. Technical oral and written presentations. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103 with a grade of C- or better, and CSC/CPE 357 or CSC/CPE 353.

CSC 309 Software Engineering II (4) (Also listed as CPE 309)
Continuation of the software lifecycle. Methods and tools for the implementation, integration, testing and maintenance of large software systems. Software development and test environments. Software quality assurance. Group laboratory project. Technical presentation methods and practice. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 308.

CSC 310 Computers for Poets (4)
How computers and computer devices work. Introduction to software systems and applications. How computers connect with various media including images, speech and data. How information is encoded and transmitted across networks. Relationship between the computer and human information processing. 4 lectures. Prerequisite: Junior standing and completion of GE Area B.

CSC 315 Computer Architecture (4) (Also listed as CPE 315)
In-depth study of the instruction set architecture and hardware design of a specific CPU. Introduction to pipelines, input/output and multi-processors. Computer abstractions and performance measurement. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103 and either CPE/EE 229 or CSC 225.

CSC 316 Micro Controllers and Embedded Applications (4) (Also listed as CPE 316)
Introduction to micro controllers and their applications as embedded devices. Hardware/software tradeoffs, micro controller selection, use of on-chip peripherals, interrupt driven real-time operation, A/D conversion, serial and parallel communications, watchdog timers, low power operation and assembly language programming techniques. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 315 or CPE/EE 329.

CSC 334 Advanced Topics in Unix (4)
Advanced topics in Unix, system calls, library functions, shell scripts, and selected Unix tools. 4 lectures. Prerequisite: CSC/CPE 103, with a grade of C- or better, or CSC 234.

CSC 341 Numerical Engineering Analysis (4) (GE B6)
An intensive survey of numerical analysis techniques used for solving engineering problems. Topics include solution of nonlinear equations, solution of linear systems, interpolation, numerical quadrature, ordinary differential equations and boundary value problems. Not open to students who have completed CSC 342. 4 lectures. Prerequisite: MATH 242 and knowledge of a high level programming language, or ability to use one of the following systems: Maple, MatLab, Mathematica, or Mathcad.

CSC 342 Numerical Analysis I (3)
Computer solutions of nonlinear equations and systems of linear equations. Polynomial interpolation. Numerical quadrature. Introduction to the solution of ordinary differential equations. 3 lectures. Prerequisite: MATH 143 and knowledge of a high level programming language, or ability to use one of the following systems: Maple, MatLab, Mathematica, or Mathcad.

CSC 343 Numerical Analysis II (3)
Solution of systems of differential equations, predictor-corrector methods, stiff equations. Approximation methods: cubic splines, B-splines, Bezier curves, least squares, methods for solving boundary value problems. 3 lectures. Prerequisite: CSC 342 or equivalent.

CSC 349 Design and Analysis of Algorithms (4)
Intermediate and advanced algorithms and their analysis. Mathematical, geometrical, and graph algorithms. NP-complete problems. Additional topics will be chosen from pattern matching, file compression, cryptography, dynamic and linear programming, and exhaustive search. 4 lectures. Prerequisite: CSC/CPE 103, with a grade of C- or better, and MATH 142 and either STAT 312 or STAT 321.

CSC 353 Systems Programming for Software Engineers (4) (Also listed as CPE 353)
Assembly language and C programming; I/O and systems level programming; interrupt handlers. Technical elective credit not allowed for CSC/CPE majors. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103 with a grade of C- or better.

CSC 357 Systems Programming (4) (Also listed as CPE 357)
C programming language from a system programming perspective. Standard C language including operators, I/O functions, and data types in the context of system functions. Unix commands, shell scripting, file system, editors. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103 with a grade of C- or better, and either CSC 225 or CSC/CPE 229.

CSC 358 Computer System Administration (2)
Fundamental concepts of Unix system administration. Use of shell scripts and utilities. Techniques of networks and data communications. Methods of system maintenance and accounting. 2 seminars. Prerequisite: CSC/CPE 103 or permission of instructor.

CSC 361 File Structures (4)
External storage devices. Character, record, and block I/O. Blocking and buffering. File structures: sequential, indexed sequential, B trees, hashing, multi-key and linked. Primary and secondary indexing. Design and implementation of record and object storage managers. Data compression. Multi-media file formats. 4 lectures. Prerequisite: CSC/CPE 103, with a grade of C- or better.

CSC 365 Introduction to Database Systems (4) (Also listed as CPE 365)
Basic principles of database management systems (DBMS) and of DBMS application development. DBMS objectives, systems architecture, database models with emphasis on Entity-Relationship and Relational models, data definition and manipulation languages, the Structured Query Language (SQL), database design, application development tools. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103.

CSC 366 Database Modeling, Design and Implementation (4) (Also listed as CPE 366)

CSC 369 Distributed Computing I (4) (Also listed as CPE 369)
Introduction to distributed computing paradigms and protocols; interprocess communications, group communications, the client-server model, distributed objects, and Internet protocols. Emphasis on distributed software above the operating system and network layers. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 357 or CSC/CPE 353.

CSC 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.
CSC 402 Software Requirements Engineering (4)
(Also listed as CPE 402)
Software requirements elicitation, analysis and documentation. Team process infrastructure and resource estimation to support appropriate levels of quality. Software architectural design. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 307 or CSC/CPE 309; CSC/CPE 305.

CSC 405 Software Construction (4)
(Also listed as CPE 405)
Design and construction of sizeable software products. Technical management of software development teams. Software development process models, software design, documentation, quality assurance during development, software unit and integration testing; CASE tools, development environments, test tools, configuration management. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 402.

CSC 406 Software Deployment (4)
(Also listed as CPE 406)
Deployment of a sizeable software product by a student team. Software maintenance and deployment economic issues. Management of deployed software: version control, defect tracking and technical support. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 405.

CSC 409 Current Topics in Software Engineering (4)
(Also listed as CPE 409)
Selected topics in software engineering. Topics may include program generation, quality assurance, formal methods, software metrics, design methods, testing, or software development processes. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 309 or CSC/CPE 307.

CSC 416 Autonomous Mobile Robotics (4)
(Also listed as CPE 416)
Theory and application of concepts relevant to autonomous mobile robots. Sensor and actuator interfacing, programming mobile robots, mobile robot configurations, software architectures and algorithms. 3 lectures, 1 laboratory. Prerequisite: CPE/EE 329 or both CSC/CPE 315 and CSC/CPE 357 or consent of instructor.

CSC 430 Programming Languages I (4)
(Also listed as CPE 430)
Construction of the front end of a compiler including lexical analysis, syntactic analysis, type checking, and formal semantics. Introduction to regular languages, finite automata, and context-free grammars. 3 lectures, 1 laboratory. Prerequisite: CSC 349 and either CSC/CPE 357 or CSC/CPE 353.

CSC 431 Programming Languages II (4)
(Also listed as CPE 431)
Language principles and design issues: bindings, conversion, parameter passing, and dynamic semantics. Language implementation: intermediate code representation, memory management, code optimization, and code generation. Functional programming languages. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 430.

CSC 435 Introduction to Object Oriented Design Using Graphical User Interfaces (4)
(Also listed as CPE 435)
Principles of object-oriented design, with emphasis on use of these principles in the design of graphical interfaces. Comparison and contrasting of two major object-oriented languages and their corresponding GUI class libraries. Language-independent object-oriented design methods, and application of these methods in the construction of a GUI-based project. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103, with a grade of C- or better, or equivalent and CSC/CPE 305.

CSC 445 Theory of Computation I (4)
Theory of formal languages and automata. Turing machines. Chomsky hierarchy. Theory of decidability and computability. 4 lectures. Prerequisite: CSC 141 and CSC/CPE 430.

CSC 448 Bioinformatics Algorithms (4)
(Also listed as CPE 448)
Introduction to the use of computers to solve problems in molecular biology. The algorithms, languages, and databases important in determining and analyzing nucleic and protein sequences and their structure. 3 lectures, 1 laboratory. Prerequisite: Consent of instructor or the following: CSC/CPE 103, with a grade of C- or better, or BIO 447 and senior standing.

CSC 449 Current Topics in Algorithms (4)
(Also listed as CPE 449)
Selected aspects of the verification, analysis and design of algorithms. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 lectures, 1 laboratory. Prerequisite: CSC 349.

CSC 453 Introduction to Operating Systems (4)
(Also listed as CPE 453)
Introduction to sequential and multiprogramming operating systems; kernel calls, interrupt service mechanisms, scheduling, files and protection mechanisms, conventional machine attributes that apply to operating system implementation, virtual memory management, and I/O control systems. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 305 or both CSC/CPE 315 and CSC/CPE 357.

CSC 454 Implementation of Operating Systems (4)
(Also listed as CPE 454)
Design and implementation of multiprogramming kernels, systems programming methodology, interprocess communications, synchronization, device drivers and network access methods. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 453.

CSC 456 Introduction to Computer Security (4)
(Also listed as CPE 456)
Survey of topics in computer system and network security, including protection, access control, distributed access control, operating system security, applied cryptography, network security, firewalls, secure coding practices, and case studies from real-world systems. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 453 and either CSC 300 or CPE 350.

CSC 458 Current Topics in Computer Systems (4)
(Also listed as CPE 458)
Selected aspects of design, implementation and analysis of networks, advanced operating and distributed systems. Topics may include process management, virtual memory, process communication, context switching, file system designs, persistent objects, process and data migration, load balancing, security and networks. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 453.

CSC 464 Introduction to Computer Networks (4)
(Also listed as CPE 464)
Computer network architectures; communications protocol standards; services provided by the network; historical and current examples presented. 3 lectures, 1 laboratory. Prerequisite: STAT 312 or STAT 321 or STAT 350 and either CSC/CPE 357 or CSC/CPE 305.

CSC 465 Advanced Computer Networks (4)
(Also listed as CPE 465)
Advanced topics in computer networks; greater detail of protocol standards and services provided by the network; focus on current industry and research topics. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 464 and CSC/CPE 453.

CSC 468 Database Management Systems Implementation (4)
(Also listed as CPE 468)
Data structures and algorithms used in the implementation of database systems. Implementation of data and transaction managers: access methods interfaces, concurrency control and recovery, query processors and optimizers. Introduction to implementation of distributed database systems. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 365.

CSC 469 Distributed Computing II (4)
(Also listed as CPE 469)
Continued exploration of topics in distributed computing in greater depth, with emphasis on design patterns and team projects. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 369.

CSC 471 Introduction to Computer Graphics (4)
(Also listed as CPE 471)
Graphics software development and use of APIs for 3D graphics. The graphics pipeline, modeling, geometric and viewing transforms, lighting and shading, rendering, interaction techniques and graphics hardware. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 353 or CSC/CPE 357.

2007-2009 Cal Poly Catalog
CSC 473 Advanced Rendering Techniques (4)
(Also listed as CPE 473)
Illumination models, reflectance, absorption, emittance, Gouraud shading, Phong shading, raytracing polyhedra and other modeling primitives, coherence, acceleration methods, radiosity, form factors, advanced algorithms. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 471.

CSC 474 Computer Animation (4) (Also listed as CPE 474)
Basic and advanced algorithms for generating sequences of synthetic images. Interpolation in time and space, procedural and keyframe animation, particle systems, dynamics and inverse kinematics, morphing and video. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 471.

CSC 476 Real-Time 3D Computer Graphics Software (4)
(Also listed as CPE 476)
Basic and advanced algorithms for real-time, interactive, 3D graphics software. Modeling (polygon mesh, height field, scene graph), real-time rendering and shading (visibility processing, LOD, texture and light maps), collision detection (bounding volumes, complexity management), interactive controls, multi-player game technology, game engine architecture. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 471.

CSC 478 Current Topics in Computer Graphics (4)
(Also listed as CPE 478)
Selected aspects of the design, implementation and analysis of computer graphics. Topics may include rendering, modeling, visualization, animation, virtual reality, computer vision, multimedia, and perception issues. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 471.

CSC 479 Computer Graphics Seminar (2)
Current topics in computer graphics. Total credit limited to 4 units. 2 seminars. Prerequisite: CSC/CPE 471.

CSC 480 Artificial Intelligence (4) (Also listed as CPE 480)
Programs and techniques that characterize artificial intelligence. Programming in a high level language. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 103, with a grade of C- or better.

CSC 481 Knowledge Based Systems (4) (Also listed as CPE 481)
In-depth treatment of knowledge representation, utilization and acquisition in a programming environment. Emphasis on the use of domain-specific knowledge to obtain expert performance in programs. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 480.

CSC 483 Current Topics in Human-Computer Interaction (4)
(Also listed as CPE 483)
Selected aspects of the field of human-computer interaction. Topics may include dynamic information visualization, universal access, social impact of technology usage, educational technology, human cognition and performance studies, and extended usability evaluation techniques. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 484.

CSC 484 User-Centered Interface Design and Development (4)
(Also listed as CPE 484)
Introduction to the importance of user-centered principles in the design of good interfaces and effective human-computer interaction. Topics include: study of human characteristics affected by interface design, effective requirements data collection and analysis, user-centered approaches to software engineering, and evaluation of interface and interaction quality. 3 lectures, 1 laboratory. Prerequisite: Junior standing and CSC/CPE 307 or CSC/CPE 308.

CSC 486 Human–Computer Interaction Theory and Design (4)
Application of the theories of human-computer interaction to the task of user-centered design. Survey of techniques for studying and involving users in different aspects of the design process, and demonstration of where and when applicable. Combining of theoretical understanding with practical experience to design solutions to problems facing interactive systems designers. 4 seminars. Prerequisite: CSC/CPE 484.
CSC 520 Computer Architecture (4) (Also listed as CPE 520)
Comparative study and design of multiprocessor, dataflow, RISC, high level language and other new computer architectures. VLSI processor design techniques. 3 seminars, 1 laboratory. Prerequisite: CSC/CPE 315 and graduate standing, or consent of instructor.

CSC 530 Languages and Translators (4)
Advanced programming language and translator concepts. Language concepts to be covered will be selected from current state-of-the-art languages and current issues in language design. Compiler concepts will include re-targetable code generation, use of translator-writing systems, and error recovery. 4 seminars. Prerequisite: CSC 430 and graduate standing, or consent of instructor.

CSC 540 Theory of Computation II (4)
Advanced topics in theoretical computer science from such areas as automata theory, cellular automata theory, computational complexity, and program verification. 4 seminars. Prerequisite: CSC 445 and graduate standing, or consent of instructor.

CSC 541 Numerical Methods (4)
Introduction to advanced methods used in numerical analysis. Finite element methods for one and two-dimensional problems. Study of transforms including the Fast Fourier Transform and the Fast Hartley Transform. Review of the software supporting these methods. 4 seminars. Prerequisite: CSC 342 and graduate standing, or consent of instructor.

CSC 550 Operating Systems (4)
General concepts of computer architecture and operating systems. Design features of advanced computers, general time-sharing systems and schemes for dynamic memory allocation, scheduling and protection. Dynamic linkage between subroutines. Intercommunication between input/output and processors. 4 seminars. Prerequisite: CSC/CPE 453 and graduate standing, or consent of instructor.

CSC 560 Database Systems (4)
Current topics in database systems: distributed databases and transactions, nested and long-running transactions, distributed concurrency control, semantic and object-oriented data models, database systems for non-traditional applications: engineering design databases, active, logic, temporal, multi-media, and real-time databases. 4 seminars. Prerequisite: CSC/CPE 468 and graduate standing, or consent of instructor.

CSC 564 Computer Networks: Research Topics (4) (Also listed as CPE 564)
Exploration of advanced topics in emerging computer networking technologies; focus on leading edge computer network research topics. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 464 and graduate standing, or consent of instructor.

CSC 568 Distributed Systems (4)
Advanced topics in distributed systems with emphasis on recent and emerging distributed computing paradigms, fault tolerance, and distributed algorithms. 4 seminars. Prerequisite: CSC/CPE 369 or CSC/CPE 569 and graduate standing, or consent of instructor.

CSC 569 Distributed Computing (4) (Also listed as CPE 569)
Principles and practices in distributed computing: interprocess communications, group communications, client-server model, distributed objects, message queue system, distributed services, mobile agents, object space, Internet protocols. Distributed algorithms: consensus protocols, global state protocols. Fault tolerance: classification of faults, replication. Not open to students with credit in CSC/CPE 369 or CSC/CPE 469. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 357 or CSC/CPE 353 and graduate standing, or consent of instructor.

CSC 570 Current Topics in Computer Science (2-4)
Directed group study of selected topics for graduate students. Topics will normally consist of continuations of those in CSC 520, CSC 530, CSC 540, CSC 550, CSC 560 and CSC 580, and other topics as needed. The Schedule of Classes will list topic selected. Topic credit limited to 12 units. 2 to 4 seminars. Prerequisite: Graduate standing and evidence of satisfactory preparation in computer science.

CSC 572 Computer Graphics (4) (Also listed as CPE 572)
Advanced topics in computer graphics with emphasis on leading edge computer graphics technologies and advanced topics in graphics fundamentals. 3 lectures, 1 laboratory. Prerequisite: Successful completion of CSC/CPE 471 and graduate standing, or consent of instructor.

CSC 580 Artificial Intelligence (4) (Also listed as CPE 580)
Current research in the field of artificial intelligence with emphasis on cooperative agents, distributed agents, and decision making in complex, concurrent environments. AI programming in a distributed environment. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 481 and graduate standing, or consent of instructor.

CSC 581 Computer Support for Knowledge Management (4) (Also listed as CPE 581)
Use methods and techniques that computer-based systems can provide to make the management of knowledge and information in digital form easier for the user. Emphasis on support for knowledge-intensive activities performed by users. 3 lectures, 1 laboratory. Prerequisite: CSC/CPE 481.

CSC 590 Seminar in Computer Science (3)
Current problems and research in the field of computer science through discussions and selected readings. Group study of selected advanced topics. 3 seminars. Prerequisite: Graduate standing or consent of instructor.

CSC 593 Cooperative Education Experience (2) (CR/NC)
Advanced study analysis and part-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

CSC 594 Cooperative Education Experience (6) (CR/NC)
Advanced study analysis and full-time work experience in student’s career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

CSC 595 Cooperative Education Experience (12) (CR/NC)
Advanced study analysis and full-time work experience in student’s career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. A fully-developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

CSC 599 Thesis/Project (2-3) (2-3)
Individual research or activity under faculty supervision leading to an acceptable thesis or project. Prerequisite: Graduate standing and consent of instructor.

DANC—DANCE

DANC 130 Pilates/Physicalmind Conditioning Method (2)
Introduction to Joseph Pilates Physicalmind conditioning method, providing the ideal physical fitness for the attainment and maintenance of a uniformly developed body and sound mind. Total credit limited to 6 units. 2 activities.

DANC 131 Beginning Ballet (2)
Fundamentals of ballet technique stressing alignment, turn-out, five basic positions, seven movements of dance, and terminology. Total credit limited to 6 units. 2 activities.

DANC 132 Beginning Modern Dance (2)
Fundamentals of modern technique stressing alignment, off-centered use of torso, floorwork, movement phrases, and improvisation exercises. Total credit limited to 6 units. 2 activities.

2007-2009 Cal Poly Catalog
DANC 133 Beginning Jazz Dance (2)
Introduction of jazz dance techniques stressing a variety of styles, alignment, isolation, polyrhythms, syncopation, improvisation, and phrasing. Performance technique and presentation of simple dance phrases. Total credit limited to 6 units. 2 activities.

DANC 134 Beginning Ballroom Dance (2)
Selected ballroom dances including the cha-cha, foxtrot, merengue, rumba, samba, swing, tango, waltz, and line dance hustle. Emphasis on alignment, etiquette, leading and following, performance techniques, and presentation of simple dance phrases. Total credit limited to 6 units. 2 activities.

DANC 135 International Folk Dance (2)
Introduction to international folk dances including round, longway, and square sets. Study of various dance steps, formation, positions, historical and cultural background. Total credit limited to 6 units. 2 activities.

DANC 139 Beginning Tap (2)
Introduction to tap dance technique stressing rhythms and breaks, syncopation, and improvisation. Study of different tap styles and related cultural influences. Performance of beginning tap dance phrases. Total credit limited to 6 units. 2 activities.

DANC 211 Dance Fundamentals (2)
Body placement, alignment, rhythmic analysis and movement techniques. Theory and practice of fundamentals to promote ease and efficiency of movement. Introduction to dance forms such as ballet, modern, jazz, folk, square and social. 2 activities.

DANC 211 Dance Appreciation (4)
Diverse dance forms. Focus on major western dance artists and their works from the 19th century to the present. Cultural context, style and forms in dance. Introductory survey of major experiments in dance. 4 lectures.

DANC 231 Intermediate Ballet (2)
Continuation of training in basic technical skills in ballet stressing phrasing, performance, and more complex step patterns. Total credit limited to 6 units. 2 activities. Prerequisite: Intermediate level experience as determined by instructor at first class meeting.

DANC 232 Intermediate Modern Dance (2)
Continuing study of DANC 132 with emphasis on various movement styles, phrasing, more complex step patterns, and performance. Total credit limited to 6 units. 2 activities. Prerequisite: Intermediate level experience as determined by instructor at first class meeting.

DANC 233 Intermediate Jazz Dance (2)
Continuation of DANC 133 with emphasis on more extensive movement vocabulary. Total credit limited to 6 units. 2 activities. Prerequisite: Intermediate level experience as determined by instructor at first class meeting.

DANC 234 Intermediate Ballroom Dance (2)
Continuation of DANC 134. Selected ballroom dances: cha cha, foxtrot, merengue, rumba, swing, tango, hustle, paso doble, polka and samba. Emphasis on variations, styles, and performance skill. Total credit limited to 6 units. 2 activities. Prerequisite: DANC 134 or intermediate level experience as determined by instructor at first class meeting.

DANC 311 Dance in American Musical Theatre (4)
Cultural norms portrayed through dance and musical production. Major works with multicultural, racial, class, and gender issues associated with American themes. The artists, the role of dance in the musical theatre, and the significance of dance in human society. 4 lectures. Prerequisite: Completion of GE Area A and one course in Area C3. Theatre Arts majors will not receive GE C4 credit.

DANC 321 Cultural Influence on Dance in America (4)
A multicultural approach to the history of dance in America, with emphasis on American Indian, West African, Caribbean, Mexican, European, and Asian contributions and influences. Explores culture through dance in lecture, readings, video samples, and written observations of dance performance. Purchase of concert ticket(s) required. 4 lectures. Prerequisite: Completion of GE Area A and one lower division Area C course. Theatre Arts majors will not receive GE C4 credit.

DANC 331 Advanced Ballet and Repertory (2)
Advanced ballet technique and reconstruction of historical ballet repertories from the romantic, classical, neoclassical, and modern periods. Participation in dance performance of selected repertory. Total credit limited to 6 units. 2 activities. Prerequisite: DANC 231 or intermediate level experience as determined by instructor at first class meeting.

DANC 332 Modern Dance Repertory (2)
Intermediate to advanced dance skills learned through the study and performance of selected modern dance repertory. Addresses problems in advanced performance technique. Informal presentation in performance situation. Total credit limited to 6 units. 2 activities. Prerequisite: Intermediate level experience as determined by instructor at first class meeting.

DANC 340 Dance Composition (4)
Principles of dance composition. Exploration of the creative potential of movement and development of movement motifs through choreographic studies. Preparation for informal public presentation of student generated solo or group choreographic works. Total credit limited to 8 units. 1 lecture, 1 laboratory, 2 activities. Prerequisite: Intermediate level experience as determined by instructor at first class meeting.

DANC 345 Choreography and Workshop in Dance Concert Preparation (4)
Problems connected with dance choreography. Workshop in concert preparation for major public dance production. Attendance of professional dance concert required. Attendance of professional dance concert(s) required. Total credit limited to 16 units. 2 activities, 2 laboratories. Prerequisite: By audition only.

DANC 346 Dance Production (4)
Directed experience in production of annual Orchesis Dance Company Concert and other public performances. Attendance of professional dance concert(s) required. Total credit limited to 16 units. 1 activity, 3 laboratories. Prerequisite: DANC 345.

DANC 381 Dance for KINE/Dance Minors (4)
Dance skills and techniques. Experience in selected dance forms. Rhythmic structure and analysis of dance steps. Includes introduction to dance pedagogy, curricular materials and evaluative procedures. 2 lectures, 2 activities. Prerequisite: KINE 419 or KINE 310, Dance Minor or consent of instructor.

DANC 400 Special Problems for Advanced Undergraduates (1-4)
Individual investigation, research and studies or survey of selected problems in dance and related areas. Total credit limited to 8 units with a maximum of 4 units per quarter. Prerequisite: Consent of instructor and department head.

DANC 470 Selected Advanced Topics (1-4)
Directed study of selected topics for advanced dance students. The Schedule of Classes will list topics selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

DANC 471 Selected Advanced Laboratory (1-4)
Directed group laboratory study of selected topics for dance students. The Schedule of Classes will list topics selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Consent of instructor.

DSCI–DAIRY SCIENCE

DSCI 100 Enterprise Project (1–4) (CR/NC)
Selection and completion of a management/production project under faculty supervision. Project participation is subject to approval by the project supervisor and the Cal Poly Corporation. Degree credit limited to 12 units. Credit/No Credit grading only.
DSCI 101 Dairy Feeds and Feeding (4)
Introduction to Dairy Cattle/Ruminant Nutrition. Classification and metabolism of nutrients. Nutrient content and identification of feeds common to dairy cattle. Nutrient analysis procedures and requirements. Ration formulation, feeding practices for maximizing growth and milk production. 3 lectures, 1 laboratory.

DSCI 121 Elements of Dairying (4)
General information on statistics and opportunities in the dairy industry. Dairy cattle record keeping systems and their use in dairy herds. Principles of reproduction management, milking and milking machine function. Principles and practices of the feeding and management of dairy cattle. 3 lectures, 1 laboratory.

DSCI 123 Dairy Science Orientation (1) (CR/NC)
Curricula, career paths, and opportunities for involvement in the dairy industry. Campus resources and tips for academic success. Student and professional organizations and affiliations. Meet and interact with each member of the faculty, Dairy Club officers, and industry guests. Credit/No Credit grading only. 1 lecture.

DSCI 134 Introduction to Dairy Products Technology (4)
Science and technology in the development and manufacture of dairy food products. Equipment and dairy processing techniques for fluid milk, butter, cheeses, ice cream, yogurt, concentrated dairy foods and dried dairy foods. 3 lectures, 1 laboratory.

DSCI 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.

DSCI 202 Dairy Promotion and Marketing (4)
National and state dairy promotional programs, advertising and merchandising. Marketing and pricing of milk and dairy products at the state and national level. 4 lectures. Prerequisite: DSCI 134 or consent of instructor.

DSCI 223 Frozen Dairy Foods (4)
Technology, equipment, mix calculations and preparation required to process, freeze, package, harden and distribute ice cream and related products. 3 lectures, 1 laboratory. Prerequisite: DSCI 134.

DSCI 230 General Dairy Husbandry (4)
Selection, breeding, feeding, and management of dairy cattle. Composition and food value of dairy products. Milk pricing, political influences, dairy industry statistics and opportunities. Producing and handling products. Intended as introductory course for non-dairy science majors. 3 lectures, 1 laboratory.

DSCI 231 General Dairy Manufacturing (4)
Composition and properties of fluid milk and manufactured milk products. Chemistry and microbiology of dairy products. Processes and equipment involved in the manufacture of butter, cheeses, and other fermented dairy products, frozen, condensed, and dried dairy foods. Intended as introductory course for non-dairy science students. Survey course for dairy husbandry majors. 3 lectures, 1 laboratory.

DSCI 233 Milk Processing and Inspection (4)
Composition and properties of fluid milk and its constituents. Equipment used to handle, process, and distribute fluid milk and related products. California dairy codes used for dairy farms and plants, with practice inspections of dairy farms and factories. 3 lectures, 1 laboratory. Prerequisite: DSCI 134.

DSCI 234 Dairy Foods Evaluation (2)
Basic principles of sensory evaluation of dairy foods, physiology of various senses and their relationship to distinguishing the quality of dairy products by sight, flavor, body and texture. Product defects, causes, and methods of prevention. 1 lecture, 1 laboratory.

DSCI 241 Dairy Cattle Selection, Breeds, Fitting and Showing (4)
Selection of dairy cattle on type conformation and the correlation between type and production. Dairy cattle breeds and breed comparisons. Techniques to properly condition, groom and present dairy cattle for evaluation and merchandising. 2 lectures, 2 activities. Prerequisite: DSCI 121 or DSCI 230.

DSCI 301 Dairy Cattle Nutrition (4)
Principles of dairy cattle nutrition and management and their application to economical feeding practices and computerized ration formulation. 3 lectures, 1 activity. Prerequisite: DSCI 101 and DSCI 121 or DSCI 230.

DSCI 321 Lactation Physiology (4)
Mechanisms of milk component secretion, including protein, lactose and fat metabolism. Disorders of the mammary gland (mastitis) and control strategies. Endocrine aspects of mammary gland development and lactogenesis. 4 lectures. Prerequisite: DSCI 101, DSCI 121, BIO 161, CHEM 111.

DSCI 330 Artificial Insemination and Embryo Biotechnology (4)
Techniques in the collection, evaluation and processing of semen, along with embryo culturing and manipulation. Insemination procedures, fertility problems, record keeping, estrous synchronization, endocrine control of reproduction, treating reproductive disorders and embryo transfer. 3 lectures, 1 laboratory. Prerequisite: DSCI 121 or DSCI 230 or VS 223 or consent of instructor.

DSCI 333 Dairy Cattle Management, Safety and Animal Well-Being (4)
Modern dairy management techniques, livestock handling and animal comfort. Dairy safety and development of an injury illness prevention program. Animal well-being issues and the Pasteurized Milk Ordinance. 3 lectures, 1 activity. Prerequisite: DSCI 121 or DSCI 230.

DSCI 339 Internship in Dairy Science (1–12) (CR/NC)
Selected Dairy Science students will spend up to 12 weeks with an approved agricultural firm engaged in production or related business. Time will be spent applying and developing production and managerial skills and abilities. One unit of credit may be allowed for each full week of completed and reported internship. Degree credit limited to 12 units. Credit/No Credit grading only. Prerequisite: Consent of internship instructor.

DSCI 350 Dairy Industry Communications (2)
Application of information and computer technology to creation of dairy publications. Exploration of Web resources for dairy-related current events and information. Financial, promotional, creative and technical aspects of producing dairy brochures, catalogs, annuals and pamphlets. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: DSCI 134.

DSCI 351 Dairy Co-Products and Drying (2)
Composition and properties of fluid milk and manufactured dairy products. Equipment and dairy processing techniques for fluid milk, butter, cheeses, ice cream, yogurt, concentrated dairy foods and dried dairy foods. 3 lectures, 1 laboratory. Prerequisite: DSCI 121 or DSCI 230.

DSCI 379 Dairy Foods (4)
Introduction to dairy products technology. 3 lectures, 1 laboratory.

DSCI 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.

DSCI 401 Physical and Chemical Properties of Dairy Products (4)
Composition, structure and properties of milk and milk products. Physical and chemical changes that occur during processing and storage of dairy products. Objective measurement of chemical and physical properties. 3 lectures, 1 laboratory. Prerequisite: CHEM 212/312 or consent of instructor.

DSCI 402 Quality Assurance and Control of Dairy Products (4)
Current methods used to evaluate dairy products with respect to plant economics and consumer safety. Accurate procedures for chemical and biological testing, statistical approach to sampling and design and interpretation of HACCP programs for assuring product quality and safety. 3 lectures, 1 laboratory. Prerequisite: DSCI 235 and MICRO 221, STAT 130 or STAT 218.

DSCI 412 Dairy Farm Consultation (4)
Student consultation teams of three or four students visit dairies and/or attend management training seminars followed by presenting management recommendations to the dairy owners, consultants, and other industry leaders. 1 seminar and supervised work. Prerequisite: DSCI 121 or DSCI 230, DSCI 330, DSCI 333, junior standing.
DSCI 422 Breeding and Genetics of Dairy Cattle (4)
Evaluation of inherited characteristics in dairy cattle from an economic standpoint. Proving and selecting sires and dams. 4 lectures. Prerequisite: DSCI 241.

DSCI 432 Advanced Dairy Herd Management (4)
Dairy herd management skills needed in dairy operations. Instruction and lab experience in management, records, feeding and nutrition, herd health, milk secretion, reproduction, mating and selection. 4 lectures. Prerequisite: DSCI 301, DSCI 241, DSCI 330, and DSCI 422.

DSCI 433 Dairy Plant Management and Equipment (4)
Basic management principles applied to the dairy industry. Industrial organization and control. Dairy plant design, facilities, layout. Inventory control and records. Milk pooling and stabilization records. Maintenance and operation of equipment. 3 lectures, 1 laboratory. Prerequisite: DSCI 233, DSCI 434.

DSCI 434 Cheese and Fermented Dairy Foods (4)
Scientific methods, ingredients, and equipment used in the manufacture of various fermented dairy products, including cheeses, buttermilk, sour cream, and yogurt. 3 lectures, 1 laboratory. Prerequisite: DSCI 134, MCRO 221.

DSCI 435 Concentration/Fractionation and Butter Technology (4)
Technology of evaporation, drying and membrane separation processes applied to dairy fluids. Design and performance of evaporators, driers, and membrane processing systems. Equipment, ingredients, and methods needed to manufacture butter and dairy spreads. 3 lectures, 1 laboratory. Prerequisite: DSCI 134.

DSCI 444 Dairy Microbiology (4)
Microorganisms involved in the fermentation and ripening processes in the dairy industry, as well as those involved in spoilage of milk and dairy products, in the transmission of disease through these products, and indicator systems used to determine sanitary quality of these products. 2 lectures, 2 laboratories. Prerequisite: DSCI 221 or MCRO 224.

DSCI 461 Senior Project (3)
Selection and completion of a project under faculty supervision. Projects are typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal written report. 2 lectures and supervised work. Prerequisite: Junior standing.

DSCI 462 Senior Project (2)
Completion of a project under faculty supervision. Project results are presented in a formal written report. Supervised work. Prerequisite: Consent of supervising faculty member.

DSCI 463 Undergraduate Seminar (2)
Reports on student papers, bulletins, periodical articles, and dairy research experiments. Sources of dairy husbandry information. Practice in oral reporting. Recent developments and research work in the dairy industry. 2 seminars.

DSCI 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

DSCI 500 Individual Study in Dairy Science (1–6)
Advanced independent study planned and completed under the direction of a member of the Dairy Science faculty. Total credit limited to 6 units. Prerequisite: Consent of department head, graduate advisor and supervising faculty member.

DSCI 522 Bioseparation Processes in Dairy Product Technology (4)
Physical and chemical principles governing bioseparation processes in dairy product technology. Factors influencing mass transport phenomena as it relates to filtration, chromatography, ion exchange, dialysis, centrifugation, adsorption, crystallization and other unit operations. Laboratories to emphasize application of bioseparations of commercial importance. Field trips to be required. 3 lectures, 1 laboratory. Prerequisite: DSCI 401, FSN 444.

DSCI 539 Graduate Internship in Dairy Science (1–9)
Application of theory to the solution of problems of agricultural production or related business in the field of Dairy Science. Analyze specific management problems and perform general management assignments detailed in a contract between the student, the firm or organization, and the faculty advisor before the internship commences. Degree credit limited to 6 units. Prerequisite: Consent of internship instructor.

DSCI 560 Recent Developments in Dairy Science and Technology (1–3)
Presentation and critical review of current research publications. Methodological advances and applications in dairy food systems. The Schedule of Classes will list topic selected. Total credit limited to 6 units. 1–3 seminars. Prerequisite: Senior or graduate standing and approval of instructor.

DSCI 570 Selected Topics in Dairy Science (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1 to 4 seminars. Prerequisite: Graduate standing or consent of instructor.

DSCI 571 Selected Advanced Laboratory in Dairy Science (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Consent of instructor.

DSCI 581 Graduate Seminar in Dairy Science (1–3) (CR/NC)
Current findings and research problems in the field and their application to industry. Group study of current problems of industry. Current experimental and research findings as applied to production and marketing. Credit/No Credit grading only. 1 or 3 seminars. Credit/No credit grading only. Prerequisite: Graduate standing or consent of instructor.

DSCI 585 Cooperative Education Experience in Dairy Science (1–6) (CR/NC)
Advanced study, analysis and part-time work experience in the field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Total credit limited to 9 units. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

DSCI 599 Thesis in Dairy Science (1–9)
Systematic research of a significant problem in Dairy Science. Thesis will include problem identification, significance, methods, data analysis, and conclusion. Students must enroll every quarter in which facilities are used or advised. Degree credit limited to 6 units. Prerequisite: Graduate standing and consent of instructor.

ECON—ECONOMICS

ECON 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Sophomore standing and consent of department head.

ECON 201 Survey of Economics (4) (Also listed as HNRS 201) (GE D2)
Basic principles of microeconomics and macroeconomics. Emphasis on applications to current national and global economic issues. For majors requiring one quarter of economics. Not open to students having previous credit in ECON 222 or equivalent. 4 lectures.

ECON 221 Microeconomics (4)
Microeconomic principles. Marginal and equilibrium analysis of commodity and factor markets in determination of price and output. Normative issues of efficiency and equity. 4 lectures.

2007-2009 Cal Poly Catalog
ECON 222 Macroeconomics (4) GE D2

ECON 303 Economics of Poverty, Discrimination and Immigration (4) (Also listed as HNRS 303) GE D5 USCP
Economic analysis of the cause, extent and impact of poverty, discrimination and immigration and of the policies designed to address these socioeconomic issues. Emphasis on the experience of African-Americans, Latinos, and women in the United States. 4 lectures. Prerequisite: Completion of GE Areas A, D1, and either ECON 221 and ECON 222, or ECON 201. Economics majors will not receive GE Area D5 credit.

ECON 304 Comparative Economic Systems (4) GE D5
Analysis of economic systems as a set of mechanisms and institutions for decision making, and the implementation of decisions regarding income distribution, the levels of consumption and production, and the level of economic welfare. 4 lectures. Prerequisite: Completion of GE Areas A, D3, and either ECON 221 and ECON 222, or ECON 201. Economics majors will not receive GE Area D5 credit.

ECON 311 Intermediate Microeconomics (4)
Economics of prices and markets. Demand and supply. Returns and costs, factor pricing and income distribution, welfare and economic progress. 4 lectures. Prerequisite: MATH 142 or MATH 221, and STAT 252 or STAT 302, and either ECON 221 and ECON 222, or ECON 201. Economics majors will not receive GE Area D5 credit.

ECON 313 Intermediate Macroeconomics (4)
Analysis of national income, price level, employment, international trade and economic growth. Development of the theory of national income determination. Evaluation of roles of monetary and fiscal policy. 4 lectures. Prerequisite: ECON 311.

ECON 322 Economic History of the Advanced World (4) GE D5
Analysis of the growth of economic institutions from about 600. Includes the spread of economic structures and institutions to colonies. Analyzes the internal development of the industrial economy in Europe and its expansion to other parts of the globe. 4 lectures. Prerequisite: Completion of GE Areas A, D3, and either ECON 221 and ECON 222, or ECON 201. Economics majors will not receive GE Area D5 credit.

ECON 324 American Economic History (4)
Topical and statistical analysis of the major trends and events of American economic history. Examines the causes and evolution of the United States economy from colonial times to the present. Assessment of agriculture, transportation, industrial and government sectors and their interconnections. 4 lectures. Prerequisite: Completion of GE Areas A, D1, and either ECON 221 and ECON 222, or ECON 201.

ECON 325 Economics of Development and Growth (4)
Analysis of the economy of less developed countries, and a survey of public policies designed to stimulate economic growth and reduce poverty. Topics include financing development, technology, population problems, human capital, rural and urban development, trade policy and the economic relationships between developed and developing nations. 4 lectures. Prerequisite: Completion of GE Areas A, D3, and either ECON 221 and ECON 222, or ECON 201.

ECON 330 International Trade (4) (formerly ECON 401)
Theory of comparative advantage, gains from trade, and recent developments in trade theory; examination of tariffs, quotas, exchange controls, other trade barriers and underlying policy issues; review of U.S. comertonial policy, GATT, the common market, regional and world economic organizations. 4 lectures. Not open to students with credit in ECON 404 or equivalent. Prerequisite: Either ECON 221 and ECON 222, or ECON 201.

ECON 337 Money, Banking and Credit (4)
Financial markets and institutions. Structure of the banking industry and impacts of technological change in banking. Structure and operations of the Federal Reserve. Impacts of monetary policy on the economy. 4 lectures. Prerequisite: Either ECON 221 and ECON 222, or ECON 201.

ECON 339 Econometrics (4)
Application of statistical methods useful in economics. General linear regression model. Specific issues and problems related to economic models: multicollinearity, autocorrelation, heteroscedasticity, dummy variables, lagged variables, and simultaneous equation estimation. Application and evaluation of selected examples of empirical economic research. Microcomputer applications. 3 lectures, 1 activity. Prerequisite: MATH 142 or MATH 221, and STAT 252 or STAT 302, and either ECON 221 and ECON 222, or ECON 201, or consent of instructor.

ECON 340 Advanced Econometrics (4)
Advanced topics in undergraduate econometrics. Single equation estimation topics including: distributed lag models, causality, cointegration and error correction models and nonlinear estimation. Forecasting with a single equation model. Simultaneous equation estimation, including instrumental variables, two stage least squares and seemingly unrelated regression. 3 lectures, 1 activity. Prerequisite: ECON 339.

ECON 400 Special Problems for Advanced Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units. Prerequisite: Consent of department head.

ECON 403 Industrial Organization (4)
Application of basic tools of economics to American Industry. Case studies of individual firms and industries. Performance of various business structures, such as monopoly and oligopoly. Effects of government regulation and antitrust policy. 4 lectures. Prerequisite: ECON 311 or consent of instructor.

ECON 404 International Trade Theory (4)
Theory of comparative advantage, neoclassical model of trade, offer curves and terms of trade, edgeworth boxes, valuation of factor inputs, effects of migration and mobility of funds, emerging growth and trade distortions, welfare effects of trade, and recent developments in trade theory. 4 lectures. Prerequisite: ECON 311 or consent of instructor.

ECON 405 International Monetary Economics (4)
Nature of international payments, U.S. balance of payments. Theory and practice of foreign exchange rate determination under the gold standard, paper standard, and IMF system; international money and capital markets; problems of international liquidity and monetary stability. 4 lectures. Prerequisite: ECON 311 and ECON 404, or consent of instructor.

ECON 406 Applied Forecasting (4)
Causes and measurement of business fluctuations. Techniques of forecasting with microcomputer applications. 3 lectures, 1 activity. Prerequisite: ECON 311 and ECON 339, or consent of instructor.

ECON 408 Mathematical Economics (4) (formerly ECON 310)
Applications of quantitative techniques to topics in microeconomic and macroeconomic theory. Use of multivariate calculus and linear algebra in formulating static economic models. Applications of statistical inference, estimation and forecasting in economic models. 4 lectures. Prerequisite: ECON 313, or consent of instructor.

ECON 410 Public Finance and Cost-Benefit Analysis (4)
Principles of rational decision making with respect to government revenues and spending. Measurement of costs and benefits, and criterion selection. Taxation, user fees, deficit financing, public goods, neighborhood effects and zoning. Microcomputer applications. 4 lectures. Prerequisite: ECON 311, or consent of instructor.

ECON 413 Labor Economics (4)
Wage determination theory, basic economic factors that affect the labor movement, economic impact of union activities on employment, output, income, wages, prices, and national economic policy. 4 lectures. Prerequisite: ECON 311, or consent of instructor.

ECON 417 Development of Economic Analysis (4)
Analysis of ideas related to the development of economic theory in the Western civilization from the Greeks through the classical, neoclassical,
and Keynesian to the current post-Keynesian concepts. 4 lectures.

Prerequisite: ECON 311, or consent of instructor.

ECON 420 Advanced Macroeconomics (4)
Macroeconomics for advanced students. Inflation, unemployment, interest rates, real output, exchange rates, business cycles and macroeconomic policy. Analysis of current data on the macro-economy within the scope of competing views on the macro-economy. 4 lectures. Prerequisite: ECON 313, or consent of instructor.

ECON 424 Monetary Economics (4)
The role of money in our economy. Focus on the links between monetary policy, interest rates, prices, housing markets, mortgage lending and overall economic activity. Public policy issues relating to real estate markets. 4 lectures. Prerequisite: ECON 311, or consent of instructor.

ECON 430 Internship (2–8) (CR/NC)
Placement of student for part-time supervised work experience in a business enterprise or government agency approved by the area chair. Collateral reading correlated with work assignments and periodic written progress reports required. Credit/No Credit grading only. Prerequisite: approval of area chair, junior standing, and a CPSLO cumulative GPA of at least 2.5 without being on academic probation.

ECON 431 Environmental Economics (4)
Economic dimensions of environmental abuse and protection. Use of simple economic models in developing and evaluating environmental policies. Overview of current environmental problems. Issues related to the sustainability of economic growth at the national and international levels. 4 lectures. Prerequisite: ECON 311, or consent of instructor.

ECON 432 Economics of Energy and Resources (4)
Economic theory and public policies as applied to problems of natural resources and energy. Dynamic resource and energy models developed with reference to public and private sector growth. Application of the principles of capital theory emphasized. Case studies. Computer software applications in the study of natural resources and energy under uncertainty. 4 lectures. Prerequisite: ECON 311, or consent of instructor.

ECON 433 Transportation Economics (4)
Analysis of the allocation of resources to the U.S. transport sector and specific transport modes as a result of their natural economic characteristics and public policy. 4 lectures. Prerequisite: ECON 311, or consent of instructor.

ECON 434 Urban Economics (4)
Application of basic tools of economic analysis to problems of urban regions. Causes and possible cures for inadequate growth rate, income levels, and the quality of life in urban regions. 4 lectures. Prerequisite: ECON 311, or consent of instructor.

ECON 435 Economics of Land and Water (4)
Economic analysis of natural resource issues, policies and management with an emphasis on land and water use decisions in the western U.S. Urban demand for water; water supply and economic growth; economic impacts of surface water law and institutions; economics of land management. 4 lectures. Prerequisite: ECON 311, or consent of instructor.

ECON 461, 462 Senior Project I, II (2) (2)
Selection and analysis of a problem under faculty supervision. Problems typical of those which graduates must solve in their fields of employment. Formal report is required. Minimum 120 hours total time. Prerequisite: ECON 313 and senior standing.

ECON 464 Applied Senior Project (4)
Analysis of selected economic topics and problems in directed individual or group-based projects, which require application of economic models, principles and theory to investigate important business, economic or social issues. Formal report required. 4 seminars. Prerequisite: ECON 313 and senior standing.

ECON 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

ECON 500 Independent Study (1–4)
Advanced study planned and completed under the direction of a departmental faculty member. Open only to graduate students demonstrating ability to do independent work. Enrollment by petition. Prerequisite: Consent of department head.

ECON 510 Quantitative Methods (4)
Review and discussion of the basic math tools needed for graduate work in economics, including set theory, linear algebra, properties of functions, static and dynamic optimization. 4 lectures. Prerequisite: ECON 408 or MATH 244 or equivalent, and graduate standing, or consent of instructor.

ECON 511 Microeconomic Analysis (4)
Basic microeconomic theory including theory of the firm, consumer theory, general equilibrium, capital theory, and welfare economics. 4 lectures. Prerequisite: Concurrent with ECON 510 and graduate standing, or consent of instructor.

ECON 520 Advanced Econometrics I (4)
The use of statistical procedures to measure theoretical economic relationships and to verify and reject theories. Advanced coverage of regression analysis and hypothesis testing. 4 lectures. Prerequisite: ECON 339, ECON 511 and graduate standing, or consent of instructor.

ECON 522 Advanced Econometrics II (4)
The use of statistical procedures to deal with simultaneous equations, limited dependent variables and time-series data. Includes methods of instrumental variables, generalized method of moments and maximum likelihood. 4 lectures. Prerequisite: ECON 520 and graduate standing, or consent of instructor.

ECON 532 Environmental and Natural Resource Economics (4)
Economic analysis of pollution, congestion, public good provision, and natural resource conservation. Static and dynamic efficiency, economic growth and sustainability, pollution taxes, marketable permits, and the design of market-based regulations. 4 lectures. Prerequisite: ECON 511 and graduate standing, or consent of instructor.

ECON 534 International Economics (4)
Analysis of the international movement of goods, services, capital and payments. The role of exchange rates, tariffs, quotas, and transport costs. Relationship between international trade and economic growth. 4 lectures. Prerequisite: ECON 511 and graduate standing, or consent of instructor.

ECON 536 Public Economics (4)
Economic analysis of the rationale for public expenditure and taxation. Externalities, pollution and public policy, income redistribution and public welfare, public goods, collective choice and political institutions, public budgeting techniques and cost-benefit analysis, taxation and tax policy, state-local finance and fiscal federalism. 4 lectures. Prerequisite: ECON 511 and graduate standing, or consent of instructor.

ECON 538 Industrial Economics (4)
Economic theories of industrial organization with specific reference to such topics as cartels, market concentration and performance, vertical integration, franchise contracts, ownership and control of firms, multipart and discriminatory pricing, and tie-in sales. Economic aspects of antitrust law and government regulation of industry. 4 lectures. Prerequisite: ECON 511 and graduate standing, or consent of instructor.
ECON 580 Seminar in Economics (1-4)
Advanced topics in economics chosen according to the common interests and needs of the students enrolled. Schedule of Classes will list topic selected. 1-4 seminars. Prerequisite: Graduate standing or consent of instructor.

ECON 599 Thesis (4)
Individual research under the general supervision of the faculty, leading to a graduate thesis of suitable quality. Minimum of 8 units required for degree. Prerequisite: Graduate standing and consent of thesis committee.

EDES—ENVIRONMENTAL DESIGN

EDES 101 Introduction to Architecture and Environmental Design (2) (CR/NC)
Familiarization with the professional fields of architecture, landscape architecture, structural engineering, construction, and city planning. Introduction to the college's programs as they relate to individual aptitudes. The design process. Visiting speakers. Credit/No Credit grading. 2 lectures.

EDES 333 Professional Presentations (4)
Skills and tools for employment acquisition or graduate school admissions. Individual resume design and production. Documentation of personal, professional and academic experience via written, oral and image based systems. Employment interview dynamics. Electronic and hardcopy portfolio production. Internet marketing. 1 lecture, 3 activities. Prerequisite: Third-year standing or permission of instructor.

EDES 350 The Global Environment (4) (Also listed as AG/BUS/ENGR/HUM/SCM/UNIV 350)
Interdisciplinary investigation of how human activities impact the Earth's environment on a global scale. Examination of population, resource use, climate change, and biodiversity from scientific/technical and social/economic/historical/political perspectives. Use of remote sensing maps. Sustainable solutions. 3 lectures, 1 activity. Prerequisite: Completion of GE Areas A and B and junior standing.

EDES 406 Sustainable Environments (4)
Collaboration of interdisciplinary faculty and guest speakers/panelists. Introduction, illustration and analysis of concepts and principles for sustainability to be used in all aspects of environmental design. Integration and application of knowledge of human and natural systems with environmental, social and economic concerns, from a global-to-local perspective. 4 lectures. Prerequisite: Fourth year or graduate standing, or consent of instructor.

EDES 408 Implementing Sustainable Principles (4)
A primarily project-based course, intended to aid students who wish to collaborate with the purpose of implementing sustainability principles by developing tools, process or designs, for community-based projects and proposals at various scales of planning, architecture and design of the human environment to address social, environmental and economic issues. 4 lectures. Prerequisite: EDES 406 or consent of instructor.

EDES 410 Advanced Implementation of Sustainable Principles (4)
Advanced continuation of community-based projects defined and initiated in EDES 408. Ongoing projects, individual and group, address variable scales of planning, architecture, and environmental design, with required completion at the end of the course. 2 seminars and supervised work. Prerequisite: EDES 408.

EDES 420 Historic Preservation and Adaptive Reuse in the Built Environment (4)
Historic preservation, restoration, and rehabilitation issues in the built environment. Focus on the process and issues of preserving cultural heritage through preserving environmental artifacts (i.e., structure and landscape). The importance of preserving historical districts, buildings and landscapes as well as techniques for accomplishing preservation goals within the existing regulatory environments. Total credit limited to 8 units. 2 lectures, 2 seminars. Prerequisite: Any GE Area D course or consent of instructor.

EDES 430 Collaborative Process (3) (Also listed as CM 430)
A comprehensive set of tools and practices that allow for high performance, interdisciplinary collaborative teams to focus on extraordinary outcomes at each step of project development, including planning, design, bidding, permitting, construction and management phases. 3 activities. Prerequisite: Third-year standing or consent of instructor.

EDES 431 Integrated Project Services (3) (Also listed as CM 431)
Overview of project delivery methods with an emphasis on trends in integrated services project delivery. Integrated services entity organization structures, process variations, procurement and selection methodologies. Integration of planning, design and construction efforts to achieve maximum project quality and value. 3 laboratories. Prerequisite: Fourth-year standing.

EDUC—EDUCATION

EDUC 125 First Year Seminar (2) (CR/NC)
Issues associated with the successful transition from high school or community college to Cal Poly. Links fostered between student needs and campus resources. Coverage of academic policies and procedures, university study skills, goal setting, career planning, wellness and other topics relevant to student success. Credit/No Credit grading only. 1 lecture, 1 activity.

EDUC 207 The Learner's Development, Culture and Identity in Educational Settings (4) (Also listed as CD 207)
Theoretical background of child and early adolescent development within diverse cultural settings and implications for the teaching-learning process. Observations of children in everyday settings. 3 lectures, 1 activity. Prerequisite: PSY 201 or PSY 202.

EDUC 300 Introduction to the Teaching Profession (3) (CR/NC)
Supervised observation and participation in cooperating public schools. A minimum of forty-five hours of observation and participation. Discussion focuses on instructional practice and subject matter taught in grades observed, as well as the historical, philosophical, and social foundation of American public education. Total credit limited to 6 units. Credit/No Credit grading only. 2 lectures, 1 activity. Prerequisite: Junior standing or consent of instructor.

EDUC 304 Orientation to the Teaching of Students with Disabilities (2) (CR/NC)
Introduction to the Education Specialist Credential and role of special education in the public school. Required first course in program. Orientation to program and study of self and others, laws and current conditions of special education. Required field observations and activities. 1 seminar, 1 activity, Credit/No Credit grading only. Prerequisite: Acceptance into Level I Special Education Credential Program, and must have fulfilled early field experience requirement.

EDUC 310 Effective Teaching and Classroom Management with a Multicultural Perspective in K-3 and 4-8 Settings (4)
Knowledge, theory, fieldwork and research related to effectively managing, planning, and teaching in K-3 and 4-8 classrooms; connections between preventing discipline problems and choices about curriculum, instruction, and management; creating a positive learning environment for all students. 2 seminars, 2 activities. Prerequisite: Completion of GE Area A.

EDUC 400 Special Problems for Undergraduates (1–4)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 8 units, with a maximum of 4 units per quarter. Prerequisite: Junior standing and consent of instructor.

EDUC 412 Schooling in a Democratic Society (4) (CR/NC)
The role and aims of public education for culturally diverse learners. Credit/No Credit grading only. 2 lectures, 2 activities. Prerequisite: Admission to the Single Subject Program or senior standing for Agricultural Education candidates. Concurrent: EDUC 414 and EDUC 416 and content methods course (except students enrolled in Agricultural Education Credential Program).

2007-2009 Cal Poly Catalog
EDUC 414 Curriculum and Organization in Secondary Schools (4) (CR/NC)
Principles, methods and practices of organizing and managing secondary schools and classrooms including multiple models of classroom discipline as related to adolescent development, classroom routines, learning environments, introduction to legal requirements for educating English language learners (ELL) and special needs students, and backward design curriculum development and assessment. Site visits to local schools to allow analysis of routines and policies of local schools. Credit/No Credit grading only. 2 lectures, 2 activities. Prerequisite: Admission to the Single Subject Credential Program or senior standing for Agricultural Education candidates. Concurrent: EDUC 412 and EDUC 416 and content methods course (except students enrolled in Agricultural Education Credential Program).

EDUC 416 Literacy and Learning in Secondary Schools (4) (CR/NC)
Theories of literacy, learning, assessment and second language acquisition. Observing classrooms, tutoring English language learners, and designing instructional lessons and assessments to address learners' needs across content areas. Developing theories of learning consistent with content teaching standards. Credit/No Credit grading only. 2 lectures, 2 activities. Prerequisite: Admission to the Single Subject Credential Program or senior standing for Agricultural Education candidates. Concurrent: EDUC 412 and EDUC 414 and content methods course (except students enrolled in Agricultural Education Credential Program).

EDUC 418 Advanced Topics in Teaching and Learning (4) (CR/NC)
Differential instruction and further theoretical knowledge and skills needed for successful teaching of linguistically and culturally diverse learners. Credit/No Credit grading only. 2 lectures, 2 activities. Prerequisite: EDUC 412, EDUC 414, EDUC 416 and content methods course. Concurrent: EDUC 420 and EDUC 469, or AGED 438 for students enrolled in Agricultural Education Credential Program.

EDUC 420 Professional Development and Collaboration (4) (CR/NC)
Further development in the areas of assessment and teaching special needs students. Knowledge and skills needed for successful collaboration with other education professionals. Credit/No Credit grading only. 2 lectures, 2 activities. Prerequisite: EDUC 412, EDUC 414, EDUC 416 and content methods course. Concurrent: EDUC 420 and EDUC 469 (except students enrolled in Agricultural Education Credential Program).

EDUC 423 Bilingual Literacy (4)
Patterns of classroom organization, application of reading programs, approaches, methods in English and Spanish, and supervised field experiences in elementary classrooms with bilingual students. 3 seminars, 1 activity. Limited to students seeking BCLAD certification. Prerequisite: Junior standing, Spanish proficiency and/or consent of instructor.

EDUC 427 Theories, Methods, and Assessment for First and Second Language Acquisition in Secondary Schools (3)
Theories, materials and assessment involved in the instruction of limited English proficient (L.E.P.) students. Bilingual, transitional, and English only programs compared across a historical framework. An integrated language arts approach emphasized, including application of reading programs based on theories of language acquisition. 2 seminars, 1 activity. Prerequisite: Admission to single subject teaching credential program or junior standing in agricultural education major.

EDUC 428 Teaching K-3 Reading, Language Arts, and Children's Literature with a Multicultural Perspective (4)
Knowledge and skills for planning, teaching, and evaluating in a balanced, comprehensive, research-based primary (K-3) language arts program, with fieldwork, to ensure children of all abilities and backgrounds success as citizens who read, write, speak, listen and think effectively. 2 seminars, 2 activities. Prerequisite: Must meet all requirements for acceptance into the Multiple Subject Credential Program and EDUC 428.

EDUC 430 Teaching Reading and Language Arts with a Multicultural Perspective (6)
Development of knowledge and skills for planning, implementing, and evaluating the teaching of a balanced, comprehensive, research-based reading and language arts program in grades K-6 with attention to children of all abilities and backgrounds. State and national trends, Language Development. 4 seminars, 2 activities. Prerequisite: Admission into the Multiple Subject Credential Program.

EDUC 431 Teaching Social Science and the Arts with a Multicultural Perspective (4)
Development of knowledge and skills related to planning, implementing and evaluating integrated social science units of instruction; effects of culture on the selection and implementation of curriculum; knowledge and integration of physical education, art, and music. 2 seminars, 2 activities. Prerequisite: Admission into the Multiple Subject Credential Program.

EDUC 432 Teaching Science and Mathematics with a Multicultural Perspective (4)
Curriculum and instruction in elementary school science and mathematics. Selecting, organizing, and teaching science and mathematics at the appropriate level throughout the elementary school curriculum. Emphasis on teaching via inquiry in science and through problem solving in mathematics following state standards. 2 seminars, 2 activities. Prerequisite: Admission to Multiple Subject Credential Program. Can be taken concurrently with Student Teaching I (EDUC 434 or EDUC 454). Prerequisite for Liberal Studies majors: Completion of MATH 327 and MATH 326.

EDUC 433 Bilingual Foundations (2)
Limited to students seeking BCLAD Certification. Theories, methods, and techniques in bilingual education. 2 seminars. Prerequisite: Spanish proficiency, junior status and/or consent of instructor.

EDUC 434 Student Teaching – Multiple Subject Credential (10) (CR/NC)
Field assignment involving observation, teaching, research and related activities in public elementary and middle school classrooms. Credit/No Credit grading only. Concurrent: EDUC 455. Prerequisite: EDUC 430 and EDUC 431, and admission to STEP II or STEP B of the Multiple Subject Credential Program.

EDUC 440 Educating Individuals with Exceptional Needs (4)
Characteristics, incidence, and etiology of individuals with exceptional needs. Problems, assessment, and approaches toward accommodating students with exceptional needs in the regular classroom. 4 seminars. Prerequisite: EDUC 310 or consent of instructor.

EDUC 441 Education Specialist Level II Induction Seminar (2) (CR/NC)
Orientation class to develop a two (minimum) to five (maximum) year plan that will result in a Professional Clear Education Specialist Credential. Plan to contain elements that extend the learning of the Level I credential, foster critical reflection, include involvement of employer (i.e., school district) representatives, and include both university and non-university academic work. Credit/No Credit grading only. 1 seminar, 1 activity. Prerequisite: Admission into Level II Special Education Credential Program.

EDUC 442 Elementary Field Experience in General and Special Education (2-4) (CR/NC)
Public school classroom experiences in both general education classrooms and special education classrooms at the elementary level. Teaching individuals and small groups, emphasis on reading skills. Minimum 20 hours per week. Total credit limited to 8 units. Credit/No Credit grading only. Prerequisite: Acceptance into Level I Special Education Credential Program, EDUC 304, EDUC 440. Must be taken concurrently with EDUC 451.

EDUC 443 Assessment of Level II Education Specialists (2) (CR/NC)
Use of multifaceted assessment process to verify that candidates have met the Level II Performance standards, including portfolio review, coursework competency review, and oral presentation before an assessor panel.
composed of trained professional practitioners. Credit/No Credit grading only. 1 seminar, 1 activity. Prerequisite: Admission into the Professional Level II Special Education Credential Program and completion of all Level II coursework and related activities.

EDUC 444 The Atypical Infant (4) (Also listed as PSY 444)
Exploration of issues pertinent to the development of atypical infants. Relationship of theory and research to intervention efforts with handicapped, developmentally delayed infants, and other at-risk infants. 3 seminars, 1 activity. Prerequisite: Junior standing, PSY 256 or CD 209, and EDUC 440 or consent of instructor.

EDUC 445 Reading/Language Arts Instruction for Special Educators (4)
Diagnosis and remediation of reading problems. Review of reading programs. General education (K-12) reading instructions. Alternative methods of developing English language reading skills. Field activities required. 3 seminars, 1 activity. Prerequisite: Acceptance into Level I Special Education Credential Program, EDUC 440, EDUC 446.

EDUC 446 Adapting Instruction for Students with Disabilities in General Education Programs (4)
Adapting instructional methods in science, social science, mathematics, reading and the arts in elementary and secondary general education settings for students with disabilities and English language learners. 3 seminars, 1 activity. Prerequisite: EDUC 440.

EDUC 447 Secondary Field Experience in General and Special Education (2-4) (CR/NC)
Public school classroom experiences in both general education classrooms and special education classrooms at the secondary level. Teaching individuals and small groups, emphasis on behavior management. Minimum 20 hours per week. Total credit limited to 8 units. Credit/No Credit grading only. Prerequisite: Acceptance into Level I Special Education Credential Program, EDUC 440. Must be taken concurrently with EDUC 451.

EDUC 449 Special Education Student Teaching (8) (CR/NC)
Participation in public schools as a student teacher in activities representing different roles of special education teachers. Assumption of a teacher's responsibility for individual and small groups. Minimum 4 days per week. Credit/No Credit grading only. Prerequisite: Acceptance into Level I Special Education Credential Program, and completion of all program requirements. Must be taken concurrently with EDUC 451.

EDUC 451 Special Education Student Teaching Seminar (4) (CR/NC)
Educational issues and research, development and assessment of teaching portfolio, completion of materials for a job search, and beginning the first year as a special educator. 3 seminars, 1 activity. Must be taken concurrently with EDUC 449. Prerequisite: Acceptance into Level I Special Education Credential Program; completion of program requirements for the Level I Special Education Program.

EDUC 454 Multiple Subject Student Teaching I (7) (CR/NC)
Field assignment involving observation, teaching, professional growth and related activities in public K-8 classrooms. Taken concurrently with EDUC 455. Credit/No Credit grading only. Prerequisite: Senior standing in BS in Liberal Studies and completion of LS 461, acceptance in STEP II or STEP B of the Multiple Subject Credential Program.

EDUC 455 Multiple Subject Student Teaching Seminar I (2)
Educational issues and research; rights and legal responsibilities (teachers and students); reform movements and moral dimensions in education; self-evaluation based on teaching performance expectations (TPES); student assessment and evaluation; and assessment of MSCP Program Portfolio; and preparing a job search. 2 seminars. Prerequisite: Senior standing in BS in Liberal Studies and completion of LS 461, admission into STEP II or STEP B of the Multiple Subject Credential Program. Taken concurrently with EDUC 434 or EDUC 454.

EDUC 456 Multiple Subject Student Teaching II (12) (CR/NC)
Second field assignment involving observation, teaching, professional growth and related activities in public K-8 classrooms. Credit/No Credit grading only. Taken concurrently with EDUC 457. Prerequisite: Successful completion of EDUC 454, EDUC 455, and LS 461.

EDUC 457 Multiple Subject Student Teaching Seminar II (3)
Issues related to teaching, moral responsibilities of educators, setting professional goals, parent conferencing, self-assessment, implementation of formal and standardized assessments, interviews, completion of materials for a job search, and beginning the first year as a teacher. Planning, implementation, and evaluation of units of instruction, teaching performance assessments, and multiple subject program portfolio. 2 seminars, 1 activity. Taken concurrently with EDUC 456. Prerequisite: Successful completion of EDUC 434 or EDUC 454 and EDUC 455.

EDUC 458 Summer Quarter Field Experiences: General and Special Education (4) (CR/NC)
Participation in public schools in activities representing different teaching roles in general and special education. Assumption of a teacher's responsibility for individual and small groups. May include student teaching in special education. Minimum 20 hours per week. Total credit limited to 12 units. Credit/No Credit grading only. Prerequisite: EDUC 304 and acceptance into Education Specialist Credential Program. Must be taken concurrently with EDUC 459.

EDUC 459 Summer Quarter Special Education Seminar (4) (CR/NC)
Provides support and understanding of field experiences and the role of general and special education. Total credit limited to 8 units. 4 seminars. Credit/No Credit grading only. Prerequisite: EDUC 304 and acceptance into Level I Special Education Credential Program. Must be taken concurrently with EDUC 458.

EDUC 469 Part-Time Student Teaching (6) (CR/NC)
Part-time assignment in a classroom (Single Subject only). Includes teaching activities under the direction of a selected cooperating teacher in consultation with a university supervisor. Assignment consists of an entire morning in the classroom (or the equivalent) for one quarter. Credit/No Credit grading only. Prerequisite: Completion of courses and requirements to begin student teaching and approval of campus screening committee for credential candidates. Taken concurrently with EDUC 466, EDUC 467, EDUC 468.

EDUC 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

EDUC 479 Student Teaching (12) (CR/NC)
Full-time assignment in a classroom (Single Subject only). Includes teaching activities under the direction of a selected cooperating teacher in consultation with a university supervisor. Assignment consists of an entire teaching day in the school for one quarter. Credit/No Credit grading only. Prerequisite: Completion of all courses and requirements prerequisite to full-time student teaching and approval by campus screening committee for credential candidates.

EDUC 480 Computer Based Curriculum (3)
Computer assisted instruction and computer based technology. Lesson planning and integration of technology into the K-12 curriculum. Familiarization with available educational courseware and software. Emphasis on classroom application. 2 seminars, 1 activity. Prerequisite: Computer literacy, CSC 488 or CSC 416, or equivalent.

EDUC 481 Advanced Educational Technology Methods and Integration (4)
Exploration of advanced educational technology methods and review of constructivist approaches to lesson design. Designing and running technology-based lessons in local K-12 classrooms, and preparing portfolio to meet Level II technology requirements as defined by CCTC. 3 seminars, 1 activity. Prerequisite: EDUC 480 or test equivalent.

EDUC 500 Individual Study (1-4)
Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Enrollment by petition. Total
EDUC 501 Applied Practices in Curriculum Development (4)
Overview of major curriculum trends; planning and development of a comprehensive curriculum project geared toward use of technology in teaching. Emphasis on practicality. 3 seminars, 1 activity. Prerequisite: Graduate standing.

EDUC 503 Seminar in Language Arts Curriculum and Methods (4)
Language arts curriculum: objectives, methods, content, materials, evaluation, current trends, research and field work activities. 3 seminars. 1 activity. Prerequisite: Graduate standing.

EDUC 504 Seminar in Science and Mathematics Curriculum and Methods (4)
In-depth study of science and mathematics curriculum. Objectives, methods, content, materials, evaluation, current trends, and assessments. 3 seminars, 1 activity. Prerequisite: Graduate standing.

EDUC 505 Seminar in Social Studies Curriculum and Methods (4)
In-depth study of the social studies curriculum: objectives, methods, content, materials, evaluation, current trends and field work activities. 3 seminars, 1 activity. Prerequisite: Graduate standing.

EDUC 506 Models of Instruction (4)
Analysis of a wide variety of approaches to elementary and secondary teaching that guide instruction in the classroom and in other educational settings. In-depth analysis and implementation of selected teaching strategies. 3 seminars, 1 activity. Prerequisite: Graduate standing.

EDUC 507 Instructional Materials and Technology (4)
Examination of technology-supported instruction with special focus on the use of technology to enable constructivist learning experiences for K-12 students. A survey of advanced technologies including electronic media, digital geography, digital story telling, probeware, simulation, and blogging. 3 seminars, 1 activity. Prerequisite: Graduate standing.

EDUC 508 Digital Moviemaking for K-12 Educators (4)
Digital moviemaking as the centerpiece of constructivist learning projects in K-12 classrooms. Project-based. Tools and skills for digital moviemaking. Designing constructivist lessons that require K-12 students to make their own movies. 3 seminars, 1 activity. Prerequisite: EDUC 481 or EDUC 507 or consent of instructor.

EDUC 509 Robotics for K-12 Educators (4)
The use of robots as the centerpiece of constructivist learning projects in K-12 classrooms. Project-based. Learning to build and program robots and design constructivist lessons around them. No engineering background required. 3 seminars, 1 activity. Prerequisite: EDUC 480 or EDUC 481 or EDUC 507 or consent of instructor.

EDUC 510 Educational Finance and Resource Allocation (4)
 Financing public schools in America: historical and current sources and types of funding. District level and site level funding and budgeting including priorities and purchasing procedures. Financial implications of personnel contracts and obligations. 3 seminars, 1 activity. Prerequisite: Graduate standing and consent of instructor.

EDUC 511 Educational Law and Governance (4)
Legal aspects of school administration including unions, collective bargaining, and contract administration. Governing roles of federal, state, and local agencies including boards and district administrators. 3 seminars, 1 activity. Prerequisite: Graduate standing and consent of instructor.

EDUC 512 Educational Organization and Management (4)
Principles of organization, management, and leadership and their relationship to educational effectiveness and productivity. Activity experience in the application of management theory in schools. 3 seminars, 1 activity. Prerequisite: Graduate standing and consent of instructor.

EDUC 513 Educational Planning and Decision Making (4)
Concepts of planning and decision making in educational administration that utilize a wide range of data gathering and analysis procedures. 3 seminars, 1 activity. Prerequisite: Graduate standing and consent of instructor.

EDUC 514 School Site Administration (4)
Principles and practices of effective building level administration in multicultural/multilingual environment. 4 seminars. Prerequisite: Graduate standing and consent of instructor.

EDUC 515 Educational Program Management and Evaluation (4)
Supervision, management, and evaluation of educational curriculum and educational programs. Current trends in program management including mapping, monitoring, alignment. 3 seminars, 1 activity. Prerequisite: Graduate standing and consent of instructor.

EDUC 516 Educational Personnel Supervision and Evaluation (4)
Principles and processes for the supervision and evaluation of certificated and classified staff including legal, research, and professional considerations. 3 seminars, 1 activity. Prerequisite: Graduate standing and consent of instructor.

EDUC 518 Administrative Services Fieldwork (3) (CR/NC)
Supervised fieldwork in school administration for supervision at the elementary and secondary level. Assignments must encompass three of the four academic quarters and must involve some multicultural experience. Total credit limited to 18 units, only 9 of which may be applied toward master's degree. Credit/No Credit grading only. Prerequisite: Admission to the Administrative Services Credential program and consent of instructor.

EDUC 525 Literacy and Reading Processes, Programs, and Technology (4)
Physiological, psychological and psycholinguistic components of the reading process. Applications of research findings of teaching reading, including innovative programs and the use of reading technology. 3 seminars, 1 activity. Prerequisite: Graduate standing.

EDUC 526 Diagnostic Procedures in Literacy and Reading (4)
Formal and informal methods of diagnosing and remediating reading problems in classrooms and reading clinics. 3 seminars, 1 activity. Prerequisite: Graduate standing.

EDUC 527 Language and Literacy Models for Second Language Learners (4)
Theory and models of learning in a second language at the high levels needed for school success. Analysis and synthesis of research in bilingualism and second language acquisition for teachers of second language learners. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 lectures, 1 activity. Prerequisite: EDUC 423 or EDUC 433 or comparable BCLAD coursework.

EDUC 529 Bilingual Special Education and Reading Instruction (4)
Principles, procedures and materials for teaching reading to bilingual students coupled with diagnostic and prescriptive methods for understanding reading problems of the bilingual and bilingual special education student. 2 seminars, 2 activities. Prerequisite: Graduate standing.

EDUC 530 Secondary, College, and Adult Literacy Practices (4)
Principles, procedures, and materials for improving literacy and reading in the subject matter areas with students of different backgrounds and abilities in grades 7 through college. Field experiences in teaching reading to adults, college, or secondary students. 3 seminars, 1 activity. Prerequisite: Graduate standing.

EDUC 532 Advanced Field Experiences in Education (3-12) (CR/NC)
Supervised advanced field experience and practical application of specialty for classroom teachers, reading and special education specialists, administrators and school support personnel. Total credit limited to 18 units for specialist credentials. Total credit limited to 6 units for the master's degree. 30 hours work experience per unit of credit. Credit/No Credit grading only. Prerequisite: Graduate standing, completion of basic teaching or administrative credential, or consent of instructor.

EDUC 542 Administration of Special Programs and Services (4)
Principles and practices of organizing and administering special education, reading, counseling, and other support programs. Assessment and
placement procedures, middle management's role, overview of specially funded programs, historical precedents and future trends. 3 seminars, 1 activity. Prerequisite: Graduate standing and consent of instructor.

EDUC 543 Advanced Studies in Assessment, Behavioral Support, Curriculum for Transition in Special Education (4)
Advanement of Level II candidate's knowledge and skills in assessment driven decision making for pupils with disabilities, supporting pupils with serious emotional or behavioral problems, and preparing pupils with disabilities, including English Language Learners, for major life cycle school transitions. Analyzing assessment data to determine how to modify academic instruction, provide behavioral support, social skills training, career and vocational preparation. 3 seminars, 1 activity. Prerequisite: Admission into the Professional Level II Special Education Credential Program, EDUC 441.

EDUC 544 Advanced Collaboration and Consultation for Teachers of Students with Special Needs (5)
Advanced studies and skills in educational consultation. Emphasis on the collaborative and consultative role of the special educator with a wide range of individuals from diverse cultural backgrounds including school personnel, parents, outside agencies, and paraprofessionals. 3 seminars, 2 activities. Prerequisite: Admission into the Level I Special Education Credential Program and master's degree program in education.

EDUC 545 Characteristics and Instruction of Pupils with Mild/Moderate Disabilities (5)
Characteristics of, and instructional strategies for students with mild/moderate disabilities. Organization and management of the special classroom. Evaluation of the instructional system. Individualization of instruction, appropriate methods for English language learners and interaction in the total school environment. 3 seminars, 2 activities. Prerequisite: Acceptance into Level I Special Education Credential Program, EDUC 440.

EDUC 547 Advanced Curricular and Instructional Adaptations for Students with Special Needs (4)
Advanced studies and skills in adaptation and modification of curriculum and instructional techniques to meet the needs of students with special needs. Educational implications of current learning theories as applied to individuals with special needs. Development and application of a remedial therapy with appropriate individual(s). Development of instruction based on the adopted instructional program for English Language Development. 3 seminars, 1 activity. Prerequisite: Acceptance into Level II Special Education Credential Program and EDUC 441.

EDUC 548 Advanced Collaboration, Consultation and Instructional Techniques for Teachers of Pupils with Disabilities (4)
Advanced studies in assessment, adaptation and modification of curriculum, and instructional techniques for teachers of pupils with disabilities. Emphasis on the collaborative, consultative, and management roles of the special educator, focus on interactions with school staff, parents, and outside agencies. 3 seminars, 1 activity. Prerequisite: Acceptance into Level II Special Education Credential Program, EDUC 441.

EDUC 550 Assessment Strategies for Special Education (5)
Using norm referenced, criterion referenced, and curriculum based testing for assessing academic, behavioral, and physical status of individuals with exceptional needs, including English language learners, for referral purposes. Instructional and evaluation decisions regarding exceptional students in school settings. 3 seminars, 2 activities. Prerequisite: Acceptance into Level I Special Education Credential Program and MA in Education, EDUC 440, EDUC 446.

EDUC 551 Characteristics and Instruction of Pupils with Moderate/Severe Disabilities (4)
Definition and social behavioral characteristics of students with moderate to severe disabilities. Instructional strategies emphasizing law, assessment, educational settings, and the collaborative strategies necessary for facilitating the inclusion of students with moderate/severe disabilities in general education settings. Emphasis on the communication, social skills, movement, mobility, sensory and specialized health care issues of students with moderate to severe disabilities. 3 seminars, 1 activity. Prerequisite: Acceptance into Level I Special Education Credential Program, EDUC 440.

EDUC 552 Support and Transition Strategies in Special Education (5) (formerly EDUC 452)
Basic guidance techniques for teachers working with exceptional individuals and their families. Career selection, preparation, and counseling. Transition from school to work, and community resource utilization. 3 seminars, 2 activities. Prerequisite: Acceptance into Level I Special Education Credential Program and MA in Education, EDUC 440, EDUC 446.

EDUC 553 Current Issues, Emerging Research and Practices in Special Education (4)
Consideration of assumptions and techniques of educational research regarding the educational, personal, social and vocational difficulties affecting the development of individuals with exceptional needs; emphasizing their applicability to general and specific educational programs. 4 seminars. Prerequisite: Admission to Level I Special Education Credential Program or masters degree program.

EDUC 554 Behavior Disorders and Positive Behavior Support Strategies (5) (formerly EDUC 450)
Assessment of students whose behavior impedes either their own learning or the learning of other students. Strategies for facilitating proactive educational, environmental and social-emotional techniques for supporting students with challenging behavior. 3 seminars, 2 activities. Prerequisite: Acceptance into Level I Special Education Credential Program and MA in Education, EDUC 440, EDUC 446.

EDUC 555 Introduction to the Counseling Profession (4)
Overview of the counseling profession, history, philosophy, theory and ethics. Required activity. 3 seminars, 1 activity. Prerequisite: Admission to MA Education program.

EDUC 556 Multicultural Counseling (4)
Initiation of critical analysis of personal beliefs and attitudes regarding counseling in a diverse society. Focus on a variety of approaches to explore the beliefs and attitudes of the student in counseling settings, and examination of strategies considered effective in working with diverse populations. 3 seminars, 1 activity. Prerequisite: Admission to MA Education program.

EDUC 557 Career Counseling (4)
Focus on the study and application of career development theories in career counseling. Utilizing appraisal instruments, community referral resources, occupational information, computerized retrieval systems, and personal and social data and required activities. 3 seminars, 1 activity. Prerequisite: Admission to MA Education program.

EDUC 558 Elementary School Counseling (4)
Focus on the development of skills for the integration of counseling activities into elementary school curriculum – specifically the role of the counselor in the development of a comprehensive guidance program, classroom guidance, counseling, consultation, program design and evaluation, curriculum and administration of special programs. 3 seminars, 1 activity. Prerequisite: PPS credential candidate, or consent of instructor.

EDUC 559 Secondary School Counseling (4)
A basic understanding of the secondary school environment, the role and responsibilities of the counselor within the school environment/community, the components of a secondary school counseling program, the developmental issues of 13-18 year olds, emerging standards for school counselors and the changing nature of student populations. 3 seminars, 1 activity. Prerequisite: PPS credential candidate, or consent of instructor.

EDUC 560 Counseling Theories (4)
Theories and practice of counseling with special emphasis on the counseling process. Emphasis of conditions of counseling, counseling techniques, counseling diverse populations and the counselor as a professional helper. 3 seminars, 1 activity. Prerequisite: EDUC 555 and admission to MA Education program.
EDUC 561 Group Counseling (4)
Theory and practice of group counseling, client selection, group structure, process and termination, and application of theories to specific developmental groups. Communication and facilitation skills emphasized with relevant ethics and law. 3 seminars, 1 activity. Prerequisite: EDUC 555, EDUC 560 or consent of instructor.

EDUC 562 Student Development–Higher Education (4)
Exploration of the roles and competencies of the student development specialist in higher education. Review of relevant developmental theory with emphasis on practical implementation. Explore current issues and trends in higher education, and organizational framework. 4 seminars. Prerequisite: Admission to MA Education program.

EDUC 563 Violence Prevention in Schools (4)
Specific counseling strategies and issues related to violence in the schools. Alienation, violence, parenting, as they relate to the factors associated with school violence. Evaluation of effective intervention programs for K-12 schools. 3 seminars, 1 activity. Prerequisite: Admission to MA Education program.

EDUC 564 Legal and Ethical Issues in Counseling (4)
Consideration of legal, ethical, cultural and related professional issues as they affect the practice of counseling. 3 seminars, 1 activity. Prerequisite: Admission to MA Education Program or PPS Credential Program.

EDUC 565 Counseling Measurement and Assessment (4)
Training and evaluation in the utilization of tests, scales, measures, and other instruments with K-12, and college-age students. An understanding of culturally appropriate tests and measures, collaboration with school personnel, parents, and students in the review and interpretation of test scores and measures. 3 seminars, 1 activity. Prerequisite: Admission to MA Education Program, Counseling and Guidance Specialization, or to PPS Credential Program.

EDUC 566 Leadership and Consultation in Counseling (4)
Development of skills in planning, organizing, coordinating, and delivering programs that generate systemic change through establishing collaboration within schools, communities and other stakeholders. Emphasis on social action and its role in the counseling profession. 3 seminars, 1 activity. Prerequisite: Admission to MA Education Program or PPS Credential Program.

EDUC 568 Individual Counseling Techniques (4)
Theory and practice of individual counseling, process and termination, and application of theories to specific developmental issues working with K-12 students. Communication and facilitation skills emphasized, working with diverse populations and following legal and ethical guidelines. 3 seminars, 1 activity. Prerequisite: Admission to MA Education Program, Counseling and Guidance Specialization, or to PPS Credential Program.

EDUC 573 Field Experience, Counseling (1–12) (CR/NC)
Practical application of guidance services and counseling in public schools, colleges and community settings. Seminars with university staff included. Total credit limited to 24 units. Credit/No Credit grading only. Maximum of 6 units may be applied toward MA Education. Prerequisite: EDUC 555, EDUC 560 and Advancement to Candidacy.

EDUC 581 Graduate Seminar in Education (1–3)
Contemporary problems in education. Trends, developments, and issues. Total credit limited to 9 units. Prerequisite: Graduate standing.

EDUC 586 Introduction to Inquiry in Education (4)
Introduction to professional literature search techniques and to professional organizations as a basis for educational inquiry. Explanation of social construction of knowledge, and the philosophical basis of quantitative and qualitative research. 3 seminars, 1 activity. Prerequisite: Admission to UCTE master's program.

EDUC 587 Educational Foundations and Current Issues (4)
Historical, organizational, legal and philosophical characteristics of American education. Emphasis on the analysis of contemporary issues focusing on these characteristics. 4 seminars. Prerequisite: Graduate standing.

EDUC 588 Education, Culture, and Learning (4)
Cultural characteristics of educational institutions and practice. Review of theory and research relating to the social and organizational context in which learning and teaching takes place. 4 seminars. Prerequisite: Graduate standing.

EDUC 589 Educational Research Methods (4)
Introduction to research methodologies, application of inferential and descriptive statistics, critical analysis of research designs and data collection techniques. 3 seminars, 1 activity. Prerequisite: EDUC 586.

EDUC 590 Research Applications in Education (4)
Application of social science research techniques to problems in education and human services. Capstone experience for the UCTE master's inquiry course sequence. Completion of an inquiry project required. 2 seminars, 2 activities. Prerequisite: EDUC 589.

EDUC 599 Thesis or Project (3) (3)
Completion of a thesis or project pertinent to the field of education. Student must register for each quarter of advisement. Prerequisite: Consent of graduate committee and supervising faculty member(s).

EE—ELECTRICAL ENGINEERING

EE 111 Introduction to Electrical Engineering (1)
A general overview of the field of electrical engineering. Preparation for successful completion of the Electrical Engineering (EE) program at Cal Poly. 1 lecture. Concurrent: EE 151. Not required for students with transfer credit for EE 211 or EE 241.

EE 112 Electric Circuit Analysis I (2)
Introduction to basic circuit analysis. Resistive circuits, voltage and current sources, network theorems, op-amp circuits. 2 lectures. Prerequisite: MATH 142 or equivalent. Concurrent or prerequisite: PHYS 133. Suggested: EE 111/151.

EE 129 Digital Design (3) (Also listed as CPE 129)
Number systems, Boolean algebra, Boolean functions, and minimization. Analysis and design of combinational logic circuits. Feedback circuits. Analysis and design of sequential logic circuits. Applying Hardware Description Language (HDL) to synthesize digital logic circuits in Programmable Logic Devices (PLDs). 3 lectures. Prerequisite: An orientation course in student's major (EE 111&151 for EE students, CPE 100 for CPE students), CPE/CSC 101. Concurrent: EE 169.

EE 151 Introduction to Electrical Engineering Laboratory (1)
A variety of hands-on experiments and demonstrations in electrical engineering, providing background and motivation for successful completion of the Electrical Engineering (EE) program at Cal Poly. 1 laboratory. Concurrent: EE 111. Not open to students with credit for EE 241.

EE 169 Digital Design Laboratory (1) (Also listed as CPE 169)
Experiments to analyze and design combinational and sequential logic circuits with discrete ICs and PLDs. Introduction to laboratory equipment such as the logic state analyzer for testing circuits. Introduction to a hardware description language for logic simulation and design. 1 laboratory. Prerequisite: An orientation course in student's major (EE 111&151 for EE students, CPE 100 for CPE students), CPE/CSC 101. Concurrent: EE 129.

EE 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

EE 201 Electric Circuit Theory (3)
Application of fundamental circuit laws and theorems to the analysis of DC, and steady-state single-phase and three-phase circuits. Not for electrical engineering majors. 3 lectures. Prerequisite: MATH 244, PHYS 133.

EE 211 Electric Circuit Analysis II (3)
Continuation of basic circuit analysis. Energy storage elements, RC and RL circuits, and phasors. 3 lectures. Prerequisite: EE 112 with a C- grade or
better, PHYS 133. Prerequisite or Concurrent: MATH 244. Concurrent: EE 241.

EE 212 Electric Circuit Analysis III (3)
AC power, 3-phase circuits. Mutual inductance, series and parallel
resonance and two-port networks. 3 lectures. Prerequisite: MATH 244, EE
211 with a C- grade or better. Concurrent: EE 242.

EE 228 Continuous-Time Signals and Systems (4)
Continuous-time systems analysis, with emphasis on linear time-invariant
(LTI) systems. Classification of continuous-time systems. Convolution
and its application to LTI systems. The Laplace transform, Fourier transform,
and Fourier series, and their application to the analysis of LTI systems. 4
lectures. Prerequisite: EE 212&242 with a C- grade or better. Recommended:
MATH 241.

EE 229 Computer Design and Assembly Language Programming (3) (Also listed as CPE 229)
Design and implementation of digital computer circuits via CAD tools for
programmable logic devices (PLDs). Basic computer design with its data
path components and control unit. Introduction to assembly language
programming of an off-the-shelf RISC-based microcontroller. 3 lectures.
Prerequisite: EE 129&169 with a C- grade or better. Concurrent: EE 269.

EE 241 Electric Circuit Analysis Laboratory II (1)
Use of electrical and electronic test equipment. Experimental verification of
circuit analysis concepts including Kirchhoff’s Laws, Thévenin’s Theorem,
maximum power transfer and superposition. 1 laboratory. Prerequisite: EE
112 with a C- grade or better, PHYS 133, EE 151 for EE students and CPE
169 for CPE students. Prerequisite or concurrent: MATH 244. Concurrent:
EE 211.

EE 242 Electric Circuit Analysis Laboratory III (1)
Observation of transient and steady-state phenomena, phase-shift circuits,
resonance. Use of phasor diagrams. 1 laboratory. Prerequisite: MATH 244,
EE 241 with a C- grade or better or consent of department chair.
Concurrent: EE 212.

EE 251 Electric Circuits Laboratory (1)
Techniques of measurement of DC and steady-state AC circuit parameters.
Equivalent circuits, nonlinear elements, resonance. 1 laboratory.
Concurrent: EE 201.

EE 255 Energy Conversion Electromagnetics (3)
Fundamentals of electro-mechanical energy conversion. Magnetic circuits
and electromagnetic devices. Theory of operation and operating
characteristics of transformers, DC machines, and AC induction and
synchronous machines. 3 lectures. Prerequisite: EE 212&242 with a C-
grade or better, or EE 201&251. Concurrent: EE 295.

EE 269 Computer Design and Assembly Language Programming Laboratory (1) (Also listed as CPE 269)
Experiments to design and test digital computer circuits and systems with
programmable logic devices (PLDs). Design projects to implement a basic
computer with its data path components and control. Assembly language
programming projects for an off-the-shelf RISC-based microcontroller. 1
laboratory. Prerequisite: EE 129&169 with a C- grade or better. Concurrent:
EE 229.

EE 295 Energy Conversion Electromagnetics Laboratory (1)
Single-phase and three-phase transformers. Starting of rotating machines,
evaluation of characteristics of rotating machines. 1 laboratory.
Prerequisite: EE 212&242 with a C- grade or better or EE 201&251.
Concurrent: EE 255.

EE 302 Classical Control Systems (3)
Introduction to feedback control systems. System modeling. Transfer
Root Locus. Frequency response. Compensation. 3 lectures. Prerequisite:

EE 306 Semiconductor Device Electronics (3)
Internal operation, semiconductor physics, terminal characteristics, models
and application of diodes (LEDs, solar cells, and photo-diodes) and
transistors (field-effect and bipolar). 3 lectures. Prerequisite: CHEM 124,
EE 212&242 with a C- grade or better, IME 156 or IME 157 or IME 458,
PHYS 211. Concurrent: EE 346.

EE 307 Digital Electronics and Integrated Circuits (3)
Analysis, design, application and interfacing of integrated logic circuits,
including NMOS, CMOS, TTL, ECL, and other logic families. 3 lectures.
Prerequisite: EE 129&169 with a C- grade or better, EE 306&346 with a C-
grade or better. Concurrent: EE 347, EE 229 (may be taken previously).

EE 308 Analog Electronics and Integrated Circuits (3)
Analysis and design of integrated circuits for use in analog applications.
Gain, frequency response, and feedback of linear small-signal amplifiers. 3
lectures. Prerequisite: EE 302&342 with a C- grade or better, EE 307&347
with a C- grade or better. Concurrent: EE 348.

EE 314 Introduction to Communication Systems (3)
Analog modulation, including: double-sideband modulation, amplitude
modulation, single-sideband modulation, frequency modulation, phase
modulation. Performances of such systems in the presence of white
Gaussian noise. Implementations of transmitters and receivers. 3 lectures.
Prerequisite: STAT 350, with a C- grade or better.

EE 321 Electronics (3)
Semiconductor devices and circuits. Instrumentation amplifiers, power
control rectifiers, feedback, pulse circuits, digital logic circuits. Not for
Electrical Engineering majors. 3 lectures. Prerequisite: EE 201.

EE 328 Discrete Time Signals and Systems (3)
Discrete-time systems and analysis, with emphasis on linear time-invariant
(LTI) systems. Sampling theory. Classification of discrete-time systems.
Convolution and its application to LTI systems. The z transform, discrete-
time Fourier transform, and discrete Fourier transform. Introduction to
digital filters. 3 lectures. Prerequisite: EE 228 with a C- grade or better.
Concurrent: EE 368.

EE 329 Programmable Logic and Microprocessor-Based Systems Design (4) (Also listed as CPE 329)
Design, implementation and testing of programmable logic microproces-
sor-based systems. Hardware/software tradeoffs (such as timing analysis
and power considerations), system economics of programmable logic and
microprocessor-based systems. Interfacing hardware components
(such as ADCs/DACs, sensors, transducers). 3 lectures, 1 laboratory.
Prerequisite: EE 307&347 with a C- grade or better, EE 229&269 with a C-
grade or better.

EE 335 Electromagnetic Fields and Transmission (4)
Maxwell’s equations. Plane wave propagation in free space. Static electric
and magnetic fields. Distributed-circuit concepts and transmission line
parameters. Reflections and standing waves. The Smith chart and its
applications. Transmission line measurements and impedance matching
techniques. 4 lectures. Prerequisite: MATH 241, EE 212&242 with a C-
grade or better. Concurrent: EE 375.

EE 336 Microprocessor System Design (4) (Also listed as CPE 336)
Introduction to microcontrollers and integrated microprocessor systems.
Emphasis on the Intel 8051 and Motorola 68HC12 families and derivatives.
Hardware/software trade-offs, system economics, and functional
configurations. Interface design, real-time clocks, interrupts, A/D
conversion, serial and parallel communications, watch-dog timers, low
power operation, and assembly language programming techniques.
Architecture and design of sampled data and digital control systems. Case
studies of representative applications. 3 lectures, 1 laboratory. Prerequisite:
EE 129&169 with a C- grade or better.

EE 342 Classical Control Systems Laboratory (1)
Laboratory work pertaining to classical control systems, including servo
control, transient and frequency responses, stability, and computer-aided
analysis of control systems. 1 laboratory. Prerequisite: EE 228 with a C-

EE 346 Semiconductor Device Electronics Laboratory (1)
Experimental determination of device characteristics and models. 1
laboratory. Prerequisite: CHEM 124, EE 212&242 with a C- grade or
better, IME 156 or IME 157 or IME 458, PHYS 211. Concurrent: EE 306. Suggested: ENGL 134.

EE 347 Digital Electronics and Integrated Circuits Laboratory (1)
Computer simulation and experimental investigation of the characteristics, applications and interfacing of different logic families. 1 laboratory. Prerequisite: EE 129&169 with a C- grade or better, EE 306&346 with a C-grade or better. Concurrent: EE 307, EE 229 (may be taken previously).

EE 348 Analog Electronics and Integrated Circuits Laboratory (1)
Design, simulation, construction and testing of solid state amplifiers and sub-circuits to meet stated specifications. 1 laboratory. Prerequisite: EE 302&342 with a C-grade or better, EE 307&347 with a C-grade or better. Concurrent: EE 308.

EE 361 Electronics Laboratory (1)
Instrumentation amplifiers, feedback, rectifiers and power control, pulse and digital logic circuits. 1 laboratory. Prerequisite: EE 251. Concurrent: EE 321.

EE 368 Signals and Systems Laboratory (1)
Laboratory work pertaining to linear systems, including Fourier analysis, time and frequency responses, and system transfer function. 1 laboratory. Prerequisite: EE 228 with a C-grade or better. Concurrent: EE 328.

EE 375 Electromagnetic Fields and Transmission Laboratory (1)
(formerly EE 442)
Transmission line characterization. Load determination and standing wave patterns using the slotted line technique. Application of the Smith Chart in transmission line characterization and impedance matching techniques. Time domain response to voltage pulses. 1 laboratory. Concurrent: EE 335.

EE 400 Special Problems for Advanced Undergraduates (1–5)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 5 units. Prerequisite: Consent of department chair.

EE 402 Electromagnetic Waves (4)
Maxwell’s equations and plane wave propagation in materials. Reflection and transmission of normal and oblique incidence plane waves at planar boundaries between different media. Wave guides. Antennas. 4 lectures. Prerequisite: EE 335 with a C-grade or better.

EE 403 Fiber Optic Communication (3)
Propagation of light in optical fibers, attenuation and bandwidth. LED and Laser Diode sources for use with optical fibers. Optical sources, detectors, and receivers. Design of optical communication systems with applications in telecommunications and local area networks (LANs). 3 lectures. Prerequisite: EE 335 with a C-grade or better or PHYS 323. Concurrent: EE 443.

EE 405 High-frequency Amplifier Design (3)
Design of modern electronic amplifiers and amplifier systems with advanced techniques. UHF and microwave small signal amplifier design utilizing microstrip transmission lines, S parameters of GaAs FET, and bipolar transistors. Low noise, broadband, and power amplifier designs. Oscillator designs. 3 lectures. Prerequisite: EE 308&348 with a C-grade or better, EE 335 with a C-grade or better. Concurrent: EE 445.

EE 406 Power Systems Analysis I (4)
Introduction to electric power systems. Representation of power systems and its components including transmission lines, synchronous machines, transformers and loads. One line diagrams and per unit calculations. Symmetrical faults. Load flow analysis. 4 lectures. Prerequisite: EE 335 with a C-grade or better, EE 255&295.

EE 407 Power Systems Analysis II (4)
Symmetrical components, unbalanced faults, power system stability, system protection, relays and relay systems, power system instrumentation and measurement techniques, economic operation. 4 lectures. Prerequisite: EE 406.

EE 409 Electronic Design (3)

Emphasis on IC implementation. 3 lectures. Prerequisite: EE 308&348 with a C-grade or better, EE 328&368 with a C-grade or better, EE 329 with a C-grade or better. Concurrent: EE 449.

EE 410 Power Electronics I (4)
Introduction to power electronics and power semiconductor devices. Analysis, performance characterization, and design of power electronics converters such as: rectifiers, DC choppers, AC voltage controllers, and single-phase inverters. Operation of DC motor drives. Use of commercially available software. 3 lectures, 1 laboratory. Prerequisite: EE 409&449 (or concurrent) and EE 255&295, or EE 321 and consent of instructor.

EE 411 Power Electronics II (4)
Switching losses. Analysis, performance characterization, and design of snubber circuits and resonant converters. Operation of DC transmission lines, flexible AC transmission system (FACTS) controllers, three-phase inverters, and AC motor drives. Use of commercially available software. 3 lectures, 1 laboratory. Prerequisite: EE 410.

EE 412 Advanced Analog Circuits (4)
Application of linear integrated circuits to data acquisition problems: transducer interfacing, linear and nonlinear preprocessing, phase-locked loops, and high performance quantization and recovery (A/D, D/A conversion). 3 lectures. Prerequisite: EE 409&449, EE 314.

EE 413 Advanced Electronic Design (4)
Advanced design of electronic circuits and subsystems. Design as a process. Implementation of specific design projects. Automated test using GPIB instruments. 3 lectures, 1 laboratory. Prerequisite: CSC 101, EE 409&449.

EE 415 Communication Systems Design (3)
Design of modern electronic communication and telemetry systems. Emphasis: practical implementation and comparative evaluation of various modulation systems. 3 lectures. Prerequisite: EE 409&449, EE 314 with a C-grade or better.

EE 416 Digital Communication Systems (3)
Baseband (PCM, PAM, DM) signals and transmission. Bandpass (PSK, FSK, ASK) modulation and demodulation techniques. Digital communication signals in the presence of noise and detection of signals in Gaussian noise. Other topics such as: quantization, multiplexing and multiple access, spread spectrum techniques, coding, synchronization. 3 lectures. Prerequisite: EE 314 with a C-grade or better, EE 328 with a C-grade or better.

EE 417 Alternating Current Machines (4)
Alternating current machines. Generalized, operational and dynamic analysis. Steady-state and transient operation of synchronous machines and linear induction machines. 3 lectures, 1 laboratory. Prerequisite: EE 255&295.

EE 418 Photonic Engineering (3)
Modern optical design with emphasis on the use of computers to design simple optical systems and to evaluate existing optical designs. Paraxial and exact ray tracing through thin and thick lenses, mirrors, and prisms. Radiometry and photometry. Electro-optic, acousto-optic, and magneto-optic modulators and their applications. Thermal detectors, semiconductor detectors, and charge coupled device (CCD) arrays. 3 lectures. Prerequisite: EE 335 with a C-grade or better or PHYS 323. Concurrent: EE 448.

EE 419 Digital Signal Processing (3)

EE 420 Sustainable Electric Energy Conversion (4)
Electrical engineering aspects of photovoltaic and wind power generation and usage, and electromechanical energy conversion. Power control, processing, and quality for grid-connected and stand-alone systems. Distribution and storage of electric energy. Hydrogen and synthetic fuels. Distributed generation. 3 lectures, 1 laboratory. Prerequisite: CHEM 124 and EE 255&295 or consent of instructor.
EE 421 Solid-state Microelectronics (3)
Physical basis of solid-state microelectronics. Passive and active integrated circuit components in Bipolar, MOS, thin and thick film systems. Diffusion, oxidation, ion implantation and other fabrication techniques. Microwire layout and design: system development, reliability and economic considerations. Future trends. 3 lectures. Prerequisite: EE 307 with a C- grade or better.

EE 422 Polymer Electronics Laboratory (1)
Experimental procedures in polymer electronics. Investigation of the characteristics of a polymer electronic device. 1 laboratory. Prerequisite: EE 347 with a C- grade or better or MATE 340 or CHEM 319 or PHYS 340.

EE 424 Introduction to Remote Sensing (4)
Radiation characteristics, sensor technology and platforms, satellite systems, system design tradeoffs, collection and transmission of radiometric data, GPS, thermal remote sensing, active radar and microwave remote sensing, interpretation and exploitation of remotely sensed data for various applications. 3 lectures, 1 laboratory. Prerequisite: MATH 244, senior or graduate standing in engineering, or consent of instructor.

EE 425 Analog Filter Design (3)

EE 427 Digital Computer Subsystems (4) (Also listed as CPE 427)
Design of components and subsystems in digital computers. Use of modern techniques and devices (CPLDs and FPGAs) in implementation. Consideration given to cost/speed tradeoffs. Implementation of a basic digital computer using pre-designed subsystems. 3 lectures, 1 laboratory. Prerequisite: EE 329 with a C- grade or better.

EE 431 Computer-Aided Design of VLSI Devices (4)
Design of VLSI circuits, design of subsystems using static CMOS, transmission gates, and other methods. Variety of CAD tools for design, verification, test, and simulation. Several design projects. 3 lectures, 1 laboratory. Prerequisite: EE 307&347 with a C- grade or better, EE 308&348 with a C- grade or better or consent of instructor.

EE 432 Digital Control Systems (3) (Also listed as CPE 432)
Theory and applications of digital computers in linear control systems. Discrete time methods are used in analysis and design studies. Digital control systems are synthesized. 3 lectures. Prerequisite: EE 302&342 with a C- grade or better. Prior background in discrete time systems, e.g., EE 328, EE 368 recommended. Concurrent: EE 472.

EE 433 Introduction to Magnetic Design (4)
Design of magnetic components. Fundamentals of magnetics, magnetic cores, design of power transformer, three-phase transformer, dc inductor, ac inductors, dc-dc converter transformer design, actuators. Use of commercially available software. 3 lectures, 1 laboratory. Prerequisite: EE 255&295 or consent of instructor.

EE 438 Digital Computer Systems (3) (Also listed as CPE 438)
Design of computer ALUs, microprogram controllers, memory systems, and I/O controllers. Use of LSI components in CPU design. Microprogram and nanoprogram development. 3 lectures. Prerequisite: EE 427 or consent of instructor.

EE 439 Computer Peripheral Interfacing (4) (Also listed as CPE 439)
Systems-level design and implementation of common computer peripheral devices with emphasis placed on controller and interface aspects. Use of standard and softcore microcontroller platforms with communications to discrete peripherals with I2C, SPI, CAN, and other common bus interfaces. 3 lectures, 1 laboratory. Prerequisite: EE/CPE 329 with a C- grade or better, or consent of instructor.

EE 440 Wireless Communications (3)
Wireless microwave system design and analysis. RF transmission lines, microwave networks, receiver design, modulation techniques, and mixer characterization and realizations. Noise and distortion, RF oscillators and frequency synthesizers, filter design. Radiating systems and electromagnetic wave propagation, microwave amplifier design. 3 lectures. Prerequisite: EE 335, EE 314. Concurrent: EE 480.

EE 443 Fiber Optics Laboratory (1)

EE 444 Power Systems Laboratory (1)
Protective relay design, coordination, and relay calibration. Power control using transformers, parallel operation of generators, and computer simulation of power systems. 1 laboratory. Prerequisite: EE 406.

EE 445 High Frequency Amplifier Design Laboratory (1)
Experimental investigation employing advanced techniques. Design of high-frequency electronic amplifiers utilizing S-parameters of bipolar transistors, network analyzers, and computer simulation techniques. 1 laboratory. Prerequisite: EE 308&348 with a C- grade or better, EE 335 with a C- grade or better. Concurrent or prerequisite: EE 405.

EE 449 Electronic Design Laboratory (1)
Design of electronic systems and subsystems using integrated circuits. 1 laboratory. Prerequisite: EE 308&348 with a C- grade or better, EE 328&368 with a C- grade or better, EE 329 with a C- grade or better. Concurrent: EE 409.

EE 452 Advanced Analog Circuits Laboratory (1)
Advanced laboratory study of LC and VCO oscillators, phase detectors, phase-locked loop circuits, transducer interface circuits, noise sources and signal-to-noise determination, ADC and DAC for data conversion. Formal experiments and computer SPICE simulation. 1 laboratory. Prerequisite: EE 314, EE 409&449. Concurrent: EE 412.

EE 455 Analog Filter Design Laboratory (1)
Advanced laboratory study of sensitivity and stability of active networks prescribed for realization of transfer functions by active network synthesis techniques. Formal experiments and individual project work. 1 laboratory. Prerequisite: EE 409&449. Concurrent: EE 425.

EE 456 Communication Systems Laboratory (1)
Methods of analog modulation and demodulation. Emphasis on spectral analysis, bandwidth requirements and other practical considerations of modulation and demodulation. 1 laboratory. Prerequisite: EE 328&368 with a C- grade or better, EE 314 with a C- grade or better.

EE 458 Photonic Engineering Laboratory (1)

EE 459 Digital Signal Processing Laboratory (1)
Experiments in digital filter design and digital signal processing emphasizing various areas of applications (communications, audio signals, speech processing). Formal experiments and individual project work. 1 laboratory. Prerequisite: CSC 101, EE 328&368 with a C- grade or better. Concurrent: EE 419.

EE 460 Senior Project Preparation (2)
Introduction to teamwork and team-oriented project execution. Project planning, scheduling and analysis. Usage of tools for project management including Gantt and Pert Charts. Project development, cost and time estimation using top-down and bottom-up approaches. Ethics and ethical issues as they pertain to the conduct of engineering. Development of senior project proposal. 2 lectures. Prerequisite: EE 314 with a C- grade or better, EE 335 with a C- grade or better. Prerequisite or concurrent: EE 409&449.

EE 461, 462 Senior Project I, II (3) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 150 hours total time. Prerequisite: EE 409&449, EE 460.
EE 463, 464 Senior Project Design Laboratory I, II (3) (2)
Selection and completion of a project under faculty supervision. Projects
typical of problems which graduates must solve in their fields of
employment. Project results are presented in a formal report. EE 463: 3
laboratories; prerequisite: EE 409&449, EE 460. EE 464: 2 laboratories;
prerequisite: EE 463. Note: although EE 463, 464 substitute for EE 461,
462, students may not use repeat credit for the purpose of increasing GPA.

EE 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to
undergraduate and graduate students. The Schedule of Classes will list topic
selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent
of instructor.

EE 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students.
Open to undergraduate and graduate students. The Schedule of Classes will
list topic selected. Total credit limited to 8 units. 1–4 laboratories.
Prerequisite: Consent of instructor.

EE 472 Digital Control Systems Laboratory (1)
(Also listed as CPE 472)
Design and programming of microprocessor-based digital controls for
electro-mechanical plants. Topics include digital control laws, translation of
transfer functions into algorithms, assembly language programming, real-
time software design, sample rate selection, finite word-length
considerations. 1 laboratory. Prerequisite: EE 432.

EE 480 Wireless Communications Laboratory (1)
Wireless microwave system design and analysis. RF transmission lines,
microwave networks, designer receiver design, modulation techniques, and mixer
characterization and realizations. Noise and distortion, RF oscillators and
frequency synthesizers, filter design. Radiating systems and electromagnetic wave propagation, microwave amplifier design. 1
laboratory. Prerequisite: EE 435, EE 314. Concurrent: EE 440.

EE 493 Cooperative Education Experience (2) (CR/NC)
Part-time work experience in business, industry, government, and other
areas of student career interest. Positions are paid and usually require
relocation and registration in course for two consecutive quarters. Formal
report and evaluation by work supervisor required. Credit/No Credit
grading only. Total credit limited to 6 units. Prerequisite: Sophomore
standing and consent of instructor.

EE 494 Cooperative Education Experience (6) (CR/NC)
Full-time work experience in business, industry, government, and other
areas of student career interest. Positions are paid and usually require
relocation and registration in course for two consecutive quarters. Formal
report and evaluation by work supervisor required. Credit/No Credit
grading only. Total credit limited to 18 units. Prerequisite: Sophomore
standing and consent of instructor.

EE 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other
areas of student career interest. Positions are paid and usually require
relocation and registration in course for two consecutive quarters. A more
fully developed formal report and evaluation by work supervisor required.
Credit/No Credit grading only. Total credit limited to 24 units. Prerequisite: Sophomore
standing and consent of instructor.

EE 500 Individual Study (1–3)
Advanced study planned and completed under the direction of a member of
the department faculty. Open only to graduate students who have
demonstrated ability to do independent work. Enrollment by petition.
Prerequisite: Consent of department chair, graduate advisor, and
supervising faculty member. Total credit limit at discretion of graduate
advisor, not to exceed 9 units.

EE 502 Microwave Engineering (4)
Application of Maxwell’s equations and boundary value problems to
waveguide structures. Striplines and microstrip lines. S-parameters.
Microwave equivalent circuit theorem. Passive microwave devices. Charge
and field interactions in oscillators and amplifiers. Transferred electron
devices, avalanche transit-time devices, and microwave transistors. Circuits
associated with oscillators and reflection type amplifiers. 4 seminars.
Prerequisite: EE 402 or equivalent.

EE 511 Electric Machines Theory (4)
Advanced topics in electric machines theory. Introduction to Park's
transformation. Analysis of electric machines using Kron's generalized
concept. Vector control of induction machines. 4 seminars. Prerequisite: EE
255 or equivalent, and graduate standing or consent of instructor.

EE 513 Control Systems Theory (4)
State representation of dynamic systems. Mathematical models of physical
deVICES, controllability and observability. Design of closed-loop systems.
Optimal control theory. 4 seminars. Prerequisite: EE 302 with a C- grade or
better or equivalent, and graduate standing or consent of instructor.

EE 514 Advanced Topics in Automatic Control (4)
Summary course covering five selected graduate-level topics in automatic
control theory and practice; implementation issues in digital control,
nonlinear control theory and design, LQ and time optimal control, variable
structure control, and fuzzy logic/model-free control. 4 seminars.
Prerequisite: EE 513 or equivalent, EE 328 with a C- grade or better, or
course on discrete-time linear systems.

EE 515 Discrete Time Filters (4)
Advanced topics in filter design and implementation. Emphasis placed on
current applications and the processing of real signals. Topics may include
signal analysis via spectral estimation, finite Fourier transforms, and spectrometers. Effects of source quantization, and limits
of practical filters. State space realization. Optimal and adaptive filters for
signal prediction, system identification, and noise cancellation. Techniques
implemented in programming assignments. 4 seminars. Prerequisite: EE
314 with a C- grade or better or equivalent, and graduate standing or
consent of instructor.

EE 517 Information Theory (4)
Introduction to information theory and coding. Source and mutual
information. Discrete and continuous information sources and
transmission channels. Additive white Gaussian noise channel. Channel
capacity. The Source- and Channel-Coding Theorems. Data compression.
Huffman code. Block codes, including Hamming and linear codes. Parity
and syndrome decoding. Convolutional codes. 4 seminars. Prerequisite: EE
314 with a C- grade or better or equivalent, EE 525, and graduate
standing or consent of instructor.

EE 518 Power System Protection (4)
Power system grounding. Generator protection, transformer protection,
hubbar protection, line and motor protection. 4 seminars. Prerequisite: EE
407 or equivalent, and graduate standing or consent of instructor.

EE 519 Advanced Analysis of Power Systems (4)
Advanced power system stability analysis, numerical methods in power
system analysis. 4 seminars. Prerequisite: EE 406 or equivalent, and
graduate standing or consent of instructor.

EE 520 Solar-Pvoltitcale Systems Design (4)
Solar radiation and insolation variability. Solar cell theory. Photovoltaic
module and array design. Interfacing PV generators with various kinds of
Stand-alone and grid-connected systems. Economic and policy issues. 4
seminars. Prerequisite: Graduate standing or consent of instructor.

EE 521 Computer Systems (4)
Organization of modern general purpose, high speed digital computer
systems. Arithmetical units, control units, memories and memory
subsystems. Peripheral equipment. Cost and speed trade-offs in the design of such
systems. 4 seminars. Prerequisite: EE 329 with a C- grade or better, or
equivalent, and graduate standing or consent of instructor.

EE 522 Microprocessor-Based Digital System Design (4)
Design and implementation of microprocessor-based digital systems. Their
analysis and cost effective use in system design problems. Data acquisition
and control systems. Role of microperipheral controllers. Laboratory

2007-2009 Cal Poly Catalog
problems associated with interfacing microprocessors to various systems. 3 seminars, 1 laboratory. Prerequisite: EE 329 with a C- grade or better, or equivalent, or consent of instructor.

EE 523 Digital Systems Design (4)
Design of asynchronous sequential machines. Selected automata theory topics include state compatibility analysis, state partition analysis, threshold logic, fuzzy logic. Modern digital system design. Analysis of MOS-LSI multiphase logic structures. Comparison of digital subsystems. Microprocessor as a digital subsystem module. 3 seminars, 1 laboratory. Prerequisite: EE 329 with a C- grade or better and EE 307 with a C- grade or better, and graduate standing or consent of instructor.

EE 524 Solid State Electronics (3)
Physical theory of solid-state devices. Properties of metal-semiconductor junctions and p-n junctions. Derivation of properties of diodes, transistors, and four-layer devices from basic physical and mathematical considerations. 3 seminars. Prerequisite: PHYS 412 or equivalent, and graduate standing or consent of instructor.

EE 525 Stochastic Processes for Engineers (4)
Probability and stochastic processes used in random signal analysis. Response of linear systems to random inputs. Auto-correlation and power spectral densities. Applications in signal processing using the discrete Kalman filter. 4 seminars. Prerequisite: STAT 350 or equivalent, and graduate standing or consent of instructor.

EE 526 Digital Communications (4)
M-ary signals. Vector space representation of signals. Optimum receiver principles. Common signal sets. Signal space dimensionality versus time-bandwidth product. 4 seminars. Prerequisite: EE 314 with a C- grade or better, or equivalent, EE 525, and graduate standing or consent of instructor.

EE 527 Advanced Topics in Power Electronics (4)
Selected advanced topics in power electronics such as dc-dc converters, phase-controlled rectifiers, switched-mode inverters, ac and dc drives, HVDC transmission, or utility applications of power electronics. 4 seminars. Prerequisite: EE 410 or equivalent, and graduate standing or consent of instructor.

EE 528 Digital Image Processing (4)
Processing and interpretation of images by computer. Emphasis on current applications with real images used in programming assignments. Topics may include histogram equalization, 2-D convolution, correlation, frequency-domain processing, median filtering, compression, Hough transform, segmentation and region growing, morphological operations, texture description, shape description, Bayes classifier. 4 seminars. Prerequisite: EE 314 with a C- grade or better, or equivalent, EE 525, and graduate standing or consent of instructor.

EE 529 Advanced Topics in Microwave Device Electronics (3)
Emphasis on device and circuit principles of active microwave solid-state devices, their noise aspects and systems applications. 3 seminars. Prerequisite: EE 402 or equivalent, PHYS 412 or equivalent, and graduate standing or consent of instructor.

EE 530 Fourier Optics (4)
Approach to the design and analysis of optical systems using linear communication theory, including Fourier analysis. Analysis of two-dimensional signals and systems, foundations of scalar diffraction theory. Fresnel and Fraunhofer diffraction. Wave-optics analysis of coherent optical systems, frequency analysis of optical imaging systems, holo-graphy. 4 seminars. Prerequisite: EE 402 or equivalent, EE 314 with a C- grade or better, or equivalent, and graduate standing or consent of instructor.

EE 533 Antennas (4)

EE 541 Advanced Microwave Laboratory (2)
Experimental measurement in waveguide and microstrip circuits employing the advanced Network Analyzer. Design of both passive and active microwave circuits using microstrip. Graphical and analytical design techniques as well as the use of computer-aided design codes. 2 laboratories. Prerequisite: EE 402 or equivalent. Concurrent or prerequisite: EE 502, and graduate standing or consent of instructor.

EE 544 Solid-state Electronics Laboratory (1)
Experimental procedures in solid-state electronics. Investigation and improvement of the characteristics of a solid-state electronic device. 1 laboratory. Prerequisite: Graduate standing or consent of instructor. Concurrent: EE 524, and graduate standing or consent of instructor.

EE 563 Graduate Seminar (1) (CR/NC)
Current developments in the fields of electrical and electronic engineering. Participation by students, faculty and guest lecturers. Open to graduate students with a background in electrical or electronic engineering. Credit/No Credit grading only. Total credit limited to 3 units. 1 seminar.

EE 570 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to graduate students and selected seniors with electrical and electronic engineering background. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 seminars. Prerequisite: Graduate standing or consent of instructor.

EE 593 Cooperative Education Experience (2) (CR/NC)
Advanced study analysis and part-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

EE 594 Cooperative Education Experience (6) (CR/NC)
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

EE 595 Cooperative Education Experience (12) (CR/NC)
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. A fully-developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

EE 599 Design Project (Thesis) (1-9)
Each individual or group will select, with faculty guidance and approval, a topic for independent research or investigation resulting in a thesis or project to be used to satisfy the requirement for the degree. An appropriate experimental or analytical thesis or project may be accepted. Prerequisite: Graduate standing and consent of instructor.

EHS—ENVIRONMENTAL HORTICULTURAL SCIENCE

EHS 123 Landscape Installation and Maintenance (4)
Planting and maintenance of trees, shrubs, ground covers, perennial plantings, color beds, specialty plantings, and small turf areas. Site selection, cultural requirements, scheduling of maintenance activities, pruning, landscape renovation and irrigation system repair. Equipment operation, maintenance, and safety. Speakers from industry. 3 lectures, 1 laboratory. Prerequisite: HCS 110, HCS 120 or consent of instructor.

EHS 125 Florist Practices I (3)
Fundamentals of theory, techniques and skills currently practiced in the florist industry. Intended as consumer education for non-majors as well as...
initial preparation for pre-professionals. Includes applied art principles, post-harvest care and handling practices, and proper use of florist tools and materials in crafting basic designs. 1 lecture, 2 laboratories.

EHS 126 Landscape and Environmental Horticulture Construction (2)
Design, construction techniques and materials used in horticulture construction. Material quantity estimating, construction material substitutions, tools, and equipment associated with horticulture construction. 1 lecture, 1 laboratory. Prerequisite: HCS 110, HCS 120, or consent of instructor.

EHS 127 Introduction to Landscape Graphics (4)
Aesthetic aspects of environmental horticulture, landscape drafting, introduction to computer-aided drafting, presentation techniques and garden history. Field trip required. 2 lectures, 2 laboratories.

EHS 128 Principles of Horticultural Design (3)
Aesthetic aspects of environmental horticulture, including landscape drafting, computer-aided design, landscape and floral design and history. Design in the use of and presentation of horticultural products. 2 lectures, 1 laboratory. Prerequisite: HCS 110, HCS 120.

EHS 201 Field Studies in Ornamental Horticulture (1)
Field trip to see environmental horticulture in the field. Private and public sector facilities visited. Itinerary varies. Total credit limited to 2 units. 1 activity. Prerequisite: HCS 120.

EHS 210 Enterprise Project I (1–4)
Selection and completion of a management/production project under faculty supervision. Project participation is voluntary and subject to approval by the department head and the Cal Poly Corporation. Degree credit limited to two units. Credit/No Credit grading only. Prerequisite: HSC 110, HCS 120, HCS 124.

EHS 225 Florist Practices II (3)
Expanded exploration and application of design theory to commercial products and services in the retail florist industry. Appropriate utilization of current sales and business practices in a florist setting. Advanced techniques and skills for construction of wedding, high style and sympathy designs. 1 lecture, 2 laboratories. Prerequisite: EHS 125.

EHS 230 Environmental Horticulture (4)
Technical information and recommendations for the residential horticulturist. Propagation, pruning, planting, media, fertilizers, pest and weed control, landscaping, maintenance, identification and care of ornamental plants. Being a wise horticultural consumer. For non-EHS majors. 3 lectures, 1 laboratory.

EHS 231, 232 Plant Materials I, II (4) (4)
Identification, habits of growth, cultural requirements, and use of ornamental plants in the landscape. 3 lectures, 1 laboratory.

EHS 245 Horticultural Production Techniques (3)
Applied principles of plant growth in relation to the production horticulture industry. Emphasis on container media, fertilizing practices, irrigation, plant growth regulators, and miscellaneous growing structures. 2 activities, 1 laboratory. Prerequisite: HCS 120, HCS 124, SS 121, CHEM 110 or CHEM 111.

EHS 301 Principles of Landscape Design (4)
Introduction to basic principles and elements of single-family residential landscape design, design theory, plant composition; creative problem solving, functional and aesthetic uses of landscape materials, client and maintenance criteria, xeriscape concepts, and perspective drawing. Expansion of EHS 127 drafting and drawing skills. 2 laboratories. Prerequisite: EHS 123, EHS 126, EHS 127; EHS 231 or consent of instructor.

EHS 310 Enterprise Project II (2–4) (CR/NC)
Selection and completion of a management/production project under faculty supervision. Project participation is voluntary and subject to approval by the department head and the Cal Poly Corporation. Degree credit limited to two units. Maximum degree credit for EHS 210 and EHS 310 limited to four units. Credit/No Credit grading only. Prerequisite: EHS 210 or consent of instructor.

EHS 320 Horticultural Presentation Techniques (4)
Computer assisted presentation applications for horticultural business. Exposure to various media essential to horticultural presentations. Expanded computer applications for plan, elevation, perspective drawings, and photo imaging. Exposure to estimating, plant materials database and plant selection programs. Required field trip. 2 lectures, 2 laboratories. Prerequisite: EHS 127 or consent of instructor.

EHS 321 Residential Landscape Design (4)
Advanced principles of landscape design for single-family residential properties. Design process form, and space composition emphasized. Project involvement includes actual client contact. Application of xeriscape concepts. Computer assisted design applications emphasized. Required field trips. 2 lectures, 2 laboratories. Prerequisite: EHS 231, EHS 232, EHS 301. Recommended: EHS 320, EHS 381.

EHS 324 Interior Plant Management (4)
Plant materials used in the interior plantscape. Identification, production, utilization, placement. Interior plant specifics and maintenance. 3 lectures, 1 laboratory. Prerequisite: HCS 120, HCS 124 or consent of instructor, SS 121.

EHS 325 Floriculture Grades and Standards (3)
Grades and standards for fresh flowers, and blooming and foliage plants. Score cards in evaluating florist crops. Comparative evaluation used to develop both verbal skills and appreciation of commercially grown floriculture crops. 1 activity, 2 laboratories. Prerequisite: HCS 120 or consent of instructor.

EHS 331 Landscape Contracting (4)
Practices in supervising personnel and applying standard techniques in landscape construction. Cost finding and estimating for landscape trades. 3 lectures, 1 laboratory. Prerequisite: EHS 126, EHS 127.

EHS 332 Landscape Contracting (4)
Practices in supervising personnel and applying standard techniques in landscape construction cost finding and estimating for landscape trades. Rules, regulations, and licensing laws, set forth by the State of California, governing landscape contractors. 3 lectures, 1 laboratory. Prerequisite: EHS 331.

EHS 335 Computer Applications for Landscape Horticulture (4)
Computer assisted design, drafting and estimating advanced applications for landscape horticulture. In-depth study and extensive hands on exposure to various media programs essential to digital graphic landscape horticulture; CAD drawing/estimating, material databases, plant database programs and GIS. 2 lectures, 2 laboratories. Prerequisite: EHS 126; EHS 127; EHS 231; EHS 232; EHS 301 or EHS 321 or EHS 331 or consent of instructor.

EHS 337 Park Planning and Management (4)
Overview of the management and maintenance of private and public parks and recreational areas. Field trips required. 3 lectures, 1 laboratory. Prerequisite: Junior standing or consent of instructor.

EHS 340 Principles of Greenhouse Environment (4)
Analysis of problems and practices affecting the contemporary commercial horticulturist. Analysis and operation of greenhouses and related equipment stressing the effect of environment on plant growth. Field trip required. 3 lectures, 1 laboratory. Prerequisite: HCS 120, EHS 245, or consent of instructor. Students cannot receive degree credit in both CRSC 333 and EHS 340.

EHS 341 Cut Flower Production (4)
Production of cut flowers and other fresh florists commodities in greenhouses and outdoors. Preparation and scheduling of such commodities for major markets. Field trip required. 3 lectures, 1 laboratory. Prerequisite: EHS 340 or consent of instructor.

EHS 342 Potted Plant Production (4)
Production of major commercial flowering potted plants in greenhouses and outdoors. Preparation and scheduling of potted flowering greenhouse crops
for major markets. Field trip required. 3 lectures, 1 laboratory. Prerequisite: EHS 340 or consent of instructor.

EHS 343 Turfgrass Management (4)

Turfgrass species and uses. Principles of turfgrass physiology and communities under different environments. Overview of procedures and equipment for propagation, mowing, irrigation, fertilization, aeration, and pest control. 3 lectures, 1 laboratory. Prerequisite: EHS 123, SS 121.

EHS 381 Native Plants for California Landscapes (4)

Horticultural investigation of the California flora with emphasis on landscape use and potential. Plant recognition, identification, propagation and culture. Utilization of native plants in landscape design and habitat restoration. Field trips required. 3 lectures, 1 laboratory. Prerequisite: BOT 121, junior standing or consent of instructor.

EHS 382 Restoration Horticulture (4)

Role of horticulture in the successful implementation of restoration projects, including mitigation, revegetation, and erosion control. Practical application of restoration methods and guidelines for specific California plant communities including site-specific plant production. 3 lectures, 1 laboratory. Prerequisite: HCS 124, EHS 381, SS 121.

EHS 402 Retailing Horticultural Products (4)

Economics of operating and managing retail horticulture outlets. Location, selection, layout, and demographic studies. Personnel management, merchandising, advertising, pricing strategies and selling techniques, cooperative buying and industry contributions. 3 lectures, 1 laboratory. Field trip required. Prerequisite: HCS 120, EHS 128, BUS 271, junior standing, or consent of instructor. Recommended: BUS 488.

EHS 421 Arboriculture (4)

Care and management of large ornamental trees. Selection, planting, establishment and maintenance of specimen trees. Ropes and safety equipment required in tree maintenance. Cavity treatment, bracing and cabling, hazard identification, tree evaluation, and specialty power equipment operation. 3 lectures, 1 laboratory. Prerequisite: EHS 123, EHS 231, EHS 232, or consent of instructor.

EHS 422 Advanced Arboriculture (2)

Theory and practices utilized in the management of ornamental trees found in landscaped urban settings. Scheduling of cultural practices and safe usage of hand and power equipment, as specified by professional arborists, and other safety regulations. 2 activities. Prerequisite: EHS 421 or consent of instructor.

EHS 424 Nursery Crop Production (4)

History and overview of the nursery industry. Types of wholesale nurseries and their products. Plant production systems, scheduling, marketing. Emphasis on the wholesale nursery industry in the western U.S. Field trips required. 3 lectures, 1 laboratory. Prerequisite: HCS 124, EHS 245, HCS 327, SS 221; or consent of instructor.

EHS 425 Tissue Culture Propagation (3)

Principles of tissue culture applied to the propagation of ornamental plants. Systems applicable to commercial crops, laboratory organization, media, and current research. 2 lectures, 1 laboratory. Prerequisite: HCS 124 and BIO 435 or HCS 410.

EHS 433 Advanced Turfgrass Operations (4)

Advanced maintenance and operation of turfgrass facilities. Systems of management, maintenance, business and finance. 3 lectures, 1 laboratory. Prerequisite: EHS 343, SS 221.

EHS 434 Landscape Management (4)

Maintenance procedures and operations. Operating a landscape management business. Estimating, scheduling, recordkeeping and implementation of landscape maintenance projects. Interior landscape maintenance. 3 lectures, 1 laboratory. Prerequisite: EHS 123, EHS 126, or consent of instructor.

EHS 438 Teaching Methods in Environmental Horticulture (4)

Use of horticulture as a context for teaching core academic subjects in science, mathematics, English and history/social science. Daily and unit lesson plans that adopt horticultural content, teaching methods and assessment for English language learners and students with special needs. Class demonstrations, analysis, assessment and reflection. 2 lectures, 2 activities. Prerequisite: Completion of General Education B2; EHS 230 or horticultural experience; AGED 202; junior standing; credential candidate or consent of instructor.

EHS 501 Graduate Seminar in Ornamental Horticulture (3)

Group study of current problems of the ornamental horticulture industry; current experimental and research findings as applied to production and management. Total credit limited to 9 units. 3 seminars. Prerequisite: Graduate standing.

EHS 599 Thesis in Environmental Horticultural Science (1-9)

Systematic research of a significant problem in environmental horticulture. Thesis will include problem identification, significance, methods, data analysis and conclusion. Students must enroll every quarter in which facilities are used or advisement is received. Degree credit limited to 6 units. Prerequisite: Graduate standing and consent of instructor.

ENGL--ENGLISH

ENGL 102 Basic Writing II (4) (CR/NC)

Instruction in the writing process. Practice in the strategies of writing, revising, and editing paragraphs and essays with attention paid to focus, support, and organization. Directed readings of exemplary prose. Not for baccalaureate credit. Credit/No Credit grading only. 4 lectures.

ENGL 103 Writing Laboratory (1) (CR/NC)

Directed practice in writing in a laboratory environment. Required of all students scoring below 151 on the English Placement Test (EPT). Students scoring below 146 must take an additional remedial course before registering for ENGL 103. Not for baccalaureate credit. Credit/No Credit grading only. To be taken concurrently with ENGL 134, 1 laboratory.

ENGL 104 Writing Lab Tutorial (1) (CR/NC)

Individual tutorials of at least three hours a week in the University Writing Lab. Practice in various essay writing strategies based on a student's needs and at a student's own pace. Preparation for freshman composition. Not for baccalaureate credit. Credit/No Credit grading only. Repeatable 1 laboratory. Prerequisite: At least one quarter of basic writing.

ENGL 111 English Sentence Structure for ESL/EFL Students (4) (CR/NC)

Focus on the fundamentals of sentence patterns, sentence construction, and sentence combining within the context of the paragraph and story. Practice in writing a variety of effective sentences; practice in linking sentences in a unified paragraph controlled by a topic sentence. Not for baccalaureate credit. Credit/No Credit grading only. 4 lectures. Prerequisite: Non-native English speakers who need to develop skill in writing English sentences.

ENGL 112 English Paragraph Development for ESL/EFL Students (4) (CR/NC)

Focus on the fundamentals of paragraph development within the context of the essay and story. Writing paragraphs with strong topic sentences that control paragraph unity; linking paragraphs for a unified essay through transitions and the control of the thesis statement. Not for baccalaureate credit. Credit/No Credit grading only. 4 lectures.

ENGL 113 Essay Writing/ESL (4) (CR/NC)

Practice in essay writing with special attention paid to the writing process. Focus on using details and examples for effective development. Review of grammar problems specific to ESL students. Journal writing to enhance fluency. Directed readings of essays and fiction. Not for baccalaureate credit. Credit/No Credit grading only. 4 lectures. Prerequisite: ENGL 111 or ENGL 112, or consent of instructor.
ENGL 115 Graduation Writing Requirement Preparation (4) (CR/NC)
Writing practice of extemporaneous expository and argumentative essays under time pressure. Discussion and application of rhetorical and grammatical principles through critical reading of student and professional essays. Satisfactory completion of the course fulfills the Graduate Writing Requirement. Not for baccalaureate credit. Credit/No Credit grading only. 4 lectures. Prerequisite: At least two unsuccessful attempts at the GWR.

ENGL 133 Writing: Exposition for English as a Second Language Students (4) GE A1
Writing and stylistic analysis of expository papers. Study and application of techniques of exposition. Critical reading of models of effective writing. Additional emphasis on grammar and writing issues appropriate for English as a Second Language students. 4 lectures. Prerequisite: ENGL 111, 112, or 113 or consent of instructor.

ENGL 134 Writing: Exposition (4) GE A1
Writing and stylistic analysis of expository papers. Study and application of techniques of exposition. Critical reading of models of effective writing. 4 lectures. Prerequisite: Satisfactory score on the English Placement Test.

ENGL 145 Reasoning, Argumentation, and Writing (4) (Also listed as HNRS/COMS 145) GE A3
The principles of reasoning in argumentation. Examination of rhetorical principles and responsible rhetorical behavior. Application of these principles to written and oral communications. Effective use of research methods and sources. 4 lectures. Prerequisite: Completion of GE Area A1 and A2.

ENGL 148 Reasoning, Argumentation and Professional Writing (4) (Also listed as HNRS 148) GE A3
The principles of reasoning in professional writing. Discussion and application of rhetorical principles, both oral and written, in professional environments. Study of methods, resources and common formats used in corporate or research writing. 4 lectures. Prerequisite: Completion of GE Areas A1 and A2.

ENGL 149 Technical Writing for Engineers(4) (Also listed as HNRS 149) GE A3
The principles of technical writing. Discussion and application of rhetorical principles in technical environments. Study of methods, resources and common formats used in corporate or research writing. 4 lectures. Prerequisite: Completion of GE Areas A1 and A2. For Engineering students.

ENGL 203 Core I: Old English/Medieval (4)
Representative canonical and non-canonical readings in the literature of the period, including Beowulf, Dante, the Pearl Poet, Chaucer, Medieval theater, and others, as chosen by the instructor. 4 lectures. Prerequisite: Completion of GE Area A, and ENGL 251; for English majors only.

ENGL 204 Core II: Renaissance (4)
Representative canonical and non-canonical readings in the literature of the period, including Shakespeare, Spenser, Milton, Donne, Jonson, and others, as chosen by the instructor. 4 lectures. Prerequisite or concurrent: ENGL 203; for English majors only.

ENGL 205 Core III: 1660-1798 (4)
Representative canonical and non-canonical readings in the literature of the period, including Pope, Swift, Austen, representative American Colonial writers, one playwright, and others, as chosen by the instructor. 4 lectures. Prerequisite or concurrent: ENGL 204; for English majors only.

ENGL 210 New Media Technology (4) (CR/NC)
An introduction to and application of new media software used for the production of online help, professional live technical presentations, and high-level technical document design, production and distribution. Credit/No Credit grading only. 4 lectures.

ENGL 225 Introduction to Creative Writing (4)
Creative process employed by poets, fiction writers, playwrights, and essayists. Reading model works, and writing in each of the genres. Creative process in other arts and in science. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 230 Masterworks of British Literature through the Eighteenth Century (4) GE C1
Covers a thousand years of British literature, from the eighth to the eighteenth century and may include such readings as Beowulf, The Canterbury Tales, Utopia, Othello, Paradise Lost, Oronoko and Gulliver's Travels. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 231 Masterworks of British Literature from the Late 18th Century to the Present (4) GE C1
Broadly surveys Romantic, Victorian, Modern, and Contemporary British literature in an historical-cultural context. Investigates works from several genres and a variety of national and cultural voices. May include such writers as Wordsworth, Woolf, Dickens, G. Eliot, Wilde, Woolf, Yeats, and Gordimer. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 240 Great Books I: Introduction to Classical Literature (4) (Also listed as HNRS 251) GE C1
Examination of the ancient epics and classical literature of Mesopotamia, Greece, and Rome. May include such readings as The Epic of Gilgamesh, the Iliad, the Odyssey, Genesis, Exodus, Antigone, the Symposium, the Aeneid, and Marcus Aurelius's Meditations. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 252 Great Books II: Medieval to Enlightenment Literature (4) GE C1
A broadly based survey of American literature, exploring the impact of various world cultures on the evolving definition of the American experience. Literary expression of movements that shape the American character over time, such as Puritanism, Transcendentalism, and Naturalism. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 253 Great Books III: Romanticism to Modernism Literature (4) GE C1
Examination of key works marking the transition from Mediterranean Classicism (c. 500 CE) to an emergent European tradition (c. 1800 CE). May include such readings as the poetry of Blake, Wordsworth, Eliot, Rimbaud, Plath, Ginsberg, and Stein; Notes from Underground, The Death of Ivan Ilych, The Metamorphosis and/or The Hunger Artist, Heart of Darkness, "Sonny's Blues," and Virginia Woolf's short fiction and essays. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 260 Children's Literature (4)
Analysis and evaluation of traditional literature, fantasy, realistic fiction, historical fiction, informational books, picture books, and poetry for children in multiple subject classroom grades K-6. Emphasis on multicultural texts. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 290 Introduction to Linguistics (4)
Introduction to the nature of language; concepts and methods of linguistic science. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 301 Advanced Composition - ESL (4) GWR
Writing and critical analysis of expository and argumentative papers. Emphasis on rhetorical, stylistic, and grammatical problems specific to non-native speakers. Critical reading of essays and/or fiction. Practice in revision and editing of papers. Journal writing to promote fluency. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 302 Writing: Advanced Composition (4) GWR
Writing and analysis of expository and argumentative papers at an advanced level. Special attention paid to issues of style and voice. Critical reading of models of effective writing. 4 lectures. Prerequisite: Completion of GE Area A.
ENGL 303 Core IV: 1798–1865 (4)
Representative canonical and non-canonical readings in the literature of the period, including Wordsworth, Coleridge, Keats, Emerson, Hawthorne, and others, as chosen by the instructor. 4 lectures. Prerequisite or concurrent: ENGL 205; for English majors only.

ENGL 304 Core V: 1865–1914 (4)
Representative canonical and non-canonical readings in the literature of the period, including Dickinson, Whitman, Arnold, James, Hardy, and others, as chosen by the instructor. 4 lecture. Prerequisite or concurrent: ENGL 303; for English majors only.

ENGL 305 Core VI: 1914–Present (4)
Representative canonical and non-canonical readings in the literature of the period, including Yeats, Joyce, Woolf, Eliot, Faulkner, and others, as chosen by the instructor. 4 lectures. Prerequisite or concurrent: ENGL 304; for English majors only.

ENGL 310 Corporate Communication (4)
Instruction and practice in forms of communication characteristic of business and industry. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 317 Technical Editing (4)
Instruction and practice in editing skills commonly used in workplace settings. Includes practical instruction in copyediting, sentence level editing, and substantive editing for accuracy and consistency. Editing documents, illustrations, web pages for consistency and use. Application of grammar and punctuation. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 319 Information Design and Production (4)
Mid-level presentation of the theory and practice involved with the production of technical documents. Focus on history, typography, information design principles, the effective integration of text and graphics, project management, and recent industry trends in software use. 4 lectures. Prerequisite: ENGL 148 or ENGL 149, ENGL 210 and consent of instructor.

ENGL 326 Literary Criticism (4)
Theory and practice of current and traditional literary criticism, including writing and revising critical statements based on current models. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 330 British Literature in the Age of Belief: to 1485 (4)
The historical development of medieval English literature through selected canonical and non-canonical works of various genres. Medieval authorship and textual practice, the relationship between gender and writing, and the forging of a national poetic identity. Interdisciplinary support material (art, music and literature) illustrating key themes. 4 lectures. Prerequisite: Completion of GE Areas A and C. English majors will not receive GE C4 credit.

ENGL 331 British Literature in the Age of the Renaissance: 1485-1660 (4)
The literary, historical, political, religious and scientific concerns of the Age of the Renaissance. May include such sources as More's Utopia, Spenser's Faerie Queene, Shakespeare's Othello, Donne's Songs and Sonnets, Milton's Paradise Lost. 4 lectures. Prerequisite: Completion of GE Areas A and C. English majors will not receive GE C4 credit.

ENGL 332 British Literature in the Age of Enlightenment: 1660-1798 (4)
In-depth exploration of the dominant themes and preoccupations of the Age of Enlightenment. Historical and cultural contexts of canonical and non-canonical literature emphasized to illustrate 18th century Britons' views of themselves and their changing world. May include such sources as Dryden, Behn, Defoe, Swift, Pope, and Johnson. 4 lectures. Prerequisite: Completion of GE Areas A and C. English majors will not receive GE C4 credit.

ENGL 333 British Literature in the Age of Romanticism: 1798–1832 (4)
In-depth exploration of the literature of the British Romantic period. Cultural, historical, and philosophic contexts will also be examined in both canonical and non-canonical works. May include such sources as Blake, Wordsworth, Keats, and Wollstonecraft. 4 lectures. Prerequisite: Completion of GE Areas A and C. English majors will not receive GE C4 credit.

ENGL 334 British Literature in the Age of Industrialism: 1832-1914 (4)
In-depth study of historical, philosophical, and literary reaction to the rise of the modern industrial state. Special focus on the literary response to the following: industry, democracy, class, art, and culture. 4 lectures. Prerequisite: Completion of GE Areas A and C. English majors will not receive GE C4 credit.

ENGL 335 British Literature in the Age of Modernism: 1914-Present (4)
In-depth exploration of the dominant concerns and achievements of British literature from Modernism through Postmodernism. Historical and cultural contexts of canonical and non-canonical literature explored to illustrate 20th century Britain's reactions to the breakdown of traditional beliefs, the World Wars, the legacy of colonialism, the changing politics and problems of a multi-cultural nation. May include such writers as Conrad, Joyce, Woolf, Yeats, Heaney, Ishiguro, Walcott. 4 lectures. Prerequisite: Completion of GE Areas A and C. English majors will not receive GE C4 credit.

ENGL 338 Introduction to Shakespeare–London Study (4)
Shakespeare's works as texts, productions, and major historical, aesthetic and cultural touchstones. The author's intellectual and social influences on four centuries of theatre and his subsequent impact on literature and other arts in London. Attendance at play performances required. 3 lectures, 1 activity. Prerequisite: Completion of GE Areas A and C. English majors will not receive GE C4 credit.

ENGL 339 Introduction to Shakespeare (4)
Shakespeare's works as texts, productions and major historical, aesthetic and cultural touchstones. The author's intellectual and social influences on four centuries of theatre and his subsequent impact on literature and other arts. 4 lectures. Prerequisite: Completion of GE Areas A and C. English majors will not receive GE C4 credit.

ENGL 340 The Literary Sources of the American Character: 1600-1865 (4)
The literature of the United States from its sources in the accounts of the early British and Spanish explorers to the works of the American Renaissance. The relationship between mainstream and marginalized voices in the American character. 4 lectures. Prerequisite: Completion of GE Areas A and C. English majors will not receive GE C4 credit.

ENGL 341 The Literary Sources of the American Character: 1865-1914 (4)
Analysis of literary Realism and Naturalism in their cultural and historical contexts. May include such sources as Whitman, Dickinson, Twain, Chopin, James, Wharton, Norris, and Crane who are seen to accommodate the sense of danger, doubt, and disorder of the time. 4 lectures. Prerequisite: Completion of GE Areas A and C. English majors will not receive GE C4 credit.

ENGL 342 The Literary Sources of the American Character: 1914-1956 (4)
The writers of the modern period and those of the early post-modern period, including writers marked by stylistic innovation and a willingness to challenge traditionally accepted standards. May include such sources as Hemingway, Fitzgerald, Stein, Hughes. 4 lectures. Prerequisite: Completion of GE Areas A and C. English majors will not receive GE C4 credit.

ENGL 343 Multiple Voices of Contemporary American Literature: 1956-Present (4)
In-depth study of American fiction, poetry, and drama written since 1956. How contemporary literature examines enduring American themes and breaks new ground with the inclusion of diverse voices. 4 lectures. Prerequisite: Completion of GE Areas A and C. English majors will not receive GE C4 credit.

ENGL 345 Women Writers of the Twentieth Century (4)
In-depth exploration of works of 20th century women authors within their historical and cultural contexts. Analysis of canonical and non-canonical writing by women of differing classes, races, ethnicities, and sexual preferences. Literary techniques through which texts reflect or challenge
such cultural constructs as gender, identity, sexuality, motherhood, etc. The emergence of a female literary tradition. May include such writers as Woolf, Rich, Kingston, Yamamoto, Morrison, Cervantes. 4 lectures. Prerequisite: Completion of GE Areas A and C1. English majors will not receive GE C4 credit.

ENGL 346 Ethnic American Literature (4) GE C4 USCP GWR
Investigation of the primary issues, themes, and tropes of literature written in English by African-American, Asian-American, Native American, Hispanic and Jewish writers. Cultural and historical contexts explored to consider effects of marginalization on this literature, and its subsequent relation to the American canon. 4 lectures. Prerequisite: Completion of GE Areas A and C1. English majors will not receive GE C4 credit.

ENGL 347 African American Literature (4) GE C4 USCP GWR
The writings of African Americans from the end of the eighteenth century to the present. Individual works and literary trends among African Americans of various periods and contexts: intellectual, political, and cultural. 4 lectures. Prerequisite: Completion of GE Areas A and C1. English majors will not receive GE C4 credit.

ENGL 349 Gender in Twentieth Century Literature (4) GE C4 USCP GWR
In-depth study of issues related to male and female identity and the relations between men and women as depicted in twentieth-century fiction, poetry, non-fiction, and/or drama. How gender issues are created and viewed from different perspectives, such as social/economic class, ethnicity, and sexual orientation. 4 lectures. Prerequisite: Completion of GE Areas A and C1. English majors will not receive GE C4 credit.

ENGL 350 The Modern Novel (4) GE C4 GWR
Readings in the modern novel in its historical and cultural context. 4 lectures. Prerequisite: Completion of GE Areas A and C1. English majors will not receive GE C4 credit.

ENGL 351 Modern Poetry (4) GE C4 GWR
Modern poetry, considered in its historical and cultural context. The rise of experimental styles designed to reflect the disorder of the twentieth century—fragmentation, alienation, dislocation, and the absence of connections. 4 lectures. Prerequisite: Completion of GE Areas A and C1. English majors will not receive GE C4 credit.

ENGL 352 Modern Drama (4) GE C4 GWR
Reading and analysis of world drama of the last 150 years, thereby enhancing student awareness of modern culture, history, ethics, politics, and the human condition. Design work, multi-media forms, art, music, and cinema as components or informing elements of the works under consideration. 4 lectures. Prerequisite: Completion of GE Areas A and C1. English majors will not receive GE C4 credit.

ENGL 353 Drama in London (4) GE C4
Reading in drama of the Twentieth Century and/or earlier periods, exclusive of Shakespeare, with special emphasis on form and ideas. Attendance at play performances required. 3 lectures, 1 activity. Prerequisite: Completion of GE Areas A and C1. English majors will not receive GE C4 credit.

ENGL 354 The Bible as Literature and in Literature and the Arts (4) GE C4 GWR
The most important and representative books of the Bible. Exposure to works based on the Bible in literature, painting, sculpture, architecture, music, and film. 4 lectures. Prerequisite: Completion of GE Areas A and C1. English majors will not receive GE C4 credit.

ENGL 356 Complexities of Literacy in Literature and Non-fiction Text (4)
Cognitive elements of reading and writing processes - decoding and encoding, construction of meaning, recognizing and using text conventions of different genres. Metacognitive strategies for making sense of text. Twenty hours of fieldwork in secondary schools required. 3 lectures, 1 activity. Prerequisite: Completion of GE Area A and junior standing.

ENGL 370 World Cinema (4) GE C4 GWR
Major works of international cinema with emphasis on critical interpretation, on the ways films communicate visually and aurally, and on the historical and cultural contexts in which films are created. 3 lectures, 1 laboratory. Prerequisite: Completion of GE Areas A and C1. Recommended: completion of Area C3. English majors will not receive GE C4 credit.

ENGL 371 Film Styles and Genres (4) GE C4 GWR
Major films within particular cinematic genres or styles, with emphasis on critical interpretation, aesthetic appreciation, and the films' historical and cultural contexts. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 3 lectures, 1 laboratory. Prerequisite: Completion of GE Areas A and C1. Recommended: Completion of Area C3. English majors will not receive GE C4 credit.

ENGL 380 Literary Themes (4)
Also listed as HNRS 380
Literature selected according to a particular theme. Emphasis on critical interpretation, aesthetic appreciation, and historical and cultural contexts. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 4 lectures. Prerequisite: Completion of GE Areas A and C1. English majors will not receive GE C4 credit.

ENGL 381 Diversity in Twentieth-Century American Literature (4) GE C4 USCP GWR
Literature selected according to a particular theme, with a focus on issues of ethnicity and gender. Emphasis on critical interpretation, aesthetic appreciation, and historical and cultural contexts. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 4 lectures. Prerequisite: Completion of GE Areas A and C1. English majors will not receive GE C4 credit.

ENGL 386 Creative Nonfiction (4) GE C4
Writing creative nonfiction (the memoir, the nature essay, the personal narrative, cultural criticism, literary journalism) by adding composition skills of fictional and poetic techniques. A publication workshop. Total credit limited to 8 units. 4 lectures. Prerequisite: Completion of GE Area A and one course from Area C. English majors will not receive GE C4 credit.

ENGL 387 Fiction Writing (4) GE C4
How to write and read fiction. Exploring and understanding the elements of fiction writing, employing models by established writers. Total credit limited to 8 units. 4 lectures. Prerequisite: Completion of GE Area A and one course from Area C. English majors will not receive GE C4 credit.

ENGL 388 Poetry Writing (4) GE C4
How to write and read poetry. Exploring a variety of formal options, employing model poems by established writers and identifying and enhancing what is best in poetry written in class. Total credit limited to 8 units. 4 lectures. Prerequisite: Completion of GE Area A and one course from Area C. English majors will not receive GE C4 credit.

ENGL 389 Creative Writing: Drama (4)
Instruction and practice in writing, revising, and evaluating drama. Total credit limited to 8 units. 4 lectures. Prerequisite: Completion of GE Area A and one course from Area C.
ENGL 390 The Linguistic Structure of Modern English (4)
Linguistic analysis of the English language, including phonology, morphology, syntax, and style and dialect variation. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 391 Topics in Applied Linguistics (4)
Topics in applied linguistics including sociolinguistics, first and second language acquisition, literacy, bilingualism, and dialectology. Applications to teaching the English language. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 392 English Grammar for Writers and Teachers (4)
Linguistics-based study of standard English word categories, sentence parts and types, punctuation, and the role of sentence structure in text style and coherence; consideration of grammar standards in social context. Preparation for professional writing, editing, and teaching standard grammar. 4 lectures. Prerequisite: Completion of GE Areas A1 and A3.

ENGL 395 History of the English Language (4)
Linguistic approach to the history of the English language: evolution of phonology, morphology, lexicon, syntax, and semantics within the changing cultural context of the last 2000 years. 4 lectures. Prerequisite: Completion of GE Area A.

ENGL 399 Tutor Training (2) (CR/NC)
Studies of approaches to tutoring one-on-one. Practice in tutoring, with supervision, in the University Writing Lab. Two hours of lecture per week which reviews the special needs of ESL, dialect-different, dyslexic, and remedial students. Overview of writing lab administration and design. Credit/No Credit grading only. 2 lectures. Prerequisite: Completion of GE Area A and ENGL 302.

ENGL 400 Special Problems for Advanced Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 6 units. Prerequisite: consent of the department chair.

ENGL 408 Internship (2–12) CR/NC
Advanced study and part-time work experience; current innovation, practices, and problems in administration, supervision, and organization. Must be able to do independent work in career field. Weekly reports and evaluation by work supervisor required. Total credit limited to 12 units. Credit/No Credit grading only. Prerequisite: Consent of instructor.

ENGL 411 New Media Arts I (4) (Also listed as HNRS 411)
Advanced-level presentation of new media theory, design and practice. Topics covered include, but are not limited to, interactivity theory, user-centered system design, cognitive psychology, media analysis, and basic web design theory. Total credit limited to 8 units. 4 lectures. Prerequisite: advanced skills in writing and/or graphics, and/or computer programming; upper-division standing, ENGL 148 or ENGL 149 and consent of instructor.

ENGL 412 New Media Arts II (4) (Also listed as HNRS 412)
Advanced level of work with the primary technologies and design/critique theories currently at use in the professional creation of new media works. Lectures and readings expand upon material presented in ENGL 411. 4 lectures. Prerequisite: ENGL 411 and consent of instructor.

ENGL 416 New Media Study (4)
Theoretical, critical, or applied study of new electronic communication media. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 seminars. Prerequisite: HUM 250 or equivalent; upper division standing.

ENGL 418 Technical Communication Practicum (2–4) (CR/NC)
Supervised work experience in government, corporate, or volunteer setting, as approved by department chair. Placement may be student or employer initiated or through Cooperative Education. Proposal, progress reports, and final report. Total credit limited to 8 units, with a maximum of 4 units per quarter. Credit/No Credit grading only. Prerequisite: Senior standing and two technical writing courses.

ENGL 419 Advanced New Media Projects (2) (CR/NC)
Supervised independent projects creating new media works for academic, professional, or popular audiences. Students are paired with teachers, business people, service organizations, or others who need new media projects designed for specific uses. Total credit limited to 8 units. Credit/No Credit grading only. Prerequisite: ENGL 411 and consent of instructor.

ENGL 420 Client-Based Technical Communication (4)
Capstone course for the technical communication program. Students work for one or more commercial client(s) to produce a set of professional print and/or electronic documents. 4 lectures. Prerequisite: ENGL 317, ENGL 319, and consent of instructor.

ENGL 424 Teaching English in Secondary Schools (5)
Methods of teaching English in secondary schools, with emphasis on practical approaches to teaching grammar/mechanics and the writing process in a literature-based classroom. Attention to lesson and unit planning and integration of technology in the classroom. 5 lectures. Prerequisite: Completion of GE Area A, admission to the teacher education program, or consent of instructor.

ENGL 430 Chaucer (4)
Selected readings from *Canterbury Tales* and Chaucer's other major poems. 4 seminars. Prerequisite: ENGL 203 and a 300-level literature course, or consent of instructor.

ENGL 431 Shakespeare (4)
Representative comedies, tragedies, and histories. 4 seminars. Prerequisite: ENGL 204 and a 300-level literature course, or consent of instructor.

ENGL 432 Milton (4)
Paradise Lost, Paradise Regained, and *Samson Agonistes,* with some attention to the minor poems. 4 seminars. Prerequisite: ENGL 204 and a 300-level literature course, or consent of instructor.

ENGL 439 Significant British Writers (4)
Selected British writers, as individual writers or in groups. The Schedule of Classes will list topics selected. Total credit limited to 12 units. 4 seminars. Prerequisite: The MAJOR CORE literature class in the relevant period and a 300-level literature course, or consent of instructor.

ENGL 449 Significant American Writers (4)
Selected American writers, as individual writers or in groups. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 4 seminars. Prerequisite: The MAJOR CORE literature class in the relevant period and a 300-level literature course, or consent of instructor.

ENGL 459 Significant World Writers (4)
Selected world writers as individual writers or in groups. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 4 seminars. Prerequisite: ENGL 203 and a 300-level literature course, or consent of instructor.

ENGL 461 Senior Project (1)
One-unit adjunct course which must be taken concurrently with a department-approved English 400-level course during the last two quarters of the student's undergraduate career. English majors only.

ENGL 465 Computer Resources for English Teachers (4)
Computer as problem-solving, teaching, research, communication, and administrative tool in English education. Lesson planning and integration of technology into the secondary English classroom, including networked communication, the World-Wide Web, educational software and appropriate hardware. Attention to ethical, rhetorical, and phenomenological implications of the use of technology in English education. 3 seminars, 1 laboratory. Prerequisite: Computer literacy.

ENGL 468 The Rhetoric of the Image (4)
The complicated and dependent relationship between still and moving images and written texts. How images and print communicate rhetorically with people as readers, viewers, and consumers. 4 lectures. Prerequisite: Completion of GE Area A and junior standing.

ENGL 469 Women's Rhetoric(s): Definitions, Contexts, Issues (4)
Theoretical questions about what constitutes women's rhetoric(s), and how women have used and accommodated traditional methods of persuasion to argue for and enact a changed world. 4 lectures. Prerequisite: Completion of GE Area A and junior standing.

2007-2009 Cal Poly Catalog
ENGL 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other
domains of student career interest. Positions are paid and usually require
registration and relocation into course for two consecutive quarters. Formal
report and evaluation by work supervisor required. Total credit limited to
16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing
and consent of instructor.

ENGL 486 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other
areas of student career interest. Positions are paid and usually require
registration and relocation into course for two consecutive quarters. Formal
report and evaluation by work supervisor required. Total credit limited to
16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing
and consent of instructor.

ENGL 487 Advanced Creative Writing: Fiction (4)
Instruction and practice in advanced writing, revising, and evaluating of
fiction. Total credit limited to 8 units. 4 lectures. Prerequisite: ENGL 387 or
consent of instructor.

ENGL 488 Advanced Creative Writing: Poetry (4)
Instruction and practice in advanced writing, revising and evaluating of
poetry. Total credit limited to 8 units. 4 lectures. Prerequisite: ENGL 388 or
consent of instructor.

ENGL 489 Advanced Creative Writing: Drama (4)
Instruction and practice in advanced writing, revising and evaluating of
drama. Total credit limited to 8 units. 4 lectures. Prerequisite: ENGL 389 or
consent of instructor.

ENGL 495 Topics in Applied Language Study (4)
Application of linguistics to human communications, human relations, and
language policy and planning, or literature. The Schedule of Classes will
list topic selected. Total credit limited to 12 units. 4 seminars. Prerequisite: ENGL
290, ENGL 390 or consent of instructor.

ENGL 497 Theories of Language Learning and Teaching (4)
Theories of first and second language learning and acquisition in the
context of teaching English as a second language/dialect. 4 lectures.
Prerequisite: Eight units of linguistics courses or consent of instructor.

ENGL 498 Approaches to Teaching English as a Second
Language/Dialect (4)
Approaches to teaching English as a second language. Attention to
materials development and testing. 4 lectures. Prerequisite: ENGL 497.

ENGL 499 Practicum in Teaching English as a Second
Language/Dialect (2) (CR/NC)
Practical experience in the English as a second language classroom under
supervision of a cooperating teacher. Teaching materials development and
curriculum design. Credit/No Credit grading only. 1 seminar and supervised
work. Prerequisite: ENGL 497 and ENGL 498.

ENGL 501 Techniques of Literary Research (4)
Purpose and methods of literary research in literature. Acquaintance with
printed and on-line materials of research and practical experience in
collecting material, weighing evidence, reaching conclusions, and writing
scholarly articles. Analysis of dissemination of scholarly information.
Discussion of ethics of scholarship. 4 seminars. Prerequisite: Graduate
standing in English.

ENGL 502 Seminar in Critical Analysis (4)
Basic approaches used by critics. Multiple points of view. Application to
literary works. The Schedule of Classes will list topic selected. Total credit
limited to 8 units. 4 seminars. Prerequisite: Graduate standing in English.

ENGL 503 Graduate Introduction to Linguistics (4)
Introduction to linguistics for graduate students. Phonology, morphology
lexicon, syntax, and variation within language; application of linguistics to
real-world issues. 4 seminars. Prerequisite: Graduate standing in English.

ENGL 504 Seminar in English Linguistics (4)
Examination of varying theoretical approaches to the structure of English,
or applications of linguistic methods in the study of literature, dialectology,
language acquisition, literacy, bilingualism, or discourse analysis. The
Schedule of Classes will list topic selected. Total credit limited to 12 units.
4 seminars. Prerequisite: Graduate standing in English and one of the
following: ENGL 290, ENGL 390, or ENGL 503, or consent of instructor.

ENGL 505 Seminar in Composition Theory (4)
Special problems in composition. Direct application of composition and
rhetorical theory to composition instruction. 4 seminars. Prerequisite:
Graduate standing in English, or consent of instructor.

ENGL 506 Pedagogical Approaches to Composition (4)
Practical problems in the teaching of English composition. Application
and study of practical approaches. Discussion of classroom organization and
management. Discussion of research into the nature and resolution of
student writing problems. Required of all new teaching assistants in
English. 4 seminars. Prerequisite: Graduate standing in English and ENGL
505, or consent of instructor. Concurrent: Teaching of ENGL 134.

ENGL 510 Seminar in Authors (4)
Intensive study of major British and American literary figures, singly,
doubly or in small groups. Written and oral reports of individual
investigation. The Schedule of Classes will list topic selected. Total credit
limited to 16 units. 4 seminars. Prerequisite: Graduate standing in English.
ENGL 501 strongly advised.

ENGL 511 Seminar in American Literary Periods (4)
American periods. Written and oral reports of individual investigation. The
Schedule of Classes will list topic selected. Total credit limited to 20 units.
4 seminars. Prerequisite: Graduate standing in English. ENGL 501 strongly
advised.

ENGL 512 Seminar in British Literary Periods (4)
British periods. Written and oral reports of individual investigation. The
Schedule of Classes will list topic selected. Total credit limited to 20 units.
4 seminars. Prerequisite: Graduate standing in English. ENGL 501 strongly
advised.

ENGL 513 Seminar in Special Topics (4)
Themes and ideas in language and literature not ordinarily covered in
the routine graduate course offerings. Written and oral reports of individual
investigation. The Schedule of Classes will list topic selected. Total credit
limited to 16 units. 4 seminars. Prerequisite: Graduate standing in English.
ENGL 501 strongly advised.

ENGL 515 Apprenticeship in Teaching Literature, Composition, or
Linguistics at College Level (2) (CR/NC)
Supervised experience in planning, teaching, and evaluating a 100-, 200-
or 300-level linguistics, composition, or literature class taught by English
faculty member. Planning, selecting texts, conferring with students,
discussing and constructing assignments, lecturing, leading small group
discussions. Credit/No Credit grading only. Total credit limited to 8 units.
Prerequisite: Graduate standing in English and 8 units of successful
graduate work.

ENGL 587 Graduate Seminar in Creative Writing: Fiction (4)
Graduate instruction in writing, revising, and evaluating fiction. Total credit
limited to 8 units. 4 seminars. Prerequisite: Graduate standing in English
and ENGL 487, or consent of instructor.

ENGL 588 Graduate Seminar in Creative Writing: Poetry (4)
Graduate instruction in writing, revising, and evaluating poetry. Total credit
limited to 8 units. 4 seminars. Prerequisite: Graduate standing in English
and ENGL 488, or consent of instructor.

ENGL 590 Directed Study (1-4)
Supervised independent or group study of special problems in selected
areas of language, composition, or literature. Total credit limited to 12
units. Prerequisite: Graduate standing in English and the permission of the
graduate advisor.
ENGR--ENGINEERING

ENGR 110 Engineering Science I (3)
Introduction to engineering and computer science. Graphical communication and visualization as well as engineering orientation. Cultural pluralism and gender issues. 3 lectures.

ENGR 111 Engineering Science II (3)
Introduction to engineering and computer science. Computer-aided design (CAD) and manufacturing (CAM), and fabrication, as well as engineering orientation. Cultural pluralism and gender issues. 3 lectures.

ENGR 112 Engineering Science III (3)
Introduction to engineering and computer science. Computer science and engineering orientation. Cultural pluralism and gender issues. 3 lectures.

ENGR 141 Engineering Orientation--Freshman Seminar (2) (CR/NC)
College success skills for the technical student, including group study, time management, technical project, identification of campus resources. Academic, career and personal assessment as it relates to the educational process. Specifically for students enrolled through Student Academic Services and the MESA Engineering Program. Credit/No Credit grading only. 1 lecture, 1 activity.

ENGR 142 Engineering Careers (2) (CR/NC)
Career investigation, resume writing, job search and interview skills, speakers from industry and time management. Specifically for students enrolled through Student Academic Services and the MESA Engineering Program. Credit/No Credit grading only. 1 lecture, 1 activity.

ENGR 210 Technical Group Study Training (2) (CR/NC)
Approaches to facilitate small group study. Practice facilitating under supervision in the MEP Technical Study Center. Review academic and interactive group communication skills. Minimum two hour facilitated group lab. CRLA International Tutor Program Certification. Total credit limited to 6 units. Credit/No Credit grading only. 1 lecture, 1 laboratory. Prerequisite: Grade of B or better at Cal Poly in course student will be facilitating.

ENGR 213 Bioengineering Fundamentals (2) (Also listed as BRAE 213)
GE B2
Treatment of the engineering applications of biology. Genetic engineering and the industrial application of microbiology. Systems physiology with engineering applications. Structure and function relationships in biological systems. The impact of life on its environment. 2 lectures. Prerequisite: Junior standing or consent of instructor.

ENGR 270 Applications of CAD and Rapid Prototyping for Biomedical Engineering Design (4)
Technical communication principles. Project requirements, definition and development of design documents. Description of manufacturing processes. Reliability and quality of engineered products and systems. Prototyping and production of biomedical implements. 3 lectures, 1 laboratory. Prerequisite: MATH 110, MATH 141 or consent of instructor.

ENGR 302 Transportation and Manufacturing in the Twenty-First Century (4)
GE Area F
Role of transportation and manufacturing technology in the twenty-first century. Effects of technological change upon society, and the principles associated with the advancement of transportation and manufacturing technologies in the automotive industry and the industrial-military complex. Case studies of systems to compare alternative approaches to problem solving. 4 lectures. Prerequisite: Completion of GE Area B, junior standing or consent of instructor.

ENGR 303 Professional Development (2) (CR/NC)
Integration of principles of engineering with industrial realities via professional problem solving modules. Research and field investigation at cooperating industry sites. Advanced learning systems. Specifically designed for transfer students. Credit/No Credit grading only. 2 lectures. Prerequisite: Junior standing or consent of instructor.

ENGR 350 The Global Environment (4) (Also listed as AG/BUS/EDS/EUM/SCM/UNIV 350)
Interdisciplinary investigation of how human activities impact the Earth's environment on a global scale. Examination of population, resource use, climate change, and biodiversity from scientific/technical and social/economic/historical/political perspectives. Use of remote sensing maps. Sustainable solutions. 3 lectures, 1 activity. Prerequisite: Completion of GE Areas A and B and junior standing.

ENGR 400 Special Problems for Advanced Undergraduates (2–4)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units. Prerequisite: ME 212 or consent of department head.

ENGR 440 Biomedical Engineering Design I (4)
The special requirements of materials and manufacturing processes required by biomedical engineering applications. Design, development and production of prototypes of biomedical implements. 3 lectures, 2 laboratories. Prerequisite: ME 212, IME 314, CE 204, CSC 234, GE Area B2 life science and upper-division science course, or consent of instructor.

ENGR 450 Special Topics in Bioengineering (4)
Current topics in bioengineering, including medical applications and industrial applications. Total credit limited to 16 units, with a maximum of 4 units per quarter. See The Schedule of Classes for topic selected. 4 lectures. Prerequisite: MATH 242, ME 313 or consent of instructor.

ENGR 462 Senior Project (4)
Selection and completion of project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Projects results presented in a formal report. Minimum commitment of 150 hours. Prerequisite: ME 212, junior standing, and consent of instructor.

ENGR 481, 482 Senior Project Design Laboratory I, II (2) (2)
Selection, development, and completion of project by individuals or teams which is typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning scheduling and research and may involve students from several disciplines. Formulation of outline, literature review, and project schedule. 2 laboratories. Prerequisite: ME 212, junior standing, and consent of instructor.

ENGR 483 Cooperative Education Experience (2) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 6 units. Prerequisite: Sophomore standing and consent of instructor.

ENGR 493 Cooperative Education Experience (2) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 18 units. Prerequisite: Sophomore standing and consent of instructor.

ENGR 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. A more fully developed formal report and evaluation by work supervisor required.

2007-2009 Cal Poly Catalog
Credit/No Credit grading only. Total credit limited to 24 units. Prerequisite: Sophomore standing and consent of instructor.

ENGR 500 Individual Study (2–4)
Advanced study planned and completed under the direction of faculty. Open to graduate students who have demonstrated the ability to do independent work. Total credit limited to 8 units. Prerequisite: Graduate standing and consent of Program Director.

ENGR 550 Advanced Topics in Bioengineering (4)
Current topic in bioengineering research/application in detail, including medical applications and industrial applications. Takes advantage of capabilities of resident or visiting faculty. Total credit limited to 16 units. See The Schedule of Classes for topic selected. 4 lectures. Prerequisite: ENGR 450 or consent of instructor.

ENGR 563 Graduate Seminar (2)
Selected topics of interest to engineering and other graduate students. Open to graduate students and selected seniors. A forum to share information about research and research tools; an opportunity to discuss topics of interest with professionals in the field, academics, and other graduate students. The Schedule of Classes will list topic selected. Total credit limited to 4 units. 1 seminar, 1 laboratory. Prerequisite: Graduate standing or consent of instructor.

ENGR 581 Biochemical Engineering I (4)

ENGR 582 Biochemical Engineering II (4)

ENGR 583 Biochemical Engineering III (4)
Biochemical separations. Biological materials. Removal of insoluble centrifugation, filtration, cell disruption. Primary product isolation: extraction, ultrafiltration, adsorption, ion exchange, fixed and fluidized bed operation. Production purification: gel filtration, affinity chromatography, salt fractionation. Final isolation: drying, crystallization. Quality control. 3 seminars, 1 laboratory. Prerequisite: ENGR 582 or consent of instructor.

ENGR 591 Thesis Project Design Laboratory (2)
Selection and development of project, by individuals or team, typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning, scheduling and research. Formulation of outline, literature review, and project schedule. 2 laboratories. Prerequisite: Graduate standing.

ENGR 592 Thesis Project Design Laboratory (2)
Continuation of ENGR 591. Completion of project by individuals or team which is typical or problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning, scheduling and research. Formulation of outline, literature review, and project schedule. 2 laboratories. Prerequisite: ENGR 591 or consent of instructor.

ENGR 593 Cooperative Education Experience (2) (CR/NC)
Advanced study analysis and part-time work experience in student’s career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

ENGR 594 Cooperative Education Experience (6) (CR/NC)
Advanced study analysis and full-time work experience in student’s career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

ENGR 595 Cooperative Education Experience (12) (CR/NC)
Advanced study analysis and full-time work experience in student’s career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. A fully-developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

ENGR 599 Design Project (Thesis) (1–9)
Each individual or group will select, with faculty guidance and approval, a topic for independent research or investigation resulting in a thesis or project to be used to satisfy the degree requirement. An appropriate experimental or analytical thesis or project may be accepted. Prerequisite: Graduate standing.

ENVE—ENVIRONMENTAL ENGINEERING

ENVE 111 Introduction to the Environmental Engineering Profession (1) (CR/NC)
Overview of environmental engineering solutions to water pollution, air pollution, solid waste, and hazardous waste problems. Remediation of contaminated soil and groundwater. Environmental regulations. Careers in environmental engineering. Licensing and professional registration, professional code of ethics, professional engineering societies. Credit/No Credit grading only. 1 lecture.

ENVE 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

ENVE 240 Additional Engineering Laboratory (1-2) (CR/NC)
Special assignments undertaken by students who need or wish to acquire abilities supplementary to their standard pattern of courses. Assignments must be primarily of shop or laboratory nature. Work done with minimum faculty supervision. Total credit limited to 6 units. Credit/No Credit grading only. 1-2 laboratories.

ENVE 304 Process Thermodynamics (4)
First and second laws of thermodynamics, properties of gases, liquids and mixtures, vapor-liquid equilibria, solubility and absorption, equilibrium in chemical reactions, thermodynamic applications in environmental engineering. 4 lectures. Prerequisite or concurrent: Chem 125, Enve 331.

ENVE 309 Noise and Vibration Control (3)
Behavior of sound waves, selection of instrumentation, practical measurements, criteria for noise and vibration control. Assessment of noise produced by transportation and other engineering facilities. 2 lectures, 1 laboratory. Prerequisite: Math 241, Phys 133, and CSC 234 or CSC 231.

ENVE 324 Introduction to Air Pollution (4)
GE Area F
Causes and effects of air pollution on the individual, the community and industry. Legal and economic aspects. For non-majors. 4 lectures. Prerequisite: Completion of GE Area B and junior standing.

ENVE 325 Environmental Air Quality (3)
Consideration of ambient air contamination inside and outside. Factors included in establishing, monitoring and maintaining air quality standards. 3 lectures. Prerequisite: Chem 125.

ENVE 330 Environmental Quality Control (4)
Application of scientific and engineering principles to control the development and use of air, water and land resources. Control of pollution of the environment. Disposal of wastes. Administrative and legal aspects.
For non-Engineering majors. 4 lectures. Prerequisite: Completion of GE Area B and junior standing.

ENVE 331 Introduction to Environmental Engineering (4)
Description and quantification of water and air quality characteristics important for water and wastewater treatment and air pollution control. Fundamentals of kinetics, reactor configurations, toxicity and dose-response relationship. Regulations governing ambient pollutant levels and discharges. Introduction to the modeling of pollutant fate and transport. Overview of solid waste management and global environmental issues. 4 lectures. Prerequisite: CHEM 125, MATH 242 or MATH 244 (or concurrent).

ENVE 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

ENVE 411 Air Pollution Control (3)
Theory, principles and practices related to the control of particulate emissions. Mechanical separations. Cost and design of control systems. 3 lectures. Prerequisite: ENVE 304, ME 341 ENVE 325, and ENVE 331.

ENVE 416 Environmental Process Modeling (4)
Introduction to automatic control instrumentation. Methods of analysis of control systems. Analytical determination of control response. Modeling of pollution control and natural systems. 4 lectures. Prerequisite: ME 341; ENVE 304, ENVE 331.

ENVE 421 Mass Transfer Operations (3)
Theory and practices related to using mass transfer principles to solve environmental problems. Design principles dealing with air and water pollution control and hazardous waste management. 3 lectures. Prerequisite: ENVE 304, ENVE 325, ENVE 331, and ME 341.

ENVE 426 Air Quality Measurements (3)
Planning and conducting air quality measurements in the atmosphere, indoors and at the source. Topics include both particulates, gases and meteorological measurements. 2 lectures, 1 laboratory. Prerequisite: ENVE 325, CHEM 212/312, ME 341, STAT 312, and ENGL 149.

ENVE 434 Water Quality Measurements (4)
Aquatic environmental chemistry and water quality measurement. 3 lectures, 1 laboratory. Prerequisites: CHEM 129, CHEM 312, ENVE 330 or ENVE 331. FNR majors should consult instructor regarding this prerequisite.

ENVE 436 Introduction to Hazardous Waste Management (3)
Overview of industrial processes that produce hazardous wastes. Principles of toxicology and review of state federal regulations for hazardous wastes, including RCRA, TSCA, and superfund laws. Storage, handling, and transport of hazardous wastes. Unit operations and processes treatment and reduction. Ultimate disposal including incineration and secure landfills. 3 lectures. Prerequisite: ENVE 325 and ENVE 331, or equivalent.

ENVE 438 Water and Wastewater Treatment Design (3)
Design of facilities for physical and chemical treatment of water and wastewater, biological treatment of wastewater, and treatment and disposal of sludge. Design of land treatment systems and septic tanks. Use of computers for design problems. 3 lectures. Prerequisite: ENVE 331 and ME 341.

ENVE 439 Solid Waste Management (3)
Chemical and physical properties of municipal and industrial refuse. Landfill disposal, incineration, composting. Industrial and commercial solid waste disposal problems and treatment methods. Pyrolysis. Salvage and recycle operations. Economics of disposal methods. Interrelationship between water quality and landfill operations. 3 lectures. Prerequisite: ENVE 330 or ENVE 331, and senior standing.

ENVE 443 Bioenvironmental Engineering I (4)
State-of-the-art bioremediation technologies for soil, groundwater and contaminated air stream remediation and pollution prevention. Introduction to engineering design combining biogenetics, reactor configuration, and basic biological and engineering principles. Various in-situ and ex-situ technologies. 3 lectures, 1 laboratory. Prerequisite: ENVE 331.

ENVE 450 Industrial Pollution Prevention (4)
Theory and case studies of innovative industrial and hazardous waste treatment and waste minimization through principles of pollution prevention. 3 lectures, 1 laboratory. Prerequisite: ENVE 331.

ENVE 455 Environmental Health and Safety (4)
Physical, chemical and biological hazards associated with industrial processes. Toxicology. Safety analysis and design. Causes and prevention of occupational and environmental hazards. Development and implementation of industrial hygiene programs. 4 lectures. Prerequisite: ENVE 331.

ENVE 461, 462 Senior Project I, II (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum of 120 hours total time. Prerequisite: Senior standing.

ENVE 466 Senior Project Design Laboratory I (2)
Selection and initial work on a project by individuals or team which is typical of problems graduates must solve in their fields of employment. Project involves, but is not limited to, physical modeling, testing and design. The project may include students/elements from other disciplines. Formulation of outline, literature review, project schedule, initial analyses and interim report. 2 laboratories. Prerequisite: Senior standing and consent of instructor. Note: although ENVE 466 substitutes for ENVE 461, students may not use repeat credit for the purpose of increasing GPA.

ENVE 467 Senior Project Design Laboratory II (2)
Continuation of CE 466. Continuation of research methodology: problem statement, method, results, analysis, synthesis, project design, construction (when feasible), and evaluation/conclusions. Project results are presented in formal written reports for reference library and formal oral reports. 2 laboratories. Prerequisite: ENVE 466. Note: although ENVE 467 substitutes for ENVE 462, students may not use repeat credit for the purpose of increasing GPA.

ENVE 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

ENVE 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories. Prerequisite: Consent of instructor.

ENVE 493 Cooperative Education Experience (2) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 6 units. Prerequisite: Sophomore standing and consent of instructor.

ENVE 494 Cooperative Education Experience (6) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 18 units. Prerequisite: Sophomore standing and consent of instructor.

ENVE 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. A more fully developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 24 units. Prerequisite: Sophomore standing and consent of instructor.
ENVE 500 Individual Study (1–3)
Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Total credit limited to 4 units. Prerequisite: Graduate standing and consent of department chair.

ENVE 535 Advanced Wastewater Treatment (3)
Operations and processes used in tertiary treatment. Chemical coagulation, flocculation, sedimentation, filtration, absorption. Methods for removal of phosphorus, nitrogen, solids and organics. Integration of advanced wastewater treatment processes. 3 seminars. Prerequisite: Graduate standing or consent of instructor.

ENVE 536 Biological Wastewater Treatment Processes Engineering (3)
Fundamentals of biological wastewater treatment. Suspended and attached-growth bioreactors. Activated sludge and trickling filter design. Biological nitrification and denitrification. Anaerobic treatment processes. 3 lectures. Prerequisite: Graduate standing or consent of instructor.

ENVE 537 Decentralized Wastewater Management (4)
Design and management of decentralized wastewater treatment systems. Description of wastewater characteristics, process analysis, and wastewater pretreatment. Design of treatment processes for septic tank effluent. Effluent disposal, septage management, and the management of decentralized systems. 4 lectures. Prerequisite: ENVE 438.

ENVE 542 Sustainable Environmental Engineering (4)
Critical analysis of environmental engineering practices such as solid waste management, recycling, and wastewater treatment from the viewpoint of energy efficiency, lifecycle cost, and sustainability. Both laboratory experiments and computer models to assess sustainability. 3 lectures, 1 laboratory. Prerequisite: Graduate or senior standing or consent of instructor.

ENVE 551 Environmental Unit Operations (4)
In-depth laboratory study of unit operations and processes used in environmental engineering. Performance tests on laboratory scale equipment. Computer simulations. 2 lectures, 2 laboratories. Prerequisite: ENVE 421 and graduate standing or consent of instructor.

ENVE 552 Environmental Problems of the Semiconductor Industry (4)
Introduction to the environmental, health, and safety issues of the semiconductor industry. Semiconductor manufacturing processes and their environmental emissions. Engineering and management options for pollution control and prevention. Management of environmental systems in the semiconductor industry. 4 lectures. Prerequisite: Graduate standing or consent of instructor.

ENVE 570 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 seminars. Prerequisite: Graduate standing or consent of instructor.

ENVE 571 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Consent of instructor.

ENVE 593 Cooperative Education Experience (2) (CR/NC)
Advanced study analysis and part-time work experience in student's career field: current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

ENVE 594 Cooperative Education Experience (6) (CR/NC)
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. A fully-developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

ENVE 599 Design Project (Thesis) (1–9)
Each individual or group will be assigned a project for solution under faculty supervision as a requirement for the master's degree, culminating in a written report/thesis. Prerequisite: Graduate standing.

ERSC—EARTH SCIENCES

ERSC 110 Orientation in Earth and Soil Sciences (1) (CR/NC) (Also listed as SS 110)
Understanding the depth and breadth of earth and soil sciences. Examine potential career opportunities. Introduction to both student and professional organizations. Credit/No Credit grading only. 1 activity.

ERSC 144 Introduction to Earth Systems (4)
Survey of fundamental processes of Earth sciences. Application of systems thinking to understanding the dynamic interactions among geological, geographic, and human factors in shaping the Earth. 3 lectures, 1 activity.

ERSC 202 Soil Erosion and Water Conservation (4)
Development of an erosion and sediment control plan using climate, topography, soils and land use in relation to soil and water quality. Evaluation of soil and water conservation plans and best management practices for agriculture, urban, riparian, and rangelands. 3 lectures, 1 activity. Prerequisite: SS 121 or consent of instructor.

ERSC 223 Rocks and Minerals (4)
Origin, composition, identification and weathering of rocks, minerals, and clays important in the development of soils. Parent materials as related to the nature and properties of soils. 3 lectures, 1 laboratory. Prerequisite: SS 121, CHEM 111 or CHEM 128.

ERSC 250 Physical Geography (4) (Also listed as GEOG 250)
Addresses the origins and patterns of the earth's diverse assemblage of climates, landforms, biota and soils. A major focus on relationship between human cultures and these earthly environments. 4 lectures.

ERSC 323 Geomorphology (4)
Recognizing and identifying major landforms and their components by interpretation of aerial photographs and topographic maps, and observations. Emphasis on analyzing common landforms in the western United States for application in soil science, physical geography, hydrology, and geology. 2 lectures, 1 laboratory, 1 activity. Prerequisite: SS 121 and GEOG 201; or consent of instructor.

ERSC 325 Climate and Humanity (4) (Also listed as GEOG 325)
Geographic perspective on the interrelationships between climate and human cultures. Effects of people on climate and the influence of climate and weather upon human activities and behavior. Focus on global human conditions which are responsible for the alteration of climate and in turn are vulnerable to climate change. 4 lectures. Prerequisite: Junior standing or consent of instructor.

ERSC 333 Human Impact on the Earth (4) (Also listed as GEOG 333)
Global assessment of the impact of humans on the earth's vegetation, animals, soil, water and atmosphere. Emphasis on problems stemming from the interactions of human attitudes, technologies, and population with natural resources. 4 lectures.

ERSC 401 Field-Geology Methods (4) (Also listed as GEOG 401)
Collecting and interpreting field-geologic data. Description of sedimentary rocks and construction of stratigraphic columns. Mapping geologic

2007-2009 Cal Poly Catalog
structures in the field. Surficial geologic stratigraphy and surficial geologic mapping. Understanding geologic processes through field study. Communicating results of field study. 1 lecture, 3 activities. Prerequisite: GEOL 102 or GEOL 201, GEOL 241, SS 223, SS 323.

ERSC 402 Geologic Mapping (4) (Also listed as GEOL 402)
Bedrock geologic mapping on topographic maps and aerial photos. Surficial geologic mapping on topographic maps and aerial photos. Correlating and defining surficial geologic map units on the basis of soil development. Understanding landscape evolution using soil development 4 activities. Prerequisite: GEOL 102 or GEOL 201, GEOL 241, SS 223, SS 323, ERSC/GEOL 401.

ERSC 414 Global and Regional Climatology (4) (Also listed as GEOG 414)
The earth's pattern of climates and the physical processes that account for them. Focus on interrelationships between climate and the physical/biological and cultural environments. Special emphasis on modern climate changes and their consequences. 3 lectures, 1 laboratory. Prerequisite: GEOG 250 or consent of instructor.

ERSC 415 Applied Meteorology and Climatology (4) (Also listed as GEOG 415)
Physical processes in the atmosphere that determine regional weather, climate and climate variability. Surface and satellite systems for weather observation, and weather/climate modeling. Dynamics of weather systems, including thunderstorms and hurricanes. Emphasizes on weather/climate affecting agriculture and other human activities. 3 lectures, 1 activity. Prerequisite: GEOG/ERSC 250 or consent of instructor.

ERSC 461 Senior Project I (1)
Senior project topic selection and contract development with project advisor. Statement of problems, subproblems, assumptions, objectives, hypothesis, methods of analysis and statistical design. Development of literature review and budget of time and finances. Proper format and presentation of tabular and graphic information. 1 activity. Prerequisite: MATH 118 or MATH 131, STAT 211 or STAT 321 or CRSC 411.

ERSC 462 Senior Project II (3)
Implementation of materials and methods. Collection, analysis and interpretation of data. Completion of formal written report under advisor supervision. Minimum 90 hours. Prerequisite: ERSC 461.

ERSC 463 Undergraduate Seminar (2)
Review of current research, experiments, and problems related to the student's major field of interest. Preparation and presentation of reports on problems or research activities. 2 seminars.

ERSC 544 Earth Sciences for Educators (3)
An interdisciplinary earth sciences course which emphasizes the interactions of multiple systems of air, water, land, life, and human society. Designed for teachers and students seeking teaching credential. Incorporates scientific theory, learning resources, and applications in the field. 3 lectures. Prerequisite: Basic knowledge of earth sciences, graduate standing and consent of instructor. Not open to students in Soil Science specialization under MS Agriculture.

ERSC 570 Selected Topics in Earth Science (1-4)
Directed group study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1 to 4 seminars. Prerequisite: Graduate standing or consent of instructor.

ES—ETHNIC STUDIES

ES 112 Race, Culture and Polities in the United States (4) (Also listed as HNRS 112) GE D1 USCP
Introductory and interdisciplinary study of the ways that race and ethnicity are created by both historical processes and American institutional formation – specifically social, political, economic, legal and cultural institutions. Special attention paid to the interlocking systems of race, class, gender and sexuality. 4 lectures.

ES 114 Race in American Culture (4) USCP
The social practices, cultural representations, and public policies that construct race and racism in the development of American institutions, and their effect upon ethnic groups and women. The cultural discourses that reinforce racist ideology and pseudo-scientific conceptions of race. 4 lectures.

ES 200 Special Problems for Undergraduates (1–4)
Supervised investigation, including a written report, of a topic chosen with prior approval of instructor. Total credit limited to 4 units. Prerequisite: Consent of department chair.

ES 212 Global Origins of United States Cultures (4) (Also listed as HNRS 212) GE D3 USCP
How the global dispersal of Europeans, Asians, and Africans, the hemispheric dispersal of Latin Americans, and the forced internal migration of Native Americans have contributed to American cultural heritage and the struggles for ethnic, class and gender equality, and justice. 4 lectures.

ES 215 Planning for and with Multiple Publics (4) (Also listed as CRP 215) USCP
How the social/spatial relationships among racial/ethnic and gender groups are expressed in terms of human settlement patterns, civic involvement and everyday negotiations. Ways in which segregation and marginalization are expressed in western and non-western contexts. 3 lectures, 1 activity. Prerequisite: Completion of GE Area D1.

ES 240 Latino Metropolis (4) USCP
Focus on strategic roles emerging Latino majorities play in such major urban centers as Los Angeles, New York, or Chicago, by exploring how Latinos establish and maintain distinctive social and cultural identities in the nation's cities. 4 lectures.

ES 241 Survey of Indigenous Studies (4) GE D3 USCP
A survey of the interdisciplinary field of indigenous studies and specifically the social, political, economic, legal, and cultural institutions of American Indian, Native Alaskan, and Native Hawaiian peoples within a transnational and global context. Special attention paid to the interlocking systems of race, class, gender, and sexuality, particularly within but not limited to the United States. 4 lectures.

ES 242 Survey of Africana Studies (4) GE D3 USCP
A survey of the interdisciplinary field of Africana Studies and specifically the social, political, economic, legal, and cultural institutions of African American, Afro-Caribbean, and African diasporic peoples within a transnational and global context. Special attention paid to the interlocking systems of race, class, gender, and sexuality, particularly within but not limited to the United States. 4 lectures.

ES 243 Survey of Latino/a Studies (4) GE D3 USCP
A survey of the interdisciplinary field of Latino/a Studies and specifically the social, political, economic, legal, and cultural institutions of Chicano/a and other Latino/a peoples within a transnational and global context. Special attention paid to the interlocking systems of race, class, gender, and sexuality, particularly within but not limited to the United States. 4 lectures.

ES 244 Survey of Asian American Studies (4) GE D3 USCP
A survey of the interdisciplinary field of Asian American Studies and specifically the social, political, economic, legal, and cultural institutions of West Asian, South Asian, Southeast Asian, and East Asian peoples in the United States within a transnational and global context. Special attention paid to the interlocking systems of race, class, gender, and sexuality, particularly within but not limited to the United States. 4 lectures.

ES 300 Chicano/a Non-Fiction Literature (4) GE C4 USCP
Overview of contemporary Chicano/a non-fiction literature since 1848. Thematic concerns, literary criticism, literary techniques, historical and socio-cultural factors influencing non-fiction Chicano/a literary genres. Instructor reserves option to select non-fiction genres to be studied. 4 lectures. Prerequisite: Completion of GE Areas A and C1.

ES 308 Fire and Society (4) (Also listed as FNR 308) GE D5 USCP
Prehistorical and historical record of human use of and attitude toward fire. Mythology and religion of fire. Traditional, cultural and ethnic variations
and their influence on modern U.S. institutions involved in managing fire. 3 lectures, 1 activity. Prerequisite: Completion of GE Areas A1 and D3.

ES 310 Hip-Hop, Poetics and Politics (4) GE D5 USCP

Dynamics of hip-hop culture, its historical development, political significance, and social influence. How hip-hop exemplifies cross-cultural hybridization within not only Black communities nationally and internationally, but also amongst indigenous, Latina/o, and Asian peoples in the U.S. and beyond. 4 lectures. Prerequisite: Completion of GE Area A and two courses from D1, D2, D3 or D4.

ES 320 African American Cultural Images (4) GE D5 USCP

Comparative study of the cultural representations of, and counter-representations by, American racial/ethnic groups in American popular opinion and consciousness, with particular emphasis on African Americans. 4 lectures. Prerequisite: Completion of GE Area A and two courses from Areas D1, D2, D3, D4. Recommended: ES 112 (D1) and/or ES 212 (D3).

ES 321 Native American Cultural Images (4) USCP

How cultural images of indigenous peoples in the United States reflect the larger social, economic, and political dynamics that have characterized white/Indian relationships in the last 500 years. The social cultural impact of such representations and how American Indians see themselves and shape their own images and histories. 4 lectures. Prerequisite: Completion of GE Area A; Recommended: ES 112 (D1) or ES 212 (D3).

ES 322 Asian American Cultural Images (4) GE D5 USCP

Comparative study of the cultural representations of, and counter-representations by, American racial/ethnic groups in American popular opinion and consciousness, with particular emphasis on Asian-Americans. 4 lectures. Prerequisite: Completion of GE Area A and two courses from Areas D1, D2, D3, D4. Recommended: ES 112(D1) and/or ES 212 (D3).

ES 323 Mexican American Cultural Images (4) GE D5 USCP

Comparative study of the cultural representations (racializing images and discourses) of, and counter-representations by, American cultural/ethnic groups in American popular opinion and consciousness, with particular emphasis on Mexican Americans/Latinos. 4 lectures. Prerequisite: Completion of GE Area A and two courses from Areas D1, D2, D3, D4. Recommended: ES 112 or ES 212.

ES 325 Sex and Gender in African American Communities (4) USCP

Gender and sexuality issues that influence the social, political, economic and cultural development of African-America. Special attention given to how racism affects the realization of standard gender conventions within black communities, as well as to myths of black sexuality, black feminism, and queer politics. 4 lectures. Prerequisite: ES 112 or ES 212.

ES 326 Native American Architecture and Place (4) GE C4 USCP

(Also listed as ARCH 326)

The role of culture and setting in the construction of spatial, material and landscape concepts and artifacts, through the introduction of selected North American cultures, with focus from 1300 AD through contemporary time. 4 lectures. Prerequisite: GE Areas A, C1 and C2.

ES 330 The Chinese American Experience (4) GE D5 USCP

History and current status of Chinese Americans, with emphasis on the international contexts, organizations and institutions of Chinese America, and on Chinese Americans' demographic compositions, spatial patterns, and cultural, socioeconomic, and political adaptation experiences. 4 lectures. Prerequisite: Completion of GE Area A and two courses from Areas D1, D2, D3, D4 (Recommended: ES 112 or ES 212).

ES 335 The Filipina/o American Experience (4) GE D5 USCP

An interdisciplinary examination of the historical development of Filipina/o American identities and communities. The social, cultural and political institutions that have influenced Filipina/o immigration, participatory citizenship, activism and cultural practices. 4 lectures. Prerequisite: Completion of Area A and two lower division D courses; ES 112 (D1) and ES 212 (D3) preferred.

ES 350 Gender, Race, Science and Technology (4) GE Area F USCP

(Also listed as WS 350)

Applications and histories of reproductive technologies and the ways in which these technologies are linked to the science of the body. How these technologies help to construct and deconstruct race and gender in the United States. 3 lectures, 1 activity. Prerequisite: Completion of GE Area B requirements or consent of instructor.

ES 360 Ethnicity and the Land (4) GE C4 USCP

(Also listed as FNR 360)

Comparative study of how race and culture shape landscapes, and how social hierarchies allocate the use of natural resources and the burdens of environmental pollution. 4 lectures. Prerequisite: Completion of GE Area A and one course from Area C1, C2, or C3. Junior standing. Recommended: one lower division Ethnic Studies course and an introductory natural resources course.

ES 380 Critical Race Theory (4) GE D5 USCP

History and evolution of the critical race theory movement. Defining issues of the field; in particular, the relationship between race, power and the law. 4 lectures. Prerequisite: Completion of GE Area A, ES 112, ES 114 or consent of instructor.

ES 381 The Social Construction of Whiteness (4) GE D5 USCP

The investigation of the social construction of race in the United States through historicizing the category of “whiteness.” Why “white” was invented as a racial category and how white privilege has been sustained through social, political, economic and legal practices. 4 lectures. Prerequisite: Completion of GE Area A and two courses from D1, D2, D3 or D4.

ES 390 Research Methodology in Comparative Ethnic Studies (4)

Theory and practice of research methodology in comparative ethnic studies. Topics include the scientific method, qualitative and quantitative methodologies, and ethical practices. Research report prepared from start to finish, including database searching, collecting pilot data, and proper formatting of a research report. Issues of race in research practice and use foregrounded throughout. 3 lectures, 1 activity. Prerequisite: Completion of Area A, STAT 217, ES 112 and three courses from ES 241, ES 242, ES 243, ES 244. Junior standing.

ES 391 Advanced Topics in Comparative Ethnic Studies (4)

Selected topics and issues in comparative ethnic studies. The Schedule of Classes will list topic selected. Repeatable for a maximum of 8 units. 4 seminars. Prerequisite: ES 390 or consent of instructor.

ES 450 Fieldwork in Comparative Ethnic Studies (4)

Supervised project based on fieldwork in comparative ethnic studies. 4 seminars. Prerequisite: ES 390 or consent of instructor.

ES 461 Senior Project (4)

Completion of a project under faculty supervision. Results presented in a formal paper or project. Prerequisite: ES 390 and departmental approval.

ES 470 Selected Advanced Topics (1–4)

Directed group study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: At least one course in Ethnic Studies and consent of instructor.

FNR—FORESTRY AND NATURAL RESOURCES

FNR 101 Natural Resources Management and Society (3)

Integrated development, utilization and management of the nation's and world's natural resources for the continuous benefit of humankind and the conservation of the resources. Discussion of natural resources management.
practices and technologies which may provide a more flexible range of societal benefits for the wise use of our natural resources. 3 lectures.

FNR 112 Parks and Outdoor Recreation (3)
Introduction to national, state, county, city and private park systems. History, philosophy, policy and principles of the formation, administration and functioning of wildland recreational units at the park, county, regional, national, and international levels. 3 lectures.

FNR 140 Careers in Forestry and Environmental Management (1) (CR/NC)
Analysis and development of career goals in natural resources. Acquainting students with potential career options and preparation of academic plans at Cal Poly. Credit/No Credit grading. 1 activity.

FNR 201 Introduction to Forest Ecosystem Management (3)
Fundamentals of forestry including basic silviculture, forest protection, measurement and policy. Integrated resource management of forest lands for water production, forage, recreation, wildlife, and timber. 3 lectures.

FNR 202 Environmental Management (3)
Environmental management as a process within functioning societies seeking a harmonious balance between human activities and intrinsic behavior of the natural environment. Major components of the natural environment and the political and social activities that impact that environment. 3 lectures.

FNR 203 Resource Law Enforcement (3) (Also listed as REC 203)
Law enforcement applied to natural resource conservation on public and private lands. Examination of state and federal laws related to fish and wildlife management. Problems associated with implementation of resource laws examined. 3 lectures.

FNR 204 Wildland Fire Control (3)
Fire control techniques used on various wildland fuels. Elementary fire physics, fuels, weather, fire behavior, tactics and fire suppression techniques, line construction, "mop-up", fire lane safety, air operations and fire organization. Meets basic wildland fire fighter certification requirements for the USDA Forest Service. Partially meets California Department of Forestry Firefighter I requirements. 2 lectures, 1 laboratory.

FNR 208 Dendrology (4)
Identification, classification, silvical characteristics, distribution, environmental requirements and economic importance of woody plants in shrub, woodland, and forest ecosystems of the United States. Emphasis on species located in the Pacific Coastal, Sierran, and Cascade ecosystems. 2 lectures, 2 laboratories. Recommended prerequisite: BOT 121 or BIO 152.

FNR 215 Land and Resource Measurements (2)
Introduction to land and resource measurement technology and methods — field instruments, property description, map and photograph reconciliation, data accuracy and precision. Trigonometric functions and fundamental identities especially as applied to natural resources applications. Course may be offered at Swanton Pacific Ranch during week prior to beginning of fall quarter, or weekend field trips. 1 lecture, 1 laboratory.

FNR 220 Forest Resources Enterprise Project (1–4) (CR/NC)
Selection and completion of a forest management/production project under faculty supervision. Project participation is voluntary and subject to approval by the department head and the Cal Poly Corporation. Degree credit limited to 8 units. Credit/No Credit grading only. Prerequisite: FNR 201 or equivalent.

FNR 247 Forest Surveying (2) (Also listed as BRAE 247)
Use and care of tapes, staff compass, abney levels, theodolites, and GPS receivers. Keeping field notes, measurements by tape. Closed and open traverse by compass and theodolite. Turning angles and determining directions of lines. Map reading and public land description. GPS measurements. Weekend field trips required. 1 lecture, 1 laboratory. Prerequisite: MAPE Score G, prerequisite or concurrent: FNR 215.

FNR 260 Forest Practices and Environmental Protection (4)
Relationships between forest ecosystem management, forest practices, harvesting methods, timber harvest planning, components of forest harvesting, harvesting effects; cost analysis of harvesting methods; safety management; value-added forest utilization; environmental protection; and road location. Overnight or weekend field trips required. 3 lectures, 1 laboratory. Prerequisite: FNR 201. Recommended: FNR 247.

FNR 290 Intercollegiate Forestry Activities (1) (CR/NC)
Beginning through advanced skills in the event areas of college forestry activities. Instruction in use of specialized equipment and safety. Minimum of 4 hours of laboratory per week. Total credit limited to 8 units. Credit/No Credit grading only. Prerequisite: Enrollment limited to those qualified to compete in intercollegiate forestry activities and consent of instructor.

FNR 300 Computer Applications in Resource Management (2) (Also listed as REC 300)
Resource management applications of microcomputers. Software programs include forest and natural resource management planning, forecasting, analysis of systems, and resource data base management for multiple use objectives. Use of forestry and natural resource examples. 1 lecture, 1 laboratory. Prerequisite: Consent of instructor.

FNR 306 Natural Resource Ecology and Habitat Management (4)
Resource ecology and management implications in the major ecosystems of North America. Importance of maintaining the natural dynamics of energy flow and nutrient cycles at the community and ecosystem level for the benefit of society. Humanity's role as a principal factor of change of the resources in natural systems. 3 lectures, 1 laboratory. Prerequisite: BIO 162 or BOT 121 or equivalent.

FNR 307 Fire Ecology (3)
Effects of wildland fires on shrub, woodland, and forest environments to include fuels, plants, soil, water, wildlife, and air. Emphasis on western U.S. forest and shrub ecosystems. 2 lectures, 1 laboratory. Prerequisite: FNR 201; recommended: FNR 306.

FNR 308 Fire and Society (4) (Also listed as ES 308) GE D5
Prehistorical and historical record of human use of and attitude toward fire. Mythology and religion of fire. Traditional, cultural and ethnic variations and their influence on modern U.S. institutions involved in managing fire. 3 lectures, 1 activity. Prerequisite: Completion of GE Areas A, D1 and D3.

FNR 311 Environmental Interpretation (4) (Also listed as REC 311)
Interpretation of the biological, physical and aesthetic values of the natural elements of our environment; organization and presentation of interpretive materials by oral, written, and display methods of communication. 3 lectures, 1 laboratory. Prerequisite: COMS 101 or COMS 102.

FNR 312 Technology of Wildland Fire Management (4) GE Area F
Models and technology to solve complex land management problems. Historic, current and future perspectives of wildland fire in California. Sustainability and ecosystem health. Assumptions and limitations of fire behavior and suppression models. 3 lectures, 1 activity. Prerequisite: Completion of GE Area B, and junior standing.

FNR 315 Measurements and Sampling in Forested Environments (4)
Principles and methods of sampling and measurement for forest and natural resource quantities and qualities. Modeling and estimation for tree volumes, stand structure and composition, and related forest vegetation. Application in sampling, statistical and inventory techniques. 2 lectures, 2 laboratories. Overnight, weekend field laboratories required. Prerequisite: STAT 217/218, BRAE/FNR 247; recommended: MATH 161 or MATH 221 or equivalent.

FNR 317 The World of Spatial Data and Geographic Information Technology (4) GE Area F
(Also listed as BIO/GEOG/LA 317)
Basic foundation for understanding the world through geographic information and tools available to utilize spatial data. Application of Geographic Information Systems (GIS) and related technologies, including their scientific basis of operation. Not open to students with credit in FNR 318. 3 lectures, 1 activity. Prerequisite: A course in computer science, completion of Area B, and junior standing.
FNR 318 Applications in GIS (3) (Also listed as LA 318)
ARC/INFO and ArcView Geographic Information System (GIS) computer software to explore environmental, natural resource, social and economic issues using spatial data. Develop and apply data base and software management competencies. 1 lecture, 2 laboratories. Prerequisite: Junior standing, computer literacy or consent of instructor.

FNR 319 Natural Resource Ecology, Theories and Applications (Also listed as HNRS 319) GE B5
Scope and nature of "ecology" in modern society; including resource terminology and classifications systems; dynamics of natural systems (energy exchange and cycles); man's role as a principle agent of change; environmental impacts; historical perspective including people (ethnicity); and the future environment. 3 lectures, 1 laboratory. Prerequisite: Completion of GE Area B2.

FNR 320 Watershed Management and Restoration (4)
(formerly FNR 419)
Hydrologic cycle concepts and measurement. Analysis and measurement of watershed processes. Watershed management including restoration, erosion, and review of forest practice rules. Saturday and/or weekend field trip required. 3 lectures, 1 laboratory. Prerequisite: SS 121, FNR 306; FNR/LA 318.

FNR 321 Water Systems Technology, Issues and Impacts (4) GE Area F
Sustainable strategies and technologies to enhance freshwater supplies and marine habitats. Systems treated include artificial wetlands, stormwater, drinking water, agricultural and industrial waste water. 3 lectures, 1 activity. Prerequisite: Completion of GE Area B, and junior standing.

FNR 323 Human Dimensions in Natural Resources Management (4) GE D5
Social, economic, political and ecological conditions and institutions that influence decisions affecting the environment; examination of human-caused environmental impacts and how they in turn influence social institutions. 4 lectures. Prerequisite: Completion of GE Area A and two courses from Areas D1, D2, D3. Forestry and Natural Resources majors will not receive GE Area D5 credit.

FNR 326 Natural Resources Economics and Valuation (4)
Theory of efficient use of renewable and nonrenewable natural resources, including methods for attaching value to marketable and non-market natural resources. Environmental economic theories and techniques to address allocation of water, timber, wildlife/fisheries, open space, and recreation. 3 lectures, 1 activity. Prerequisite: MATH 161 or MATH 221 or equivalent. GE Area D2 (ECON 201 recommended), AGB 212 or consent of instructor.

FNR 335 Conflict Management in Natural Resources (4)
Application of behavioral science principles and techniques in the management of natural resource systems. Management of internal and external human resource issues and concerns in natural resources organizations is emphasized. 3 lectures, 1 laboratory. Prerequisite: FNR 201 or FNR 202; PSY 201 or PSY 202 recommended.

FNR 339 Internship in Forest and Natural Resources (1–12) (CR/NC)
Selected students will spend up to 12 weeks with an approved firm or agency engaged in forest or natural resources management. Applying and developing managerial skills and abilities. One unit of credit may be allowed for each full week of completed and reported internship. Credit/No Credit grading. Prerequisite: Consent of instructor.

FNR 340 Wildland Fire Management (3)
Wildland fuels, fire weather, and fire danger ratings in chaparral, grassland, and forested areas. Advanced modeling of surface and crown fire behavior. Fire management strategies and implications, policies and objectives of fire management organizations. Saturday field trips may be required. 3 lectures. Prerequisite: FNR 204 or consent of instructor.

FNR 350 Urban Forestry (3)
Establishment and management of municipal forests, wildland-urban interface, wildlife habitat, and pollution abatement. Management of forest areas requiring special attention because of heavy recreational use, fire hazard, watershed, and societal values. Full-day field trips may be required. 2 lectures, 1 laboratory. Prerequisite: FNR 208.

FNR 360 Ethnicity and the Land (4) GE C4 USCP
(Also listed as ES 360)
A comparative study of the ethnic, cultural and gender influences that shape people's perceptions, attitudes and behavior toward terrestrial and aquatic resource values and uses. 4 lectures. Prerequisite: Completion of GE Area A and one course from Area C1, C2, or C3. Junior standing. Recommended: one lower division Ethnic Studies course and an introductory natural resources course.

FNR 362 Survey and Management of Mediterranean Ecosystems (4)
Woody vegetation found in worldwide Mediterranean ecosystems. Distribution, historical development and uses of these ecosystems. Emphasis on chaparral management techniques and effects of management on fire, water production, biomass potential. 3 lectures, 1 laboratory. Prerequisite: FNR 306 or equivalent.

FNR 365 Silviculture and Vegetation Management (4)
Applied forest ecology and prescriptions for achieving forest ecosystem management; dynamic relations among trees, biological communities, environmental factors, and land use. Vegetation manipulation and reforestation methods. Overnight and/or weekend field trips required. 3 lectures, 1 laboratory. Prerequisite: FNR 208, FNR 315; recommended: FNR 306.

FNR 400 Special Problems for Advanced Undergraduates (2–4)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units. Prerequisite: Consent of department head.

FNR 402 Forest Health (4)
Impact and losses to forested areas caused by physical and biotic agents (such as insects and diseases) other than fire; relation of direct and indirect control practices to forest management. Saturday field trips required. 3 lectures, 1 laboratory. Prerequisite: FNR 208 or equivalent. FNR 306 or equivalent.

FNR 404 Environmental Law (3) (Also listed as CRP 404)
Detailed examination of the law governing use and protection of natural resources with focus on the legal institutions entrusted with the public duty of protecting the environment. 3 lectures. Prerequisite: Senior standing, or consent of instructor.

FNR 408 Water Resource Law and Policy (3) (Also listed as CRP 408)
Detailed examination of the various legal systems of water use, regulation and management in California and the United States. Discussion on the key concepts and principles of state, federal and interstate water quantity and quality control; focusing on issues and problems, why conflicts occur and how solutions evolve. 3 lectures. Prerequisite: FNR 306 or equivalent or instructor approval, senior standing.

FNR 410 Resource Recreation Management (4)
(Also listed as REC 410)
Practices of management of resource recreation on private and public lands. Consideration of the following management systems: biophysical, user/visitor, facilities, equipment, fiscal, personnel will be made in the provision of resource recreation services. Case studies in mass recreation and wilderness areas will be examined. 3 lectures, 1 laboratory. Some weekend labs necessary. Prerequisite: FNR 112 or consent of instructor.

FNR 412 Forest and Natural Resources Senior Assessment Project (3)
Principles and practices of integrated sampling and inventory of natural resource values in terrestrial ecosystems, culminating in a student project report. 2 lectures, 1 laboratory. Prerequisite: FNR 306 or equivalent, and FNR 326.

FNR 414 Sustainable Forest Management (4)
Biophysical, economic, social and political influences on optimal forest management for purposes of providing sustained yields of goods and services. Growth and yield modeling; forest investment analysis; sustainable forest production; harvest schedule modeling. Day field trip required. 3 lectures, 1 laboratory. Prerequisite: FNR 326, FNR 365.

2007-2009 Cal Poly Catalog
FNR 416 Environmental Impact Analysis and Management (4)
National Environmental Policy and California Environmental Quality Acts as applied to environmental and natural resource management problems and projects. Intent, purpose and history of the laws; differences between laws identified. Request for proposals and preparation of environmental assessment documents covered. 3 lectures, 1 laboratory. Prerequisite: FNR 306 or equivalent, and FNR 335 or equivalent.

FNR 417 Resource Recreation Planning (3) (Also listed as REC 417)
Development and analysis of resource recreation plans. Planning theory, types of plans, scheduling techniques, projecting supply and demand, application of models, and economic evaluations. Basic recreation planning skills examined. Examples emphasize planning for parks and recreation. 2 lectures, 1 laboratory. Prerequisite: FNR 112 or consent of instructor.

FNR 418 Applied GIS (3)
Acquisition, organization and analysis of spatial data from diverse sources using Geographic Information System (GIS) software. GIS modeling applications and validation techniques used in development and preparation of client-driven projects. 1 lecture, 2 activities. Prerequisite: FNR/LA 318.

FNR 420 Advanced Watershed Hydrology (4)
Sources of streamflow and processes by which watersheds undergo change from natural and anthropogenic processes. Fluvial processes, sediment transport and channel restoration techniques. Influences of forest and range management on water resources including water quality and analytical techniques. Weekend field trips required. 3 lectures, 1 laboratory. Prerequisite: FNR 320 or equivalent or graduate standing.

FNR 421 Wetlands (4) (Also listed as BIO/SS 421)
The formation, characteristics, and functions of wetlands. Genesis of hydric soils. Plant adaptations to saturated soils. Wetlands as wildlife habitat. Policies and social issues associated with wetlands. The procedures of wetland delineations. 3 lectures, 1 laboratory. Prerequisite: CHEM 128, BOT 313, SS 321.

FNR 425 Applied Resource Analysis (4)
Environmental impacts in responses to resource management, projects, programs and activities. Preparation, implementation, and coordination of environmental plans. Criteria for measurements, interpretation, and evaluation. Resource inventories, analysis, synthesis, evaluation, environmental assessment writing and preparation. 3 lectures, 1 laboratory. Prerequisite: FNR 416.

FNR 434 Wood Properties and Products (4)
Principles of wood properties and efficient use of renewable wood resources including methods for using wood as an energy source. Weekend or full-day field trips required. 3 lectures, 1 laboratory. Prerequisite: FNR 201 and FNR 260 or consent of instructor.

FNR 435 Natural Resources Policy Analysis (4)
Policy process approach to understanding the efforts to resolve natural resource problems in the public and private sector. Principles and techniques used to analyze the effects of environmental policies. Analysis of major federal and state environmental laws. 4 lectures. Prerequisite: FNR 326, FNR 335.

FNR 450 Community Forestry (3)
Development and management of the urban/wildland interface. Socio-economic problems related to forest tree establishment, care, and removal utilization. International implications also covered. Weekend or full-day field trips required. 2 seminars, 1 laboratory. Prerequisite: FNR 350 or consent of instructor.

FNR 455 Wildland-Urban Interface Fire Protection (3)
Social, economic, political, and technological issues affecting fire management in urbanized landscapes where fire continues its ecological role. Fire risk analysis; needs assessment, legislative codes, standards and policies; liability issues; evacuation; incident response planning. 2 lectures, 1 laboratory. Prerequisite: FNR 340 or consent of instructor.

FNR 461, 462 Senior Project I, II (3) (3)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 180 hours total time.

FNR 465 Ecosystem Management (4)
Applied integration of biophysical, economic and socio-political sciences. Principles, concepts and techniques designed to utilize resources while sustaining ecosystem health within acceptable limits of change. Ecosystem assessment, planning, management and monitoring project. 3 lectures, 1 laboratory. Prerequisite: FNR 326, FNR 416 and consent of instructor.

FNR 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

FNR 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Consent of instructor.

FNR 472 Leadership Practice (1) (Also listed as REC 472)
Leadership styles used in the natural resources management and recreation administration professions. Study and practice in setting goals and objectives; developing, evaluating and implementing an entrepreneurial project plan; decision making and problem-solving. Total credit limited to 4 units. 1 laboratory. Prerequisite: Junior standing or consent of instructor.

FNR 475 Sustainable Forest and Environmental Practices (15)
(Also listed as HNRS 475)
Typical modules related to sustainable resource management: ecosystem sampling and inventory methods, photo interpretation, hydrologic resources, road condition, project impact analysis, best management practices. Topics covered vary from term to term depending on the priority for learning modules. Residency at Swanton Pacific and extended field trips required. 10 lectures, 5 activities. Prerequisite: Completion of Area B and consent of instructor.

FNR 500 Individual Study (1–3)
Advanced independent study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Total credit limited to 4 units. Prerequisite: Graduate standing.

FNR 502 Resource Conservation (3)
Conservation, planning and administration for broad treatment of land, water, mineral, forest, range, and wildlife resources. 3 seminars. Prerequisite: Graduate standing and consent of instructor.

FNR 503 Tropical Forest Ecosystem Management (3)
Tropical forest ecosystem classification, function and limitations. Applied tropical forest management systems; tropical problems, management, and political strategies; over-grazing and desertification; overcutting and fuelwood shortages. 3 seminars. Prerequisite: Graduate standing or consent of instructor.

FNR 504 Agroforestry Systems (2)
Principles and practical applications of tree crop systems which are managed to provide fuel, fiber, fodder, and food. Tree crop identification and tree product uses. Plantation design, establishment, and cultural practices. Soil management. Integration of forest, and range management practices and values. Special applications to tropical forest ecosystems. 2 lectures. Prerequisite: Graduate standing or consent of instructor.

FNR 521 Natural Resources Management for Educators (3)
Philosophy (theoretical and applied) of natural resource management strategies functioning in today's environment. Ecological principles applicable to specific resource components as they relate to the present perception of today's resource base, use demands and projected utilization. 3 seminars. Prerequisite: Graduate standing.
FNR 530 Social Systems in Natural Resources Management (3)
Theories and methods for incorporating community in the management of forest resources. Approaches to conflict resolution between resource owners and community stakeholders using tools such as GIS. 2 lectures, 1 laboratory. Prerequisite: Graduate standing or consent of instructor.

FNR 532 Applications in Biometrics and Econometrics (4)
Parametric and semi-parametric statistical methods in modeling biological and economic phenomena. Biometric modeling of stand growth and inventory. Econometric modeling of market and environmental values. 3 lectures, 1 laboratory. Prerequisite: One course in undergraduate statistics, graduate standing, or consent of instructor.

FNR 534 Forest Ecosystem Modeling (3)
Methods and modeling approaches used in quantifying ecological processes and conditions associated with forested ecosystems, such as fire behavior, hydrologic processes, terrestrial and aquatic habitat condition using GIS and other models. The Schedule of Classes will list topic selected; sections not repeatable. 2 lectures, 1 laboratory. Prerequisite: One course in undergraduate statistics, graduate standing, or consent of instructor.

FNR 539 Graduate Internship in Forest Resources (1–9)
Application of theory to the solution of problems of forest resources or related businesses in the field. Analyze specific management problems and perform general management assignments detailed in a contract between the student, the firm or organization, and the faculty advisor before the internship commences. Degree credit limited to 6 units. Prerequisite: Consent of internship instructor.

FNR 570 Selected Topics in Forest Resources (1–4)
Directed group study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1–4 seminars. Prerequisite: Graduate standing or consent of instructor.

FNR 571 Selected Topics in Forest Resources Laboratory (1–4)
Directed group laboratory of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1–4 laboratories. Prerequisite: Graduate standing or consent of instructor.

FNR 575 Applications in Advanced Watershed Hydrology (2)
Techniques and applications in watershed hydrology to real-world projects. Projects could include water quality or quantity assessments, water quality or channel morphology monitoring, and structural and non-structural enhancements for channel and upland watersheds, culminating in a final report and presentation, 2 laboratories. Prerequisite: FNR 420 and graduate standing, or consent of instructor.

FNR 581 Graduate Seminar in Forestry and Environmental Sciences (3)
Student study and presentation of selected developments, trends and problems in the field of forest and natural resources. 3 seminars. Prerequisite: Graduate standing or consent of instructor.

FNR 599 Thesis (1–9)
Individual research in forest or natural resources management under the general supervision of faculty, leading to a graduate thesis. Degree credit limited to 9 units. Prerequisite: Graduate standing and consent of instructor.

FR 101, 102, 103 Elementary French I, II, III (4) (4) (4)
For beginners. Class practice and assigned outside work in pronunciation, sentence structure, reading, writing, and basic conversation. Laboratory drill required. Language taught in its cultural context. Credit not available for students who have completed FR 104. To be taken in numerical sequence. 3 lectures, 1 activity.

FR 121, 122 Intermediate French I, II (4) (4)
Review of French grammar and practice in writing and oral expression within a cultural context. To be taken in numerical sequence. 3 lectures, 1 activity. Prerequisite: FR 103 or consent of instructor.

FR 233 Critical Reading in French Literature (4)
Selected readings in French from major Francophone authors that illustrate the French literary tradition from the Middle Ages to the present in both France and other French-speaking countries. 4 lectures. Prerequisite: Completion of GE Area A, and FR 122.

FR 301 Advanced French Composition and Grammar (4)
Oral and written development of structural grammar, syntax and complex components of French. Expansion of vocabulary and idiomatic expressions through text study. Translation from English to French and written composition. 4 lectures. Prerequisite: Consent of instructor.

FR 302 Advanced French Conversation and Grammar (4)
Topics focus on culture and selected grammar points. Outlines and/or abstracts constitute written assignments. Individual presentations to elicit spontaneous response. Group presentations to allow cooperative research and preparation. 4 lectures. Prerequisite: Consent of instructor.

FR 305 Significant Writers in French (4)
GE C4
Critical analysis and oral discussion of poetry, essays, novels, and plays by selected French and Francophone writers. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 4 lectures. Prerequisite: Completion of GE Area A, and FR 233. Modern Languages and Literatures majors will not receive GE C4 credit.

FR 322 French Food in French (4) (Also listed as FSN 322)
Blend of French language, culture, food preparation techniques, and basic food chemistry and nutrition. Total immersion in language and cooking: preparation of French food while interacting in French with classmates and instructors, in lectures, discussion, and laboratory. 3 lectures, 1 laboratory. Prerequisite: FR 103 or consent of instructor.

FR 350 French Literature in English Translation (4)
GE C4
Selected works to be read by students in English translation. Critical analysis, interpretation, and comparison of works by significant French and/or Francophone writers. Lecture in English. The Schedule of Classes will list topics selected. Total credit limited to 8 units. 4 lectures. Prerequisite: Completion of GE Area A and one course in Area C1. Modern Languages and Literatures majors will not receive GE C4 credit.

FR 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

FRSC—FRUIT SCIENCE
FRSC 123 Beekeeping (3)
Studies and exercises in the handling of European honey bees with special reference to pollination of commercial crops. Honey processing and marketing. Hive inspection and disease detection. 2 lectures, 1 laboratory.

FRSC 132 Pomology I (4)
Orchard design and development, cultural practices, physiological responses of trees to cultural practices, propagation and strategies to maximize orchard profitability and sustainability. 3 lectures, 1 laboratory. Prerequisite: HCS 120.

FRSC 133 Pomology II (4)
Analysis of production and management strategies for major fruit and nut crops in California. 3 lectures, 1 laboratory. Prerequisite: FRSC 132.

FRSC 202 Enterprise Projekt (2–4) (CR/NC)
Beginning field experience in management of orchards and vineyards or honeybees, under faculty supervision. Project participation is subject to approval by the department head and the Cal Poly Corporation. Degree credit limited to 4 units. Credit/No Credit grading only. 1 lecture, variable practicum. Prerequisite: HCS 110, or consent of instructor.

FRSC 210 Viticultural Practices (2)
Propagation, layout and planting of a new vineyard, including irrigation and trellis system installations and management practices of established vineyards. Total credit limited to 4 units. 2 activities.
FRSC 230 California Fruit Growing (4)
Interrelationship of climate and cultural techniques on orchard productivity. California's place in the international production-marketing scheme. Field trip required. Not open to students majoring in Fruit Science. 3 lectures, 1 laboratory.

FRSC 231 Viticulture I (4)
Understanding of internal and external factors affecting vine productivity. Historical and international perspectives on grape growing. Vineyard production strategies. 3 lectures, 1 laboratory.

FRSC 331 Viticulture II (4)
Factors influencing vine physiology and wine grape quality. Recent advances in irrigation strategies, canopy management, and pest control. Budgets for profitable operation and mechanized viticulture. Field trip required. 3 lectures, 1 laboratory. Prerequisite: FRSC 231.

FRSC 342 Citrus and Avocado Fruit Production (4)
World citrus and avocado production and marketing. Orchard management techniques. Relationship of environment to species, cultivar, and rootstock selection. Field trip to a major California production area required. 3 lectures, 1 laboratory. Prerequisite: HCS 120 or FRSC 230, or consent of instructor.

FRSC 402 Enterprise Project Management (2–4) (CR/NC)
Advanced experience in production of orchards and vineyards. Development of a plan for field operations, a marketing plan, and a budget. Management decision-making. Project participation is subject to approval by the department head and the Cal Poly Corporation. Degree credit limited to 2 units. Credit/No Credit grading only. 1 lecture, variable practicum. Prerequisite: FRSC 202, and consent of instructor.

FRSC 415 Grapevine Physiology (4)
Understanding of grapevine physiology, including anatomy, taxonomy, physiological growth processes, growth cycle phenology, bud break, flowering, fruit set, berry ripening. 3 lectures, 1 laboratory. Prerequisite: FRSC 231, FRSC 331 or consent of instructor.

FRSC 422 Tropical and Subtropical Crop and Fruit Production (4)
(Also listed as CRSC 422)
Production, distribution and utilization of major agronomic, vegetable, fruit and nut crops of economic importance in tropical and subtropical areas. Weather systems, climates, soils, and cropping systems of tropical and subtropical areas. Field trip required. 3 lectures, 1 laboratory. Prerequisite: 100/200-level plant production course, or consent of instructor.

FRSC 599 Thesis in Fruit Science (1–9)
Systematic research of a significant problem in Fruit Science. Thesis will include problem identification, significance, methods, data analysis, and conclusion. Students must enroll every quarter in which facilities are used or advisement is received. Degree credit limited to 6 units. Prerequisite: Graduate standing and consent of instructor.

FSN–FOOD SCIENCE AND NUTRITION

FSN 101 Orientation to the Nutrition Major (1) (CR/NC)
Understanding the depth and breadth of the Nutrition program. Emphasis on curriculum and career planning. Nutrition students are required to complete this course within their first year in the major. Credit/No Credit grading only. 1 lecture.

FSN 121 Fundamentals of Food (4)
Theoretical aspects and practical applications of the principles of culinary science and food preparation. 3 lectures, 1 laboratory.

FSN 125 Introduction to Food Science (5)
Basic principles of food science. Chemical, physical, and microbiological properties of foods. Ingredient properties, preservation, and processing. Overview of the commercial food processing industry at state and national levels. 4 lectures, 1 laboratory.

FSN 200 Special Problems for Undergraduates (1–3) (CR/NC)
Individual investigation, research studies, or surveys of selected problems. Total credit limited to 6 units, with a maximum of 3 units per quarter. Credit/No Credit grading only. Prerequisite: Consent of instructor.

FSN 201 Enterprise Project (1–4) (CR/NC)
Post-harvest processing of a high quality food product. Project participation is voluntary and subject to approval by the department head and the Cal Poly Corporation. Total degree credit for FSN 201 and FSN 401 combined limited to 12 units. Credit/No Credit grading only. Prerequisite: FSN 125 or FSN 230 or FSN 121 and consent of instructor.

FSN 204 Food Processing Operations (4)
Applied food manufacturing and processing technology emphasizing unit operations. Water removal in foods (dehydration, spray drying, vacuum concentration), heat removal (refrigeration, freezing), and osmotic preservation. Students produce processed foods in a pilot plant. 3 lectures, 1 laboratory. Prerequisite: FSN 125 or FSN 230.

FSN 210 Nutrition (4)
Introduction to the science of human nutrition. Nutrient structure, metabolism, and function in body systems. Application of nutrition science principles to promote optimal health. 4 lectures.

FSN 230 Elements of Food Processing (4)
Principles of food processing operations covering thermal processing, freezing, dehydration, fermentation and raw material handling. Overview of food technology, food quality, spoilage, packaging and label requirements. For non-Food Science majors only. Field trip may be required. 3 lectures, 1 laboratory.

FSN 244 Cereal and Bakery Science (4)

FSN 250 Food and Nutrition: Customs and Culture (4) GE D4 USCP
Anthropological perspective of traditional and contemporary food customs and culture. Major emphasis on U.S. cultures including Native American, Hispanic American, African American, and Asian American. Past and future developments in organic foods, junk foods and industrial foods. 4 lectures.

FSN 263 Preparation for Professional Practice (2)
Understanding professional roles in nutrition and food science settings, including dietsetics, the food industry, and community and service areas. Discussion of ethics and professional characteristics leading to successful employment. Development of professional portfolios. 2 seminars. Prerequisite: FSN 101, FSN 210, and sophomore standing.

FSN 264 Survey of Food Chemistry (4)
Basic application of chemistry to food products. Role of chemical components of food and beverage formulations with focus on grape, wine, fermented and distilled products as well as fruit, vegetable and cereal products. 4 lectures. Prerequisite: CHEM 111 or equivalent.

FSN 270 Food and Wine Plant Sanitation (4)
Operational management of a food and wine plant sanitation program. Chemical and physical control of insects, rodents, and birds. Microbial sanitation operations. Government and legal issues affecting operations. Chemistry of detergents, surfactants and sanitizers. Design and construction of plants. Certified organic USDA requirements. 4 lectures. Prerequisite: FSN 125 or FSN 230, or consent of instructor.

FSN 275 Principles of Food Safety and Hazard Analysis (4)
Chemical, microbiological, and physical aspects of food safety are addressed especially with regard to establishment of safety programs for the food industry. In-depth coverage of hazard analysis and critical control points (HACCP). 3 lectures, 1 activity. Prerequisite: FSN 125 or FSN 230, or consent of instructor.
FSN 285 Certified Organic Food Processing Operations (2)
Certification and legal requirements for the processing of fruit, vegetable, wine, beer and distilled spirits as well as muscle foods. Basic principles of certified organic handling and process operations. 2 lectures. Prerequisite: FSN 125, FSN 230 or consent of instructor.

FSN 304 Advanced Culinary Principles and Practice (4)
Chemistry of starch, fat and proteins and its impact on texture, taste, flavor and appearance of food. Effects of microorganisms on changes of food during preparation and storage. Strong emphasis on baking technology. 3 lectures, 1 laboratory. Prerequisite: FSN 121, CHEM 111, or consent of instructor.

FSN 310 Maternal and Child Nutrition (4)
Nutritional needs and issues during pregnancy and lactation. Role of nutrition in normal development, from conception through adolescence. Current nutrition issues in maternal and child nutrition. 4 lectures. Prerequisite: FSN 210; sophomore standing.

FSN 311 Sensory Evaluation of Food (4)
Designed to help the food scientist solve typical sensory problems occurring in the food industry by using simple difference and scaling test designs; select appropriate panelists for specific sensory tests; and conduct such tests, analyze, interpret the results and write a report. 3 lectures, 1 laboratory. Prerequisite: STAT 218; FSN 125 or FSN 230.

FSN 315 Nutrition in Aging (4)

FSN 319 Food Technology for the Consumer (4) GE Area F
Overview of the science and technology used to produce the foods consumed on a daily basis. Food science, biotechnology, food law, processing, preservation, ingredient functionality, package label information, and food safety information. 3 lectures, 1 activity. Prerequisite: Completion of GE Area B, and junior standing.

FSN 321 Culinary Management: Principles and Practice (4)
Principles involved in the choice, purchase, and preparation of foods in a variety of settings. Application of culinary management principles in the use of time, energy and money. Planning, preparing, and serving meals with emphasis on nutritional, aesthetic, economic and cultural aspects of food. 3 lectures, 1 laboratory. Prerequisite: FSN 121, FSN 210, sophomore standing.

FSN 322 French Food in French (4) (Also listed as FR 322)
Blend of French language, culture, food preparation techniques, and basic food chemistry and nutrition. Total immersion in language and cooking: preparation of French food while interacting in French with classmates and instructors in lectures, discussion, and laboratory. 3 lectures, 1 laboratory. Prerequisite: FR 103 or consent of instructor.

FSN 323 Statistical Quality Control (3)
Application of statistical methods in quality control programs and evaluation of design and production in the food industry. Emphasis on role of statistical quality control in total quality management. Computer software will be utilized in statistical quality control processes. 3 lectures. Prerequisite: STAT 218 for Food Science majors and FSN 230 for non-majors.

FSN 328 Advanced Nutrition I (4)
Metabolism of carbohydrates, fats and proteins as it applies to human nutrition. Integration of metabolic pathways. 4 lectures. Prerequisite: FSN 210, CHEM 313/371, BIO 111/161, junior standing.

FSN 329 Advanced Nutrition II (4)
Continuation of FSN 328. Biochemical, molecular, and physiological functions of vitamins and minerals and their interaction with other nutrients. 3 lectures, 1 laboratory. Prerequisite: FSN 328.

FSN 330 Introduction to Principles of Food Engineering (4)
Introduction to principles of food engineering and basic calculations needed for food plant operations. Unit conversions, material balance, heat balance, steam heating, psychrometry, and pressure. Field trip may be required. 3 lectures, 1 laboratory. Prerequisite: FSN 125, MATH 118 or equivalent, and PHYS 104; or consent of instructor.

FSN 334 Food Packaging (3)
Function of food packaging in food processing and preservation. Packaging materials and forms. Regulations and testing of food packaging material. Oral presentation required. 3 lectures. Prerequisite: FSN 125 and FSN 204.

FSN 335 Food Quality Assurance (4)
Chemical, microbiological, and physical methods of analyses of foods used in food quality assurance and product development laboratories. Organization and management of quality assurance and control programs. Development of food production standards and interpretation of specifications. Packaging and container evaluation. 3 lectures, 1 laboratory. Prerequisite: FSN 125 or FSN 230, junior standing or consent of instructor.

FSN 341 Wines and Fermented Foods (4)
Processing, manufacturing, historical and bio-technical applications of fermentation technology for the production of food products focusing on wine. Wines of the world, distilled beverages, beers, fermented dairy, vegetable and meat products important to the post-harvest economy of California. 4 lectures. Prerequisite: Junior standing and completion of GE Area B.

FSN 342 Sensory Evaluation of Wine (4) (Also listed as WVIT 342)
Evaluation of wines using the techniques in sensory evaluation. Difference and rating tests; descriptive analysis and pairing of wine and food. 3 lectures, 1 laboratory. Prerequisite: WVIT 202, STAT 218 or STAT 221, age 21 or older.

FSN 343 Institutional Foodservice I (3)
Principles of equipment selection and floor planning with emphasis on sanitation and safety. 2 lectures, 1 laboratory. Prerequisite: FSN 121 and junior standing.

FSN 344 Institutional Foodservice II (3)
Economic principles and problems involved in planning and preparing food using institutional equipment to meet specific product standards for large groups. 2 lectures, 1 laboratory. Prerequisite: FSN 321, FSN 343.

FSN 354 Packaging Function in Food Processing (3)
Basic food spoilage and preservation mechanisms. The role of food packaging in food processing. Package and food compatibility. For non-Food Science majors. 3 lectures. Prerequisite: Junior standing.

FSN 364 Food Chemistry (4)
Chemical and biochemical properties of food components. Basic principles of food enzymology and the chemical and biochemical changes occurring in food systems as a function of different food processing conditions. Mechanisms of reactions affecting food quality and nutritional value. Laboratory focus on assessment of food chemical systems. 3 lectures, 1 laboratory. Prerequisite: FSN 125 or FSN 230, CHEM 313.

FSN 368 Food Analysis (4)
Principles of chemical and biochemical methods and techniques for measuring food protein, carbohydrates, lipids, water, vitamins, minerals and other components of foods, wine analysis. Application of AOAC approved methods for determining nutrients as they relate to nutritional labeling legal requirements. 3 lectures, 1 laboratory. Prerequisite: FSN 364.

FSN 374 Food Laws and Regulations (4)
Federal, state, and local laws and regulations affecting the production, processing, packaging, marketing, and distribution of food. Emphasis on FDA, USDA and California codes. 4 lectures. Prerequisite: FSN 125 or FSN 230.
FSN 400 Special Problems for Advanced Undergraduates (1–4)
(CR/NC)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 6 units, with a maximum of 4 units per quarter. Credit/No Credit grading. Prerequisite: Consent of instructor.

FSN 401 Advanced Enterprise Project (1–4) (CR/NC)
Leadership responsibility on enterprise projects. Lead students, under the supervision of instructor, will be accountable for all phases of the project: scheduling times, securing raw product, record keeping, and marketing of the product. Total degree credit for FSN 201 and FSN 401 combined limited to 12 units. Credit/No Credit grading only. Prerequisite: FSN 201 and junior standing and consent of instructor.

FSN 408 Food Composition Science and Product Development (4)
Chemical and physical properties of food ingredients. Functionality of water, carbohydrates, proteins, lipids, additives and other food ingredients used in the formulation, development, and processing of foods. Product development processes from idea generation to marketing. 3 lectures, 1 laboratory. Prerequisite: FSN 311, FSN 364, CHEM 313, senior standing or consent of instructor.

FSN 410 Nutritional Implications of Food Industry Practices (4)
Methods for assessing nutritional quality of foods/diets. Nutrient databases for raw and processed foods. Effects of food industry practices (e.g., processing, fortification, new product development, biotechnology) on nutritional quality of foods/diets. Evolution of public policy. 4 seminars. Prerequisite: FSN 210; FSN 230 or one course in food processing; senior standing; or consent of instructor.

FSN 415 Nutrition Education and Communications (4)
Application of appropriate behavior and learning theories to bring about positive health outcomes in population groups. Use of effective techniques and materials. Computer-based technology to augment learning activities. 4 lectures. Prerequisite: FSN 328 and senior standing, or consent of instructor.

FSN 416 Community Nutrition (4)
Federal, state and local nutrition assessment activities and program services for at-risk populations. Emphasis on health promotion and disease prevention concepts. Develop skills in assessing community nutrition problems and planning service interventions. 4 lectures. Prerequisite: Senior standing, or consent of instructor. Prerequisite or concurrent: FSN 329. Recommended: FSN 310, FSN 315.

FSN 417 Nutrition Counseling (4)
Communication, behavioral, and counseling theories as they relate to nutrition counseling. Emphasis on development of skills to promote healthy eating behaviors. Examination of eating disorders and obesity, including preventative and therapeutic interventions. 4 lectures. Prerequisite: FSN 415, PSY 201/202.

FSN 420 Critical Evaluation of Nutrition Research (4)
Nutrition research terminology and methods, including the strengths and weaknesses of in vitro, animal, human observational, and human intervention studies. Critical evaluation and interpretation of nutrition research. Case studies of research supporting or refuting diet/health links. 4 seminars. Prerequisite: FSN 329, STAT 218, and senior standing; or consent of instructor.

FSN 426 Food Systems Management (4)
Principles of successful organization and management with their application to the effective operation of food service. Administrative responsibilities of the food service manager. Management theories and practice. Labor relations. Discipline and performance appraisal. 4 lectures. Prerequisite: FSN 344, or consent of instructor.

FSN 429 Clinical Nutrition I (4)
Application of the nutritional care process to physiological disorders which may alter nutritional requirements or require dietary modifications. Anthropometric, biochemical, clinical, and dietary assessment. GI disorders, diabetes mellitus, electrolytes, acid-base balance, hydration and enteral and parenteral nutrition. 3 lectures, 1 laboratory. Prerequisite: ZOO 331, 332 (transfer equivalent ZOO 240, 241) and senior standing. Prerequisite or concurrent: FSN 329.

FSN 430 Clinical Nutrition II (4)
Application of the nutritional care process to physiological and metabolic disorders which may alter nutritional requirements or require dietary modifications. Respiratory diseases, burns, cancer, inborn errors of metabolism, pregnancy, cardiovascular disease, liver disease, AIDS, renal disease, and bariatric surgery. 4 lectures. Prerequisite: FSN 429.

FSN 440 Internship in Food Science or Nutrition (1–12)
Career experience with private or public agencies. Total credit limited to 12 units. Maximum of 6 units may be applied toward degree requirements. Prerequisite: Junior standing and consent of instructor.

FSN 444 Engineering Concepts in Food Processing (4)
Engineering concepts relevant to food processing. Heat transfer, evaporation, dehydraion and refrigeration calculation principles. 4 lectures. Prerequisite: FSN 330, FSN 204; FSN 230 for non-Food Science majors.

FSN 461, 462 Senior Project I, II (2-3) (2-3)
Selection and completion of research related to the student's area of interest. Project requires a formal report which must follow departmental guidelines. Minimum of 120 hours required (Nutrition majors) or 180 hours (Food Science majors). Prerequisite: Completion of GE Area A3, STAT 218, and senior standing; also prerequisite or concurrent for Nutrition majors: FSN 329.

FSN 464 Wine Chemistry and Analysis (4)
Chemical and biochemical analysis of wines using certified methods. Comparative analysis for alcohol, ash, reducing sugars, volatile acidity, color, anthocyanin, tannins, sulfur dioxide by spectrophometric, gas chromatography and titration methods. 3 lectures, 1 laboratory. Prerequisite: FSN 264 for non-Food Science majors; FSN 364 for Food Science majors; or consent of instructor.

FSN 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Senior standing.

FSN 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Senior standing.

FSN 474 Advanced Food Processing (4)
Advanced topics in processing operations with emphasis on thermal processing. Non-traditional processing technology such as microwave, ionizing radiation, and Pascalization. Oral presentation required. 3 lectures, 1 laboratory. Prerequisite: FSN 444 and senior standing.

FSN 480 Policy Arguments in Food and Nutrition (2)
Analysis and evaluation of law and policy in foods, nutrition, and related healthcare issues. Planning and presentation of successful arguments supporting or refuting key food and health policies. Critical assessment of advocacy processes and determination of best approaches to achieving legislative and policy goals. 2 seminars. Prerequisite: FSN 374, junior standing.

FSN 485 Cooperative Education Experience in Food Science and Nutrition (6) (CR/NC)
Part-time work experience with an approved Food Science or Nutrition firm engaged in production or related business, industry or governmental agency. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Degree credit limited to 6 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.
FSN 495 Cooperative Education Experience in Food Science and Nutrition (12) (CR/NC)
Full time work experience with an approved Food Science or Nutrition firm engaged in production or related business, industry or governmental agency. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Degree credit limited to 6 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

FSN 500 Individual Study (1–6)
Advanced independent study planned and completed under the direction of a member of the department faculty. Total credit limited to 6 units. Prerequisite: Graduate standing, consent of supervising faculty member and graduate advisor.

FSN 501 Lipid Metabolism and Nutrition (3)
Digestion, absorption and metabolism of lipids with emphasis on lipoprotein metabolism, regulation of lipid metabolism, essential fatty acid requirements and functions. 3 seminars. Prerequisite: Graduate standing or consent of instructor.

FSN 540 Dietetic Internship Supervised Practice (10) (CR/NC)
Supervised practice at various nutrition therapy, foodservice management, and community nutrition sites. Total credit limited to 30 units, with a maximum of 10 units per quarter. Credit/No Credit grading only. Prerequisite: Acceptance into the Cal Poly, San Luis Obispo Dietetic Internship, a special session program in Continuing Education.

FSN 541 Dietetic Internship Seminar (2) (CR/NC)
A forum for dietetic interns to make presentations and share their experiences in their supervised practice. Total credit limited to 6 units. Credit/No Credit grading only. 2 seminars. Prerequisite: Acceptance into the Cal Poly, San Luis Obispo Dietetic Internship, a special session program in Continuing Education.

FSN 542 Dietetic Internship: Current and Emerging Issues (2) (CR/NC)
Presentation of various hot topics and emerging issues in nutrition therapy, foodservice management and community nutrition for enrichment of the internship experience. Credit/No Credit grading only. 2 lectures. Total credit limited to 6 units, with a maximum of 2 units per quarter. Prerequisite: Acceptance into the Cal Poly, San Luis Obispo Dietetic Internship, a special session program in Continuing Education.

FSN 570 Selected Topics in Food Science and Nutrition (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1 to 4 seminars. Prerequisite: Graduate standing or consent of instructor.

FSN 571 Selected Advanced Laboratory in Food Science and Nutrition (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Consent of instructor.

FSN 581 Graduate Seminar in Food Science and Nutrition (3)
Current findings and research problems in the field and their application to food science and nutrition. The Schedule of Classes will list topic selected. Total credit limited to 6 units with approval of advisor. 3 seminars. Prerequisite: Graduate standing or consent of instructor.

FSN 599 Thesis (1–6)
Individual research in food science and nutrition under faculty supervision leading to a graduate thesis of suitable quality. Total credit limited to 6 units. Prerequisite: Graduate standing and consent of instructor.

GEOG—GEOGRAPHY

GEOG 150 Introduction to Cultural Geography (4) GE D3
The interplay of cultures, places, and environments, with emphasis on the diversity, interrelationships, and spatial features of global cultures. Topics include characteristics and patterns of population, ethnicity, agriculture, geopolitics, language, religion, urbanization, industry, and folk and popular culture. 4 lectures.

GEOG 250 Physical Geography (4) (Also listed as ERSC 250)
Addresses the origins and patterns of the earth's diverse assemblage of climates, landforms, biota and soils. A major focus on relationship between human cultures and these earthly environments. 4 lectures.

GEOG 300 Geography of the United States (4) GE D5
The population (including origin, ethnicity, migration, and distribution), land utilization, and economic development viewed against the background of the physical environment. Topically and regionally organized. Pervading themes include landscape evolution and alteration, regional cultural distinctiveness, and current problems. 4 lectures. Prerequisite: Completion of GE Areas A, D1 and D3. Social Sciences majors will not receive GE Area D5 credit.

GEOG 301 Geography of Resource Utilization (4) GE D5
A multicultural, world view of the interconnections of the following resource systems: food, energy, water, and non-fuel minerals. A pervading theme is the sustainability of these systems. 4 lectures. Prerequisite: Completion of GE Areas A, D2 and D3. Social Sciences majors will not receive GE Area D5 credit.

GEOG 308 Global Geography (4) GE D5
Examination of the major world regions such as Europe, the Middle East, Africa, Asia and Latin America. Focus on the origins and content of contemporary cultural landscapes and on their utility for understanding international differences, interactions, and current events. Particular attention to the relationship between humans and the environment. 4 lectures. Prerequisite: Completion of GE Area A and two courses from Areas D1, D2, D3, D4. Social Sciences majors will not receive GE Area D5 credit.

GEOG 317 The World of Spatial Data and Geographic Information Technology (4) GE Area F (Also listed as BIO/FNR/LA 317)
Basic foundation for understanding the world through geographic information and the tools available to utilize spatial data. Application of Geographic Information Systems (GIS) and related technologies, including their scientific basis of operation. 3 lectures, 1 activity. Prerequisite: A course in computer science, completion of Area B, and junior standing.

GEOG 318 Applications in GIS (4)
ArcGIS Desktop Geographic Information System (GIS) computer software to explore environmental, natural resource, social and economic issues using spatial data. Principles of cartography and map interpretation, Development of data base and software management competencies. 2 lectures, 2 laboratories. Prerequisite: Junior standing and computer literacy, or consent of instructor.

GEOG 325 Climate and Humanity (4) (Also listed as ERSC 325)
Geographic perspective on the interrelationships between climate and human cultures. Effects of people on climate and the influence of climate and weather upon human activities and behavior. Focus on global human conditions which are responsible for the alteration of climate and in turn are vulnerable to climate change. 4 lectures. Prerequisite: Junior standing or consent of instructor.

GEOG 328 Applications in Remote Sensing (4)
Introduction to the use of satellite imagery to analyze natural and human features on the earth. Applications in geology, water, climate, vegetation, agriculture, and urban land use. Fundamentals of processing digital satellite images. Emphasis on bridging the earth and social sciences. 3 lectures, 1 activity. Prerequisite: GEOG 250 or consent of instructor.

GEOG 333 Human Impact on the Earth (4) (Also listed as ERSC 333)
Global assessment of the impact of humans on the earth's vegetation, animals, soil, water and atmosphere. Emphasis on problems stemming from the interactions of human attitudes, technologies, and population with natural resources. 4 lectures.

GEOG 340 Geography of California (4)
Geographic analysis of the land and people of California. Patterns of physical environment, natural resources, history, settlement, ethnicity,
economy, politics, and urban growth. Current issues in a national and
global context. 4 lectures. Prerequisite: Junior standing.

GEOG 360 Geography of Europe (4)
The population, land utilization, and economic development viewed
against the background of the physical environment. Topically and
regionally organized. Pervading themes include landscape evolution and
alteration, regional cultural distinctiveness, and current problems.
Emphasis on Western Europe. 4 lectures. Prerequisite: Junior standing.

GEOG 370 Geography of Latin America (4) GE D5
Geographic analysis of Mexico, Central America, and South America. The
patterns of physical environment, culture, economy, and development. The
issues (local, regional, and global) that shape Latin America. 4 lectures.
Prerequisite: Completion of two courses from GE Areas D1, D2, D3, D4.
Social Sciences majors will not receive GE Area D5 credit.

GEOG 414 Global and Regional Climatology (4)
(Also listed as ERSC 414)
The earth's pattern of climates and the physical processes that account for
them. Focus on interrelationships between climate and the
physical/biological and cultural environments. Special emphasis on
modern climate changes and their consequences. 3 lectures, 1 laboratory.
Prerequisite: GEOG 250 or consent of instructor.

GEOG 415 Applied Meteorology and Climatology (4)
(Also listed as ERSC 415)
Physical processes in the atmosphere that determine regional weather,
climate and climate variability. Surface and satellite systems for weather
observation, and weather/climate modeling. Dynamics of weather systems,
including thunderstorms and hurricanes. Emphasis on weather/climate
affecting agriculture and other human activities. 3 lectures, 1 activity.
Prerequisite: GEOG/ERSC 250 or consent of instructor.

GEOG 440 Geo-Social Applications in GIS (4)
Applications in Geographic Information Systems (GIS) emphasizing
research, methodologies, and career fields to geography, earth sciences,
and the social sciences. 2 lectures, 2 laboratories. Prerequisite:
GEOG/FRN/LA 318 or consent of instructor.

GEOG 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Open to
undergraduate and graduate students. The Schedule of Classes will list
topic selected. Total credit limited to 12 units. 1-4 lectures. Prerequisite:
Consent of Instructor.

GEOL—GEOLGY

GEOL 102 Introduction to Geology (4) GE B3
Processes responsible for the Earth's minerals, rocks, and structure surface
features. Volcanism; mountain building; plate tectonics; weathering.
Erosion and deposition by streams, glaciers, wind and waves. Geologic
resources, earth hazards, and interaction of man with global processes. 4
lectures.

GEOL 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems.
Total credit limited to 4 units, with a maximum of 2 units per quarter.
Prerequisites: Consent of department chair.

GEOL 201 Physical Geology (3)
Processes responsible for the Earth's rocks, structural surface features,
geologic hazards, and natural resources, with emphasis on interactions with
human activities. 3 lectures. Prerequisite: MATH 119 or equivalent.

GEOL 203 Fossils and the History of Life (4) GE B5
Evolution – creation controversy. Early earth and early life. Features,
lifestyles, origins, and histories of major invertebrate, vertebrate, and plant
groups. Mass extinctions. 3 lectures, 1 discussion.

GEOL 204 Geologic History of California (3)
Development of California through geologic time. Where and why the
rocks appeared. Movement on faults, and mountain building. Geologic
processes at work today and yesterday. Relationship of California geology
to the rest of the world. 3 lectures. Recommended prerequisite: GEOL 102
or GEOL 201.

GEOL 205 Earthquakes (4) GE B3
World-wide seismicity and plate tectonics. Seismic waves and their
recording. Earth structure and composition. Intensity, magnitude, and energy.
Major California faults and earthquakes. Paleoseismology, forecasting and
prediction. Acceleration, resonance, and effects of ground shaking on
structures. Earthquake safety. 3 lectures, 1 discussion.

GEOL 206 Geologic Excursions (1) CR/NC
Field trips to places of geologic interest. The Schedule of Classes will
indicate destinations. Students must provide their own transportation, food,
and camping equipment. May be repeated for a maximum of 3 units
provided field trips are taken to different locations. Credit/No Credit
grading only. 1 laboratory. Recommended prerequisite or concurrent:
GEOL 102 or GEOL 201.

GEOL 241 Physical Geology Laboratory (1)
Properties and identification of minerals and rocks. Topographic maps and
landform analysis. Geologic maps and interpretation of rock structure. 1
laboratory. Prerequisite or concurrent: GEOL 102 or GEOL 201.

GEOL 305 Fundamentals of Seismology (4) GE B6
Theory of plate tectonics. Elastic waves in layered media. Principle of the
seismometer. Seismic properties, structure and composition throughout the
Earth. Intensity, magnitude, and seismic moment and energy calculations.
Major California faults and earthquakes. Paleoseismology, forecasting and
prediction. Analysis of ground motion. Resonance. Effects of ground
shaking on structures and bodies of water. Earthquake safety. 3 lectures, 1
discussion. Prerequisite: PHYS 132.

GEOL 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigations, research, studies, or surveys of selected problems.
Total credit limited to 4 units, with a maximum of 2 units per quarter.
Prerequisite: Consent of department chair.

GEOL 401 Field-Geology Methods (4) Also listed as ERSC 401
Collecting and interpreting field-geologic data. Description of sedimentary
rocks and construction of stratigraphic columns. Mapping geologic
structures in the field. Surficial geologic stratigraphy and surficial geologic
mapping. Understanding geologic processes through field study.
Communicating results of field study. 1 lecture, 3 activities. Prerequisite:
GEOL 102 or GEOL 201, GEOL 241, SS 223, SS 323.

GEOL 402 Geologic Mapping (4) Also listed as ERSC 402
Bedrock geologic mapping on topographic maps and aerial photos. Surficial
geologic mapping on topographic maps and aerial photos. Correlating and
defining surficial geologic map units on the basis of soil development.
Understanding landscape evolution using soil development 4 activities.
Prerequisite: ERSC/GEOL 401.

GEOL 415 Structural Geology (4)
Recognition, interpretation, and depiction of geological structures.
Understanding rock deformation through the study of faults and folds. 3
lectures, 1 laboratory. Required weekend field trips. Prerequisite: GEOL
201, GEOL 241, ERSC/SS 223.

GER—GERMAN

GER 101, 102, 103 Elementary German I, II, III (4) (4) (4)
For beginners. Class practice in pronunciation, sentence structure, reading,
writing and basic conversation using the communicative approach.
Laboratory drill required. Language taught in its cultural context. To be
taken in numerical sequence. 3 lectures, 1 activity.

GER 121, 122 Intermediate German I, II (4) (4)
Review of German grammar and practice in writing and oral expression
within a cultural context. To be taken in numerical sequence. 3 lectures, 1
activity. Prerequisite: GER 103 or consent of instructor.

GER 233 Critical Reading in German Literature (4) GE C1
Selected readings from major German authors that show the German
literary tradition from the Middle Ages to the present in Germany, Austria,
Switzerland, and or foreign writers in Germany. 4 lectures. Prerequisite: Completion of GE Area A, and GER 122.

GER 301 Advanced German Composition and Grammar (4)
Oral and written development of structural grammar, syntax and complex components of German. Vocabulary expansion and idiomatic construction. Written compositions. Translations to examine linguistic and semantic differences. 4 lectures. Prerequisite: Consent of instructor.

GER 302 Advanced German Conversation and Grammar (4)
Topics focus on culture and selected grammar points. Individual and group presentations and interaction using videos. 4 lectures. Prerequisite: Consent of instructor.

GER 305 Significant Writers in German (4) GE C4
Critical analysis and oral discussion of poetry, essays, novels, and plays. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 4 lectures. Prerequisite: Completion of GE Area A, and GER 233. Modern Languages and Literatures majors will not receive GE C4 credit.

GER 350 German Literature in English Translation (4) GE C4
Selected works to be read by students in English translation. Critical analysis, interpretation, and comparison of individual works by outstanding German, Austrian and Swiss writers. Lecture in English. The Schedule of Classes will list topics selected. Total credit limited to 8 units. 4 lectures. Prerequisite: Completion of GE Area A, and one course in Area C1. Modern Languages and Literatures majors will not receive GE C4 credit.

GER 470 Selected Advanced Topics (4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 lectures. Prerequisite: Consent of instructor.

GRC—GRAPHIC COMMUNICATION

GRC 101 Introduction to Graphic Communication (3)
Graphic communication history, theory, processes, applications, and practices. New technologies impacting day-to-day communication including traditional and digital printing and publishing, and non-print imaging including Internet applications. Overview of design technology, electronic publishing and imaging, printing and imaging management, packaging graphics, industry segments. 3 lectures.

GRC 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.

GRC 201 Electronic Publishing Systems (3)
Significance, terminology, and components of electronic publishing systems. Current hardware and software options in the graphic communication industry. Overview of PostScript, PDF, HTML and XML. 2 lectures, 1 laboratory.

GRC 202 Image Capture and Manipulation (3)
Conventional and digital methods of image capture and manipulation for print and electronic media. Digital photography, scanning, photoretouching, and color proofing. Photographic materials and equipment for graphic communication. Densitometry, light sources, exposure control, and color management systems. 2 lectures, 1 laboratory. Prerequisite: either GRC 201 or GRC 377.

GRC 203 Electronic Prepress (3)
Terminology, materials, equipment, facilities and methods used in electronic prepress. File formats, fonts, imposition, trapping, screen angling, PostScript, and PDF. Preflight, workflow options, automation, proofing, and CTP. 2 lectures, 1 laboratory. Prerequisite: GRC 202 or ART 184.

GRC 204 Introduction to Contemporary Print Management and Manufacturing (4)
Analysis and comparison of print and digital media manufacturing methods to current world-class techniques practiced in industry. Principles and concepts of lean manufacturing applied to print for improved profitability. 4 lectures. Prerequisite: GRC 101.

GRC 211 Substrates, Inks and Toners (4)
Technical aspects of paper, other substrates, inks and toners used in the printing industry. Manufacture, application and interaction of these materials are examined in relation to particular processes and end use requirements. Hands-on use of computerized densitometers, spectrophotometers and performance testing equipment. 3 lectures, 1 laboratory. Prerequisite: GRC 101.

GRC 212 Substrates, Inks and Toners: Theory (3)
Technical aspects of paper, other substrates, inks and toners used in the printing industry. Manufacture, application, and interaction of these materials are examined in relation to particular processes and end use requirements. Credit not allowed for GRC majors. 3 lectures. Prerequisite: GRC 101.

GRC 218 Digital Typography (4)
History, development and application of typography in relation to electronic file preparation for cross media publishing. In-depth study of communication principles and visual organization utilizing page layout software. Font technology and management for the creative, print and publishing industries. 3 lectures, 1 laboratory. Prerequisite: GRC 203 or GRC 377.

GRC 260 Introduction to Research Methods in Graphic Communication (3)
Introduction to research methods for preparing scholarly and defensible papers and projects, and in conducting qualitative and quantitative evaluations, testing and research in graphic communication. Methods covered include the Scientific Method, historical and descriptive research, questionnaires, Elite and Specialized Interviewing, content analysis, and sampling. Design of research projects for each method taught. 2 lectures, 1 activity. Prerequisite: GRC 101.

GRC 316 Flexographic Printing Technology (3)
Analysis of flexographic printing technology for flexible packaging, label printing, folding and corrugated cartons. Applications of computers to the management and technical function of flexographic printing technology. 2 lectures, 1 laboratory. Prerequisite: GRC 211.

GRC 320 Managing Quality in the Graphic Arts (4)
Theory and practices of quality systems in the graphic arts industry. Emphasis on Deming Systems Thinking, Lean Manufacturing, Six Sigma, ISO, and Malcolm Baldrige. Quantifying customer expectations, specifications, standard operating procedures, SPC tools, and employee empowerment in the graphic arts. 3 lectures, 1 laboratory. Prerequisite: GRC 315 or GRC 328, and STAT 217.

GRC 322 Advanced Digital Typography (3)
Advanced typographic principles relating to print and electronic media. Page layout and font management with consideration for multiple media. Applied problems focusing on typographic structure and file preparation. 2 lectures, 1 laboratory. Prerequisite: GRC 218 and GRC 338.

GRC 324 Binding, Finishing, and Distribution Processes (3)
Imposition techniques, cutting, and folding. Stitch, case and perfect binding techniques and applications. Operational and aesthetic uses of die cutting, scoring, creasing, foil stamping and embossing techniques. Fulfillment and mailing operations. Applications of computers to the management and technical function of binding, finishing and distribution. 2 lectures, 1 laboratory. Prerequisite: GRC 101.

GRC 325 Binding and Finishing Processes: Theory (2)
Imposition techniques, cutting, folding, book and publication binding. Stitch, case and adhesive binding techniques and applications. Technology and aesthetic uses of die cutting, scoring, creasing, foil stamping and embossing. Fulfillment and mailing operations. Applications of computers
to the management and technical function of binding, finishing and distribution. Credit not allowed for GRC majors. 2 lectures. Prerequisite: GRC 101.

GRC 328 Sheetfed Printing Technology (4)
Theory, practice and application of sheetfed printing and plate technology for commercial, book, advertising, catalog, packaging and reprographic segments of the printing industry. Press configurations, materials, computerized press controls, workflow, pressroom management, coating and quality control. Plate types, quality and new technologies for sheetfed printing. 3 lectures, 1 laboratory. Prerequisite: GRC 211.

GRC 329 Web Offset and Gravure Printing Technologies (3)
Introduction to web offset and gravure printing for newspapers, packaging, magazines, books, catalogs and commercial products. Application of technology to the management and production of web offset and gravure printing. Preparation and use of gravure cylinders. 2 lectures, 1 laboratory. Prerequisite: GRC 328.

GRC 331 Color Management and Quality Analysis (4)
Color management, perception, psychology, and measurement for print and digital media. Application of systems engineering concepts to color workflow to maximize overall quality in the digital imaging and printing industry. Development of print quality assessment skills. 3 lectures, 1 activity. Prerequisite: GRC 202 and PSC 101.

GRC 337 Consumer Packaging (3)
Problem-solving strategies for package printing that integrate concepts from marketing, design and technology. Package manufacturing, function, quality, visual appeal, and economics are addressed. 2 lectures, 1 laboratory. Prerequisite: Junior standing or consent of instructor.

GRC 338 Digital Content Management and Variable Data Printing (4)
Advanced application of type arrangement, digital illustration, image capture and page layout. Digital content management strategies for print and electronic media including file management, database principles, archiving, document formats, variable data publishing, workflow analysis and repurposing. Technical and creative problem-solving for content production and management in print and web publishing. 3 lectures, 1 laboratory. Prerequisite: GRC 203.

GRC 339 Digital Design and Production for Multiple Media (4)
In-depth understanding of design and production as it relates to print and on-line digital media. Advanced production techniques in image editing and multimedia applications. Preparation and evaluation of computer-generated images. 3 lectures, 1 laboratory. Prerequisite: GRC 338.

GRC 357 Specialty Printing Technologies (3)
Specialty printing technologies used in garment decorating, signage, point of purchase displays, decals, security printing and various forms of packaging. Digital file preparation and printing using special processes including screen printing, pad printing, sublimation printing and wide-format printing. 2 lectures, 1 laboratory. Prerequisite: GRC 201 or GRC 377.

GRC 361 Marketing and Sales Management for Print and Digital Media (4)
Identification and development of target markets for products and services in the graphic communication industry. Deployment of strategies in pricing, promotion and distribution management. Application of customer relationship management techniques for personal selling, forecasting and planning. 3 lectures, 1 laboratory. Prerequisite: GRC 101.

GRC 377 Web and Print Publishing (4)
Web and print publishing technology and its impact on society. The technologies of scanning, typography, graphics, layout, and design for print and web publishing including decision-making considerations. The application of scientific and mathematical principles to web and print publishing technologies. 3 lectures, 1 laboratory. Prerequisite: Completion of Area B and junior standing. Graphic Communication majors will not receive GE Area F credit.

GRC 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.

GRC 402 Digital Printing and Emerging Technologies in Graphic Communication (3)
Application of digital printing including the study of marking engines, RIPS, and related technologies. Emerging graphic communication technologies that are impacting the methods and procedures of producing and distributing print media. Technological transitions and how to manage technological change. 2 lectures, 1 activity. Prerequisite: GRC 201.

GRC 403 Estimating for Print and Digital Media (4)
Estimating the cost of various kinds of print and digital products and services. Development of budgeted hour costs and production standards. Cost estimating methods for Print on Demand, VDP, sheetfed lithography, web site development, and wide-format output. Analysis of material, labor and other cost factors. 3 lectures, 1 laboratory. Prerequisite: GRC 315 or GRC 328.

GRC 411 Strategic Trends and Costing Issues in Print and Digital Media (4)
Graphic communication industry market trends. Strategies for profitably positioning graphic communication companies. Costing methodology and practices for graphic communication companies. Company profitability using ratio analysis. Innovative management practices in the graphic communication industry. 3 lectures, 1 activity. Prerequisite: GRC 403.

GRC 421 Production Management for Print and Digital Media (4)
Management principles and production control methodologies for print and digitally-imaged products. Organization analysis, decision-making, equipment and inventory planning, resource optimization, and the application of contemporary quality management initiatives. 3 lectures, 1 activity. Prerequisite: GRC 315 or GRC 328, and MATH 117, MATH 118, or MATH 120.

GRC 422 Human Resource Management Issues for Print and Digital Media (4)
Human resource management integrated into the success of graphic communication companies. A comprehensive management approach is utilized emphasizing policy development, training, safety, motivation, facilitation skills, team building and empowerment, ethical and legal issues in the printing industry. 3 lectures, 1 laboratory. Prerequisite: GRC 421.

GRC 429 Digital Media (3)

GRC 431 Printing Plant Layout Analysis (3)
Elements of printing plant site selections, equipment planning, inventory planning, and workflow optimization. Design and layout of printing plants for effective space utilization. Organization of plant services. 2 lectures, 1 activity. Prerequisite: GRC 421.

GRC 432 Imaging Systems Management (4)
Management issues associated with the introduction and use of computerized electronic prepress systems. Strategic, technical, marketing, financial, production, operational, and personnel aspects of color prepress work in a capital-intensive environment. 4 lectures. Prerequisite: GRC 338.

GRC 439 Book Design Technology (4)
Advanced creative problem-solving strategies associated with the technologies used in book design and production. Advanced techniques in page layout, design, typography, type specification and image manipulation as they relate to output technology. Content, format and distribution of print and electronic books. 3 lectures, 1 laboratory. Prerequisite: Senior standing, GRC 218 and GRC 338.

GRC 440 Magazine and Newspaper Design Technology (4)
Concept development of magazine and newspaper design technology. Design and technical considerations as they relate to output and rendering
technology. Application of organizational structures such as grids, formatting and sequential design. Advanced techniques in digital information and image manipulation. Content, format and distribution of print and electronic magazines and newspapers. 3 lectures, 1 laboratory. Prerequisite: Senior standing, GRC 218 and GRC 338.

GRC 451 Management Topics in Graphic Communication (3)
Current trends and practices in select graphic communication management topics. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 3 lectures. Prerequisite: GRC 101 and GRC 201.

GRC 452 Emerging Digital Topics in Graphic Communication (3)
Current trends and practices in select graphic communication emerging digital topics. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 3 lectures. Prerequisite: GRC 101 and GRC 201.

GRC 453 Design Reproduction Topics in Graphic Communication (3)
Current trends and practices in select graphic communication design reproduction topics. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 3 lectures. Prerequisite: GRC 101 and GRC 201.

GRC 460 Research Methods in Graphic Communication (2)
Research methods for preparing scholarly and defensible papers and senior projects, and in conducting qualitative and quantitative evaluations, testing, and research in graphic communication. Methods covered include statistical, historical, descriptive, questionnaires, interviewing, and sampling. 1 lecture, 1 activity. Prerequisite: Senior standing and STAT 217.

GRC 461 Senior Project (3)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in formal report. Minimum 90 hours total time. Prerequisite: GRC 460.

GRC 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

GRC 472 Applied Graphic Communication Practices (2)
Application of theories and practices to University Graphic Systems as they apply to commercial printing, publication printing, digital media and newspaper industries. Major credit limited to 4 units; total credit limited to 18 units. 2 lectures. Prerequisite: GRC 101.

GRC 473 Applied Graphic Communication Management Practices (2)
Management theories and practices in the graphic communication industry. Application of theories and practices to University Graphic Systems as they apply to commercial printing, publication printing, digital media and newspaper industries. Major credit limited to 6 units; total credit limited to 18 units. 2 lectures. Prerequisite: GRC 472 and consent of instructor.

GRC 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

GRC 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.
GSA 543 Advanced Financial Reporting Issues II (4)
Comprehensive coverage of selected advanced financial accounting and reporting topics. Topics include restructurings, charges, segments, foreign currency transactions and derivatives, interim accounting disclosures, and advanced consolidated statement topics. 4 seminars. Prerequisite: GSA 541.

GSA 544 Advanced Enterprise Wide Business Processes (4)
Study of various transactions in order to understand the underlying business processes and information flows between various business units, in order for a transaction to occur and be properly reported, and the information determined that is critical for the information system to capture. Emphasis of role of information systems in controlling the authorization of transactions, access to information, access to assets, preparation of accounting records and reports. 3 seminars, 1 activity. Prerequisite: BUS 429.

GSA 545 Applied Research and Communications (4)
Advanced use of authoritative accounting and auditing data bases and actual filings by public companies. Frequent writing and speaking exercises. Real world accounting and auditing issues facing public and private enterprises. In-depth coverage of federal and state regulation of securities transactions. Prerequisite: BUS 543.

GSA 546 Tax Research and Administrative Procedures (4)
Research techniques applicable to tax issues including the communication of research results. Administrative procedures necessary for tax compliance with the various tax jurisdictions with primary emphasis on IRS practices. 2 seminars, 2 activities. Prerequisite: Graduate standing or approval from the program director.

GSA 547 Corporate Taxation (4)
Income tax treatment of regular C corporations and their shareholders. The creation, operation, and liquidation of such organizations. 4 seminars. Prerequisite: GSA 546.

GSA 548 Advanced Individual Taxation and Tax Planning (4)
Advanced concepts concerning the impact of taxes on individuals. Introduction to transfer taxes imposed on individuals. Financial, estate and compensation tax planning issues. 4 seminars. Prerequisite: Graduate standing or approval from the program director.

GSA 549 Advanced Taxation of Flow-Through Entities (4)
Advanced and special topics related to the income tax treatment of partnerships, limited liability companies, trusts and S corporations and their owners and beneficiaries. Creation, operation, liquidation and sale of such organizations. Culminating experience for Taxation Specialization. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSA 550 Advanced Corporate Taxation (4)
Advanced and special topics related to the income tax treatment of regular corporations and their shareholders. Mergers and acquisitions, tax accounting methods and periods, cross-boundary topics, and current issues. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB—GRADUATE STUDIES—BUSINESS

GSB 500 Independent Study (1-4)
Advanced study planned and completed under the direction of the Director of Graduate Programs. Open only to graduate students who have demonstrated ability to do independent work. A formal written proposal must be accepted by the Associate Dean of OCOB Graduate Programs before work begins. Prerequisite: Graduate standing and formal petition with approval from the Associate Dean of OCOB Graduate Programs.

GSB 501 Individual Research (1-4)
Advanced individual research planned and completed under the direction of a member of the college faculty. Designed to meet the needs of qualified students who wish to pursue investigations which cannot be followed effectively in regularly offered elective courses. A formal written proposal must be accepted by the Associate Dean of OCOB Graduate Programs before work begins. Prerequisite: Graduate standing and formal petition with approval from the Associate Dean of OCOB Graduate Programs.

GSB 503 Collaborative Industry Project (1-8)
Collaborative business project with a client organization that allows graduate level students the opportunity to apply knowledge, skills and competencies to address a business problem. Small teams work in collaboration with a client organization and a faculty advisor. A formal written proposal must be accepted by the Associate Dean of OCOB Graduate Programs before work begins. The project may last up to one year. Prerequisite: Graduate standing and formal petition with approval from the Associate Dean of OCOB Graduate Programs.

GSB 511 Accounting for Managers (4)
Emphasis on development of the ability to read and interpret public and internal financial reports. Public reporting responsibilities of companies and management’s responsibilities for developing and maintaining effective internal control systems. 3 lectures, 1 activity. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 512 Quantitative Analysis (4)
Focus on a variety of statistical techniques that help to transform data into useful information that can be used to make informed business predictions and decisions. 3 seminars, 1 laboratory. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 513 Organizational Behavior (4)
Application of behavioral, social and organizational science concepts to management. Individual, team and organizational levels of analysis, including such topics as expectations, perception, motivation, communications, creativity, leadership, cultural and ethical behavior, group dynamics, team effectiveness, work design, organization change and development. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 514 The Legal and Regulatory Environment of Business (4)
Legal and regulatory environment in which business operates. Consideration of historical, societal, and global perspectives reflecting political, social and/or economic beliefs and values. Strong emphasis on fundamental concepts of law and analytical tools to understand interaction between law, ethics and management decisions. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 522 Advanced Management Information Systems (4)
Set of tools to ensure understanding of the strategies, tactics, and operations employed by managers to assimilate technology across their firms. Critical topics include alignment, partnership, technology, human resources, governance, communications, and metrics. 3 lectures, 1 activity. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 523 Managerial Economics (4)
Managerial economics, or microeconomics, focuses on private markets. Choices made by firms and consumers within topics that include demand, supply, efficiency, marketing structure, and government intervention. Development of an analytical framework for analyzing how these topics are important for managers. 4 lectures. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 524 Marketing Management (4)
Introduction to marketing management. Concepts and principles necessary to plan, direct and control the product, promotion, distribution and pricing strategies of the firm. 4 lectures. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 525 Project Management (4)
Focus on project management tools and processes required to establish priorities for and management of projects within normal and abnormal scope, money and time constraints. Planning, organizational and resource challenges common to a variety of project types. Product life cycle, normal operational, new product introduction and profit oriented product family
projects reviewed in service and production environments. 3 lectures, 1 laboratory. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 526 Knowledge Management and Business Intelligence (4)

Relationships among knowledge management (KM), knowledge organizations and knowledge workers. Mapping of the field of knowledge management and exploration of the nature and key features of KM. Discussion of knowledge management and business intelligence critical themes using case studies; alternative ways to design, implement and improve KM systems in organizations; business intelligence, decision support systems and data warehousing. Integration of querying, reporting, OLAP, data mining and data warehousing functions. 3 lectures, 1 activity. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 527 Management of Information Security (4)

Topics of information security and the need for security from a managerial perspective. Legal, ethical and professional information security issues. Planning for security and contingency considerations. Business policies and programs for organizational security. Risk management and control as mechanisms for protection. Examples of information security issues and practices implemented in today's business environment. 3 lectures, 1 activity. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 528 Commercial Development of Innovative Technologies (4)

Conceptual business frameworks for commercialization of new and innovative products and technologies. Business aspects of innovative technologies as they relate to core functional areas such as finance, accounting, marketing, operations, and business and intellectual property law. 4 lectures. Prerequisite: OCOB graduate standing or approval from the OCOB Associate Dean of Graduate Programs.

GSB 529 Effective Communication Skills for Managers (4)

Enhancement of business writing and oral presentation skills, organized around two areas: 1) preparing written business documents and reports, and 2) professional oral presentation skills. Preparation of a variety of business reports and documents. Multiple business presentations. 4 lectures. Prerequisite: OCOB graduate standing or approval from the OCOB Associate Dean of Graduate Programs.

GSB 531 Managerial Finance (4)

Theories, practices and tools of corporate financial decision making. Topics include valuation of fixed income securities and stocks, capital budgeting, capital structure, dividends, and an overview of financial markets and institutions. Introduction to valuation of derivative securities, market efficiency, and agency costs. 4 seminars. Prerequisite: GSB 511 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 532 Strategic Information Systems (4)

Overview of information technology trends and implications. Information systems (IS) functions and organization. Strategic planning for information systems. Integration of IS plan with corporate strategy, IS administration and control. Management of IS development and computer operations. IS issues in a multinational environment. 3 lectures, 1 activity. Prerequisite: GSB 522 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 533 Aggregate Economics Analysis and Policy (4)

Development of the theoretical and empirical framework of the macroeconomy in which businesses must operate. Topics include GDP, inflation, unemployment, interest rates and monetary and fiscal policies. The dynamics of the macroeconomic environment over time. 4 lectures. Prerequisite: GSB 523 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 534 Production and Operations Management (4)

Introduction to the operations function and its interaction with other areas in an organization. Emphasis on strategic and tactical decisions to achieve competitive advantage in cost, delivery speed and reliability, quality, flexibility, and product innovation through manufacturing and services. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 535 Advanced Accounting Process Analysis and Risk Assessment (4)

Contemporary topics associated with documenting and assisting risk, controls, and business processes. Topics include business objectives and organizational performance, risk identification and assessment, application of assessment techniques, and the role of accounting information systems in controlling transaction authorization. 3 seminars, 1 activity. Prerequisite: GSB 511 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 536 Advanced Financial Reporting Issues (4)

Comprehensive coverage of selected advanced financial accounting and reporting topics. Topics include restructuring charges, accounting for income taxes, pensions, leases, accounting charges, and consolidated statement topics. 4 seminars. Prerequisite: GSB 511 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 537 Corporate Governance in Ethical Organizations (4)

Coverage of mechanisms, at the firm level, that contribute to more effective corporate governance and ethical climate at publicly traded corporations. Topics include role of boards of directors, audit committees, structures and systems that affect ethical climate in organizations. 4 lectures. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 538 Emerging Issues in Business (4)

Focus on one or more developing, cutting-edge issues facing contemporary managers within a specific business discipline. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 seminars. Prerequisite: OCOB graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 539 Graduate Internship in Business (2-8) (CR/NC)

Correlation of experience and academic knowledge. Placement in a supervised business or public organization. A formal written proposal must be accepted by the Associate Dean of OCOB Graduate Programs before work begins. Credit/No Credit grading only. Prerequisite: Graduate standing and formal petition with approval from the Associate Dean of OCOB Graduate Programs.

GSB 541 Federal Income Tax for Business (4)

An introduction to the principles of business taxation. Emphasis of the role taxes play in financial and managerial decision making and how taxes motivate people and institutions to engage in certain transactions and activities. 4 lectures. Prerequisite: GSB 511 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 555 Negotiation for Managers (4)

Negotiation concepts and practice in two-party and multiple-party situations faced by practicing managers. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 556 Entrepreneurship and Small Business Management (4)

Exploration of entrepreneurship with emphasis on the formation and management of new business ventures. Analysis of typical operating problems of these firms and application of appropriate techniques for their solution. 4 seminars. Prerequisite: Graduate standing or approval from the OCOB Graduate Programs Director.

GSB 557 Organizational Theory and Design (4)

Open systems theory and macro dimensions of organizations including environment, mission, goals, structure, technology, and managerial processes. Alternative redesign processes, and business results through cases and exercises. Role of management in designing the organization to achieve balanced outcomes. 4 seminars. Prerequisite: Graduate standing or approval from the OCOB Graduate Programs Director.

GSB 560 Derivative Markets and Instruments (4)

Introduction to derivative markets and their key instruments. Application of financial theory to the problems of valuing derivative securities and the
management of business risks with derivative instruments. Principal securities considered include forwards, futures, options, and swaps. 4 lectures. Prerequisite: GSB 531 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 562 Seminar in General Management and Strategy (4)
Application of interdisciplinary skills to business and corporate strategy formulation and implementation. Analysis of interdependence between external environments and internal systems. Focus on responsibilities, tasks, and skills of general managers. Case studies, group problem solving. Integrating course of MBA core curriculum. Course satisfies comprehensive examination requirement. 4 seminars. Prerequisite: Graduate standing and GSB 511, GSB 513, GSB 523, GSB 524, GSB 531, GSB 533 and either GSB 512 or IME 503 and either GSB 534 or IME 580 or approval from the Associate Dean of OCOB Graduate Programs.

GSB 563 International Business Tour (4)
Business tour exposure to different management systems and their operating environments. Pre-trip and on-the-road meetings, readings, case studies and discussions. Tours of firms, government offices, ministries, etc; inter-views of managers and government officials. Conducted in English. Pass-port required. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 2 seminars, 2 activities. Prerequisite: OCOB graduate standing or approval from the OCOB Associate Dean of Graduate Programs.

GSB 564 Entrepreneurial Finance (4)
The process of financing new and fast-growing firms. Preparation of pro formas financial statements for a new venture. Readings on the venture capital process, from seed capital through the initial public offering (IPO). Valuation of firms seeking venture capital, and those planning their IPO. Valuing convertible securities. Real options valuation. 4 lectures. Prerequisite: GSB 531 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 565 Services Marketing (4)
Service organizations such as financial services firms, professional services firms, and health care organizations. The distinctive approaches required for marketing strategies unique to service organizations and other business entities which define themselves from a services perspective. 4 seminars. Prerequisite: GSB 524 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 566 Product Management (4)
Issues which confront brand/product managers: includes content needed to design new product/brand marketing development programs. Appropriate for students pursuing product career paths in consumer/business/service sectors. 4 seminars. Prerequisite: GSB 524 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 567 Advanced Seminar in International Business Management (4)
Integration of management concepts within complex multinational organizations. Interdisciplinary approach to identifying and assessing multinational and global competitive environments and strategies; structuring and managing interdependent multinational operations; addressing conflicts between domestic and international policies and practices in multinational enterprises. Case studies, simulations, group analysis and problem solving. Course satisfies the culminating experience through the comprehensive examination option. 4 seminars. Prerequisite: Graduate standing and GSB 511, GSB 513, GSB 523, GSB 524, GSB 531, GSB 533 and either GSB 512 or IME 503 and either GSB 534 or IME 580 or approval from the Associate Dean of OCOB Graduate Programs.

GSB 569 Managing Technology in the International Legal Environment (4)
Practical legal decisions required to conduct business for or with high technology companies. Methods to protect high technology developments in international markets, including copyrights, patents, trade secrets, trademarks and contracts. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 570 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Total credit limited to 8 units. The Schedule of Classes will list topic selected. 1-4 seminars. Prerequisite: OCOB graduate standing or approval from the OCOB Associate Dean of Graduate Programs.

GSB 573 Market Research and Planning (4)
The steps in the marketing research process which include formulation of the research problem, situation analysis, qualitative data collection, questionnaire design, data collection and data analysis. 4 seminars. Prerequisite: GSB 524 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 574 Seminar in Labor-Management Relations (4)
The impact of unionized labor on management practice. Three challenges to management; namely, the organizing challenge, the negotiation challenge, and the grievance/arbitration challenge. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 576 Seminar in Quality and Performance Management (4)
Principles and techniques of quality and performance management as applied to organizations in the private and public sector. Emphasis on competitive implications, integration of fundamental management techniques, quality management tools, and new management technologies focused on continuous organizational improvement. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 577 Advanced Quantitative Business Analysis (4)
The necessary conceptual framework of operations research techniques for solving key problems encountered while managing an enterprise. Concepts of linear programming, simulations, network models, inventory models, PERT/CPM, and forecasting techniques. 3 seminars, 1 laboratory. Prerequisite: GSB 512 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 578 International Business Management (4)
Managerial concepts and techniques appropriate for analysis and decision making within international businesses. Environmental and organizational factors influencing multinational operations. Assessing international market opportunities and entry modes. Complexities of multinational management strategy, structure and systems. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 579 Manufacturing Strategy (4)
Strategic role of manufacturing in the overall corporate competitive strategy. Matching manufacturing capabilities and marketing needs, capacity planning, matching process technology with product requirements. Developing flexible capabilities, central to developing and implementing an effective manufacturing strategy. 4 seminars. Prerequisite: GSB 534 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 581 Advanced Marketing Seminar (4)
Product, branding, and pricing strategies: an in-depth understanding of new product development processes and strategy; analysis of the strategies and policies pursued by firms to build and sustain successful brands; an integrative framework for pricing decisions. 4 seminars. Prerequisite: GSB 524 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 582 High-Technology Marketing (4)
Marketing as applied to high technology products, and the impact of high technology on the marketing effort. 4 seminars. Prerequisite: GSB 524 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 583 Management of Human Resources (4)
An overview of the major functional and support activities in the personnel/human resource field, including strategic human resource planning, job analysis, recruitment, selection, performance appraisal,
compensation, employee rights, and employee safety and health. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 584 Corporate Financial Policy (4)
An overview of the factors that affect corporate financial decisions, including firms' financing, investment and hedging policies. Factors included: taxes, transaction costs, contracting (between managers and shareholders, and between shareholders and other claimholders such as bondholders), and asymmetric information. 3 seminars, 1 activity. Prerequisite: GSB 531 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 585 Investments and Portfolio Management (4)
The application of financial theory to the problems of investment management. Topics cover the valuation of basic financial instruments, portfolio optimization, risk management, asset allocation, the CAPM, and market efficiency. Required use of optimization software and writing spreadsheet programs. 4 seminars. Prerequisite: GSB 531 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 586 Financial Markets and Instruments (4)
The form and function of major types of financial institutions and markets. Exposure of financial institutions to a wide variety of risks, the successful management of which is important for the growth and survival of these institutions (liquidity risk, interest rate risk, market risk, credit risk, off-balance-sheet risk, and operating risk). In-depth exploration of the measurement and management of these risks. 4 seminars. Prerequisite: GSB 531 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 587 International Financial Management (4)
The international aspects of corporate finance and investing. Balance of payments, foreign exchange with emphasis on exchange rate determination, exchange risk, hedging, and interest arbitrage, international money and capital markets, international financing, and international banking. 4 seminars. Prerequisite: GSB 531 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 589 Accounting Policy (4)
Role of management in establishing and directing accounting policy. Coverage includes the impact of management decisions on external reporting and taxes and the impact of financial reporting requirements on management decisions. 4 seminars. Prerequisite: GSB 531 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 590 Designing and Managing Sociotechnical Systems (4)
Sociotechnical Systems (STS) thinking and methods, which examine the fit between the technical systems used by an organization and its human (social) system. Techniques for analyzing work in both routine and non-routine business systems. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 595 Managing Change (4)
The knowledge and the elementary skills/competencies needed to intervene in an organization in order to improve its effectiveness. Design and use of action to improve organizational effectiveness. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 596 Economic Forecasting (4)
Applications to business planning of selected economic forecasting techniques. Classical time series analysis, Box-Jenkins (ARIMA) models, leading indicators and input-output analysis. 3 seminars, 1 laboratory. Prerequisite: GSB 523, 533 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

GSB 597 Seminar in Selected Economic Problems (4)
Selected economic problems analyzed at an advanced level in a particular field, such as international trade, public finance, urban, industrial organization or transportation. 4 seminars. Prerequisite: GSB 533 and graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

HCS—HORTICULTURE AND CROP SCIENCE

HCS 110 Orientation to Horticulture and Crop Science (2) (CR/NC)
Understanding the depth and breadth of horticultural and field crops, and plant protection. Examination of curricula within the department, including potential career opportunities. Introduction to both student and professional organizations and affiliations. Agricultural equipment and chemical safety. Required of all Horticulture and Crop Science students. Credit/No Credit grading only. 2 activities.

HCS 120 Principles of Horticulture and Crop Science (4)
Introduction to horticulture and crop science. Basic plant processes, classification, anatomy, physiology, and biotechnology. Effect of environment on plants and how we control it. Introduction to plant growth including propagation, media, irrigation, nutrition, management, harvest, and post harvest handling. People's use of plants. Field trip required. 3 lectures, 1 laboratory.

HCS 124 Plant Propagation (4)
Plant propagation practices with emphasis on understanding why practices are used, how they work, and how they are applied in commercial horticulture. Field trip required. 3 lectures, 1 laboratory. Prerequisite: HCS 110, HCS 120, and BOT 121.

HCS 200 Special Problems for Undergraduates (1-4)
Individual investigation, research, studies, or surveys of selected problems. Total graduation credit limited to 4 units, with a maximum of 4 units per quarter. Report required. Prerequisite: Consent of department head.

HCS 231 Commercial Seed Production (4)
Production of field and vegetable seed. Seed technology, germination, quality control, seed enhancement, storage and handling of seed, and seed laws. Field trip to a seed conditioning/seed enhancement facility required. 3 lectures, 1 laboratory. Prerequisite: HCS 120, CRSC 230 or VGSC 230, or consent of instructor.

HCS 304 Plant Breeding (4)
Principles and techniques used to develop new plant varieties. Sexual reproduction, inheritance, selection and biotechnology methods useful in breeding of plants. Field trip required. 3 lectures, 1 laboratory. Prerequisite: BIO 303, CRSC 132, HCS 120.

HCS 327 Abiotic Plant Problems (3)
Diagnosis of physiological disorders associated with environmental and nutritional factors. Particular emphasis on the systematic inquiry process. Case histories, multimedia use. 2 lectures, 1 laboratory. Prerequisite: HCS 120, EHS 123, HCS 124, EHS 231, EHS 232, BOT 121, CHEM 111, SS 121.

HCS 329 Plants, Food and Biotechnology (4) (Also listed as BOT 329)
GE Area F
Agriculture as applied biology and its impact on civilization. Application of technology to increase the efficiency of food production. Genetics and biotechnology; culminating in an assessment of genetically engineered foods, the myths, the controversy, the science. 3 lectures, 1 laboratory. Prerequisite: Junior standing, completion of GE Area B, and one of the following: BIO 111, BIO 161, BOT 121, HCS 120.

HCS 339 Internship in Horticulture and Crop Science (1-12) (CR/NC)
Selected Horticulture and Crop Science students will spend up to 12 weeks with an approved agricultural/horticultural firm engaged in production or related business. Time will be spent applying and developing production and managerial skills and abilities. One unit of credit may be allowed for each full week of completed and reported internship. Degree credit limited to 6 units. Credit/No Credit grading only. Prerequisite: Consent of internship instructor prior to initiation of internship.

HCS 400 Special Problems for Advanced Undergraduates (1-4)
Individual investigation, research, studies, or surveys of selected problems. Total degree credit limited to 4 units, with a maximum of 4 units per quarter. Report required. Prerequisite: Junior status or consent of department head.
HCS 410 Crop Physiology (4)
Ecological and physiological interactions associated with the production of crop plants. Physiological and biochemical processes that elucidate the mechanism of whole plant performance and responses to the environment. 3 lectures, 1 laboratory. Prerequisite: HCS 120; BOT 121, or BIO 162; and CHEM 312 or consent of instructor.

HCS 421 Postharvest Technology of Horticultural Crops (4)
Respiration, ethylene, ripening and senescence; modified atmosphere packaging, controlled atmosphere storage, packinghouses and transportation; survey of postharvest techniques to maximize commodity shelf-life. Field trip required. 3 lectures, 1 laboratory. Prerequisite: One production class in fruits, vegetables or ornamentals, or consent of instructor.

HCS 450 Plant Biotechnology Laboratory (2) (Also listed as BOT 450)
Application of genetic engineering technology to plants; methods of plant tissue culture and transformation. 2 laboratories. Prerequisite: BIO 303 or BIO 351 or CHEM 373.

HCS 461 Senior Project I (2)
Selection of a project under faculty advisor approval. Initial research and data gathering period for project information. Projects typical of problems which graduates must solve in their fields of study or employment. Project results are presented in a formal written report completed in HCS 462. Contract drawn up with approval of advisor. Minimum 60 hours. Prerequisite: All 100-200 level courses in curriculum; 135 units; ENGL 134, completion of GE Area A.

HCS 462 Senior Project II (2)
Continuation of Senior Project development. Write-up of rough draft and formal draft of project. Completion of formal written report under advisor supervision. Minimum 60 hours. Prerequisite: Completion of HCS 461 with a grade of C or better.

HCS 463 Senior Seminar (1)
Oral presentations by students on their senior projects, critical thinking assignment. Preparation for entry into the business world. Guest speakers. 1 activity. Prerequisite: HCS 461.

HCS 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories. Prerequisite: Consent of instructor.

HCS 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories. Prerequisite: Consent of instructor.

HCS 500 Individual Study in Horticulture and Crop Science (1–6)
Advanced independent study planned and completed under the direction of a member of the Horticulture and Crop Science faculty. Total credit limited to 6 units; may be repeated in same term. Prerequisite: Consent of department head, graduate advisor and supervising faculty member.

HCS 511 Ecological Biometrics (4) (Also listed as PPSC 511)
General survey of current analytical methodology available to ecological researchers to evaluate effects and assess the underlying mechanisms that drive natural and cultivated ecosystems. Methodology includes general linear models, ordination, survival analysis, multivariate analyses, and computer simulations. Student research used as a basis for instruction. Total credit limited to 8 units. 3 seminars, 1 activity. Prerequisite: Any one of the following statistical methods courses: CRSC 411, STAT 212, STAT 218, STAT 313, STAT 512, STAT 513 or consent of instructor.

HCS 539 Graduate Internship in Horticulture and Crop Science (1–9)
Application of theory to the solution of problems of agricultural production or related business in the fields of horticulture and crop science. Analyze specific management problems and perform general management assignments detailed in a contract between the student, the firm or organization, and the faculty advisor before the internship commences. Degree credit limited to 6 units. Prerequisite: Consent of internship instructor.

HCS 570 Selected Topics in Horticulture and Crop Science (1–4)
Directed group study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 12 units; may be repeated in same term. 1-4 seminars. Prerequisite: Graduate standing or consent of instructor.

HCS 571 Selected Topics Laboratory in Horticulture and Crop Science (1–4)
Directed group laboratory of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 12 units; may be repeated in same term. 1-4 laboratories. Prerequisite: Graduate standing or consent of instructor.

HCS 575 Postharvest Instrumentation and Experimentation (3)
Hands-on instruction in the instrumentation available to conduct postharvest research, including discussions of the scientific methods and typical postharvest studies. Implementation and dissemination of a personalized postharvest experiment required, both as a slide presentation and a poster. Independent research. 3 laboratories Prerequisite: STAT 218 and senior or graduate standing.

HIST—HISTORY

HIST 110 Western Civilization: Ancient to Renaissance (4)
Beginnings of western civilization from the river valley societies of the Middle East, circa 3,000 BCE to the Renaissance in Western Europe to 1550 CE. Political, economic, social, intellectual, and artistic development of that period. 4 lectures.

HIST 111 Western Civilization: Reformation to Twentieth Century (5)
Development of western civilization from 1550 CE to 1900 CE. Comparison of liberal modernization of the West with the retarded, conservative modernization in Central, East and Southeast Europe. Political, economic, social, intellectual, and artistic developments of that period. Particular attention to understanding dynamics that produce pluralistic mass societies in the West and authoritarian mass societies elsewhere. 5 lectures.

HIST 200 Special Problems for Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 4 units per quarter. Prerequisite: Consent of department chair.

HIST 206 American Cultures (4) GE D1 USCP
The social, cultural, constitutional, and political history of African American, Asian American, Native American, European American, and Latin/a men and women. 4 lectures.

HIST 207 Freedom and Equality in American History (4) GE D1 USCP
The multiple and conflicting ways in which various Americans (defined in terms of race, class and gender) have struggled to formulate and promote their own understandings of freedom and equality, from the pre-conquest era to the present. 4 lectures.

HIST 208 Survey of California History (4)
Survey of California history from the pre-Columbian period to the present. Native American culture, Spanish imperialism, the Mexican War, gold rush, immigration, dominance of the Southern Pacific Railroad, modernism, growth of Los Angeles, and California’s impact on national and world economy and politics. 4 lectures.

HIST 210 World History I (4) GE D3
Global history from the beginnings of organized agriculture to the Industrial Revolution. Focus on causation, using geography and cultural creation to highlight economic, political, social, and intellectual developments of the major civilizations of earth. 4 lectures. Open to History or Liberal Studies majors only.
HIST 213 Modern Political Economy (4) GE D2
The relationship between states and economies in the modern period.
Themes of modernization, industrialization, and colonial expansion. The
major theories of political economy, especially liberalism and socialism. 4
lectures.

HIST 214 Political Economy of Latin America and
the Middle East (4) GE D2
Comparative examination of socio-economic structures of the Middle East
and Latin America in the framework of global economy. Analysis of the
historical context of integration of these two regions in the international
economic system and the local reactions to the effects of global forces on
national structures. 4 lectures.

HIST 215 World History II (4) GE D3
(Some sections also listed as HNRS 215)
Comparative history of Western and non-Western societies in global
perspective. The history of cross-cultural exchange, interaction, and
conflict in the making of the modern world, concentrating on the
economic, political, and cultural transformations that facilitated and
emerged from imperialism. 4 lectures.

HIST 300 Junior Seminar (4)
Historical analysis of selected problems and topics for undergraduates.
Seminar format, intense discussion of readings and issues. The Schedule of
Classes will list topic selected. Total credit limited to 8 units. 4 seminars.
Prerequisite: Completion of GE Area A. Completion of two courses in lower-
division Area D (preferably D2 and D3). Junior standing or consent of
instructor.

HIST 303 Research and Writing Seminar in History (5)
Designed to develop student's ability to research and write an interpretive
paper on a specific topic. Seminar participants practice the skills of library
research, historical and historiographical analysis, and writing and revising.
Paper in lieu of final examination. The Schedule of Classes will list topic
selected. 4 lectures and research project. Prerequisite: Completion of GE
Areas A1 and A3, and junior standing or consent of instructor.

HIST 304 Historiography (4)
Theoretical approaches used to study the past, including scholarship on
history and memory, the influence of interdisciplinary studies, the
significance of race and gender as categories of analysis, and the place of
history and the historian in contemporary society. 3 seminar meetings and
research project. Prerequisite: HIST 303; junior standing or consent of
instructor; and History major.

HIST 306 The Witch-Hunt in Europe, 1400-1800 (4) GE D5
A history of the development of witchcraft ideas, persecutions, and
skepticism in the western world from 1400 to 1800, focusing on the legal,
economic, social, and intellectual currents that produced, fired, and
eventually ended the phenomenon. 4 lectures. Prerequisite: Completion of
GE Area A and two courses from Areas D1, D2, D3, D4. History majors
will not receive GE Area D5 credit.

HIST 307 European Thought, 1800-2000 (4) GE D5
Intellectual and cultural history of Europe from the nineteenth century to the
present. Liberalism, radical thought, feminism, evolutionary theory, psycho-
analysis, structuralism, existentialism, and postmodernism. 4 lectures.
Prerequisite: Completion of GE Area A and two courses from Areas D1,
D2, D3, D4. History majors will not receive GE Area D5 credit.

HIST 308 The Trans-Atlantic Slave Trade (4) GE D5
The African, Islam and Euro-American dimensions of the trans-Atlantic
slave trade, with focus on its varying roots, organization and impact on
cross-cultural and global levels. 4 lectures. Prerequisite: Completion of GE
Area A and two courses from Areas D1, D2, D3. History majors will not
receive GE Area D5 credit.

HIST 309 Cultures of West Africa and the African
Diaspora (4) GE D5
The cultures of West African and the African Diaspora, with special
attention to the intersection of Animist, Islamic and Western cultures, and
the survival of African cultures in the Americas as manifested in the
artistic, religious, literary, and other humanistic legacies of the African
Diaspora. 4 lectures. Prerequisite: Completion of GE Areas A, D1 and D3.
History majors will not receive GE Area D5 credit.

HIST 310 East Asian Culture and Civilization (4) GE D5
The pre-modern and modern histories of China and Japan. Focus on the
traditional era, the transition to modernity, cultural uniqueness within East
Asian civilization, and western images of Asia. 4 lectures. Prerequisite:
Completion of GE Area A and two courses from Areas D1, D2, D3, D4.
History majors will not receive GE Area D5 credit.

HIST 314 The Middle East (4)
Political, social, and economic development of the Middle Eastern
countries in the context of regional history and international politics since
the birth of Islam. Particular attention to the resurgence of religious
movements and their connection with nationalism and anti-colonialism in
the region. 3 lectures and research project. Prerequisite: Junior standing.

HIST 316 Modern East Asia (4) GE D5
Modern histories of China, Japan and Korea: great disruptions of modernity
that have transformed these societies, common characteristics of modernity
in East Asia, great differences between Chinese, Japanese and Korean
histories, and the mutually constitutive nature of these East Asian histories.
4 lectures. Prerequisite: Completion of GE Area A. Completion of two
courses in lower-division Area D (preferably D2 and D3), or consent of
instructor. History majors will not receive GE Area D5 credit.

HIST 319 Modern South and Southeast Asia (4) GE D5
Modern histories of South and Southeast Asia: traditional empires and
cultures, spread of modern capitalism, Western and Japanese colonialism;
decolonization and independence, ethnic and religious tensions, roles in
contemporary economy and geopolitics. 4 lectures. Prerequisite:
Completion of GE Area A. Completion of two courses in lower-division
Area D (preferably D2 and D3), or consent of instructor. History majors
will not receive GE Area D5 credit.

HIST 320 Colonial and Revolutionary America (4) GE D5
Settlement and evolution of British America, background to the imperial
dispute, events leading to the Revolution, Articles of Confederation,
Constitution, the national economy, roles of and impact on African-
Americans, women, Native Americans and Loyalists. 4 lectures.
Prerequisite: Completion of GE Area A, D1 and one course from D2, D3,
or D4. History majors will not receive GE Area D5 credit.

HIST 321 Civil War America (4) GE D5
The experiences of nineteenth-century Americans. Focus on
industrialization, antebellum reform, slavery, the Civil War battlefield and
homefront, Reconstruction, and the creation of a new South. 4 lectures.
Prerequisite: Completion of GE Area A, D1 and one course from D2, D3,
or D4. History majors will not receive GE Area D5 credit.

HIST 322 Modern America (4) GE D5
American history since 1900. Focus on domestic and foreign policy
interactions, struggle of disenfranchised groups for social and political
equality, and changes in culture and identity. 4 lectures. Prerequisite:
Completion of GE Area D1 and completion of Area D2, Area D3, or Area
D4. History majors will not receive GE Area D5 credit.

HIST 323 Versions of the Past: Novels, Comics and
Movies (4) GE D5
An introduction to historical novels, comics, movies and memoirs as forms of
historical representation in the contemporary U.S. Exploration of the vision of American history that each work presents
and the truth-claims made for that particular vision. 4 lectures.
Prerequisite: Completion of GE Area A, D1 and one course from D2, D3,
or D4; junior standing or consent of instructor. History majors will not
receive GE Area D5 credit.

HIST 324 The Historical Novel in the United States, 1960s to the
Present (4) GE D5
An introduction to the historical novel as it has developed in the United
States since the 1960s. Exploration of how historical novels typically
represent the past and the ways in which they change our notion of what
counts as "history." 4 lectures. Prerequisite: GE D1 and any other lower-
division Area D course. History majors will not receive GE Area D5 credit.

2007-2009 Cal Poly Catalog
HIST 336 Britain at War: The British, the Americans and the Struggle for Freedom, 1939-1945 (4) GE D5
Historical examination of Great Britain's challenge to its sovereignty and freedom by the regime of Nazi Germany from 1939-1945. An account of how Britain formed an alliance with the United States, and how that partnership forged a successful campaign that culminated in the survival of Britain and destruction of the Nazi regime. 3 lectures, 1 activity. Prerequisite: Limited to London Study students; completion of GE Area A; completion of two courses in lower-division Area D courses; junior standing or permission of the instructor. History majors will not receive GE Area D5 credit.

HIST 339 History of Colonial Latin America (4)
Survey of Latin American history in the colonial period from 1492 to the early nineteenth century. Special attention to the indigenous cultures, the Iberian civilization, and the evolving relationship between them. 3 lectures and research project. Prerequisite: Junior standing.

HIST 340 History of Modern Latin America (4)
Social and political history of South America, Mexico, and Cuba during the nineteenth and twentieth centuries. Historical development of economic structure and socio-political and cultural institutions in the region. 3 lectures and research project. Prerequisite: Junior standing.

HIST 341 History of Modern Central America (4)
Political, social, and economic development of Central American countries in the context of regional history and international politics during the nineteenth and twentieth Centuries. 3 lectures and research project. Prerequisite: Junior standing or consent of instructor.

HIST 354 History of Network Technology (4) GE Area F
History of computer network technology from the Cold War to the present. Origins of the Internet, development of TCP/IP, growth of network democracy, encryption, race and gender in cyberspace, Usenet and hypertext. 4 lectures. Prerequisite: Completion of GE Area B and junior standing.

HIST 358 Cloning (4) GE Area F
An integrative and multidisciplinary approach to the study of cloning, to better understand its history, scientific techniques, and their applications. The ethical, social, legal and other issues raised by cloning will also be discussed. 4 lectures. Prerequisite: Completion of GE Area B and junior standing.

HIST 359 Living in a Material World (4) (Also listed as MATE 359) GE Area F
Evolution of materials (ceramics, metals, polymers, composites, semiconductors) in the context of history. Traces the link between historical and technological developments enabled by materials from the Stone Age to the Electronic Age. 4 lectures. Prerequisite: Completion of GE Area B and junior standing.

HIST 400 Special Problems for Advanced Undergraduates (1-4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 4 units per quarter. Prerequisite: Consent of department chair.

HIST 401 Early America (4)
Age of exploration. European powers in eastern North America. English settlements, development of the English colonies, with emphasis on Virginia and Massachusetts. Proprietary interests, growth of internal control, and colonial conflicts. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 402 American Revolution and the New Nation (4)
Background to the imperial dispute, events leading to the Revolution, Articles of Confederation, Constitution, impact on the national economy, women, African-Americans, Loyalists, Native Americans. The Schedule of Classes will list topic selected. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 404 The Era of Civil War and Reconstruction (4)
Exploration of the different patterns of life in the United States, in order to comprehend the emergence of sectionalism, the violent struggle of the Civil War, and the readjustments of the Reconstruction years. Emphasis on the experiences of ordinary Americans. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 405 African-American History to 1865 (4) (formerly HIST 332)
History of African Americans from the colonial period to the Civil War, roughly 1619-1865. The slave trade, slavery in the colonies, plantation slavery, the Black West, and free Black culture and institutions. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 406 African-American History from 1865 (4) USCP (formerly HIST 333)
History of African-Americans from the Civil War to the present. Reconstruction, racial segregation, the Harlem Renaissance, the Great Migration, the Civil Rights Movement, Black Feminism and Black Power. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 408 The Age of Roosevelt: Depression and World War, 1929-50 (4)
Principle forces affecting the nation's political, social and economic life during the Age of Franklin Roosevelt. Included are the politics of the New Deal, government regulation of the economy and response to the Depression, the rise of the modern presidency, racial and ethnic conflict, the politics of class and gender, the home front at war and post-war tension. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 409 Vietnam War at Home and Abroad (4)
Interaction of revolutionary Vietnamese nationalism with U.S. foreign policy. Analysis of the conduct of the war. Assessment of the impact of the war on U.S. society. 3 lectures and research project. Prerequisite: HIST 303; junior standing.

HIST 410 Recent America Since 1950: Shattering of the American Consensus (4)
Political, social and economic forces that have shaped American life since 1950. Subjects included are the Red Scare, suburbanization, the civil rights movement, the Great Society, the politics and culture of protest, reasserting the welfare state, and de-industrialization. Emphasis on racial, ethnic and gender issues in the collapse of the American Consensus. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 411 History of United States Foreign Relations (4) (formerly HIST 387)
History of American foreign policy from 1900 to the present. Emergence of the United States as a world power early in the century, the retreat following the Great War, Franklin Roosevelt's diplomacy leading to and through the Second World War, atomic diplomacy and the Cold War, four decades of Containment and the search for a new post-Cold War strategy. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 412 American Presidency (4) (formerly HIST 390)
Examination of the American presidency with emphasis on its role in American society since the beginning of the twentieth century. From the era of congressional government through the Imperial Presidency of the post-World War II period, and beyond, using presidential biography as a historical source. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 414 The Fall of Imperial China (4)
History of China's last dynasty, the Qing (1644-1912). Origins of Manchus, their consolidation of power, the empire's growth and cultural development, the Opium War and its consequences, the Sino-Japanese War and the rise of nationalism, the Sino-French War and the Boxer Rebellion, the fall of the Henan, the Republican Revolution, and the rise of the Kuomintang. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 416 Modern Japan (4)
Japan's development as a modern state (1800-2000 CE). Themes include Japan's engagement with modernity and nationalism, the emperor system, Japanese imperialist expansion, and postwar reconstruction of Japanese
society. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 417 Modern China (4)
Chinese history in the twentieth century: the fall of the Qing Dynasty and founding of Republic of China in 1912, problems of imperialism and modernity, Chinese Communist Party and People's Republic of China since 1949. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 418 Chinese Film and History (4)
Examination of 20th century Chinese history through the use of Chinese feature films. Films (with English subtitles) serve as main texts for understanding the tremendous changes in modern Chinese history, and the evolving relationships between film and Chinese society. 4 lectures. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 419 Modern Southeast Asia (4)
Modern history of mainland and maritime Southeast Asia, focusing on the development of political institutions and changing political and cultural identities. Early empires, expansion of capitalism, colonial rule and wars through era of independence. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 420 History of Modern South Asia (4)
History of modern South Asia from the beginnings of British colonization to independence. Themes include relations between religious groups, the economic impact of British colonialism, political development, the role of indigenous nationalist movements, and the shape of independence. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 424 Organizing and Teaching History (4)
Organization, selection, presentation, application, and interpretation of subject matter in history in secondary schools. 4 seminars. Prerequisite: Admission to teacher education program or valid teaching credential.

HIST 425 Social Sciences Teaching Practicum (1) (CR/NC)
Practicum for part-time and full-time student teachers in the Social Science Credential Program. Teaching techniques and strategies useful for addressing a wide range of issues that arise in grades 6-12 social science classrooms. Credit/No Credit grading only. 1 seminar. Prerequisite: HIST 424; concurrent: EDUC 469 or EDUC 479.

HIST 426 Imperial Russia (4)
Political, social, intellectual and economic roots of Russian Absolutism. Emergence of Russia as an imperial power, reform, reaction and revolution 1889-1914. 3 lectures and research project. Prerequisite: HIST 303; junior standing.

HIST 427 Soviet Russia (4)
Transformation of Russian autocracy from tsarist to Bolshevik under the impact of World War I and the Revolution of 1917. The formative force of Marxism-Leninism; Civil War; the "experimental" 20s; forced collectivization and industrialization; the Purges; "engineering" a new Soviet Woman and Man for a new communist world; War; Second and Cold. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 429 Precolonial African History (4) (formerly HIST 381)
Survey of African history from earliest times. Ancient African civilizations, Moslem penetration, the rise of indigenous kingdoms and the continuous impact of Atlantic slave trade. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 430 Modern African History (4) (formerly HIST 382)
Survey of African in the 19th and 20th centuries including European colonialism, African resistance, the rise of African nationalism and problems since independence. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 431 South Africa to 1900 (4)
History of South Africa prior to white rule including the African societies populating the area, their history prior to European contact, the nature of early white settlement, and the impact of mineral discoveries in the 19th century. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 432 Twentieth Century South Africa (4)
History of South Africa in the 20th century focusing on the rise and fall of the apartheid state and including Afrikaner nationalism, apartheid legislation, industrial development, and the growth of effective African resistance leading to full democracy. 3 lectures and research project. Prerequisite: One of the following: HIST 303, junior standing or consent of instructor.

HIST 434 American Women's History to 1870 (4)
(Also listed as WS 434)
Female ideology and experience from the colonial period through the American Civil War. Use of a variety of sources, including women's own writing, in order to understand the history of women as it both reflects and shapes American culture and society. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 435 American Women's History from 1870 (4)
(Also listed as WS 435)
The female past in the modern period of U.S. history. Considers how transformations in gender roles are reflective of other significant changes in American culture and society. Emphasis on class, race, and ethnic variations in women's experience. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 436 History of American Thought (4) (formerly HIST 383)
Thought and culture in America since the Puritans. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 437 Nazi Germany (4)
Background of German Romantic Nationalism; national unification and defeat in World War I; the failure of Weimar Democracy and political radicalization; the Nazi political, economic, and social revolution 1933-1939. 3 lectures and 1 activity. Prerequisite: HIST 303; junior standing.

HIST 438 History of American Agriculture (4) (formerly HIST 385)
Agricultural development with emphasis upon economic, political and social implications. 3 lectures and research project. Prerequisite: HIST 303, junior standing, or consent of instructor.

HIST 439 Topics in California History (4) (formerly HIST 385)
In-depth analysis of selected political, economic, and social issues involved in the development of California from the earliest times to the present. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 440 Topics and Issues in the History of the United States (4)
Selected topics and issues in United States history. Descriptive subtitles assigned to each course. The Schedule of Classes will list topic selected. May be repeated to 8 units. 3 lectures and a research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 441 Topics and Issues in European History (4)
Selected topics and issues in European history. Descriptive subtitles assigned to each course. The Schedule of Classes will list topic selected. May be repeated to 8 units. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 442 Topics and Issues in Latin American History (4)
Selected topics and issues in Latin American history. Descriptive subtitles will be assigned to each course. The Schedule of Classes will list topic selected. May be repeated to 8 units. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 443 Topics and Issues in Asian History (4)
Selected topics and issues in Asian history. Descriptive subtitles will be assigned to each course. The Schedule of Classes will list topic selected. May be repeated to 8 units. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.
HIST 444 Topics and Issues in African History (4)
Selected topics and issues in African history. Descriptive subtitles will be assigned to each course. The Schedule of Classes will list topic selected. May be repeated to 8 units. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 445 Topics and Issues in Comparative History (4)
Selected topics and issues in comparative history. Descriptive subtitles will be assigned to each course. The Schedule of Classes will list topic selected. May be repeated to 8 units. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

HIST 446 Early Britain (4) (formerly HIST 311)
History of the British Isles from the reconstruction of Celtic history to the end of the Medieval epoch. 3 lectures and research project. Prerequisite: HIST 303, junior standing, or consent of instructor.

HIST 447 Early Modern Britain (4) (formerly HIST 312)
History of the British Isles from the end of the Medieval epoch to the era of the American revolution, from Richard III to George III. 3 lectures and research project. Prerequisite: HIST 303, junior standing, or consent of instructor.

HIST 448 Modern Britain: Industry, Empire and War (4) (formerly HIST 313)
History of the British Isles from the loss of the American colonies through the era of the World Wars and the dissolution of the British Empire. 3 lectures and research project. Prerequisite: HIST 303, junior standing, or consent of instructor.

HIST 451 Medieval Europe (4) (formerly HIST 346)
Medieval Europe from the fall of Rome to the plague (400-1350 CE), with topics including the Barbarian Kingdoms, the early Church, Charlemagne, medieval art and Gothic architecture, Church fathers and Scholasticism, medieval philosophy, agricultural and commercial revolutions, and the Great Plague. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 452 Renaissance and Reformation Europe (4) (formerly HIST 347)
Europe from 1348 to 1620 CE, with topics including the urban milieu, Renaissance philosophy and artistic expression, the new prince, the educational revolution, the Renaissance Church, Martin Luther, Jean Calvin, and the monumental economic, social, and political changes of the sixteenth century. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 453 Religious Wars and Absolutism (4) (formerly HIST 348)
Europe from 1559 to 1715 CE, focusing on the Catholic-Protestant conflict, the rise of the Absolutist state (especially Louis XIV), the "Crisis of the Seventeenth Century," the Thirty Years War, the English Civil War and Cromwell, and the Newtonian Paradigm. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 454 The Age of Revolution and Napoleon (4) (formerly HIST 349)
Europe from the death of Louis XIV (1715) to the settlements of the Congress of Vienna (1815). International politics, continental and global warfare, the Enlightenment, "Enlightened Absolutism," the French and Industrial Revolutions, and Napoleon. Political, intellectual, economic, and social developments in the eighteenth century. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 455 Europe in the Age of Reaction and Revolution, 1815-1871 (4) (formerly HIST 351)
Reaction to the French Revolution. Industrialization. Liberal socialist and nationalist revolts against the conservative order of 1815. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 456 Europe in the Age of Imperialism and War, 1871-1919 (4) (formerly HIST 352)
Maturation of industrialization, socialism and nationalism. Imperialist competition of nation states for world hegemony. Explosion of the First World War. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 457 Europe in the Age of Fascism (4) (formerly HIST 353)
Democracy in crisis and the fascist alternatives. Second World War and the recovery of Europe in a bipolar world to the fall of the Berlin Wall, German reunification and the disintegration of Yugoslavia. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 458 Gender and Sexuality in Modern Europe (4)
Social, economic, political, and cultural effects of changing gender systems in modern Europe, particularly but not exclusively with regard to sex and sexuality. 3 lectures and research project. Prerequisite: HIST 303, junior standing or consent of instructor.

HIST 460 Senior Project I (2)
Completion of paper or creative project begun in HIST 460 under faculty supervision. Must be historical in nature, investigate a question of significance, include an historiographical analysis, and make an argument based on primary and secondary sources. Schedule of Classes will list topic area selected. Take HIST 461 during a subsequent quarter. Prerequisite: HIST 303; HIST 304; senior standing or consent of instructor; and History major.

HIST 461 Senior Project II (2)
Completion of paper or creative project begun in HIST 460 under faculty supervision. Schedule of Classes will list topic area selected. Prerequisite: HIST 303, HIST 304; HIST 460; senior standing or consent of instructor; and History major.

HIST 467 History Internship (6-12) (CR/NC) (formerly HIST 459)
Supervised work experience using skills of the discipline of history in a public agency ranging from 18 to 36 hours per week. Interns work directly under the supervision of an employee of the agency and are subject to the professional responsibilities typical of the state. Credit/No Credit grading only. Prerequisite: Junior standing. Completion of HIST 303 with grade of B or better and consent of internship coordinator.

HIST 468 Internship in State and National Park History (3) (3)
Work experience program in interpreting state and national park history. Weekly three-hour seminar and regularly scheduled work experience training at Hearst–San Simeon State Historical Monument. 90 hours of work experience per 3 units of credit. Recommended preparation: Western Civilization Survey, U.S. and California History, History of Art.

HIST 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Junior standing or consent of instructor.

HIST 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

HIST 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.
HIST 504 Graduate Study in History (4)
Weekly reading and discussion course on practical methods and theoretical
approaches to the study and writing of history. 4 seminars. Prerequisite:
Graduate standing in History and consent of instructor.

HIST 505 Graduate Seminar in United States History (4)
Intensive study of selected topics in United States history. The Schedule
of Classes will list topic selected. Total credit limited to 12 units. 4 seminars.
Prerequisite: Graduate standing in History and consent of instructor.

HIST 506 Graduate Seminar in European History (4)
Intensive study of selected topics in modern European history. The Schedule
of Classes will list topic selected. Total credit limited to 12 units. 4 seminars.
Prerequisite: Graduate standing in History and consent of instructor.

HIST 507 Graduate Seminar in East Asian History (4)
Intensive study of selected topics in East Asian history. The Schedule
of Classes will list topic selected. Total credit limited to 12 units. 4 seminars.
Prerequisite: Graduate standing in History and consent of instructor.

HIST 508 Graduate Seminar in Latin American History (4)
Intensive study of selected topics in Latin American history. The Schedule
of Classes will list topic selected. Total credit limited to 12 units. 4 seminars.
Prerequisite: Graduate standing in History and consent of instructor.

HIST 509 Graduate Seminar in African History (4)
Intensive study of selected topics in African history. The Schedule
of Classes will list topic selected. Total credit limited to 12 units. 4 seminars.
Prerequisite: Graduate standing in History and consent of instructor.

HIST 512 Supervised Reading for Comprehensive Exams (2)
Directed supervision of reading for MA comprehensive exams. Regular
consultation between advisor and student. Total credit limited to 4 units. 2
semesters. Prerequisite: HIST 504 and 12 units of graduate study.

HIST 599 Thesis (3)
Directed supervision of MA thesis. Regular consultation between advisor
and student. Course to be taken three times over three separate quarters;
total credit limited to 9 units.

HNRC--HONORS CONTRACT

HNRC 199 Honors Contract (CR/NC)
Students in the Honors Program are required to take at least eight courses
for honors credit before graduation. Taking an Honors course may not be
possible due to scheduling conflicts or unavailability of courses. In these
cases and with the permission of the Director of the Honors Program, the
student may enter into a "Contract" to engage in honors-level work in a
class on an individual basis. Credit/No Credit grading only. Prerequisite:
Student must be in good standing in the Honors Program, and have
permission of the Director.

HNRC 200 Honors Leadership Experience (CR/NC)
The Honors Program encourages its students to develop leadership skills
through serving on the Honors Board, chairing Honors Committees,
participating as International Student mentors and/or Preface discussion
leaders. To receive Honors credit for these activities, students must also
participate in a number of formal leadership-training seminars/workshops,
and contribute their insights to the Honors and greater Cal Poly
communities. Credit/No Credit grading only. Total credit limited to two
courses. Prerequisite: Student must be in good standing in the Honors
Program, and have permission of the Director.

HNRC 399 Honors Contract (CR/NC)
Students in the Honors Program are required to take at least eight courses
for honors credit before graduation. Taking an Honors course may not be
possible due to scheduling conflicts or unavailability of courses. In these
cases and with the permission of the Director of the Honors Program, the
student may enter into a "Contract" to engage in honors-level work in a
class on an individual basis. Credit/No Credit grading only. Prerequisite:
Student must be in good standing in the Honors Program, and have
permission of the Director.

HNRC 400 Honors Professional, Social and Global
Experience (CR/NC)
The Honors Program encourages its students to enhance their academic
coursework by broadening their professional, social and global perspectives
through professional internships/co-ops, participation in community
projects and study abroad experience. To receive Honors credit, students
must also reflect on these experiences and contribute their insights through
presentations (oral and/or written) to the Honors and greater Cal Poly
communities. Credit/No Credit grading only. Prerequisite: Student must be
in good standing in the Honors Program, and have permission of the
Director.

HNRS--HONORS

HNRS 100 Orientation to the University Honors Program (2) (CR/NC)
Introduction to the Honors Program and overview of the University. Topics
include the role of higher education, development of leadership skills,
career advising, and guest speakers from the Cal Poly community. For
University Honors Program students only. Credit/No Credit grading only. 1
lecture, 1 activity.

HNRS 101 Public Speaking (4) (Also listed as COMS 101) (CR/NC)
Introductory to the principles of public speaking. Practical experience in
the development, presentation, and critical analysis of speeches to inform,
to persuade, and to actuate. Not open to students with credit in COMS 102.
4 lectures.

HNRS 112 Race, Culture and Politics in the United
States (4) (Also listed as ES 112) (CR/NC)
Fundamental principles of mechanics. Vectors, particle kinematics,
equilibrium of a rigid body. Work and energy, linear momentum, rotational
kinematics and dynamics. Primarily for engineering students, and for
students majoring in the physical sciences. Not open to students with credit
in PHYS 141. 3 lectures, 1 laboratory. Prerequisite: MATH 141 with grade
C- or better and MATH 142 or MATH 182 (or concurrent enrollment).
Recommended: high school physics. For ME and AERO students only.

HNRS 131 General Physics I (4)
(Offered as PHYS 131)
Fundamental principles of mechanics. Vectors, particle kinematics,
equilibrium of a rigid body. Work and energy, linear momentum, rotational
kinematics and dynamics. Primarily for engineering students, and for
students majoring in the physical sciences. Not open to students with credit
in PHYS 141. 3 lectures, 1 laboratory. Prerequisite: MATH 141 with grade
C- or better and MATH 142 or MATH 182 (or concurrent enrollment).
Recommended: high school physics. For ME and AERO students only.

HNRS 132 General Physics II (4)
Also offered as PHYS 132
Oscillations, waves in elastic media, sound waves. Temperature, heat and
the first law of thermodynamics. Kinetic theory of matter, second law of
thermodynamics. Geometrical and physical optics. 3 lectures, 1 laboratory.
Prerequisite: PHYS 131, PHYS 141 or HNRS 131.

HNRS 134 General Physics IA (4) (Also listed as PHYS 141)
Also offered as PHYS 141
Fundamental principles of mechanics. Vectors, particle kinematics,
equilibrium of a rigid body. Work and energy, linear momentum, rotational
kinematics and dynamics. Primarily for engineering students, and for
students majoring in the physical sciences. Not open to students with credit
in HNRS/PHYS 131. 4 lectures.
Prerequisite: MATH 141 with grade C- or better and MATH 142 or MATH
182 (or concurrent enrollment). Recommended: High school physics.

HNRS 141, 142, 143 Calculus I, II, III (4) (4) (4)
Also offered as MATH 141, 142, 143
Limits, continuity, differentiation, integration. Techniques of integration,
applications to physics, transcendental functions. Infinite sequences and
series, vector algebra, curves. 4 lectures. Prerequisite: ELM requirement
and passing score on Mathematics Placement Examination, or MATH
118 and MATH 119 or equivalent; and consent of Honors Program. 142
prerequisite: HNRS/MATH 141 with a grade of C- or better or consent of
instructor.

HNRS 145 Reasoning, Argumentation, and Writing (4)
(Also listed as ENGL/COMS 145)
GE A3
The principles of reasoning in argumentation. Examination of rhetorical
principles and responsible rhetorical behavior. Application of these
principles to written and oral communications. Effective use of research
methods and sources. 4 lectures. Prerequisite: Completion of GE Areas A1 and A2.

HNRS 148 Reasoning, Argumentation and Professional Writing (4) (Also listed as ENGL 148) GE A3
The principles of reasoning in technical writing. Discussion and application of rhetorical principles, both oral and written, in technical environments. Study of methods, resources and common formats used in corporate or research writing. 4 lectures. Prerequisite: Completion of GE Areas A1 and A2.

HNRS 149 Technical Writing for Engineers (4) (Also listed as ENGL 149) GE A3
The principles of technical writing. Discussion and application of rhetorical principles in technical environments. Study of methods, resources and common formats used in corporate or research writing. 4 lectures. Prerequisite: Completion of GE Areas A1 and A2. For Engineering students only.

HNRS 200 Special Problems for Undergraduates (1-2) (CR/NC) GE D2
Individual investigation, research, projects, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Credit/No Credit grading only. Prerequisite: Consent of instructor and Honors Program.

HNRS 201 Survey of Economics (4) (Also listed as ECON 201) GE D2
Basic principles of microeconomics and macroeconomics. Emphasis on applications to current national and global economic issues. For majors requiring one quarter of economics. Not open to students having previous credit in ECON 222 or equivalent. 4 lectures.

HNRS 212 Global Origins of United States Cultures (4) (Also listed as ES 212) GE D3 USCP
How the global origins of Europeans, Asians, and Africans, the hemispheric dispersal of Latin Americans, and the forced internal migration of Native Americans have contributed to American cultural heritage and the struggles for ethnic, class and gender equality, and justice. 4 lectures.

HNRS 215 World History II (4) (Also listed as HIST 215) GE D3
Comparative history of Western and non-Western societies in global perspective. The history of cross-cultural exchange, interaction, and conflict in the making of the modern world, concentrating on the economic, political, and cultural transformations that facilitated and emerged from imperialism. 4 lectures.

HNRS 230 Philosophical Classics: Metaphysics and Epistemology (4) (Also listed as PHIL 230) GE C2
Study of several classic works from the history of philosophy on issues in metaphysics and epistemology. At least one will be from the Ancient period, and at least one from the Modern era. No more than one from the twentieth century. 4 lectures. Prerequisite: Completion of GE Area A.

HNRS 231 Philosophical Classics: Social and Political Philosophy (4) (Also listed as PHIL 231) GE C2
Readings from primary philosophical texts, from the ancient and modern periods, with focus on the identification and evaluation of the central ethical and political themes and arguments presented in them. 4 lectures. Prerequisite: Completion of GE Area A.

HNRS 241 Calculus IV (4) (Also listed as MATH 241) GE C1
Partial derivatives, multiple integrals, introduction to vector analysis. 4 lectures. Prerequisite: MATH 143.

HNRS 244 Linear Analysis I (4) (Also listed as MATH 244) GE C1
Separable and linear ordinary differential equations with selected applications; numerical and analytical solutions. Linear algebra: vectors in n-space, matrices, linear transformations, eigenvalues, eigenvectors, diagonalization; applications to the study of systems of linear differential equations. 4 lectures. Prerequisite: MATH/HNRS 143 or consent of instructor.

HNRS 251 Great Books I: The Ancient and Classical World—From Myth to Reason (4) (Also listed as ENGL 251) GE C1

HNRS 299 Honors Group Seminar (1) (CR/NC)
Students in the Honors Program are required to take at least eight courses for honors credit before graduation. Taking an Honors course may not be possible due to scheduling conflicts or unavailability of courses. This course allows students to engage in honors-level work in a standard, non-honors course on a group basis. Credit/No Credit grading only. Total credit limited to 4 units; repeatable in same term. Must achieve a B or better in the related standard course. 1 seminar.

HNRS 303 Economics of Poverty, Discrimination and Immigration (4) (Also listed as ECON 303) GE D5 USCP
Economic analysis of the cause, extent and impact of poverty, discrimination and immigration and of the policies designed to address these socioeconomic issues. Emphasis on the experience of African-Americans, Latinos, and women in the United States. 4 lectures. Prerequisite: Completion of GE Areas A, D1, and either ECON 221 and ECON 222, or ECON 201. Economics majors will not receive GE Area D5 credit.

HNRS 304 Values and Technology (4) (Also listed as HUM 304) GE C4
Humanistic inquiry into the theoretical and practical applications of technology with specific reference to the social effects of technological change. For all majors. Non-technical. 4 lectures. Prerequisite: Completion of GE Area A and one course from Area C.

HNRS 310 Air and Space (4) (Also listed as AERO 310) GE Area F
Technological innovations that have led to modern aircraft and spacecraft as viewed from an historical perspective. Development of aerodynamics, propulsion systems, light-weight structures, and control systems. How aviation has affected, and been affected by, history. Impact of aviation on society, including civil and military aircraft/spacecraft. Federal regulation of aviation, including air traffic control and airlines. Future developments in air and space technology. 4 lectures. Prerequisite: Completion of GE Area B, junior standing.

HNRS 319 Natural Resource Ecology, Theories and Applications (4) (Also listed as FNR 319) GE B5
Scope and nature of "ecology" in modern society, including resource terminology and classifications systems; dynamics of natural systems (energy exchange and cycles); man’s role as a principle agent of change; environmental impacts; historical perspective including people (ethnicity); and the future environment. 3 lectures, 1 laboratory. Prerequisite: Completion of GE Area B2.

HNRS 320 Values, Media, and Culture (4) (Also listed as HUM 320) GE C4
Contemporary popular culture and its relationship to the great art and literature of the past. Discussion of television, films, advertising, best sellers, popular magazines, children's stories, comics, and the great tradition of literature. 4 lectures. Prerequisite: Completion of GE Area A and one course from Area C.

HNRS 375 Technology and the Environment: A Seminar on Contemporary Issues (4) (Also listed as CRP 375) GE B5
Interdisciplinary exploration of significant environmental issues (local, regional, national, or global) where technology is a major cause and/or offers a possible solution. 4 seminars. Prerequisite: Completion of GE Area A and two courses from Areas D1, D2, D3. Honors Program membership or nomination by CRP department head.

HNRS 380 Literary Themes (4) (Also listed as ENGL 380) GE C4
Literature selected according to a particular theme. Emphasis on critical interpretation, aesthetic appreciation, and historical and cultural contexts. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 4 lectures. Prerequisite: Completion of GE Areas A and C1. English majors will not receive GE C4 credit.

HNRS 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of Honors Program Director.
HNRS 411 New Media Arts I (4) (Also listed as ENGL 411)
Advanced-level presentation of new media theory, design and practice.
Topics covered include, but are not limited to, interactivity theory, user-centered system design, cognitive psychology, media analysis, and basic web design theory. Total credit limited to 8 units. 4 lectures. Prerequisite: Advanced skills in writing and/or graphics, and/or computer programming; upper-division standing, ENGL 148 or ENGL 149 and consent of instructor.

HNRS 412 New Media Arts II (4) (Also listed as ENGL 412)
Advanced level of work with the primary technologies and design/critique theories currently at use in the professional creation of new media works. Lectures and readings expand upon material presented in HNRS/ENGL 411. 4 lectures. Prerequisite: HNRS/ENGL 411 and consent of instructor.

HNRS 475 Sustainable Forest and Environmental Practices (15)
(Also listed as FNR 475)
Typical modules related to sustainable resource management: ecosystem sampling and inventory methods, photo interpretation, hydrologic resources, road condition, project impact analysis, best management practices. Topics covered vary from term to term depending on the priority for learning modules. Residency at Swanton Pacific and extended field trips required. 10 lectures, 5 activities. Prerequisite: Completion of Area B and consent of instructor.

HNRS 490 President's Seminar: Science, Society and the University (4) (Also listed as HUM 490)
Development of higher education in the United States; the role of science and research in the University; and the response of higher education to changing economic, political and social demands. 4 seminars. Prerequisite: Senior standing, GPA of at least 3.0, or consent of instructor.

HNRS 499 Honors Group Seminar (1) (CR/NC)
Students in the Honors Program are required to take at least eight courses for honors credit before graduation. Taking an Honors course may not be possible due to scheduling conflicts or unavailability of courses. This course allows students to engage in honors-level work in a standard, non-honors course on a group basis. Credit/No Credit grading only. Total credit limited to 4 units, repeatable in same term. Must achieve a B or better in the related standard course. 1 seminar.

HUM—HUMANITIES

HUM 302 Human Values in Agriculture (4)
Technical aspects of controversial agricultural issues. Identification of value conflicts, comparison of potential impacts, and use of relevant ethical principles. Weighing risks and benefits to resolve the issue. Extensive participation and interaction making oral presentations, role playing, and arguing in public forums. 3 lectures, 1 activity. Prerequisite: Completion of GE Area B and junior standing.

HUM 303 Values and Technology (4)
(Also listed as HNRS 304)
Humanistic investigation into the theoretical and practical applications of technology with specific reference to the social effects of technological change. For all majors. Non-technical. 4 lectures. Prerequisite: Completion of GE Area A and one course from Area C.

HUM 310 Humanities in World Cultures (4)
Interdisciplinary examination of the humanities in a selected culture. Special focus on the arts, literature, philosophy and language in that culture. The Schedule of Classes will list topic selected. Repeatable to 12 units with different course titles. 4 lectures. Prerequisite: Completion of GE Area A and one course from Area C.

HUM 312 Humanities in Chicano/a Culture (4)
Interdisciplinary examination of humanities in Chicano culture. Special focus on the arts, literature, social situations, and the monolingual and bilingual language aspects in Chicano culture. 4 lectures. Prerequisite: Completion of GE Area A and one course from Area C.

HUM 316 London: From Roman Colony to World Capital (4)
Selective examination of the historical and cultural legacy of London within the development of Western civilization as well as its influence on the submission and eventual emergence of the non-Western world in the twentieth century. An analytical and interpretive study of how London shaped the social, economic, political and legal institutions of Western society. 4 lectures. Prerequisite: Enrollment in London Study; completion of GE Area A; completion of two courses in GE Area D/E; junior standing or consent of instructor. Co-requisite: Enrollment in HUM 319.

HUM 318 Culture of Spain: Activities (2) (CR/NC)
Examination and experience of Spanish culture via participant observation in Spain. An introductory exploration of the development of Spanish architecture, art, literature, music, theatre and popular culture as experienced in Valladolid, Spain. Credit/No Credit grading only. 2 activities. Prerequisite: Limited to Valladolid, Spain Fall program. Co-requisite: HUM 310.

HUM 319 London Activities (2) (CR/NC)
Analytical and interpretive survey of the principal center of the English speaking world. The development of London from Roman administrative capital to modern cultural, financial and political colossus. Credit/No Credit grading only. 2 activities. Prerequisite: Limited to London Study students.

HUM 320 Values, Media, and Culture (4)
GE C4
(Also listed as HNRS 320)
Contemporary popular culture and its relationship to the great art and literature of the past. Discussion of television, films, advertising, best sellers, popular magazines, children's stories, comics, and the great tradition of literature. 4 lectures. Prerequisite: Completion of GE Area A and one course from Area C.

(Also listed as AG/UNIV 330)
GE Area C
Scientific investigation of the natural features of the Cal Poly landscape and their transformations by land management technology. Analysis of the environmental, economic, social, and political effects of agricultural, resource extraction and construction technology on that landscape. Emphasis on the educational, land-use and long term planning issues of technology presented by this case study. 4 lectures. Prerequisite: Completion of GE Areas A and B, and junior standing.

HUM 350 The Global Environment (4)
GE Area F
(Also listed as AG/BUS/DES/ENGR/SCM/UNIV 350)
Interdisciplinary investigation of how human activities impact the Earth's environment on a global scale. Examination of population, resource use, climate change, and biodiversity from scientific/technical and social/economic/historical/political perspectives. Use of remote sensing maps. Sustainable solutions. 3 lectures, 1 activity. Prerequisite: Completion of GE Areas A and B and junior standing.

HUM 361 Modernism (4) (Also listed as UNIV 361)
GE C4
Interdisciplinary survey of the eighteenth, nineteenth and twentieth-century concepts and cultural movements known as modernism throughout Europe, North America and Latin America. Disciplines may include architecture, art, drama, literature, music, philosophy, and photography. 4 lectures. Prerequisite: Completion of GE Area A and one class from Area C.

HUM 400 Independent Study Project (1–2)
Independent study project focusing more than one discipline on a problem in the Humanities. May involve travel and/or independent research. Bibliography and study plan submitted in advance. 1–2 activities. Prerequisite: Junior standing and consent of instructor.

HUM 450 Summer Internship in London (12) (CR/NC)
Extensive work experience in London. Administration, orientation, and supervision of independent work by the service provider. Intensive two-week orientation, eight-week full-time work assignment. Evaluation by instructor, internship supervisor, and employer. Credit/No Credit grading only. 4 lectures, 8 units of independent study. Prerequisite: Junior standing and consent of the Director of London Study.

HUM 470 Selected Advanced Topics (2–4)
Focused interdisciplinary study of a problem in the Humanities combining the insight and expertise of more than one discipline, such as history, literature, religious studies, philosophy, fine arts and the sciences. The Schedule of Classes will list topic selected. 2–4 lectures. Prerequisite: Completion of GE Area A and junior standing.
HUM 490 President's Seminar: Science, Society and the University (4) (Also listed as HNRS 490)
Development of higher education in the United States; the role of science and research in the University; and the response of higher education to changing economic, political and social demands. 4 seminars. Prerequisite: Senior standing, GPA of at least 3.0, or consent of instructor.

IME–INDUSTRIAL and MANUFACTURING ENGINEERING

IME 101 Introduction to Industrial and Manufacturing Engineering (1)
Introduction of major topics in industrial and manufacturing engineering. Time management, study skills and class scheduling necessary for academic success. University services. Professional ethics. Career opportunities review. 1 laboratory.

IME 130 Technical Foundations (2) (CR/NC)
Introduction to visualization, sketching, and drafting. Basic hand-tools, shop practices, and materials. Clearances and fits, threads and fasteners. Safety. Open to all majors. Credit/No Credit grading only. 1 lecture, 1 laboratory.

IME 140 CAD and Modeling (2)
CAD/CAM on UNIX workstations using parameter-driven, surface-bounded solid modeling with total bi-directional associativity between design, drafting, and manufacturing tools. Introduction to Computer-Aided Engineering (CAE) as driven by the CAD solid model. 1 lecture, 1 laboratory. Prerequisite: IME 130 or high school drafting.

IME 141 Manufacturing Processes: Net Shape (1)
Metal casting as a net shape process in manufacturing. Properties of molding materials and methods of casting. Introduction to rapid prototyping. Pattern and casting design principles. 1 laboratory.

IME 142 Manufacturing Processes: Materials Joining (2)
Theory and application of metal cutting and welding processes. Includes shielded metal arc, flux cored arc, submerged arc, gas metal arc, gas tungsten arc, brazing, resistance, and oxy-acetylene processes. Bonding theory, joint design, codes and testing. Introduction to adhesive bonding. Open to all majors. 1 lecture, 1 laboratory.

IME 143 Manufacturing Processes: Material Removal (2)
Uses, capabilities, and theoretical and operational characteristics of lathe and milling machine tools, including conventional, automatic and numerical control. Cutting tool characteristics, machining parameters, quality control, and production methods. Design considerations for manufacturing. Introduction to robotics and automation. Open to all majors. 1 lecture, 1 laboratory.

IME 144 Introduction to Design and Manufacturing (4)
CAD/CAM on Unix workstations using parameter-driven, surface-bounded solid modeling with integration between design, drafting, and manufacturing tools. Introduction to conventional machining processes on lathes and mills, computer numerical control, cutting tool design, machining parameters, quality control, production methods, and design for manufacturing. Open to all majors. 2 lectures, 2 laboratories. Prerequisite: IME 130 or high school drafting.

IME 156 Basic Electronics Manufacturing (2)
Practical electronics manufacturing knowledge expanded through concepts such as CAD/CAM design, Design for Manufacture (DFM), documentation requirements, prototyping and production planning. Hands-on techniques learned for project planning, soldering, automation, hand tool usage and production methods. 1 lecture, 1 laboratory.

IME 157 Electronics Manufacturing (4)
Printed circuit board assembly; printed circuit board fabrication process; electronics packaging; overview of semiconductor manufacturing; design, documentation and fabrication of electronic units with emphasis on CAD/CAM. Open to all majors. 2 lectures, 2 laboratories.

IME 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

IME 223 Work Design and Measurement (4)
Principles of work simplification and motion analysis. Recording of work flow and methods. Work measurement and standards, time study, synthetic data, predetermined time systems and work sampling. Allowances and performance rating, productivity measures. Work design improvement. 3 lectures, 1 laboratory. Prerequisite: MATH 141. Recommended: IME 101.

IME 239 Industrial Costs and Controls (3)
Estimation of manufacturing costs for production planning, cost analysis, and cost control. Planning, budgeting and control processes. Costs accounting data and analysis of variances for managerial control, inventory valuation and decision making. Techniques of forecasting, pricing, cost estimating and cost reduction. 3 lectures. Prerequisite: IME 223.

IME 240 Additional Engineering Laboratory (1–2)
Total credit limited to 4 units, with a maximum of 2 units per quarter. 1 or 2 laboratories.

IME 241 Manufacturing Process Design I (4)
Economic and engineering analysis of manufacturing processes. Cost estimation for production planning, analysis, and control. Analysis of machining process inputs and mechanisms as an example process. Test report writing, documentation, and inspection methods. Field trips to manufacturing centers. 3 lectures, 1 laboratory. Prerequisite: IME 143 or IME 144, PHYS 131.

IME 251 Introduction to Manufacturing Engineering Analysis (4)
State of the art methods and processes in mechanical and electronic manufacturing. Selection of materials for manufacturing. Product design and manufactureability. Specifications and metrology in manufacturing. Continuous improvement strategies, such as automation, group technology, value analysis, and flexible system design. 2 lectures, 2 laboratories. Prerequisite: IME 143 or IME 144, PHYS 131, CHEM 124.

IME 301 Operations Research I (4)
Introduction to operations research, matrix theory, linear programming formulation and solution. Simplex method, sensitivity analysis, transportation and assignment algorithms. Introduction to linear networks and goal programming. Existing computer programs utilized. 4 lectures. Prerequisite: MATH 244.

IME 303 Project Organization and Management (4)
Design, analysis and implementation of a major industrial/business systems problem. Emphasis on situations requiring resolutions and management decisions by groups representing various elements of an enterprise. Resource leveling and management under constraints. 3 lectures, 1 laboratory. Prerequisite: Junior standing, IME 314 or equivalent.

IME 312 Data Management and System Design (4)
Design and management of industrial databases and reporting systems. Relationships of financial accounting databases and production systems. Efficient data entry and reports, queries, macro function, and Internet based database applications. 3 lectures, 1 laboratory. Prerequisite: CSC 232.

IME 313 Introduction to Information Systems Engineering (4)
Practical approach to use of new and existing data communications technologies related to industrial and manufacturing engineering. Use of hardware, operating systems, networks and application software, covered in both theory and practice. 3 lectures, 1 laboratory. Prerequisite: IME 312.

IME 314 Engineering Economics (3)

IME 319 Human Factors Engineering (3)
Analysis of factors influencing the efficiency of human work. Data on the physical and mental capacities of persons, the physical environment, work organization, and the problem of aging. Design of machines, operations, human computer interface and work environment to match human capacities and limitations, including the handicapped. Multidisciplinary team project.
3 lectures. Prerequisite: PSY 201 or PSY 202 or consent of instructor, and junior standing.

IME 320 Human Factors and Technology (4) GE Area F
Analysis of cognitive, sensory and physical limitations and capabilities of operators and users of technology, both hardware and software, in working and living environments. Analysis of pertinent databases for a proactive approach to designing user-centered industrial products/systems, consumer products, and work environment. 4 lectures. Prerequisite: Junior standing and completion of GE Area B requirements.

IME 326 Engineering Test Design and Analysis (4)
Data gathering and statistical testing applied to industrial engineering and manufacturing fields. Experimental methods for product and process evaluation and comparisons; interpretation of engineering data. Engineering experimental design, linear and nonlinear regression, ANOVA, and multifactor ANOVA. Utilization of existing computer software. 4 lectures. Prerequisite: STAT 321 with a grade of C- or better.

IME 334 CAD/CAM (3)
Identification and study of the individual techniques of CAD/CAM as being practiced in modern industry. 2 lectures, 1 laboratory. Prerequisite: IME 144.

IME 335 Computer-Aided Manufacturing I (4)
Manufacturing systems overview; design dimensioning and tolerancing; numerical control (NC) programming; process planning and computer-aided process planning; use of CAD/CAM software; CAD/CAM data exchange format. 3 lectures, 1 laboratory. Prerequisite: IME 144, CSC 332, or consent of instructor.

IME 336 Computer-Aided Manufacturing II (4)
Automated production of parts: computerized part programming, post-processor generation and use, and CNC machining center operation. Introduction to flexible manufacturing systems and robotics. 3 lectures, 1 laboratory. Prerequisite: IME 335 or consent of instructor.

IME 341 Tool Engineering (4)
Design and engineering of tool for workholding cutting and forming. Material selection. Design projects. 3 lectures, 1 laboratory. Prerequisite: IME 241, CE 204, MATH 244, PHYS 133, MATE 210.

IME 342 Manufacturing Systems Integration (3)
Coverage of simulation, and production control, to provide engineering context for the analysis and design of production control systems. 3 lectures. Prerequisite: IME 223, MATH 241. Recommended: STAT 321.

IME 351 Advanced Material Removal Process Design (4)
Advanced turning and milling processes; grinding and non-traditional processes. Thread and gear manufacturing, productivity, machinability, part and tool materials, cutting fluids, and tool life testing. Finishes and measurement of surface roughness. Process design projects. 2 lectures, 2 laboratories. Prerequisite: IME 241, MATE 210 and MATE 215, and CE 204.

IME 352 Manufacturing Process Design II (4)
Advanced engineering analysis of material shaping processes, surface processing and assembly operations with emphasis on optimizing process parameters, equipment, and operational sequence. Process design projects. 2 lectures, 2 laboratories. Prerequisite: IME 141, IME 142, IME 241, MATE 210/215, CE 204.

IME 356 Manufacturing Automation (4)
Computers in the factory automation environment. Basic control theory including feedback. Programming and use of programmable logic controllers (PLC), human-machine interface (HMI), and industrial control systems. Interfacing of electro-mechanical systems; analog and digital inputs, output; programmable controllers. Computer control process. 3 lectures, 1 laboratory. Prerequisite: EE 321.

IME 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limit to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of Instructor.

IME 401 Sales Engineering (2)
Concepts and principles of engineering in sales. Role of the professional engineer in the analysis, design, development, production, and final application of a product or system required by the buyer. 2 seminars. Prerequisite: Senior standing in engineering, or consent of instructor.

IME 404 Engineering Economic Decision Management (3)
Quantitative approaches to engineering and management problems. Time value concepts, break-even and replacement analysis, optimization techniques for scheduling. Project cost estimation, resource management and risk analysis. Use of computer software packages. For non-majors only. 3 lectures. Prerequisite: Junior standing.

IME 405 Operations Research II (4)
Queuing models, dynamic programming and inventory models, Markovian processes, simulation modeling, computer programming in solution of problems. 3 lectures, 1 activity. Prerequisite: IME 301 or consent of instructor.

IME 407 Operations Research III (4)
Advanced linear programming as applied to problems in industrial systems. Integer and goal programming. Application of nonlinear, quadratic, dynamic programming concepts. Case studies of current topics in industrial engineering. 3 lectures, 1 activity. Prerequisite: IME 301 or consent of instructor.

IME 408 Systems Engineering (3)

IME 409 Economic Decision Systems (3)
Economic evaluation of information for complex decisions. Analysis of risks and uncertainties. Bayes theory and models. Decision theory, sequential decisions, and value of information applied to financial evaluation and control. Major project justification procedures. 3 lectures. Prerequisite: IME 239, IME 314, and IME 405, or consent of instructor.

IME 410 Inventory Control Systems (4)
Inventory planning and control systems. Implementation of manufacturing resource planning (MRP II) including demand forecasting, production planning, master scheduling, bill-of-material, and inventory master file. Capacity requirements planning and shop floor control. JIT approach to inventory control through pull production system. 3 lectures, 1 laboratory. Prerequisite: IME 405 or IME 342, IME 312.

IME 411 Production Systems Analysis (3)
Systems analysis for production control. Design of computer integrated planning and control systems for scheduling manufacturing orders, monitoring operating costs and control system performance evaluation. Development of computer-aided decision making framework. Interactive decision making using simulation modeling. 2 lectures, 1 laboratory. Prerequisite: IME 410, or equivalent.

IME 413 Flexible Manufacturing Systems (3)

IME 416 Automation of Industrial Systems (3)
Automation in manufacturing and warehousing. Economic selection of automation systems. Projects in automation. 2 lectures, 1 laboratory. Prerequisite: IME 356 or equivalent.

IME 417 Supply Chain and Logistics Management (4)
Overview of key logistics and supply chain management concepts. Models and solution methods for the design, control, operation, and management of supply chains. Techniques that are used to analyze supply chains. Team
projects in partnership with industry sponsors. 4 lectures. Prerequisite: IME 342, or IME 410 or consent of instructor.

IME 418 Product-Process Design (4)

Strategic engineering management of product design and manufacturing competitiveness; concurrent engineering. Study of manufacturability constraints in terms of prototyping, designing, testing, pre-production support, processing, quality, delivery, and customer satisfaction. Industrial design projects. Application of project management. Examination of relevant environmental and ethical problems. 3 lectures, 1 laboratory. Prerequisite: IME 341, IME 356 or consent of instructor.

IME 420 Simulation (4)

Design and analysis of manufacturing and service systems by simulation. System modeling. Random number and function generators, programming, and characteristics of simulation languages. Design projects using real world problems. Introduction to rule-based expert systems. 3 lectures, 1 laboratory. Prerequisite: IME 326.

IME 421 Manufacturing Organizations (3)

Theory and principles for manufacturing organizations. Competitive advantage. Strategic planning and operations management for organizations and teams in a rapidly changing environment. Engineering management concepts and practices. Team-based projects and cases. 3 seminars. Prerequisite: IME 314, PSY 201/PSY 202, or consent of instructor.

IME 422 Manufacturability Engineering (4)

Manufacturability constraints in terms of issues related to prototyping, designing, testing, preproduction support, processing, quality, delivery, and customer satisfaction. Hands-on projects to discuss the experimental results in dealing with the process of casting, machining, plastic modeling, and electronic board manufacturing. 3 lectures, 1 laboratory. Prerequisite: IME 341, IME 326. Recommended: IME 342.

IME 427 Process Optimization through Designed Experiments (4)

Experiments for optimization of industrial processes; process variables, response, measurements, analysis and interpretations. Statistical principles in design. Design approaches: conventional methods, response surface methodology, and Taguchi methods. Type of experiments: factorial, fractional factorial, mixture, and orthogonal arrays. Design projects using real world problems. 3 lectures, 1 laboratory. Prerequisite: IME 326 or consent of instructor.

IME 428 Engineering Metrology (4)

Measurement of attributes and variables; standards, accuracy and precision; mechanical, electronic and optical/laser measurement systems. Contact and non-contact measurement; straightness, flatness and squareness; GDT (Geometric Dimensioning and Tolerancing); CMM (Coordinate Measure-ment Machines); surface roughness; metrology for electronic products. 3 lectures, 1 laboratory. Prerequisite: IME 335 or consent of instructor.

IME 429 Ergonomics Laboratory (1)

Investigation of various physiological, sensory, and cognitive capabilities and limitations of people in work and living environments through laboratory data collection, design of experiments and statistical analysis. 1 laboratory. Prerequisite: IME 319, IME 326.

IME 430 Quality Engineering (4)

Quality control, reliability, maintainability, and integrated logistic support. Statistical theory of process control and sampling inspection. Risks associated with decisions based on operating characteristics of control charts and sampling plans. Reliability and life testing methods. Economics of statistical QC. Specifications and standards. 4 lectures. Prerequisite: IME 326 or equivalent.

IME 431 Supplier Quality Engineering (4)

IME 433 Advanced Work Measurement (3)

Predetermined time systems. Time formulas. Standard data systems. Use of statistical methods. Standard data systems applied to clerical, manufacturing, and micro assembly. Developing and maintaining computerized systems. Course will be administered with project orientation. 2 lectures, 1 laboratory. Prerequisite: IME 223, IME 326 or equivalent.

IME 435 Reliability Engineering I (3)

Reliability concepts and mathematical models, mechanical device reliability, electrical device reliability, systems reliability and maintainability, reliability data, assurance program elements. 3 lectures. Prerequisite: IME 326.

IME 437 Advanced Human Factors Engineering (3)

Team-based approach to human factors assessment of consumer and industrial products. Systems, and information technology. Teams building principles and techniques; performance measurements and monitoring. Usability analysis and ergonomics auditing through experimental methods. 2 lectures, 1 laboratory. Prerequisite: IME 319, IME 326 or equivalent.

IME 440 Quality Process Management (4)

Quantitative approaches to engineering and management of quality. Statistical process control, quality assurance concepts. Variability loss and off-line QC. Tolerance design and experimental design. Human factors and managerial dimensions influencing quality. For non-majors only. 4 lectures. Prerequisite: Junior standing or consent of instructor.

IME 441, 442 Engineering Supervision I, II (1,1)

Theory and principles of supervision. Application of fundamental concepts and techniques of supervision provided by assignment in engineering laboratories. 1 laboratory each. Prerequisite: IME 141, IME 334 or IME 335, and senior standing. Recommended: concurrent enrollment in IME 421.

IME 443 Facilities Planning and Design (4)

Design concepts and input requirements in planning and design of new or renovation of existing manufacturing systems. Product, process, and flow activity analysis techniques. Flow lines and buffering techniques. Computer-aided layout design and evaluation. Design of handling systems. Math models of location problems. Multidisciplinary team project. 3 lectures, 1 laboratory. Prerequisite: IME 144, IME 223, IME 405 or IME 342, IME 314, or equivalent. Recommended: IME 319, IME 420.

IME 455 Manufacturing Design and Implementation I (3)

A mix of industry and in-house structured group projects. Projects progress through a complete cycle from design through implementation. Application of project management methods. Examination of relevant economical and safety issues. 3 laboratories. Prerequisite: IME 418.

IME 457 Advanced Electronic Manufacturing (4)

Design and fabrication of commercial electronic products; PCB layout design, bill of material analysis and component purchasing, production planning and scheduling, programming automated surface-mount assembly line, marketing of products. Multidisciplinary project teams exposed to real-world challenges of electronics manufacturers. 2 lectures, 2 laboratories. Prerequisite: IME 156 or IME 157.

IME 458 Microelectronics and Electronics Packaging (4)

Materials, processes, and reliability of microelectronics and electronics packaging, surface mount assembly and printed circuit board fabrication. Overview of semiconductor manufacturing and optoelectronics packaging. 3 lectures, 1 laboratory. Prerequisite: MATE 210 and PHYS 133 or consent of instructor.

IME 461, 462 Senior Project I, II (2) (3)

Faculty supervised projects typical of problems which graduates encounter in their professions and which involve costs, planning, scheduling and research. Formal written report, suitable for reference library, discussing
methods, results and conclusions. Minimum 150 hours total time. 461: 2 laboratories. 462: 3 laboratories. Prerequisite: Senior standing (within 3 quarters of graduation), IME 314, IME 443, or IME 418.

IME 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

IME 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories. Prerequisite: Consent of instructor.

IME 481 Senior Project Design Laboratory I (2)
Selection and completion of a project by individuals or teams which is typical of problems which IE or MfgE graduates must solve in their fields of employment, which is representative of those encountered in professional practice. Project typically involves system design, modeling, analysis and testing. Project method includes costs, planning, scheduling, and appropriate research methodology. Formalization of project outline, literature review, project activity scheduling and regular progress reviews by instructor are required. 2 laboratories. Prerequisite: Senior standing in major and consent of instructor. Note: Although IME 481 substitutes for IME 461, students may not use as repeat credit.

IME 482 Senior Project Design Laboratory II (3)
Continuation of IME 481. Involves research methodology: problem statement, method, results, analysis, synthesis, project design, construction (when feasible), and evaluation/conclusions. Project results are presented in formal written reports suitable for reference library and formal oral reports. 3 laboratories. Prerequisite: IME 481. Note: Although IME 482 substitutes for IME 462, students may not use as repeat credit.

IME 493 Cooperative Education Experience (2) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 6 units. Prerequisite: Sophomore standing and consent of instructor.

IME 494 Cooperative Education Experience (6) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 18 units. Prerequisite: Sophomore standing and consent of instructor.

IME 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. A more fully developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 24 units. Prerequisite: Sophomore standing and consent of instructor.

IME 500 Individual Study (1–4)
Advanced study planned and completed under the direction of a member of the department faculty. Open only to students who have demonstrated ability to do independent work. Total credit limited to 4 units. Prerequisite: Consent of department chair and supervising faculty member.

IME 501 Graduate Survey I (4)
Survey of traditional industrial engineering applications in industrial systems, work methods, measurements and analysis. Facilities design, automation and logistics of industrial operations. Human factors and cost estimation of industrial applications. 3 seminars, 1 activity. Prerequisite: Graduate standing.

IME 502 Graduate Survey II (4)
Survey of current issues in data analysis and mathematical modeling of industrial systems, Queuing theory, Markov chains quality control and supply chain issues. 4 lectures. Prerequisite: Graduate standing and consent of instructor.

IME 503 Applied Statistical Methods in Engineering (4)
Application of hypothesis testing, regression models, and ANOVA models to forecasting, process optimization, cost estimation, work measurement, inventory control, scheduling, and ergonomics. Probability distributions of process outputs in industries and service systems such as Normal, exponential, Uniform, Hypergeometric, Binomial, and Poisson. Applications in queueing, reliability, Markov chains. Expectations of random variables. Measures of central tendency and variation. Population and a random sample. Central limit theorem and its application in simulation of processes. 3 lectures, 1 laboratory. Prerequisite: Graduate standing or consent of instructor.

IME 507 Graduate Seminar (2)
Selected topics of interest to industrial engineering, integrated technology management, and engineering management graduate students. The Schedule of Classes will list topic selected. Total credit limited to 4 units, with a maximum of 2 units per quarter. 1 seminar, 1 laboratory. Prerequisite: Graduate standing or consent of instructor.

IME 510 Systems Engineering I (4) (Also listed as AERO 510)
Project management. Scheduling and budgeting. Queuing theory. Process control and life-cycle cost analysis. Contracts and negotiation. 4 lectures. Prerequisite: Graduate standing or consent of instructor.

IME 511 Systems Engineering II (4) (Also listed as AERO 511)
Risk management. Design strategies to meet system/mission requirements. Design for supportability, manufacturability, reliability, etc. Quality function development and quality control concepts. 4 lectures. Prerequisite: AERO 510 or IME 510, graduate standing or consent of instructor.

IME 516 Mechatronics Systems Analysis (4)
Overview of smart products and intelligent manufacturing systems. Tools and technologies utilized in the design, manufacturing, and operations of such products and systems. Artificial Intelligence Technologies and Fuzzy Logic. Design of smart products and intelligent systems. Case studies. Team projects and formal presentations. 3 seminars, 1 laboratory. Prerequisite: IME 416 or ME 405 or equivalent.

IME 520 Advanced Information Systems for Operations (4)
Advanced information systems (IS) applications in manufacturing and service operations. Introduction of common IS applications, such as manufacturing execution systems; reporting systems; capacity planning systems; scheduling systems; and customer inquiry systems. Industry-specific analysis of IS requirements and availability. 4 seminars. Prerequisite: IME 410 or consent of instructor.

IME 526 Advanced Topics in Manufacturing System Design (4)
Modeling and analysis of manufacturing systems. Advanced topics in manufacturing system design to support development of complex systems: Virtual Reality, discrete event simulation, system architectures, systems integration, scheduling and control of manufacturing systems. Total credit limited to 12 units. 3 seminars, 1 laboratory. Prerequisite: IME 410 or equivalent.

IME 541 Advanced Operations Research (4)
Operations Research approach to model building. Linear programming and sensitivity analysis. Network flow models. Integer programming, large scale linear programming. Goal programming and multi-attribute decision making. Dynamic programming. Nonlinear programming and search methods. Applications in model building and computer solutions in planning, resource allocation, scheduling, and other industrial and service operations. 3 lectures, 1 laboratory. Prerequisite: Graduate standing and consent of instructor.
IME 542 Reliability Engineering II (4)
Reliability engineering terminology and definitions. Reliability mathematics; probability plotting; load-strength interference and safety margin. Failure distributions and failure rate models. Weibull analysis; bathtub curve; reliability of parts. Reliability of systems; redundancy; reliability allocation. Maintainability and availability. Failure modes and effects analysis. Fault tree analysis. Failure data analysis; reliability testing; reliability growth testing. Electronic system, mechanical and software reliability. Safety and human reliability; reliability management. 3 lectures, 1 laboratory. Prerequisite: IME 503.

IME 543 Advanced Human Factors (4)
Theory and application of man-machine relations and system design. Concepts of mathematical models, human information input channels, decision making based on capability of human operator. 3 seminars, 1 laboratory. Prerequisite: IME 319 or equivalent, IME 326 or equivalent and graduate standing.

IME 544 Advanced Topics in Engineering Economy (4)

IME 545 Advanced Topics in Simulation (4)
Validation of simulation models. Statistical techniques for variance reduction. Experimental design and optimization. Comparison of attributes of simulation languages. Review of current manufacturing and service industry applications. Case studies. 3 lectures, 1 laboratory. Prerequisite: IME 420 and graduate standing.

IME 548 Engineering Decision Making (4)
Principles, concepts, models, and case studies of decision making, both quantitative and nonquantitative. Emphasizes commonly used techniques when quantitative models do not exist, do not cover all key factors, or when sufficient data are not available. 3 lectures, 1 laboratory. Prerequisite: IME 301, IME 314, STAT 321 or equivalent and graduate standing.

IME 555 Computer-Integrated Manufacturing (4)
CIM and concurrent engineering concepts. Systems analysis methodologies and functional specifications. Technological and managerial strategies for system integration. Analysis of contemporary CIM frameworks. Information networks and protocols for integrated manufacturing systems. Implementation strategies for CIM and concurrent engineering. 3 seminars, 1 laboratory. Prerequisite: IME 335, IME 411 or equivalent, graduate standing.

IME 556 Technological Project Management (4)
Projects in industrial organizations and enterprises. Emerging technologies and project management. Relationship to strategic plans and managing change in organizations. Formulating, selecting, structuring, and planning projects. Project organization and control. Overcoming barriers. Application of project management software. 3 seminars, 1 laboratory. Prerequisite: Graduate standing or consent of instructor.

IME 557 Technological Assessment and Planning (4)
Assessing likely future technological environments, speed of change in competitive environments, relationship to business, strategic, and technology plans of firms. Past, present and technological evolution and operational changes. Technological and competitive impact assessment and business/technology strategy development. Use of case studies and company experiences. 4 seminars. Prerequisite: IME 503 or equivalent, and graduate standing.

IME 558 Executive Seminars (4)
Culminating overview of major issues facing organizations as they meet the challenge to sustain a competitive advantage in a business environment characterized by rapid and pervasive change. Topics include project management, virtual organizations, the service sector, manufacturing futures, and information technology. 2 seminars, 2 supervision. Prerequisite: Advanced graduate program status or consent of instructor.

IME 559 Engineering Research and Development (4)
Principles, approaches and practices for effective engineering innovation, design, research and development (R&D) in business and industry. Relationship of R&D with corporate strategy and technology base. R&D objectives through implementation. Integration of creativity, evaluation, design, and ongoing operations. Case studies. 4 seminars. Prerequisite: IME 314 or equivalent and graduate standing.

IME 560 Quality Engineering II (4)

IME 570 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to graduate students and selected seniors. The Schedule of Classes will list topic selected. 1–4 seminars. Prerequisite: Graduate standing and/or consent of instructor.

IME 575 Critical Technologies (4)
Scientific, engineering and strategic overview of numerous critical emerging technologies. Topics include: technologies critical for different engineering disciplines, critical to numerous industries, and/or critical to the national interest. Focus on each technology to include: understanding key scientific fundamentals, evaluating commercialization potential to industry, and identifying conditions and outlook for future technological breakthroughs. 3 seminars, 1 laboratory. Prerequisite: Engineering graduate student and consent of instructor.

IME 577 Engineering Entrepreneurship (4)
The special requirements of entrepreneurship in a high-tech environment. Guest lectures, focused seminar topics, a business plan project, and case studies provide the tools to evaluate and pursue technology-based business opportunities. 3 lectures, 1 laboratory. Prerequisite: Graduate standing or consent of instructor.

IME 580 Manufacturing Systems (4)
Modern approaches in production and inventory planning and control to support large-scale manufacturing systems, material requirements planning (MRP I), manufacturing resource planning (MRP II), and just-in-time (JIT) manufacturing systems. Enterprise resource planning (ERP) and integration with financials. Information requirements, operational issues, and policy matters. 4 seminars. Prerequisite: Graduate standing or consent of instructor.

IME 591, 592 Integrated Product Development I, II (4) (4)
Team taught course addressing: product opportunity identification, customer needs analysis, concept definition, requirements definition, product-process analysis, product specification, design/process description, prototyping, project management, packaging, product promotion/introduction, and manufacturing ramp-up. Team projects in partnership with industry sponsors, field-trips and formal presentations. 3 seminars, 1 laboratory for each. Prerequisite: Graduate standing.

IME 593 Cooperative Education Experience (2) (CR/NC)
Advanced study analysis and part-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

IME 594 Cooperative Education Experience (6) (CR/NC)
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career
field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

IME 595 Cooperative Education Experience (12) (CR/NC)
Advanced study analysis and full-time work experience in student’s career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. A fully-developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

IME 596 Team Project/Internship (1-10)
Integrative learning experience through internship and team project with industrial organization. Requires advanced study and focuses on industrial unstructured problem or opportunity requiring integration across disciplines. Team project involves student, faculty, and sponsoring firm representative(s) in a collaborative learning environment, and culminates in comprehensive written report. Total credit limited to 10 units, normally taken over 2 quarters. Prerequisite: Advanced graduate standing, completion of, or concurrent enrollment in, engineering courses in specialization, and consent of participating faculty.

IME 599 Design Project (Thesis) (1-9)
Each individual or group will be assigned a project for solution under faculty supervision as a requirement for the master's degree, culminating in a written report/thesis. Prerequisite: Graduate standing and consent of instructor.

IS-INTERDISCIPLINARY STUDIES

IS 101 Orientation to Interdisciplinary Studies and the University (3)
Introduction to collaborative interdisciplinary inquiry. Topics include: Scholarly knowledge production and bibliographic finding tools, University role in knowledge dissemination and creation, and information search and evaluation processes. "Learn-by-doing" disciplinary investigation and interdisciplinary analysis and synthesis. 3 lectures.

IS 301 Critical Issues Seminar (4)
Discussion-oriented seminar focusing on ethics and effective interdisciplinary decision-making in the contemporary world. Examination of ethical and other issues facing society through current public debates, as well as great intellectual traditions that have shaped the past. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 seminars. Prerequisite: Admission to the Adult Degree Program (Bachelor of Arts in Interdisciplinary Studies) prior to enrolling in this seminar.

IS 302 Analytical Skills Seminar (4)
Improvement of abilities to collect data, analyze information, frame questions, reach and defend logical conclusions. Emphasis on applying methods of data analysis to a variety of contemporary interdisciplinary issues. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 seminars. Prerequisite: Admission to the Adult Degree Program (Bachelor of Arts in Interdisciplinary Studies) prior to enrolling in this seminar.

IS 450 Advanced Investigation Seminar (5)
In-depth interdisciplinary investigation into a narrowly defined issue of personal and/or professional interest. Identification of topic and examination from a variety of standpoints (e.g., cultural, environmental, religious, political, or economic). The Schedule of Classes will list topic selected. 5 seminars. Prerequisite: Admission to Adult Degree Program (Bachelor of Arts in Interdisciplinary Studies), IS 301 and IS 302.

IS 460 Capstone Project (6)
Selection and completion of a summative project or report under the supervision of a faculty member. Topic must be approved by the seminar instructor and the ADP director. Investigation of the topic from an interdisciplinary approach. Prerequisite: Senior standing, IS 301, IS 302, IS 450.

IT–INDUSTRIAL TECHNOLOGY

IT 137 Electrical/Electronic Systems (4)
Introduction to electrical and electronic circuit fundamentals. Essential information for technical managers regarding the universal law, theory, principles, application and troubleshooting of AC and DC circuits and devices. Familiarity with concepts used extensively in manufacturing/production and countless electronic products. Understanding of inductance, capacitance, resistance, integrated circuit components and the relationship they have with each other. Strategic decision and problem solving skills developed using electricity/electronics as the environment. 3 lectures, 1 laboratory.

IT 150 Industrial Power Systems (4)
Introduction to systems that supply energy, convert energy to power, transmit energy and power, and use energy and power to drive industrial enterprises. Energy systems include fossil, atomic and prominent alternative resources. Power conversion systems include reactors, internal and external combustion, direct conversion, and alternative technologies. Power transmission and end-use systems include mechanical, thermal, fluid, and electrical. Industrial facilities management strategies including advantages and disadvantages of economics, safety, conservation, design and maintenance. 3 lectures, 1 laboratory. Prerequisite: IT 137.

IT 233 Decision Making and Problem Solving Using CAD (4)
Fundamental theory and practice of technical design communication and management of information systems. The basic application of 2-D and 3-D computer-aided design (CAD) and fundamental skills in communication of product design and their impact on the industrial organization. 2 lectures, 2 laboratories.

IT 260 Manufacturing Processes (4)
Manufacturing processes; emphasis on shaping metallic products. Precision measuring, technical drawings, safety and equipment use as they apply to metal machining, welding, casting and sheet metal fabrication. 2 lectures, 2 activities.

IT 300 Symposium Organization (2) (CR/NC)
Managing the development of a technical information symposium from concept through symposium presentation. Organization of facilities, speakers, dinner meeting, professional meetings, industrial displays, food services, personnel, finances, and advertising. Credit/No Credit grading only. Total credit limited to 6 units. 2 seminars. Prerequisite: Completion of Area A or equivalent.

IT 326 Product Evaluation (4)
Value engineering, product dissection and the study of reverse product engineering as they relate to product design for manufacturing; improved product quality; reduced usage of energy and materials; material recycling and reuse; product design and development, proving value to the customer and society. 3 lectures, 1 laboratory. Prerequisite: Completion of GE Area B3 via a college course in physics (PHYS), or PSC 101.

IT 329 Industrial Materials (4)
Structure, properties, applications and limitations of select industrial materials to include ferrous and nonferrous metals, ceramics, glasses, composites, and organic materials. Materials testing and material selection. 3 lectures, 1 activity. Prerequisite: CHEM 110 or CHEM 111 or equivalent.

IT 330 Fundamentals of Packaging (4)
Overview of packaging. Historical development, functions, and materials. Processes and technology employed to protect goods through the supply chain. Container types, package design, development, research and testing. Economic and international importance and perspective as an industrial activity. Packaging and the environment, and laws affecting packaging. 2 lectures, 2 activities. Prerequisite: Consent of instructor.

IT 336 Textile Technology (4)
Physical and chemical characteristics of natural and manufactured fibers. Production of synthetic polymers. Technology of fabric production and finishes. Industrial and consumer applications. Textiles as a global industry. Legislation. Laboratory identification of fibers and evaluation of
performance properties of fabrics. 3 lectures, 1 laboratory. Prerequisite: Junior standing, completion of Area A and one laboratory science course, or consent of instructor.

IT 341 Plastic Processes and Applications (4) GE Area F
Cultural, social and economic implications of plastics in a worldwide environment. Study of materials, costs, processes, resource management, recycling, safety, laws and regulations. Applied laboratory experiences with common industry processes, i.e., injection, blow, rotational and compression; molding with plastic casting and fabrication. Application of laboratory experiences to improve consumer conformance to specifications and economic analysis of raw material cost and availability. Evaluation of current materials and technologies to reduce waste and improve reuse and recycling plastics. 3 lectures, 1 laboratory. Prerequisite: Completion of GE Area B3 via Chemistry.

IT 371 Decision Making in Supply Chain, Services, and Project Management (4)
Introduction to supply chain, services, and project management decision making using information technology tools. Application of flowchart, project management network and spreadsheet software to process improvement, project planning, forecasting, and inventory management planning and control in manufacturing and service industries. Understanding current practices for decision making in manufacturing and service operations and project management. 3 lectures, 1 activity. Prerequisite: A grade of C- or better in: MATH 141 or MATH 221, and STAT 211 or STAT 252.

IT 381 Industrial Management (4)
Organization and functioning of management in industry. Planning, direction, and control of the business enterprise in terms of policy formation, organizational structure, finance, sales, procurement, plant location, facilities and production processes. 4 lectures. Prerequisite: Junior standing.

IT 400 Special Problems for Advanced Undergraduates (1-4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 8 units, with a maximum of 4 units per quarter. Prerequisite: Consent of instructor.

IT 402 Analyzing and Presenting the Operations Infrastructure for New Industrial Enterprises (4) (formerly IT 302)
Taking a new industrial enterprise from concept to successful launch. The planning and management of a successful product-based start-up to include the integration of: product development; manufacturability and costs of production; manufacturing/outsourcing decisions; market channel selection; supply chain and distribution alternatives; inventory investment and scheduling to meet estimated demand. Successful new enterprises application and application to a class project case study. Special emphasis on skills associated with developing effective technical presentations. 2 lectures, 2 activities. Prerequisite: COMS 101 or COMS 102, BUS 346, IT 326.

IT 403 Quality Systems Management (4)
Quality assurance as viewed from a systems perspective that includes cost, time, and process elements. Lean thinking applied as a problem solving approach to achieve continuous process improvement through the elimination of waste and the reduction of variability. 4 lectures. Prerequisite: IT 341 and STAT 217, or STAT 218, or STAT 251.

IT 406 Industrial Sales (4)
Development of the technical competencies required in industrial selling and purchasing through the application of value stream mapping techniques and the philosophies and tool sets encompassing the discipline of process management as it relates to sales, marketing and customer service in Indus-trial settings. Includes guest speakers and team-based projects with local business organizations, individual and team product presentations, study of written proposals. 3 lectures, 1 activity. Prerequisite: BUS 346 and IT 341.

IT 407 Applied Industrial Product Design, Fabrication, and Sales (4)
An integrative experience replicating a manufacturer's business/production systems, including the design, fabrication, processing, quality-control, resource management, cost-control, marketing, sales and packaging functions. Focus of instruction methodology on the development of the student's comfort with ambiguity and change inherent in business/production systems. Builds upon the foundational concepts developed throughout the Industrial Technology curriculum. 2 lectures, 2 laboratories. Prerequisite: BUS 346 and IT 326.

IT 408 Paper and Paperboard Packaging (4)
Physical and chemical properties, manufacture, conversion and use of paper, paperboard, corrugated board and related components. Design, use and evaluation of packages made from these materials. Survey of tests and procedures for paper based packaging materials and packaging products following ASTM, TAPPI, and ISO standards. 2 lectures, 2 activities. Prerequisite: IT 330.

IT 409 Machinery For Packaging (4)
Analysis of major types of packaging machinery from a practical, operational and marketing viewpoint. Basic processes utilizing packaging machinery. Specialized operations, contract specifications, selection, operation and maintenance. Material handling and distribution equipment and systems, and storage and retrieval systems. Required field trips to packaging operations. 3 lectures, 1 activity. Prerequisite: IT 330, PHYS 104 or PHYS 121, or consent of instructor.

IT 410 Operations Planning and Control (4)
Linking supply chain operations to deliver value to the end customer. Contrasting of advanced manufacturing concepts, such as pull systems, sales and operations planning, mixed model manufacturing, level production, and theory of constraints to traditional materials requirements planning systems. 3 lectures, 1 activity. Prerequisite: IT 341 and BUS 391.

IT 411 Industrial Safety and Quality Program Leadership (4)
Effective program development and leadership required to implement safety and quality process improvement in industry. Application of industrial leadership, knowledge, skills and methods to develop and implement total safety and quality management programs. Class safety/quality process project includes the oral presentation. 3 lectures, 1 activity. Prerequisite: Junior standing.

IT 419 Cooperative Education/Internship (2-12) (CR/NC)
Work experience in business, industry, government and other areas of student career interest. Periodic written progress reports, final report, and evaluation by work supervisor required. Credit/No Credit grading. Total credit limited to 16 units. Prerequisite: Approval of area chair, junior standing, and a CPSLO cumulative GPA of at least 2.5 without being on academic probation.

IT 422 Computer Process Simulation of Operational Systems (4)
Focus on management of business process flows, utilizing computer process simulation software. Transformation of inputs into outputs by means of labor and capital resources. Models, modeling tools, solution approaches and methodologies for process improvement, including product development within both service and manufacturing organizations. 2 lectures, 2 laboratories. Prerequisite: IT 407.

IT 428 Commercialization of New Technologies (4)
Concepts, frameworks, and experiences necessary to understand the business potential of technology innovations and determine if one or more sustainable market opportunities can be identified to exploit them. Hands-on exercises and real new inventions to illustrate concepts. 4 lectures. Prerequisite: IT 336 and BUS 212 or BUS 214.

IT 435 Packaging Development (4)

IT 445 Computer Numerical Control and Robotics (4)
Automated manufacturing systems, including computer numerical control (CNC), flexible manufacturing systems, computer-integrated manufacturing and robotics. Laboratory work in manual/automatic
programming and set-up of CNC machines and robots. 2 lectures, 2 laboratories. Prerequisite: IT 233, IT 260, or consent of instructor.

IT 446 Textile Product Design and Development (4)

IT 451 Facility Equipment and Systems (4)
Develop an understanding of how major mechanical equipment and systems are incorporated in the utility and production support systems of a modern industrial facility. Includes field trips to industrial/commercial facilities. 4 lectures. Prerequisite: IT 150 or consent of instructor.

IT 454 Facilities Development (4)
Construction and maintenance of physical facilities and equipment as related to plant layout/design, regulatory and environmental compliance, safety/security, energy conservation, and process improvement. 4 lectures. Prerequisite: IT 451 or consent of instructor.

IT 461, 462 Senior Project I, II (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems graduates must solve in their field of employment. Project results presented in a formal report, and must be completed in two quarters. Minimum 120 hours total time. Prerequisite: Consent of instructor.

IT 464 Applied Industrial Technology Senior Project Seminar (4)
Selection and analysis of industrial and technological problems and opportunities in directed individual or group-based projects. Problems typical to those which graduates could encounter in their fields of employment. Formal report required. 4 seminars. Prerequisite: Senior standing.

IT 470 Selected Advanced Topics (1–4)
Directed group study and seminars in selected topics in industrial technology. Open to undergraduate students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

IT 475 Packaging Performance Testing (4) (formerly IT 375)
Survey of tests and procedures for packaging materials and packaging products following ASTM and ISTA standards. The testing procedures include tests for shock, vibration, drop and impact as prescribed for shipment by truck, rail, sea, and air. Hands-on product/packaging testing for quality control. 2 lectures, 2 laboratories. Prerequisite: IT 330.

IT 482 Advanced Operations Management (4)
Advanced principles in operations management as applied to both manufacturing and service organizations. Product-service conversion systems, capacity planning and utilization, aggregate planning, scheduling and control, inventory management, and operations subsystem coordination with the organization's strategy. 4 lectures. Prerequisite: IT 330.

IT 487 Seminar in Quality Management (4)
Principles and techniques of quality and performance management as applied to organizations in the private and public sector. Emphasis on competitive implications. Integrations of fundamental management techniques, existing improvement efforts, technical tools, and new management technologies focused on continuous organizational improvement. 4 seminars. Prerequisite: IT 371, and senior standing.

IT 500 Individual Study (1–6)
Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Maximum of 6 units may be applied to degree requirements. Prerequisite: Graduate standing and formal petition with approval from the Associate Dean of OCOB Graduate Programs.

IT 510 Impact of Science and Technology (4)
Comprehensive study of innovation—ideas implemented successfully in practice. Theories, strategies, and information for directing cutting-edge technological trends in a variety of industries but not limited to: materials, telecommunications, biotechnology, environmental management, packaging, transportation, food technology, and facilities. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

IT 512 Improving Productivity Through Technology (4)
Study, from a management of technology perspective, of current and emerging automation technology, from a technology perspective, and how they are used in manufacturing to provide firms with a competitive advantage; problems raised and opportunities made available by modern manufacturing automation technologies; issues concerning technology selection, justification, implementation, technology consistency, and restructuring. 4 lectures. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

IT 514 Commercializing Technological Development (4)
The process utilized in developing technologies for customers. Emphasis on new technology/product development process, including idea generation, concept development, industrial market niche, product research and development, manufacturing, product launch and evaluation. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

IT 520 Management of Technology (4)
The role and importance of technology in corporate production environments. Different approaches to manufacturing leadership, organization and planning, in terms of their impact on decision-making, product development and innovation. 4 lectures. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

IT 521 Training in Industrial and Technical Systems (4)
Developing and managing technological training in industry. The integration of people, technology, philosophy, corporate visions, missions, goals, objectives, resources, populations, facilities, budgets and evaluation in the development of industrial training curriculum and instruction. 4 lectures. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

IT 522 Facilities Planning (4)
Introduction of prospective managers to the methods and techniques used in the planning of the modern industrial facility, including but not limited to: site selection, layout, materials handling, utilities, color and lighting, sound, air, safety standards, and current trends. 4 lectures. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

IT 523 Industrial Sales (4)
Introduction to industrial and technical systems. Development and implementation of a base of competencies that support the work of industrial sales representatives and sales managers. Emphasis on the technical background for selling industrial products, including the ability to make technical presentations and to understand the technical aspects of the product. 4 seminars. Prerequisite: IT 336.

IT 527 Trends and Issues in Technology Management (4)
Advanced study of key current trends and issues relative to technology management of industrial and technical systems. 4 seminars. Prerequisite: Graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

IT 570 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate students. The Schedule of Classes will list topic selected. Total credit limited to 16 units. 1-4 seminars. Prerequisite: IT 371.

IT 571 Selected Advanced Topics Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. The Schedule of Classes will list topics selected. Total credit limited to 16 units. 1-4 seminars. Prerequisite: IT 371.
units. 1-4 laboratories. Prerequisite: OCOB graduate standing or approval from the Associate Dean of OCOB Graduate Programs.

IT 598 Industrial and Technical Studies Project (5)
Completion of a project involving individual research significant to the field of industrial and technical systems. A formal written proposal must be accepted by the Associate Dean of OCOB Graduate Programs before work begins. Course satisfies culminating experience requirement through the completion of the project. Prerequisite: Graduate standing, consent of instructor and IT 510, IT 512, IT 520 and IT 527 or approval from the Associate Dean of OCOB Graduate Programs.

IT 599 Industrial and Technical Studies Thesis (5)
Completion of a thesis involving individual research that is significant to the field of industrial and technical systems. A formal written proposal must be accepted by the Associate Dean of OCOB Graduate Programs before work begins. Course satisfies culminating experience requirement through the completion of the comprehensive thesis. Prerequisite: Graduate standing, consent of instructor and IT 510, IT 512, IT 520 and IT 527 or approval from the Associate Dean of OCOB Graduate Programs.

ITAL—ITALIAN

ITAL 101, 102, 103 Elementary Italian I, II, III (4) (4) (4)
Italian for beginners. Class practice in pronunciation, sentence structure, reading, writing, and basic conversation. Laboratory drill required. Language taught in its cultural context. To be taken in numerical sequence. 3 lectures, 1 activity.

JOUR—JOURNALISM

JOUR 201 Journalism History (4)
Survey of historical influences in the development of today's journalism. Contributions of women and minorities to American mass media. Rise of technology in the communication industry. 4 lectures.

JOUR 203 Writing for the Media (4)
Introduction to the techniques of reporting and writing news from various media perspectives including print, online, broadcast and public relations. Intensive laboratory and field practices in gathering and evaluating information. Writing basic news stories under close supervision. 3 lectures, 1 laboratory.

JOUR 205 Agricultural Communications (4)
Survey of the media of agricultural communication. Newspaper farm pages and sections, general and specialized agricultural magazines. Radio and TV farm broadcasts. Public and private agencies involved in agricultural communication. Role of California minorities in agriculture. Writing on agriculture-related issues. 3 lectures, 1 activity.

JOUR 219 Mass Media in a Multicultural Society (4)
Challenges and triumphs of the mass media in a multicultural society. Survey of print, electronic and online media and how they serve and reflect the communication needs and aspirations of citizens in a multi-ethnic democracy. 4 lectures.

JOUR 233 Copy Editing (4)
Introduction to the techniques of newspaper, magazine, and on-line copy desk work. Rewriting and editing copy and headlines for news, feature stories, and on-line material. Headline, caption, and display copy writing. Ethical issues in copy editing. Selecting, cropping, and writing captions. Art/photography selection, sizing, and cropping. Basic editing functions of Photoshop and Quark. Practical laboratory experience in editing. 3 lectures, 1 laboratory. Prerequisite: JOUR 203.

JOUR 302 Mass Media Law (4)
Legal basis for freedom of expression. Court decisions resolving conflicts between First Amendment and right to fair trial, privacy, reputation. Source confidentiality, freedom of information, contempt, copyright. Federal and state laws and regulations affecting mass media reporters, editors, publishers, news directors. 4 lectures. Prerequisite: JOUR 203.

JOUR 304 Public Affairs Reporting (4)
Experience leading to advanced skills in reporting and writing stories about contemporary issues, government and courts. Field and laboratory assignments in beat reporting, public meeting coverage, writing style, investigative techniques and online journalism research. 3 lectures, 1 laboratory. Prerequisite: JOUR 203 and JOUR 233 or JOUR 342.

JOUR 312 Introduction to Public Relations (3)
Growth and development of public relations as a practice in business and industry, government, volunteer agencies and other public institutions. Communications and activities utilized to gain public interest and support. 3 lectures. Prerequisite: Sophomore standing.

JOUR 331 Contemporary Advertising (4)

JOUR 333 Broadcast News (4)
Beginning broadcast news writing and reporting for radio and television. Emphasis on developing news judgment and producing radio newscasts. Introduction to television studio equipment and procedures. Lab experience includes writing and reporting live on-air for KCPR. 3 lectures, 1 laboratory. Prerequisite: JOUR 203.

JOUR 342 Public Relations Writing and Editing (4)
Theory, strategic planning and practice in writing persuasive public relations copy for diverse internal and external audiences. Emphasis on gathering information, preparing news releases, newsletters and other communications vehicles. Analysis of various media case studies. 4 lectures. Prerequisite: JOUR 312.

JOUR 346 Broadcast Announcing and Production (4)
Develop on-air skills in the performance of voice-overs, stand-ups, hosting and the production of televised public service announcements. Emphasis on the effective use of audio and non-linear video editing techniques as well as broadcast writing. 3 lectures, 1 activity. Prerequisite: JOUR 203 and JOUR 333.

JOUR 348 Electronic News Gathering (4)
Instruction on electronic news gathering (ENG) that includes advanced news writing, field reporting and editing for broadcast. Emphasis on developing research techniques, interviewing skills, responsible and effective non-linear video editing, compelling use of natural sound and professional on-air delivery. 3 lectures, 1 laboratory. Prerequisite: JOUR 203 and JOUR 333.

JOUR 352 Advanced Newspaper Reporting: Mustang Daily (3)
Reporting lab for students holding editorial positions on Mustang Daily. Total credit limited to 6 units. 2 lectures, 1 laboratory. Prerequisite: JOUR 203, JOUR 233 and JOUR 304.

JOUR 353 Broadcast Journalism Practicum (3)
Senior-level course synthesizing the diverse skills and experiences developed through the broadcast journalism curriculum. Students produce a live 30-minute CPTV newscast per week, plus a one-hour KCPR segment that incorporates news, information, talk and entertainment. Emphasis on news producing, reporting and announcing skills. Total credit limited to 6 units. 2 lectures, 1 laboratory. Prerequisite: JOUR 333 and JOUR 346 or JOUR 348. Non-majors: consent of instructor.

JOUR 385 Mass Media Criticism (4)
Examines mass media (especially broadcasting) from a rhetorical/critical perspective. Aims to expand students' understanding of media issues, media's role as critic, and the role of criticism. 4 lectures. Prerequisite: COMS 101 or COMS 102, and junior standing.

JOUR 390 Visual Communication for the Mass Media (4)
Theory and application of visual communication in today's print, broadcast and public relations media. Extensive experience in visual and text
manipulation for effective information communication. 3 lectures, 1 laboratory. Prerequisite: JOUR 203.

JOUR 400 Special Problems for Advanced Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 8 units, with a maximum of 4 units per quarter. Prerequisite: Consent of instructor.

JOUR 401 Global Communication (4)
Global communications facilities and operations; world transmission of information; survey of world wire services and international print and electronic media. Analysis of press operations under varying government ideologies, including third world countries. 4 seminars. Prerequisite: JOUR 203; junior standing.

JOUR 402 Journalism Ethics (4)
Current issues revolving around the social responsibility of the mass media. Role of the public, government, and media in considerations of media accountability. Professional behavior in media organizations. 4 seminars. Prerequisite: JOUR 203 or consent of instructor; junior standing.

JOUR 407 Feature Writing (4)
Practice in researching, interviewing, writing and marketing nonfiction articles for print media, and analysis of similar work in current distribution. 4 lectures. Prerequisite: JOUR 203 or consent of instructor; junior standing.

JOUR 410 Applied Multimedia Reporting (4)
Exploration of the uses of computers for newsgathering and reporting. Focus on information gathering from mass media, governmental and corporate data bases and contextual manipulation using personal computers and mainframe computers. Commercial online and Internet tools (such as the World Wide Web) and database tools used for day-to-day and project oriented reporting. 3 lectures, 1 laboratory. Prerequisite: JOUR 203; junior standing.

JOUR 413 Public Relations Campaigns (3)
Methods employed in dissemination by organizations, institutions and governments. Interaction of media and PR practitioners, strategies for integrating appropriate media to facilitate effective dissemination, case histories, formation and measurement of public opinion. Public opinion survey projects. 3 lectures. Prerequisite: JOUR 203 and JOUR 312 and JOUR 342 or consent of instructor.

JOUR 415 Advanced Public Relations Practice (4)
Application of public relations tools and techniques required to create, manage, and implement a comprehensive, professional public relations campaign. Includes research, planning, writing goals and objectives; establishing themes, strategies, and plan evaluations. Public relations crisis management. 4 lectures. Prerequisite: JOUR 203, JOUR 312, JOUR 342 and JOUR 413.

JOUR 444 Media Internship (3)
Application of techniques on daily basis with media under supervision of department faculty. Prerequisite: Junior standing in Journalism and consent of instructor.

JOUR 460 Senior Project (3)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 90 hours total time.

JOUR 470 Selected Advanced Topics (2–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 2–4 lectures. Prerequisite: Consent of instructor; junior standing.

JPNS–JAPANESE

JPNS 101, 102, 103 Elementary Japanese I, II, III (4) (4) (4)
Beginning Japanese class practice in pronunciation, sentence structure, reading, writing, basic conversation, and introduction to Japanese culture.

Activity drill required. To be taken in numerical sequence. 3 lectures, 1 activity.

KINE–KINESIOLOGY

(See also PE–Physical Education)

PROFESSIONAL ACTIVITIES

Priority for enrollment given to those students pursuing a major in Kinesiology. Kinesiology majors may apply a maximum of 24 units of credit earned in PE 101-199 or KINE 208-239 toward the bachelor's degree. When applicable, course selection should be determined by students after consultation with their advisor. All courses are one or two units and meet for two or four hours per week. The primary purpose of all professional activities is for students to attain intermediate skills in performance and analysis and knowledge of rules and strategy. Secondary purposes may include leadership and teaching experiences. In some classes a beginning level activity class (see Physical Education) will be recommended for individuals who have little or no previous experience.

KINE 208 Golf (1)
KINE 210 Tennis (1)
KINE 211 Softball-Baseball (1)
KINE 212 Handball/Racquetball (1)
KINE 213 Basketball (1)
KINE 214 Volleyball (1)
KINE 216 Wrestling (1)
KINE 217 Flag Football/Box (1)
KINE 218 Aquatics (2)
KINE 219 Progressive Strength Training (1)
KINE 220 Group Fitness Activities (2)
KINE 221 Combatives/Self Defense (1)
KINE 222 Archery (1)
KINE 223 Cross Country and Track Events (1)
KINE 224 Field Events (1)
KINE 225 Team Handball (1)
KINE 226 Soccer (1)
KINE 227 Aerobic Dance Exercise (2)
KINE 228 Cooperative Games and Activities (1)
KINE 229 Badminton (1)

ACADEMIC COURSES

Professional courses designed primarily for the student majoring in kinesiology.

KINE 241 Understanding Fitness and Training (1)
Introduction to physiological principles and factors which provide the basis for the development and maintenance of optimal physical fitness. 1 lecture. Prerequisite: Concurrent enrollment in one course in the PE 101-199 series, or consent of instructor.

KINE 250 Healthy Living (4) GE D4
Personal health with emphasis on healthful behavioral practices including physical fitness, nutrition, psychosocial well-being, alcohol and other drugs, intentional and unintentional injury, reproductive health, infectious and non-infectious diseases. 4 lectures. Not open to students with credit in KINE 255.

KINE 255 Personal Health: A Multicultural Approach (4) GE D4 USCP
Personal health with special emphasis on multicultural practices. Not open to students with credit in KINE 250. 4 lectures.

KINE 270 Orientation to Kinesiology (4)
Designed to acquaint the student with disciplinary and professional perspectives in kinesiology, computer applications, and the Kinesiology program at Cal Poly. 4 lectures.

KINE 275 Sports Officiating (2)
Designed to provide knowledge, understanding, appreciation of officiating in general, and the development of skills in officiating. 1 lecture, 1 activity.
KINE 276 Athletic Coaching Theory (3)
Basic concepts, methods, practices, strategies and philosophies as they apply to competitive athletics. 3 lectures.

KINE 277 Coaching Practicum (2–6) (CR/NC)
Practical experience through the actual coaching of a competitive sports team. 2–6 activities; minimum of 2 hours per week per unit. Total credit limited to 6 units. Credit/No Credit grading only. Learning outcomes must be developmental if more than one practicum is completed. Prerequisite: KINE 276 and consent of advisor.

KINE 280 First Aid/CPR (1) (CR/NC)
An American Red Cross certification course in Standard First Aid Adult/Child/Infant CPR. Skills and knowledge necessary in the treatment of life-threatening emergencies and other injuries and sudden illnesses. Red Cross First Aid/CPR certifications issued upon successful completion of certification requirements. Credit/No Credit grading only. 1 activity.

KINE 300 Planning Techniques in Physical Education (3)
Practical skills and techniques of teaching physical education in schools. Unit and lesson planning, class management, implementation and evaluation of a lesson in a laboratory setting. 2 lectures, 1 laboratory. Prerequisite: KINE 270 and 2 courses from KINE 208-KINE 229 or equivalent. Concurrent: KINE 306.

KINE 301 Functional Muscle Anatomy (1)
Functional organization of the human muscular system. All major muscle groups, with emphasis on segmental motion. 1 laboratory. Prerequisite: KINE 270, ZOO 331 or concurrent enrollment.

KINE 302 Biomechanics (4)
Fundamental biomechanical concepts and their application to human movement activities, and analyses of exercise mechanics and skill performance. 3 lectures, 1 laboratory. Prerequisite: KINE 270, KINE 301, KINE 270.

KINE 303 Physiology of Exercise (4)
Application of human physiology to exercise situations. 3 lectures, 1 laboratory. Prerequisite: KINE 270, ZOO 331, 332 (or transfer equivalent).

KINE 304 Pathophysiology and Exercise (3)
Selected human diseases, their etiology, pathophysiology, symptoms, diagnosis, effects on health and physical performance, and as affected by preventive or therapeutic exercise. 3 lectures. Prerequisite: KINE 303.

KINE 305 Drug Education (2)
Instruction on the nature and effect of the use of tobacco, alcohol, narcotics and restricted dangerous drugs. 2 lectures. Prerequisite: GE Area D4.

KINE 306 Assessment in K-12 Physical Education (3)
Measurement and evaluation techniques in physical education, including statistics, computer applications, and measurement theories. Assessment tools in psychomotor, cognitive, and affective domains. 1 lecture, 2 laboratories. Prerequisite: KINE 270 and STAT 217/STAT 218. Concurrent: KINE 300.

KINE 307 Adapted Physical Activity (4)
Major categories of disabling conditions with implications for the development of physical activity programs for specific disabilities. 3 lectures, 1 laboratory. Prerequisite: KINE 270, GE Area B2 and B3, sophomore standing. Recommended: ZOO 331, 332.

KINE 308 Motor Development (3)
Motor development of individuals from birth to maturity. Emphasis on interrelationship between motor and cognitive characteristics and affective needs and interests. 3 lectures. Prerequisite: KINE 270, GE D4 or consent of instructor.

KINE 309 Creative and Nontraditional Games (3)
Introduction of preparatory teachers to non-traditional and multicultural games and activities which address the State Framework and the National Standards. Students present the activities in a manner which demonstrates effective models of instruction, including maximum participation. 1 lecture, 2 activities. Prerequisite: KINE 300.

KINE 310 Concepts in Elementary Physical Education (2)
Movement as it relates to physical motor skill development, fitness, wellness, social development, cross-cultural understanding, and self-image. 1 lecture, 1 laboratory. Prerequisite: GE D4. Recommended: Junior standing.

KINE 315 Field Sports (3)
Introduction and preparation for teaching field sports in accordance with state and national standards for K-12 physical education programs. Students learn to present activities in a manner that reflects effective models of instruction. 1 lecture, 2 activities. Prerequisite: KINE 300.

KINE 316 Net and Wall Games (3)
Introduction and preparation for teaching net and wall games in accordance with state and national standards for K-12 physical education programs. Students learn to present activities in a manner that reflects effective models of instruction. 1 lecture, 2 laboratories. Prerequisite: KINE 300, KINE 306.

KINE 317 Computer Applications in Kinesiology (2)
Applications of computers, data processing and information technology as related to understanding and solving problems in the field of kinesiology. Total credit limited to 4 units. 2 activities. Prerequisite: Basic computer literacy.

KINE 319 Measurement and Evaluation in Kinesiology (4)
Principles of test selection and administration, measurement and evaluation of data characteristics, and data analysis related to motor behavior and the performance of physical skills. 3 lectures, 1 activity. Prerequisite: KINE 270, STAT 217 or STAT 218.

KINE 323 Sport and Gender (4)
GE D5 USCP
Intersections between sport and gender in American society. Identification and discussion of the historical, sociological and psychological issues that affect the sport experiences of males and females, especially as they relate to class, race/ethnicity, sexuality, and political movements. 4 lectures. Prerequisite: Completion of GE Areas A, D1 and either D3 or D4. Kinesiology majors will not receive GE Area D5 credit.

KINE 324 Sport, Media and American Popular Culture (4)
GE D5 USCP
Issues of class, race/ethnicity, gender, various forms of deviance, and other aspects of social life. Exploration of sociological manifestations and implications of how the aforementioned social issues are embedded in mediated forms of sports. Kinesiology majors will not receive GE Area D5 credit. 3 lectures, 1 activity. Prerequisite: Completion of GE Areas A, D1 and D3.

KINE 354 Health Education Strategies (2)
Introduction to health promotion services, environment, and instruction within public and private settings. Strategies, methods, technology and resources used in the design and delivery of health education about infectious and non-infectious diseases. 2 activities. Prerequisite: BIO 111/BIO 115, KINE 250 or KINE 255.

KINE 384 Water Safety Instructor (4)
Analysis of swimming strokes and techniques with emphasis on teaching methods for beginners through advanced swimmers. Those students who complete the course requirements are eligible for American Red Cross Water Safety Instructor certification. 2 lectures, 2 activities. Prerequisite: Demonstrate proficiency in swimming or instructor permission.

KINE 396 Outdoor Education (3)
Introduction and preparation for teaching Outdoor Education activities in accordance with the Physical Education Content Standards for California. Students learn to present activities in a manner that reflects effective models of instruction. Includes a clinical teaching experience. 1 lecture, 2 activities. Prerequisite: KINE 300, KINE 306, and KINE 384.

KINE 400 Special Problems for Advanced Undergraduates (1–3)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 6 units, with a maximum of 3 units per quarter. Prerequisite: Senior standing or consent of instructor.
KINE 401 Managing Kinesiology Programs (3)
Planning, organizing and controlling programs in public, commercial, private and clinical physical activity settings. Emphasis on legal, ethical and budgetary considerations. 3 lectures. Prerequisite: Senior standing or consent of instructor.

KINE 402 Motor Learning and Control (4)
Variables which control sensory-motor integration. Analysis of factors which affect the acquisition of motor skills as related to the learning process and the learning environment. 3 lectures, 1 activity. Prerequisite: STAT 217 or KINE 251 or consent of instructor.

KINE 405 Community Health Promotion (4)
Practices to educate and empower communities toward actions that resolve health issues and problems. Sociological, historical, educational, environmental and biological influences on health status. 3 lectures, 1 activity. Prerequisite: KINE 250 or KINE 255 and GE Areas A and D3, junior standing.

KINE 406 Neuroanatomy (4)
Structure and function of the human nervous system. Afferent and efferent pathways involved in perception and action. Behavioral aspects of motor control and related neurological dysfunction and pathologies. Designed for allied health professions students. 4 lectures. Prerequisite: ZOO 331 and ZOO 332.

KINE 408 Exercise and Health Promotion for Senior Adults (4)
Special fitness, exercise, and health needs of the senior population. Theories of aging and age-related changes. Health promotion, exercise needs and activity programs for senior adults. 3 lectures, 1 activity. Prerequisite: KINE 250 or KINE 255, and one of the following: KINE 220, KINE 227, KINE 228, or KINE 219, senior standing or consent of instructor.

KINE 410 Psychology of Coaching (3)
Psychological considerations of the coach-athlete relationship and mental preparation of teams and individuals for competition and practice. Special emphasis on the male and female adolescent with regard to the psychological implications of sports participation. 3 lectures. Prerequisite: Junior standing. Recommended: PSY 201 or PSY 202.

KINE 411 Psycho/Social Aspects of Physical Activity (4)
Psychological and sociological effects of physical activity on individuals and groups in American society. 4 lectures. Prerequisite: KINE 270 and junior standing. Recommended: Completion of GE Areas A and D3, PSY 201 or PSY 202.

KINE 416 Physical Education/Recreation Facilities (3)
Management, clientele considerations, facilities and outdoor areas planning and operations, personnel, finance and equipment as related to physical education and recreation areas and facilities. Consideration of architectural and environmental barriers. Field visits required. 3 lectures. Prerequisite: Upper division standing and consent of instructor for non-KINE/REC majors.

KINE 419 Physical Education Program Content in the Elementary School (3)
Cognitive and psychomotor competencies required to design a developmental physical education program for elementary aged school children. 2 lectures, 1 activity. Prerequisite: KINE 300 and two activity classes.

KINE 421 Strategies for Teaching Physical Education (3)
Systematic analysis and refinement of teaching skills within the discipline of physical education. 2 lectures, 1 activity. Prerequisite: KINE 419.

KINE 422 Teaching Elementary School Physical Education (4)
Implementation of a developmental physical education program for elementary aged children. The program will compliment that conducted in the local public schools. 1 lecture, 1 seminar, 2 laboratories. Prerequisite: KINE 421.

KINE 423 Teaching Middle School Physical Education (4)
Techniques for teaching physical education in middle school. Emphasis on class organization, lesson plan development and evaluation, class management and control, and understanding the middle school setting. For students teaching middle school physical education in the local public schools. 1 lecture, 1 seminar, 2 laboratories. Prerequisite: KINE 422.

KINE 424 Organization and Implementation of a K-12 Physical Education Program (4)
Methods of teaching K-12 physical education, with emphasis on alignment with the California Physical Education Challenge Standards, English language learners, special students, and educational technologies. 4 lectures. Prerequisite: KINE 425 or consent of instructor.

KINE 425 Teaching High School Physical Education (4)
Techniques for teaching physical education in high schools. Emphasis on teaching strategies, organization, lesson plan development, self-evaluation, class management, and behavior management. 1 seminar, 1 lecture, 2 laboratories. Prerequisite: KINE 423, and one 300-level activity class.

KINE 426 Senior Seminar (2)
Capstone course which engages students in activities that integrate the sub-disciplines of kinesiology, and facilitates the development of a personal portfolio. 2 seminars. Prerequisite: Senior standing.

KINE 434 Planning Health Promotion Programs: Theory and Practice (4)
Theory and methods to facilitate individual and group behavior change to promote health and prevent disease. Concepts in the behavioral sciences affecting health behavior, motivation, and decision making. Development of planning and evaluation skills. 3 lectures, 1 activity. Prerequisite: KINE 250 or KINE 255, completion of GE Areas A and D3, and junior standing.

KINE 437 Directed Fieldwork (1–3) (CR/NC)
Practical work experience in related activities of kinesiology under qualified supervision. Total credit limited to 9 units. Credit/No Credit grading only. Minimum of 2 laboratory hours per week per unit. Prerequisite: Senior standing or consent of instructor.

KINE 438 Adapted Physical Activity Fieldwork (1–3) (CR/NC)
Practical experience in adapted physical activity programming. Students plan and conduct physical activity programs for people who are disabled. Total credit limited to 6 units. Credit/No Credit grading only. Prerequisite: KINE 307, and consent of instructor.

KINE 440 Physical Education Practicum (1)
Supervised experience involving organizational and instructional responsibilities in activity, lecture and/or laboratory classes as determined by curricular concentration or certificate program. Total credit limited to 3 units. Prerequisite: Consent of instructor.

KINE 443 Comprehensive School Health Education (4)
Course content includes the health status of children K–12, and the recommendations of the California Health Framework. 4 lectures. Prerequisite: KINE 250 or KINE 255.

KINE 445 Electrocardiography (4)
Basic principles of electrocardiography, including practical skills of the ECG technician. Recognition of normal ECG patterns and abnormal changes related to rhythm disturbances, conduction defects, myocardial ischemia/infarction, and exercise. 3 lectures, 1 laboratory. Prerequisite: KINE 303 or consent of instructor.

KINE 446 Echocardiography (4)
Basic principles of echocardiography, including practical skills of the echocardiographer. Recognition of normal echocardiographic patterns and abnormalities, including those caused by pathology and exercise conditioning. 2 lectures, 2 laboratories. Prerequisite: KINE 445 or consent of instructor.

KINE 450 Worksite Health Promotion Programs (3)
Designed to acquaint students with those events, situations and relationships leading to healthy lifestyles in fitness and occupational settings. Design and implementation of workplace health promotion programs. 3 lectures. Prerequisite: KINE 250 or KINE 255, KINE 434, and senior standing.

2007-2009 Cal Poly Catalog
KINE 451 Nutrition for Fitness and Sport (5)
Application of nutritional and metabolic facts to selected aspects of physical training, degenerative disease, obesity and weight control, diet manipulation and modification in sport, nutritional supplementation and special dietary considerations for the young and old, male and female athletes. 5 lectures. Prerequisite: KINE 250 or KINE 255, KINE 303. Recommended: CHEM 313.

KINE 452 Testing and Exercise Prescription for Fitness Specialists (4)
Selected areas of health/fitness screening and evaluation. Application of components relevant to the development and administration of exercise programs for persons regardless of sex, age, functional capacity and presence or absence of CHD or CHD risk factors. 2 lectures, 2 laboratories. Prerequisite: KINE 303, KINE 445 (or concurrent enrollment in KINE 445) or consent of instructor.

KINE 461 Senior Project (1)
Comprehensive report, or a field experience, or a synthesis of professional literature that integrates content from kinesiology courses. Topic must be approved by the instructor. 1 laboratory. Prerequisite: KINE 319 and completion of GE Area A.

KINE 462 Research Honors Senior Project (2-4)
Completion of an advanced research, or creative project. Intended for students taking a significant or leadership role in a professional area. Results may be submitted for poster presentation or other public/professional forum. 2-4 laboratories (minimum 60 hours). Prerequisite: KINE 319, completion of GE Area A, and consent of instructor.

KINE 463 Exercise Science and Health Promotion Fieldwork (3)
(CR/NC)
200 hours of concentration specific practical experience over a ten-week period at an approved agency that provides exercise/fitness/health promotion programs. Students participate in program administration under the direct supervision of an approved on-site coordinator. Credit/No Credit grading only. Prerequisite: KINE 319, completion of GE Area A, and consent of instructor.

KINE 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1-4 lectures. Prerequisite: Consent of instructor.

KINE 471 Selected Advanced Laboratory (1-4)
Directed group laboratory study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1-4 laboratories. Prerequisite: Consent of instructor.

KINE 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

KINE 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

KINE 500 Individual Study (1–3)
Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Enrollment by petition. Only 6 units may be applied to degree requirements. Prerequisite: KINE 517 and consent of department head, graduate advisor, and supervising faculty member.

KINE 501 Evaluation of Current Studies (3)
Analysis and evaluation of published studies in kinesiology. 3 seminars. Prerequisite: Graduate standing.

KINE 502 Current Trends and Issues in Physical Education and Sport (3)
Practical problems in physical education and sport and their solution in terms of desired objectives in these fields. 3 seminars. Prerequisite: Graduate standing.

KINE 503 Current Health Issues (3)
Advanced seminar investigating current health issues. Factors that influence health status, current and historical trends in health and disease, and the healthcare system in the U.S. 3 seminars. Prerequisite: KINE 250 or KINE 255 and graduate standing or consent of instructor.

KINE 504 Advanced Pathophysiology and Exercise (3)
Selected human diseases, their etiology, pathophysiology, symptoms, diagnosis, effects on health and physical performance, and as affected by preventive or therapeutic exercise. Not open to students with credit for KINE 304. 3 lectures. Prerequisite: KINE 503 or equivalent, and graduate standing.

KINE 505 Introduction to Issues, Ethics and Policies in Teaching (1)
(CR/NC)
Knowledge and skills of teaching at the college level. Preparation and support for teaching activity and laboratory classes in the department. Preparation of students to be supervisors and teachers in their current or future employment. Credit/No Credit grading only. 1 seminar. Prerequisite: Graduate standing.

KINE 510 Health Behavior Change (3)
Examination of contemporary research, theory and practice related to facilitating healthy behavior change. Analysis of health problems from biological, ecological, and psycho-social perspectives with emphasis on understanding the acquisition and maintenance of healthy behavior. 3 seminars. Prerequisite: KINE 250 or KINE 255, KINE 503 or KINE 504.

KINE 511 Management and Administration in Kinesiology (3)
Principles and techniques of administration in health, activity and academic settings including budget, personnel supervision, resource acquisition, leadership techniques, and facility management. 3 seminars. Prerequisite: Graduate standing.

KINE 517 Research Methods in Kinesiology (3)
Experimental, descriptive, historical, philosophical, survey, and action research in kinesiology. Selection of adequate problems for investigation; various sampling techniques and analyses; use of library facilities; manuscript requirements for the thesis. 3 seminars. Prerequisite: KINE 501 or consent of instructor.

KINE 522 Advanced Biomechanics (3)
Advanced biomechanical concepts applied to human movement, examination of research, and biomechanical analyses of movement activities. 2 seminars, 1 laboratory. Prerequisite: KINE 502 or equivalent.

KINE 525 Advanced Motor Learning and Control (3)
Analysis of control theories, research principles and motor learning variables involved in the acquisition of skilled movement with an emphasis on the behavioral level of learning. 3 seminars. Prerequisite: KINE 402 or equivalent.

KINE 526 Sport and Exercise in Society (3)
Understanding the role of physical activity and sport as viewed from psychological/sociological perspectives. 3 seminars. Prerequisite: Graduate standing or consent of instructor.

KINE 530 Advanced Physiology of Exercise (4)
Physiological determinants of physical work capacity and sports performance. 3 seminars, 1 laboratory. Prerequisite: KINE 303 and graduate standing.
KINE 534 Planning Health Promotion Programs: Theory and Practice (4) (formerly KINE 514)
Theory and methods to facilitate individual and group behavior change to promote health and prevent disease. Concepts in the behavioral sciences affecting health behavior, motivation, and decision making. Development of planning and evaluation skills. 3 seminars, 1 activity. Prerequisite: KINE 250 or KINE 255, KINE 503 or KINE 504.

KINE 536 Advanced Electrocardiography (4)
Theory and application of electrocardiography and other techniques for cardiovascular assessment and treatment of cardiac disease and other abnormalities. 3 seminars, 1 laboratory. Prerequisite: KINE 445 or equivalent and graduate standing.

KINE 537 Internship (3–12) (CR/NC)
Supervised work experience in an approved wellness/fitness clinical facility, school, or other faculty approved setting. Total credit limited to 12 units. Maximum of 6 units may be applied toward Master of Science in Kinesiology. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor. Student must be advanced to candidacy.

KINE 539 Observation and Analysis of Teaching Physical Education and Coaching Sports (3)
Observation and analysis of teaching physical and sport education with special emphasis in pedagogical systems. 2 seminars, 1 laboratory. Prerequisite: KINE 421 or equivalent and graduate standing.

KINE 581 Graduate Seminar in Kinesiology (1–3)
Directed group study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 6 units. 1–3 seminars. Prerequisite: Graduate standing or consent of instructor.

KINE 585 Cooperative Education Experience (6) (CR/NC)
Advanced study analysis and part-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Total credit limited to 9 units. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

KINE 599 Thesis or Project (1–6)
Completion of a thesis or project pertinent to the field of kinesiology. Independent research under the guidance of the faculty. Prerequisite: KINE 517, consent of graduate committee and supervising faculty member.

LA–LANDSCAPE ARCHITECTURE

LA 101 Introduction to Landscape Architecture (4)
Introduction to the profession of landscape architecture and orientation to the department curriculum and learning processes. 3 lectures, 1 discussion.

LA 130 Landscape Interpretation (4)
Introduction to the relationships between culture and art, architecture and the natural environment through the description and exploration of significant landscapes and related societies and cultures. 4 lectures.

LA 170 Principles of Design Communication (4)
Overview of design communications for landscape architects incorporating the principles, techniques, skills and tools used in design generation, exploration, review and implementation. 4 laboratories. Prerequisite: LA 101; concurrent: LA 202.

LA 202 Design Fundamentals I (4)
Introduction to the principles, methods and elements of two- and three-dimensional design in order to communicate intended concepts and meanings. Exploration of the basic design elements including composition, design process and the creation of spatial settings. 4 laboratories. Prerequisite: LA 101, LA 130; concurrent: LA 170.

LA 203 Design Fundamentals II (4)
Continuation of ideas introduced in LA 202 with the introduction of environmental and visual perception, including three-dimensional site design and landscape architectural design principles. Spatial design and sequencing of space with concern for human behavioral, environmental and natural site factors and generation of program, concept and design development. 4 laboratories. Prerequisite: LA 202, LA 170; concurrent: LA 220.

LA 204 Design Fundamentals III (4)
Continuation of ideas introduced in LA 202 and LA 203 with the introduction of the principles of design theory, landscape ecology and technical applications. Problems of increasing complexity incorporate critical and creative problem solving, the relationship of aesthetics, response to human needs and design for sustainable environments. 4 laboratories. Prerequisite: LA 203; LA 220; concurrent: LA 241.

LA 211 History of Landscape Architecture: Ancient Civilizations through Colonial America (4) GE C3
Exploration of the continuous alteration of the landscape through recorded time and examination of how humankind has influenced this change. The metaphor of “garden” provides understanding for agrarian regions, urban spaces, and vernacular landscapes of the world. 4 lectures.

LA 212 History of Modern and Contemporary Landscape Architecture (4) GE C3
Philosophies and ethics of important personalities in twentieth century landscape architecture. Design theories supporting these individuals’ projects and the nature of their practice, combined with the influential events in industry, the arts and sciences, politics, and society of this century. 4 lectures.

LA 213 Site and Terrain Analysis (4)
Introduction to various inventory and analysis methodologies, case study reviews, mapping and overlay techniques, environmental ethics and an overall understanding of the function and structure of the natural landscape. Visual assessment, synthesis techniques and relating mapped analytical data with design program analysis for use in site planning. 2 lectures, 2 laboratories. Enrollment limited to CRP and LA majors.

Concepts, theories and techniques related to landscape analysis, ecology, planning and design with an emphasis on landscape assessment, sustainability, land health, environmental protection and restoration, and natural resource management. 4 lectures. Prerequisite: LA 101, LA 202, LA 170, BOT 121; concurrent: LA 203.

LA 221 California Plants and Plant Communities (4)
(Also listed as BOT 221)
Introduction to the horticultural characteristics and landscape design potential of California native plants, California plant communities and associated vernacular plants. Includes experiences in field identification, basic planting design, installation techniques and maintenance requirements. Required field trips. 2 lectures, 2 laboratories. Prerequisite: BOT 121 or consent of instructor.

LA 240 Additional Landscape Architecture Laboratory (1–3)
Total credit limited to 6 units, with a maximum of 3 units per quarter. 1–3 laboratories.

LA 241 Site Engineering Techniques and Applications (4)
Introduction and application of the techniques, methods, principles and criteria for site engineering and landform design. Includes an introduction to soil science, survey methods, and experiences in the principles, procedures and application of site grading and drainage for landscape architecture. 4 laboratories. Prerequisite: LA 220, MATH 118/119; concurrent: LA 204.

LA 242 Implementation Strategies (4)
Introduction and application of the methods, principles and criteria for landscape implementation. Encompasses fundamental design and technical decisions common to landscape architectural design and construction projects including the development of concept, design development and working drawings, and construction management process. 3 lectures, 1 activity. Prerequisite: LA 204, LA 241; concurrent: LA 243.
LA 243 Materials and Techniques of Landscape Construction (4)
Introduction to the properties, uses and inherent qualities of the fundamental materials of landscape architecture and associated construction techniques and processes. Materials and techniques explored as a source of design ideas, form and expression in landscape architecture. 3 lectures, 1 activity. Prerequisite: LA 204, LA 241; concurrent: LA 242.

LA 317 The World of Spatial Data and Geographic Information Technology (4)
GE Area F
(Also listed as BIO/FNR/GEOG 317)
Basic foundation for understanding the world through geographic information and the tools available to utilize spatial data. Application of Geographic Information Systems (GIS) and related technologies, including their scientific basis of operation. 3 lectures, 1 activity. Prerequisite: A course in computer science, completion of Area B, and junior standing.

LA 318 Applications in GIS (3) (Also listed as FNR 318)
ARC/INFO and ArcView Geographic Information System (GIS) computer software to explore environmental, natural resource, social and economic issues using spatial data. Develop and apply data base and software management competencies. 1 lecture, 2 laboratories. Prerequisite: Junior standing, computer literacy or consent of instructor.

LA 320 Design Theory for Landscape Architects (4)
Complements the material and knowledge presented in the history of LA 320 Design Theory for Landscape Architects (4) of the material and knowledge presented in the history of the field of landscape architecture, architecture and art courses. Design theory and associated concepts as they are related to landscape architecture. Literature research and analysis of completed design projects. The artists/designers, materials and overall expressions of work are related to the social and economic issues of the time as well as their associations with the other arts and sciences. 4 lectures. Prerequisite: LA 211, LA 212, or consent of instructor.

LA 330 Cultural Landscapes: People, Places and Ethical Decisions (4)
Investigation of the complexities and interrelatedness of culture, environment and ethical decisions. Interpretation of personal and cultural values and ethics in terms of decisions made and behaviors and actions expressed in the built landscape. 3 lectures, 1 activity. Prerequisite: LA 211, LA 212; concurrent: LA 320.

LA 349 Advanced Planting Design (3)
Advanced examination of the theories and applied principles of planting design. Emphasis on connections between art and science in the design of parks, gardens and other landscapes. Case studies and field trips. 2 lectures, 1 activity. Prerequisite: EHS 231, EHS 232 and EHS 381 or LA 221.

LA 363 Recreation and Open Space Planning and Design (4)
Planning and design methods for meeting leisure requirements. Issues of recreation and society. Relationship of recreation and open spaces, assessment of needs and supply of resources. 3 lectures, 1 activity. Prerequisite: Must have completed minimum of one 200-level course in planning, design or recreation and third-year standing or consent of instructor.

LA 370 Professional Practice (4)
Issues related to the practice of landscape architecture incorporating processes, procedures and outcomes of professional practice. Topics include professional ethics, business and legal aspects of the profession, relationships to the client and society, personal goal setting, resume and portfolio preparation. 4 lectures. Prerequisite: LA 204.

LA 371 Internship (3) (CR/NC)
Involvement in a work setting related to landscape architecture. Thirty hours work experience per unit of credit. Credit/No Credit grading only. Prerequisite: Third year standing in Landscape Architecture.

LA 400 Special Problems for Advanced Undergraduates (1–3)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 6 units, with a maximum of 3 units per quarter. Prerequisite: Consent of instructor.

LA 401 Research Project (1) (CR/NC)
Research methods in landscape architecture and proposal writing techniques. Students prepare proposal and strategy for fifth year study in area of concentration. Credit/No Credit grading only. 1 seminar. Prerequisite: LA 451 and LA 452.

LA 402 Design Theory and Exploration Focus Studio (4)
Exploration and application of design theory, exploratory design process and form exploration to design and planning projects. Emphasis on incorporation of inquiry techniques based on the synthesis of interdisciplinary frameworks of art and design theory with historical and cultural issues. Total credit limited to 12 units. 4 laboratories. Prerequisite: LA 204, LA 211, LA 212 or consent of instructor; prerequisite or concurrent: LA 320; concurrent: Integrated Learning Course (ILC) of student’s option.

LA 403 Natural Environments Design Focus Studio (4)
Assessment, exploration and integration of landscape ecology, sustainability and environmental planning to design and planning projects. Emphasis on interpretation and application of environmental and ecological issues at a range of design scales. Total credit limited to 12 units. 4 laboratories. Prerequisite: LA 204, LA 220, LA 211, LA 212 or consent of instructor; concurrent: Integrated Learning Course (ILC) of student’s option.

LA 404 Cultural Environments Design Focus Studio (4)
Assessment, exploration and interpretation of cultural values, issues and landscapes to design and planning projects. Emphasis on observation and inquiry of diverse cultural settings, differences in cultural values and personal ethics in the design process. Total credit limited to 12 units. 4 laboratories. Prerequisite: LA 204, LA 211, LA 212 or consent of instructor; concurrent: Integrated Learning Course (ILC) of student’s option.

LA 405 Project Design and Implementation Focus Studio (4)
Development, exploration and integration of project design and implementation strategies to design and planning projects. Emphasis on creative and exploratory problem solving, spatial design, project resolution, and graphic communication. Total credit limited to 12 units. 4 laboratories. Prerequisite: LA 204, LA 243, LA 242, LA 241 or consent of instructor; concurrent: Integrated Learning Course (ILC) of student’s option.

LA 411 Regional Landscape History (3)
Developmental history of the landscape in the western region with specific focus on the Basin and Range region and California. One or more field trips required. 3 lectures. Prerequisite: Fourth year standing or consent of instructor.

LA 431 CAD and Digital Media Communications (ILC) (4)
Integrated Learning Course (ILC) to assist integration and application of computer-aided drafting (CAD) skills in coursework, project planning and design studio courses. Focus on CAD skills and integration of digital media. Total credit limited to 12 units. 4 activities. Prerequisite: LA 170, LA 204 or consent of instructor; concurrent: Design Focus Studio of student’s option.

LA 432 Landscape Ecology Applications (ILC) (4)
Integrated Learning Course (ILC) to assist integration and application of landscape ecology principles in project planning and design studio courses. Focus on understanding and developing a framework for ecological planning and design to anticipate consequences of planning and design decisions. Total credit limited to 12 units. 4 activities. Prerequisite: LA 220, LA 221 or consent of instructor; concurrent: Design Focus Studio of student’s option.

LA 433 Cultural Environments (ILC) (4)
Integrated Learning Course (ILC) to assist integration and application of culture, environment and personal ethics in coursework, project planning and design studio courses. Focus on skills, distinctions and integration of the cultural landscape, understanding diverse cultural values and assessing personal ethics. Total credit limited to 12 units. 4 activities.
Prerequisite: LA 211, LA 320, LA 330 or consent of instructor; concurrent: Design Focus Studio of student’s option.

LA 434 Project Design and Implementation (ILC) (4)
Integrated Learning Course (ILC) to assist integration and application of project design principles and implementation strategies in project planning and design studio courses. Focus on skills, techniques and decisions of the design, documentation and construction processes. Total credit limited to 12 units. 4 activities. Prerequisite: LA 241, LA 242, LA 243 or consent of instructor; concurrent: Design Focus Studio of student’s option.

LA 435 Professional Practice (ILC) (4)
Integrated Learning Course (ILC) to assist integration and application of professional practice principles and techniques in planning and design studio and internship courses. Focus on achieving a high level of professional quality, ethical concern, and legal responsibility in project work. Total credit limited to 12 units. 4 activities. Prerequisite: LA 370 or consent of instructor; concurrent: Design Focus Studio of student’s option.

LA 436 Traditional and Digital Media Communications (ILC) (4)
Integrated Learning Course (ILC) to assist integration and application of graphic communication and presentation skills in coursework, project planning and design studio courses. Focus on skills, distinctions and integration of traditional and digital media explorations. Total credit limited to 12 units. 4 activities. Prerequisite: LA 170, LA 202, LA 203, LA 204 or consent of instructor; concurrent: Design Focus Studio of student’s option.

LA 437 3D Digital Design Communications (ILC) (4)
Integrated Learning Course (ILC) to assist integration and application of 3D digital graphic communication and presentation skills in coursework, project planning and design studio courses. Focus on skills and integration of three-dimensional digital media explorations. Total credit limited to 12 units. 4 activities. Prerequisite: LA 170, LA 204 or consent of instructor; concurrent: Design Focus Studio of student’s option.

LA 438 GIS Application to Design Projects (ILC) (4)
Integrated Learning Course (ILC) to assist integration and application of geographic information systems (GIS) and spatial information into focus design studio courses. Total credit limited to 12 units. 4 activities. Prerequisite: LA 220 or consent of instructor; concurrent: Design Focus Studio of student’s option.

LA 442 Professional Practice II (2)

LA 451 Regional Landscape Assessment (6)
Emphasis on regional landscape assessment and design techniques utilizing geographic information systems (GIS) techniques. Land planning and design issues in regional scale environments. 6 laboratories. Prerequisite: LA 353 or consent of instructor.

LA 452 Urban Design Collaborative for Landscape Architects (5)
Emphasis in urban and community design issues related to landscape architecture; scales of investigation and application; community involvement techniques. 5 laboratories. Prerequisite: LA 353.

LA 454, LA 455, LA 456 Design for Landscape Architects I, II, III (4) (4) (4)
Advanced design studio. Emphasis is on complex design problems and special environmental situations or interdisciplinary work and involvement in current design issues. At least one course in the series must be self-directed. 4 laboratories. Prerequisite: Completion of fourth-year design sequence (LA 451, LA 452, LA 461).

LA 461 Senior Design Project Focus Studio (4)
Comprehensive landscape architectural design and research project showing professional level competency in the integration of design theory, landscape architectural principles and project resolution. Emphasis on creative resolutions, organization and communication skills and technical abilities in program generation, design process, design and research. Total credit limited to 8 units. 4 laboratories. Prerequisite: Completion of Design Focus Sequence (20 units from LA 402-LA 405).

LA 464 Senior Seminar (1) (CR/NC)
Identification and exploration of problems and opportunities in the environmental design field. Intensive thinking, research and discussion of issues relating to local, regional or global significance. To be taken each quarter during fifth year. Credit/No Credit grading only. 1 seminar. Prerequisite: Fifth-year standing in Landscape Architecture.

LA 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

LA 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 laboratories. Prerequisite: Consent of instructor.

LA 481 Visual Resource Management Methods (3)
Investigation and application of the major visual resource management methods relevant to landscape architecture. Theoretical basis for visual resource assessment, the different assessment techniques, and the process of translating assessment results into visual resource management techniques. 2 lectures, 1 laboratory. Prerequisite: Fourth-year or graduate standing, or consent of instructor.

LA 482 Evaluating Social and Behavioral Factors for Open Space Design (3)
User oriented approach to open space design. Interview and survey techniques, behavioral trace mapping and systematic observation, post occupancy evaluation and similar methods are used to generate user input and feedback in the design process. Understanding the behavioral implications of designed environments. 2 lectures, 1 laboratory. Prerequisite: Fourth- or fifth-year standing, or consent of instructor.

LA 483 Special Studies in Landscape Architecture (1–12)
Special issues and problems through research, field trips, seminars and other forms of investigation and involvement. Course requirements are determined prior to each individual project through a contractual agreement between students and department. Departmental Off Campus Study Program guidelines apply. Total credit limited to 36 units. 1–12 activities. Prerequisite: Fourth- or fifth-year standing, or consent of instructor.

LA 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Junior standing and consent of instructor.

LA 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Junior standing and consent of instructor.

LA 551 Regional Landscape Assessment I (4)
Definition, research and filing of data covering the biological, cultural and physical resources of a specific region. Concepts of regionalism, land planning, reclamation and preservation are integral to the course. Utilization of mainframe and microcomputer facilities and software. 4 laboratories. Prerequisite: Graduate standing or consent of instructor.

LA 552 Regional Landscape Assessment II (4)
Application of data manipulation techniques in order to model both impacts on natural systems and land development potentials. Use of
planning strategies to predict outcomes resulting from the land use decision process. Utilization of mainframe and microcomputer facilities and software. 4 laboratories. Prerequisite: LA 551 and graduate standing.

LA 585 Cooperative Education Experience (6) (CR/NC)
Advanced study analysis and part-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Total credit limited to 9 units. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

LA 595 Cooperative Education Experience (12) (CR/NC)
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

LIB—LIBRARY

LIB 101 Library Instruction (1)
Instruction and practice in the use of the on-line catalog, reference books, periodical indexes, government documents, and other library materials. Development of student independence and initiative in using the library as a source of information. 1 lecture.

LIB 302 Library Resources and Literature Searches (1–4)
Sources of information and search strategies in major subject fields. Reference materials, bibliographic aids, indexing and abstracting tools, and Internet sources. Evaluation of sources. The Schedule of Classes will list major subject area covered. Total credit limited to 4 units. 1–4 lectures. Prerequisite: ENGL 134, junior standing or consent of instructor.

LIB 402 Library Resources and Literature Searches (1–4)
Sources of information and search strategies in major subject fields. Reference materials, bibliographic aids, indexing and abstracting tools, and Internet sources. Evaluation of sources. The Schedule of Classes will list major subject area covered. Total credit limited to 12 units. 1–4 lectures. Prerequisite: ENGL 134, junior standing or consent of instructor.

LIB 502 Library Resources and Literature Searches (1–4)
Courses of information and search strategies in major subject fields. Reference materials, bibliographic aids, indexing and abstracting tools, and Internet sources. Evaluation of sources. Literature review process for a master's thesis. The Schedule of Classes will list major subject area covered. Total credit limited to 12 units. 1–4 lectures. Prerequisite: Graduate standing, field. Total credit limited to 9 units. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

LS—LIBERAL STUDIES

LS 101 Orientation to Liberal Studies (1)
Exploration of the Liberal Studies Program as preparation for the Multiple Subject Credential and for a teaching career in California. To be taken during the first quarter in attendance at Cal Poly as a Liberal Studies major. 1 lecture.

LS 214 Constitutional Issues in the History of U.S. and California Education (4)
Examination of U.S. and California constitutions, significant legislation, and court cases affecting public education from the colonial period to the present. Overview of contributions by individuals of historical, national, and international educational significance. Examination of landmark decisions. 4 lectures.

LS 230 Field Experience I (2)
Overview of current practices and issues in elementary education, including teacher compensation, cultural impact on schools, time and classroom management, English learners, and the affective aspect of teaching. 30 hours of fieldwork required. 1 lecture, 1 activity.

LS 250 Field Experience II (2)
Overview of current practices and issues in elementary education, including components of effective teaching, motivating students, diagnostic/prescriptive teaching, curriculum, and accountability. In addition to class time, 30 hours of fieldwork required. 1 lecture, 1 activity.

LS 270 Introduction to Visual and Performing Arts Standards in the Elementary Classroom (4)
Introduction to the California visual and performing arts teaching standards. Emphasis on aesthetic perception, creative expression, historical/cultural context, aesthetic valuing and application to the elementary classroom. 4 lectures.

LS 310 Storytelling: The Oral Tradition (4)
Techniques for performing traditional folktales and myths in primary and secondary teaching situations. Selection, preparation and presentation of folklore for an audience; history of folk literature and mythology. 4 lectures. Prerequisite: COMS 101 or COMS 102.

LS 311 Visual Arts in the Elementary Classroom (4)
Theory and philosophy of visual arts, through multi-strategies, as related to child development and visual arts processes for the elementary classroom. 4 lectures. Prerequisite: LS 270 or consent of instructor.

LS 312 Advanced Visual Arts in the Elementary Classroom (4)
Application of visual arts, through multi-strategies including direct classroom application, as related to child development and visual arts processes for the elementary setting. 4 lectures. Prerequisite: LS 311.

LS 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: consent of instructor, junior standing.

LS 461 Senior Project Seminar (4)
Examination of issues in education of state, national and international concern. Students prepare presentations and conduct individual research and analysis of selected problems. Substantial research paper required. 4 seminars. Prerequisite: Senior standing, completion of GWR or consent of instructor.

MATE—MATERIALS ENGINEERING

MATE 110 Introduction to Materials Engineering Design I (1)
Laboratory work in teams to design, build and test a product. Material from math, science and engineering courses tied together. 1 laboratory.

MATE 120 Introduction to Materials Engineering Design II (1)
Second design laboratory, working in teams on a project that benefits humanity. Issues of engineering ethics, technology and society, the environment and sustainability also studied. 1 laboratory.

MATE 130 Introduction to Materials Engineering Design III (1)
Third design laboratory in a sequence. Includes working in teams on project that benefits humanity. Issues of engineering ethics, technology and society, the environment and sustainability also studied. 1 laboratory.

MATE 200 Special Problems for Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 8 units, with a maximum of 4 units per quarter. Prerequisite: Consent of department head.

MATE 210 Materials Engineering (3)

MATE 215 Materials Laboratory I (1)
Laboratory experiments on the heat treatment and resulting properties of metals. Effects of cold deformation of metals. Brittle-ductile fracture
behavior, equilibrium phase relationships, corrosion. Mechanical behavior of polymers. Properties of semiconductor devices. 1 laboratory.
Prerequisite or concurrent: MATE 210.

MATE 222 Materials Selection for the Life Cycle (4)
Materials and product design, materials selection methodologies using current software, principles of green engineering, eco-design, and sustainability. Life cycle analysis of engineered products using current software. Ecological impact of materials and processes. Case studies used to illustrate concepts. 4 lectures. Prerequisite: MATE 210 or consent of instructor.

MATE 225 Materials Laboratory II (1)

MATE 232 Nanotechnology, Human Biology, Ethics and Society (4)
(Also listed as BIO 232)
Focus on four nanotechnology examples as focal points for themes of nanoscale science and technology, human biology, society, ethics, and systems thinking: gold nanoshells for cancer treatment; molecular manufacturing; tissue engineering of a vital organ; and a microfluidic glucose sensor. The focal points provide natural contexts for learning biology at the cellular level, the molecular level, the organ level and the biological systems level, respectively. 4 lectures. Prerequisite: GE Areas B1, B2, B3.

MATE 235 Materials Laboratory III (1)
Interpretation of microstructures in metals and alloys from manufacturing processes; laboratory methods for revealing and documenting such microstructures. 1 laboratory. Prerequisite: MATE 225. Concurrent: MATE 232.

MATE 310 Noncrystalline Material Systems (4)
Design and synthesis of noncrystalline material systems. Synthesis, processing techniques, properties and fabrication methods of organic and inorganic polymeric materials. 3 lectures, 1 laboratory. Prerequisite: MATE 210. Concurrent: MATE 350.

MATE 330 Hybrid Material Systems (4)
Design of hybrid material systems, including polymer-matrix, ceramic-fiber composites. Materials (matrices, fibers) and manufacturing methods treated in detail. 3 lectures, 1 laboratory. Prerequisite: MATE 210, MATE 350, CE 204 or consent of instructor. Concurrent: MATE 370.

MATE 340 Electronic Materials Systems (4)
Design of electronic materials systems utilizing the basic concepts in electron theory of solids, electrical properties and conduction in materials, magnetic phenomena and optical properties in materials. 3 lectures, 1 laboratory. Prerequisite: MATE 210, PHYS 133, EE 201, EE 251. Concurrent: MATE 360.

MATE 350 Structural Materials Systems (4)
Design of structural materials systems. Topics include continuum mechanics — stress, strain, elasticity, anelasticity, plasticity. 3 lectures, 1 laboratory. Prerequisite: MATE 210, CE 204; MATE 310 should be taken concurrently.

MATE 359 Living in a Material World (4)
(Also listed as HIST 359)
Evolution of materials (ceramics, metals, polymers, composites, semiconductors) in the context of history. Traces the link between historical and technological developments enabled by materials from the Stone Age to the Electronic Age. 4 lectures. Prerequisite: Completion of GE Area B, and junior standing.

MATE 360 Metallurgical Materials Systems (4)
Mass and energy balances applied to metallurgical materials systems, design of materials products and processes including evaluation of energy needs and input/output stream compositions. 3 lectures, 1 laboratory. Prerequisite: MATE 210, STAT 312. Concurrent: CHEM 305, MATE 340.

MATE 370 Process Design (4)
Design of processes for engineering materials. Topics include kinetics in materials: solid-state diffusion (steady-state and non-steady-state), nucleation and growth kinetics, solid state phase transformations. 3 lectures, 1 laboratory. Prerequisite: MATE 360. Concurrent: MATE 330.

MATE 400 Special Problems for Advanced Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 8 units, with a maximum of 4 units per quarter. Prerequisite: Consent of department head.

MATE 401 Materials Characterization (3)

MATE 406 Materials Characterization Laboratory (2)

MATE 425 Corrosion Engineering (4)
Forms of corrosion. Influences of environmental variables on corrosion. Methods of corrosion control. 3 lectures, 1 laboratory. Prerequisite: CHEM 125 or CHEM 128, MATE 210, MATE 215. Materials analysis and characterization course or Special topics course.

MATE 430 Microfabrication (3)
Silicon-based fabrication science and technology. Oxidation, diffusion, ion implantation, etching, chemical and physical vapor deposition, photolithography. 3 lectures. Prerequisite: MATE 210. Prerequisite or concurrent: MATE 360 or permission of instructor. Materials processing course.

MATE 435 Microfabrication Laboratory (2)
Basic processes involved in microfabrication; cleanroom protocol, oxidation, diffusion, photolithographic and etching processes, sputtering and evaporation, process development through experimentation, device testing. Each student will be part of a 4-6 person team that will fabricate a micro electronic device or integrated circuit. 2 laboratories. Prerequisite or concurrent: MATE 430, STAT 312 or equivalent. Materials processing course.

MATE 440 Welding Metallurgy and Joining of Advanced Materials (3)
Principles, primary variables, and microstructural changes associated with the joining process. Physics of energy transfer. Heat and mass balances in joining, thermodynamic and kinetic justification of solidification and near interface microstructures. Heterogeneous interfaces, adhesion, wetting. Relation between process selection, interface design, microstructure, and properties, weldability. 3 lectures. Prerequisite: MATE 210. Materials processing course.

MATE 445 Joining of Advanced Materials Laboratory (2)
Laboratory to accompany MATE 440. Illustration of principles, primary variables, and microstructural changes associated with the joining process. Physics of energy transfer. Heat and mass balances in joining, thermodynamic and kinetic justification of solidification and near interface microstructures. Heterogeneous interfaces, adhesion, wetting. Relation between process selection, interface design, microstructure, and properties, weldability. 2 laboratories. Prerequisite: MATE 210. Materials processing course.

MATE 446 Surface Chemistry of Materials (3)
(Also listed as CHEM 446)
Surface energy, capillarity, solid and liquid interface. Adsorption, surface areas of solids, contact angles and wetting. Friction, lubrication and adhesion. Relationship of surface to bulk properties of materials.
Applications. 3 lectures. Prerequisite: CHEM 306 or consent of instructor. Special topics course.

MATE 450 Failure Analysis (4)
Procedures for analyzing failed materials and processes. Actual failure analysis of a component by each student. Topics include fracture, fatigue, wear and overload failures, exposure to techniques of metallurgy, electron microscopy, energy dispersive x-ray spectroscopy, chemical analysis and heat treatment. 3 lectures, 1 laboratory. Prerequisite: MATE 210, MATE 360, MATE 350. Materials analysis and characterization course.

MATE 460 Materials Selection in Mechanical Design (4)
Materials-based approach to mechanical design. Using mechanical and physical properties of materials (performance indices) to select them for design needs (Materials Selection Charts). Detailed background of material properties – information from materials and mechanics. Numer-ous case studies highlight the concepts covered. 4 lectures. Prerequisite: MATE 210, CE 204, or consent of instructor. Special topics course.

MATE 481 Corporate Culture (1)
Practical working knowledge of key corporate topics such as leadership, ethics, organizational structure, intellectual property, professional communications, life-long learning, global and social impacts of technology. The product development process. 1 activity. Prerequisite: Senior standing. Co-requisite: MATE 482 for MATE majors.

MATE 482 Senior Project Design I (1)
Foundations of senior project design. Completion of the preliminary stages of selecting a senior project, designing experiments, evaluating realistic constraints, conducting initial experiments, and managing a project timeline. 1 lecture. Prerequisite: Senior standing. Co-requisite: MATE 481 for MATE majors.

MATE 483 Senior Project II (2)
Continuation of a senior project. Completion of a senior project experimental component under the guidance of a faculty supervisor. Research methodology, experimental design, experimental work and data analysis. 1 lecture and supervised work. Prerequisite: MATE 482.

MATE 484 Senior Project III (2)
Continuation of MATE 483. Completion of a senior project data analysis and communication under the guidance of a faculty supervisor. Mathematical modeling and technical communication. 1 lecture and supervised work. Prerequisite: MATE 483.

MATE 493 Cooperative Education Experience (2) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 6 units. Prerequisite: Sophomore standing and consent of instructor.

MATE 494 Cooperative Education Experience (6) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 18 units. Prerequisite: Sophomore standing and consent of instructor.

MATE 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. A more fully developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Total credit limited to 24 units. Prerequisite: Sophomore standing and consent of instructor.

MATE 500 Individual Study (1–4)
Advanced study planned and completed under the direction of a member of department faculty. Open only to graduate students who have demonstrated ability to do independent work. Enrollment by petition. Total credit limited to 12 units. Prerequisite: Consent of department head, graduate advisor, or supervising faculty member.

MATE 504 Research and Development in Materials Engineering (4)
Overview of the materials science and engineering field. Current materials research and technologies, such as fuel cells, nanotechnology, etc. Emphasis on independent learning, individual research topics, and presentations. Analysis of information from different media used to comprehend how advancements in materials research and development are made. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 lectures. Prerequisite: MATE 210 and graduate standing or consent of instructor.

MATE 510 Materials Analysis (4)
Fundamentals of materials surface analysis methods and thin-film microanalytical techniques, including SPM, AES, XPS, SIMS, Raman and FTIR. 4 lectures. Prerequisite: MATE 210, MATE 340.

MATE 520 X-Ray Diffraction (3)
Theory and application of x-ray diffraction as applied to advanced materials problems such as crystal quality and identification, thin film applications and structural transformations at high and low temperatures. Course will cover techniques in sample preparation, operation of equipment and interpretation of diffraction data. 3 lectures. Prerequisite: Graduate status or instructor's permission. Materials analysis and characterization or Special topics course.

MATE 522 Advanced Ceramics (5)
Development, utilization, and control of properties in ceramic materials (inorganic-nonmetallic solids). Emphasis on application on processing to achieve structure and properties. Structure of crystalline ceramics and of glasses. Mechanical, thermal, optical, magnetic, and electrical properties. Application of ceramics in technology. Physical chemistry of ceramics. 4 lectures, 1 seminar. Prerequisite: Graduate standing or permission of instructor.

MATE 525 X-Ray Diffraction Laboratory (2)
X-ray diffraction laboratory experiments of advanced materials problems such as crystal quality and identification, thin film applications and structural transformations at high and low temperatures. Radiation safety training, techniques in sample preparation, operation of equipment and interpretation of diffraction data. 2 laboratories. Prerequisite: Graduate standing in engineering or science or instructor's permission. Concurrent: MATE 520. Materials analysis and characterization or Special topics course.

MATE 530 Biomaterials (4) (Also listed as BMED 530)
Structure-function relationships for materials in contact with biological systems. Interactions of materials implanted in the body. Histological and hematomal considerations including foreign body responses, inflammation, carcinogenicity, thrombosis, hemolysis, immunogenic and toxic properties. Microbial interaction with material surfaces, degradation. 4 lectures. Prerequisite: BIO 213, ENGR 213, MATE 210 and graduate standing or consent of instructor.

MATE 540 Tribology (3)

MATE 545 Tribology Laboratory (1)
Wear testing and measurement through various processes including dry sand rubber wheel, cavitation/erosion, and simulated chemical/mechanical polishing. Wear analysis to include wear modeling, materials characterization via metallography, scanning electron microscopy, and surface profilometry. Experiments focus on real engineering systems and their degradation as a result of wear. 1 laboratory. Prerequisite: MATE
MATE 550 Micro Systems (4)
Fundamentals of intelligent systems employing sensors, actuators and intelligent controls. Impact on material properties as devices shrink in the micrometer realm. Applications toward exploring nanotechnology. 4 lectures. Prerequisite: MATE 210, MATE 235 or consent of instructor. Co-requisite: MATE 540.

MATE 560 Thin-Film Processing (3)
Thin film science and technology: deposition techniques, surface crystal notation, energy and kinetic processes, epitaxy. Schottky barriers and surface states, stress analysis, characterization techniques, electronics devices incorporating thin films. The Schedule of Classes will list topics for selection. Total credit limited to 6 units. 3 lectures. Prerequisite: Graduate standing or permission of instructor. Materials processing course.

MATE 565 Thin-Film Processing Laboratory (2)
Thin film processing and analytical techniques: direct current and radio frequency magnetron sputtering, reactive sputtering, co-evaporation, epitaxy, grazing incidence x-ray diffraction, magnetic force imaging. The Schedule of Classes will list topics for selection. Total credit limited to 6 units. 2 laboratories. Concurrent: MATE 560 or consent of instructor.

MATE 570 Advanced Engineering Materials (4)
An advanced treatment of the structure of matter. Physical and mechanical properties of materials including metals, alloys, ceramics, insulating materials, semiconductors, super semiconductors, polymers and composites based on detailed theoretical understanding of material microstructures. Discussions of Equilibrium diagrams, processing approaches, material selection based on thermodynamic and kinetic arguments. Degradation and failure, fitness for purpose. 4 lectures. Prerequisite: Graduate standing or permission of instructor. Special topics course.

MATE 575 Thermal Processing (4)
A detailed study of the mechanisms of heat transfer in solids, liquids and gases. Lengthy discussions of Equilibrium diagrams, processing approaches, material selection based on thermodynamic and kinetic arguments. Degradation and failure, fitness for purpose. 4 lectures. Prerequisite: Graduate standing or permission of instructor. Special topics course.

MATE 580 Fracture Mechanics and Failure Mechanisms in Materials (4)
Fracture modes and mechanisms in engineering materials, fracture mechanics fundamentals (stress analysis of cracks, energy analysis of fracture process). Use of fracture mechanics in design. Laboratory gives concentrated exposure to fracture development in materials, fracture surface evaluation, fracture toughness testing. 3 lectures, 1 laboratory. Prerequisite: MATE 350, or graduate standing. Special topics course.

MATE 590 Solidification and Densification (4)

MATE 599 Design Project (Thesis) (2) (2) (5)
Each individual or group will be assigned a project for solution under faculty supervision as a requirement for the master’s degree, culminating in a written report/thesis. Prerequisite: Graduate standing.

MATH-MATHEMATICS
Satisfactory completion of the Entry Level Mathematics (ELM) requirement is a prerequisite for enrollment in all mathematics courses except MATH 100 and MATH 104. For additional mathematics placement (MAPE) information, see page 48.

MATH 100 Beginning Algebra Review (3) (CR/NC)
Review of basic algebra skills at the beginning algebra level intended primarily to prepare students for MATH 104. Course open only to students who have taken the ELM examination and are not qualified for MATH 104. Not for baccalaureate credit. Credit/No Credit grading only. 3 lectures.

MATH 104 Intermediate Algebra (3) (CR/NC)
Review of basic algebra skills at the intermediate algebra level intended primarily to prepare students for MATH 116. Not for baccalaureate credit. Credit/No Credit grading only. 3 lectures. Prerequisite: Appropriate score on the ELM examination, or credit in MATH 100.

MATH 110 Beginning Algebra Laboratory (1) (CR/NC)
Facilitated study and discussion of the theory, problems, and applications of beginning algebra. Not for baccalaureate credit. Credit/No Credit grading only. 1 laboratory. Corequisite: Concurrent enrollment in the associated section of MATH 100.

MATH 112 The Nature of Modern Mathematics (4) GE B1
Topics from contemporary mathematics, their development, applications, and role in society. Some typical topics, to be chosen by the instructor: graph theory, critical path analysis, statistical inference, coding, game theory, and symmetry. 4 lectures. Prerequisite: Passing score on ELM examination, or an ELM exemption, or credit in MATH 104.

MATH 114 Intermediate Algebra Laboratory (1) (CR/NC)
Facilitated study and discussion of the theory, problems, and applications of intermediate algebra. Not for baccalaureate credit. Credit/No Credit grading only. 1 laboratory. Corequisite: Concurrent enrollment in the associated section of MATH 104.

MATH 116, 117 Pre-Calculus Algebra I, II (3) (3)
For MATH 116 and 117: GE B1
Pre-calculus college algebra without trigonometry. Special products and factoring, exponents and radicals. Fractional and polynomial equations. Matrices, determinants, and systems of equations. Polynomial, rational, exponential, and logarithmic functions. Graphing, inequalities, absolute value, and complex numbers. MATH 116 and MATH 117 are equivalent to MATH 118, but are taught at a slower pace. Upon completion of MATH 116 and MATH 117, a student will receive 4 units of GE credit for Area B1. Not open to students with credit in MATH 118. 3 lectures. Prerequisite: MATH 116 prerequisite: Passing score on ELM examination, or an ELM exemption, or credit in MATH 104. MATH 117 prerequisite: MATH 116 with a grade of C- or better or consent of instructor.

MATH 118 Pre-Calculus Algebra (4) GE B1
Pre-calculus algebra without trigonometry. Special products and factoring, exponents and radicals. Fractional and polynomial equations. Matrices, determinants, and systems of equations. Polynomial, rational, exponential, and logarithmic functions. Graphing, inequalities, absolute value, and complex numbers. MATH 118 is equivalent to MATH 116 and MATH 117. Not open to students with credit in MATH 117. 4 lectures. Prerequisite: Completion of ELM requirement and passing score on appropriate Mathematics Placement Examination.

MATH 119 Pre-Calculus Trigonometry (4) GE B1
Rectangular and polar coordinates. Trigonometric functions, fundamental identities. Inverse trigonometric functions and relations. Vectors, complex numbers, conic sections, and analytic geometry. 4 lectures. Prerequisite: Completion of ELM requirement and passing score on appropriate Mathematics Placement Examination, or MATH 117, or MATH 118 or equivalent.

MATH 126, 127 Pre-Calculus Algebra Laboratory I, II (1) (1) (CR/NC)
Facilitated study and discussion of the theory, problems, and applications of pre-calculus algebra. Credit/No Credit grading only. 1 laboratory. Corequisite: Concurrent enrollment in the associated section of MATH 116. MATH 127 corequisite: Concurrent enrollment in the associated section of MATH 117.

MATH 128 Pre-Calculus Algebra Laboratory (1) (CR/NC)
Facilitated study and discussion of the theory, problems, and applications of pre-calculus algebra. Credit/No Credit grading only. 1 laboratory. Corequisite: Concurrent enrollment in the associated section of MATH 118.

MATH 129 Pre-Calculus Trigonometry Laboratory (1) (CR/NC)
Facilitated study and discussion of the theory, problems, and applications of pre-calculus trigonometry. Credit/No Credit grading only. 1 laboratory. Corequisite: Concurrent enrollment in the associated section of MATH 119.
MATH 141, 142, 143 Calculus I, II, III (4) (4) (4) GE B1
(Also listed as HNRS 141, 142, 143)
Limits, continuity, differentiation, integration. Techniques of integration, applications to physics, transcendental functions. Infinite sequences and series, vector algebra, curves. 4 lectures. MATH 141 prerequisite: Completion of ELM requirement and passing score on appropriate Mathematics Placement Examination, or MATH 118 and MATH 119 or equivalent. MATH 142 prerequisite: MATH 141 with a grade of C- or better or consent of instructor. MATH 143 prerequisite: MATH 142.

MATH 151, 152, 153 Calculus Laboratories I, II, III (1) (1) (1) (CR/NC)
Facilitated study and discussion of the theory, problems, and applications of calculus. Credit/No Credit grading only. 1 laboratory. MATH 151 corequisite: Concurrent enrollment in the associated section of MATH 141. MATH 152 corequisite: Concurrent enrollment in the associated section of MATH 142. MATH 153 corequisite: Concurrent enrollment in the associated section of MATH 143.

MATH 161, 162 Calculus for the Life Sciences I, II (4) (4) GE B1
Review of exponential, logarithmic, and trigonometric functions. Differential and integral calculus with applications to the biological sciences. Introduction to differential equations and mathematical modeling. Examples, exercises and applications to emphasize problems in life sciences. Not open to students with credit in MATH 141, 142, respectively. 4 lectures. MATH 161 prerequisite: Completion of ELM requirement and passing score on appropriate Mathematics Placement Examination, or MATH 118 or equivalent. MATH 162 prerequisite: MATH 161.

MATH 182 Calculus for Architecture and Construction Management (4) GE B1
Integral calculus with applications to architecture and construction management. The algebra of vectors, Polar, cylindrical, and spherical coordinate systems. Not open to students with credit in MATH 142. 4 lectures. Prerequisite: MATH 141 or equivalent.

MATH 192 Calculus for Architecture and Construction Management Laboratory (1) (CR/NC)
Facilitated study and discussion of the theory, problems, and applications of calculus to architecture and construction management. Credit/No Credit grading only. 1 laboratory. Corequisite: Concurrent enrollment in the associated section of MATH 182.

MATH 202 Orientation to the Mathematics Major (1) (CR/NC)
Career opportunities in the field of mathematics, preparing a field of study, and a survey of departmental facilities and procedures related to research, study and graduation. Credit/No Credit grading only. 1 lecture. Corequisite: Sophomore standing or consent of instructor.

MATH 206 Linear Algebra I (4)
Matrices, inverses, linear systems, determinants, eigenvalues, eigenvectors, vector spaces, linear transformations, applications. 4 lectures. Prerequisite: MATH 143 or consent of instructor.

MATH 211, 212 Computational Mathematics I, II (4) (4)
Fundamentals of procedural programming in C/C++. Selected applications to problems in integral and differential calculus, matrix analysis, geometry, and physics. 4 lectures. MATH 211 prerequisite: MATH 141 or consent of instructor. MATH 212 prerequisite: MATH 211.

MATH 221 Calculus for Business and Economics (4) GE B1
Polynomial calculus for optimization and marginal analysis, and elementary integration. Not open to students with credit in MATH 142. 4 lectures. Prerequisite: Completion of ELM requirement and passing score on appropriate Mathematics Placement Examination, or MATH 118 or equivalent.

MATH 231 Calculus for Business and Economics Laboratory (1) (CR/NC)
Facilitated study and discussion of the theory, problems, and applications of business calculus. Credit/No Credit grading only. 1 laboratory. Corequisite: Concurrent enrollment in the associated section of MATH 221.

MATH 241 Calculus IV (4) (Also listed as HNRS 241)
Partial derivatives, multiple integrals, introduction to vector analysis. 4 lectures. Prerequisite: MATH 143.

MATH 242 Differential Equations I (4)
Ordinary differential equations: first-order linear equations, separable equations, exact equations, second-order linear equations, nonhomogeneous equations, systems of first-order linear equations, systems of nonlinear equations, modeling and applications. Not open to CENG students. 4 lectures. Prerequisite: MATH 206 and MATH 241.

MATH 244 Linear Analysis I (4) (Also listed as HNRS 244)
Separable and linear ordinary differential equations with selected applications; numerical and analytical solutions. Linear algebra: vectors in n-space, matrices, linear transformations, eigenvalues, eigenvectors, diagonalization; applications to the study of systems of linear differential equations. 4 lectures. Prerequisite: MATH 143 or consent of instructor.

MATH 248 Methods of Proof in Mathematics (4)
Methods of proof (direct, contradiction, conditional, contraposition); valid and invalid arguments. Examples from set theory. Quantified statements and their negations. Functions, indexed sets, set functions. Proofs in number theory, algebra, geometry and analysis. Proof by induction. Equivalence and well-defined operations and functions. The axiomatic method. 4 lectures. Prerequisite: MATH 143 or consent of instructor.

MATH 258 Methods of Proof in Mathematics Laboratory (1) (CR/NC)
Facilitated study and discussion of the methods and techniques of proof in mathematics. Credit/No Credit grading only. 1 laboratory. Corequisite: Concurrent enrollment in the associated section of MATH 248.

MATH 260 Technology in Mathematics Education (4)
Examination of existing hardware and software designed for educational uses. Discussion of mathematical topics appropriate for computer enhancement. Special methods and techniques for educational uses of computers. Emphasis on activity learning and applications. Computer as a classroom management device. 4 lectures. Prerequisite: MATH 141 or MATH 329, and a course in CSC or MATH 211, or consent of instructor.

MATH 304 Vector Analysis (4) GE B6
Differential and integral calculus of vector-valued functions. Green's Theorem, Stokes' Theorem, and the Divergence Theorem. Applications and generalizations. 4 lectures. Prerequisite: MATH 141 or MATH 329, and a course in CSC or MATH 211, or consent of instructor.

MATH 326 Mathematics and Visual Art (4)
Credit/No Credit grading only. 4 lectures. Prerequisite: MATH 206 or MATH 244, and MATH 241, or consent of instructor.

MATH 327, 328, 329 Mathematics for Elementary Teaching I, II, III (4) (4) (4)
Topics connecting mathematics and visual art including regular polygons, symmetry groups, repetition and pattern, perspective, straightedge and compass constructions, and origami. Examples of mathematical art including historic and contemporary art. 4 lectures. Prerequisite: Completion of GE Area B1 and a college course in art or design.

MATH 327, 328, 329 Mathematics for Elementary Teaching I, II, III (4) (4) (4)
Introduction to set theory, number theory, real numbers, probability, statistics, and geometry. Computer applications. 2 lectures, 2 activities. MATH 327 prerequisite: Completion of ELM requirement, and passing score on appropriate Mathematics Placement Examination, or MATH 118 or equivalent. MATH 328 prerequisite: MATH 327 with a grade of C- or better or consent of instructor. MATH 329 prerequisite: MATH 328.

MATH 331 Topics in Mathematics for Teachers (1-6) (CR/NC)
Topics in mathematics for practicing credentialed teachers. Content will vary according to teaching level. The Schedule of Classes will list topic selected. Total credit limited to 12 units. Credit/No Credit grading only. 1-6 activities. Prerequisite: Multiple Subject or Single Subject teaching credential or consent of instructor.

2007-2009 Cal Poly Catalog
MATH 335 Graph Theory (4)
Introduction to graph theory and its applications: isomorphism, paths and searching, connectedness, trees, tournaments, planarity, graph colorings, matching theory, network flow, adjacency and incidence matrices. Further topics to be selected from the theory of finite state machines, Ramsey theory, extremal theory, and graphical enumeration. 4 lectures. Prerequisite: Junior standing or consent of instructor.

MATH 336 Combinatorial Mathematics (4)
Methods of enumerative combinatorics: sum, product, and division rules, bijective and recursive techniques, inclusion and exclusion, generating functions, and the finite difference calculus. Advanced topics to be selected from the theory of partitions, Polya theory, designs, and codes. 4 lectures. Prerequisite: Junior standing or consent of instructor.

MATH 341 Theory of Numbers (4)
Properties of numbers. Euclid’s Algorithm, greatest common divisors, diophantine equations, prime numbers, congruences, number theoretic functions, the quadratic reciprocity laws, primitive roots and indices. 4 lectures. Prerequisite: MATH 248 with a grade of C- or better or consent of instructor.

MATH 344 Linear Analysis II (4) GE B6
Linear methods applied to the solution of differential equations. Laplace transforms. Series solutions to ordinary differential equations. Orthogonality in n-space, Gram-Schmidt orthogonalization and least squares methods. Orthogonal bases in function spaces, Sturm-Liouville theory. Fourier series and transforms. Special functions of applied mathematics. 4 lectures. Prerequisite: MATH 206 and MATH 242, or MATH 241 and MATH 244, or consent of instructor.

MATH 350 Mathematical Software (4)
Problem-solving using mathematical software. 4 lectures. Prerequisite: MATH 206 or MATH 244, and MATH 241, and an introductory college-level programming course, or consent of instructor.

MATH 351 Typesetting with LaTeX (1) (CR/NC)
Preparing documents, especially mathematical ones, using LaTeX and AMS-LaTeX. Credit/No Credit grading only. 1 lecture. Prerequisite: Junior standing or consent of instructor.

MATH 370 Putnam Exam Seminar (2)
Directed group study of mathematical problem-solving techniques. Open to undergraduate students only. Class members are expected to participate in the annual William Lowell Putnam Mathematical Competition. Course may be repeated up to eight units. 2 seminars. Prerequisite: Consent of instructor.

MATH 371 Math Modeling Seminar (2)
Directed group study of mathematical modeling techniques. Open to undergraduate students only. Class members are expected to participate in the annual Mathematical Competition in Modeling. Total credit limited to 8 units. 2 seminars. Prerequisite: Consent of instructor.

MATH 372 Mathematical Community Service Projects (2) (CR/NC)
Directed group mathematical research in support of volunteer community service projects. Total credit limited to 8 units. 2 seminars. Prerequisite: Consent of instructor and consent of department chair.

MATH 400 Special Problems for Advanced Undergraduates (1-4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 8 units. Prerequisite: Junior standing and consent of department chair.

MATH 404 Introduction to Differential Geometry (4)
Theory of curves and surfaces in space. Topics such as Frenet formulas, curvature, geodesics, Cartan structural equations, Gauss-Bonnet Theorem. 4 lectures. Prerequisite: MATH 304 or consent of instructor.

MATH 406 Linear Algebra III (4)
Complex vector spaces, unitary and self-adjoint matrices, Spectral Theorem, Jordan canonical form. Selected topics in linear programming, convexity, numerical methods, and functional analysis. 4 lectures. Prerequisite: MATH 306 or consent of instructor.

MATH 408, 409 Complex Analysis I, II (4) MATH 408: GE B6
Elementary analytic functions and mappings. Cauchy’s Integral Theorem; Poisson’s Integral Formula. Taylor and Laurent series, theory of residues, and the evaluation of integrals. Harmonic functions, conformal mappings. 4 lectures. MATH 408 prerequisite: MATH 242, or MATH 241 and MATH 244, or consent of instructor. MATH 409 prerequisite: MATH 408.

MATH 412 Introduction to Analysis I (4)
Introduction to concepts and methods basic to real analysis. Topics such as the real number system, sequences, continuity, uniform continuity and differentiation. 4 lectures. Prerequisite: MATH 306 or consent of instructor.

MATH 413, 414 Introduction to Analysis II, III (4) (4)
A continuation of Introduction to Analysis I covering such topics as integration, infinite series, uniform convergence and functions of several variables. Highly recommended for students planning to enter graduate programs or secondary teaching and those interested in applied mathematics. 4 lectures. MATH 413 prerequisite: MATH 412 or consent of instructor. MATH 414 prerequisite: MATH 413.

MATH 416 Differential Equations II (4)
Qualitative theory of ordinary differential equations: Existence and Uniqueness Theorem, phase portraits, limit sets, stability of fixed points and periodic orbits, energy functions, Poincaré–Bendixson Theorem, Poincaré maps, bifurcations, attractors, chaos. 4 lectures. Prerequisite: MATH 206 and MATH 242, or MATH 241 and MATH 244, or consent of instructor.

MATH 417 Discrete Dynamical Systems (4)
Discrete dynamical systems: iteration, stability of fixed points and periodic points, bifurcations, conjugacy, symbolic dynamics, transitivity, limit sets, attractors, chaos, sensitive dependence, Lyapunov exponents, Stable Manifold Theorem, geometric horseshoe, Markov partitions, fractals. 4 lectures. Prerequisite: MATH 206 and MATH 242, or MATH 241 and MATH 244, or consent of instructor.

MATH 418 Partial Differential Equations (4)

MATH 419 Introduction to the History of Mathematics (4)
Evolution of mathematics from earliest to modern times. Major trends in mathematical thought, the interplay of mathematical and technological innovations, and the contributions of great mathematicians. Appropriate for prospective and in-service teachers. 4 lectures. Prerequisite: MATH 248 with a grade of C- or better and at least one upper division course in mathematics, or consent of instructor.

MATH 422 Introduction to Analysis I Laboratory (1) (CR/NC)
Facilitated study and discussion of the methods and techniques of proof in introductory analysis. Credit/No Credit grading only. 1 laboratory. Corequisite: Concurrent enrollment in the associated section of MATH 412.

MATH 423 Advanced Mathematics for Teaching (4)
Introduction to mathematics education research and advanced exploration of the mathematics taught in California's public high schools and middle schools through problem analysis, concept analysis, and problem connections. 4 lectures. Prerequisite: MATH 442 and MATH 481.

MATH 424 Organizing and Teaching Mathematics (4) (CR/NC)
Organization, selection, presentation, application and interpretation of subject matter in mathematics. Introduction to current issues in mathematics education. For students who will be teaching in secondary schools. Credit/No Credit grading only. 4 lectures. Prerequisite: Acceptance into the Mathematics Single Subject Credential Program, or senior standing in the mathematics major, or consent of instructor.
MATH 425 Mathematics Student Teaching Seminar (1) (CR/NC)
Principles and practice in effective teaching of mathematics at the middle and high school level, learning theories, curriculum content and structure, classroom issues, and the teaching profession. Credit/No Credit grading only. Total credit limited to 2 units. 1 seminar. Prerequisite: Acceptance into Step II of the Single Subject Credential Program in Mathematics. Concurrent: EDUC 469 or EDUC 479.

MATH 431, 432 Mathematical Optimization I, II (4) (4)
Classical optimization. Maximum/minimum of functions, linear and nonlinear optimization problems, duality, constrained optimization. Model building and applications to various fields. 4 lectures. MATH 431 prerequisite: MATH 206 or MATH 244, and MATH 241, or consent of instructor. MATH 432 prerequisite: MATH 431.

MATH 437 Game Theory (4)
Development of the mathematical concepts, techniques, and models used to investigate optimal strategies in competitive situations; games in extensive, normal, and characteristic form, Nash equilibrium points and Nash Bargaining Model. 4 lectures. Prerequisite: MATH 206 or MATH 244, and MATH 248 with a grade of C- or better, or consent of instructor.

MATH 440 Topology I (4)
Introduction to general topological spaces with emphasis on surfaces and manifolds. Open and closed sets, continuity, compactness, connectedness. Quotient spaces. 4 lectures. Prerequisite: MATH 412 and concurrent enrollment in or completion of MATH 481, or consent of instructor.

MATH 441 Topology II (4)
Introduction to general topological spaces with emphasis on surfaces and manifolds. Fundamental group. Triangulations of spaces, classification of surfaces. Other topics may include covering spaces, simplicial homology, homotopy theory and topics from differential topology. 4 lectures. Prerequisite: MATH 440 or consent of instructor. Recommended: MATH 304.

MATH 442 Euclidean Geometry (4)
Foundations of Euclidean geometry, finite geometries, congruence, similarities, polygonal regions, circles and spheres. Constructions, mensuration, the parallel postulate. Appropriate for prospective and inservice mathematics teachers. 4 lectures. Prerequisite: MATH 248 with a grade of C- or better or consent of instructor. Recommended: MATH 300 or familiarity with dynamic geometry software.

MATH 443 Modern Geometries (4)
Non-Euclidean and projective geometries. Properties of parallels, biangles, Saccheri and Lambert quadrilaterals, angle-sum and area. Limiting curves, hyperbolic trigonometry, duality, perspective, quadrangles, fundamental theorems of projective geometry, conics. 4 lectures. Prerequisite: MATH 442.

MATH 451 Numerical Analysis I (4) (formerly MATH 333)
Topics in interpolation and approximation methods, initial value problems, and boundary value problems of ordinary differential equations. 4 lectures. Prerequisite: MATH 206 and MATH 242, or MATH 241 and MATH 244, and an introductory college-level programming course, or consent of instructor.

MATH 452 Numerical Analysis II (4) (formerly MATH 335)
Numerical techniques for solving partial differential equations of the parabolic, hyperbolic and elliptic type. Further topics in approximation theory. 4 lectures. Prerequisite: MATH 451 or equivalent.

MATH 459 Senior Seminar (4)
Written and oral analyses and presentations by students on topics from advanced mathematics and mathematical modeling. 4 seminars. Prerequisite: MATH 306, and completion of at least two additional upper-division courses in the math major, or consent of instructor.

MATH 461, 462 Senior Project I, II (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time. MATH 461 prerequisite: MATH 459. MATH 462 prerequisite: MATH 461.

MATH 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Junior standing and consent of instructor.

MATH 481, 482 Abstract Algebra I, II (4) (4)
Introduction to the study of algebraic structures, including groups, rings and fields. 4 lectures. MATH 481 prerequisite: MATH 306 or MATH 341 or consent of instructor. MATH 482 prerequisite: MATH 481.

MATH 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

MATH 491 Abstract Algebra I Laboratory (1) (CR/NC)
Facilitated study and discussion of the methods and techniques of proof in abstract algebra. Credit/No Credit grading only. 1 laboratory. Corequisite: Concurrent enrollment in the associated section of MATH 481.

MATH 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

MATH 500 Individual Study (1-4)
Individual research or advanced study planned and completed under the direction of a departmental faculty member. Open only to graduate students demonstrating ability to do independent work. Prerequisite: Graduate standing and consent of department chair.

MATH 501, 502 Methods of Applied Mathematics I, II (4) (4)
Introduction to advanced methods of mathematics useful in the analysis of engineering problems. Theory of vector fields, Fourier analysis, Sturm-Liouville theory, functions of a complex variable. Selected topics in asymptotic analysis, special functions, perturbation theory. Not open to students in major or master's degree program in mathematics. MATH 501: Distance Learning Lab fee may be required—see the Schedule of Classes. 4 lectures. MATH 501 prerequisite: MATH 344 or AERO 300 or equivalent, and graduate standing, or consent of instructor. MATH 502 prerequisite: MATH 501.

MATH 505 Graduate Teaching Seminar (1) (CR/NC)
Principles and practice in effective teaching of college-level mathematics. Issues related to present and future teaching experiences, including time management, professionalism, student assessment, grading, classroom management, and qualities of good mathematics teachers. Reflection on individual teaching, and consideration of improvements in instruction. Credit/No Credit grading only. Total credit limited to 2 units. 1 seminar. Prerequisite: Graduate standing or consent of instructor.

MATH 520, 521 Applied Analysis I, II (4) (4)
Advanced mathematical methods of analysis in science and engineering, integrated with modeling of physical phenomena. Topics include applications of complex analysis, Fourier analysis, ordinary and partial differential equations. Additional topics to be drawn from perturbation methods, asymptotic analysis, dynamical systems, numerical methods, optimization, and the calculus of variations. 4 lectures. MATH 520 prerequisite: MATH 408, MATH 412 and graduate standing, or consent of instructor. Recommended: MATH 418. MATH 521 prerequisite: MATH 520.
MATH 530, 531 Discrete Mathematics with Applications I, II (4) (4)
Advanced mathematical methods of discrete mathematics with applications.
Topics will include probability theory with generating functions, difference
equations and number theory. Additional topics to be drawn from the theory
of algorithms, coding theory, set theory, and the relation of discrete
mathematics to complex analysis. 4 lectures. MATH 530 prerequisite:
MATH 481, MATH 306 and graduate standing, or consent of instructor.
MATH 531 prerequisite: MATH 530.

MATH 540 Topology I (4)
Introduction to general topological spaces with emphasis on surfaces and
manifolds. Open and closed sets, continuity, compactness, connectedness.
Quotient spaces. 4 lectures. Not open to students with credit in MATH
441. Prerequisite: MATH 412, concurrent enrollment in or completion of
MATH 481, and graduate standing, or consent of instructor.

MATH 541 Topology II (4)
Introduction to general topological spaces with emphasis on surfaces and
manifolds. Fundamental group. Triangulations of spaces, classification of
surfaces. Other topics may include covering spaces, simplicial homology,
homotopy theory and topics from differential topology. 4 lectures. Not
open to students with credit in MATH 441. Prerequisite: MATH 540 and
graduate standing, or consent of instructor. Recommended: MATH 304.

MATH 550 Real Analysis (4)
Introduction to Lebesgue measure and integration, convergence theorems,
L_1 spaces, Radon-Nikodym Theorem and Fubini’s Theorem. 4 seminars.
Prerequisite: Satisfactory completion of the Graduate Written Examination
in Analysis or consent of the Graduate Committee.

MATH 560 Field Theory (4)
Polynomial rings, field extensions, normal and separable extensions,
automorphisms of fields, fundamental theorem of Galois theory, solvable
groups, solution by radicals, insolubility of the quintic. 4 lectures.
Prerequisite: Satisfactory completion of the Graduate Written Examination
in Algebra or consent of the Graduate Committee.

MATH 580 Seminar (1–4)
Built around topics in advanced mathematics chosen according to the
common interests and needs of the students enrolled. Each seminar will
have a subtitle according to the nature of the content. Total credit limited
to 12 units. 1–4 seminars. Prerequisite: Graduate standing and consent
of instructor.

MATH 596 Thesis (3)
Serious research endeavor devoted to the development, pedagogy or
learning of mathematics. Course to be taken twice for a total of 6 units.
Prerequisite: Graduate standing and consent of instructor.

MCRO—MICROBIOLOGY

MCRO 221 Microbiology (4) GE B2 & B4
Morphology, metabolism, classification, and identification; microbiology
of air, soil, water, and foods with applications to industry, agriculture,
medicine, and public health. Not open to students with credit in MCRO
224; not for credit for Biology and Microbiology majors. 3 lectures, 1
laboratory. Prerequisite: One quarter of chemistry.

MCRO 224 General Microbiology I (5) GE B2 & B4
Microbial cellular structure and function, nutrition and growth dynamics,
control of microbial growth, metabolism, genetics, and viruses. Both pro-
karyotic and eukaryotic microorganisms emphasized. 3 lectures, 2 labora-
tories. Prerequisite: BIO 161 and CHEM 128. Recommended: CHEM 129.

MCRO 225 General Microbiology II (5) GE B2 & B4
Microbial diversity, systematics, ecology, and symbiotic relationships.
Introduction to host-microorganism interactions including pathogenesis,
epidemiology, and immunology. 3 lectures, 2 laboratories. Prerequisite:
MCRO 224 or consent of instructor.

MCRO 230 Emerging Infectious Diseases (3)
Recent outbreaks of human diseases, interrelationships between infectious
disease agents, human biology, and the environment. Infectious agents and
disease processes, surveillance methods to detect, investigate, and monitor
emerging pathogens. Factors involved in the accelerating emergence of
diseases and bioterrorist agents. 3 lectures. Prerequisite: MCRO 221 or
MCRO 224 or BIO 161.

MCRO 324 Sanitary Microbiology (4)
Principles of disease prevention and control. Water-, food-, and air-borne
microbial contaminations and epidemiology of ensuing
diseases. 3 lectures, 1 laboratory. Prerequisite: MCRO 221 or MCRO 224.

MCRO 402 General Virology (4)
Infective macromolecules (prions, viruses; and viruses) associated with
microbes, plants, and animals. Epidemiology, immune responses,
pathogenicity, carcinogenesis, diagnoses, vaccination, and therapy. 3
lectures, 1 laboratory. Prerequisite: BIO 351 or CHEM 373.
Recommended: BIO 452.

MCRO 421 Food Microbiology (4)
Physiological activities of microorganisms involved in the preparation,
preservation, deterioration, and toxicity of foods and related products. 2
lectures, 2 laboratories. Prerequisite: MCRO 221 or MCRO 224.
Recommended: CHEM 212/213.

MCRO 423 Medical Microbiology (5)
Microorganisms as agents of disease in humans. Epidemiology, host-paras-
site relationships, and chemotherapy. The compromised host and oppor-
tunistic disease. Laboratory safety. Procedures for laboratory diagnosis of
human diseases. Rapid miniaturized methods of identification. 3 lectures, 2
laboratories. Prerequisite: MCRO 225 and CHEM 312 or CHEM 316.

MCRO 424 Microbial Physiology (5)
Cellular structure and life processes of bacteria; chemical composition,
growth, and metabolism. General biological and evolutionary
considerations. 3 lectures, 2 laboratories. Prerequisite: MCRO 225 and
CHEM 313 or CHEM 371.

MCRO 433 Microbial Biotechnology (3)
Principles and methods used for production of enzymes, pharmaceuticals,
chemicals, and food additives using micro-organisms. Topics include
screening and strain improvement, regulation of metabolite production,
genetic engineering, heterologous gene expression systems, large-scale
production, and intellectual property. 3 lectures. Prerequisite: MCRO 221
or MCRO 224, and BIO 303, BIO 351 or equivalent, and CHEM 312,
CHEM 316 or equivalent.

MCRO 436 Environmental Microbiology (4)
Ecology and interactions of microorganisms in natural environments.
Fundamentals of microbial ecology, microbes and ecosystem function, and
practical aspects of microbes in the environment: nutrient cycling, extreme
environments, symbioses, bioremediation, biocontrol, biofuels. 2 lectures,
2 activities. Prerequisite: BIO 160 and BIO 161, or MCRO 221, or MCRO
224.

MCRO 461 Senior Project – Research Proposal (2)
Completion of a research proposal and literature review, including analysis
of experimental results from published peer-reviewed articles covering
issues in microbiology, culminating in both written and oral presentations. 2
activities. Prerequisite: Junior standing or consent of instructor.

ME—MECHANICAL ENGINEERING

ME 134 Introduction to Mechanical Engineering (1)
Introduction to mechanical engineering and its application in professional
practice. Includes design, analysis, testing and dissection of mechanical
engineering systems, from simple machines to more complicated systems.
1 laboratory.

ME 151 Engineering Design Communication I (2)
Communication of designs to manufacturing using basic definitions of
points, lines and planes in space. Pictorials, orthographic projection,

2007-2009 Cal Poly Catalog
ME 152 Engineering Design Communication II (2)
Use of advanced communication principles to communicate project designs to manufacturing processes. Projects evaluated in terms of meeting design criteria. Techniques of advanced communication including weld symbols, threaded fasteners, dimensioning and tolerancing. Use of computers to enhance these processes. 1 lecture, 1 laboratory. Prerequisite: ME 151.

ME 153 Intermediate Solid Modeling (1)
Continuation of solid modeling introduced in ME 152, using current software and hardware. Creation of more involved part models with varied configurations and dynamic assembly models. Working drawings produced from the models. Introduction to mass and inertia using the chosen software. Emphasis of group work and peer review in the production of parts for assemblies. 1 laboratory. Prerequisite: ME 152 or equivalent.

ME 211 Engineering Statics (3)
Analysis of forces on engineering structures in equilibrium. Properties of forces, moments, couples, and resultants. Equilibrium conditions, friction, centroids, area moments of inertia. Introduction to mathematical modeling and problem solving. Vector mathematics where appropriate. 3 lectures. Prerequisite: MATH 241 (or concurrently), PHYS 131.

ME 212 Engineering Dynamics (3)
Analysis of motions of particles and rigid bodies encountered in engineering. Velocity, acceleration, relative motion, work, energy, impulse, and momentum. Further development of mathematical modeling and problem solving. Vector mathematics where appropriate. 3 lectures. Prerequisite: MATH 241, ME 211.

ME 234 Philosophy of Design (3)
General approach to the meaning of engineering design. Conceptual blocks, creativity, design process, design considerations and elements. 3 lectures.

ME 236 Thermal Measurements (3)
Introduction to principles of experimental measurement, including practical instrument reading, data collection, and uncertainty analysis. Techniques for measuring temperature, pressure, and other parameters. Introduction to theory and practice of writing lab reports and communication of experimental data. 2 lectures, 1 laboratory. Prerequisite: CHEM 125, ENGL 154, PHYS 132.

ME 240 Additional Engineering Laboratory (1) (CR/NCR)
Special assignments undertaken by students who need or wish to acquire abilities supplementary to their standard pattern of courses. Assignments must be primarily of shop or laboratory nature. Work is done by the student with a minimum of faculty supervision. Credit/No Credit grading only. Total credit limited to 12 units. 1 laboratory.

ME 302 Thermodynamics (3)
Properties of working fluids and fundamental relations for processes involving the transfer of energy. First and second laws of thermodynamics, irreversibility and availability. 3 lectures. Prerequisite: PHYS 132, ME 212.

ME 303 Thermal Engineering (3)
Vapor and gas power cycles, refrigeration cycles, thermodynamic relations, psychrometrics, and chemical reactions. 3 lectures. Prerequisite: ME 236, ME 302.

ME 305 Introduction to Mechatronics (4)
Introduction to microcontrollers and assembly language programming. Emphasis on components and techniques for interfacing that are typical of embedded microcontroller applications (A/D conversion, D/A conversion, interrupts, timers, and pulse-width modulation). Laboratory exercises involve real-time interfacing of microcontrollers to external mechanical and/or electromechanical devices. 3 lectures, 1 laboratory. Prerequisite: EE 321 and EE 361, or consent of instructor.

ME 318 Mechanical Vibrations (4)
Free and forced vibration response of single and multiple degree of freedom systems. Experimental studies of the dynamic behavior of structures and machines. Instrumentation methods utilized in field and laboratory. 3 lectures, 1 laboratory. Prerequisite: MATH 344, ME 326, EE 201.

ME 320 Consumer Energy Guide (4)
GE Area F
Interdisciplinary connection of everyday consumer decisions with energy costs, security, and global warming. Energy consumption by home appliances and automobiles. Methods to reduce the individual "energy footprint" with renewable energy, purchasing carbon offsets, and behavioral modifications. 4 lectures. Prerequisite: Completion of GE Areas A and B, and junior standing.

ME 321 Solar Energy (4)
GE Area F
Methods of utilizing solar energy. Energy concepts, collection and storage systems; greenhouse effect. Commercial and residential building applications. Solar power generation and recent technical developments. International achievements in solar energy with emphasis on solar energy application in developing countries for water purification and other life support functions. 4 lectures. Prerequisite: PHYS 131 or PHYS 123, completion of GE Area B and junior standing.

ME 326 Intermediate Dynamics (4)
Continuation of ME 212. Additional analysis of planar motion of rigid bodies with particular attention to the kinematics of mechanisms. Rotating reference frames. Introduction to three dimensional dynamics. Dynamic simulation of mechanisms. 4 lectures. Prerequisite: MATH 242 (or concurrent), ME 212, CSC 231 or CSC 234.

ME 328 Introduction to Design (4)
Design of machine parts by stress and deflection. Effects of fluctuating stresses and stress concentration. Design of shafts and other machine parts. Modern industrial design practice using standard components and design layout drawings. 3 lectures, 1 laboratory. Prerequisite: CE 207, ME 152, MATE 210, CSC 231 or CSC 234, ME 212.

ME 329 Intermediate Design (4)
Design of mechanical equipment and systems using various machine elements and components such as threaded fasteners, power screws, springs, gears, bearings, clutches, prime movers, etc. Decision modeling based on technical and economic feasibility. 3 lectures, 1 laboratory. Prerequisite: ECON 201, ME 318 (or concurrent), ME 328.

ME 341 Fluid Mechanics I (3)
Fluid statics. Conservation equations of fluid dynamics. Viscous flow, boundary layer concepts, lift and drag, compressible flow, turbomachinery. 3 lectures. Prerequisite: ME 212.

ME 343 Heat Transfer (4)
Basic principles of heat transfer. Conduction, convection, radiation, and combined modes. Optional thermal engineering design project. 4 lectures. Prerequisite: ME 341, ME 302 or CHEM 305, MATH 244, CSC 231 or CSC 234.

ME 346 Thermal Science Laboratory (1)
Heat transfer and thermodynamic experiments covering combined free convection and radiation, transient conduction, heat exchanger, polytropic blowdown, steam turbine, and refrigeration cycles. 1 laboratory. Prerequisite: ME 303, ME 341, ME 343.

ME 347 Fluid Mechanics II (4)
Conservation equations of fluid dynamics. Viscous flow, boundary layer concepts, lift and drag, compressible flow, turbomachinery. Laboratory measurement of turbomachione performance, velocity profiles, boundary layers on surfaces. 3 lectures, 1 laboratory. Prerequisite: ME 236, ME 341.

ME 359 Fundamentals of HVAC Systems (4)
Fundamentals of heating, ventilating and air-conditioning (HVAC) systems, human comfort and indoor air quality, primary and secondary systems and components. 3 lectures, 1 laboratory. Prerequisite: ME 302.
ME 400 Special Problems for Advanced Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units. Prerequisite: Consent of instructor.

ME 401 Stress Analysis (4)
Advanced strength of materials: behavior of disks, plates, and shells. Theory of elasticity. Energy methods. 3 lectures, 1 laboratory. Prerequisite: CE 207, MATH 344, ME 328 or consent of instructor.

ME 402 Orthopedic Biomechanics (4)
Biomechanical analysis of the musculoskeletal system. Emphasis on the use of statics, dynamics, strength of materials, viscoelasticity, and poroelasticity to analyze the mechanical loads acting on human joints, the mechanical properties of tissues, and the design of artificial joints. 3 lectures, 1 laboratory. Prerequisite: ME 328 or consent of instructor.

ME 404 Applied Finite Element Analysis (4)
Finite element based solutions to engineering problems with an emphasis on elastostatic problems in structural mechanics. The power and pitfalls associated with the finite element method highlighted through practical modeling assignments. Use of commercial finite element code(s). 3 lectures, 1 laboratory. Prerequisite: ME 329.

ME 405 Mechatronics (4)
Microprocessor applications in machine control and product design. Applied electronics. Drive technology; transducers and electromechanical systems. Real-time programming. Mechatronic design methodology. 3 lectures, 1 laboratory. Prerequisite: ME 305, ME 329.

ME 406 Mechatronics Design (4)
Application of micro-controllers and programmable logic controllers in the design of mechatronic products and automation systems. Digital feedback motion and process control. Modern industrial mechatronics applications. 3 lectures, 1 laboratory. Prerequisite: ME 329 and ME 405 or consent of instructor.

ME 410 Experimental Methods in Mechanical Design I (4)
Bonded resistance strain gages for static and dynamic measurements; rosettes, bridge circuits, lead wire effects, special gages. Photoelastic and moire fringe methods including birefringent coatings, shadow, and projection moire. Applications in mechanical design and metrology. 3 lectures, 1 laboratory. Prerequisite: ME 328.

ME 412 Composite Materials Analysis and Design (4)

ME 415 Energy Conversion (4)
Engineering aspects of energy sources, conversion and storage. Topics selected from fossil fuel systems, nuclear power, thermoelectric systems, thermionic converters, fuel cells, magnetohydrodynamic generators, and geothermal, tidal, wind and ocean temperature energy conversion systems. 4 lectures. Prerequisite: ME 302.

ME 416 Ground Vehicle Dynamics and Design (4)
Design of ground vehicles for directional stability and control. Tire mechanics and their effects on vehicle performance. Simulation of vehicle dynamics using digital computer. Synthesis of steering mechanism and suspension system. 2 lectures, 2 laboratories. Prerequisite: ME 318, ME 328.

ME 422 Mechanical Control Systems (4)
Modeling and control of physical systems. Design of mechanical, hydraulic and electrical systems using time response, frequency response, state space, and computer simulation. 3 lectures, 1 laboratory. Prerequisite: ME 318.

ME 423 Robotics: Fundamentals and Applications (4)
Introduction to robots and their types. Homogeneous transformations. Kinematic equations and their solutions. Motion trajectories, statics, dynamics, and control of robots. Robot programming. Actuators, sensors and vision systems. 3 lectures, 1 laboratory. Prerequisite: ME 326, ME 422.

ME 424 Design of Piping Systems (4)
Pipe specifications and pertinent codes. Valves, fittings, pumps and compressors. The transportation function of piping as related to power plants, refineries, slurry systems, pumping systems and drainage. Philosophy of system design. 3 lectures, 1 laboratory. Prerequisite: CE 207, ME 347, CSC 231, MATE 210.

ME 428 Senior Project Design (3)
Component and system design from global integration point of view of various design parameters, using real life problems. Techniques of brainstorming, decision making, and feasibility studies. Industrial participation design program. 1 lecture, 2 laboratories. Prerequisite: ME 329, ME 343, ME 347, ENGL 149.

ME 431 Mechanical Design Techniques (4)
Comprehensive study of various design methods and techniques. Techniques used to explore various structural concepts such as prestressing, shaping, sizing, etc. Simulation of systems using digital computer. Design criteria identification of design parameters and constraints. 3 lectures, 1 laboratory. Prerequisite: ME 329.

ME 432 Petroleum Reservoir Engineering (4)
Types of reservoirs and reservoir rocks. Measurement and interpretation of physical properties of reservoir rocks and fluids: porosity, permeability, compressibility, electrical resistivity, fluid saturation, viscosity, solution gas and PVT properties of reservoir fluids. Introduction to flow in porous media, reserve calculations for different reservoirs and computer applications. 3 lectures, 1 laboratory. Prerequisite: ME 341.

ME 434 Enhanced Oil Recovery (4)
Primary, secondary, and tertiary (enhanced) oil recovery methods. Waterflooding, polymerflooding, gas injection, steam injection, in-situ combustion, chemical flooding, miscible flooding. Performance calculations and computer applications in EOR. 4 lectures. Prerequisite: ME 302, ME 347, ME 345.

ME 435 Drilling Engineering (4)
Theory and practice of oilwell planning, drilling, well logging, and completion applied to the development of new oil and gas production, from onshore and offshore fields. 4 lectures. Prerequisite: ME 329, ME 347.

ME 436 Petroleum Production Engineering (4)
Design and operation of surface and subsurface equipment required in oil production. Processes and systems involved are rod pumping, gas lifting, acidizing, hydraulic fracturing, fluid gathering and storage, separation of oil, gas, water and sediment from produced fluid. Includes equipment used in enhanced oil recovery processes. 4 lectures. Prerequisite: ME 329, ME 347.

ME 440 Thermal System Design (4)
Design and optimization of thermal systems. Engineering economics, thermal component sizing, steady-state simulation, and optimization techniques applied to the design and performance analysis of thermal systems. 3 lectures, 1 laboratory. Prerequisite: ME 303, ME 347, ME 343.

ME 441 Single Track Vehicle Design (4)
Handling qualities of two-wheeled vehicles, and the application to vehicle design. Modeling of single-track vehicles begins with the complete free body diagram of the steerable section and the dynamics of the vehicle. Laboratory demonstrations of geometry changes to the control spring and control authority. Determination of vehicle geometry values of og position, longitudinal radius of gyration, headtube angle, etc. as their effect on handling qualities. 3 lectures, 1 laboratory. Prerequisite: ME 318, ME 326, ME 422 or consent of instructor.

ME 443 Turbomachinery (4)
ME 444 Combustion Engine Design (4)
Application of design parameters to the various engine cycles. Aspects of
the combustion processes. Emission regulation effects on engine design.
Static and dynamic loading. 3 lectures, 1 laboratory. Prerequisite: ME 303,
ME 343.

ME 445 Convective Heat and Mass Transfer (4)
Forced convection in laminar and turbulent flow, free convection,
diffusion, combined heat and mass transfer. 4 lectures. Prerequisite: ME
347, ME 343.

ME 446 Advanced and Hybrid Vehicle Design (4)
Systematic methodology to design and optimize hybrid powertrains.
Exploration of conventional and hybrid powertrain subsystem models and
application in a vehicle simulation, including internal combustion engines,
electric motors and generators, transmissions, batteries, fuel cells, hydraulic
reservoirs, ultracapacitors, flywheels, etc. Analytical modeling and
optimization. 3 lectures, 1 laboratory. Prerequisite: ME 329 and ME 303.

ME 450 Solar Power Systems (4)
High and intermediate temperature systems for conversion of solar energy
to mechanical power and heat. Thermal energy storage and total thermal
energy system design. Recommended as a complement to ME 415. 3
lectures, 1 laboratory. Prerequisite: ME 343.

ME 456 HVAC Air and Water Distribution System Design (4)
Air and water distribution components and systems and the design of these
systems with applications to the heating, ventilating and air-conditioning
(HVAC) industry. 3 lectures, 1 laboratory. Prerequisite: ME 302, ME 347.

ME 457 Refrigeration Principles and Design (4)
Basic engineering principles of refrigeration processes including: vapor
compression cycles, multipressure systems, absorption systems, steam jet
cooling, air cycles, and low temperature refrigeration. 3 lectures, 1
laboratory. Prerequisite: ME 341, ME 343.

ME 458 Building Heating and Cooling Loads (4)
Building heating and cooling load calculations, estimating energy
consumption and operating costs for heating, ventilating and air-conditioning
system design and selection. 3 lectures, 1 laboratory. Prerequisite: ME 303,
ME 343.

ME 459 HVAC System Design (3)
Team project work in designing heating, ventilating and air-conditioning
(HVAC) systems. Industry projects and collaborative work with other
disciplines. 1 lecture, 2 laboratories. Prerequisite: ME 456, ME 458.

ME 461, 462 Senior Project I, II (2) (3)
Selection and completion of a project under faculty supervision. Projects
typical of problems which graduates must solve in their fields of
employment. Project results are presented in a formal report. Minimum 150
hours total time. Prerequisite: Senior standing, ME 303, ME 343 and ME
329 (or concurrent).

ME 463 Undergraduate Seminar (1)
New developments, policies, practices, and procedures discussed through
seminar mode. Codes of ethics and case studies interpretations through
panel discussions by students. 1 seminar. Prerequisite: Senior standing,
ME 303, ME 343 and ME 329 (or concurrent).

ME 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to
undergraduate and graduate students. The Schedule of Classes will list
topic selected. Total credit limited to 12 units. 1 to 4 lectures. Prerequisite:
Consent of instructor.

ME 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students.
Open to undergraduate and graduate students. The Schedule of Classes will
list topic selected. Total credit limited to 8 units. 1 to 4 laboratories.
Prerequisite: Consent of instructor.

ME 481 Senior Project Laboratory (2)
Completion of a project begun in senior design class ME 428 or ME 459.
Design verified through prototyping and testing. 2 laboratories.
Prerequisite: ME 428 or ME 459.

ME 488 Wind Energy Engineering (4)
Engineering aspects of windpower systems including mechanical design,
support structure design, aerodynamic analysis, wind field analysis, system
concepts and analysis, and economics. 4 lectures. Prerequisite: ME 329,
ME 342, ME 302.

ME 493 Cooperative Education Experience (2) (CR/NC)
Part-time work experience in business, industry, government, and other
areas of student career interest. Positions are paid and usually require
relocation and registration in course for two consecutive quarters. Formal
report and evaluation by work supervisor required. Credit/No Credit
grading only. Total credit limited to 6 units. Prerequisite: Sophomore
standing and consent of instructor.

ME 494 Cooperative Education Experience (6) (CR/NC)
Full-time work experience in business, industry, government, and other
areas of student career interest. Positions are paid and usually require
relocation and registration in course for two consecutive quarters. A more
fully developed formal report and evaluation by work supervisor required.
Credit/No Credit grading only. Total credit limited to 18 units. Prerequisite:
Sophomore standing and consent of instructor.

ME 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other
areas of student career interest. Positions are paid and usually require
relocation and registration in course for two consecutive quarters. A more
fully developed formal report and evaluation by work supervisor required.
Credit/No Credit grading only. Total credit limited to 24 units.
Prerequisite: Sophomore standing and consent of instructor.

ME 500 Individual Study (1–3)
Advanced study planned and completed under the direction of a member of
the department faculty. Open only to graduate students who have
demonstrated ability to do independent work. Enrollment by petition.
Prerequisite: Consent of department head, graduate advisor and
supervising faculty member.

ME 501 Continuum Mechanics and Linear Elasticity (4)
Introduction to continuum mechanics. Kinematics, stress, and balance
laws. Constitutive equations for isotropic and anisotropic solids and
viscous fluids. Applications in mechanical engineering including design of
beams and pressure vessels, stress concentrations, fiber-reinforced
composites, and non-homogeneous biological materials. 4 lectures.
Prerequisite: ME 401 or consent of instructor.

ME 502 Finite Element Analysis (4)
Approximate methods of stress analysis with emphasis on the theory of the
Finite Element Method. Rayleigh-Ritz approximate energy minimizations
and methods of weighted residuals applied to one- and two-dimensional
stress fields. 3 lectures, 1 laboratory. Prerequisite: ME 501, or consent of
instructor.

ME 503 Inelastic Stress Analysis (4)
Perfectly plastic and work hardening materials; von Mises and Tresca
yield, isotropic and kinematic hardening flow rules, boundary-value
problems. Finite elasticity: kinematics, Cauchy- and Green-elasticity,
invariance, constraints, Neo-Hookean and Mooney-Rivlin materials,
experimental approaches, non-uniqueness, anisotropy, residual stress,
thermoelasticity, boundary-value problems. 4 lectures. Prerequisite: ME
501.

ME 506 System Dynamics (4)
Unified approach for mathematical modeling and analysis of dynamic
physical systems which may store energy in multiple energy domains.
Emphasis on developing lumped-parameter linear system models from a
set of primitive elements in a systematic manner. 4 lectures. Prerequisite:
Graduate standing or consent of instructor.
ME 507 Mechanical Control System Design (4)
Application of principles of high-level design to mechanical control system implementation. Use of modified state transition logic in conjunction with object-oriented programming as design methodology. Real-time programming using above techniques for control of mechanical systems. 3 lectures, 1 laboratory. Prerequisite: Graduate standing or consent of instructor.

ME 517 Advanced Vibrations (4)
Vibration of complex engineering systems. Inertia and stiffness matrices. Natural frequencies and normal modes. Approximate solutions and computer techniques. Response to transient and periodic inputs. 3 lectures, 1 laboratory. Prerequisite: ME 318, graduate standing or consent of instructor.

ME 518 Machinery Vibration and Rotor Dynamics (4)
Vibrations relating to rotating machinery. Modeling of structural rotordynamic phenomena induced by shaft flexibility, bearings, and seals. Laboratory measurement of rotor system dynamic response and interpretation of machinery diagnostic information. Research project on a related topic. 3 lectures, 1 laboratory. Prerequisite: ME 318, graduate standing or consent of instructor.

ME 531 Acoustics and Noise Control (4)
Description of sound using normal modes and waves. Interaction between vibrating solids and sound fields. Sound absorption in enclosed spaces. Sound transmission through barriers. Applications in acoustic enclosures, room enclosures, room acoustics. Design of quiet machinery and transducers. 3 lectures, 1 laboratory. Prerequisite: ME 318, MATH 344.

ME 540 Viscous Flow (4)
Introduction to tensor calculus and indicial notation. Development of Reynolds' Transport Theory. Special forms of the governing equations of fluid motion. Internal flows and other classical solutions to the Navier-Stokes equations. 4 lectures. Prerequisite: ME 347, MATH 344 and graduate standing or consent of instructor.

ME 541 Advanced Thermodynamics (4)
Selected modern applications of thermodynamics which may include topics from: 1) equilibrium and kinetics as applied to combustion and air pollution, analysis and evaluation of techniques used to predict properties of gases and liquids, and 2) improvement of modern thermodynamic cycles by second law analysis. 4 lectures. Prerequisite: ME 303, ME 343, ME 347 and graduate standing or consent of instructor.

ME 542 Dynamics and Thermodynamics of Compressible Flow (4)
Control volume analysis of fluid-thermo equations for one-dimensional, compressible flow involving area change, normal shocks, friction, and heat transfer. Two-dimensional supersonic flow including linearization, method of characteristics, and oblique shocks. One-dimensional constant area, unsteady flow, 4 lectures. Prerequisite: ME 303, ME 343, ME 347, MATH 244, and graduate standing or consent of instructor.

ME 551 Mechanical Systems Analysis (4)
Various system modeling methods applied to mechanical systems. System stability studies and system optimization methods. 3 seminars, 1 laboratory. Prerequisite: Graduate standing or consent of instructor.

ME 552 Advanced Heat Transfer I (4)
Advanced principles of heat transfer. Classical solution techniques to problems in conduction and/or radiation. 4 lectures. Prerequisite: ME 343, ME 347, MATH 344, and graduate standing or consent of instructor.

ME 553 Advanced Heat Transfer II (4)
Advanced principles of heat transfer. Classical solution techniques to problems in convection. 4 lectures. Prerequisite: ME 343, ME 347, MATH 344, and graduate standing or consent of instructor.

ME 554 Computational Heat Transfer (4)
Numerical solutions of classical, industrial, and experimental problems in conduction, convection, and radiation heat transfer. 3 seminars, 1 laboratory. Prerequisite: ME 343, ME 347, MATH 418, graduate standing or consent of instructor.

ME 563 Graduate Seminar (1)
Current developments in mechanical engineering. Participation by graduate students, faculty and guests. 1 seminar. Prerequisite: Graduate standing in mechanical engineering program.

ME 570 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 8 units; may be repeated in same term. 1-4 seminars. Prerequisite: Graduate standing or consent of instructor.

ME 571 Selected Advanced Laboratory (1-4)
Directed group laboratory study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 8 units; may be repeated in same term. 1-4 laboratories. Prerequisite: Graduate standing or consent of instructor.

ME 579 Fluid Power Control (4)
Analysis, design, and control of fluid power systems. Analysis of fluid power system components such as valves, actuators, pumps, and motors. System response and stability. Dynamic modeling and computer simulation of fluid power control system. 3 lectures, 1 laboratory. Prerequisite: ME 422.

ME 593 Cooperative Education Experience (2) (CR/NC)
Advanced study analysis and part-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

ME 594 Cooperative Education Experience (6) (CR/NC)
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

ME 595 Cooperative Education Experience (12) (CR/NC)
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. A fully-developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. Prerequisite: Graduate standing and consent of instructor.

ME 599 Design Project (Thesis) (2) (2) (5)
Each individual or group will be assigned a project for solution under faculty supervision as a requirement for the master's degree, culminating in a written report/thesis. Prerequisite: Graduate standing.

MLL—MODERN LANGUAGES and LITERATURES

MLL 101, 102, 103 Foreign Language I, II, III (4) (4) (4)
Organized group instruction arranged for students who wish to acquire basic skill in a foreign language indicated by subtitle. Laboratory drill required. Language taught in its cultural context. To be taken in numerical sequence. 3 lectures, 1 activity.

MLL 121, 122 Intermediate Foreign Language I, II (4) (4)
Review of grammar in a foreign language. Practice in writing, speaking and listening and oral expression within a cultural context. To be taken in numerical sequence. 3 lectures, 1 activity. Prerequisite: MLL 103 or consent of instructor.

MLL 200 Special Problems for Undergraduates (1-8)
Individual investigation, research, studies, or surveys of selected problems at the lower division level. The Schedule of Classes will list topic selected. Total credit limited to 8 units. Prerequisite: Consent of instructor.
MLL 210 Introduction to Research Methods and Literary Criticism (4)
Methods and techniques of doing research. Critical thinking and library research in languages other than English. Introduction to the most important philosophical and theoretical schools of thought, as seen and applied in academic research. 3 lectures, 1 activity. Prerequisite: GE A1.

MLL 270 Language Study Abroad (4)
Acquisition of language and cultural competencies while studying abroad. The Schedule of Classes will list topic selected. Total credit limited to 12 units, with a maximum of 12 units per quarter. 3 lectures, 1 activity. Prerequisite: Consent of department chair.

MLL 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 8 units. Prerequisite: Consent of department head.

MLL 460 Senior Project (4)
Selection and completion of a project under faculty mentorship. Projects represent individual, well-defined problems and potential solutions that reflect pertinent scholarly activity in the field of modern languages and literatures, with special emphasis on one of the languages/cultures taught in the department. Total credit limited to 4 units. Prerequisite: MLL 210, advanced composition in primary and/or secondary language, senior status and consent of instructor.

MLL 470 Selected Advanced Topics (4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 lectures. Prerequisite: Consent of instructor.

MSL—MILITARY SCIENCE LEADERSHIP

MSL 101 Foundations of Officerhip I (1)
Introduction to issues and competencies of the Army officer profession. Emphasis on stereotypes about the military, the role of the Army officer, customs and traditions within the military, and personal and physical development. Open to all freshmen and sophomores. 1 lecture.

MSL 102 Foundations of Officerhip II (1)
The role of leadership within a large organization. Emphasis on the definition of leadership, the definition of an individual, and organizational core values, and the moral responsibility of leadership. 1 lecture.

MSL 103 Basic Leadership (1)
The foundation of basic leadership fundamentals such as problem solving, communications, briefing, and effective writing, techniques for improving listening and speaking skills, and an introduction to counseling. 1 lecture.

MSL 110 Exercises in Military Leadership (1) (CR/NC)
Hands-on instruction on the proper execution of small-unit military operations. Incorporation of the military decision-making process in the planning, execution, and conducting of a wide variety of squad, platoon, and company-sized missions. Credit/No Credit grading only. 1 activity. Prerequisite: Enrollment in any MSL course or consent of department head.

MSL 111 Orienteering (2)
Principles of orienteering, basic map reading and compass skills; course running techniques applied in field orienteering events. Open to all freshmen and sophomores. 1 lecture, 1 activity.

MSL 112 The Army Physical Fitness Program (1)
The Army Physical Fitness Program and its proper execution. Physical training to the Army standard with the goal of successfully passing the Army Physical Fitness Test. 1 laboratory.

MSL 201 Foundations of Leadership I (2)
The development of individual leadership traits and capabilities using the Army officer as a model. The Army’s problem solving methods, written and oral communications, tactics and group leadership. Open to all students. 2 lectures.

MSL 202 Foundations of Leadership II (2)
The development of individual leadership traits and capabilities using the Army officer as a model. The Army’s problem solving methods, tactics and group leadership. Open to all students. 2 lectures.

MSL 203 Foundations of Leadership III (2)
The development of individual leadership traits and capabilities using the Army officer as a model. The Army’s problem solving methods, land navigation techniques, tactics and group leadership. Open to all students. 2 lectures.

MSL 212 Leader's Training Course (1–7)
One to seven units of credit may be granted depending upon successful completion of training. Five weeks of training, Fort Knox, Kentucky. Travel pay and salary provided through the Military Science Department. No obligation. LTC graduates eligible to enroll in ROTC Advanced Program.

MSL 229 Ranger Challenge (2) (CR/NC)
Selection and preparation of the Ranger Challenge Team which will represent Cal Poly in military tactical skills competition. Includes rope bridging, orienteering, weapons knowledge, hand grenade accuracy, 10K road march with equipment, first aid, marksmanship, physical fitness and tactics. Credit/No Credit grading only. 2 activities.

MSL 240 American Military History and the Evolution of Western Warfare (4)
Comprehensive analysis of American military history from the early Anglo-French period to the end of the 20th Century. Examination of the strategies, operations and tactics of military warfare, and exploration of how social, economic, and technological factors produced the distinct patterns of war that characterize the struggles of the past two hundred plus years. Open to all students. 4 lectures.

MSL 301 Tactical Leadership I (3)
Introduction to the life of a professional Army officer. Instruction in the operational art of small-unit leadership, and the roles and responsibilities of an Army 2nd Lieutenant in preparation for attendance at the Leader Development and Assessment Course. 3 lectures. Prerequisite: Completion of MSL 101, MSL 102, MSL 103, MSL 201, MSL 202, MSL 203, or completion of MSL 212, and consent of department head.

MSL 302 Tactical Leadership II (3)
Continuation of study of the life of a professional Army officer. Instruction in the operational art of small-unit leadership, and the roles and responsibilities of an Army 2nd Lieutenant in preparation for attendance at the Leader Development and Assessment Course. 3 lectures. Prerequisite: MSL 301, and consent of instructor.

MSL 303 Applied Leadership (3)
Demonstration of proficiency in leading small units. Emphasis on clear and concise oral communications, land navigation, weapons skills, and timely decision-making. Completion of training for the Leader Development and Assessment Course and preparation for attendance at the course. 3 lectures. Prerequisite: MSL 301, MSL 302, and consent of instructor.

MSL 314 Leadership Development and Assessment Course (6) (CR/NC)
Five week summer training program required to achieve an Army commission. Testing and training as functional Army officers and determination of potential for service. Travel pay, room and board, and salary provided by the U.S. Army. Held at Fort Lewis, Washington. Credit/No Credit grading only. Prerequisite: MSL 301, MSL 302, MSL 303, and consent of instructor.

MSL 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.

MSL 401 Developmental Leadership I (3)
In-depth study and analysis of the duties and responsibilities of an ethical Army officer. Emphasis on honing skills required at follow-on training.
Administrative actions and self and subordinate developmental processes utilized by an Army 2nd Lieutenant. 3 lectures. Prerequisite: MSL 301, MSL 302, MSL 303 and consent of instructor.

MSL 402 Developmental Leadership II (3)
Continuation of MSL 401 with a focus on communications and personal development. Continuation of in-depth study and analysis of the duties and responsibilities of an ethical Army officer. Emphasis placed on honing skills required at follow-on training. Administrative actions and self and subordinate developmental processes utilized by an Army 2nd Lieutenant. 3 lectures. Prerequisite: MSL 401 and consent of instructor.

MSL 403 Adaptive Leadership (3)
Beginning of transition from student to commissioned officer. Emphasis on expectations of an Army 2nd Lieutenant. Cultural awareness, effective command climates, terrorism and force protection in the current operational environment, and individual officer skills. 3 lectures. Prerequisite: MSL 401, MSL 402 and consent of instructor.

MSL 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

MU—MUSIC

MU 100 Music Fundamentals (4)
Traditional music notation. Use of treble and bass staff for pitch and rhythm, harmonization using principal triads, major and minor, and common seventh chords. Performance of simple pieces individually and in groups using common classroom instruments. 3 lectures, 1 activity.

MU 101 Introduction to Music Theory (4) GE C3
Introduction to the elements of music and their use by composers and performers. Notation of pitch and rhythm, scales, key signatures, intervals and chords. 3 lectures, 1 activity.

MU 103 Music Theory I: Diatonic Materials (4)
Structure of tonality, four-part writing of root position and inverted triads, cadences and melodic structure, harmonic progressions, harmonization of a melody and nonharmonic tones. Composition project. 4 lectures. Prerequisite: MU 101 or permission of instructor.

MU 104 Musicianship I (2)
Introductory sight-singing; rhythmic performance and dictation in simple and compound meters; identification and performance of melodic and harmonic intervals and triads; dictation of major diatonic melodies and basic chord progressions. 2 activities. Prerequisite: MU 101 or consent of instructor. (Music majors may be concurrently enrolled in MU 101 and MU 104.)

MU 105 Music Theory II: Chromatic Materials (4) (formerly MU 207)
Construction and resolution of diatonic and seventh chords, secondary dominants, basic modulation, change of mode. Augmented sixth and Neapolitan chords. Binary and ternary form. Composition project. 4 lectures. Prerequisite: MU 103.

MU 106 Musicianship II (2)
Sight-singing in all forms of the minor mode; rhythmic performance and dictation in compound meters and syncopation; identification of triad inversions and cadence formulas; dictation of minor diatonic melodies and triadic chord progressions. 2 activities. Prerequisite: MU 104 or consent of instructor.

MU 108 Musicianship III (2) (formerly MU 208)
Sight-singing in all modes in two or more parts; rhythmic dictation in 2 parts; identification of triadic chord progressions and root position seventh chords; identification of phrase structure; dictation of two-part melodies in all modes. 2 activities. Prerequisite: MU 106 or consent of instructor.

MU 114 Introduction to Composing (4)
Fundamental concepts in music composition. Creative projects. Compositional techniques, development, and structure. Analysis of examples from the literature. 3 lectures, 1 activity. Prerequisite: MU 101 or consent of instructor.

MU 120 Music Appreciation (4) GE C3
Explores the world of music with emphasis on Western tradition. Language of music, the role of music in society. Historical context and major composers from the Middle Ages to the present. 3 lectures, 1 activity.

MU 121 Introduction to Non-Western Musics (4)
Survey of selected non-Western music cultures. Emphasis on listening and understanding the ensemble type, aesthetic principle, musical style, and performance practice of each. 3 lectures, 1 activity. Prerequisite: Music major, minor, or consent of instructor.

MU 149 Applied Study/Technique (1)
Individual instruction in performance with emphasis on the technical skills needed for the performance of repertoire. Total credit limited to 3 units. Specific areas of study are listed in the Schedule of Classes. Prerequisite: Consent of instructor.

MU 150 Applied Music (1)
Individual instruction in performance with emphasis on repertoire, technical skills, style, and interpretation. Total credit limited to 6 units. Specific areas of study are listed in the Schedule of Classes. Prerequisite: Consent of instructor.

MU 151 Beginning Piano (2)
Beginning piano for student with no background in keyboard instruments. Includes fundamentals of notation, keyboard techniques, tone production, sightreading and facility. 1 lecture, 1 activity.

MU 152 Elementary Class Piano (1)
Continuation of MU 151. Piano for students with the ability to play a simple Bach or Mozart Minuet. Total credit limited to 3 units. 1 activity. Prerequisite: MU 101 or MU 151 or equivalent. For non-music majors.

MU 153 Intermediate Class Piano (1)
Continuation of MU 152. Students are expected to play at the level of the easier Clementi Sonatinas. Total credit limited to 3 units. 1 activity. Prerequisite: MU 152 or one year of piano instruction. For non-music majors.

MU 154 Beginning Voice (2)
Beginning study of vocal and performance technique for the untrained singer. Includes the beginning study of the vocal mechanism and the fundamentals of notation. 1 lecture, 1 activity.

MU 155 Beginning Guitar (1)

MU 161 Piano Skills I (1)
Preparation for Piano Proficiency Examination. Study of piano repertoire, sightreading, transposition, harmonization of a melody, accompanying, improvisation of a melody, score-reading. 1 activity. Prerequisite: Consent of instructor.

MU 162 Piano Skills II (1)
Continuation of MU 161. Preparation for Piano Proficiency Examination. Study of piano repertoire, sightreading, transposition, harmonization of a melody, accompanying, improvisation of a melody, score-reading. 1 activity. Prerequisite: MU 161 or consent of instructor.

MU 163 Piano Skills III (1)
Continuation of MU 162. Preparation for Piano Proficiency Examination. Study of piano repertoire, sightreading, transposition, harmonization of a melody, accompanying, improvisation of a melody, score-reading. 1 activity. Prerequisite: MU 162 or consent of instructor.

MU 170 University Jazz Band (1)
Study and public performance of music written for big band jazz. Limited to those who have had considerable experience playing musical instruments. The band performs concerts on campus and makes at least one
tour annually. Total credit limited to 6 units. 1 laboratory. Prerequisite: Consent of instructor.

MU 171 Instrumental Ensembles (1)
Open to qualified musicians. Rehearsal and public performances in large and small ensembles. Total credit limited to 6 units, 1 activity. Prerequisite: Consent of instructor.

MU 172 Wind Orchestra (1)
Study and public performance of music written for large wind bands and percussion instruments. Open to all qualified students who perform on woodwind, brass, and percussion instruments on an advanced collegiate level. Total credit limited to 6 units, 1 laboratory. Prerequisite: Consent of instructor.

MU 173 Wind Ensemble (1)
Study and public performance of music written for wind bands with limited doubling and flexible instrumentation. Open to all students who perform on woodwind, brass and percussion instruments on an advanced collegiate level. Total credit limited to 6 units. 1 laboratory. Prerequisite: Consent of instructor.

MU 174 Symphony Orchestra (1)
Preparation and performance of orchestral music including both the standard repertoire and rarely performed works. Open to all qualified students. Total credit limited to 6 units. 1 laboratory. Prerequisite: Consent of instructor, based on audition.

MU 175 Contemporary Music Ensemble (1)
Open to all instrumentalists who are interested in performing recent classical literature. Limited to students who are proficient on their instrument. Total credit limited to 6 units. 1 activity. Prerequisite: By audition or consent of instructor.

MU 176 Mustang Band (1)
Public performance of music and specially-designed shows written for marching band (woodwinds, brass, percussion, and flag team auxiliary). Limited to those students who have had marching experience with wind and percussion instruments, or flag, rifle or dance lines. Total credit limited to 6 units. 1 laboratory. Prerequisite: Consent of instructor.

MU 177 Chamber Winds (1)
Study and public performance of music written for small wind ensembles (10 to 20 players). Open to all students who perform woodwind, brass and percussion instruments on an advanced collegiate level. Total credit limited to 6 units. 1 activity. Prerequisite: Consent of instructor.

MU 180 PolyPhonies (1)
Study and public performance of music for mixed voices. Total credit limited to 6 units. 1 laboratory. Prerequisite: Consent of instructor.

MU 181 Vocal Ensemble (1)
Open to qualified singers. Rehearsal and performance of specialized vocal music. Total credit limited to 6 units. 1 activity. Prerequisite: Consent of instructor.

MU 184 Music Production Workshop (2)
Preparation of a musical theatre production for public presentation. Includes acting and stage management. Total credit limited to 6 units. 2 laboratories. Prerequisite: By audition or consent of instructor.

MU 185 University Singers (1)
Study and public performance of music for large mixed chorus. Total credit limited to 6 units. 1 laboratory. Prerequisite: Consent of instructor.

MU 186 Early Music Ensemble (1)
Study and public performance of vocal and instrumental music from 1200 to 1750. Total credit limited to 6 units, 1 laboratory. Prerequisite: Consent of instructor.

MU 187 Vocal Jazz Ensemble (1)
Study and performance of vocal jazz, including ensemble performance as well as solo performance and improvisation. Total credit limited to 6 units, 1 laboratory. Prerequisite: Consent of instructor.

MU 189 Vocal Practicum (1)
Study and implementation of performing techniques used by vocalists in a recital or concert setting. The Schedule of Classes will list topic selected. Total credit limited to 6 units. 1 activity. Prerequisite: MU 150, MU 250, MU 350 or MU 450, or consent of instructor.

MU 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.

MU 210 Musicianship IV (1)
Continuation of MU 180. Sightsinging with chromatic tones; rhythmic performance in changing meters; chord progressions with seventh chords and secondary dominants; seventh chord inversions; modulation to closely-related keys; identification of binary and ternary forms; and 2-part diatonic dictation. 1 activity. Prerequisite: MU 108 or consent of instructor.

MU 211 Musicianship V (1)
Continuation of MU 210. Sightsinging with non-diatonic tones; rhythmic performance and dictation in changing and irregular meters; chord progressions with Neapolitan and augmented sixth chords; modulatory progressions and dictations and identification of sonata, rondo, and variation forms. 1 activity. Prerequisite: MU 210 or consent of instructor.

MU 212 Musicianship VI (1)
Continuation of MU 211. Emphasis on previously acquired skills, plus performance and dictation of complex beat divisions; identification of contrapuntal genres; and modulatory dictation in 2 parts. 1 activity. Prerequisite: MU 211 or consent of instructor.

MU 221 Jazz Styles (4)
Survey of Jazz as a significant American art form from 1900 to the present; its historical background and development in the United States; key elements, leading performers, and significant compositions in each style. Emphasis on listening skills. 3 lectures, 1 activity.

MU 229 Music of the 60s: War and Peace (4)
Explores wide spectrum of rock, folk and pop styles of the 60s. Relates music to social turmoil and historical trends, including Vietnam War, Civil Rights Movement, American Indian Movement, Chicano Movement, Free Speech Movement. 3 lectures, 1 activity.

MU 249 Applied Study/Technique (1)
Individual instruction in performance with emphasis on the technical skills needed for the performance of repertoire. Total credit limited to 3 units. Specific areas of study are listed in the Schedule of Classes. Prerequisite: Consent of instructor.

MU 250 Applied Music (1)
Individual instruction in performance with emphasis on repertoire, technical skills, style, and interpretation. Total credit limited to 6 units. Specific areas of study are listed in the Schedule of Classes. Prerequisite: 3 units of MU 150 and consent of instructor.

MU 251 Diction for Singers (1)
The study of diction as it applies to singing in English, French, German, Italian, and Spanish and the International Phonetic Alphabet. The Schedule of Classes will list topic selected. Total credit limited to 6 units. 1 activity. Prerequisite: Consent of instructor.

MU 252 Intermediate Voice (1)
Vocal and performance technique for experienced singers. Total credit limited to 3 units. 1 activity. Prerequisite: MU 154 or consent of instructor.

MU 253 Advanced Class Piano (1)
Advanced level piano techniques with emphasis on style, interpretation, sightreading, basic performance practices and the solution to general musical problems. Total credit limited to 3 units. 1 activity. Prerequisite: MU 153 or consent of instructor. For non-music majors.

MU 259 Beginning Jazz Improvisation (2)
Development of fundamentals of jazz improvisation including scales, arpeggios, patterns, swing feel, expressiveness, and motifs through in-class
of written materials and improvisations with play-along recordings. Total credit limited to 6 units. 2 activities. Prerequisite: Facility on a musical instrument or singing ability; MU 101 or consent of instructor.

MU 261 Piano Skills IV (1)
Continuation of MU 163. Preparation for Piano Proficiency Examination. Study of piano repertoire, sightreading, transposition, harmonization of a melody, accompanying, and improvisation of a melody, score-reading. 1 activity. Prerequisite: MU 163 or consent of instructor.

MU 262 Piano Skills V (1)
Continuation of MU 261. Preparation for Piano Proficiency Examination. Study of piano repertoire, sightreading, transposition, harmonization of a melody, accompanying, improvisation of a melody, score-reading. 1 activity. Prerequisite: MU 261 or consent of instructor.

MU 263 Piano Skills VI (1)
Continuation of MU 262. Successful completion of this course represents fulfillment of the Piano Proficiency Examination. Study of piano repertoire, sightreading, transposition, harmonization of a melody, accompanying, improvisation of a melody, score-reading. 1 activity. Prerequisite: MU 262 or consent of instructor.

MU 301 Counterpoint (4)
Counterpoint as a compositional technique. Modal, tonal, and post-tonal practices. Creative project. 4 lectures. Prerequisite: MU 105.

MU 303 Music Theory III: Advanced Chromaticism (4)
(formerly MU 309)
Compositional procedures employed by composers of the Classical and Romantic periods. Chromatic third-related harmony, ninth, eleventh and thirteenth chords. Chromatic and enharmonic modulation. Sonata and rondo form. Composition project. 4 lectures. Prerequisite: MU 105.

MU 305 Music Theory IV: Contemporary Practices (4)
(formerly MU 401)
Study of modern compositional practices including impressionism, polytonality, serialism, timbre and form, minimalism, and the new eclecticism. Analysis and creative projects. 4 lectures. Prerequisite: MU 303 or permission of instructor.

MU 311 Sound Design: Technologies (4) (formerly MU 308)
Fundamental tools of electroacoustic sound design. Concepts and application of music studio procedure, recording, synthesis, and MIDI. Studio projects. 3 lectures, 1 activity. Prerequisite: MU 101, MU 120 or consent of instructor.

MU 312 Sound Design: Recording (4) (formerly MU 310)
Exploring creative use of recording technology. Analog and digital equipment for recording music. Analysis and creative projects. 3 lectures, 1 activity. Prerequisite: MU 311 or permission of instructor.

MU 320 Music Research and Writing (4)
Methodology for researching, analyzing, and writing about music. Exploration of investigative tools including library resources, periodicals, bibliographic tools, computerized search methods. Computerized software for text and music notation. Formatting music for publication. Performance practice. 4 lectures. Prerequisite: MU 105 and ENGL 134. Recommended: MU 120; or permission of instructor.

MU 324 Music and Society (4)
GE C4
Exploration into the role of music historically and culturally. Emphasis on deeper understanding and appreciation of the context of music through topics of special interest. The Schedule of Classes will list topics selected. Total credit limited to 12 units. 3 lectures, 1 activity. Prerequisite: Completion of GE Area A and a foundation course in Area C. Music majors will not receive GE C4 credit.

MU 325 America’s Music (4)
USCP
Explorations of the many styles of America's music through lectures, readings, sound recordings, musical scores, and performance. Includes “Native American,” “folk,” “popular,” and “fine art” traditions. How American music reflects the different cultural heritages, social contexts, and philosophies of its creators. 4 lectures. Prerequisite: MU 105. Recommended: MU 120.

MU 326 Cultural Concepts and Structures in Music (4)
Exploring the definition, concepts, and structures of music in terms of theory, performance practice, and compositional procedures of selected non-Western cultures. 3 lectures, 1 activity. Prerequisite: MU 121 or consent of instructor.

MU 328 Women in Music (4)
GE C4
Survey of women's contributions as composers and performers of western art and popular music; historical overview of the experiences and perception of women as musicians. 3 lectures, 1 activity. Prerequisite: Completion of GE Area A and a foundation course in Area C. Music majors will not receive GE C4 credit.

MU 331 Music of the Middle Ages and Renaissance (4)
Musical literature, styles, composers, theory, genres and notation of the Middle Ages and Renaissance. Relationship to historical trends. 4 lectures. Prerequisite: MU 320; Recommended: MU 120; or permission of instructor.

MU 332 Music of the Baroque and Early Classic Eras (4)
Survey of the history of western art music from 1600 to 1780. 4 lectures. Prerequisite: MU 320; Recommended: MU 120; or permission of instructor.

MU 335 Survey of Keyboard Literature (4)
Intensive survey of solo piano literature from early keyboard music through contemporary composers; emphasis upon composers' influences, stylistic characteristics, performance practices, and the development of the piano forte. 4 lectures. Prerequisite: MU 105 or consent of instructor.

MU 336 Jazz History and Theory (4)
Survey of Jazz theoretical techniques. Emphasis upon historical context and development of Jazz through study and analysis of scores and historical performances. 4 lectures. Prerequisite: MU 105.

MU 340 Conducting: Fundamentals (2)
Principles and techniques of conducting with experience in score reading. 2 activities. Prerequisite: MU 105 or consent of instructor.

MU 341 Conducting: Choral (2)
Continuation of MU 340. Emphasis on choral literature. Score reading, rehearsal techniques, and musical details associated with vocal music. 2 activities. Prerequisite: MU 340.

MU 342 Conducting: Instrumental (2)
Continuation of MU 340. Emphasis on band and orchestra literature. Score reading, rehearsal techniques, and musical details associated with instrumental music. 2 activities. Prerequisite: MU 340 and MU 341.

MU 349 Applied Study/Technique (1)
Individual instruction in performance with emphasis on the technical skills needed for the performance of repertoire. Total credit limited to 3 units. Specific areas of study are listed in the Schedule of Classes. Prerequisite: Consent of instructor.

MU 350 Applied Music (1)
Individual instruction in performance and composition. Total credit limited to 6 units. Specific areas of study are listed in the Schedule of Classes. Prerequisite: Consent of instructor.

MU 351 Jazz and Popular Music Arranging (2)
Arranging for small and large jazz ensembles. Score and part preparation. 2 activities. Prerequisite: MU 105.

MU 352 Orchestration (4)
Ranges, transposition, technical capabilities, and scoring of vocal ensembles, band, and orchestra instruments. Creative project. 3 lectures, 1 activity. Prerequisite: MU 105.

MU 360 Music for Classroom Teachers (4)
Development of skills for fostering creative music experiences in the classroom. Exploration of various approaches to motivating children musically. Study of folk songs for singing, playing instruments, and
Learning about music as well as for their ethnic and cultural significance. 3 lectures, 1 activity. Prerequisite: MU 100 or MU 101.

MU 361 Instruments (1)
Fundamentals of playing and teaching woodwind, brass, string, and percussion instruments. The Schedule of Classes will list topic selected. Total credit limited to 6 units. 1 activity. Prerequisite: Junior standing and consent of instructor.

MU 365 Music in the Elementary School (4)
Study and application of Orff, Dalcroze, Kodaly, Manhattanville, and Suzuki. Philosophy, objectives and methodologies for implementing an effective school music program. Includes fieldwork. 3 lectures, 1 activity. Prerequisite: MU 105; junior standing.

MU 366 Piano Pedagogy (2)
Survey of elementary, intermediate and advanced teaching methods and literature; private and group instruction; studio policies. 2 activities. Prerequisite: MU 105 or consent of instructor.

MU 370 University Jazz Band (1)
Study and public performance of music written for big band jazz. Limited to those who have had considerable experience playing musical instruments. The band performs concerts on campus and makes at least one tour annually. Total credit limited to 6 units. 1 laboratory. Prerequisite: Junior standing and consent of instructor.

MU 371 Instrumental Ensemble (1)
Open to qualified musicians. Rehearsal and public performance in large and small ensembles. Total credit limited to 6 units. 1 activity. Prerequisite: Junior standing and consent of instructor.

MU 372 Wind Orchestra (1)
Study and public performance of music written for large wind bands. Open to all qualified students who perform on woodwind, brass and percussion instruments. Total credit limited to 6 units. 1 laboratory. Prerequisite: Junior standing and consent of instructor.

MU 373 Wind Ensemble (1)
Study and public performance of music written for wind bands with limited doubling and flexible instrumentation. Open to all students who perform on woodwind, brass and percussion instruments on an advanced collegiate level. Total credit limited to 6 units. 1 laboratory. Prerequisite: Junior standing and consent of instructor.

MU 374 Symphony Orchestra (1)
Preparation and performance of orchestral music including both the standard repertoire and rarely performed works. Open to all qualified students. Total credit limited to 6 units. 1 laboratory. Prerequisite: Junior standing and consent of instructor, based on audition.

MU 375 Contemporary Music Ensemble (1)
Open to all instrumentalists who are interested in performing recent classical literature. Total credit limited to 6 units. 1 activity. Prerequisite: Junior standing; by audition or consent of instructor.

MU 376 Mustang Band (1)
Public performance of music and specially-designed shows written for marching band (woodwinds, brass, percussion, and flag team auxiliary). Limited to those students who have had marching experience with wind and percussion instruments, or flag, rifle or dance lines. Total credit limited to 6 units. 1 laboratory. Prerequisite: Junior standing and consent of instructor.

MU 377 Chamber Winds (1)
Study and public performance of music written for small wind ensembles (10 to 20 players). Open to all students who perform woodwind, brass and percussion instruments on an advanced collegiate level. Total credit limited to 6 units. 1 activity. Prerequisite: Consent of instructor; junior standing.

MU 381 PolyPhonics (1)
Study and public performance of music for mixed voices. Total credit limited to 6 units. 1 laboratory. Prerequisite: Junior standing and consent of instructor.

MU 383 Vocal Ensemble (1)
Open to qualified singers. Rehearsal and performance of specialized vocal music. Total credit limited to 6 units. 1 activity. Prerequisite: Junior standing and consent of instructor.

MU 384 Music Production Workshop (2)
Preparation of a musical theatre production for public presentation, including acting and stage management. Total credit limited to 6 units. 2 laboratories. Prerequisite: Junior standing and by audition, or consent of instructor.

MU 385 University Singers (1)
Study and public performance of music for large mixed chorus. Total credit limited to 6 units. 1 laboratory. Prerequisite: Junior standing and consent of instructor.

MU 386 Early Music Ensemble (1)
Study and public performance of vocal and instrumental music from 1200 to 1750. Total credit limited to 6 units. 1 laboratory. Prerequisite: Consent of instructor; junior standing.

MU 387 Vocal Jazz Ensemble (1)
Study and performance of vocal jazz, including ensemble performance as well as solo performance and improvisation. Total credit limited to 6 units. 1 laboratory. Prerequisite: Junior standing and consent of instructor.

MU 389 Vocal Practicum (1)
Study and implementation of performing techniques used by vocalists in a recital or concert setting. The Schedule of Classes will list topic selected. Total credit limited to 6 units. 1 activity. Prerequisite: MU 150, MU 250, MU 350 or MU 450, or consent of instructor.

MU 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Junior standing and consent of department head.

MU 411 Sound Design: Synthesis (4)
Compositional application of sound synthesis techniques. Realization of computer music. Creative projects. 3 lectures, 1 activity. Prerequisite: MU 312.

MU 412 Sound Design: Composition and Production (4)
Production of electroacoustic music in media. Program analysis, technical planning, composition, and product development. 3 lectures, 1 activity. Prerequisite: MU 312.

MU 431 Music of the Classic and Romantic Eras (4)
(formerly MU 333)
Survey of the history of western art music from 1780 to 1900. 4 lectures. Prerequisite: MU 320; Recommended: MU 120; or permission of instructor.

MU 432 Music of the Modern Era (4) (formerly MU 334)
Composers, important works, and significant trends in the Western European and American classical tradition during the 20th and 21st Centuries. 4 lectures. Prerequisite: MU 320; Recommended: MU 120; or permission of instructor.

MU 449 Applied Study/Technique (1)
Individual instruction in performance with emphasis on the technical skills needed for the performance of repertoire. Total credit limited to 3 units. Specific areas of study are listed in the Schedule of Classes. Prerequisite: Consent of instructor.

MU 450 Applied Music (1)
Individual instruction in performance and composition. Total credit limited to 6 units. Specific areas of study are listed in the Schedule of Classes. Prerequisite: Consent of instructor.

MU 461 Senior Project (3)
Selection and completion of a project under faculty supervision. Minimum of 90 hours total time. Results presented in a recital, creative work, formal report, or a combination of all three. Prerequisite: Senior standing and consent of department head.

2007-2009 Cal Poly Catalog
MU 465 Choral Literature and Rehearsal Techniques (4)
Survey of choral literature especially suited for secondary schools. Philosophy and strategy for developing a school program. Musical as well as non-musical techniques for effective rehearsal. 3 lectures, 1 activity. Prerequisite: MU 341, or consent of instructor.

MU 466 Instrumental Literature and Rehearsal Techniques (4)
Survey of instrumental literature especially suited for secondary schools. Philosophy and strategy for developing a school program. Musical as well as non-musical techniques for effective rehearsal. 3 seminars, 1 activity. Prerequisite: MU 342, or consent of instructor.

MU 470 Music History: Selected Advanced Topics (4)
Intensive study of selected topics in music history through the use of readings, recordings, scores, and class presentations. The Schedule of Classes will list topics selected. Total credit limited to 8 units. 3 lectures, 1 activity. Prerequisite: MU 331, MU 332, MU 431, MU 432, or consent of instructor.

PE—PHYSICAL EDUCATION

(See also KINE—Kinesiology)

BASIC INSTRUCTIONAL PROGRAM

Enrollment is open to all students except for designated intramural courses. Courses carry 1 unit of credit, meet 2 hours per week, and are designed to develop skill, knowledge of rules, background and analysis of techniques, and desirable attitudes toward physical fitness and participation in physical activities.

The beginning course or its equivalent is prerequisite to the intermediate, and the intermediate to the advanced. Prerequisite may be waived by consent of the instructor.

No more than two different activity courses nor more than one section of an individual activity course may be taken for credit in any one quarter. A student may not enroll simultaneously in the same quarter for a beginning, intermediate and/or advanced activity course. Any level of an activity course can be repeated only once for credit.

Students not majoring in kinesiology may apply a maximum of 12 units of credit earned in general and intramural activity courses toward the bachelor's degree.

All basic instructional courses (PE 100–176) are evaluated on a Credit/No Credit basis. A miscellaneous course fee may be required—see the Schedule of Classes.

PE—Adaptive Activity

PE 100 Adaptive Activity
PE 101 Gymnastics
PE 102 Tumbling and Vaulting
PE 103 Archery
PE 104 Badminton, Beg.
PE 105 Badminton, Int.—Adv.
PE 107 Billiards
PE 108 Basketball
PE 109 Bowling
PE 110 Cycling
PE 111 Fencing
PE 112 Bowling, Int.
PE 113 Intermediate Billiards
PE 116 Aerobic Exercise
PE 121 Golf, Beg.
PE 122 Golf, Int.—Adv.
PE 125 Jogging
PE 126 Judo
PE 129 Stretch, Flex and Relax
PE 131 Physical Conditioning
PE 132 Racquetball, Beg.
PE 133 Racquetball, Int.—Adv.
PE 135 Skin Diving
PE 136 Scuba Diving
PE 137 Self-Defense
PE 138 Karate

PE—Sports

PE 139 Soccer
PE 140 Ultimate Disc
PE 142 Softball
PE 143 Swimming for Non-Swimmers
PE 144 Swimming, Advanced Beginner
PE 145 Swimming, Int.
PE 146 Swimming, Adv.
PE 147 Swim Conditioning
PE 148 Tennis, Beg.
PE 149 Tennis, Int.—Adv.
PE 151 Volleyball, Beg.
PE 152 Volleyball, Int.—Adv.
PE 154 Weight Training
PE 156 Aqua-Aerobics
PE 159 Wrestling
PE 174 Intramurals
PE 176 Fitness Walking

COMPETITIVE ATHLETICS

Enrollment limited to those academically qualified to compete in intercollegiate athletic programs. Consent of coach required. Total credit limited to 8 units. Courses are each 2 units and meet for a minimum of 10 hours per week. All competitive athletics courses are evaluated on a Credit/No Credit basis.

Men

PEM 182 Baseball
PEM 183 Basketball
PEM 184 Cross Country
PEM 185 Football
PEM 189 Soccer
PEM 191 Swimming
PEM 192 Tennis
PEM 193 Track and Field
PEM 196 Wrestling

Women

PEW 183 Basketball
PEW 184 Cross Country
PEW 189 Soccer
PEW 190 Softball
PEW 191 Swimming
PEW 192 Tennis
PEW 193 Track and Field
PEW 194 Volleyball

PROFESSIONAL ACTIVITIES—See KINE—Kinesiology

ACADEMIC COURSES—See KINE—Kinesiology

PHIL—PHILOSOPHY

PHIL 101 Introduction to Philosophy (4)

Foundational methods and central issues in contemporary philosophy including logic, epistemology, metaphysics and ethics. Required of all philosophy majors. Open to all majors and philosophy minors. 4 lectures. NOTE: This is not a GE course and will not count for GE credit.

PHIL 126 Logic and Argumentative Writing (4) GE A3

Principles of argument analysis, evaluation and construction. Deductive and inductive reasoning, including analogical arguments, universal and statistical generalizations, and causal inferences. Principles of organizing and writing argumentative essays. Moral dimensions of rational discourse. 4 lectures. Prerequisite: Completion of GE Areas A1 and A2.

PHIL 225 Symbolic Logic (4)

The nature of deductive logical systems. Methods of notation, translation and proof in the sentential, predicate and relational calculi including indirect and conditional methods of proof. 4 lectures. Prerequisite: Completion of GE Area A3.
PHIL 230 Philosophical Classics: Metaphysics and Epistemology (4) (Also listed as HNRS 230) GE C2
Study of several classic works from the history of philosophy on issues in metaphysics and epistemology. At least one will be from the Ancient period, and at least one from the Modern era. No more than one from the twentieth century. 4 lectures. Prerequisite: Completion of GE Area A.

PHIL 231 Philosophical Classics: Social and Political Philosophy (4) (Also listed as HNRS 231) GE C2
Readings from primary philosophical texts, from the ancient and modern periods, with focus on the identification and evaluation of the central ethical and political themes and arguments presented in them. 4 lectures. Prerequisite: Completion of GE Area A.

PHIL 311 Greek Philosophy (4) GE C4
Beginnings of Western philosophy and science. The Presocratics, Socrates, Plato, and Aristotle. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 312 Medieval Philosophy (4) GE C4
Development of Western philosophy from Augustine to Ockham, including Anselm, Abelard, Roger Bacon, Bonaventure, Aquinas, and Duns Scotus. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 313 Continental Philosophy: Descartes to Leibniz (4) GE C4
Development of Western philosophy from the late Renaissance through Leibniz, with special emphasis upon the epistemology and metaphysics of the Continental Rationalists. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 314 British Philosophy: Bacon to Mill (4) GE C4
Development of Western philosophy from the Renaissance through Mill, with special emphasis on British Empiricism. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 315 German Philosophy: Kant to Nietzsche (4) GE C4
Primary issues and concepts found in German philosophy from 1780 to 1900, with emphasis on Kant, Hegel, and Nietzsche. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 316 Contemporary European Philosophy (4) GE C4
Recent movements within the Continental tradition, including French and German existentialism, phenomenology, and post-metaphysical philosophy. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 317 Contemporary British and American Philosophy (4) GE C4
Major developments within 20th century British and American philosophy, with focus chiefly around Analytic philosophy. Other schools, such as Pragmatism, may be included, as may some philosophers outside of Britain and America whose work was influential in those countries. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 320 Asian Philosophy (4) GE C4
Philosophies developed in India, South Asia, China, and Japan, including the logical and epistemological presuppositions of the Six Schools of Hindu metaphysics, Buddhist philosophy, Confucian moral philosophy, Taoist metaphysics and social ecology. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 321 Philosophy of Science (4) GE C4
The rational foundations of inquiry and explanation in the physical, biological and social sciences. Justification of scientific claims, the difference between science and pseudoscience, the relationship between science and other fields of investigation. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 322 Philosophy of Technology (4) GE C4
Analyses of the philosophical foundations and implications of technology. Technology and the human condition, technology and philosophical ethics, technology and political philosophy, technology and the metaphysics of human nature, and the relationship between science and technology. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231.

PHIL 331 Ethics (4) GE C4
Analyses of various traditional and contemporary positions on the difference between right and wrong, if there is one. Theories of metaethics and normative ethics including the divine command theory, relativism, intuitionism, noncognitivism, virtue ethics, egoism, utilitarianism and duty-based ethics. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 332 History of Ethics (4) GE C4
The history of moral thought from Homer and the Pre-Socratics to the 20th century, and focus on theories of moral goodness and rightness of action. Related issues and areas of thought, e.g. metaethics, theology, science, politics, psychology freedom/determinism to be considered, where they shed light on moral thought. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 333 Political Philosophy (4) GE C4
Analyses of the philosophical foundations of political ideologies, including theories of political authority, legitimacy, obligation, and rights, and of the proper function of the state, and the relation of these theories to issues in metaphysics, theory of knowledge, and ethics. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 334 Philosophy of Law (4) GE C4

PHIL 335 Social Ethics (4) GE C4 USCP
Examination of contemporary moral problems, solutions to these problems, and the arguments for these solutions, with emphasis on two or more of the following sample problem areas: abortion, suicide and euthanasia, capital punishment, family ethics, race relations, social justice, war, women’s issues. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 336 Ethics, Gender and Society (4) GE C4 USCP
Critical examination of the relations between gender, ethnicity, society and ethics from feminist perspectives, with special attention paid to problems in contemporary applied ethics. Joint focus on theory and application. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231.

PHIL 337 Business Ethics (4) GE C4
Critical examination of ethical problems that arise in business. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 338 Ethics and Education (4) GE C4
Critical discussion of moral issues as a means to the educational goals of autonomy and freedom. Critical examination of major ethical theories. Examination of classroom approaches to discussions of ethical values and moral controversy in education. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

2007-2009 Cal Poly Catalog
PHIL 339 Biomedical Ethics (4)
Critical examination of problems in biomedical ethics, proposed solutions to these problems, and the arguments for such solutions. Emphasis on two or more of the following sample problem areas: concepts of health and disease, human experimentation, informed consent, behavior control, genetic intervention, new birth technologies, euthanasia and physician-assisted dying. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 340 Environmental Ethics (4)
Analyses of various positions on the moral status of nonhuman entities and problems such as the treatment of animals, wilderness preservation, population, pollution and global warming. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 341 Professional Ethics (4)
Moral problems as they arise in professions such as law, medicine, engineering, research and education: deception, paternalism, confidentiality, discrimination and others. Consideration of various professional codes of ethics. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 342 Philosophy of Religion (4)
Inquiry into the rational and nonrational bases of religious claims. Arguments for and against the existence of God. Discussion of miracles, the verification of religious revelation, the definition of God, the problem of evil, the relation of faith and reason, the nature of religious experience, the verification of religious claims. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 350 Aesthetics (4)
Critical examination of philosophical views of art both from a historical and contemporary perspective. Treatment of theories from Plato and Aristotle through those of the twentieth century. Discussion of the problems raised by modern art. The relation between aesthetic values and metaphysics, epistemology, ethics and politics. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231. Philosophy majors will not receive GE C4 credit.

PHIL 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

PHIL 411 Metaphysics (4)
Traditional and current ideas and arguments about substance, the relation of universals to particulars, space and time, events, causation and necessity, the self and free will. 3 lectures, research paper. Prerequisite: PHIL 230.

PHIL 412 Epistemology (4)
Analysis of the concept of knowledge. Development of competing theories of epistemic justification and truth. Inquiry into relationship between knowledge, belief, justification and truth. Examination of skepticism. 3 lectures, research paper. Prerequisite: PHIL 230.

PHIL 420 Philosophy of Biology (4)
Philosophical implications and assumptions of evolution theory, the problem of reduction, feminist critiques, demarcation issues and the differences between biology and other sciences. Ethical and social issues, including Creationism and "intelligent design" theories, eugenics, sociobiology, and ecology. 4 lectures. Prerequisite: PHIL 230 or PHIL 231 and completion of GE Area B2.

PHIL 421 Philosophy of Space, Time and Matter (4)
Investigation of the philosophical foundations and interpretation of relativity theory and elementary quantum mechanics. Emphasis on philosophical issues relevant to contemporary philosophy of science such as scientific realism. Some discussion of very recent theories of space, time, and matter. 3 lectures, research paper. Prerequisite: Completion of Area A and PHIL 230 or PHIL 321.

PHIL 422 Philosophy of Mind (4)
Classic and current work in the problems and issues of the nature and unity of the self, consciousness, mental representations, and action, and of the relation of philosophy of mind to psychology, linguistics and computer science. 3 lectures, research paper. Prerequisite: PHIL 230 or PHIL 231.

PHIL 423 Philosophy of Language (4)
Traditional and contemporary philosophical issues that arise from the structure of language. Relevant concepts include: syntax, semantics, pragmatics, meaning, reference, truth, identity, thought, reality. Important distinctions: use/mention, relations/properties of relations, sentences/statements/propositions. 3 lectures, research paper. Prerequisite: PHIL 230 or PHIL 231.

PHIL 429 Special Topics in the History of Philosophy (4)
Advanced discussion of selected topics in the history of philosophy. Examination and analysis of important philosophical movements (e.g., positivism, postmodernism) or alternatively, of particular philosophers or philosophical works of exceptional importance (e.g., David Hume; Kant's Critique of Pure Reason). The Schedule of Classes will list topic selected. Total credit limited to 12 units. 3 lectures, research paper. Prerequisite: PHIL 230.

PHIL 430 Selected Problems in Ethics and Political Philosophy (4)
Advanced discussion of selected topics in ethics and political philosophy. Examination and analysis of significant ethical or political theories (e.g., utilitarianism, contractarianism) or alternatively, of particular philosophers or philosophical works of exceptional importance (e.g., John Stuart Mill; John Rawls' A Theory of Justice). The Schedule of Classes will list topic selected. 3 lectures, research paper. Prerequisite: PHIL 231 and PHIL 331 or PHIL 333.

PHIL 449 Selected Topics in Recent Philosophy (4)
Advanced discussion of selected topics in recent philosophy. Examination and analysis of important recent movements in central philosophical areas (e.g., metaphysics, epistemology, philosophy of science, philosophy of language, philosophy of mind) or, alternatively, of particular philosophers or philosophical works of exceptional recent importance. The Schedule of Classes will list topic selected. Total credit limited to 12 units credit; may be repeated in same term. 3 lectures, 1 research paper. Prerequisite: Completion of GE Area A and PHIL 230.

PHIL 460, 461 Senior Project I, II (2) (2)
Selection, development and completion of a project under faculty supervision. Results presented in a formal thesis. Minimum of 60 hours per quarter. Student must complete requirements for PHIL 460 and also receive a passing score on the senior examination in order to enroll in PHIL 461. Prerequisite: Senior standing, consent of instructor.

PHIL 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. The Schedule of Classes will list topics selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

PHYS-PHYSICS

PHYS 104 Introductory Physics (4)
Elementary introduction to mechanics, gases, liquids and solids, heat, vibrations and waves, light, electricity and magnetism. Intended to provide non-science students with an understanding of basic physical concepts. Not open to students who have credit in a college physics course. 4 lectures. Prerequisite: Passing score on ELM examination, or an ELM exemption, or credit in MATH 104.

PHYS 107 Introduction to Meteorology (4)
Physics of Earth's atmosphere. Topics include the physical basis for temperature, wind generation, atmospheric circulation, humidity, adiabatic processes, cloud formation, cyclone development, precipitation, and storm growth. Other topics include the variety of storms and their effects, satellite imaging, and air pollution and its possible effect on global temperature change. 4 lectures. Prerequisite: Passing score on ELM examination, or an ELM exemption, or credit in MATH 104.
PHYS 111 Contemporary Physics for Nonscientists (4) GE B3
Exploration of the key concepts of quantum mechanics and Einstein's special and general theories of relativity. Particle-wave duality, Heisenberg's uncertainty principle, Schrodinger's cat, warped spacetime, black holes. 4 lectures.

PHYS 121 College Physics I (4) GE B3 & B4
Introductory course in mechanics emphasizing motion, force, and energy. Not open to students having a grade of C- or better in PHYS 131. 3 lectures, 1 laboratory. Prerequisite: MATH 118 and high school trigonometry, or MATH 119.

PHYS 122 College Physics II (4) GE B3 & B4
Continuation of PHYS 121. Topics include properties of materials, fluids, waves and vibrations, sound, heat, light and optics. Not open for credit to students having a grade of C- or better in PHYS 132. 3 lectures, 1 laboratory. Prerequisite: PHYS 121 or PHYS 141.

PHYS 123 College Physics III (4)
Continuation of PHYS 121 and 122. Electrostatics, electric current, magnetic fields and induction. Elements of modern physics. Not open for credit to students having a grade of C- or better in PHYS 133. 3 lectures, 1 laboratory. Prerequisite: PHYS 121. Recommended: PHYS 122.

PHYS 131 General Physics I (4) (Also listed as HNRS 131)
Fundamental principles of mechanics. Vectors, particle kinematics. Equilibrium of a rigid body. Work and energy, linear momentum, rotational kinematics and dynamics. Primarily for engineering students, and for students majoring in the physical sciences. Not open to students with credit in PHYS 141. 3 lectures, 1 laboratory. Prerequisite: PHYS 131 or HNRS 131 or PHYS 141.

PHYS 132 General Physics II (4) (Also listed as HNRS 132)
Oscillations, waves in elastic media, sound waves. Temperature, heat and the first law of thermodynamics. Kinetic theory of matter, second law of thermodynamics. Geometrical and physical optics, 3 lectures, 1 laboratory. Prerequisite: PHYS 131 or HNRS 131 or PHYS 141.

PHYS 133 General Physics III (4) GE B3 & B4
Charge and matter, electric field, electric potential, dielectrics, capacitance, current and resistance, electromotive force and circuits, magnetic fields, magnetic field of a moving charge, induced emf. 3 lectures, 1 laboratory. Prerequisite: PHYS 131 or HNRS 131 or PHYS 141, MATH 142.

PHYS 141 General Physics IA (4) (Also listed as HNRS 134) GE B3
Fundamental principles of mechanics. Vectors, particle kinematics. Equilibrium of a rigid body. Work and energy, linear momentum, rotational kinematics and dynamics. Primarily for engineering and science students. Not open to students with credit in PHYS 131. 4 lectures. Prerequisite: MATH 141 with grade C- or better and MATH 142 or MATH 182 (or concurrent enrollment). Recommended: High school physics.

PHYS 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

PHYS 201 Learning Center Tutor (1) (CR/NC)
Act as a tutor in the Physics Learning Center. Help students with problem solving techniques and introductory physics course material. Total credit limited to 3 units, with a maximum of 1 unit per quarter. Credit/No Credit grading only. Prerequisite: PHYS 133 and consent of instructor.

PHYS 202 Physics on the Computer (4)
Introduction to computer algebra system for solving problems in physics: differential equations, matrix manipulations, simulations and numerical techniques, nonlinear dynamics. 4 lectures. Prerequisite: PHYS 133, MATH 241 or MATH 244 (preferred) and computer literacy.

PHYS 206 Instrumentation in Experimental Physics (3)
L-R-C circuits and electronic circuit elements emphasizing the applications of analog and digital electronics to instrumentation in modern physics. 3 lectures. Prerequisite: PHYS 133, MATH 143, computer literacy, and concurrent enrollment in PHYS 256.

PHYS 211 Modern Physics I (4)
Special relativity, fundamental principles of quantum mechanics, emphasizing the modern description of atomic phenomena, Kinetic theory, wave particle duality, Bohr theory, Schrodinger equation, elementary atomic structure. 4 lectures. Prerequisite: PHYS 123, or PHYS 132 and PHYS 133, and MATH 241.

PHYS 212 Modern Physics II (4)
Applications of quantum physics to atoms, nuclei, and elementary particles. Quantum statistics, principles of the laser. Topics in solid state physics such as the free electron theory of metals, bonding in solids and energy bands. Nuclear structure and nuclear energy. 4 lectures. Prerequisite: PHYS 211.

PHYS 256 Electrical Measurements Laboratory (1)
Experimental studies of circuit analysis and electronics; introduction to digital techniques; instrumentation. 1 laboratory. Prerequisite: PHYS 133, MATH 143, and concurrent PHYS 206.

PHYS 301 Thermodynamics I (3)
Thermodynamics and statistical mechanics. Entropy, temperature, chemical potential, free energy. Selected applications including paramagnetism, ideal gas, Fermi-Dirac distribution. 3 lectures. Prerequisite: PHYS 132, PHYS 211, MATH 241.

PHYS 302 Classical Mechanics I (4)

PHYS 303 Classical Mechanics II (3)
Dynamics of a rigid body. Three-dimensional motion of a rigid body. Introduction to Lagrange's and Hamilton's equations. 3 lectures. Prerequisite: PHYS 302. Concurrent: MATH 344.

PHYS 310 Physics of Energy (3)
Physics and mathematics applied to broad energy topics. Efficient usage, transportation, solar energy, nuclear fission and fusion. Plasma, hydrogen economy, fuel cells, wind wave, tidal, and geothermal energy. Transmission, storage, fossils. National planning, and energy economics. 3 lectures. Prerequisite: PHYS 133.

PHYS 313 Introduction to Atmospheric Physics (3)
Properties of the atmosphere, atmospheric motions, solar and terrestrial radiation. Atmospheric optics and cloud physics. 3 lectures. Prerequisite: PHYS 132 or PHYS 122 and MATH 241.

PHYS 315 Introduction to Lasers and Laser Applications (3)
Interaction of radiation with matter, theory of laser action, characteristics and modification of laser output, types of lasers. Holography and other applications. 3 lectures. Prerequisite: PHYS 133, or PHYS 123 and MATH 143. Recommended: PHYS 211.

PHYS 317 Special Theory of Relativity (3)
Fundamental experiments and basic postulates of special relativity. Simultaneity, length and time measurements. Lorentz transformations. Four-Vectors. Space-time diagrams. Relativistic mechanics and electromagnetism. 3 lectures. Prerequisite: PHYS 211.

PHYS 323 Optics (5)
Geometric optics, lens systems, aberration, physical optics and polarization. 4 lectures, 1 laboratory. Prerequisite: PHYS 133, MATH 241.

2007-2009 Cal Poly Catalog
PHYS 340 Quantum Physics Laboratory I (2)
Experimental studies of the quantum properties of atoms and nuclei. Measurements of fundamental constants. Statistics and data analysis. 1 lecture, 1 laboratory. Prerequisite: PHYS 212 and PHYS 256.

PHYS 341, 342 Quantum Physics Laboratory II, III (1) (2)
Advanced experimental studies of quantum properties of atoms and nuclei. Interactions with radiation, particles and fields. Courses must be taken in numerical order. PHYS 341: 1 laboratory; PHYS 342: 2 laboratories. Prerequisite: PHYS 340.

PHYS 357 Advanced Instrumentation in Experimental Physics (3)
Advanced analog and digital electronics, computer interfacing to experiments, robotics. 2 lectures, 1 laboratory. Prerequisite: PHYS 206 and PHYS 256.

PHYS 363 Undergraduate Seminar (2)
Study and oral presentation of physics topics of interest to students and faculty. Discussion of projects and research by students and faculty. 2 seminars.

PHYS 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigations, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

PHYS 401 Thermal Physics II (3)
Additional topics in thermodynamics and statistical physics, including chemical equilibrium, phase transitions, transport processes, and cryogenics. 3 lectures. Prerequisite: PHYS 301.

PHYS 403 Nuclear and Particle Physics (3)

PHYS 405 Quantum Mechanics I (4)
Wave nature of matter and the basic postulates of quantum mechanics. The wave function, operators, and their interpretation. Schroedinger's Equation and its solutions in one and more dimensions. The hydrogen atom and the periodic table. 4 lectures. Prerequisite: PHYS 211, MATH 244. Recommended: PHYS 212, MATH 344.

PHYS 406 Quantum Mechanics II (3)
Angular momentum operators and problems in three dimensions including the hydrogen atom. The elements of matrix mechanics and spin wave functions. Perturbation theory. 3 lectures. Prerequisite: PHYS 405.

PHYS 408, 409 Electromagnetic Fields and Waves I, II (4) (3)
Electric and magnetic field theory using vector analysis. Electric fields, dielectric materials, magnetic fields, induced emf's, magnetic materials, Maxwell's equations, wave equations, plane electromagnetic waves. Dipole radiation, radiation from an accelerated charge. 4 lectures, 3 lectures. Prerequisite: MATH 304, PHYS 206 or consent of instructor.

PHYS 410 Physics of the Solid Earth (3)
Gravity and the figure of the Earth. Body wave seismology, structure and composition of the Earth, heat flow and heat sources, Earth tides, rotational dynamics, the geomagnetic field and its source, paleomagnetism. 3 lectures. Prerequisite: PHYS 133 and MATH 244 or equivalent.

PHYS 412 Solid State Physics (3) GE B6 with PHYS 452
Properties of solids including the structural, mechanical, thermal, and electronic properties, energy band theory and the properties of metals and semiconductors. 3 lectures. Prerequisite: PHYS 211 or MATE 340, MATH 244.

PHYS 413 Advanced Topics in Solid State Physics (3)
Semiconducting devices, including junction and field-effect transistors, LED's, and diode lasers. Magnetic properties of solids. Superconductivity, including discussion of high-temperature superconductors. Other topics of current interest in solid state physics. 3 lectures. Prerequisite: PHYS 412.

PHYS 417 Nonlinear Dynamical Systems (4) GE B6
Analysis of linear and nonlinear dynamical systems with emphasis on geometrical methods and visualization techniques. Fixed points, phase plane analysis, bifurcations and limit cycles. Laboratory component includes data acquisition and analysis using computers, numerical simulations of dynamical systems, and analysis of discrete systems. 3 lectures, 1 laboratory. Prerequisite: MATH 242 or MATH 244, and junior standing, or consent of instructor.

PHYS 421 Advanced Optics (4)
Lenses, lenses and interference and diffraction, Fourier optics, quantum optics, image formation and holography, non-linear optics. 3 lectures, 1 laboratory. Prerequisite: PHYS 323.

PHYS 424 Theoretical Physics (3)
Contour integration in the complex plane, properties of the delta function, properties of some common functions of theoretical physics, Green's function techniques for solving differential equations. 3 lectures. Prerequisite: PHYS 333, MATH 304, MATH 344.

PHYS 452 Solid State Physics Laboratory (1) GE B6 with PHYS 412
Selected experiments on X-ray diffraction, Hall effect, optical absorption, thermo-electric effect, photovoltaic cells, diode characteristics, and superconductivity. 1 laboratory. Prerequisite or concurrent: PHYS 412.

PHYS 461, 462 Senior Project I, II (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time. Prerequisite: Consent of instructor.

PHYS 463, 464 Senior Project - Laboratory Research I, II (2) (2)
Selection and completion of a laboratory research project under faculty supervision. Projects typical of problems which graduates will encounter in industry or graduate school. Project results are presented in a formal report. Minimum 120 hours total time. 2 laboratories. Prerequisite: Consent of instructor.

PHYS 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

PHYS 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories. Prerequisite: Consent of instructor.

PHYS 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

PHYS 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

PM–POULTRY MANAGEMENT

PM 200 Special Problems for Undergraduates (2–3) (CR/NC)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 3 units per quarter. Credit/No Credit grading only. Prerequisite: Consent of instructor.
PM 225 Introduction to Poultry Management (4)
(Also listed as ASCI 225)
Introduction to modern techniques in poultry production, processing, marketing and price discovery. Consumption trends, breeds and consumer grades. Laboratory application of management skills, health care, keeping of production and accounting records and processing techniques. 3 lectures, 1 laboratory.

PM 290 Animal Production and Management Enterprise (1-4)
(CR/NC) (Also listed as ASCI 290)
Beginning field experience in animal production systems. May include health, nutrition, reproduction, management, processing, budgeting, and/or marketing exercises. Total degree credit for ASCI 290/ASCI 490 limited to 6 units. Credit/No Credit grading only. 1-4 lectures. Prerequisite: Consent of instructor.

PM 305 Game Bird Propagation and Management (3)
(Also listed as ASCI 305)
Habitat needs, management and propagation of North American game bird species in the wild and in captivity. Reproduction, nutrition and maintenance of flock health as practiced by commercial game bird operations. 3 lectures. Prerequisite: PM/ASCI 225.

PM 325 Egg Production, Processing and Distribution (4)
(Also listed as ASCI 325)
Management of replacement pullets and laying hens including flock scheduling, vaccination and handling procedures, nutrition management, costs of operation and production projections. Quality determination, processing, sales and distribution of shell eggs and egg products. 3 lectures, 1 laboratory. Prerequisite: PM/ASCI 225.

PM 330 Poultry Meat Production and Processing (4)
(Also listed as ASCI 330)
Modern production techniques for the poultry meat industry. Management of hatcheries, broiler and/or turkey meat production, processing and further processing. 3 lectures, 1 laboratory. Prerequisite: PM/ASCI 225.

PM 342 Poultry Business Management (4)
(Also listed as ASCI 342) (formerly PM 345)
Organization and management of vertically integrated poultry operations. Personnel management, cash flow analysis, cash vs. accrual accounting, structuring of financial statements, projecting product outputs and cash flow needs, employee benefit programs and insurance needs for poultry companies. 4 lectures. Prerequisite: PM/ASCI 225.

PM 360 Poultry Industry Seminar (3) (Also listed as ASCI 360)
New trends, management techniques and governmental regulations, special problems and research developments related to the poultry industry. 3 seminars. Prerequisite: PM/ASCI 225, PM/ASCI 330 and VS/ASCI 440.

PM 400 Special Problems for Advanced Undergraduates (2–4)
(CR/NC)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 4 units per quarter. Credit/No Credit grading only. Prerequisite: Consent of instructor.

PM 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

PM 490 Advanced Animal Production and Management Enterprise (1–4)
(CR/NC) (Also listed as ASCI 490)
Advanced field experience in animal production systems. May include health, nutrition, reproduction, management, processing, budgeting, and/or marketing exercises as well as management decision-making opportunities. Total degree credit for PM 290/PM 490 limited to 6 units. Credit/No Credit grading only. 1-4 lectures. Prerequisite: Consent of instructor.

POLS—POLITICAL SCIENCE

POLS 111 California Constitution and Government (1)
Basic aspects of California state government. Satisfies California state and local government requirement for students who have AP credit for American Government or have taken American Government without coverage of California government. 1 lecture.

POLS 112 American and California Government (4)
GE D1
Study of governmental institutions, policies, issues and political behavior in the United States and California in constitutional, historical, social and cultural perspectives. Meets the U.S. government and California state/local government requirement. 4 lectures.

POLS 180 Political Inquiry (4)
Introduction to the scope, language, concepts and approaches employed in political science and the social sciences. Includes emphasis on basic methodological and research strategies for assessing political issues, events, the dynamics of political change and philosophy of science. 4 lectures.

POLS 225 Introduction to International Relations (4)
Introduction to the basic concepts, issues, and theories surrounding the study of international politics. Changes in the nature of conflict, power, and national interests in the post-Cold War era. Role of states, non-governmental actors, and international organizations in the global arena. 4 lectures.

POLS 229 Introduction to Comparative Politics (4)
Introduction to basic concepts, issues, and theories in comparative politics. Use of the comparative method. Legitimacy, political culture and socialization, parliamentary and presidential institutions, judicial structures, electoral laws, party systems, federal and unitary governance, corporatism and pluralism. 4 lectures.

POLS 230 Basic Concepts of Political Thought (4)
Introduction to such concepts as: law, justice, community, rights, citizen, and constitution, which are fundamental to political discourse, as developed in the works of Plato, Aristotle, Augustine, Thomas Aquinas, Machiavelli, and other illustrious thinkers from classic to modern times. 4 lectures. Prerequisite: POLS 112.

POLS 285 Model United Nations (4)
Introduction to the United Nations and major issues that confront it. Preparation for participation in collegiate Model United Nations conferences. Rules of procedure and debate, preparation of country position papers, and resolution writing. 4 lectures. Prerequisite: One course in POLS or consent of instructor.

POLS 308 Collective Violence and Conflict Resolution (4)
Causes, methods, and consequences of non-state groups that use violent means to pursue revolutionary, separatist, or ideological goals both domestically and internationally. Dynamics of ethnic conflict, terrorist movements, paramilitary groups, insurgencies, and narco-trafficking. Processes of conflict resolution in divided societies through military responses, negotiated settlements, democracy, and peacekeeping missions. 4 lectures. Prerequisite: POLS 112, or consent of instructor.

POLS 310 Politics of Ethnicity and Gender (4)
Analysis of factors that affect the changing role of women and major ethnic groups in American politics. Involvement, organization and role of minority groups in the political process. 4 lectures. Prerequisite: POLS 112, or consent of instructor.

POLS 315 The American Presidency (4)
Nature and problems of contemporary presidential leadership emphasizing the impact of bureaucracy, Congress, public opinion, the courts, interest groups, and the party system upon the presidency and national policy making. 4 lectures. Prerequisite: POLS 112, or consent of instructor.

POLS 316 Political Participation (4)
Role of political participation as manifested through political parties and interest groups in a democracy. Degree of consensus and conflict in present day political participation including influence on public policies. 4 lectures. Prerequisite: POLS 112, or consent of instructor.

2007-2009 Cal Poly Catalog
POLS 317 Campaigns and Elections (4)
Origins and dimensions of public opinion. Focus on contemporary political campaigns and elections in the U.S. Impact of political ideology, mass media, high technology, pressure groups on electoral outcomes. Voting behavior and other forms of political participation in the U.S. 4 lectures. Prerequisite: POLS 112, or consent of instructor.

POLS 319 United States Congress (4)
Theory and practice of representative government in the United States. Organization, procedures and consequences of the legislative process in Congress and state legislatures. 4 lectures. Prerequisite: POLS 112, or consent of instructor.

POLS 324 International Relations Theory (4)
Survey of theoretical approaches to the study of international political processes and problems. Foreign policies and politics in relations between states. Conflicts and adjustments. Analyses of selected problems to elucidate differences between realist, liberal, socialist, constructivist, and other theories. 4 lectures. Prerequisite: POLS 225, or consent of instructor.

POLS 325 Global Political Issues (4) GE D5
Concepts and theories in international relations and contemporary global issues. Application of principles of international relations to political issues and subjects which affect our lives. 4 lectures. Prerequisite: Completion of GE Area A, and one course from two of the three subfields of Area D1, Area D2, and/or Area D3, or consent of instructor. Political Sciences majors will not receive GE Area D5 credit.

POLS 328 Politics of Developing Areas (4)
A detailed survey of the domestic politics of developing countries from a comparative perspective. Assessment of theories of development with appropriate examples taken from particular areas and countries. Repeatable to 8 units with different subtitles (e.g., “Latin America,” “East Asia,” “Africa”). The Schedule of Classes will list topic selected. 4 lectures. Prerequisite: POLS 225 or POLS 229.

POLS 330 Modern Political Thought (4)
Theories of political participation and the relationship between the individual and the state as developed in the works of influential thinkers such as Locke, Rousseau, Mill and Marx. 4 lectures. Prerequisite: POLS 230, or consent of instructor.

POLS 333 World Food Systems (4) (Also listed as UNIV 333)
Integrated, interdisciplinary study of the technologies of global food production, environmental and social issues related to the application of those technologies, and moral and ethical issues associated with global food production and distribution. Emphasis on the politics of change. 4 lectures. Prerequisite: Junior standing and completion of GE Area B, or consent of instructor.

POLS 334 Jurisprudence (4)
Normative and analytical problems concerning law. Nature of law and legal systems including liberty and justice. Topics may include the connection between law and morality, feminist and critical race perspectives, crime and punishment, and economic analysis of the law. 4 lectures. Prerequisite: POLS 112 and POLS 230, or consent of instructor.

POLS 337 American Political Thought (4)
The central political ideas of America's leading thinkers from the Puritans to the present. 4 lectures. Prerequisite: POLS 112, POLS 230, or consent of instructor.

POLS 338 Critical Issues in American Politics (4) GE D5
Examination of significant social, legal, economic and political issues that face the country and how the basic institutions of government—national, state, local—are responding to them; assessment of policies to correct these problems. 4 lectures. Prerequisite: Completion of GE Area A, one course from Area D1, and one course from either Area D2 or D3, or consent of instructor. Political Sciences majors will not receive GE Area D5 credit.

POLS 339 Comparative Political Regimes (4) GE D5
A comparative examination of governing institutions used throughout the world. Emphasis on the diversity of governmental designs found within both authoritarian and democratic regimes. 4 lectures. Prerequisite: Completion of GE Area A and one course from two of the three subfields of Area D1, D2, and/or D3, or consent of instructor. Political Sciences majors will not receive GE Area D5 credit.

POLS 341 American Constitutional Law (4) USCP
United States Supreme Court decisions in the areas of separation of powers, judicial review, commerce clause, federalism, due process. 4 lectures. Prerequisite: POLS 112, or consent of instructor.

POLS 343 Civil Rights in America (4)
Case-based examination of discrimination based on race, ethnic, gender, and sexual orientation in the United States. Emphasis on the Supreme Court's interpretation of the Equal Protection Clause. 4 lectures. Prerequisite: POLS 112, or consent of instructor.

POLS 344 Civil Liberties (4)
The role of the Supreme Court as interpreter of civil liberties. Topics may include freedom of expression and religion, search and seizure, due process of law. 4 lectures. Prerequisite: POLS 112, or consent of instructor.

POLS 345 Judicial Process (4)
The nature of the legal system. Topics may include: private and public law, civil and criminal law, trial and appellate courts, criminal procedure, judges, attorneys, and juries. 4 lectures. Prerequisite: POLS 112, or consent of instructor.

POLS 346 Politics in Literature (4)
Political concepts and values examined, based on literary sources. Recent topics include: power, justice, violence and social responsibility. Authors whose works have been examined include: Brecht, Camus, Dostoevsky, Miller, Vonnegut, and Dorfman. Both plays and novels are used. 4 lectures. Prerequisite: POLS 112 or consent of instructor.

POLS 347 Politics and Popular Culture (4)
Intersection of politics and mass media. How political actors use popular culture to establish issue agendas, convey political concepts, symbolism, rhetoric and values. 4 lectures. Prerequisite: POLS 112 or consent of instructor.

POLS 351 Public Administration (4)
Development of the management functions in government. Survey of administrative concepts and cases. Attention given to national, state and local administrative systems. Case studies and simulations. 4 lectures. Prerequisite: POLS 112, or consent of instructor.

POLS 360 Political Analysis (5)
Introduction to methodology research design and quantitative methods used in survey research and political analysis. Multiple regression analysis, non-linear techniques, and diagnostics used to analyze political phenomena. SPSS statistical computer programs used to work on statistical application. 4 lectures, 1 activity. Prerequisite: POLS 180 and STAT 221 or STAT 217 or equivalent with minimum grade of C-, or consent of instructor.

POLS 375 California Politics (4)
Political culture, processes, behavior, institutions, public policy and distribution of power in California state and substate governments. 4 lectures. Prerequisite: POLS 112, or consent of instructor.

POLS 381 Peace and War (4)
Dynamics of interstate peace and war. Topics include: military strategy, the military-industrial complex, arms races and disarmament, diplomacy, deterrence and pre-emption, collective security and alliance behavior, civil-military relations, post-conflict reconstruction, and the role of international law and organizations. 4 lectures. Prerequisite: POLS 225 or consent of instructor.
POL 382 Comparative Foreign Policy (4)
Systematic analysis of the international and domestic pressures leading
different states to take particular foreign policy stances, with appropriate
elements taken from different regions of the world. Discussion of
contemporary foreign policy issues and responses. 4 lectures. Prerequisite:
POL 225 or consent of instructor.

POL 383 Politics of the European Union (4)
History and development of the European Union in the context of theories
of regional integration. Overview of institutional and policymaking
machinery of the EU. Current issues facing member states. Impact of EU
on US interests and world politics more generally. 4 lectures. Prerequisite:
POL 225 or consent of instructor.

POL 385 Advanced Model United Nations (2) (CR/NC)
Preparation for participation in collegiate Model United Nations confer-
ences. Rules of procedure and debate, preparation of country position
papers, and resolution writing. Discussion of current issues of concern to
Preparation for participation in collegiate Model United Nations confer-
ces. Rules of procedure and debate, preparation of country position
papers, and resolution writing. Discussion of current issues of concern to
the United Nations. Credit/No Credit grading only. Total credit limited to 6
units. 2 lectures. Prerequisite: POLS 285 or consent of instructor.

POL 386 Government Internship (2–12) (CR/NC)
Supervised work experience in a government or related public agency.
Intern will function as an employee subject to all the duties and
responsibilities of employees engaged in comparable work. 30 hours of
work experience per unit of credit. Total credit limited to 12 units.
Credit/No Credit grading. Recommended preparation: Junior standing with
a minimum 2.5 GPA.

POL 400 Special Problems for Advanced Undergraduates (1–4)
Individual investigation, research, study, or survey of selected problems.
Total credit limited to 4 units. Prerequisite: Consent of department chair.

POL 419 Social Movements and Political Protest (4)
Selected U.S. social movements, including abolitionism, feminism, civil
rights, gay rights, the Christian right, and environmentalism. Political
opportunities and constraints that impact collective political action, and
effects of grassroots struggles for justice in U.S. politics and society. 4
lectures. Prerequisite: POLS 112 and junior standing, or consent of
instructor.

POL 420 Contemporary U.S. Foreign Policy (4)
Formulation and conduct of U.S. foreign policy. Analysis of the theory and
elements of U.S. strategy; diplomacy, propaganda, economic operations,
psychological warfare, and military strategies. 4 lectures. Prerequisite:
POL 225, or consent of instructor.

POL 426 International Organizations and Law (4)
Transnational politics and strategies supporting and opposing different
dimensions of globalization. Topics include international law and the use
of force, challenges to the primacy of the nation-state, and movement
toward a global culture as expressed in the development of human rights
law. 4 lectures. Prerequisite: POLS 225 or POLS 324, or consent of
instructor.

POL 427 Politics of the Global Economy (4)
Political conflicts surrounding the trading, financial, and security structures
of the international economy. Motivations, resources, and responses of
states, international organizations, multinational corporations and other
nonstate actors as they address economic, political, environmental, and
security issues within these structures. Desirability and inevitability of
globalization. 3 lectures and a research paper. Prerequisite: POLS 225,
completion of GE D2, or consent of instructor.

POL 451 Technology and Public Policy (4)
Techniques for performing technical assessment and impact analysis in
communication, transportation, health technologies, aerospace, electronics
and other new technologies. Case studies on contemporary problems
stemming from the relationship of technology and politics. 3 lectures and a
research paper. Prerequisite: POLS 112, or consent of instructor.

POL 456 Politics and Economic Policy (4)
Goals of economic policy, based on efficiency, equity, and other values.
Theories of market failure and government regulation. Influence of
electoral calculations, bureaucracy, and interest group pressures on
government approaches to address market failures. Government
intervention in the marketplace, and intervention by economic interests
into politics, and how this challenges democracy. 3 lectures and a research
paper. Prerequisite: POLS 112, completion of GE D2, or consent of
instructor.

POL 457 The Politics of Reproductive Policy (4)
History, development, implementation and the relative success of various
reproductive policies. Critical evaluation of these policies using a feminist
thoretical framework and political science perspective. 4 lectures.
Prerequisite: POLS 112, completion of GE Area D, and junior standing, or
consent of instructor.

POL 459 The Politics of Poverty (4)
Analysis of the politics and policies associated with the American welfare
state, focusing particularly on welfare and homelessness policies.
Questions addressed concerning the causes of poverty and how social
policy responds to poverty. 4 lectures. Prerequisite: POLS 112 and junior
standing, or consent of instructor.

POL 461, 462 Senior Project I, II (2) (2)
Selection and completion of a project under faculty supervision. Project
results presented in a formal paper. Prerequisite: Senior standing
(completion of 135 quarter hours), completion of required core courses and
concentration. May not be taken CR/NC.

POL 470 Selected Advanced Topics (1–4)
Directed courses on timely issues and topics for advanced students. Open
to undergraduate and graduate students. The Schedule of Classes will list
topic selected. Total credit limited to 12 units. 1–4 lectures. Prerequisite:
POLS 112, junior standing, or consent of instructor.

POL 471 Urban Politics (4)
Theoretical approaches, concepts, and politics associated with urban
governments. Urban power structures, the relationship between urban
society and politics, and inter-governmental relations. 3 lectures and a
research paper. Prerequisite: POLS 112, or consent of instructor.

POL 481 Senior Project Seminar (4)
Selection, preparation and completion of senior project, focusing on
current developments in the field of political science, with primary
attention to American politics, public policy, international relations, or
public administration. Project results presented in a formal paper. 3
seminars and a research paper. Prerequisite: POLS 112 and POLS 360, or
consent of instructor.

POL 500 Independent Study (1–4)
Individual research, studies, or surveys under the supervision of the
faculty. Total credit limited to 4 units. Prerequisite: Graduate standing with
minimum of 12 core units.

POL 510 Research Design (4)
Policy research problem definition, framing hypotheses, literature review,
sampling, measurement, and approaches to analysis. 4 lectures.
Prerequisite: Graduate standing or consent of instructor.

POL 515 Public Policy (4)
Public policy making and contemporary policy issues, including markets;
regulation; criminal justice; housing; environment; poverty; health care
and education. 4 lectures. Prerequisite: Graduate standing, or consent of
instructor.

POL 516 Public Finance (4)
Economic and political factors affecting federal, state and local
governments. Intergovernmental relations and policy considerations in
finance, debt management and tax administration. 4 lectures. Prerequisite:
POLS 515, or consent of instructor.
POLS 517 Organizational Theory (4)
Major theoretical approaches, concepts, case studies, and debates related to organizational theory. Emphasis on applications of concepts to public and non-profit organizations. 4 lectures. Prerequisite: POLS 515, or consent of instructor.

POLS 518 Public Policy Analysis (4)
Analysis of the social, economic, environmental, political contexts of public policy decisions. Public policy issues and use of concepts and tools related to monitoring and assessment. 4 lectures. Prerequisite: POLS 560 or consent of instructor.

POLS 560 Quantitative Methods (5)
Social science methodology focusing on research design and quantitative methods used in policy and political research: multi-regression, non-linear techniques, diagnostics and time series. Advanced computer packages used to analyze challenging data sets. 4 lectures. Prerequisite: POLS 510, STAT 512, or consent of instructor.

POLS 586 Policy Internship (4) (CR/NC)
Supervised work experience in a government or related public agency. Intern will function as an employee engaged in comparable work. Credit/No Credit grading only. Total credit limited to 8 units. Prerequisite: Completion of 12 units of core courses in the Master of Public Policy Program.

POLS 590 Graduate Seminar (4)
Seminar designed as a culminating component to the Master of Public Policy Program. Individual research under the supervision of the faculty within a small discussion environment, leading to a graduate project or paper that demonstrates practical mastery of the MPP curriculum. Total credit limited to 8 units. 4 seminars. Prerequisite: POLS 560 and consent of academic program coordinator.

PPSC-PLANT PROTECTION SCIENCE

PPSC 110 People, Pests and Plagues (4) GE B2 & B4
Introduction to the science of entomology, focusing on insect identification, biology, ecology, and interactions with humans. Insect pest and beneficial species, and their role in shaping how we live, work and eat. Not open for degree credit to students majoring in CRSC, FRSC, EHS nor WVIT (viticulture concentration). 3 lectures, 1 activity.

PPSC 311 Agricultural Entomology (4)
The science of entomology as it relates to insects of importance in agriculture. Focus on the biology, ecology and identification of insects and mites important to California horticulture, field crops and landscapes. 3 lectures, 1 laboratory. Prerequisite: CHEM 110/111 and introductory course in biology, botany or zoology or consent of instructor.

PPSC 321 Weed Biology and Management (4)
Weed ecology, biology, and implications for management. Identification of weedy and invasive plant species in annual agricultural, perennial semi-managed, range, aquatic, and forest ecosystems, to elucidate weaknesses and strengths in order to facilitate vegetation management. Organic, cultural, biological, mechanical, and chemical methods and their integrated (IPM) uses. 3 lectures, 1 laboratory. Prerequisite: BOT 121 passed with a grade of C- or higher or consent of instructor.

PPSC 327 Vertebrate Pest Management (4)
Vertebrate pests injurious to crops, livestock, forest products, wildlife, stored products and humans. Life habits, identification, control methods, and materials. Related laws and regulations. 3 lectures, 1 laboratory. Prerequisite: Junior standing.

PPSC 405 Advanced Weed Management (4)
Planning, design and implementation of long-term sustainable weed management programs. Analysis of traditional and new technologies for weed management based on their impact on agriculture, society and the environment. 3 lectures, 1 laboratory. Prerequisite: PPSC 321 passed with a grade of C- or higher, or consent of instructor.

PPSC 414 Grape Pest Management (4)
Comprehensive survey of major grape pests including diseases, insects, weeds, vertebrates, and nematodes. Identification and biology of grape pests and natural enemies, monitoring, and integrated pest management (IPM) strategies, including cultural, biological, and chemical controls. Guest lectures. Total credit limited to 8 units. 3 lectures, 1 activity. Prerequisite: PPSC 311, BOT 323, FRSC 231.

PPSC 421 Plant-Pest Interactions (4)
Plant biochemical and physical defenses to herbivorous insects, plant pathogens and weeds, and the evolutionary and genetic basis thereof. Effects of environmental manipulations, and other cultural controls on pest populations, and the use of induced resistance materials. Not open to students with credit in PPSC 521. 3 lectures, 1 laboratory. Prerequisite: PPSC 311 or ZOO 335; BOT 323 or BOT 324 or PPSC 321.

PPSC 427 Disease and Pest Control Systems for Ornamental Plants (4)
Recognition, prevention and control of diseases, insect/mite pests and weeds that impact commercial ornamental plantings. Integrated pest management strategies presented including biological, cultural, and safe and proper pesticidal controls. Laboratory emphasis on monitoring, problem solving and application of appropriate pest control measures. 3 lectures, 1 laboratory. Prerequisite: HCS 120, PPSC 311, BOT 324, PPSC 321, passing the sprayer math test and senior standing.

PPSC 431 Insect Pest Management (4)
Principles of insect and mite pest management, including integrated pest management (IPM), applications of ecological theory to pest management, cultural, biological and chemical controls, pesticide resistance management, insect and mite monitoring, biotechnology applications, pesticide laws and regulations, pest control advisor and qualified applicator licensing and certification. One field trip required. 3 lectures, 1 laboratory. Prerequisite: PPSC 311 or consent of instructor.

PPSC 441 Biological Control for Pest Management (4)
Control of arthropods, weeds and vertebrates to include history of biocontrol; biology of beneficial arthropods; methods of introduction, augmentation and conservation; and case studies. Identification of beneficial arthropods to appropriate taxonomic level. Technology, laws and regulations governing use of biocontrol agents. Field trips to insectaries, quarantine facilities and/or crop production areas. 3 lectures, 1 laboratory. Prerequisite: PPSC 311 or consent of instructor.

PPSC 511 Ecological Biometrics (4) (Also listed as HCS 511)
General survey of current analytical methodology available to ecological researchers to evaluate effects and assess the underlying mechanisms that drive natural and cultivated ecosystems. Methodology includes general linear models, ordination, survival analysis, multivariate analyses, and computer simulations. Student research used as a basis for instruction. Total credit limited to 8 units. 3 seminars, 1 activity. Prerequisite: Any one of the following statistical methods courses: CRSC 411, STAT 212, STAT 218, STAT 313, STAT 512, STAT 513 or consent of instructor.

PPSC 521 Plant-Pest Interactions (4)
Plant biochemical and physical defenses to herbivorous insects, plant pathogens and weeds, and the evolutionary and genetic basis thereof, with particular focus on the master's thesis. Effects of environmental manipulations, and other cultural controls on pest populations, and the use of induced resistance materials. Not open to students with credit in PPSC 421. 3 lectures, 1 laboratory. Prerequisite: PPSC 311 or ZOO 335, BOT 323 or PPSC 321, graduate standing, or consent of instructor.

PPSC 599 Thesis in Plant Protection Science (1-9)
Systematic research of a topic in plant protection science, including weed science, entomology, plant pathology, nematology or vertebrate management. Thesis to describe the problem and its significance, methodology, results, data analysis, discussion and conclusion. Enrollment required every quarter in which facilities are used or advisement received. Degree credit limited to 6 units. Total credit limited to 9 units. Prerequisite: Graduate standing and consent of instructor.
PSC—PHYSICAL SCIENCE

PSC 101 The Physical Environment: Matter and Energy (4) GE B3 & B4
Introduction to the basic principles of physical science and application of these principles in modern society. Objects at rest and in motion, energy and power, fluids, heat, light, and sound. 3 lectures, 1 laboratory.

PSC 102 The Physical Environment: Atoms and Molecules (4) Introduction to the basic principles of the atomic, molecular, and sub-atomic behavior of matter, and applications of these principles in modern society. Electricity and magnetism, electrical nature of matter, organic and inorganic chemistry, modern physics, the nucleus. 3 lectures, 1 laboratory. Prerequisite: PSC 101.

PSC 103 The Physical Environment: Earth and the Universe (4) GE B3
Introduction to the basic principles of the Earth sciences and astronomy, and applications of these principles in modern society. Structure and formation of the Earth, earthquakes, weather, oceanography, Solar System, stars, and cosmology. 3 lectures, 1 activity. Prerequisite: PSC 101.

PSC 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

PSC 201 Introduction to Physical Oceanography (4) GE B5
Ocean origin, evolution, and sea floor features. Sediments; sea water; the ocean and our climate. Ocean surface and deep currents; waves and tides; coastal ocean. Marine life, food production, organisms, environments and lifestyles. Coastal development, pollution and food. Ocean resources and law. 4 lectures.

PSC 304 Applications of Physical Science (4)
Serious problems faced by technological societies worldwide, such as the destruction of ozone, runaway greenhouse effect, smog, acid rain, water pollution, nuclear radiation hazards, and the depletion of fossil fuels. 3 lectures, 1 activity. Prerequisite: PSC 101, PSC 102, PSC 103 or equivalent.

PSC 305 Patterns of Change (4)
Patterns of change in the formation and evolution of the Universe, the Earth, and life. Topics include the Big Bang, radiometric dating, plate tectonics, the fossil record, biogeography, and the biochemical evidence that supports evolution. 3 lectures, 1 activity. Prerequisite: PSC 101 or PSC 103 or consent of instructor.

PSC 307 Nuclear Weapons in the Post-9/11 World (4) GE Area F
Technology and basic science of fission/fusion weapons, uranium/plutonium, nuclear reactors, offensive/defensive missile systems, command/ control, verification, weapon effects, nuclear testing. Historical context of Cold War and proliferation, recent events, global norms, arms control treaties. 3 lectures, 1 seminar. Prerequisite: Completion of GE Area B, and junior standing.

PSC 320 Energy and the Environment (4) GE Area F
Science and technology of current and future energy sources along with associated environmental problems. Energy production, consumption, efficient usage, fossil fuels, nuclear, solar, other renewables. Risks, benefits, planning, economics. 3 lectures, 1 activity. Prerequisite: Completion of GE Area B, and junior standing.

PSC 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

PSC 424 Organizing and Teaching of Physical Sciences (4)
Techniques, aims and objectives in the teaching of physical sciences and general sciences at the secondary level. Selection and organization of teaching material, including strategies for ELL and special needs students.

Evaluation of results. 4 lectures. Prerequisite: Evidence of satisfactory preparation in physics and chemistry.

PSC 461 Senior Project (2)
Selection and completion of a project under faculty supervision. Project results are presented in a formal report. Minimum of 60 hours total time.

PSY—PSYCHOLOGY

PSY 103 Pairing and Marriage (4)
Functional approach to contemporary dating and pairing patterns with emphasis on developing communication during the early developmental stage of the paired relationships. 4 lectures.

PSY 104 Effective Study Techniques (3) (CR/NC)
Provides adequate instruction and practice in specific study skills such as note-taking, time-planning, memory, concentration, reading, test taking, self monitoring, and use of personal resources. Credit/No Credit grading only. 2 lectures, 1 activity.

PSY 200 Special Problems for Undergraduates (1-4)
Individual investigation, research, study or survey of selected problems in consultation and with prior approval of instructor. Written report required. Total credit limited to 4 units. Prerequisite: PSY 201 or PSY 202 and consent of department head.

PSY 201 General Psychology (4) GE D4
Introduction to the psychological study of human beings. Applications and research in area such as psychobiology, perception, learning, motivation, consciousness, memory and cognition, personality, emotion, development, psychological assessment, social behavior, psychopathology and psychotherapy. A student may enroll for credit in either PSY 201 or PSY 202, but not both. 4 lectures.

PSY 202 General Psychology (4) GE D4
Introduction to the psychological study of human beings. Applications and research in area such as psychobiology, perception, learning, motivation, consciousness, memory and cognition, personality, emotion, development, psychological assessment, social behavior, psychopathology and psychotherapy. A student may enroll for credit in either PSY 201 or PSY 202, but not both. 3 lectures, 1 discussion.

PSY 204 Tutor Training and Certification (2) (CR/NC)
Group study/tutorial certification program. Prepares students for certification with the College Reading and Learning Association (CRLA) tutor program. Emphasis on effective group study/tutorial strategies and techniques, communication skills, multicultural issues and disability awareness. Credit/No Credit grading only. 1 lecture, 1 activity.

PSY 205 Human Sexuality (3) (CR/NC)
Understanding development of personal sexuality. Sexual identity, biological aspects of sexuality, homosexuality, intimate relationships, communication, sexually transmitted diseases, sexual dysfunction, family planning, abortion. Emphasis on maintaining psychological and physical wellness. Credit/No Credit grading only. 3 lectures.

PSY 212 Interpersonal Communication (4) (Also listed as COMS 212)
Introduction to the interaction process in two-person (dyadic) communication settings. Emphasis on the functions of varying messages in the initiation, development, maintenance and termination of personal and professional relationships. 4 lectures.

PSY 251 Laboratory in Group Activities (1–3) (CR/NC)
Skills and techniques of solving problems in large and small groups. Conducting and reporting meetings. Analyses of leadership dynamics in campus organizations. Credit/No Credit grading only. Total credit limited to 6 units. 1–3 activities.

PSY 252 Social Psychology (4)
How attitudes, beliefs, and behavior are affected by the social situation. Gender roles, prejudice, aggression, altruism, attitudes and persuasion, liking and loving, and group behavior. Use of social psychology to understand diversity issues, reduce racism and sexism and international...
conflict, improve relationships, and communicate persuasively. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 254 Family Psychology (4) (Also listed as CD 254)
Introduction to research and theory on family relationships and behavior across the lifespan. Contextual influences, diversity of family forms, and topics such as love, mate selection, marital quality, parenting, gender, household work, divorce, and remarriage. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 256 Developmental Psychology (4)
Introduction to the scientific study of development with emphasis on the lifespan, from infancy to old age. Basic research and concepts in understanding social, emotional, cognitive, contextual, and diversity influences on development. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 301 Psychology of Personal Development (4)
Application of developmental psychology to self awareness. Includes communication skills, self modification skills and examination of life goals and values. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 302 Behavior in Organizations (4)
Characteristics of functioning organizations and their effects on individuals. Psychological issues relevant to the maintenance of the organization. Motivation, leadership, group phenomena, communication, decision-making, attitudes, personnel selection and organizational change. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 305 Personality (4)
Personality theories and research. Assessment, dynamics, and development of personality. Trait, behavioral, social learning, cognitive, humanistic, psychoanalytic and biological approaches. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 306 Adolescence (4) (Also listed as CD 306)
Psychological analysis of the years from prepubescence to young adulthood. Current research on behavior and development during adolescence with emphasis on physical, affective, cognitive, sociocultural, historical, family, peer and school aspects of life during the post-child, pre-adult years. 4 lectures. Prerequisite: PSY 201 or PSY 202, junior standing.

PSY 309 Psychology of Consciousness (4)
Characteristics and functions of selected, qualitatively unique patterns of consciousness such as hypnosis, meditation, dreaming, drug experiences and parapsychological phenomena, with particular emphasis on adaptive and maladaptive expressions of these states of consciousness. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 310 Psychology of Death (4)
Psychological aspects of death, loss and grief, including scientific findings, person-culture transactions and expressions in the arts and humanities. Personal exploration and interdisciplinary application of psychology to issues such as death anxiety, dying processes, funerals, immortality beliefs, suicide, and grieving. 4 lectures. Prerequisite: PSY 201 or PSY 202, or consent of instructor.

PSY 311 Environmental Psychology (4)
Interrelationship between behavior and the built and natural environments. Evaluating and understanding environments, environmental stress, and the human aspects of environmental problems. 4 lectures. Prerequisite: Completion of Area A; any two lower-division GE Area D courses; PSY 201 or PSY 202 recommended. Psychology and Child Development majors will not receive GE Area D5 credit.

PSY 314 Psychology of Women (4)
The lives of women from a psychological perspective. Topics include gender similarities and differences; masculinity, femininity, and androgyny; women's mental and physical health; female sexuality; women's roles in the workplace and the home; and harassment and violence against women. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 315 Psychology of Men (4)
Central issues in male psychology including stereotypes, gender differences, sex-roles and their development, sex and role typing, male sexuality and models of masculinity. Health, mental and emotional disorders of men, and aging. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 317 Psychology of Stress (4)
Examines the relationship between stress and psychological and physical well-being. Research on the psychological factors influencing stress as well as a description and critical evaluation of methods of stress reduction. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 318 Psychology of Aging (4) (GE D5)
Psychological and physiological aging in the context of the culture. Theories and research relating to the issues of stability and both positive and negative changes in perception, learning, memory, intelligence, personality, identity, motivation, sexuality, family relationships, career, Disorders, institutionalization, death and bereavement. 4 lectures. Prerequisite: Completion of Area A; any two lower-division GE Area D courses; PSY 201 or PSY 202 recommended. Psychology and Child Development majors will not receive GE Area D5 credit.

PSY 319 Motivation and Emotion (4)
Examination of the mechanistic and cognitive-based theories of motivation and emotion. Practical applications of each theory covered in an attempt to understand certain personal and societal behaviors. Research evaluating each theory and diversity consideration. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 323 The Helping Relationship (4)
Basic skills and approaches common to helping relationships with children, adults, and families. Examines theoretical, empirical, and practical applications of helping. Differentiation between professional, paraprofessional, and nonprofessional helping relationships. 2 lectures, 2 activities. Prerequisite: Junior standing, cultural pluralism course, Psychology & Child Development majors only, or consent of instructor.

PSY 325 Introduction to Positive Psychology (4)
Scientific study of the enhancement of strengths and optimal functioning in humans. Basic research, assessment and helping concepts in understanding optimal functioning within diverse populations. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 329 Research Methods in Psychology (3)
Introduction to research methods used in psychology and other behavioral sciences. Topics include the logic and ethics of research; experimental, correlational, and survey methodology; library search strategies; basic statistical procedures; and the format of the research report. 2 lectures, 1 activity. Prerequisite: PSY 201 or PSY 202, STAT 217 or STAT 211, or consent of instructor.

PSY 330 Behavioral Effects of Psychoactive Drugs (4)
Pharmacokinetic, pharmacodynamic and behavioral effects of psychoactive drugs. Social and psychological issues related to drug use and misuse. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 333 Quantitative Research Methods for the Behavioral Sciences (3)
Thorough introduction to the quantitative aspects of empirical research. Using SPSS statistical software, students will learn how to choose, conduct, and interpret analyses of research data from different behavioral science disciplines. 2 lectures, 1 activity. Prerequisite: PSY 329 or SOC 333, and STAT 217, or consent of instructor.

PSY 339 Psychology of Religion (4)
Major psychological perspectives on religion, faith, and religious experience. Objective and subjective approaches to the study of religion as related to prayer, meditation, social attitudes, behavior, mental health, mysticism, religious orientation, and personal development. 4 lectures. Prerequisite: PSY 201 or PSY 202.
PSY 340 Biopsychology (4) GE B5
Relationship between physiological and behavioral processes such as learning and memory, language, sleep, and abnormal behavior. Information processing, biochemistry, and structural organization at the cellular and nervous system levels. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 350 Teamwork (4)
Group dynamics applied to teams. Topics include team development, basic team processes, conflict management, decision making, leadership, problem solving, and the impacts of diversity and culture on teams. Focus on effective use of teams in the workplace. Not open to students with credit for PSY 351. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 351 Group Dynamics (4)
Dynamics of small groups. Topics include functions of groups, group structure, power, leadership, intragroup conflict, personal space and territoriality, groups as agents of societal and personal change. Demonstrations emphasizing experiential learning in groups. Not open to students with credit for PSY 350. 2 lectures, 2 activities. Prerequisite: PSY 252 or PSY 323.

PSY 352 Conflict Resolution: Violent and Nonviolent (4) GE D5
Psychological, situational, political, and cultural determinants of violence and nonviolence in interpersonal, intragroup, and international conflict. Self-assessment of conflict resolution attitudes, competencies, and behaviors. Negotiation, mediation, and other approaches to conflict management. Educational and structural approaches to violence prevention. 4 lectures. Prerequisite: PSY 201/202, completion of GE Area A, and one course from Area D3. Psychology and Child Development majors will not receive GE Area D5 credit.

PSY 359 Applied Psychology Research Methods (4)
Methods of testing hypotheses and evaluating social interventions in real-world settings. Interview, survey, correlation, field experimental, and quasi-experimental methods. Program evaluation. Experience with data collection and computer analysis. 3 lectures, 1 activity. Prerequisite: PSY 329.

PSY 360 Applied Social Psychology (4)
Applications of social psychology to education, business and industry, environmental problems, interpersonal and intragroup relations, health and welfare, mass communication, judicial systems, and politics. Analysis of social and organizational problems, methods of intervention, and program evaluation. 4 seminars. Prerequisite: PSY 252.

PSY 366 Experimental Psychology (4)
Research methodology and experimental design. Application of descriptive and inferential statistics to data from various content areas including development, animal and human learning, memory, cognition, and psychophysical processes. 3 lectures, 1 laboratory. Prerequisite: PSY 329, junior standing or consent of instructor.

PSY 370 Introduction to Clinical and Counseling Psychology (4)
Introduction to the fields of clinical and counseling psychology. History, education and training, theories, assessment, diagnosis, and treatment. Introduction to diverse settings, ethical principles, legal guidelines, credentialing and employment opportunities. 4 lectures. Prerequisite: Any two Psychology courses.

PSY 390 Career Planning (2) (CR/NC) (Also listed as CD 390)
Individual career and graduate school planning. Current employment issues for college graduates such as career profiles, trends and work environments. Credit/No Credit grading only. 2 seminars. Prerequisite: Junior standing or consent of instructor.

PSY 400 Special Problems for Advanced Undergraduates (1-4)
Individual investigation, research, study or survey of selected problems in consultation and with prior approval of instructor. Written report required. Total credit limited to 4 units. Prerequisite: PSY 201 or PSY 202.

PSY 401 Special Problems: Experiential Learning (2-4) (CR/NC)
Supervised experience in various community, governmental, educational, or research settings. Especially designed for individuals in applied settings requiring additional hours or a pre-fieldwork training experience. Applied psychological, developmental, or educational experiences determined by participating institution, supervising faculty member, and student. Cannot be substituted for PSY 448, PSY 449, PSY 453, or PSY 454. Credit/No Credit grading only. Total credit limited to 4 units. Prerequisite: Psychology major or gerontology minor, junior standing, and consent of instructor.

PSY 405 Abnormal Psychology (4)
Normal and abnormal behavior in everyday life. Anxiety, somatoform, dissociative, mood, childhood, personality, psychotic, cognitive, eating, and substance use disorders and their treatment. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 410 History and Systems of Psychology (4)
Survey of the philosophical and scientific roots of modern psychology, pioneer laboratories, systems, and schools of psychology, the refining of experimental methods, and applications of psychology in testing and psychological services. Examination of contributions by women and minorities in psychology. 4 seminars. Prerequisite: PSY 201 or PSY 202, PSY 305, PSY 458 or consent of instructor.

PSY 413 Parent-Child Relationships (4)
Application of major theories to understanding of parent-child relations. Examination of primary prevention strategies and programs. Review of current research and evaluation of literature on parent-child interactions. 4 lectures. Prerequisite: PSY 256 or CD 209, junior standing.

PSY 419 Self and Identity (4)
Concepts, theories, and research related to the development of the self across the lifespan. Examination of the influence of temperament, culture, individuation, self-esteem, self-awareness, roles and identity on maturity. 4 seminars. Prerequisite: PSY 256 or PSY 305 or CD 209 and senior standing.

PSY 420 Social and Emotional Development (4)
Analysis of the development of social interaction and emotional processes across the lifespan. Research and theories on such behaviors as attachment and love, empathy and altruism, competition and aggression, peer relations and cooperation. 4 seminars. Prerequisite: PSY 256 or consent of instructor.

PSY 421 Cognitive Development (4)
Examination of significant processes in the development of cognition across the lifespan. Theory and research regarding Piagetian theory, information processing, problem solving, creativity, and language development. Educational and counseling applications. 4 seminars. Prerequisite: PSY 201 or PSY 202.

PSY 422 Lifespan Sexuality (4)
Sexual interest, activity, and functioning from birth through the late adult years. Influence of sexual roles, attitudes, and adaptation during the life span. Sexual practices in our society. Therapies for enhancing a comfortable sexuality. 4 lectures. Prerequisite: PSY 201 or PSY 202, or PSY 205, and junior standing.

PSY 430 Sensation and Perception (4)
Principles of sensory systems, psychophysics, attention and the perception of color, shape, movement, space, and time. Survey of the development of perception through the lifespan. 4 lectures. Prerequisite: PSY 201 or PSY 202.

PSY 432 Psychological Testing (4)
Theory and practice of psychological measurement and testing. Principles of test construction, administration, and interpretation. Survey of common testing domains such as intelligence, scholastic aptitude and achievement, and personality. 4 lectures. Prerequisite: PSY 201 or PSY 202, junior standing.

PSY 444 The Atypical Infant (4) (Also listed as EDUC 444)
Exploration of issues pertinent to the development of atypical infants. Relationship of theory and research to intervention efforts with handicapped, developmentally delayed infants, and other at-risk infants. 3 seminars, 1 activity. Prerequisite: Junior standing, PSY 256 or CD 209, and EDUC 440 or consent of instructor.
PSY 448, 449 Research Internship I, II (5) (CR/NC)
Faculty-supervised research experience on various topics in psychology. Student apprenticeship with a department faculty member to conduct research. Responsibilities include some or all of the following: collecting data, entering and/or analyzing data, electronic literature search, report writing. Credit/No Credit grading only. Prerequisite: PSY 329, PSY 333, Psychology major, junior standing, and consent of instructor. Recommended: PSY 366.

PSY 450 Family Intervention (4)
Basic elements of marriage and family therapy and crisis intervention. Emphasis on concepts, goals, and techniques of various family therapy approaches and family crisis intervention. 4 lectures. Prerequisite: PSY 254, or graduate standing.

PSY 453, 454 Supervised Fieldwork I, II (5) (CR/NC)
Supervised fieldwork experience in various community, governmental, and educational settings. Applied psychological, developmental, or educational experiences determined by participating institution, supervising faculty member, and student. Credit/No Credit grading only. Prerequisite: PSY 323, Psychology majors, junior standing, and consent of instructor.

PSY 456 Behavioral Disorders in Children (4)
Applications of psychological principles to childhood behavioral disorders. Aggression, delinquency, stress reactions, motivational, perceptual-attentional deficiencies, psychoses, anxiety disorders, biological dysfunctions, and retarded social and cognitive development. 4 seminars. Prerequisite: PSY 201 or PSY 202, junior standing.

PSY 457 Memory and Cognition (4)
Principles and theories of memory and cognition including processes; models of perception, attention and memory; concept formation; language; intelligence; problem-solving and decision making; creativity; applications to areas such as law, artificial intelligence, and education. 4 lectures. Prerequisite: PSY 201 or PSY 202, PSY 329 or consent of instructor.

PSY 458 Learning (4)
Theoretical and philosophical foundations of the experimental analysis of behavior. Principles of classical and operant conditioning including aversive control of behavior through punishment and avoidance learning and the theoretical basis for behavior therapy techniques and applications of learning principles in education and health settings. 4 lectures. Prerequisite: PSY 201 or PSY 202, junior standing.

PSY 459 Lifespan Theories (4)
Comparative study of theories that have been offered as explanations for lifespan development. Controversial issues, evaluations and applications of theories. Emphasis on biological, psychological, and social aspects of lifespan development. 4 seminars. Prerequisite: PSY 201 or PSY 202, junior standing.

PSY 460 Child Abuse and Neglect (4)
Issues in child maltreatment, including definitions and forms, causes, consequences, assessment, reporting, treatment, and prevention. Possible links among research, intervention, and public policy will be emphasized. 4 seminars. Prerequisite: PSY 201 or PSY 202, junior standing.

PSY 461 Senior Project Seminar (1) (CR/NC)
Discussion of occupational and graduate school opportunities and of current issues in psychology for the purpose of defining professional objectives and individual projects for PSY 462. Senior project progress reports with class critique. Psychology majors only. Credit/No Credit grading only. 1 seminar. Prerequisite: PSY 329, PSY 448 or PSY 453, Graduation Writing Requirement.

PSY 462 Senior Project (3)
Design and completion of a faculty-supervised project in psychology. The project must be presented in a formal; written report. Minimum of 90 hours total time. Psychology majors only. Prerequisite: PSY 461.

PSY 465 Cross-Cultural Issues in Psychology (4)
Psychological, cultural, ecological and behavioral influences on human development in different cultural settings. Focuses on from one to three different cultures outside the U.S. in any given quarter. 4 seminars. Prerequisite: PSY 201 or PSY 202 and junior standing.

PSY 470 Selected Advanced Topics (4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 seminars. Prerequisite: Junior standing and consent of instructor.

PSY 472 Multicultural Psychology (4)
USCP
The impact of culture, ethnicity, and race on human behavior within the framework of psychological theory and research. Emphasis on ethnic minority groups within the U.S. including: African Americans, Native Americans, Asian Americans/Pacific Islanders, and Latino/a Americans. Not open to students in MS Psychology program. 4 seminars. Prerequisite: PSY 201 or PSY 202 and junior standing.

PSY 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

PSY 494 Psychology of Technological Change (4)
Examines the impact of technological change on the psychological and social characteristics of people and organizations. Identifies personal, social and organizational factors which provide obstacles and opportunities for technological change. Survey of methods of reducing the negative impact of change. 4 seminars. Prerequisite: PSY 201 or PSY 202 and senior standing.

PSY 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

PSY 500 Individual Study (1–6)
Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Enrollment by petition. Only 6 units may be applied to degree requirements. Prerequisite: Consent of department head, graduate major advisor and supervising faculty member.

PSY 504 Psychopharmacology (4)
Advanced course including the neurochemical etiology and treatment of mental illness and chemical dependency. 4 seminars. Prerequisite: Graduate standing or consent of instructor.

PSY 555 Counseling and Communication (4)
Overview of the counseling profession, history, philosophy, theory, and ethics. Emphasis on developing interviewing, assessment and communication skills. Required practicum. 3 seminars, 1 activity. Prerequisite: EDUC/PSY 560; graduate standing or consent of instructor.

PSY 556 Multicultural Counseling and Psychology (4)
Psychological, cultural, and ecological analysis of the experiences and histories of various cultural groups within the United States. Development of personal self-awareness of multicultural issues and culturally relevant counseling skills. 3 seminars, 1 activity. Prerequisite: Graduate standing.

PSY 558 Career Counseling (4)
Sources, methods and techniques for gathering, evaluating and disseminating occupational, technological and educational information through career counseling. 4 seminars. Prerequisite: Graduate standing.
PSY 560 Individual Therapy: Theory and Application (4)
Counseling theories and concepts applied to individuals. Develop skills in interviewing, assessment, intervention selection, termination and crisis intervention. Ethics and law included. 3 seminars, 1 activity. Prerequisite: PSY 305 or consent of instructor, graduate standing.

PSY 564 Ethics and the Law: MF Therapy (4)
Ethical, legal and case management issues related to individual, child, family and group therapy. Client rights and professional orientation to ethical standards and state regulation of clinical practice. 4 seminars. Prerequisite: EDUC/PSY 560, PSY 450 or consent of instructor.

PSY 565 Diagnosis and Treatment: Psychopathology (4)
Assessment of mental status. Diagnostic and statistical Manual of Mental Disorders, treatment planning, treatment case documentation and research applied to client psychopathology. 3 seminars, 1 activity. Prerequisite: EDUC/PSY 560, PSY 405 or consent of instructor.

PSY 566 Group Therapy: Theory and Application (4)
Group therapy theory, leadership and research applied to client assessment, screening, treatment selection, evaluation and termination. Ethics, law included. 2 seminars, 2 activity. Prerequisite: EDUC/PSY 560, or consent of instructor.

PSY 568 Advanced Psychotherapies (4)
Theory and application of advanced approaches in psychotherapy, including: cognitive-behavioral therapies, psychodynamic therapies and humanistic/existential therapies. The Schedule of Classes will list therapy selected. Total credit limited to 12 units. 4 seminars. Prerequisite: EDUC/PSY 560, PSY 565 or consent of instructor.

PSY 569 Counseling Clinic Practicum (3) (CR/NC)
Applied experience and instruction in assessment, diagnosis, treatment planning and treatment of individuals, couples, families and children under direct supervision of faculty in program clinic. Weekly meetings. Total credit limited to 12 units. Credit/No Credit grading only. Prerequisite: EDUC/PSY 560, PSY 405, PSY 450, or consent of instructor.

PSY 570 Selected Topics in Psychology and Human Development (4)
Directed group study of selected topics for advanced students. Open to graduate students and selected seniors. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 3 seminars, 1 activity. Prerequisite: Graduate standing or consent of instructor.

PSY 571 Family Therapy: Theory and Application (4)
Theory and application of process, structural and systems approaches to family and couple therapy. Assessment, diagnosis, treatment and follow-up of family and couple therapy with required supervised activities. Ethics and law related to family therapy. 3 seminars, 1 activity. Prerequisite: PSY 450, EDUC/PSY 555 or consent of instructor.

PSY 572 Child and Adolescent Therapy: Theory and Application (4)
Assessment, diagnosis, treatment planning and therapeutic modalities appropriate for children and adolescents. Seven hours of instruction in abuse and neglect of children with relevant ethics and law. Effective parenting approaches and integration of family treatment. 3 seminars, 1 activity. Prerequisite: EDUC/PSY 560, PSY 566, PSY 405, PSY 450 or consent of instructor.

PSY 573 Field Experience: Counseling (6) (CR/NC)
Practical application of guidance services and counseling in public schools, colleges and community settings. Weekly seminars with university staff included. Total credit limited to 12 units. Credit/No Credit grading only. Prerequisite: PSY 569 and consent of M.S. program committee.

PSY 574 Psychological Assessment (4)
Administration, scoring and interpretation of psychological tests. Reliability and validity of psychological measures. Ethical and cultural issues in testing. 4 seminars. Prerequisite: Graduate standing.

PSY 575 Gender, Couple and Sexual Dysfunction Therapy (4)
Antecedents to sex-role identity, gender aware therapy, couple therapy, treatment of spousal abuse, assessment, diagnosis, treatment of sexual dysfunction. 4 seminars. Prerequisite: PSY 450 and PSY 560.

PSY 576 Traineeship: Marital and Family Counseling (4) (CR/NC)
Supervised experience in applied psychotherapeutic techniques, assessment, diagnosis and treatment of individual, marital, family and child relationship problems. Total credit limited to 16 units. Credit/No Credit grading only. Weekly seminar with on-site and university supervisors. Prerequisite: PSY 569 and consent of M.S. program committee.

PSY 578 Research Methods for Counseling Psychology (4)
Research methods relevant to practitioners in counseling psychology and human services. Develop the ability to design, carry out and evaluate pertinent psychological research. Basic understanding of descriptive and inferential statistics and the use of computers in the analysis of data. 2 seminars, 2 activities. Prerequisite: Graduate standing or consent of instructor.

PSY 590 Research Applications in Psychology and Human Services (4)
Application of research techniques to problems in psychology and human services. Qualitative research design and analysis, needs assessment and program evaluation. Emphasis on the design of data collection instruments, data collection and analysis in an applied research project. 2 seminars, 2 activities. Prerequisite: PSY 585.

PSY 599 Thesis (4)
Completion of a thesis pertinent to the fields of psychology and human services. Prerequisite: PSY 590.

REC–RECREATION, PARKS, and TOURISM ADMINISTRATION

REC 101 Introduction to Recreation, Parks and Tourism (4)
History, philosophy, theory, and organization of recreation and leisure services. Exploration of the recreation, parks, and tourism profession; emphasis upon functions, areas, facilities, clientele, and career opportunities. 4 lectures.

REC 110 Career Planning in Recreation, Parks and Tourism (1) (CR/NC)
Development and application of philosophy, learning strategies, and problem solving for career planning in recreation, parks, and tourism. Credit/No Credit grading only. 1 activity. Prerequisite: Recreation, parks and tourism administration majors only.

REC 127 Leisure Behavior (4)
Sociological, psychological, and cultural aspects of leisure behavior. Needs, motivations, constraints, values and benefits explored. 4 lectures. Prerequisite: Majors only.

REC 203 Resource Law Enforcement (3) (Also listed as FNR 203)
Law enforcement applied to natural resource conservation on public and private lands. Examination of state and federal laws related to fish and wildlife management. Problems associated with implementation of resource laws examined. 3 lectures.

REC 205 Leadership in Recreation, Parks, and Tourism (4)
Recreation, parks, and tourism leadership with small and large groups. Skills, knowledge, and abilities required of effective leaders in leisure organizations and settings. 3 lectures, 1 activity. Prerequisite: REC 101 or REC 127, sophomore standing or consent of instructor.

REC 210 Introduction to Program Design (4)
Methods of program planning, organization, implementation and evaluation in public and private settings. Interrelationship of needs and interests of people, physical settings, and activity content. Emphasis on program construction and scheduling in recreation, parks, and tourism.
services. 3 lectures, 1 activity. Prerequisite: REC 101, REC 127, sophomore standing or consent of instructor.

REC 252 Recreation and Special Populations (4)
Introduction to special populations and therapeutic recreation. Specialized leadership and communication techniques. Modification requirements for programs, areas, facilities, equipment, and supplies. Exploration of disability rights issues, including legislation which impacts the delivery of recreation and leisure services. 3 lectures, 1 activity. Prerequisite: REC 127, sophomore standing or consent of instructor.

REC 260 Recreational Sport Programming (3)
Philosophy, foundations, policy and techniques underlying recreational sport programs in schools, public, private and commercial settings. 2 lectures, 1 activity. Prerequisite: Sophomore standing.

REC 270 Experiential Education Leadership and Facilitation (4)
Examination of skills and models used in challenge course leadership, experiential education, corporate training and team building, and facilitation. Emphasis on the development of practical skills, facilitation models, safety guidelines, and best practices in the field. 3 lectures, 1 laboratory. Prerequisite: Sophomore standing or consent of instructor.

REC 300 Computer Applications in Resource Management (2) (Also listed as FNR 300)
Resource management applications of microcomputers. Software programs include forest and natural resource management planning, forecasting, analysis of systems, and resource data base management for multiple use objectives. Use of forestry and natural resource examples. 1 lecture, 1 laboratory. Prerequisite: Consent of instructor.

REC 302 Environmental and Wilderness Education (4)
Education and teaching techniques that apply to learning experiences in an outdoor environment. Impact of natural resource usage that affects sociological, biological and physical resources. Educational strategies for presenting environmental learning to grades K-12 in selected environments. 3 lectures, 1 activity. Prerequisite: REC 210 with C- or better, junior standing or consent of instructor.

REC 311 Environmental Interpretation (4) (Also listed as FNR 311)
Interpretation of the biological, physical and aesthetic values of the natural elements of our environment; organization and presentation of interpretive materials by oral, written, and display methods of communication. 3 lectures, 1 laboratory. Prerequisite: COMS 101 or COMS 102.

REC 313 SustainableTourism (4)
Investigation of tourism industry from a sustainable tourism perspective. Examination of ecotourism, agri-tourism, rural tourism, sustainable tourism development, and adventure travel. Emphasis on tourism that sustains social, cultural, heritage, and natural environments while generating economic development. 3 lectures, 1 laboratory. Prerequisite: REC 210 with C- or better, junior standing or consent of instructor.

REC 314 Travel and Tourism Planning (4)
The history and development of tourism. Emphasis on the economic impact of tourism activities on communities. Consideration of the effects of tourism on individual cultures and the natural environment. Travel motivations, travel research and planning models. Field visits required. 4 lectures. Prerequisite: REC 210 with C- or better, junior standing or consent of instructor.

REC 317 Conventions and Meeting Management (3)
Role of conventions and meeting management in the area of tourism. Factors involved in meeting planning for small and large groups to include committees, amenities, logistics of operations and evaluation. Field visits required. 3 lectures. Prerequisite: REC 210 with C- or better, junior standing or consent of instructor.

REC 320 Special Event Planning (4)
Major trends and successful practices in festival and event planning. Emphasis on conceptualization, analysis, and planning considerations of small to large-scale community events. Exploration of event management field as a profession. 3 lectures, 1 activity. Prerequisite: REC 210, junior standing or consent of instructor.

REC 321 Visitor Services in Recreation, Parks, and Tourism (2-4)
Management issues in meeting the needs of recreation, parks, and tourism organizations. The Schedule of Classes will list topics selected. Topics to include customer satisfaction, service quality, visitor management, customer service skills and procedures, and creating a customer focused organization. Total credit limited to 12 units. 2-4 seminars. Prerequisite: REC 210, junior standing or consent of instructor.

REC 325 Outdoor and Adventure Leadership (4)
Theoretical principles and experience in leadership, judgment, and decision-making in outdoor and adventure settings. Total credit limited to 8 units. The Schedule of Classes will list topic selected. 3 lectures, 1 activity. Prerequisite: REC 205, junior standing or consent of instructor.

REC 330 Directed Field Experience (3) (CR/NC)
Practical work experience in related phases of recreation administration in organization or agency under qualified supervision. Minimum of nine hours per week. Credit/No Credit grading only. Total credit limited to 9 units. Prerequisite: REC 210 with C- or better and consent of instructor.

REC 342 Legal Aspects of Recreation, Parks and Tourism (4)
Legislative and legal aspects of public, private, commercial, and non-profit recreation, parks, and tourism agencies. Emphasis on risk management, liability, insurance, and negligence. Understanding of legal foundations and the legislative process. 3 lectures, 1 laboratory. Prerequisite: REC 210 with C- or better, junior standing or consent of instructor.

REC 350 Recreation Areas and Facilities Management (4)
Management of recreation areas and facilities: clientele considerations, facility and outdoor area site planning; day-to-day operations of common recreation areas and facilities. Agency visitation required. 3 lectures, 1 laboratory. Prerequisite: REC 210 with C- or better, junior standing or consent of instructor.

REC 360 Assessment and Evaluation of Recreation, Parks and Tourism (4)
Evaluation of recreation, parks, and tourism programs using a variety of research methodologies. Needs assessment, program evaluation, research design, and decision making based on data analysis. 3 lectures, 1 laboratory. Prerequisite: REC 210 with C- or better, STAT 217, junior standing. Recommended: CSC 110/113/AG 250.

REC 375 Leisure and Community Resources (4)
Investigation of community development principles, costs and benefits related to leisure, recreation, parks, and tourism. Emphasis on leisure, recreation, park and tourism resources, cultural and social dynamics, economic viability, quality of life, and environmental issues. 4 lectures. Prerequisite: Completion of GE Areas A1, A2, A3.

REC 400 Special Problems For Advanced Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 8 units, with a maximum of 4 units per quarter. Prerequisite: Consent of academic advisor.

REC 405 Recreation, Parks and Tourism Management (4)
The study, analysis, and practice of management processes as they are applied to recreation organizations: planning, organizing, motivating, and controlling. Emphasis upon application of theories, practices and case studies in specific recreation settings. 4 lectures. Prerequisite: REC 205, REC 210, senior standing or consent of instructor.

REC 410 Resource Recreation Management (4) (Also listed as FNR 410)
Practices of management of resource recreation on private and public lands. Consideration of the following management systems: biophysical, user/visitor, facilities, equipment, fiscal, personnel will be made in the provision of resource recreation services. Case studies in mass recreation and wilderness areas will be examined. 3 lectures, 1 laboratory. Some weekend labs necessary. Prerequisite: FNR 112 or consent of instructor.
REC 412 Tourism and Outdoor Applications Seminar (2-4)
Selected topics on aspects of the tourism field. The Schedule of Classes will list topics selected. Field visits may be required. Total credit limited to 12 units. 2-4 semesters. Prerequisite: REC 210, REC 313, REC 314 or REC 325, or consent of instructor.

REC 413 Tourism and Protected Area Management (4)
Practices of tourism and recreation management in protected areas. History and principles of protected areas. Social, cultural, economic, and environmental benefits of and risks to protected areas and communities. Environmental stewardship in tourism and recreation management worldwide. 4 lectures. Prerequisite: REC 313 or REC 314 or consent of instructor.

REC 414 Commercial Recreation Enterprise (4)
Development of the domains of commercial recreation and related services. Role of entrepreneurial activity. Procedures for creating and managing a socially responsible commercial leisure service. 4 lectures. Prerequisite: BUS 212, BUS 346, REC 210 with C- or better and senior standing.

REC 415 Adventure Programming and Planning (4)
Exploration of the history, benefits, characteristics, goals, models, and applications of adventure programs. Emphasis on wilderness and outdoor programs, adventure tourism, inclusive programs, adventure education, planning, management, and implementation. 3 lectures, 1 activity. Prerequisite: REC 210 or consent of instructor.

REC 417 Resource Recreation Planning (3) (Also listed as FNR 417)
Development and analysis of resource recreation plans. Planning theory, types of plans, scheduling techniques, projecting supply and demand, application of models, and economic evaluations. Basic recreation planning skills examined. Examples emphasize planning for parks and recreation. 2 lectures, 1 laboratory. Prerequisite: FNR 112 or consent of instructor.

REC 420 Festival and Event Management (4)
Management strategies and practices for small to large scale community festivals and events. Emphasis on sponsorship, marketing, staffing, production, and budgeting. 4 lectures. Prerequisite: REC 320, BUS 346, junior standing, or consent of instructor.

REC 424 Financing Recreation, Parks and Tourism Services (4)
Financing leisure products and services in public, private, commercial and voluntary settings. Emphasis on sources and methods of financing; operational/financial cost analysis; forecasting, budgeting, pricing and fiscal master planning through use of computer technology. 4 lectures. Prerequisite: BUS 212, CSC elective, REC 360 with C- or better, ENGL 310, senior standing.

REC 450 Resource and Grant Development (4)
Principles of all aspects of grantsmanship; researching grant funding resources from both the private and public sector, preparing the grant proposal, and grant administration. Field visits required. 4 lectures. Prerequisite: Junior standing.

REC 460 Research in Recreation, Parks and Tourism (4)
Research design, literature review, questionnaire and interview schedule construction, sampling methods, data array and analysis, and computer applications. Selection of senior project topic and proposal development. 3 lectures, 1 laboratory. Prerequisite: STAT 217, REC 360 with C- or better, ENGL 310, senior standing.

REC 461 Selected Advanced Laboratory (1-4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1-4 lectures. Prerequisite: Consent of instructor.

REC 465 Internship (6) (CR/NC)
400 hours of full-time concentration-specific practical work experience over a ten-week period in an approved agency. Comprehensive involvement in agency program. Credit/No Credit grading only. Prerequisite: Minimum GPA of 2.0; 1,000 verified hours of advisor-approved paid and/or volunteer experience subsequent to high school; completion of all university coursework other than Internship; approval of Internship Coordinator.

REC 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1-4 lectures. Prerequisite: Consent of instructor.

REC 471 Selected Advanced Laboratory (1-4)
Directed group laboratory study of selected topics for advanced students. Open to graduate and undergraduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1-4 laboratories. Prerequisite: Consent of instructor.

REC 472 Leadership Practice (1) (Also listed as FNR 472)
Leadership styles used in the natural resources management and recreation administration professions. Study and practice in setting goals and objectives; developing, evaluating and implementing an entrepreneurial project plan; decision making and problem-solving. Total credit limited to 4 units. 1 laboratory. Prerequisite: Junior standing or consent of instructor.

REC 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

REC 486 Pre-Internship Seminar (1) (CR/NC)
Exploration of internship opportunities and practices. Internship selection process and procedures introduced. Recommended enrollment two quarters prior to REC 465. Credit/No Credit grading only. 1 seminar. Prerequisite: Senior standing.

REC 465 Internship (6) (CR/NC)
400 hours of full-time concentration-specific practical work experience over a ten-week period in an approved agency. Comprehensive involvement in agency program. Credit/No Credit grading only. Prerequisite: Minimum GPA of 2.0; 1,000 verified hours of advisor-approved paid and/or volunteer experience subsequent to high school; completion of all university coursework other than Internship; approval of Internship Coordinator.

REC 470 Selected Advanced Topics (1-4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1-4 lectures. Prerequisite: Consent of instructor.

REC 471 Selected Advanced Laboratory (1-4)
Directed group laboratory study of selected topics for advanced students. Open to graduate and undergraduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1-4 laboratories. Prerequisite: Consent of instructor.

REC 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

REC 500 Individual Study (1-6)
Advanced independent study planned and completed under the direction of a member of the department faculty. Total credit limited to 6 units. Prerequisite: Graduate standing and consent of department head.

REC 502 Current Issues in Recreation, Parks, and Tourism (4)
Societal issues that influence the management and delivery of recreation, parks, and tourism services. Critical investigation of current research and trends. 4 seminars. Prerequisite: Graduate standing or consent of instructor.

REC 527 Leisure Behavior and Theory (4)
Theories of recreation and leisure; conceptual and theoretical foundations of leisure; the role of leisure behavior in modern day society. The Schedule of Classes will list topics selected. Constructs that contribute to contemporary understanding of leisure behavior. Connection of theories to individual research. Total credit limited to 8 units. 4 lectures. Prerequisite: Graduate standing.

REC 539 Graduate Internship in Recreation, Parks and Tourism (1-9)
Application of theory to the solution of problems of recreation, parks and tourism or related businesses in the field. Analyze specific management problems and perform general management assignments detailed in a contract between the student, the firm or organization, and the faculty
advisor before the internship commences. Degree credit limited to 6 units. Prerequisite: Consent of internship instructor.

REC 570 Selected Topics in Recreation, Parks and Tourism (1–4)
Direct group study of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1–4 seminars. Prerequisite: Graduate standing or consent of instructor.

REC 571 Selected Advanced Laboratory in Recreation, Parks and Tourism (1–4)
Directed group laboratory of selected topics for advanced students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1–4 laboratories. Prerequisite: Graduate standing and consent of instructor.

REC 581 Graduate Seminar in Recreation, Parks and Tourism (1)
Group study of selected developments, trends and problems in the field of recreation, parks and tourism. Total credit limited to 3 units. 1 seminar. Prerequisite: Graduate standing.

REC 599 Thesis in Recreation, Parks and Tourism (3)
Individual research in recreation, parks and tourism management under the general supervision of faculty, leading to a graduate thesis. Degree credit limited to 9 units. Students must enroll each quarter advisement is received. Prerequisite: Graduate standing and consent of instructor.

RELS—RELIGIOUS STUDIES

RELS 201 Religion, Dialogue, and Society (4) GE D3
The way in which interactions between religious traditions shape society at various levels. Case studies drawn from eastern and western religious traditions during the ancient and modern periods. 4 lectures.

RELS 301 Religions of Asia (4) GE C4
Comparative study of the religions of Asia, particularly Hinduism, Buddhism, and the religions of China. Topics include historical continuities/discontinuities, worldviews, sacred texts, practices, responses to modernity, the place of women across the traditions. 4 lectures. Prerequisite: Completion of GE Area A and PHIL 230 or PHIL 231.

RELS 302 Monotheisms: Judaism, Christianity, and Islam (4) (formerly RELS 309) GE C4
The monotheistic traditions of Christianity and Islam, with focus on their origins from Judaism. Topics include: Jewish history, the Hebrew Bible, the Christian New Testament, formation of the Church, the Quran and Mohammad. 4 lectures. Prerequisite: Completion of GE Area A and C2.

RELS 304 Judaism (4) GE C4
Origins, beliefs and practices of Judaism and central themes in the Hebrew Bible. The development of Judaism in the post-biblical and Talmudic period. Jewish philosophy, life, rituals and customs. The emergence of modern Judaism, Zionism and post-Holocaust philosophy. 4 lectures. Prerequisite: Completion of GE Area A and PHIL 230 or PHIL 231.

RELS 306 Hinduism (4) GE C4
Origins, beliefs and practices of Hinduism from the Veda and the Upanishads through the teachings of the Bhagavad Gita and the Puranas. Modern Hindu institutions, saints and sages, and social philosophy contrasted with the ancient. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231.

RELS 307 Buddhism (4) GE C4
Buddhist origins, viewpoints and practices will be seen in their development in India, Tibet, China, Japan, South Asia and America. The life of Buddha, Gautama, the rise of Theravada, Mahayana and Tantra. Encounters with Skinto and Confucianism. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231.

RELS 310 Christianity (4) GE C4
The development of the Christian religion from the story of Jesus, the New Testament, Church formation, the role of St. Paul, dissenting ideas, Protestant and Catholic views, and contemporary issues of conscience, such as the Social Gospel and liberation theologies. 4 lectures. Prerequisite: Completion of GE Area A and PHIL 230 or PHIL 231.

RELS 311 Islam (4) GE C4
The development of Islamic civilization from the inspiration of the Qur'an and the Prophet Muhammad and the Sunni-Shi'i split to contemporary political and social issues. Emphasis of Sufi literature, art, architecture, and philosophies of Islam. 4 lectures. Prerequisite: Completion of GE Area A and PHIL 230 or PHIL 231.

RELS 370 Religion, Gender and Society (4) GE C4 USCP (Also listed as WS 370) (formerly RELS 336)
Critical examination of religious ideas and institutions in America in relation to gender, race and politics. Focus on women and religion, the religious experience of minorities, and on politics. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231; one Religious Studies course or consent of instructor.

RELS 372 Spiritual Extremism: Asceticism, Mysticism, and Madness (4) GE C4
Shaping influence of ascetics, mystics and the insane on global religious traditions. Topics may include the relationship between spiritual extremists and society, cultural construction of holiness and insanity, and literary depictions of spiritual extremists. 4 lectures. Prerequisite: Completion of GE Area A and PHIL 230 or PHIL 231.

RELS 374 Religion and Violence (4) GE C4
Historical and contemporary case studies of how various religions have conditioned, motivated and justified violence. The place of sacrifice, martyrdom, self-injury and forced conversion in religious doctrines. Representations of religious violence in the media. 4 lectures. Prerequisite: Completion of GE Area A and PHIL 230 or PHIL 231.

RELS 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, study, research, studies or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department chair.

RELS 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. The Schedule of Classes will list topics selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

SCM—COLLEGE OF SCIENCE AND MATHEMATICS

SCM 100 Orientation to the College of Science and Mathematics (2) (CR/NC)
Application of learning strategies, problem-solving methodologies, academic planning and career selection for students in the science and mathematics disciplines. Concurrent enrollment in specific orientation or content course is desirable. Credit/No Credit grading only: 1 lecture, 1 activity.

SCM 101 Introduction to the Health Professions (1) (CR/NC)
Preparation for a health professions career and examination of various health professions. Emphasis on planning and developing an individual pre-health plan, including academic course selection, obtaining appropriate experiences/activities, and review of the elements of a strong application. Intended for freshmen and sophomores. Credit/No Credit grading only. 1 lecture.

SCM 150 Supplemental Instruction Discussion (1) (CR/NC)
Facilitated study and discussion of theory, concepts, and applications of content material from selected courses. Credit/No Credit grading only. Total credit limited to 4 units. 1 laboratory. Prerequisite: Concurrent enrollment in the designated section of the associated course.

SCM 201 Orientation to Biotechnology (1) (CR/NC)
Introduction to the diversity of fields in biotechnology. Applications in agriculture, nutrition, medicine and environmental problems. Credit/No Credit grading only. 1 activity. Prerequisite: Completion of a course with a BIO, BOT or MCRO prefix and a course with a CHEM prefix.

2007-2009 Cal Poly Catalog
SCM 300 Early Field Experience, Science/Mathematics (2) (CR/NC)
A minimum of 20 hours of supervised observation of secondary school science or mathematics classes. These observations will be discussed and evaluated during weekly meetings. Credit/No Credit grading only.

SCM 320 Technology in London (4)
GE Area F
Impact of one or two technologies in modern London. How they developed from the scientific/industrial revolution, as seen through London museums and industries. How solutions to modern problems are dependent on available technology. Specific technology chosen by instructor. 2 lectures, 2 activities. Prerequisite: Completion of GE Area B, and junior standing. Concurrent enrollment in London Study Program.

SCM 325 Genetic Engineering Technology (4)
GE Area F
Introduction to the methodology and techniques used in genetic engineering. Applications in agriculture, nutrition, medicine and environmental problems. Potential benefits and problems, including the underlying ethical questions. 4 lectures. Prerequisite: Completion of GE Area B, including a chemistry course, and junior standing.

SCM 330 Ocean Discovery through Technology (4)
GE Area F
Introduction to marine science and current issues in marine science. Investigation of emerging technologies that provide new understanding of the ocean, including sensors and sensor platforms such as ships, satellites, and underwater vehicles. 3 lectures, 1 activity. Prerequisite: Completion of GE Area B and junior standing.

SCM 350 The Global Environment (4)
(Also listed as AG/BUS/EDES/ENGR/HUM/UNIV 350)
Interdisciplinary investigation of how human activities impact the Earth's environment on a global scale. Examination of population, resource use, climate change, and biodiversity from scientific/technical and social/economic/historical/political perspectives. Use of remote sensing maps. Sustainable solutions. 3 lectures, 1 activity. Prerequisite: Completion of GE Areas A and B and junior standing.

SCM 363 Health Professions Internships (2) (CR/NC)
Structured experiences for pre-health students, such as County Health Agency internships designed to promote understanding of social and public purpose of chosen professions, or internships designed to provide observational experiences in a modern clinical setting. The Schedule of Classes will list topic selected. Limited space availability. Application process for enrollment. Total credit limited to 12 units; a maximum of 6 units may be applied toward degree requirement. Credit/No Credit grading only. Prerequisite: Sophomore standing; must have been enrolled at Cal Poly for at least two quarters; consent of instructor.

SCM 451 Ethics in the Sciences (3)
The practice, performance and application of science from the standpoint of ethics. Includes issues involving plagiarism, data handling, fraud, safety and selected applications in specific science careers. Models for the analysis and resolution of ethical dilemmas are presented. 3 seminars. Prerequisite: Junior standing.

SCM 491 Science Student Teaching Seminar (1-4) (CR/NC)
Facilitated discussions of successful pedagogical tools used in secondary science education, laboratory activities geared towards teaching California science standards, and issues facing students pursuing the public school teaching profession. Open to students in a secondary science credential program. Total credit limited to 2 units. Credit/No Credit grading only. 1 seminar. Prerequisite: EDUC 469 or EDUC 479.

SCM 593 Advanced Science Topics for Teachers (1-4) (CR/NC)
Science topics for credentialed and pre-service teachers. Content, hands-on activities geared towards California science standards. Development of inquiry-based lessons and skills for integration of language, literacy and technology into the science curriculum. The Schedule of Classes will list topic selected. total credit limited to 12 units; repeatable same term. 1-4 seminars. Prerequisite: Multiple Subject or Single Subject teaching credential or consent of instructor.

SCOM—SPEECH COMMUNICATION
See COMS—Communication Studies

SOC—SOCIOLOGY

SOC 110 Comparative Societies (4)
GE D3
Introduction to sociological theory and methods, emphasizing a comparative analysis of social institutions of contemporary societies in major world regions, including the family, religion, politics, and the economy. Direct comparisons made between American social institutions and those of other societies, their histories, social problems and social change. 4 lectures.

SOC 111 Social Problems (4)
An introduction to sociology with an emphasis on problems inherent in selected social institutions. Instruction in social analysis, including theories of social problems, how those problems are studied, and a survey of possible solutions. 4 lectures.

SOC 218 International Political Economy (4)
GE D2
Principles of international political economy in their social and cultural context. Sociological perspectives on the historical development of the world system and the current patterns of global inequality. Comparison of the political economy of major nations and their relation to the overall world system. 4 lectures.

SOC 301 Social Work and Social Welfare Institutions (4)
Introduction to the field of social welfare. Development of social work and social welfare services; major issues in social service policy. Scope and diversity of specific programs in the social services. Analysis of current programs and the recipients of welfare services. 4 lectures. Prerequisite: Junior standing or consent of instructor.

SOC 306 Sociology of the Family (4)
Description and analysis of family relationships; role of family in society, effects of society on family economy, structure and change. Other topics include courtship, marriage, parenting, divorce and alternative family forms. 4 lectures. Prerequisite: Junior standing or consent of instructor.

SOC 309 The World System and Its Problems (4)
Analysis of the historical background, structure, and dynamics of the world system; examines such issues as the origins of Third World poverty, colonialism, the changes in the world's dominant economic powers, the fall of communism, the growing economic competition between Europe, North America, and Asia; and possible strategies for the economic development of the Third World. 4 lectures. Prerequisite: Junior standing.

SOC 310 Self, Organizations and Society (4)
Analysis of the interactions relating to the development of self. Examination of the reciprocal interactions between biology, personal environment, and society. 4 lectures. Prerequisite: Junior standing or consent of instructor.

SOC 311 Sociology of Gender (4)
Description and analysis of the impact of gender definitions on men and women in society. Special attention is given to the learning process; the creation and perpetuation of gender stereotypes and the way these affect individual life chances and social structure, explored in the areas of work, education, family and abusive relationships. Focus on media presentation of gender and effects of ethnicity and class. 4 lectures. Prerequisite: Junior standing.

SOC 313 Urban Sociology (4)
Description of the context of urban development; analysis of various forces generating urbanization. Investigation of urban models and spatiotemporal relationships; urban processes; and problems. 4 lectures. Prerequisite: Junior standing or consent of instructor.

SOC 315 Global Race and Ethnic Relations (4)
GE D5
Diverse structures of unequal relationships among racial and ethnic groups in several countries including the United States. Theories about sources of
economic and social discrimination and colonialism. Focus on the concept of ethnicity. Evaluation methods to restructure race and ethnic relations. International case histories. 4 lectures. Prerequisite: Completion of GE Area A, one course from D1 and one course from D3. Social Sciences majors will not receive GE Area D5 credit.

SOC 316 American Ethnic Minorities (4) USCP
Exploration of the issues and problems facing the four major ethnic minorities in American society: Native Americans, Afro-Americans, Hispanics and Asian Americans. Dynamics of intergroup relations focusing on the concepts of ethnocentrism, stereotyping, pluralism and assimilation. Sources and manifestations of economic and social discrimination patterns and how they affect the individual's life course. 4 lectures. Prerequisite: Junior standing.

SOC 323 Social Stratification (4)
Social class and the distribution of income, wealth, status and power in society, with emphasis on contemporary United States; social mobility; race, gender, and ethnic inequalities; political power and the nature of welfare; the nature, causes and solutions to poverty. A comparative perspective also taken with a focus on Japan and Europe. 4 lectures. Prerequisite: Junior standing or consent of instructor.

SOC 326 Sociology of the Life Cycle (4) GE D5
Change and continuity of the self through the life course. Impact of aging on the physical, emotional, intellectual and social aspects of well being, and how this knowledge can be applied to enhance the quality of life. 4 lectures. Prerequisite: Completion of GE Area A, one course from D1 and one course from D3. Social Sciences majors will not receive GE Area D5 credit.

SOC 350 Social Organization of Modern Japan (4)
Social and cultural features of modern Japan. Japanese group processes. Investigation of contemporary Japanese institutions: family, education, mass media, industry, politics, including an overview of popular culture. 4 lectures. Prerequisite: Junior standing or consent of instructor.

SOC 355 Social Data Collection and Analysis (4)
The basics of how to do social research. Includes topics on data collection techniques such as surveys, experiments, participant observation, content analysis and the use of existing data. Also includes topics on univariate, bivariate, and multivariate analysis and the use of SPSS for data analysis. 3 lectures, 1 activity. Prerequisite: STAT 221 or STAT 217 or equivalent with a C- or better, and two sociology courses.

SOC 377 Sociology of Religion (4) GE D5
Religion from a sociological perspective. Topics may include the nature of religious experience, the role of religion in politics, economics, and social change, and the role that social forces have in influencing religious beliefs and practices. 4 lectures. Prerequisite: Completion of GE Area A, and two courses from two categories in Area D. Social Sciences majors will not receive GE Area D5 credit.

SOC 395 Sociology of Complex Organizations (4)
Bureaucracies and informal organizations from a sociological perspective. Organizational networks within and between organizations, relationship between organizations and their environment, and organizational socialization and career patterns, and gender and race or ethnic differences in organizational patterns. 4 lectures. Prerequisite: Junior standing or consent of instructor.

SOC 402 Crime and Violence (4)
Criminal behavior of individuals and groups; special categories include drug use, sex offenders, property crime, syndicated crime, interpersonal violence, and white-collar criminality. Legal definitions of crime and their implications, theories of causation, the sources of criminological data, and possible responses to the problems posed by criminal behavior. 4 lectures. Prerequisite: Junior standing or consent of instructor.

SOC 406 Juvenile Delinquency (4)
Sociological examination of juvenile delinquency as a social and legal concept, covering the nature, volume and social distribution of juvenile crime; the formal structure of juvenile justice; and how justice for juveniles is applied in practice. 4 lectures. Prerequisite: One course in sociology.

SOC 412 Criminal Justice (4)
Approaches to the control and rehabilitation of adult and juvenile offenders; philosophy of treatment strategies; history and analysis of probation, imprisonment, parole and preventive programs. 4 lectures. Prerequisite: SOC 402.

SOC 413 Methods of Social Work (4)
Skills, values and knowledge emphasized in social work. The generic perspective. Methods in social case work, group work, community organization, and social action. Alternative models. Settings of social work practice. Discussion of case material and professional literature. Case work management. Traditional and innovative therapy techniques. 4 seminars. Prerequisite: SOC 301 and junior standing.

SOC 421 Social Theory (4)
Concepts and theories in sociology, anthropology and geography. Development and history of social sciences. Paradigms and sociology of knowledge. Modern and classical perspectives. Importance of theories for understanding of present social arrangements and problems. 4 lectures. Prerequisite: SOC 111 or consent of instructor.

SOC 431 Population, Migration and the Environment (4)
Description and analysis of basic population processes including fertility, mortality, and migration and the environment. Emphasis on understanding the significance of today's growth rates for the future, especially in relationship to resources and standards of living. 4 lectures. Prerequisite: SOC 111 or consent of instructor.

SOC 470 Selected Advanced Topics in Sociology (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

SOCS—SOCIAL SCIENCES

SOCS 200 Special Problems for Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 8 units, with a maximum of 4 units per quarter. Prerequisite: Consent of department head.

SOCS 400 Special Problems for Advanced Undergraduates (1–4)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 8 units, with a maximum of 4 units per quarter. Prerequisite: Consent of department head.

SOCS 440 Internship (4–8) (CR/NC)
Supervised training, research, and work in public and private organizations. Credit/No Credit grading only. Total credit limited to 18 units. Prerequisite: Senior standing and/or consent of instructor.

SOCS 461, 462 Senior Project I, II (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time. Prerequisite: Senior standing or consent of instructor.

SOCS 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

SOCS 487 Cooperative Education Experience (6)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal
SOCS 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

SOCS 497 Cooperative Education Experience (12)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Prerequisite: Sophomore standing and consent of instructor.

SPAN—SPANISH

SPAN 101, 102, 103 Elementary Spanish I, II, III (4) (4)
For beginners. Class practice and assigned outside work in pronunciation, sentence structure, reading, writing, and basic conversation using the communicative approach. Laboratory drill required. Language taught in its cultural context. Credit not available for students who have completed SPAN 104 or SPAN 111. To be taken in numerical sequence. 3 lectures, 1 activity.

SPAN 104 Intensive Elementary Spanish (12)
Class practice in pronunciation, syntax, reading, writing, and conversation. Offered in summer only. Credit not available for students who have completed SPAN 101, SPAN 102, SPAN 103, SPAN 111, SPAN 112, or SPAN 113. Laboratory drill required. 9 lectures, 3 activities.

SPAN 111 Elementary Hispanic Language and Culture (4) USCP
Inductive Spanish grammar with special focus on vocabulary and culture from American agribusiness and the Hispanic cultures of the United States and Latin America. Open to all students with little or no knowledge of Spanish. To be taken in numerical sequence. Credit not available for students who have completed SPAN 101 or SPAN 104. 3 lectures, 1 activity.

SPAN 121, 122 Fundamentals of Spanish I, II (4) (4)
Review of Spanish grammar and practice in writing and oral expression within a cultural context. To be taken in numerical sequence. Students with credit in SPAN 123 cannot take SPAN 122. 3 lectures, 1 activity. Prerequisite: SPAN 103, placement exam or equivalent.

SPAN 123 Spanish for Heritage Speakers (4) USCP
Focus on the grammatical, cultural and linguistic needs of Spanish speakers in the United States who have not had formal study of the language. Emphasis on morphological, lexical and cultural understanding of the Spanish language. Designed to prepare students for upper-division Spanish coursework in language and culture. Students with credit in SPAN 122 cannot take SPAN 123. 3 lectures, 1 activity. Prerequisite: SPAN 103, placement exam or consent of instructor.

SPAN 124 Composition in Spanish (4)
Practice of essay writing in Spanish with particular attention to the process of writing. Analysis of word usage, sentence development and structure, and review of grammar, spelling and accentuation. Practice in writing descriptions, narration, reports, opinions and expositions. 3 lectures, 1 activity. Prerequisite: SPAN 122 or SPAN 123.

SPAN 125 Intensive Fundamentals of Spanish (8)
Review of grammar and practice in written and oral expression based on social and cultural values. 6 lectures, 2 activities. Prerequisite: SPAN 103 or SPAN 104 or permission of instructor.

SPAN 205 Introduction to Spanish Linguistics (4)
Introduction to the scientific study of the Spanish language with an overview of theoretical and applied linguistics and special emphasis on Spanish phonetics and phonology. 3 lectures, 1 activity. Prerequisite: SPAN 124.

SPAN 233 Introduction to Hispanic Readings (4) GE C1
Selected readings from major Hispanic authors that show the Hispanic literary tradition from the Middle Ages to the present in Spain, Latin America, and of Latino(a) writers in the United States. 4 lectures. Prerequisite: Completion of GE Area A, and SPAN 124.

SPAN 301 Advanced Composition in Spanish (4)
Oral and written development of structural grammar, syntax, and complex components of Spanish. Vocabulary expansion and idiomatic construction. Written composition. Translations to examine linguistic and semantic differences. 4 lectures. Prerequisite: SPAN 124.

SPAN 302 Advanced Conversation and Composition in Spanish (4)
Formal discussion and writing of selected cultural ideas from the Spanish-speaking world. Focus on individual and group presentations and in-class writing and speaking assignments that assist students in acquiring enhanced vocabulary and ability to use critical thinking skills in Spanish. Taught in Spanish. 3 lectures, 1 activity. Prerequisite: SPAN 124.

SPAN 305 Significant Writers in Spanish (4) GE C4
Critical analysis and oral discussion of poetry, essays, novels and plays by selected Hispanic writers. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 4 lectures. Prerequisite: Completion of GE Area A, and SPAN 233. Modern Languages and Literatures majors will not receive GE C4 credit.

SPAN 340 Chicano/a Authors (4) GE C4 USCP
Introduction to Chicano/a literary accomplishments to facilitate appreciation of Chicano/a literary aesthetics and increase understanding of Chicano/a cultural values and lifestyles. 4 lectures. Prerequisite: Completion of GE Area A, one course in Area C, and SPAN 233. Modern Languages and Literatures majors will not receive GE C4 credit.

SPAN 350 Hispanic Literature in English Translation (4) GE C4
Selected works to be read by students in the original or in English translation. Critical analysis, interpretation, and comparison of individual works by outstanding Hispanic writers. Lecture in English. The Schedule of Classes will list topics selected. Total credit limited to 8 units. 4 lectures. Prerequisite: Completion of GE Area A, one course in Area C, and SPAN 233. Modern Languages and Literatures majors will not receive GE C4 credit.

SPAN 351 Latino/a Writers in the United States (4) GE C4 USCP
Analysis and exploration of the major themes of Latino(a) literature in the United States today. Emphasis on Chicano(a), Puerto Rican, Cuban American and other Caribbean writers. Focus on novel writers who are not as well known or read in traditional Latino(a) courses. All readings and discussions in English. 4 lectures. Prerequisite: Completion of GE Area A, one course in Area C, Modern Languages and Literatures majors will not receive GE C4 credit.

SPAN 402 Advanced Linguistics in Spanish (4)
The more relevant aspects of Spanish linguistics today. Topics may include morphology, semantics, syntax, phonetics, phonology, theoretical linguistics, history of the language, and teaching methodology and applied linguistics in Spanish. Conducted completely in Spanish. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 lectures. Prerequisite: SPAN 205.

SPAN 410 Advanced Literature in Spanish (4)
In-depth study of literature in Spanish. Specific genre, literary period, authorial group, or country. Chicano(a)/Latino(a) literature, Latin American literature, and Spanish literature. Conducted in Spanish. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 lectures. Prerequisite: SPAN 301 and SPAN 305.
SPAN 416 Don Quixote (4)
Intensive reading of Cervantes' novel, Don Quixote (Part 1, 1605 and Part 2, 1615) in the context of Cervantes' life and the history and social context of Spanish renaissance and baroque culture. Course taught in Spanish. 4 lectures. Prerequisite: SPAN 233 or equivalent, or consent of instructor.

SPAN 470 Selected Advanced Topics (4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 4 lectures. Prerequisite: Consent of instructor.

SS—SOIL SCIENCE

SS 110 Orientation in Earth and Soil Sciences (1) (CR/NC)
(Also listed as ERSC 110)
Understanding the depth and breadth of earth and soil sciences. Examine potential career opportunities. Introduction to both student and professional organizations. Credit/No Credit grading only. 1 activity.

SS 121 Introductory Soil Science (4) GE B5
Biological, chemical, physical and genetic properties of soils. Application of scientific principles to solving land use, water management, and soil conservation problems. Interpretation of soils data for making environmental decisions, applying management practices, and sustainable food production. 3 lectures, 1 laboratory. Prerequisite: College chemistry and passing score on ELM examination, or an ELM exemption, or credit in MATH 104.

SS 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department head.

SS 221 Fertilizers and Plant Nutrition (4)
Plant nutrient requirements. Composition, value, and use of fertilizer materials, conditioners and agricultural minerals. Methods of manufacturing, distributing, and applying fertilizers. 3 lectures, 1 laboratory. Prerequisite: SS 121.

SS 301 Soils Practicum (2) (CR/NC)
Supervised practice in technical, educational, professional, and operational applications related to soil science. Students participate in faculty-supervised group or individual activities that support educational and professional goals. Credit/No Credit grading only. 2 activities. Prerequisite: SS 110 or SS 121.

SS 310 Urban Soils (4)
Management and manipulation of soils in urban environments. Measurement and interpretation of morphological, physical and chemical properties. Selection and treatment of soil materials for interior and exterior plantings. 3 lectures, 1 laboratory. Prerequisite: SS 121.

SS 321 Soil Morphology (4)
Identification of soil morphological and site properties. Correlation of soil physical and chemical properties with soil taxonomy and land use. Techniques of interpretations for agriculture, forest lands, wetlands, range lands and urban development. 3 lectures, 1 laboratory. Prerequisite: SS 121.

SS 322 Soil Plant Relationships (4)
Investigation and evaluation of the nutrient supplying ability of soils. Conditions and transformations involved in the transfer of mineral nutrients from soils to plants. Effects of cultural treatments on soil fertility. Diagnostic techniques and data interpretation in soil and plant analysis. 3 lectures, 1 laboratory. Prerequisite: SS 221, CHEM 111 or CHEM 128.

SS 339 Soil Science Internship (1–12) (CR/NC)
Selected students will spend up to 12 weeks with an approved firm or agency engaged in work and study related to their major. A detailed written proposal and written internim and final reports required. One unit of credit may be allowed for each full week of internship. Credit/No Credit grading. Prerequisite: Consent of internship instructor.

SS 345 Soil Interpretations and Management (4)
Calculate, graph, and interpret physical, chemical, and microbiological data from soils and reports. Apply laboratory results to field conditions. Debate efficacy of soil management and environmental practices considering social, economic and political implications of soil science. 2 lectures, 2 activities. Prerequisite: SS 121, CHEM 129, MATH 119 or MATH 141, PHYS 121 or PHYS 131, or consent of instructor.

SS 400 Special Problems for Advanced Undergraduates (2–4)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department head.

SS 421 Wetlands (4) (Also listed as BIO/FNR 421)

SS 422 Soil Microbiology and Biochemistry (4)
Biochemical activities, ecology and environmental implications of soil organisms. Effects on the formation, characteristics, and productivity of soils. Methods of studying soil organisms. 3 lectures, 1 laboratory. Prerequisite: SS 221 and SS 345, CHEM 313, or consent of instructor.

SS 423 Soil and Water Chemistry (5)
Chemical processes governing weathering, soil mineral formation and stability, common solubility equilibria. Use of chemical principles to explain surface chemical properties of soils and environmental problems in water and soil chemical systems. Preparation of professional quality reports based on laboratory data and library research. 3 lectures, 1 laboratory, 1 activity. Prerequisite: SS 223, SS 345, CHEM 129, CHEM 212/312, or CHEM 216/316, MATH 118 or MATH 141.

SS 431 Soil Resource Inventory (4)
Development and production of soil surveys for interpretive purposes. Use of soil taxonomy and land classification systems to evaluate land for best management practices. 2 lectures, 2 laboratories. Prerequisite: SS 223; SS 321.

SS 432 Soil Physics (5)
Matter and energy in soils, with emphasis on properties and behavior of solids, water, air, and heat. Applications to agriculture, forestry, range management, engineering, and environmental sciences. Preparation of professional reports based on laboratory data and library research. 3 lectures, 1 laboratory, 1 activity. Prerequisite: SS 121, SS 345, PHYS 121 or PHYS 131, CHEM 129, MATH 118 or MATH 141, or consent of instructor.

SS 433 Land Use Planning (3)
Development of plans and practices for management of agricultural, recreational and urban land use by evaluating the soil capabilities through the use of Soil Survey Reports. 2 lectures, 1 laboratory. Prerequisite: SS 121.

SS 440 Forest and Range Soils (4)
Ecosystem approach to chemical, biological, physical and mechanical properties of forest and range soils. Site quality, nutrient cycling, erosion and mass movement, fire effects. Preparation of soil management reports similar to those required by various land management organizations. Overnight field trips. 3 lectures, 1 laboratory. Prerequisite: SS 121, SS 321 or consent of instructor.

SS 442 Soil Vadezo Zone Remediation (4)
Redox transformations and removal or immobilization of inorganic pollutants. Microbial degradation and elimination of organic contaminants. Monitoring and predicting management strategies for vadezone enhancement. Reclamation of disturbed lands. 3 lectures, 1 activity. Prerequisite: CHEM 212/312 or CHEM 216/316, GEOL 201, SS 121 or consent of instructor.
SS 444 Soil Judging (2)
Morphological description of soils in the field. Taxonomic determination of classifications and interpretive properties from soil descriptions. Participation in collegiate soil judging contests. Total credit limited to 12 units. 1 lecture, 1 laboratory. Prerequisite: SS 321 or consent of instructor.

SS 453 Tropical Soils (4)
Nature and properties of soils occurring in the tropics, their origin, morphology, classification, fertility, management and conservation. Examination of social implications in international agriculture. 3 lectures, 1 laboratory. Prerequisite: SS 121, CHEM 111 or CHEM 128.

SS 461 Senior Project I (1)
Senior project topic selection and contract development with project advisor. Statement of problems, subproblems, assumptions, objectives, hypothesis, methods of analysis and statistical design. Development of literature review and budget of time and finances. Proper format and presentation of tabular and graphic information. 1 activity. Prerequisite: MATH 118 or MATH 131, STAT 211 or STAT 321 or CRSC 411.

SS 462 Senior Project II (3)
Implementation of materials and methods. Collection, analysis and interpretation of data. Completion of formal written report under advisor supervision. Minimum 90 hours. Prerequisite: SS 461.

SS 463 Undergraduate Seminar (2)
Review of current research, experiments, and problems related to the student's major field of interest. Preparation and presentation of reports on problems or research activities. 2 seminars.

SS 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

SS 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories. Prerequisite: Consent of instructor.

SS 500 Individual Study in Soil Science (1–6)
Advanced independent study planned and completed under the direction of a member of the Earth and Soil Sciences faculty. Total credit limited to 6 units. Prerequisite: Consent of department head, graduate advisor and supervising faculty member.

SS 501 Research Planning (4)
Problem solving and research planning for agriculture, natural resources and related sciences. Preparation of study plans that identify problems, review appropriate literature, formulate objectives, develop methods and provide for presentation and interpretation of results. Oral reports. 4 lectures. Prerequisite: Graduate standing or consent of instructor.

SS 508 Environmental Assessment for Erosion Control (3)
Assessment techniques for the development of soil erosion control and the dispersal of surface runoff water on urban, agriculture, riparian, and rangelands. Development of a water quality management plan for a specific land use. 3 lectures. Prerequisite: Introductory soils course and graduate standing, or consent of instructor.

SS 522 Advanced Soil Fertility (3)

SS 570 Selected Topics in Soil Science (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 12 units. 1 to 4 seminars. Prerequisite: Graduate standing or consent of instructor.

SS 581 Graduate Seminar in Soils (3)
Current research, experiments and problems related to soil science. Total credit limited to 3 units. 3 seminars. Prerequisite: Graduate standing or consent of instructor.

SS 582 Advanced Land Management (3)
Development of plans and practices for the management of crop, range, and woodland. 2 seminars, 1 laboratory. Prerequisite: Graduate standing, SS 433.

SS 599 Thesis (1–6)
Individual research in soil science under faculty supervision, leading to a scholarly written presentation exhibiting originality, clarity, critical and independent thinking, proper analysis of data, appropriate organization and format, and accurate and thorough documentation. Six units required for the M.S. degree. Prerequisite: Graduate standing and consent of instructor.

STAT–STATISTICS

STAT 130 Introduction to Statistical Reasoning (4) GE B1
Survey of statistical ideas and philosophy. Emphasis on concepts rather than in-depth coverage of statistical methods. Topics include sampling, experimentation, data exploration, chance phenomena, and methods of statistical inference. Credit not allowed for students with a previous statistics course. 4 lectures. Prerequisite: Passing score on the ELM examination, or an ELM exemption, or credit in MATH 104.

STAT 150 Introduction to Statistical Investigations (4)
Orientation to the statistics program. Introduction to the discipline of statistics and the nature of statistical reasoning. Design of surveys and experiments, graphical and numerical summaries, statistical models, and interpretation of results. Development of discussion, writing, presentation, and evaluation skills. 4 lectures. Prerequisite: Freshman Statistics major, or permission of instructor.

STAT 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department head.

STAT 217 Introduction to Statistical Concepts and Methods (4) GE B1
Sampling and experimentation, descriptive statistics, confidence intervals, two-sample hypothesis tests for means and proportions, Chi-square tests, linear and multiple regression, analysis of variance. Substantial use of statistical software. Not open to students with credit in STAT 218 or STAT 221 or STAT 251. 4 lectures. Prerequisite: Passing score on the ELM examination, or an ELM exemption, or credit in MATH 104.

STAT 218 Applied Statistics for the Life Sciences (4) GE B1
Data collection and experimental design, descriptive statistics, confidence intervals, parametric and non parametric one and two-sample hypothesis tests, analysis of variance, correlation, simple linear regression, chi-square tests, relative risk and odds. Applications of statistics to the life sciences. Substantial use of statistical software. Not open to students with credit in STAT 217 or STAT 221 or STAT 251. 4 lectures. Prerequisite: Passing score on the ELM examination, or an ELM exemption, or credit in MATH 104.

STAT 221 Introduction to Probability and Statistics (5) GE B1
Data classification, descriptive statistics, elementary probability. Binomial and normal distributions. Random sampling, confidence intervals and hypothesis testing on common parameters. Introduction to regression and correlation, analysis of variance, contingency table analysis. Substantial use of statistical software. Not open to students with credit in STAT 217 or
STAT 218. 5 lectures. Prerequisite: Passing score on the ELM examination, or an ELM exemption, or credit in MATH 104.

STAT 251 Statistical Inference for Management I (4) GE B1
Descriptive statistics. Probability and counting rules. Random variables and probability distributions. Sampling distributions and point estimation. Confidence intervals and tests of hypotheses for a single mean and proportion. 4 lectures. Prerequisite: Completion of the ELM requirement and a passing score on appropriate Mathematics Placement Examination for MATH 221 eligibility, or MATH 118 or equivalent.

STAT 252 Statistical Inference for Management II (5) GE B1
Confidence intervals and tests of hypotheses for two means and two proportions. Introduction to ANOVA, regression, correlation, multiple regression, time series, and forecasting. Statistical quality control. Enumerative data analysis. Substantial use of statistical software. 5 lectures. Prerequisite: STAT 251 with a minimum grade of C-.

STAT 301 Statistics I (4)
Introduction to statistics for mathematically inclined students, focused on the process of statistical investigations. Observational studies, controlled experiments, randomization, confounding, randomized tests, hypergeometric distribution, descriptive statistics, sampling, bias, binomial distribution, significance tests, confidence intervals, normal model, t-procedures, two-sample procedures. Substantial use of statistical software. Not open to students with credit in STAT 322. 4 lectures. Prerequisite: MATH 142.

STAT 302 Statistics II (4)
Continued study of the process, concepts, and methods of statistical investigations. Association, chi-square procedures, one-way ANOVA, multiple comparisons, two-way ANOVA interaction, simple linear regression, correlation, prediction, logistic regression, multiple regression, time series, forecasting, quality control. Substantial use of statistical software. Not open to students with credit in STAT 322. 4 lectures. Prerequisite: STAT 301.

STAT 312 Statistical Methods for Engineers (4) GE B6
Descriptive and graphical methods. Discrete and continuous probability distributions. One and two sample confidence intervals and hypothesis testing. Single factor analysis of variance. Quality control. Introduction to regression and to experimental design. Substantial use of statistical software. 4 lectures. Prerequisite: MATH 142.

STAT 313 Applied Experimental Design and Regression Models (4) GE B1
Analysis of variance and regression analysis for students not majoring in statistics or mathematics. Includes one-way classification, randomized blocks, Latin squares, factorial designs, multiple regression, diagnostics, and model comparison. 4 lectures. Prerequisite: STAT 217 or STAT 218 or STAT 221.

STAT 321 Probability and Statistics for Engineers and Scientists (4) GE B6
Tabular and graphical methods for data summary, numerical summary measures, probability concepts and properties, discrete and continuous probability distributions, expected values, statistics and their sampling distributions, point estimation, confidence intervals for a mean and proportion. Use of statistical software. 4 lectures. Prerequisite: MATH 142.

STAT 322 Statistical Analysis for Engineers and Scientists (4)
Confidence intervals, hypothesis testing, one and two-factor analysis of variance, simple linear regression, nonlinear and multiple regression, chi-square tests, introduction to statistical quality control. Substantial use of statistical software. 4 lectures. Prerequisite: STAT 321.

STAT 323 Design and Analysis of Experiments I (4)
Principles, construction and analysis of experimental designs. Includes completely randomized, randomized complete block, Latin squares, Graeco Latin squares, factorial, and nested designs. Fixed and random effects, expected mean squares, multiple comparisons, and analysis of covariance. 4 lectures. Prerequisite: STAT 302 or STAT 312 or STAT 322.

STAT 324 Applied Regression Analysis (4)
Simple linear regression and associated special topics, multiple linear regression, indicator variables, influence diagnostics, assumption analysis, selection of "best subset", nonstandard regression models, logistic regression, nonlinear regression models. 4 lectures. Prerequisite: STAT 252 or STAT 302 or STAT 312 or STAT 313 or STAT 322.

STAT 325 Introduction to Probability Models (4)
Introduction to probability and applied probability models. Topics include basic probability rules, counting rules, conditional probability, discrete and continuous random variables, and expectation. Applied models include Poisson processes, Markov chains, and reliability models. Not open to students with credit in STAT 321. 4 lectures. Prerequisite: MATH 206.

STAT 330 Statistical Computing I: SAS (4)
Techniques available to the statistician for efficient use of computers to perform statistical computations and to analyze large amounts of data. Use of SAS throughout the course. Includes data preparation, report writing, and basic statistical methods. 4 lectures. Prerequisite: STAT 252 or STAT 302 or STAT 312 or STAT 313 or STAT 322.

STAT 350 Probability and Random Processes for Engineers (4) GE B6
Random events, random variables, and random processes, with emphasis on probabilistic treatment of signals and noise. Specific topics include: sample spaces, probability, distributions, independence, moments, covariance, time/ensemble averages, stationarity, common processes, correlation and spectral functions, physical noise sources. 4 lectures. Prerequisite: MATH 241, EE 228.

STAT 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department head.

STAT 416 Statistical Analysis of Time Series (4)
Time series components, descriptive smoothing methods, regression models for time series data, forecasting via exponential smoothing, evaluation of forecasts, autocorrelation, ARIMA models and Box-Jenkins methods, combining forecasts, frequency domain analysis, filtering. 4 lectures. Prerequisite: STAT 252 or STAT 301 or STAT 312 or STAT 322.

STAT 418 Analysis of Cross-Classified Data (4)
Discrete multivariate statistics, including analysis of cross-classified data, log-linear models for multidimensional contingency tables, goodness of fit statistics, measures of association, model selection, and hypothesis testing. 4 lectures. Prerequisite: STAT 324 or consent of instructor.

STAT 419 Applied Multivariate Statistics (4)
Continuous multivariate statistics. Multivariate linear model, principal components and factor analysis, discriminant analysis, clustering, and canonical correlation. Use of Minitab and SAS throughout the course. 4 lectures. Prerequisite: Two courses in statistics, or consent of instructor. Recommended: MATH 206.

STAT 421 Survey Sampling and Methodology (4)
Survey planning, execution, and analysis. Principles of survey research, including non-sampling and sampling error topics. Survey sample designs, including simple random, systematic, stratified, cluster, and multi-stage. Estimation procedures and sample size calculations. 4 lectures. Prerequisite: One of the following: STAT 217, STAT 218, STAT 221, STAT 252, STAT 302, STAT 312, STAT 322, or STAT 512.

STAT 423 Design and Analysis of Experiments II (4)
Continuation of STAT 323. 2q factorial designs, 3k factorial designs, balanced and partially balanced incomplete block designs, nested designs, split-plot designs, response surface methodology, confounding, repeated measures, and other design approaches. 4 lectures. Prerequisite: STAT 323.
STAT 425 Probability Theory (4)
Basic probability theory, combinatorial methods, independence, conditional and marginal probability, probability models for random phenomena, random variables, probability distributions, distributions of functions of random variables, mathematical expectation, covariance and correlation, conditional expectation. 4 lectures. Prerequisite: STAT 301 or STAT 321, MATH 241, and MATH 248. Recommended: STAT 325.

STAT 426 Estimation and Sampling Theory (4)

STAT 427 Mathematical Statistics (4)
Continuation of STAT 426. The theory of hypothesis testing and its applications. Power and uniformly most powerful tests. Categorical data and nonparametric methods. Other selected topics. 4 lectures. Prerequisite: STAT 426.

STAT 430 Statistical Computing II: S-Plus (4)
Design and use of statistical software in programming statistical applications; object oriented statistical languages; random number generation; Monte Carlo methods including resampling (bootstrap and jackknife), randomization tests, and simulation; exploratory data analysis using linked, Trellis, and dynamic graphics; smoothing algorithms; and regression trees. 4 lectures. Prerequisite: STAT 302 or STAT 322, STAT 330, and STAT 323 or STAT 324.

STAT 461, 462 Senior Project I, II (1) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 90 hours total time.

STAT 465 Statistical Communication and Consulting (4)
Blending of the theoretical and practical aspects of statistical consulting. Development of tools necessary to conduct effective consulting sessions, present oral arguments and written reports, work collaboratively to solve problems, and utilize professional publications in statistics. 2 lectures, 2 activities. Prerequisite: Successful completion of at least one STAT 400-level course and senior standing.

STAT 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1–4 lectures. Prerequisite: Consent of instructor.

STAT 485 Cooperative Education Experience (6) (CR/NC)
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

STAT 495 Cooperative Education Experience (12) (CR/NC)
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 16 units. Credit/No Credit grading only. Prerequisite: Sophomore standing and consent of instructor.

STAT 512 Statistical Methods (4)
Statistical methods in research for graduate students not majoring in mathematical sciences. Probability distributions, confidence intervals, hypothesis testing, contingency tables, linear regression and correlation, multiple regression, analysis of variance. Substantial use of statistical software. 4 seminars. Prerequisite: Graduate standing and intermediate algebra or equivalent.

STAT 513 Applied Experimental Design and Regression Models (4)
Applications of statistics for graduate students not majoring in mathematics. Analysis of variance including the one-way classification, randomized blocks, Latin squares, and factorial designs. Introduction to multiple regression and to analysis of covariance. Substantial use of statistical software. 4 lectures. Not open to students with credit in STAT 313. Prerequisite: One of the following: STAT 512, STAT 217, STAT 218, STAT 221, STAT 252, STAT 312, or equivalent.

STAT 530 Statistical Computing I: SAS (4)
Techniques available to the statistician for efficient use of computers to perform statistical computations and to analyze large amounts of data. Use of the SAS software system. Includes data preparation, report writing, basic statistical methods, and a research project. Not open to students with credit in STAT 330. 4 lectures. Prerequisite: STAT 512 or STAT 513 or STAT 542 or equivalent

STAT 542 Statistical Methods for Engineers (4)
Descriptive and graphical methods. Discrete and continuous probability distributions. One and two sample confidence intervals and hypothesis testing. Single factor analysis of variance. Quality control. Introduction to regression and to experimental design. Use of computer to solve problems. 4 lectures. Not open to students with credit in STAT 312. Prerequisite: MATH 142 and graduate standing.

TH–THEATRE

TH 210 Introduction to Theatre (4) GE C3
Principles of theatre and production process, including theatrical terminology, methods, dramatic literature, aesthetics, and technology. 4 lectures.

TH 220 Acting Methods (4) (formerly TH 340)
Contemporary acting techniques focused on character building, objectives and tactics, with a focus on the development and implementation of various interactive methods of vocal work, images and actor resources. 4 lectures. Prerequisite: TH 210.

TH 227 Theatre History: Classical (4) GE C3
Highlights of European theatrical history – Greeks, Romans, Medieval English and French theatre through the 17th century. Production methods, acting styles, playwriting theories and representative plays. 4 lectures.

TH 228 Theatre History: 18th Century to Contemporary (4) GE C3
Highlights of European and American theatrical history from the 18th to 20th century. Production methods, acting styles, playwriting theories and representative plays. 4 lectures.

TH 230 Stagecraft I (4)
Basic stagecraft technique used in the entertainment industry. Construction and painting of scenery, building and gathering properties, hanging and focusing lighting instruments, assisting with costumes and acting as running crew for department production each term. 4 laboratories.

TH 240 Improvisational Theatre (4)
Objectives and techniques of improvisational theatre. Participation in a series of exercises designed to develop skills in dramatic structure, formatting, interactive problem solving, spontaneous scripting, dynamic communications, and applied performance styles. 2 lectures, 2 activities.

TH 250 Costume and Craft Construction (4)
Basic costume and craft construction techniques used in the entertainment industry. Building of all costumes and special craft projects for main stage theatre productions. Total credit limited to 12 units. Major credit limited to 4 units; repeated units are free electives. 4 laboratories.

TH 260 Voice and Diction for the Stage (4)
Theory and practice in developing command of oral techniques for the stage including breath support, resonance and articulation. 4 lectures.

2007-2009 Cal Poly Catalog
TH 270 Make-Up for Theatre and Film (4)
Introduction to the art of theatrical and film make-up design and application. Techniques for producing character, old age, fantasy, and special effects make-up. Demonstration and discussion of various design and application styles. 3 lectures, 1 activity.

TH 280 Movement for the Actor (4)
Directed group study of movement techniques and exercises to facilitate expressive physical performance for the actor. Body effectiveness, alignment and conditioning practice integrated with creative exploration and movement analysis of effort, spatial awareness and detailed body usage. 4 lectures.

TH 290 Script Analysis (4)
Script analysis taught as an essential applied skill for actors, designers and directors. Students read a variety of plays and learn how to examine their structure, theme and context. 4 seminars. Prerequisite: TH 210, TH 227 or TH 228.

TH 300 Women's Theatre (4) GE C4
Examination of a variety of female theatre artists from the Greeks to the present and the socio-political contexts from which they emerged. Analysis of a variety of classic and contemporary playscripts emphasizing evolving visions of women. 4 lectures. Prerequisite: Completion of GE Area A; TH 210, TH 227, or TH 228. Theatre Arts majors will not receive GE C4 credit.

TH 310 Stagecraft II (4) GE C4
Basic stagecraft technique used in the entertainment industry. Students construct and paint scenery, build and gather properties, hang and focus lighting instruments, assist on costumes and act as running crew for department production each term. Total credit limited to 8 units. 4 laboratories. Prerequisite: Junior standing, TH 230, or junior standing, or consent of instructor.

TH 320 Black Theatre (4) GE C4 USCP
African-American theatre artists from the 17th-20th century, and the socio-political contexts from which they emerged. Particular emphasis on 20th century African-American plays and playwrights: Hansberry, Baldwin, Shange, Baraka, Gordone, and Wilson. 4 lectures. Prerequisite: Completion of GE Area A; TH 210, TH 227, or TH 228. Theatre Arts majors will not receive GE C4 credit.

TH 330 Stagecraft II (4)
Basic stagecraft technique used in the entertainment industry. Students construct and paint scenery, build and gather properties, hang and focus lighting instruments, assist on costumes and act as running crew for department production each term. Total credit limited to 8 units. 4 laboratories. Prerequisite: Junior standing, TH 230, or junior standing, or consent of instructor.

TH 341 Acting Styles (4)
An intensive examination of various styles and forms of acting, with specific attention toward the comparison and development of historical performance techniques and/or theories. 4 lectures. Prerequisite: TH 210; TH 220.

TH 345 Rehearsal and Performance (4)
Preparation of a play for public presentation, including acting, stage management, publicity, or serving as a key member of the artistic team. Total credit limited to 12 units. Major credit limited to 4 units; repeated units are free electives. 4 laboratories. Prerequisite: By audition only.

TH 350 Seminar in Playwriting (4)
Examines dramatic structure, techniques of dialogue, and means of characterization in a variety of plays. Relates dramatic writing to technical, design, directorial and acting demands. Compositions of monologues, scenes and one-act play; works read and critiqued in class. 4 seminars. Prerequisite: TH 210, completion of GE Area A.

TH 360 Theatre in the United States (4) GE C4
Examination of American plays, playwrights, organizations and movements, applying them as portraits of the United States' historical, philosophical and cultural make-up. Topical emphasis focuses on the definition and development of an "American" identity via the context of theatre. 4 lectures. Prerequisite: Completion of GE Area A; TH 210, TH 227 or TH 228. Theatre majors will not receive GE C4 credit.

TH 370 Costume History (4)
Dress worn in Western society from Ancient Egypt through AD 2000. Silhouette; how, when, and why particular garments were worn; emphasis on social, political, and economic context. 4 lectures. Prerequisite: TH 210 or consent of instructor.

TH 380 Children's Drama (4)
Techniques for teaching theatre performance skills to children. Creation of small group seminar performance projects that are performed before an audience of elementary school children. 2 lectures, 2 seminars. Prerequisite: TH 210 or upper-division Liberal Studies or Human Development course.

TH 390 World Drama (4) GE C4
Investigation of non-western/underrepresented theatre and dramatic performance; emphasis on plays, playwrights, and movements as portraits of philosophical/national make-up. Topical emphasis focuses on the definition and development of a cultural identity via the context of historical and contemporary theatre practices. 4 lectures. Prerequisite: Completion of GE Area A; TH 210, TH 227 or TH 228. Theatre majors will not receive GE C4 credit.

TH 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, or project centering around theatre. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of department head.

TH 430 Introduction to Stage Design: Scenery (4)
Scenic design process used in the entertainment industry, including concept development, research, sketching, drafting, color rendering using a variety of media, 3D model building, and the presentation of design material. 3 lectures, 1 activity. Prerequisite: TH 210, TH 290 or consent of instructor.

TH 432 Introduction to Stage Design: Costume (4)
Costume design process used in the entertainment industry, including concept development, research, sketching, color rendering in a variety of media, and the presentation of design material. 3 lectures, 1 activity. Prerequisite: TH 210, TH 290 or consent of instructor.

TH 434 Introduction to Stage Design: Lighting (4)
Lighting design process used in the entertainment industry, including concept development, research, the functional aspects of lighting equipment, drafting techniques, the development of production paperwork and the presentation of design material. 3 lectures, 1 activity. Prerequisite: TH 210, TH 290 or consent of instructor.

TH 450 Directing (4)
Principles, philosophies, analytical methods, business practices, organizational techniques and interpersonal strategies of directing for the stage. Intensive rehearsals and performance of a one-act play (directed by each student) is expected outside of class hours. 4 lectures. Prerequisite: TH 210, TH 290 and consent of instructor.

TH 460 Senior Project (4)
Selection and completion of a project under faculty supervision. Examples include: A formal report, an original play, producing a creative work, conceiving and completing a theatrical design, or a combination of these or similar assignments. Prerequisite: Consent of department head.

TH 470 Selected Advanced Topics (1–4)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list topic selected. Total credit limited to 8 units. 1 to 4 lectures. Prerequisite: Consent of instructor.

TH 471 Selected Advanced Laboratory (1–4)
Directed group laboratory study of selected topics for theatre students. The Schedule of Classes will list topics selected. Total credit limited to 12 units. 1–4 laboratories. Prerequisite: Consent of instructor.

TH 480 Internship (4) (CR/NC)
Part-time work experience in the entertainment industry. Ability to work independently; strong verbal and written skills. Faculty approval of job position required.

2007-2009 Cal Poly Catalog
position required. Evaluations by job supervisor and written reports by student required. 120 hours of work experience. Total credit limited to 8 units. Credit/No Credit grading. Prerequisite: Junior standing with a minimum 3.0 GPA.

UNIV—UNIVERSITY STUDIES

UNIV 330 Cal Poly Land: Nature, Technology and Society (4) (Also listed as AG/HUM 330) GE Area F
Scientific investigation of the natural features of the Cal Poly landscape and their transformations by land management technology. Analysis of the environmental, economic, social, and political effects of agriculture, resource extraction, and construction technology on that landscape. Emphasis on the educational, land-use, and long term planning issues of technology presented by this case study. 4 lectures. Prerequisite: Completion of GE Areas A and B and junior standing.

UNIV 333 World Food Systems (4) (Also listed as POLS 333) GE Area F
Integrated, interdisciplinary study of the technologies of global food production, environmental, and social issues related to the application of those technologies, and moral and ethical issues associated with global food production and distribution. Emphasis on the politics of change. 4 lectures. Prerequisite: Junior standing and completion of Area B.

UNIV 339 Disaster-Resistant Sustainable Communities (4) GE Area F
Creation of safer, more resilient cities through systematic application of urban disaster risk reduction methods that utilize the technology of GIS combined with principles from the engineering and geo-sciences. Emphasis on hazard identification and methods to lower disaster risk. 3 lectures, 1 activity. Prerequisite: Completion of GE Area B and junior standing.

UNIV 350 The Global Environment (4) (Also listed as AG/BUS/EDES/HUM/SCM 350) GE Area F
Interdisciplinary investigation of how human activities impact the Earth’s environment on a global scale. Examination of population, resource use, climate change, and biodiversity from scientific/technical and social/economic/historical/political perspectives. Use of remote sensing maps. Sustainable solutions. 3 lectures, 1 activity. Prerequisite: Completion of GE Areas A and B and junior standing.

UNIV 361 Modernism (4) (Also listed as HUM 361) GE C4
Interdisciplinary survey of the eighteenth, nineteenth and twentieth-century concepts and cultural movements known as modernism throughout Europe, North America, and Latin America. Disciplines may include architecture, art, drama, literature, music, philosophy, and photography. 4 lectures. Prerequisite: Completion of GE Area A and one class from Area C.

VGSC—VEGETABLE SCIENCE

VGSC 190 California Vegetable Production (4)
History, botany, growth characteristics and climatic adaptation, pests, and harvesting methods for the most important vegetable crops grown in California. Use of transplants, plastic mulches and row covers in vegetable production. Current topics in agriculture important to the vegetable industry. Field trip to a major California vegetable production area required. Survey of vegetable production for Crop Science majors. 3 lectures, 1 laboratory. Prerequisite: HCS 120.

VGSC 202 Enterprise Project (2) (CR/NC)
Beginning field experience in production and marketing of a vegetable crop, under faculty supervision. Project participation is subject to approval by the department head and the Cal Poly Corporation. Degree credit limited to 4 units. Credit/No Credit grading only. 1 lecture and 1 unit of independent study. Prerequisite: HCS 110, or consent of instructor.

VGSC 230 Introduction to Vegetable Science (4)
Environmental and cultural principles involved in the production of California vegetable crops; temperature, daylength and fertility effects on production and yield, use of plastic mulches and row covers, and use of transplants. Harvest principles and precooling methods. Survey of vegetable production for other than Crop Science majors. 3 lectures, 1 laboratory.

VGSC 260 Vegetable Gardening, Nutrition and History (4)
Seeded preparation, mulching, composting, fertilizers, transplanting, seeding, irrigation and post control in an urban setting. Nutritional value of specific vegetables and their relationship to current dietary recommendations. Historical and cultural uses of vegetables. Instructional plots may be grown organically. 3 lectures, 1 laboratory.

VGSC 402 Enterprise Project Management (2) (CR/NC)
Advanced experience in the production of vegetable crops. Development of a plan for field operations, a marketing plan, and a budget. Management decision-making. Project participation is subject to approval by the department head and the Cal Poly Corporation. Degree credit limited to 4 units. Credit/No Credit grading only. 1 lecture and 1 unit of independent study. Prerequisite: VGSC 202, and consent of instructor.

VGSC 423 Advanced Vegetable Science (4)
Agricultural land conservation; current laws impacting vegetable production and marketing. Environmental and cultural effects on selected vegetables including specific effects on growth, flowering, fruiting and yield. Field trip to desert vegetable production regions required. 3 lectures, 1 laboratory. Prerequisite: VGSC 190 or VGSC 230, or consent of instructor.

VGSC 424 Vegetable Crop Management (4)
Vegetable production systems from an organizational viewpoint. Management, organization and general commercial operations, including planning, budgeting, and managing personnel. Field trip to a major California vegetable production area required. 3 lectures, 1 laboratory. Prerequisite: VGSC 190 or consent of instructor.

VS—VETERINARY SCIENCE

VS 200 Special Problems for Undergraduates (2–3) (CR/NC)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units, with a maximum of 3 units per quarter. Credit/No Credit grading only. Prerequisite: Consent of instructor.

VS 203 Animal Parasitology (3) (Also listed as ASCI 203)
Identification, life cycles, prevention and control of the common external and internal parasites causing economic loss in livestock. 3 lectures. Prerequisite: BIO 111 or BIO 161.

VS 229 Anatomy and Physiology of Farm Animals (4) (Also listed as ASCI 229) (formerly VS 223)
Comprehensive overview of the principal systems of farm animals using an integrative, systemic approach to learning the homeostasis of mammalian organisms so the information can be applied to their daily care and management. 3 lectures, 1 laboratory. Prerequisite: BIO 111 or BIO 161.

VS 310 Technical Veterinary Skills (4) (Also listed as ASCI 310)
Restraint and handling of animals, physical examination, necropsy procedure, basic wound management, applied pharmacology. Reproduction and herd health programs. 3 lectures, 1 laboratory. Prerequisite: VS/ASCI 229.

VS 312 Production Medicine (3) (Also listed as ASCI 312)
Basic disease concepts. Fundamentals of immunology and therapeutics. Disease prevention principles, infectious and non-infectious. Pre-harvest food safety and milk and meat quality assurance. Herd health management programs for production efficiency and product quality. 3 lectures. Prerequisite: ASCI 221 or ASCI 223; PM/ASCI 225 or ASCI 222; ASCI 224 or ASCI 227; and VS/ASCI 229.

VS 321 Zoonoses and Veterinary Public Health Concerns (4) (Also listed as ASCI 321) (formerly VS 320)
Public health concerns including: animal and bird diseases which may be transmitted to people; pre-harvest food safety and handling concerns; and environmental public health hazards. 3 lectures, 1 activity. Prerequisite: BIO 111 or BIO 161.

2007-2009 Cal Poly Catalog
WS—WOMEN'S STUDIES

WS 301 Introduction to Women's Studies (4) GE D5 USCP
Introduction to theories and research on gender and sexuality, gender stratification, and gender role development. Broad interdisciplinary examination of issues involving gender and sexuality, as well as race and ethnicity, with special emphasis on how these issues affect both women's and men's lives. Issues such as reproductive rights, gender and body image, the origins of patriarchy, gender and class. 4 lectures. Prerequisite: Completion of GE Area A and completion of two lower-division Area D courses or consent of instructor.

WS 311 Women in Cross Cultural Perspectives (4) GE D5
Similarities and differences in women's lives internationally. Cultural influences such as class, ethnicity, and religion on women's status. Study of global feminism, reproductive rights, women's labor, women in development, women's politics. 4 lectures. Prerequisite: Completion of GE Area A, and one course from D2 and one from D3 or consent of instructor.

WS 316 Women as Subject and Object in Art History (4) (Also listed as ART 316)
Exploration of the role of women in the visual arts. Women as artists, women as portrayed in art, and feminist theory as it applies to the study of the visual arts and art history. 4 lectures. Prerequisite: ART 111, ART 112 or consent of instructor.

WS 340 Sexuality Studies (4) GE D5
Sexuality in a cultural and historical context. Changing definitions of human subjectivity. The cultural and social regimes that control and create sexuality (including the "invention" of homo/heterosexuality and the social, legal and political systems that define sexual ab/normality). Contemporary issues of sexual orientation and topics of sexuality in relation to gender and race. 4 seminars. Prerequisite: Completion of GE Area A and completion of two lower-division Area D courses. Completion of WS 301 preferred.

WS 350 Gender, Race, Science and Technology (4) (Also listed as ES 350) GE Area F USCP
Applications and histories of reproductive technologies and the ways in which these technologies are linked to the science of the body. How these technologies help to construct and deconstruct race and gender in the United States. 3 lectures, 1 activity. Prerequisite: Completion of GE Area B or consent of instructor.

WS 370 Religion, Gender and Society (4) (Also listed as RELS 370) (formerly WS 336) GE C4 USCP
Critical examination of religious ideas and institutions in America in relation to gender, race and politics. Focus on women and religion, the religious experience of minorities, and on politics. 4 lectures. Prerequisite: Completion of GE Area A, and PHIL 230 or PHIL 231; one Religious Studies course or consent of instructor.

WS 400 Special Problems for Advanced Undergraduates (1–4)
Individual investigation, research studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 4 units per quarter. Prerequisite: WS 301, WS 401 or WS 411 or HIST 434 or HIST 435 or PSY 314; and consent of Women's Studies director.

WS 401 Seminar in Women's Studies (4)
Intensive study of a selected topic in Women's Studies (such as women and work, women and the law, women in the arts). The topic will be listed in the Schedule of Classes. Field experience may be required as appropriate. May be repeated for up to 8 units. 3 seminars and a research project. Prerequisite: WS 301 or consent of instructor and upper division standing.

WS 434 American Women's History to 1870 (4) (Also listed as HIST 434)
Female ideology and experience from the colonial period through the American Civil War. Use of a variety of sources, including women's own writing, in order to understand the history of women as it both reflects and shapes American culture and society. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

WS 435 American Women's History from 1870 (4) (Also listed as HIST 435)
USCP
The female past in the modern period of U.S. history. Considers how transformations in gender roles are reflective of other significant changes in American culture and society. Emphasis on class, race, and ethnic variations in women's experience. 3 lectures and research project. Prerequisite: HIST 303; junior standing or consent of instructor.

WS 450 Feminist Theory (4) USCP
History and evolution of ideas about gender, race/ethnicity and sexual identity. Special attention as to how social, historical, and ideological forces, organized by the central, intertwined concepts of gender and race, shape both our critical thinking and our lives. 3 lectures, 1 activity. Prerequisite: WS 301 or consent of instructor.

WVIT—WINE AND VITICULTURE

WVIT 101 Orientation to Wine and Viticulture (1) (CR/NC)
Introduction to the wine and viticulture program. Emphasis on curriculum and career planning. Credit/No Credit grading only. 1 lecture.

WVIT 102 Grapes and Wines of the World (4)
Brief history of grapes and wines, major winegrowing regions of the world, and major grape varieties Types of wines, wineries, marketing, packaging and promotion. Hospitality issues such as ordering wine in restaurants, reading a wine label and wine service. 4 lectures.

WVIT 202 Enology I (4)
Introductory course in wine making, equipment, fermentation chemistry, winery management and the relationship between grape growing and wine making. 3 lectures, 1 activity. Prerequisite: WVIT 102, CHEM 111.

WVIT 339 Internship in Wine and Viticulture (1-12) (CR/NC)
Time spent in an approved wine industry, engaged in wine production or related agribusiness and viticulture activities. Applying and developing
production and managerial skills and abilities. One unit of credit may be allowed for each full week of completed internship. Degree credit limited to 6 units. Prerequisite: WVIT 202, FRSC 231, junior standing, and consent of internship instructor.

WVIT 342 Sensory Evaluation of Wine (4) (Also listed as FSN 342)
Evaluation of wines using the techniques in sensory evaluation. Difference and rating tests; descriptive analysis and pairing of wine and food. 3 lectures, 1 laboratory. Prerequisite: WVIT 202, STAT 218 or STAT 221, age 21 or older.

WVIT 404 Enology II (4)
Advanced enology is designed to provide an understanding and assessment of the key chemical, sensory and processing considerations important to premium commercial wine production. 3 lectures, 1 laboratory. Prerequisite: WVIT 202, FSN 464.

WVIT 463 Issues and Trends in the Wine Industry (2)
Current topics in viticulture, enology and the wine business as a whole. Emphasis on controversial topics and future projections of the industry's vision. 2 seminars. Prerequisite: Senior standing.

ZOO—ZOOLOGY

ZOO 231 Essentials of Human Anatomy and Physiology I (5)
See ZOO 331. ZOO 231 accepted in lieu of ZOO 331, but not for upper division credit. Not open for major credit in the Biological Sciences.

ZOO 232 Essentials of Human Anatomy and Physiology II (5)
See ZOO 332. ZOO 232 accepted in lieu of ZOO 332, but not for upper division credit. Not open for major credit in the Biological Sciences.

ZOO 321 Mammalogy (4)
Biology and economic importance of mammals. Classification and identification of mammals, with emphasis on California species. 2 lectures, 2 laboratories. Prerequisite: BIO 160, BIO 162 and BIO 263 or consent of instructor.

ZOO 322 Ichthyology (4)
Phylogeny, anatomy, functional morphology, physiology, and ecology of marine and freshwater fishes. Special reference to local and economically important species. Laboratory emphasis on taxonomy of California species, especially marine groups. 2 lectures, 2 laboratories. Prerequisite: BIO 162.

ZOO 323 Ornithology (4)
Classification and identification of birds, with emphasis on California species. Anatomy, physiology, ecology, and behavior. Saturday field trips required. 2 lectures, 2 laboratories. Prerequisite: BIO 160, BIO 162 and BIO 263 or consent of instructor.

ZOO 329 Vertebrate Field Zoology (4)
Identification and natural history of terrestrial vertebrates, with emphasis on field studies and local species. 2 lectures, 2 laboratories. Prerequisite: BIO 160, BIO 162 and BIO 263.

ZOO 331 Human Anatomy and Physiology I (5)
Structural and functional organization of the skeletal, muscular, and nervous systems. Includes discussion of molecular, cellular, and organ system levels of organization. Activities emphasize histology, cadaver anatomy, physiology of muscle contraction, nerve impulse initiation and conduction, sensory and motor functions. 3 lectures, 2 activities. Prerequisite: BIO 111, BIO 115, or BIO 161; CHEM 111, CHEM 124, or CHEM 127. Not open for major credit in Biological Sciences.

ZOO 332 Human Anatomy and Physiology II (5)
Structural and functional organization of the circulatory, respiratory, digestive, excretory, and reproductive systems. Includes discussion of molecular, cellular, and organ system levels of organization. Activities emphasize histology, cadaver anatomy, and physiological experiments. 3 lectures, 2 activities. Prerequisite: BIO 111, BIO 115, or BIO 161; CHEM 111, CHEM 124, or CHEM 127. Not open for major credit in Biological Sciences.

ZOO 335 General Entomology (4)
Introduction to the study of insects. Structure, major orders and families of insects, life histories, medical, and economic importance. Insect collection required. 2 lectures, 2 laboratories. Prerequisite: One course in college biology.

ZOO 336 Invertebrate Zoology (4)
Invertebrate groups of animals with emphasis on taxonomy, morphology, distribution, and economic importance. 2 lectures, 2 laboratories, and fieldwork. Prerequisite: BIO 160 and BIO 162.

ZOO 341 Herpetology (4)
Living and extinct reptiles and amphibians; an adaptive approach to their diversity, biology, and classification. 2 lectures, 2 laboratories. Prerequisite: BIO 160 and BIO 162.

ZOO 422 Functional Histology (4)
Functional microscopic anatomy of principal tissues and organs of vertebrates, including humans. Structural studies to determine mechanisms underlying physiological processes and their clinical applications in medicine. 2 lectures, 2 laboratories. Prerequisite: BIO 162.

ZOO 423 Fisheries Science and Resource Conservation (4)
Basic approaches in scientific investigation of marine and freshwater fisheries. Includes methodologies and quantitative strategies for study of fish and invertebrates, user-group conflict issues, regional/global controversies in fisheries, species identification, lab/field protocols, general statistical procedures, and computer simulations. 3 lectures, 1 laboratory. Prerequisite: BIO 162. Recommended: ZOO 322.

ZOO 425 Parasitology (4)
External and internal parasites of man and animals. Life history, Parasite-host relationships. Control and recognition of species of clinical importance. 2 lectures, 2 laboratories. Prerequisite: BIO 160 and BIO 161, or MCRO 221, or MCRO 224.

ZOO 428 Hematology (4)
Development of blood as a tissue. Composition, function, and mechanisms of formation and destruction of blood components in health and disease. Methods for examination of blood. Suitable for preparing laboratory technologists. 2 lectures, 2 laboratories. Prerequisite: BIO 351 and consent of instructor. Recommended: Biochemistry course.

ZOO 436 Comparative Invertebrate Physiology (4)
Comparative study of the functions of organ systems of the invertebrate groups of organisms. Emphasis on strategies utilized in accomplishing the function of the organ systems in adapting to different environmental demands. 2 lectures, 2 laboratories. Prerequisite: ZOO 336 or consent of instructor.

ZOO 437 Animal Behavior (4)
Behavioral adaptations of animals to their environment and way of life. Analysis of behavior patterns, use of patterns in clarifying evolutionary, and ecological relationships. 3 lectures, 1 laboratory. Prerequisite: BIO 263 or consent of instructor.

ZOO 530 Behavioral Ecology (3)
Function and evolution of behavioral phenomena as they relate to ecological phenomena. Topics include habitat selection, spacing mechanisms, reproductive strategies, feeding strategies, agonistic, parasitic, and altruistic behavior; migration, and comparative social systems. 3 seminars. Prerequisite: Graduate standing in Biological Sciences, BIO 263 or consent of instructor.
The California State University

The individual California State Colleges were brought together as a system by the Donahoe Higher Education Act of 1960. In 1972 the system became the California State University and Colleges and in 1982 the system became the California State University. Today the campuses of the CSU include comprehensive and polytechnic universities and, since July 1995, the California Maritime Academy, a specialized campus.

The oldest campus—San José State University—was founded in 1857 and became the first institution of public higher education in California. The newest--CSU Channel Islands--opened in fall 2002 with freshmen arriving in fall 2003.

Responsibility for the California State University is vested in the Board of Trustees, whose members are appointed by the Governor. The Trustees appoint the Chancellor, who is the chief executive officer of the system, and the Presidents, who are the chief executive officers of the respective campuses.

The Trustees, the Chancellor, and the Presidents develop systemwide policy, with implementation at the campus level taking place through broadly based consultative procedures. The Academic Senate of the California State University, made up of elected representatives of the faculty from each campus, recommends academic policy to the Board of Trustees through the Chancellor.

Academic excellence has been achieved by the CSU through a distinguished faculty, whose primary responsibility is superior teaching. While each campus in the system has its own unique geographic and curricular character, all campuses, as multipurpose institutions, offer undergraduate and graduate instruction for professional and occupational goals as well as broad liberal education. All of the campuses require for graduation a basic program of "General Education Requirements" regardless of the type of bachelor's degree or major field selected by the student.

The CSU offers more than 1,800 bachelor's and master's degree programs in some 240 subject areas. Many of these programs are offered so that students can complete all upper-division and graduate requirements by part-time late after-noon and evening study. In addition, a variety of teaching and credential programs are available. A number of doctoral degrees are offered jointly with the University of California and with private institutions in California.

Enrollments in fall 2005 totaled 405,000 students, who were taught by some 22,000 faculty. The system awards about half of the bachelor's degrees and a third of the master's degrees granted in California. Nearly 2.5 million persons have been graduated from CSU campuses since 1960.

Trustees of the California State University

Ex Officio Trustees
The Honorable Arnold Schwarzenegger
Governor of California
State Capitol, Sacramento 95814
The Honorable John Garamendi
Lieutenant Governor of California
State Capitol, Sacramento 95814
The Honorable Fabian Núñez
Speaker of the Assembly
State Capitol, Sacramento 95814
The Honorable Jack O'Connell
State Superintendent of Public Instruction
721 Capitol Mall, Sacramento 95814
Dr. Charles B. Reed
Chancellor of the California State University
401 Golden Shore, Long Beach 90802-4210

Officers of the Trustees
The Honorable Arnold Schwarzenegger, President
Roberta Achtenberg, Chair
Jeffrey L. Bleich, Vice Chair
Christine Helwick, Secretary
Richard P. West, Treasurer

Appointed Trustees
Appointments are for a term of eight years, except student, alumni, and faculty trustees, whose terms are for two years. Terms expire in the year in parentheses. Names are listed alphabetically.

Correspondence with Trustees should be sent:
c/o Trustees Secretariat
The California State University
401 Golden Shore
Long Beach, CA 90802-4210

2007-2009 Cal Poly Catalog
OFFICE OF THE CHANCELLOR

The California State University

401 Golden Shore

Long Beach, California 90802-4210

(562) 951-4000

Dr. Charles B. Reed ... Chancellor – CSU System
Dr. Gary Reichard ... Executive Vice Chancellor and Chief Academic Officer
Mr. Richard P. West .. Executive Vice Chancellor and Chief Financial Officer
Ms. Jackie McClain ... Vice Chancellor, Human Resources
Ms. Christine Helwick .. General Counsel
Dr. Keith Boyum .. Associate Vice Chancellor, Academic Affairs

CAMPUSES—THE CALIFORNIA STATE UNIVERSITY

<table>
<thead>
<tr>
<th>Campus</th>
<th>Address</th>
<th>President</th>
<th>Phone</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>California State University, Bakersfield</td>
<td>9001 Stockdale Highway, Bakersfield, CA 93311-1099</td>
<td>Dr. Horace Mitchell, President</td>
<td>(661) 654-2782</td>
<td>www.csb.edu</td>
</tr>
<tr>
<td>California State University, Channel Islands</td>
<td>One University Drive, Camarillo, CA 93012</td>
<td>Dr. Richard Rush, President</td>
<td>(805) 437-8400</td>
<td>www.csuci.edu</td>
</tr>
<tr>
<td>California State University, Chico</td>
<td>400 West First Street, Chico, CA 95929-0150</td>
<td>Dr. Paul J. Zingg, President</td>
<td>(530) 898-4636</td>
<td>www.csuchico.edu</td>
</tr>
<tr>
<td>California State University, Dominguez Hills</td>
<td>1000 East Victoria Street, Carson, CA 90747-0005</td>
<td>Dr. James E. Lyons, Sr., President</td>
<td>(310) 243-3300</td>
<td>www.csudh.edu</td>
</tr>
<tr>
<td>California State University, East Bay</td>
<td>25800 Carlos Bee Boulevard, Hayward, CA 94542</td>
<td>Dr. Mohammad Qayoumi, President</td>
<td>(510) 885-3000</td>
<td>www.csueastbay.edu</td>
</tr>
<tr>
<td>California State University, Fresno</td>
<td>5241 North Maple Avenue, Fresno, CA 93740</td>
<td>Dr. John D. Welty, President</td>
<td>(559) 278-4240</td>
<td>www.csufresno.edu</td>
</tr>
<tr>
<td>California State University, Fullerton</td>
<td>800 N. State College Boulevard, Fullerton, CA 92834-9480</td>
<td>Dr. Milton A. Gordon, President</td>
<td>(714) 278-2011</td>
<td>www.fullerton.edu</td>
</tr>
<tr>
<td>Humboldt State University</td>
<td>One Harpst Street, Arcata, CA 95521-8299</td>
<td>Dr. Rollin C. Richmond, President</td>
<td>(707) 826-4402</td>
<td>www.humboldt.edu</td>
</tr>
<tr>
<td>California State University, Long Beach</td>
<td>1250 Bellflower Boulevard, Long Beach, CA 90840-0115</td>
<td>Dr. F. King Alexander, President</td>
<td>(562) 985-4111</td>
<td>www.csulb.edu</td>
</tr>
<tr>
<td>California State University, Los Angeles</td>
<td>5151 State University Drive, Los Angeles, CA 90032</td>
<td>Dr. James M. Rosser, President</td>
<td>(323) 343-3000</td>
<td>www.calstatela.edu</td>
</tr>
<tr>
<td>California Maritime Academy</td>
<td>200 Maritime Academy Drive, Vallejo, CA 94590</td>
<td>Dr. William B. Eisenhardt, President</td>
<td>(707) 654-1000</td>
<td>www.csuom.edu</td>
</tr>
<tr>
<td>California State University, Monterey Bay</td>
<td>100 Campus Center, Seaside, CA 93955-8001</td>
<td>Dr. Diane Harrison, President</td>
<td>(831) 582-3330</td>
<td>www.csun.edu</td>
</tr>
</tbody>
</table>

Additional Campuses

- California State University, Northridge
 - 18111 Nordhoff Street, Northridge, CA 93130
 - Dr. Jolene Koester, President
 - (818) 677-1200
 - www.csun.edu

- California State Polytechnic University, Pomona
 - 3801 West Temple Avenue, Pomona, CA 91768
 - Dr. J. Michael Ortiz, President
 - (909) 869-7659
 - www.csupomona.edu

- California State University, Sacramento
 - 6000 J Street, Sacramento, CA 95819
 - Dr. Alexander Gonzalez, President
 - (916) 278-6011
 - www.csus.edu

- California State University, San Bernardino
 - 5500 University Parkway, San Bernardino, CA 92407-2397
 - Dr. Albert K. Karnig, President
 - (909) 880-5000
 - www.csusb.edu

- San Diego State University
 - 5500 Campanile Drive, San Diego, CA 92182
 - Dr. Stephen L. Weber, President
 - (619) 594-5000
 - www.sdsu.edu

- San Francisco State University
 - 1600 Holloway Avenue, San Francisco, CA 94132
 - Dr. Robert A. Corrigan, President
 - (415) 338-1111
 - www.sfsu.edu

- San José State University
 - One Washington Square, San Jose, CA 95192-0001
 - Mr. Don Kassing, President
 - (408) 924-1000
 - www.sjsu.edu

- California Polytechnic State University, San Luis Obispo
 - One Grand Avenue
 - San Luis Obispo, CA 93407
 - Dr. Warren J. Baker, President
 - (805) 756-1111
 - www.calpoly.edu

- California State University, Stanislaus
 - 801 West Monte Vista Avenue, Turlock, CA 95382-0299
 - Dr. Hamid Shirvani, President
 - (209) 750-4000
 - www.csustan.edu

- Sonoma State University
 - 1801 East Cotati Avenue, Rohnert Park, CA 94928-3609
 - Dr. Ruben Armijana, President
 - (707) 664-2880
 - www.sonoma.edu

- California Polytechnic State University, San Luis Obispo
 - One Grand Avenue
 - San Luis Obispo, CA 93407
 - Dr. Warren J. Baker, President
 - (805) 756-1111
 - www.calpoly.edu

- California State University, San Marcos
 - 333 S. Twin Oaks Valley Road
 - San Marcos, CA 92096-0001
 - Dr. Karen S. Haynes, President
 - (760) 750-4000
 - www.csusm.edu

- Sonoma State University
 - 1801 East Cotati Avenue, Rohnert Park, CA 94928-3609
 - Dr. Ruben Armijana, President
 - (707) 664-2880
 - www.sonoma.edu

- California State University, Stanislaus
 - 801 West Monte Vista Avenue, Turlock, CA 95382-0299
 - Dr. Hamid Shirvani, President
 - (209) 667-3122
 - www.csustan.edu

2007-2009 Cal Poly Catalog
University Administration

OFFICE OF THE PRESIDENT
President .. Warren J. Baker
Chief of Staff Daniel Howard-Greene
Executive Assistant Kimberly C. Uyttewaal
Presidential Aide Gerry K. Mueller
Assistant Kelly A. Sebastian
University Legal Counsel Carlos Córdova

ACADEMIC AFFAIRS
Provost and Vice President for Academic Affairs William W. Durgin
Academic Personnel, Associate
 Vice President Michael H. Suess
 Center for Teaching and Learning,
 Director ... Joseph E. Grimes
 Employment Equity and Faculty Recruitment,
 Director ... William Bailey
Academic Programs and Undergraduate Education,
 Provost ... W. David Conn
 Associate Vice Provost Cheryl L. Ney
 General Education Program, Director Douglas Keesey
International Education and Programs, Director ... John Battenburg
PREFACE, Coordinator Patricia Ponce
Writing Skills Program, Coordinator Mary Kay Harrington
Admissions, Recruitment and Financial Aid,
Assistant Vice President James L. Maraviglia
 Financial Aid, Director Lois Kelly
Cal Poly Continuing Education, Dean Dennis R. Parks
Academic Programs, Director Patricia Stoneman
Business Services, Director Dario Luis
Information Technology Services, Vice Provost/
 Chief Information Officer Timothy J. Kearns
 Collaborative Support, Manager David D. Ross
Communications and Computing Services,
 Director ... Johanna J. Madjedi
 User Support Services, Director Craig J. Schutz
 Institutional Planning and Analysis, Executive Vice Provost
 and Chief Planning Officer Vacant
 Intercollegiate Athletics, Director Alison E. Core
 Library Services, Dean Michael D. Miller
Research and Graduate Programs, Dean Susan C. Opawa
Grants Development, Director Xenia E. Bixler
Systems and Resource Management,
Assistant Vice Provost Kimi M. Ikeda
 Academic Records, Registrar/Director Thomas L. Zuur

COLLEGE OF AGRICULTURE, FOOD AND ENVIRONMENTAL SCIENCES
 Dean, David J. Wehner
 Associate Dean, Mark D. Shelton
 Associate Dean, Mary E. Pedersen
 Assistant Dean, Tanya Kiani
 Agribusiness Wayne H. Howard
 Agricultural Education and Communication Robert A. Flores
 Animal Science Andrew J. Thulin
 BioResource and Agric. Engr Richard A. Cavalletto
 Dairy Science Bruce L. Golden
 Earth and Soil Sciences Brent G. Hallock
 Food Science and Nutrition Doris Derelian
 Horticulture and Crop Science John C. Phillips (Interim)
 Military Science LTC Gary F. Sargent
 Natural Resources Management Douglas D. Plisko
 Recreation Administration William W. Hendricks

COLLEGE OF ARCHITECTURE AND ENVIRONMENTAL DESIGN
 Dean, R. Thomas Jones
 Associate Dean, K. Richard Zweifel
 Architectural Engineering Abraham C. Lynn
 Architecture Henri de Han
 City and Regional Planning William J. Siembieda
 Construction Management Allan J. Hauck
 Landscape Architecture Margarita M. Hill

ORFALEA COLLEGE OF BUSINESS
 Dean, David P. Christy
 Associate Dean, Chris A. Carr
 Associate Dean, Douglas C. Cef
 Accounting .. Vacant
 Economics Steve Hamilton
 Finance ... Cyrus A. Ramezani
 Graduate Management Programs (MBA) Chris A. Carr
 Industrial Technology Louis Tomatzky
 Interdisciplinary Studies Rami Shani
 Management Rami Shani
 Marketing Norm A. Borin

COLLEGE OF EDUCATION
 Dean, Bonnie Konopak
 Associate Dean, Glen R. Casey
 Teacher Education Elaine Y. Chin
 Graduate Studies George J. Petersen

COLLEGE OF ENGINEERING
 Dean, Mohammad Noori
 Associate Dean, Daniel W. Walsh
 Assistant Dean, Stacey M. Breitenbach
 Assistant Dean, Fred W. DePiero
 Assistant Dean, Edward C. Sullivan
 Aerospace Engineering Jordi Puig-Suari
 Biomedical and General Engineering Program . Robert Crockett
 Civil and Environmental Engineering Gregg L. Fiegel
 Computer Engineering Program Albert A. Liddicoat
 Computer Science Ignatios Vakalis
 Electrical Engineering Michael M. Cirovic
 Industrial and Manufacturing Engineering Donald E. White
 Materials Engineering Katherine C. Chen
 Mechanical Engineering Thomas J. Mackin

COLLEGE OF LIBERAL ARTS
 Dean, Linda H. Halisky
 Associate Dean, Debra Valencia-Laver
 Performing Arts Center, Director, Ron Register
 Art and Design Chrissa Hewitt
 Communication Studies James R. Conway
 English ... David J. Kann
 Ethnic Studies Victor Valle
 Graphic Communication Harvey Robert Levenson
 History ... Carolyn J. Stefancic
 Humanities Program Kathryn Rummell
 Journalism George Ramos
 Liberal Studies Susan Duffy
 Modern Languages and Literatures Brian Kennelly
 Music .. William T. Spiller
 Philosophy Tal Scriven

2007-2009 Cal Poly Catalog
Political Science .. Jean M. Williams
Psychology and Child Development Basil A. Fiorito
Social Sciences .. Barbara A. Fiorito
Theatre and Dance ... Timothy J. Dugan
Women's Studies Program Mary A. Armstrong

COLLEGE OF SCIENCE AND MATHEMATICS

Dean, Philip S. Bailey
Associate Dean, Roxy L. Peck

Biological Sciences .. Michael A. Yoshimura
Chemistry and Biochemistry Christina A. Bailey
Kinesiology .. Gerald E. DeMers
Mathematics ... Kent E. Morrison
Physics ... Richard A. Saenz
Statistics ... Robert K. Smidt

ADMINISTRATION AND FINANCE

Vice President for Administration and Finance Lawrence R. Kelley
Associate Vice President for Administration Vicki Stover
Associate Vice President for Finance/Director, Budget and Analytic Business Services Richard R. Ramirez
Fiscal Services, Director Lorraine Leetham
Contract and Procurement Services, Director Matthew Roberts
Facilities Planning, Director Robert E. Kitamura
Facility Services, Director Mark A. Hunter
Human Resources, Director Barbara Melvin
Risk Management Manager Joseph C. Riser
University Police Chief, Director William E. Watton

STUDENT AFFAIRS

Vice President for Student Affairs Cornel N. Morton
Associate Vice President Denise M. Campbell
Associate Vice President for Student Affairs Preston C. Allen
Associated Students, Inc., Executive Director Rick Johnson
Career Services and Testing Services, Director Martin C. Shibata
Dean of Students ... Jean DeCosta
Disability Resource Center, Director Trey Duffy
Health and Counseling Services, Director Martin Bragg
Housing, Executive Director Preston C. Allen
Office of Student Rights and Responsibilities, Coordinator ... Adrienne Miller
Student Academic Services, Director Susan Sparling
Student Life and Leadership, Director Kenneth B. Barclay

UNIVERSITY ADVANCEMENT

Vice President, University Advancement.................. Sandra G. Ogren
Associate Vice President/Chief Development Michael D. McCall
Finance ... Robert D. Stets
Alumni Relations, Director Kim R. Gannon
Advancement Programs, Director Polly Harrigan
Public Affairs, Director Leah Kolt
Planned Giving and Endowments, Director Stacy Cannon
Special Gifts, Director Anne M. Harris
Corporate and Foundation Relations, Director (Vacant)
Cal Poly Fund and Advancement Services, Director Craig Nelson

AUXILIARY ORGANIZATIONS

Associated Students, Inc.
Executive Director .. Rick Johnson
ASI Programs, Director Marcy Maloney

Business Services, Director Dwayne Brummett
Children’s Programs, Director Tonya Iversen

Cal Poly Corporation
Executive Director ... Lawrence R. Kelley (Interim)
Director Emeritus ... Al Amaral
Associate Executive Director James Reinhart
Chief Financial Officer Dale Texter
Campus Dining Director (Vacant)
El Corral Bookstore Director Frank Cawley
General Counsel ... Starr Lee
Human Resources Director Joanne Williams
IT Manager ... Eumi Sprague
Sponsored Programs Director Jill Keezer

CAL POLY CHIEF EXECUTIVE OFFICERS

Cal Poly has been guided by the following chief executive officers:

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1902-08</td>
<td>Leroy Anderson</td>
<td>President</td>
</tr>
<tr>
<td>1908-14</td>
<td>Leroy Burns Smith</td>
<td>President</td>
</tr>
<tr>
<td>1914-21</td>
<td>Robert W. Ryder</td>
<td>President</td>
</tr>
<tr>
<td>1921-24</td>
<td>Nicholas Ricciardi</td>
<td>President</td>
</tr>
<tr>
<td>1924</td>
<td>Margaret Chase</td>
<td>President</td>
</tr>
<tr>
<td>1924-33</td>
<td>Benjamin Ray Crandall</td>
<td>President</td>
</tr>
<tr>
<td>1933-66</td>
<td>Julian A. McPehee</td>
<td>President</td>
</tr>
<tr>
<td>1967-79</td>
<td>Dale W. Andrews (acting)</td>
<td>President</td>
</tr>
<tr>
<td>1979</td>
<td>Warren J. Baker</td>
<td>President</td>
</tr>
</tbody>
</table>

FACULTY AND STAFF EMERITI

The faculty and staff, who have served at least fifteen years of full-time meritorious service at Cal Poly, are awarded emeritus status. A complete list of emeriti is available at www.academic-personnel.calpoly.edu/. The university appreciates its emeriti members’ contributions to the Cal Poly community.

DISTINGUISHED TEACHER AWARD RECIPIENTS

In 1963 the University instituted a program of recognizing outstanding teaching efforts through the Distinguished Teacher Awards. Selections for this honor are based upon recommendations of the Academic Senate committee which follows the procedure of soliciting nominations from students and colleagues. Evaluations and recommendations of the nominees are based upon an in-depth review by the committee, including classroom visitations. Recipients of the Distinguished Teacher Awards and their departments are listed below.

<table>
<thead>
<tr>
<th>Year</th>
<th>Recipient</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>1964</td>
<td>Robert E. Holmqquist</td>
<td>Physics</td>
</tr>
<tr>
<td>1965</td>
<td>John L. Merriam</td>
<td>Agricultural Engineering</td>
</tr>
<tr>
<td>1966</td>
<td>Joy O. Richardson</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>1967</td>
<td>Milo E. Whiston</td>
<td>Mathematics</td>
</tr>
<tr>
<td>1968</td>
<td>A. Norman Croushanks</td>
<td>Social Sciences</td>
</tr>
<tr>
<td>1969</td>
<td>Richard F. Johnson</td>
<td>Animal Husbandry</td>
</tr>
<tr>
<td>1970</td>
<td>George R. Mach</td>
<td>Mathematics</td>
</tr>
<tr>
<td>1971</td>
<td>Robert W. Adamson</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>1972</td>
<td>Kenneth G. Fuller</td>
<td>Mathematics</td>
</tr>
<tr>
<td>1973</td>
<td>William D. Curtis</td>
<td>Psychology</td>
</tr>
<tr>
<td>1974</td>
<td>Rodney G. Keif</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>1975</td>
<td>David M. Grant</td>
<td>English</td>
</tr>
<tr>
<td>1976</td>
<td>Wesley S. Ward</td>
<td>Architecture</td>
</tr>
<tr>
<td>1977</td>
<td>Robert M. Johnson</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>1978</td>
<td>Bruce Kenelly</td>
<td>Chemistry</td>
</tr>
<tr>
<td>1979</td>
<td>Alice E. Roberts</td>
<td>Education</td>
</tr>
</tbody>
</table>
1969–70 Donald W. Hensel, History
David H. Montgomery, Biological Sciences
Philip H. Overmeyer, Business Administration
Willard M. Pederson, English
Omer K. Whipple, Chemistry

1970–71 Robert L. Cloath, Speech
Kenneth E. Schwartz, Architecture
Hewitt G. Wight, Chemistry

1971–72 Stuart E. Larsen, Aeronautical Engineering
Burton C. Olsen, History
Ronald L. Ritchard, Biological Sciences
Joseph N. Weatherby, Political Science (Social Sciences)

1972–73 Lyle G. McNeal, Animal Science
Charles W. Quinan, Architecture
James E. Simmons, English

1973–74 William J. Phaklides, Engineering Technology
Louis D. Pippin, Education
Duane O. Seaberg, Agricultural Management

1974–75 Peter Jankay, Biological Sciences
Josephine S. Stearns, Child Development
George J. Suchland, Social Sciences

1975–76 James Hayes, Journalism
William V. Johnson, Music
Era Knapp, Art

1976–77 Harry L. Fierstine, Biological Sciences
Grant D. Venerable II, Chemistry
Ralph M. Warten, Mathematics

1977–78 Timothy M. Barnes, History
Donald P. Grant, Architecture and Environmental Design
John C. Syer, Political Science

1978–79 Pat Pendse, Biological Sciences
Dane Jones, Chemistry
Adelaide Harmon-Elliott, Mathematics

1979–80 David J. Keil, Biological Sciences
Thomas Ruehr, Soil Science
Stephen Weinstein, Mathematics
Michael D. Zohns, Ornamental Horticulture

1980–81 Sarah E. Burroughs, Food Science and Nutrition (Child Development and Home Economics)
Christina Orr-Cahall, Art
Kendrick W. Walker, Philosophy

1981–82 Christina A. Bailey, Chemistry
Kenneth E. Ozawa, Physics
Thomas L. Richards, Biological Sciences

1982–83 James Bermann, Agricultural Engineering
Donald J. Koberg, Architecture
Jack D. Wilson, Aeronautical and Mechanical Engineering

1983–84 Euel W. Kennedy, Mathematics
William L. Preston, Social Sciences
Michael J. Wenzel, English

1984–85 Robert S. Cichowski, Chemistry
Harvey C. Greenwald, Mathematics
Max E. Rielapenger, History

1985–86 Edward H. Baker, Mechanical Engineering
Sue McBride, Education
Phillip K. Ruggles, Graphic Communication

1986–87 Boyd W. Johnson, Mathematics
Craig H. Russell, Music
Calvin H. Wilvert, Social Sciences

1987–88 James R. Mueller, Mathematics
Ronald S. Mullien, Mechanical Engineering
Robert G. Reynolds, Art and Design

1988–89 Stephen W. Ball, Philosophy
George Cotkin, History
Abraham B. Shami, Management

1989–90 Lloyd N. Beecher, History
Talmage F. Scriven, Philosophy
Jan W. Simek, Chemistry

1990–91 Jay L. Devore, Statistics
Linda H. Halisky, English
Ann Morgan, Psychology
James L. Webb, Physical Education & Recreation Admin.

1991–92 Mary E. Pedersen, Food Science and Nutrition
John Snetsinger, History
W. Fred Stultz, Psychology and Human Dev.

1992–93 Susan Duffy, Speech Communication
Donald K. Maas, University Center for Teacher Education
Charles M. Siem, Psychology and Human Development

1993–94 William T. Little, Foreign Languages and Literatures
Steven R. Marx, English
Raymond M. Nakamura, Physical Education & Kinesiology

1994–95 Ronald F. Brown, Physics
Lee B. Burgunder, Business Administration
Nancy Lucas, English

1995–96 David Keeling, Chemistry and Biochemistry
John Russell, Music
Richard Simon, English

1996–97 Leonard Davidman, University Center for Teacher Education
Al Landwehr, English
Robert Thompson, Agribusiness

1997–98 John Culver, Political Science
Jay S. DeNatale, Civil and Environmental Engineering
David R. Henry, Speech Communication

1998–99 Colette Frayne, Global Strategy and Law
Carol MacCurdy, English
Leonard Myers, Computer Science

1999–00 J. Michael Geringer, Global Strategy and Law
Brent G. Hallock, Soil Science
Clinton A. Staley, Computer Science

2000–01 Sky Bergman, Art and Design
Phillip M. Douh, Agribusiness
William Martinez, Jr., Modern Languages and Literatures

2001–02 Kevin Clark, English
Alyson McLamore, Music
Mark Zohns, BioResource and Agricultural Engineering

2002–03 Alvin De Jong, Biological Sciences
Bernard Duffy, Speech Communication
Linda Vanasupa, Materials Engineering

2003–04 Matthew Moelter, Physics
Robert Smith, Statistics
Nanine A. Van Draanen, Physics

2004–05 Fred DePierro, Electrical Engineering
John Hampsey, English
David Headrick, Horticulture and Crop Science

2005–06 Mary Armstrong, English
Michael Miller, Art and Design
Yarrow Nelson, Civil and Environmental Engineering

2007-2009 Cal Poly Catalog
DISTINGUISHED SCHOLARSHIP AWARD

In 2003-04 Cal Poly instituted an award program to recognize faculty in the areas of distinguished research, creative activity, and professional development. Nominations are solicited from the faculty, students, and alumni, and the Academic Senate's research and professional development committee, a group of eleven, selects the recipients. The recipients of the award and their departments are listed below:

2003-04 Charles Burt, BioResource and Agricultural Engineering
 Joanne Ruggles, Art and Design
2004-05 Estelle Basor, Mathematics
 Rami Shani, Management
2005-06 Daniel Biezad, Aerospace Engineering
 Andrew Morris, History

OUTSTANDING FACULTY ADVISOR AWARD

In 2001-02 the University instituted a program of recognizing outstanding achievement by a faculty member in the area of student advising. Nominations are solicited from the faculty and staff and students. Recipients’ names will be displayed on a perpetual plaque. The recipients of the Outstanding Faculty Advisor Award and their departments are listed as follows:

2001–02 Kathryn Rumell, English
2002–03 Jack Robison, Accounting
2003–04 William Preston, Social Sciences
2004–05 Lorraine Donegan, Graphic Communication
2005–06 Taufik, Electrical Engineering

PROVOST'S LEADERSHIP AWARD FOR PARTNERSHIP IN PHILANTHROPY

This award was established in 2006 to recognize current or former faculty member’s superior achievement in fundraising.

2006 Allan J. Hauck, Construction Management
 James A. Rodger, Construction Management

OUTSTANDING STAFF EMPLOYEE AWARD

The 1972-73 academic year saw the inception of the Outstanding Staff Employee Award. This honor is bestowed upon permanent, full-time employees of the University, Foundation, or Associated Students, Inc. who are in at least their third year of employment at Cal Poly. In order to be considered for this award, an employee should be truly dedicated and loyal; exhibit expertise in job performance; demonstrate a willingness to assist others enthusiastically; take initiative in making his or her department more efficient and productive; maintain an excellent relationship with co-workers, faculty, and students; and make contributions to both the University and the community. Nominations are solicited from staff employees, faculty members, and department or division heads. Selection of the awardees is made by a committee of former recipients of the award. Outstanding Staff Employees Award recipients are listed here.

1972-73 Everette Dorough
1973-74 Vic Allen
 Florence Hauge
 Lionel Miedlarem
 Jim Neelands
1974-75 Robert Baldridge
 John Lee
 Gerry Wagner
 Arthur Young
1975-76 Merriam Erickson
 Viola Hughes
 Mary Johnson
 Boyd Wettlaufer
1976-77 Trudy Beck
 Stella Nuncio
1977-78 Luther Bertrando
 Pauline Shafer
 Joanna DeRosier
1978-79 Harold Miller
 Doris Anderson
 Richard Tartaglia
 Frank Lebens
1979-80 Dale Lackore
 Steven Riddell
 Joan Roberts
1980-81 Joan Cirone
 Farlin Halsey
 Irene Lund
1981-82 James Neal
 Connie Jonte
 Frank Kansak
1982-83 Barbara Lund
 Larry Grimes
 Nancy Johnson
1983-84 Jerald (Louie) Budoff
 Walter Clark
 Gail Simmons
 Alfred W. Amaral
 Ethel Spy
 Kathleen Lamoree
1984-85 James Landrith
 Geraldine Montgomery
 Vicki Stover
1985-86 Lee Brown
 Gary Ketchup
 French Morgan
 Lysetta Klossner
 Judi Pinkerton
1986-87 Nancy Raetz
1987-88 Debbie Arseneau
 June Powell
 Jacqui Rossi

2007-2009 Cal Poly Catalog
Faculty and Staff

(Number in parentheses indicates year of appointment)
Listed as of March 2007.

ADAMS, NIKKI L. (2002) .. Biological Sciences
B.A., University of California, Santa Barbara, 1988; M.S., University of Maine, 1995; Ph.D., 2000. Assistant Professor.

AGBO, SAMUEL O. (1991) .. Electrical Engineering
B.Sc., University of Nigeria, 1975; M.S.E., University of Michigan, 1978; Ph.D., University of Houston, 1984. Professor.

AGRONSKY, STEVEN J. (1981) .. Mathematics
B.A., University of California, Santa Barbara, 1970; M.S., 1972; Ph.D., 1974. Professor.

AHERN, JAMES J. (1980) .. Agribusiness
B.S., California Polytechnic College, Pomona, 1971; M.S., University of Maryland, 1973; Ph.D., 1980. Professor.

AIKEN, DONNA (1995) .. College of Engineering
B.A., University of California, Los Angeles, 1994; M.A., 2000; Ph.D., 2006. Assistant Professor.

ANDOLI, FREDERICK P. (1968) ..., Biological Sciences
B.A., University of California, Santa Barbara, 1963; M.S., Utah State University, 1968; D.A., Idaho State University, 1974. Professor Emeritus.

ANDRE, BARBARA R. (1973) ..., International Education and Programs

APPEL, CHRISTOPHER S. (2002) Earth and Soil Sciences
B.S., California Polytechnic State University, San Luis Obispo, 1995; M.S., 1998; Ph.D., University of Florida, 2001. Assistant Professor.

ARAKAKI, DEAN Y. (2001) ..., Electrical Engineering
B.S., California Polytechnic State University, Pomona, 1984; M.B.A., California State University, Long Beach, 1989; M.S., 1992; Ph.D., Penn State University, 2000. Assistant Professor.

ARCENEAUX, CRAIG (2001) ..., Political Science
B.A., California State University, Fullerton, 1989; M.A., Ohio State University, 1991; Ph.D., University of California, Riverside, 1997. Associate Professor.

ARCHER, GRAHAM C. (2002) ..., Architectural Engineering
B.A., University of Waterloo, Canada, 1985; M.A.Sc., 1986; Ph.D., University of California, Berkeley, 1996. Associate Professor. Professional Engineer, Ontario.

ARENS, ROBERT M. (2005) ..., Architecture

ARMSTRONG, MARY A. (2000) English, Women's Studies

AYVE, RENNY J. (1973) ..., Accounting

BAILEY, CHRISTINA ANNE (1978) Chemistry and Biochemistry
B.S., College of Saint Elizabeth, New Jersey, 1964; Ph.D., Purdue University, 1970. Professor and Department Chair.

2007-2009 Cal Poly Catalog
BOWDICH, CARY A. (1996) College of Science and Mathematics
B.S., University of New Mexico, 1977; M.S., Purdue University, 1983. Director of Advancement.

BRADY, PAMELA E. (1998) Architectural Engineering
B.S., California Polytechnic State University, San Luis Obispo, 1979; M.S., University of California, Berkeley, 1980; Ph.D., University of Illinois, Urbana-Champaign, 2004. Associate Professor. Registered Civil Engineer, California.

B.A., Indiana University, Bloomington; 1971; M.A., University of California, Los Angeles, 1972; Ph.D., 1979. Director.

BRAMEE, MEREDITH (2001) Music
B.A., Princeton University, 1992; M.M., Eastman School of Music, 1995; D.M.A., University of Southern California, 2000. Associate Professor.

BRANCART, VICTOR N. (1994) Administration and Finance

BRAR, NAVJIT (1998) Electrical Engineering, Computer Engineering
B.S., Stanford University, 1985; M.S., 1986; Ph.D. University of California, Santa Barbara, 1991. Professor.

BRIDGGER, ANDREA L. (1986) Health and Counseling Services

BREAM, HUGH (2000) Intercollegiate Athletics
B.S., California Polytechnic State University, 1980; M.S., 1982. Head Coach.

BRENNABACH, JEROME R. (1986) Electrical Engineering
B.S., California State Polytechnic University, Pomona, 1977; M.S., California Institute of Technology, 1978; Ph.D., University of California, Los Angeles, 1983. Professor.

BRENNABACH, STACEY M. (1981) College of Engineering

BREMER, WALTER D. (1981) Landscape Architecture

BRIZENDINE, CAROL (2003) Associated Students, Incorporated

BROMLEY, KEVIN (1995) Intercollegiate Athletics

BROOKS, EVERETTE (2006) Student Life and Leadership
B.S., Park University, 1996; M.B.A., Long Island University, 1999. Coordinator, Sport Clubs.

BROOM, MICHELE (2001) Associated Students, Incorporated
B.S., California Polytechnic State University, San Luis Obispo, 1996. Coordinator – Public Relations.

BROTHEWELL, DEBBIE L. (1976) Administration and Finance
B.A., California Polytechnic State University, San Luis Obispo, 1976. Associate Director, Budget and Analytic Business Services.

BROWN, CARL R.V. (1982) College of Education
B.A., Arizona State University, 1971; M.A., 1972; Ph.D., Stanford University, 1977. Professor of English, and Associate Dean, College of Education.

BROWN, J. WYATT (1990) Horticulture and Crop Science
B.S., Louisville University, 1978; M.S., 1985; Ph.D., Cornell University, 1990. Professor. Pest Control Advisor, California.

BROWN, ROBERT J. (1969) Biological Sciences
B.S., California State College, Los Angeles, 1964; M.S., Arizona State University, 1967; Ph.D., University of Toronto, Canada, 1972. Professor Emeritus.

BROWN, RONALD F. (1974) Physics

BRUCE, LISA (2001) Student Life and Leadership
B.S., California Polytechnic State University, San Luis Obispo, 1998; M.A., 2005. Assistant Coordinator, Orientation Programs.

BRUMMETT, DWAYNE (2001) Associated Students, Incorporated
B.A., University of California, Santa Barbara, 1986. Director of Business Services.

BUCKALEW, W. CHRIS (1990) Computer Science

BUFFA, ANTHONY J. (1970) Physical Sciences

B.S., University of Wisconsin–Madison, 1987; M.S., San Jose State University, 1991; D.V.M., University of California, Davis, 1996. Associate Professor.

B.S., Universidad de Panama, Panama, 1975; M.S., University of Florida, Gainesville, 1984; Ph.D., 1989; M.S., California Polytechnic State University, San Luis Obispo, 2003. Associate Professor.

BURGUNDER, LEE B. (1983) Accounting

BURN, SHAWN MEGHAN (1990) Psychology and Child Development

B.S., California Polytechnic State University, San Luis Obispo, 1973; M.S., Utah State University, 1975; Ph.D., 1983. Professor. Registered Civil Engineer and Agricultural Engineer, California. Registered Professional Engineer, Utah.

Bush, Seth (2005) Chemistry and Biochemistry
B.S., Reed College, 1994; Ph.D., University of California, Berkeley, 1999. Assistant Professor.

BUSSELEN, HARRY J. JR. (1975) Psychology and Child Development
B.S., California State College, Sacramento, 1959; M.S., 1962; Ph.D., Florida State University, 1970; additional graduate study, University of Oregon. Professor Emeritus.

CAMPBELL, DENISE (1995) Student Affairs
B.A., University of California, Irvine, 1977; M.A., American University, Washington, D.C. 1979; Ph.D., Claremont Graduate University. Associate Vice President.

CAMPBELL, RENOSA (2006) Student Life and Leadership

CANNON, STACY (2001) University Advancement

CANO, RAUL J. (1974) Biological Sciences

B.S., Arizona Polytechnic State University, San Luis Obispo, 1974; M.A., 1975. Director, MESA Engineering Program.

B.A., University of California, Berkeley, 1994; M.A., University of California, Los Angeles, 1996; Ph.D., 1999. Associate Professor.

Carr, Chris A. (1998) Orfalea College of Business
B.A., University of Nebraska, 1987; M.A., University of California, Los Angeles, 1998; J.D., Santa Clara University, 1999. Associate Dean and Professor.

Carr, Janice L. (1983) Accounting
B.S., California State University, Northridge, 1971; M.S., 1975; Ph.D., Arizona State University, 1985. Professor. Certified Public Accountant.
CARROLL, JENNIFER (2006) ... Chemistry and Biochemistry
B.S., Sonoma State University, 1996; Ph.D., University of California, Santa Cruz, 2001. Assistant Professor.

CARTWRIGHT, LIONEL SCOTT (2001) .. Intercollegiate Athletics
B.S., California State University, Fullerton, 1980. Head Coach.

CASEY, GLEN R. (1982) .. College of Education
B.S., Chico State College, 1966; M.S., California Polytechnic State University, San Luis Obispo, 1979; Ed.D, Oklahoma State University, Stillwater, 1987. Associate Dean.

B.S., California Polytechnic State University, San Luis Obispo, 1981; M.S., University of California, Davis, 1983; Ph.D., 1987. Professor and Department Head. Registered Mechanical Engineer, California.

CAWLEY, FRANK (1996) ... Cal Poly Corporation

CENSULLO, ALBERT C. (1974) ... Chemistry and Biochemistry
B.S., Villanova University, 1969; Ph.D., Pennsylvania State University, 1975. Professor Emeritus.

CERF, DOUGLAS C. (1990) ... Orfalea College of Business; Accounting
B.S., University of California, Berkeley, 1978; M.A., University of California, Davis, 1987; Ph.D., 1991. Associate Dean and Professor.

CHADWELL, CHARLES (2003) ... Civil and Environmental Engineering
B.S., University of California, Berkeley, 1997; Ph.D., 2003. Assistant Professor. Registered Professional Engineer, California.

CHANCE, BETH L. (1999) .. Statistics
B.S., Harvey Mudd College, 1990; M.S., Ph.D., Cornell University, 1994. Associate Professor.

B.S., California State University, Chico, 1993; M.B.A, San Jose State University, 1997; D.B.A., Boston University, 2006. Assistant Professor.

CHAPMAN, ARTHUR J. (1972) ... Architecture
B.S., B.Arch., California State Polytechnic College, 1970; M.S., Pennsylvania State University, 1971; additional graduate study, University of California, Los Angeles. Professor.

CHATZOIONOU, ALYPIOS E. (1992) ... Civil and Environmental Engineering
B.S., Athens Polytechnic, 1980; M.S., University of California, Berkeley, 1982; Ph.D., 1989. Professor. Registered Professional Engineer, Greece.

CHEN, KATHERINE C. (1999) ... Materials Engineering
B.S., B.A., Michigan State University, 1990; Ph.D., Massachusetts Institute of Technology, 1996. Associate Professor and Department Chair.

CHENEY, CHARISE (1999) ... Ethnic Studies
B.S.J., Northwestern University, 1993; M.A., University of Illinois at Urbana-Champaign, 1995; Ph.D., 1999. Associate Professor.

CHIN, ELAINE Y. (1996) .. College of Education

CHIPPING, DAVID H. (1971) ... Physics

CHIRICA, LUIAN M. (1984) ... Computer Science
B.S., University of Bucharest, Romania, 1964; Ph.D., University of California, Los Angeles, 1976. Professor.

CHIOBOTEA, PAUL F. (2003) ... Mathematics
B.Sc., Simon Fraser University, 1995; M.Sc., McGill University, 1997; Ph.D., University of Alberta, 2002. Assistant Professor.

CHOI, DON H. (2003) ... Architecture

CHRISTIANSEN, JODI (2006) ... Physics
B.A., Harvey Mudd College, 1985; M.S., University of Wisconsin, Madison, 1988; Ph.D., 1993. Assistant Professor.

CHRISTY, DAVID P. (2004) ... Orfalea College of Business

CHU, HELEN (2004) ... University Library

CICHOWSKI, ROBERT S. (1971) .. Chemistry and Biochemistry
B.S., Purdue University, 1964; Ph.D., Alfred University, 1968. Professor Emeritus.

CIROVIC, MICHAEL M. (1968) .. Electrical Engineering
B.E., New York University, 1965; M.S., 1968. Professor and Department Chair.

CLARK, CHRISTOPHER M. (2007) ... Computer Science
B.S., Queen’s University, 1995; M.S., University of Toronto, 1998; Ph.D., Stanford University, 2004. Assistant Professor.

CLARK, KEVIN (1988) ... English

CLARK, M. MILES (2006) ... College of Engineering
B.S., California Polytechnic State University, San Luis Obispo, 1985. Web Administrator.

CLARK, NANCY A. (2000) ... Associated Students, Incorporated

CLARK, SARAH (2006) ... Disability Resource Center

B.A., Utah State University, 1974; M.L.A., University of Illinois, 1986; Ph.D., University of Arizona, 1996. Associate Professor.

CLIFT, LISA R. (2002) ... Health and Counseling Services

COCHRAN, JAMES W. (1976) .. Social Sciences
B.A., California State University, Northridge, 1969; M.A., University of California, Santa Barbara, 1971; Ph.D., 1975. Professor.

COLOMÉ, JAIMÉ S. (1972) ... Biological Sciences

COVOLAND, ANTHONY (1999) .. Associated Students, Incorporated
B.S., California State University, Fresno, 1987. Coordinator - Information Technology.

COVIN, KURT (1999) ... Industrial and Manufacturing Engineering
B.S., California Polytechnic State University, San Luis Obispo, 1991; M.S., Oregon State University, 1997; Ph.D., 1999. Associate Professor. Registered Professional Engineer, California.

CONDON, JENNY (2004) ... Intercollegiate Athletics

CONG, ALISON (1994) ... Intercollegiate Athletics

CONN, W. DAVID (1999) ... Academic Programs, City and Regional Planning

CONNOR, DAREN (1993) ... Associated Students, Incorporated
DERICKSON, DENNIS (2005) ... Electrical Engineering
B.S., South Dakota State University, 1981; M.S., University of Wisconsin—Madison, 1988; Ph.D., University of California, Santa Barbara, 1992. Assistant Professor.

DETURRISS, DIANNE J. (1998) ... Aerospace Engineering
B.S., Georgia Institute of Technology, 1984; M.S., Pennsylvania State University, 1986; Ph.D., Virginia Polytechnic Institute and State University, 1992. Associate Professor.

DETWEILER, ROBERT C. (1998) ... History
B.A., Humboldt State University, 1960; M.A., San Francisco State University, 1968; Ph.D., University of Washington, 1968. Trustee Professor.

DEVORE, JAY L. (1977) ... Statistics
B.S., University of California, Berkeley, 1966; M.S., Stanford University, 1968; Ph.D., 1971; additional graduate study, Sheffield University, England. Professor Emeritus.

DIASSEMI, MANOCHER (2003) ... Industrial Technology
B.S., University of Science and Technology, Tehran, 1977; M.S., University of Wisconsin-Milwaukee, 1990; Ph.D., 1994. Associate Professor.

DICUS, CHRISTOPHER A. (2001) ... Natural Resources Management
B.S., Louisiana Tech University, 1992; M.S., Utah State University, 1995; Ph.D., Louisiana State University, 2000. Associate Professor.

DIETTERICK, BRIAN C. (1994) ... Natural Resources Management
B.A., University of Pennsylvania, 1980; M.S., University of Arizona, 1982; Ph.D., Penn State University, 1994. Professor.

DENGUS, DELMAR D. (1973) ... Earth and Soil Sciences
B.S., Berea College, 1966; M.S., West Virginia University, 1969; Ph.D., Oregon State University, 1973. Professor Emeritus.

DISANTO, THOMAS L. (2003) ... Architecture
M.Arch., California State Polytechnic University, Pomona, 1989; B.Arch., Ecole D'Architecture De Paris, La Defense, 1999. Assistant Professor.

DOAN, ALESHA E. (2000) ... Political Science
B.A., University of New Mexico, 1995; M.A., University of Wisconsin, 1997; Ph.D., Texas A & M University, 2000. Associate Professor.

DOBSON, JOHN (1990) ... Finance

DOERFLER, JAMES A. (2005) ... Architecture

B.A., California State University, Northridge, 1995; M.S., North Carolina State University, 1998; Ph.D., 2003. Assistant Professor.

DOMINGUES, ANTHONY (1985) ... Admissions, Recruitment and Financial Aid
B.S., California Polytechnic State University, San Luis Obispo, 1979. Senior Assistant Director.

DOMINGUEZ, ANGELICA (2004) ... Student Academic Services

DOMINGUEZ, EDONE (2003) ... Student Life and Leadership
B.S., Fresno State University, 1997; M.A., University of Phoenix, 1999. Assistant Director/Coordinator, Clubs and Organizations.

DOMINGUEZ, ROJEAN Y. (1994) ... Health and Counseling Services

DOMINGUEZ-MEZA, ANGELICA (2004) ... Student Academic Services

DONAHOO, JOSEPH (2006) ... College of Engineering

DONEGAN, LORRAINE D. (2002) ... Graphic Communication
B.S., California Polytechnic State University, San Luis Obispo, 1997; M.A., 2001. Assistant Professor.

DONG, KEVIN J. (2001) ... Architectural Engineering
B.S., California Polytechnic State University, San Luis Obispo, 1986; M.S., University of California, Berkeley, 1988. Assistant Professor. Registered Structural Engineer and Professional Engineer, California.

DOUB, PHILLIP M. (1985) ... Agribusiness

DOVE, DANIEL (2005) ... Art and Design
B.F.A., University of Texas at Austin, 1994; M.F.A., Yale University, 1996. Assistant Professor.

DUERK, DONNA P. (1981) ... Architecture

DUFFY, BERNARD K. (1988) ... Communication Studies

DUFFY, SUSAN (1988) ... Liberal Studies
B.A., Seton Hill College, 1973; M.A., University of Pittsburgh, 1974; Ph.D., 1979. Professor and Department Chair.

DUFFY, TREY (2006) ... Disability Resource Center
B.A., California State University, Hayward, 1980; M.Ed., San Jose State University, 1984. Director.

DUGAN, TIMOTHY J. (1999) ... Theatre and Dance
B.A., California State University, Sacramento, 1993; M.F.A., Temple University, 1996. Associate Professor and Department Chair.

DUKE, JULIETTE (2004) ... Housing and Residential Life

DURAN, DAVID (1998) ... College of Education
B.A., California State University, Fresno, 1990; Ph.D., Stanford University, 1998. Associate Professor.

DURGIN, WILLIAM W. (2006) ... Academic Affairs

DWYER, GARY COLBURN (1973) ... Landscape Architecture

ECHOLS, ERIN (2006) ... Student Life and Leadership

ECHOLS, ROBERT (2002) ... Physics
B.S., University of California, Davis, 1992; M.S., 1994; M.S., University of California, Santa Cruz, 1996; Ph.D., 1999. Associate Professor.

EFENDI, JAP (2004) ... Accounting
B.B.A., Texas A&M University, College Station, 1995; M.S., 1996; Ph.D., 2004. Associate Professor.

ELFRINK, T. LEIGH (1980) ... Administration and Finance
B.A., California Polytechnic State University, San Luis Obispo, 1978; M.A., 1996. Associate Director, Facilities Administration.

ELLERSON, RICHARD (2000) ... Intercollegiate Athletics

ELLIOT, DENNIS K. (1985) ... Administration and Finance

ELLOOD, SUSAN L. (1997) ... Educational Talent Search

ELOD, SUSAN L. (1997) ... Horticulture and Crop Science
B.S., Ohio State University, 1965; M.S., 1966. Professor Emeritus.
EMENAKER, JOSEPH (1994) ... Orfalea College of Business
B.S., California Polytechnic State University, San Luis Obispo, 1988; M.S., 1991.
Ph.D., 1994. Assistant Professor.

ENDRES, LELAND S. (1969) ... Chemistry and Biochemistry
A.B., Middlebury College, 1958; M.A., University of Oregon, 1963; Ph.D.,
University of Arizona, 1966, Professor Emeritus.

ENGLE, PATRICE L. (1980) ... Psychology and Child Development

ESTES, ALLEN C. (2007) ... Architectural Engineering
B.S., United States Military Academy, 1978; M.S., Stanford University, 1987;
M.B.A., Long Island University, 1989; Ph.D., University of Colorado, 1997.
Professor and Department Head. Registered Civil Engineer, Virginia.

FAGAN, KEVIN (2001) ... Management
University, 2000; Ph.D., 2003. Assistant Professor.

FAIS, MICHAEL L. (1983) ... Modern Languages and Literatures
B.A., California State University, Long Beach, 1972; M.A., University of
Southern California, 1974; Ph.D., 1976. Professor.

FANCHON, PHILLIP (1991) ... Economics
D.U.E.S., University of Paris, 1969; B.A., University of California, Santa Barbara,

FARKYE, NANA Y. (1990) ... Dairy Science
B.Sc. (Hon), University of Ghana, 1986; M.S., Utah State University, 1985; Ph.D.,
1986. Professor.

FARQUHAR, OMAR (1989) ... Landscape Architecture
Architect, Texas, and Landscape Architect, Texas and Indiana.

FERN, RACHEL (2006) ... Philosophy
B.A., University of Regina, 1993; M.A., University of Saskatchewan, 1995; Ph.D.,
Queen's University, 2006. Assistant Professor.

FERNANDO, RAYMOND (2002) Chemistry and Biochemistry
B.S., University of Sri Jayewardenepura, Sri Lanka; Ph.D., North Dakota State
University, Fargo, 1986. Professor, The Arthur C. Edwards Endowed Chair in
Coatings Technology and Ecology.

FERNSLER, JONATHAN (2006) Physics
B.S., College of William and Mary, 1996; M.S., University of Colorado, Boulder,
1999; Ph.D., 2004. Assistant Professor.

FERREIRA, LESLIE S. (1978) ... Dairy Science
B.S., California Polytechnic College, 1970; M.S., University of Illinois,
1972; Ph.D., Utah State University, 1980. Professor.

FIDOPLIATIS, PANTELIS M. (2006) Biological Sciences
B.A., California State University, Fullerton, 1992; M.A., 1995; Ph.D., University
of Hawaii, Manoa, 2001. Assistant Professor.

FIEGEL, GREGG L. (1995) ... Civil and Environmental Engineering
B.S., California Polytechnic State University, San Luis Obispo, 1990; M.S.,
University of California, Davis, 1992; Ph.D., 1995. Professor and Department
Chair. Registered Professional Engineer and Geotechnical Engineer, California.

FINGER, HELENE M. (1997) ... College of Engineering
B.S., California Polytechnic State University, San Luis Obispo, 1988; M.S., 1998.
Director of Women's Engineering Program. Registered Professional Engineer,
California.

FIORITO, BASIL A. (1977) ... Psychology and Child Development
B.A., Mariot College, 1968; M.S., New York University, 1976; M.A., 1975;
Ph.D., Syracuse University, 1977. Professor and Department Chair. Licensed Marriage,
Family and Child Counselor, California.

FISHER, ERIC (2007) ... Economics
M.A., John Hopkins School of Advanced International Studies, 1979; Ph.D.,
University of California, Berkeley, 1985. Professor.

FISHER, GENE L. (1991) ... Computer Science

FISHER, GWEN (2001) ... Mathematics
B.A., University of California, Santa Barbara, 1992; M.A., 1996; Ph.D.,
University of Wisconsin, Madison, 2001. Assistant Professor.

FITZHENRY, WILLIAM (1997) .. English
B.A., State University of New York at Buffalo, 1984; M.A., University of

FLEISHER, NEIL L. (1985) ... Physics
S.B., Massachusetts Institute of Technology, 1973; M.A., University of California,

FLORES, FRANCISCO (2000) .. Philosophy
B.S., University of Toronto, 1992; M.A., University of Western Ontario, 1993;
Ph.D., 1998. Associate Professor.

FLORES, MARIA D. (2001) .. Orfalea College of Business
B.S., California Polytechnic State University, Pomona, 1985. Administrative
Analyst.

FLORES, ROBERT A. (1983) ... Agriculture and Communication
B.S., California Polytechnic State University, San Luis Obispo, 1977; M.S., 1978;
Ph.D., Texas A & M University, 1989. Professor and Department Head.

FLOYD, BARRY (1990) ... Management
B.S., Michigan State University, 1973; M.S., 1974; M.A., University of

FLOYD, KAREL J. (2005) ... Orfalea College of Business

FOROOHAR, MANZAR (1987) .. History
B.A., National University of Iran; M.A., California State University, Northridge,
Professor.

FOSTER, THEODORE C. (1970) .. Physics
B.S., University of Santa Clara, 1961; M.S., University of Washington, 1963;

FOWLER, THOMAS, IV (1995) .. Architecture
B.Arch., New York Institute of Technology/Old Westbury, 1984; M.Arch.,
Cornell University, 1994. Associate Professor.

FRANKEL, RICHARD B. (1988) .. Physics
B.S., University of Missouri, 1961; Ph.D., University of California, Berkeley,
1965. Professor Emeritus.

FRANKLIN, DIANA M. (2002) .. Computer Science
B.S., University of California, Davis, 1997; M.S., University of Illinois,
Urbana-Champaign, 1999; Ph.D., University of California, Davis, 2002. Assistant
Professor.

FRAYNE, COLETTE (1992) ... Management
B.S., University of Delaware, 1980; M.B.A., University of San Diego, 1981;
Ph.D., University of Washington, 1986. Professor.

FREBERG, LAURA A. (1987) .. Psychology and Child Development
B.A., University of California, Los Angeles, 1974; M.A., 1975; Ph.D., 1979.
Professor.

FREED, TALI (2001) ... Industrial and Manufacturing Engineering
B.Sc., Technion-Israel Institute of Technology, Israel, 1983; M.Sc., 1988; Ph.D.,
University of California, Berkeley, 1995. Assistant Professor.

FREEMAN, CAROL A. (1985) .. Health and Counseling Services
B.A., Aurora University, 1978; R.N., Ventura College, 1982; N.P., Family

FREEMAN, H. JO ANNE (1974) .. Industrial and Manufacturing Engineering
B.I.E., Georgia Institute of Technology, 1966; M.S., University of Southern
California, 1974; Ph.D., Stanford University, 1982. Professor Emeritus. Registered
Professional Engineer, California.

FREY, DENNIS F. (1970) ... Biological Sciences
B.S., Oklahoma State University, 1967; M.S., Virginia State College, 1967;
Ph.D., Oklahoma State University, 1970. Professor.

FREY, THOMAS G. (1970) ... Chemistry and Biochemistry
B.A., University of Oregon, 1965; Ph.D., University of Idaho, 1970. Professor
Emeritus.

FRISCH, SHERYL (1990) ... Art and Design
Specialist.

FRITZ, SUZANNE (1992) ... Housing and Residential Life
Education and Training Specialist.
FUJITANI, SHARON H. (1977) .. University Library
B.A., University of California, Santa Barbara, 1963; M.L.S., University of Hawaii,
1974; M.A., Pepperdine University, 1976. Senior Assistant Librarian.

GAMBLE, LYNN E. (1976) .. University Library
B.S., University of Texas at Austin, 1965; M.S., 1969; M.A., California
Polytechnic State University, San Luis Obispo, 1979. Associate Librarian
Emeritus.

GANNON, KIM KUTLEDGE (2002) University Advancement

GARCIA, ANTONIO F. (2002) .. Physics
B.A., University of California, Los Angeles, 1988; B.S., San Jose State University,
1994; M.S., The University of New Mexico, 1996; Ph.D., University of California,
Santa Barbara, 2001. Assistant Professor.

GARCIA, GUILERMO (2006) .. Student Academic Services
B.A., University of California, Santa Cruz, 2004. Outreach Advisor, Educational
Talent Search.

GARCIA, STEVEN (1999) ... Associated Students, Incorporated
B.S., California Polytechnic State University, San Luis Obispo, 1986. Assistant
Coordinator - Facilities.

GARNER, LAUREN C. (2005) .. Horticulture and Crop Science
B.S., The College of William and Mary, 1992; M.S., Cornell University, 1996;
Ph.D., University of California, Riverside, 2004. Assistant Professor.

GEARHART, RICHARD O. (2006) ... Brock Center for Agricultural Communication
B.S., California Polytechnic State University, San Luis Obispo, 1991. Director.

B.S., University of California, Santa Barbara, 1980; Pharm.D., University of

GENTILUCCI, JAMES L. (2003) College of Education
B.A., California State University, Northridge, 1980; M.A., California Polytechnic
State University, San Luis Obispo, 1985; Ph.D., University of California, Santa
Barbara, 2001. Assistant Professor and Ed.D. Program Coordinator.

GERINGER, J. MICHAEL (1992) Management
B.S., Indiana University, 1986; M.B.A., University of Washington, 1983; Ph.D.,
1986. Professor.

GHARIBYAN, HASMIK (2000) Computer Science
Professor.

GIBERTI, BRUNO (1994) .. Architecture
B.S., Arch., California Polytechnic State University, San Luis Obispo, 1980;

GILBERT, BARBARA J. (2003) Health and Counseling Services
A.B., University of Missouri, 1982; M.A., Southern Illinois University, 1985;

GILL, SAMANTHA J. (1997) Natural Resources Management, BioResource
and Agricultural Engineering
B.S., Humboldt State University, 1991; M.S., 1993; Ph.D., University of California,

B.S., Benton University, 1994; M.S., Miami University, 1996; M.A.T., 1997;
M.S., The Ohio State University, 2001; Ph.D., 2002. Assistant Professor.

GILLEN, KATHARINA (2006) Physics
Vordiplom, Rheinische Friedrich-Wilhelms Universität Bonn, 1998; M.S., The
Ohio State University, 2000; Ph.D., 2005. Assistant Professor.

GILLETTE, DAVID (2001) .. English
B.A., University of Iowa, 1985; M.A., University of New Mexico, 1992; Ph.D.,
1995. Associate Professor.

B.S., Mississippi State University, 1973; M.S., 1975; Ph.D., 1979. Professor.

GOEL, RAKESH K. (1997) ... Civil and Environmental Engineering
B.Tech, Indian Institute of Technology, New Delhi, 1982; M.S., University of California,

GOERS, JOHN W. F. (1980) Chemistry and Biochemistry
B.S., University of Illinois, 1969; Ph.D., University of California, Los Angeles,
1974. Professor.

GOLDENBERG, BRUCE L. (2007) Dairy Science
B.S., Washington State University, Pullman, 1981; M.S., 1983; Ph.D., Colorado
State University, 1991. Professor and Department Head.

GOLDENBERG, MARNI (2003) Natural Resources Management
B.S., California State University, Sacramento, 1995; M.S., Purdue University,
1997; Ph.D., University of Minnesota, 2002. Assistant Professor.

GOLDENBERG, STUART (1976) Mathematics
B.S., University of California, Los Angeles, 1965; M.S., University of California,

GOODMAN, ANYA (2005) ... Chemistry and Biochemistry
B.S., Florida Atlantic University, 1996; Ph.D., Massachusetts Institute of
Technology, 2003. Assistant Professor.

GOODMAN, BRENT S. (2005) Institutional Planning and Analysis
B.A., University of Northern Colorado, 1989; M.S., 1997. Director, Institutional
Planning and Analysis.

GORMAN, LARRY R. (1997) Finance
B.S., Washington State University, 1985; M.B.A., Western Washington
University, 1988; Ph.D., Northwestern University, 1998. Associate Professor.

GRADY, DAVID V. (1971) ... Biological Sciences
A.B., University of California, Los Angeles, 1964; Ph.D., 1974. Professor Emeritus.

GRAGSON, DEREK (1999) .. Chemistry and Biochemistry
B.S., California State University, Hayward, 1991; M.S., University of Oregon,
1995; Ph.D., 1997. Associate Professor.

GRANNE FRY EROYD, JAY (2003) Computer Science
B.S., University of California, Los Angeles, 1980; M.S., University of California,
Berkeley, 1989; Ph.D., 1993. Assistant Professor.

GREENWALD, HARVEY C. (1973) Mathematics
B.S., Massachusetts Institute of Technology, 1964; M.A., Washington University,
1966; Ph.D., 1970. Professor.

B.S., University of Utah, 1998; M.S., 2002; Ph.D., North Carolina State
University, 2006. Assistant Professor.

GREENWOOD, JOHN A. (1978) Chemistry and Biochemistry
B.S., Mississippi State University, 1973; M.S., 1975; Ph.D., 1979. Professor Emeritus.
Registered Professional Engineer, Iowa.

GREENWOOD, JOSEPH K. (1982) Civil and Environmental Engineering
B.S., University of California, Los Angeles, 1982; M.S., 1985; Ph.D., 1988.
Professor.

GREENWOOD, JOSEPH K. (1982) Civil and Environmental Engineering
B.A., St. Ambrose University, 1963; M.S., Illinois State University, 1968; Ph.D.,
Iowa State University, 1973. Professor and Special Assistant to the Provost for
Faculty Development and Relations with Industry.

Professor.

GRIMALDO, CECILIA (2006) Mathematics
B.S., California Polytechnic State University, San Luis Obispo; M.A., 1982;

GRIMES, JOSEPH E. (1973) Academic Personnel, Computer Science,
and Agricultural Engineering
B.A., St. Ambrose University, 1963; M.S., Illinois State University, 1968; Ph.D.,
Iowa State University, 1973. Professor and Special Assistant to the Provost for
Faculty Development and Relations with Industry.

GRUBB, DEREK (2005) .. Student Academic Services
B.S., Colorado State University, Fort Collins, 2001; M.S., 2003. Program
Coordinator, Upward Bound.

B.S., University of New Hampshire, 1997; M.S., 2000; Ph.D., 2003. Assistant
Professor.

GU, CAIXING (1998) .. Mathematics
B.S., Zhejiang University, 1982; M.S., China Textile University, 1986; Ph.D.,
Indiana University, 1994. Associate Professor.
B.S., San Jose State University, 1991; M.S., 1994; Ph.D., University of California,
Davis, 2000. Assistant Professor.

HABIB, KENNETH (2006) ... Music
B.A., University of California, Los Angeles, 1983; M.A., University of California,
Santa Barbara, 1995; Ph.D., 2005. Assistant Professor.

HAGEN, CHARLES T. (1980) .. Philosophy
Professor.

HAGEN, JOHN (2001) .. Chemistry and Biochemistry
B.S., University of Nevada, Las Vegas, 1992; Ph.D., Stanford University, 1996.
Assistant Professor.

HALISKY, LINDA H. (1984) .. College of Liberal Arts, English
Ph.D., 1984. Professor and Dean.

HALL, GARRETT J. (2002) ... Civil and Environmental Engineering
B.S., Worcester Polytechnic Institute, 1992; M.S., University of Washington,
1993; Ph.D., University of California, Berkeley, 2001. Associate Professor.

HALL, KELLY G. (1990) .. Kinesiology
Ph.D., Louisiana State University, 1990. Professor.

HALL, MICHAEL H. (1974) ... Animal Science
B.S., California Polytechnic State University, San Luis Obispo, 1973; M.S.,
Kansas State University, 1975. Professor.

HALLOCK, BRENTO G. (1979) .. Earth and Soil Sciences
B.S., University of California, Davis, 1970; M.S., 1972; Ph.D., 1976. Professor
and Department Chair. Certified Professional Soil Scientist; Certified Professional
Soil Erosion and Sediment Control Specialist.

HAMILTON, LYNN (1996) ... Agribusiness
B.S., Ohio State University, 1988; M.S., University of Minnesota, 1995; Ph.D.,
1996. Professor.

HAMILTON, STEPHEN (2004) ... Economies
B.A., University of California, Santa Barbara, 1991; M.S., University of California,
Berkeley, 1994; Ph.D., 1996. Professor and Area Chair.

HAMPSEY, JOHN C. (1992) .. English

HAMPSON, BRIAN C. (1991) .. Food Science and Nutrition
Professor.

HANNINGS, DAVID W. (1974) ... Horticulture and Crop Science
B.S., Auburn University, 1972; M.S., Cornell University, 1974. Professor.

HANSON, JAMES L. (2005) ... Civil and Environmental Engineering
B.S., University of Wisconsin, Madison, 1990; M.S., University of Minnesota,
Minneapolis, 1992; Ph.D., University of Wisconsin, Madison, 1996. Registered
Professional Engineer, Wisconsin. Associate Professor.

HANSON, MICHAEL T. (1978) Biological Sciences
B.S., Idaho State University, 1970; M.A., University of Missouri, 1973; Ph.D.,
Texas A & M University, 1976. Professor.

HARATANI, JOYCE T. (1986) Administration and Finance
B.S., University of California, Los Angeles, 1974; B.S., California Polytechnic
State University, San Luis Obispo, 1979. Manager, Human Resources.

HARDING, TREVOR (2006) .. Materials Engineering
B.S., University of Michigan, 1995; Ph.D., 2000. Associate Professor.

HARGRAVE, TERRY C. (1979) Architecture
B.Arch., Washington State University, 1965; M.Arch., Massachusetts

HARLAN, CRAIG (1986) .. History
Professor.

HARMS, MARTIN J. (1997) .. Architecture
B.Arch., University of Liverpool, 1962; M.S., 1985; Ph.D., University of
American Institute of Architects (FAIA).

HARRGAN, POLLY (1983) .. University Advancement
B.A., University of Massachusetts, 1979; M.S.W., University of Connecticut,
1981. Director, Advancement Programs.

HARRINGTON, MARY E. (1981) Academic Programs
Coordinator, Writing Skills Program.

HARRIS, ANNE M. (2006) .. University Advancement
B.A., California State University, Stanislaus, 1997; M.A., 2006. Director, Special
Gifts.

B.S., California State University, Long Beach, 1971; M.D., University of East

HARRIS, JAMES G. (1982) .. Electrical Engineering, Computer Engineering
B.S., University of California, Berkeley, 1961; M.S., 1962; Ph.D., Syracuse
University, 1968. Professor.

HARRIS, JOHN H. (1978) ... Natural Resources Management
B.S., Humboldt State College, 1968; M.S., 1970; Ph.D., Utah State University,
1972. Professor.

HARRIS, KATHLEEN C. (2003) .. College of Education
B.A., Douglass College, Rutgers University, 1971; M.Ed., Rutgers University,
1972; Ph.D., Temple University, 1981. Associate Professor.

Admissions Officer.

HARRIS, WALTER L. (1973) ... Admissions, Recruitment and Financial Aid
Associate Director.

HARTIG, DONALD G. (1979) ... Mathematics
B.S., Rensselaer Polytechnic Institute, 1964; M.S., University of Wisconsin,
Milwaukee, 1966; Ph.D., University of California, Santa Barbara, 1970. Professor.

HAUCK, ALLAN J. (2002) .. Construction Management
B.A., Kalamazoo College, 1973; M.Ed., Bowling Green State University, 1979;
Ph.D., University of Maryland, 1990. Professor and Department Head. Certified
Professional Constructor (CPC).

HAUNGS, MICHAEL L. (2003) Computer Science
B.S., University of California, Berkeley, 1992; M.S., Clemson University, 1998;
Ph.D., University of Davis, 2002. Assistant Professor.

HAVANDIAN, NISHAN (1980),... Journalism
B.A., Haigazian University, Beirut, Lebanon, 1970; M.A., University of Georgia,
1972; Ph.D., University of Texas at Austin, 1979. Professor.

HAWES, MICHAEL (1967) .. Electrical Engineering
B.Eng., University College, Dublin, Ireland, 1958; M.S., Ohio State University,

HAWK, SUSAN N. (2002) .. Food Science and Nutrition
B.A., Reed College, 1991; Ph.D., University of California, Davis, 1999. Assistant
Professor. Registered Dietitian.

HEADRICK, DAVID H. (1998) ... Horticulture and Crop Science
B.S., University of California, Riverside, 1988; Ph.D., 1992. Associate Professor. Pest Control Advisor, California.

HELMBRECHT, BRENDA (2004) .. English
B.A., Truman State University, 1997; M.A., Miami University, 1999; Ph.D., 2004.
Assistant Professor, and Director of Writing.

HENDENSON, STANLEY L. (1990) Dairy Science
B.S., Iowa State University, 1973; M.S., Southern Illinois University, 1976; Ph.D.,
Utah State University, 1990. Professor.

HENDRICKS, WILLIAM W. (1994) Natural Resources Management
B.A., California State University, Chico, 1980; M.B.A., John F. Kennedy
University, 1984; Ph.D., University of Utah, 1993. Professor.

HERNANDEZ, ANITA (1999) .. College of Education
B.A., California State University, Chico, 1978; M.A., California State University,
Sacramento, 1990; Ph.D., Stanford University, 1999. Associate Professor.

HERTER, ROBERTA J. (1998) .. College of Education
B.A., Michigan State University, 1969; M.A., 1979; Ph.D., University of
Michigan, 1998. Associate Professor.
HEWITT, CLARISSA (1976) .. Art and Design
B.A., San Fernando Valley State College, 1971; M.F.A., Cranbrook Academy, 1975. Professor and Department Chair.

HEWES, AMY B. (1995) College of Engineering

HIGGINS, BRIAN S. (2001) Mechanical Engineering
B.S., University of Colorado at Boulder, 1989; M.S., University of California, Berkeley, 1991; Ph.D., 1995. Assistant Professor.

HILL, MARGARITA M. (2005) Landscape Architecture

HILLERS, KENNETH J. (2004) Biological Sciences
B.S., Western Washington University, 1986; Ph.D., University of Oregon, 1998. Assistant Professor.

HILPOLD, PAUL (1989) .. History
B.A., University of Texas, 1974; M.A., 1976; Ph.D., 1981. Professor.

HIMELBLAU, EDWARD T. (2005) Biological Sciences
B.S., University of California San Diego, 1992; Ph.D., University of Wisconsin, 2000. Assistant Professor.

HINKLE, MARY ANN (1978) Financial Aid

HITCHNER, LEWIS E. (1996) Computer Science
A.B., Dartmouth College, 1967; M.S., University of California, Berkeley, 1968; Ph.D., University of Utah, 1984. Professor.

HOCKADAY, STEPHEN L.M. (1982) Civil and Environmental Engineering

HODGSON, DEVON (2006) Student Life and Leadership
B.S., California Polytechnic State University, San Luis Obispo, 2001; M.A., University of San Diego, 2003. Coordinator, Women's Programs and Services.

HOELLWORTH, CHANCE (2002) Physics
B.S., California Polytechnic State University, San Luis Obispo, 1991; M.S., University of California, Davis, 1994; Ph.D., 1997. Associate Professor.

HOFFMAN, KENNETH A. (1974) Physics

HOLLAND, V. L. (1972) Biological Sciences

HOLMAN, BRETT (2002) Administration and Finance

HOLZER, PAUL (2006) Intercollegiate Athletics

HOLZ, ALAN W. (1979) Mathematics

HOOIJEN, MYRON (1977) Mathematics

HOPPER, MATTHEW S. (2006) History
B.A., Pepperdine University, 1996; M.A., Temple University, 1998; M.A., University of California, Los Angeles, 2000; Ph.D., 2006. Assistant Professor.

HOWARD, WAYNE H. (1999) Agribusiness
B.A., California State University, 1974; M.S., University of Florida, 1982; Ph.D., Texas A&M University, 1987. Professor and Department Chair.

HOWARD-GREENE, DANIEL (1994) Office of the President
B.A., University of California, Santa Cruz, 1975; M.S., University of Chicago, 1978; Ph.D., 1983. Chief of Staff.

HOWELL, ROBERT (1974) Art and Design

HUGHES, STEPHEN (1997) Oral and Presentation Specialist

B.S., Virginia Polytechnic Institute and State University, 2001; Ph.D., Georgia Institute of Technology, 2006. Assistant Professor.

B.S., California Polytechnic State University, San Luis Obispo, 1998; M.S., University of California, Davis, 2000; Ph.D., 2004. Assistant Professor.

HUNTER, MARK A. (2001) Administration and Finance

HURLEY, SEAN P. (2002) Agricultural
B.A., University of San Francisco, 1994; Ph.D., Iowa State University, 2000. Assistant Professor.

I.DING, GAYLE (1991) .. Physics

IKEEDA, KIMI (1985-88, 1989) Academic Affairs

IMMONS, CHAD E. (2004) Chemistry and Biochemistry
A.B., Occidental College, 1996; Ph.D., University of California, Irvine, 2002. Associate Professor.

INCAUSTI, ROBERT L. (1984) English
B.A., California State University, Sacramento, 1974; M.A., 1976; Ph.D., University of Chicago, 1981. Professor.

IVERSON, TONYA (1990) Associated Students, Incorporated
B.S., California Polytechnic State University, San Luis Obispo, 1986; M.B.A., 1996. Director, Children's Programs.

JACKSON, LORRAINE D. (1992) Communication Studies
B.A., University of Michigan, 1991; M.S.W., 1994; Ph.D., 2004. Assistant Professor.

JACKSON, RALPH A. (1975) Chemistry and Biochemistry

JANKAY, PETER T. (1973) Biological Sciences

JANKOVITZ, KRISTINE Z. (1996) Kinesiology
B.S., California Polytechnic State University, San Luis Obispo, 1984; M.S., 1989; Ph.D., University of Nebraska-Lincoln, 1995. Associate Professor and Graduate Coordinator.

JANOWICZ, ROSEMARIE (1993) Health and Counseling Services

JANSSEN, DANIEL (2003) Civil and Environmental Engineering
B.S., University of California, Santa Barbara, 1979; B.S., University of North Texas, 1986. Associate Professor.

JANZEN, DAVID S. (2006) Computer Science
B.A., University of Kansas, 1993; Ph.D., 2006. Assistant Professor.
JAQUES, JODI D. (2001)...College of Education
B.A., Saint Mary's College of California, 1986; M.Ed., Virginia Polytechnic Institute and State University, 1993; Ph.D., University of Virginia, 2000. Assistant Professor.

JASTER, EDWIN H. (1992).. Dairy Science

JAVADPOUR, ROYA (2003)... Industrial and Manufacturing Engineering
B.S., Isfahan University of Technology, 1993; M.S., Louisiana State University, 1996; M.S., 2000; Ph.D., 2001. Associate Professor.

JENKINS, MICHELLE (2002)... College of Engineering
B.A., California Polytechnic State University, San Luis Obispo, 1990. Associate Director of Development.

JENNINGS, BETTY S. (2001)... College of Liberal Arts

JENNINGS, CHARLES W. (1968).. Art and Design

JERICCH, GEORGE D. (1985).. Art and Design

JIMÉNEZ-FLORES, RAFAEL (1995)... Dairy Science
B.S., U. La Salle, Mexico City, 1981; M.S., Cornell University, 1984; Ph.D., University of California, Davis, 1989. Professor.

JIN, XIAOMIN (2004)... Electrical Engineering
B.S., Tsinghua University, Beijing, China, 1992; M.S., 1996; Ph.D., University of Illinois at Urbana-Champaign, 2001. Assistant Professor.

JIPSON, JENNIFER (2005).. Psychology and Child Development
B.A., Smith College, 1993; M.S., University of California, Santa Cruz, 1996; Ph.D., 2000. Assistant Professor.

JOHNSON, ERIC B. (1980).. Art and Design

JOHNSON, JANE (1980)... Career Services

JOHNSON, RICK (1987).. Associated Students, Incorporated

JOHNSON, WILLIAM V. (1966).. Music

JOHNSON, HAL (1988)... Construction Management

JOINES-NOVOTNY, LAURA E. (1989).. Architecture

JONES, BARRY K. (2001).. Construction Management
M.S., University of Aston, U.K., 1980; Ph.D., University of Southampton, U.K., 1999. Professor. Chartered Builder (FCIOB); Fellow American Society of Civil Engineers.

JONES, DANE R. (1976).. Chemistry and Biochemistry
B.A., University of Utah, 1969; Ph.D., Stanford University, 1974. Professor.

JONES, R. THOMAS (2003)... College of Architecture and Environmental Design
B.Arch., Cornell University, 1969. Dean, AIA, Registered Architect, California.

JONES, TERRY L. (1998)... Social Sciences
B.A., University of California, Santa Cruz, 1978; M.A., Sonoma State University, 1982; M.A., University of California, Davis, 1989; Ph.D., 1995. Associate Professor.

JOSEPH, EILEEN E. (2006).. College of Liberal Arts
KEESE, JAMES R. (2003) Social Sciences
B.S., California Polytechnic State University, San Luis Obispo, 1987; M.A., American Graduate School of International Management, 1989; Ph.D., University of Arizona, 1996. Assistant Professor.

KEESEY, DOUGLAS (1988) English, Academic Programs
B.A., University of California, Berkeley, 1982; M.A., 1984; Ph.D., Princeton University, 1988. Professor; Director, General Education Program.

KEEZER, JILL (2001) .. Cal Poly Corporation

KEESEY, DOUGLAS (1988) English, Academic Programs
B.A., University of California, Berkeley, 1982; M.A., 1984; Ph.D., Princeton University, 1988. Professor; Director, General Education Program.

KEIL, DAVID J. (1976) Biological Sciences
B.S., Arizona State University, 1968; M.S., 1976; Ph.D., Ohio State University, 1973. Professor.

KELLER, EARL C. (1987) Accounting

KELLER, JOHN M. (2006) Physics
B.S., Stanford University, 1991; M.A., 1992; M.S., University of Colorado, Boulder, 1999; Ph.D., University of Arizona, 2006. Assistant Professor.

KELLEY, LAURENCE R. (2002) Administration and Finance

KELLOGG, WILLIAM C. (1983) Agricultural Education and Communication
B.S., California Polytechnic State University, San Luis Obispo, 1976; M.S., 1983; Ph.D., Colorado State University, 1987. Professor.

KELLY, BRIAN M. (2005) Architecture
B.S., University of Nebraska, Lincoln, 1997; M.Arch., 1999. Assistant Professor.

KELLY, LOIS M. (2005) Financial Aid

B.S., Michigan State University, 1985; M.S., 1990; Ph.D., Oregon State University, 1998. Assistant Professor. Registered Professional Engineer, Oregon.

KENNELLY, BRIAN (2006) Modern Languages and Literatures
B.A., University of California, Davis, 1986; M.A., University of Virginia, 1989; Ph.D., New York University, 1996. Associate Professor and Department Chair.

KERBO, HAROLD R. (1977) Social Sciences

KERSTEN, TIMOTHY W. (1971) Economics

KHALIL, HANY M. (1987) Food Science and Nutrition

KIANI, TANYA L. (2000) College of Agriculture, Food and Environmental Sciences
B.A., California State University, Long Beach, 1984; M.A., University of California, Santa Barbara, 1989. Assistant Professor.

KING, LAURA M. (1989) Psychology and Child Development
B.A., University of Arkansas, 1977; M.S., Kansas State University, 1986; Ph.D., 1989. Associate Professor.

KING, RITA M. (1995) College of Education

KINGSBURY, KEVIN B. (1996) Chemistry and Biochemistry
B.S., College of William and Mary, 1986; Ph.D., Stanford University, 1993. Associate Professor.

KIRK, COLLEEN M. (2001) Mathematics
B.S., Stanford University, 1994; M.S., Southern Illinois University, Carbondale, 1995; Ph.D., Northwestern University, 1999. Assistant Professor.

KITAMURA, ROBERT E. (1978) Administration and Finance

KITT, CHRISTOPHER L. (1995) Biological Sciences
B.S., University of Auckland, New Zealand, 1984; Ph.D., University of California, Santa Cruz, 1992. Professor.

KLAY, JENNIFER L. (2006) Physics
B.S., University of California, Los Angeles, 1994; M.S., University of California, Davis, 1998; Ph.D., 2001. Assistant Professor.

KLISCH, STEPHEN M. (2001) Mechanical Engineering
B.S., University of Virginia, 1991; M.S., 1994; Ph.D., University of California, Berkeley, 1999. Associate Professor.

KLOOSTER, LYNETTE C. (1980) Information Technology Services
B.S., Loma Linda University, 1980. Finance Specialist, Office of the CIO.

KNABLE, ANTHONY E. (1973) Biological Sciences

KNIGHT, CHARLES A. (2003) Biological Sciences
B.S., Western Washington University, 1996; Ph.D., Stanford University, 2002. Assistant Professor.

KNIGHT, RANDALL D. (1989) Physics
B.S., Washington University, 1972; Ph.D., University of California, Berkeley, 1979. Professor.

B.S., Cairo University, Egypt, 1969; M.S., University of Cincinnati, 1978; Ph.D., Louisiana State University, 1982; additional graduate study, Cairo University. Professor. Registered Professional Engineer, Egypt.

KOLT, LEAH (2003) .. University Advancement

KONOPAK, BONNIE (2000) College of Education
B.A., University of California, Los Angeles, 1970; M.A., 1974; Ph.D., University of California, Santa Barbara, 1984. Dean.

KORMAN, THOMAS M. (2005) Construction Management
B.S., California Polytechnic State University, San Luis Obispo, 1995; M.S., Stanford University, 1997; Ph.D., 2001. Associate Professor. Registered Professional Engineer, Safety Assessment Evaluator, ACT Concrete Flatwork Technician.

KRIEGER, DANIEL E. (1971) History

KUBINSKI, A. MARK (1975) Biological Sciences
B.S., Gonzaga University, 1968; M.S., Washington State University, 1971; Ph.D., 1974. Professor Emeritus.

KUCHTA, TRACI L. (2001) Administration and Finance

KUFESS, FRANZ J. (2000) Computer Science
M.S., Technical University of Munich, 1984; Ph.D., 1990. Professor.

KYKER, BRADLEY W. (2003) College of Agriculture, Food and Environmental Sciences
B.S., California Polytechnic State University, San Luis Obispo, 1992; M.S., California State University, Long Beach, 2003. Advising Resource Specialist; Director, MAP Student Center.

LAMB, STEPHAN R. (1979) Student Life and Leadership
B.A., Santa Clara University, 1973; M.A., University of the Americas, 1975; M.A., University of California, Santa Barbara, 1996. Associate Director.

LAMPF, GREGORY B. (1995) Administration and Finance
B.S., University of Missouri, 1989; M.S., University of Missouri, 1990. Administration and Finance.

LANCASTER, KATHRYN A. S. (1997) Accountancy

LEHR, CORINNE (2006) .. Chemistry and Biochemistry B.S.C., University of Calgary, 2003; Ph.D., Montana State University, 2006. Assistant Professor.

LIDDICOAT, ALBERT A. (2002) Academic Personnel, Computer Engineering, Electrical Engineering B.S., California Polytechnic State University, San Luis Obispo, 1989; M.S., Stanford University, 1996; M.S., 1999; Ph.D., 2002. Associate Professor; Director, Computer Engineering; and Interim Assistant Vice President for Academic Personnel.

LINDERT, LISA M. (2002) Chemistry and Biochemistry B.S., University of Michigan, 1997; M.S., University of California, Santa Barbara, 2000; Ph.D., 2002. Assistant Professor.

LIU, MEI-LING (1994) .. Computer Science B.S., Iowa State University, 1972; M.S., 1974; M.S., California Polytechnic State University, San Luis Obispo, 1982; Ph.D., University of California, Santa Barbara, 1994. Professor.

LUTRIN, CARL E. (1970) Political Science B.A., Adelphi University, 1962; M.S., University of Wisconsin, 1965; Ph.D., University of Missouri, 1971; additional graduate work, Stanford University. Professor Emeritus.
LYNCH, JOSEPH (2001) .. Philosophy
B.A., Virginia Commonwealth University, 1982; M.A., Claremont Graduate
School, 1985; Ph.D., 1989. Associate Professor.

LYNN, ABRAHAM C. (1996) ... Architectural Engineering
B.S., California Polytechnic State University, San Luis Obispo, 1986; M.S.,

MAAS, DONALD K. (1976) .. College of Education
B.A., University of California, Los Angeles, 1966; M.Ed., State University of New

B.S., University of California, Los Angeles, 1976; M.S., 1978; Ph.D., Purdue

MacCURY, CAROL A. (1987) .. English
B.A., Northwestern University, 1972; M.A., University of South Carolina, 1975;
Ph.D., 1980. Professor.

MacDOUGALL, NEAL A. (1997) .. Agribusiness
B.A., Williams College, 1984; Ph.D., University of California, Berkeley, 1999.
Associate Professor.

MACKEDO, JOSE (2002) .. Industrial and Manufacturing Engineering
B.S., Catholic University of Peru, Peru, 1982; M.S., University of California,
Berkeley, 1984; Ph.D., Lehigh University, 1991. Associate Professor. Registered
Professional Engineer, Texas.

MacELROY, WILLIAM (2002) ... Landscape Architecture
B.S., The Pennsylvania State University, 1969; M.L.A., University of Michigan,
1984. Assistant Professor.

MACHAMER, JOSHUA T. (2003) Theatre and Dance
Assistant Professor.

MACNIN, THOMAS J. (2005) .. Mechanical Engineering
and Department Chair.

MACRO, KENNETH L. (2000) .. Graphic Communication
B.A., Pennsylvania State University, University Park, 1993; M.A., The University
of Akron, 2000. Assistant Professor.

MADOREN, JESSE (1999) ... Mechanical Engineering
B.S.M.E., University of California, Santa Barbara, 1985; M.S.M.E., 1988; Ph.D.,
1994. Associate Professor. Registered Professional Engineer, California.

MAJEDI, JOHANNA J. (1992) ... Information Technology Services
B.S., California Polytechnic State University, San Luis Obispo, 1988. Director,
Communications and Computing Services.

MAGNUSSON, SHIRLEY J. (2004) College of Education
B.S., University of Missouri, Columbia, 1980; M.S., University of Iowa, 1986;
Ph.D., University of Maryland, College Park, 1991. Associate Professor.

MALIK, ISMAIL (2003) .. Housing and Residential Life
B.S., University of California, San Diego, 1994; M.A., Seattle University, 1997.
Learning Community Coordinator – First Year Connection.

MALINK, MICHAEL R. (1974) .. Theatre and Dance

B.E., Mysore University, India, 1958; M.E., University of Oklahoma, 1966; Ph.D.,
1968. Professor Emeritus. Registered Professional Engineer, California, Indiana
and Louisiana.

MALONEY, MARC (1999) ... Associated Students, Incorporated
Director, ASI Programs.

MARAVIGLIA, JAMES L. (1991) Admissions, Recruitment and Financial Aid
B.S., Elmhurst College, 1976; M.S., Chicago State University, 1984. Assistant
Vice President of Admissions, Recruitment and Financial Aid.

MARGARITO, CESAR (2003) ... Student Academic Services
B.A., California Polytechnic State University, San Luis Obispo, 2002; M.A.,
2006. Program Director, Student Support Services.

MARK, WALTER R. (1972) ... Natural Resources Management
B.S., Utah State University, 1968; M.S., Colorado State University, 1970; Ph.D.,
1972. Professor. Registered Professional Forester, California.

MARJER, JOHN F. (1981) ... Chemistry and Biochemistry
B.S., University of Wisconsin, Stevens Point, 1972; Ph.D., University of Wisconsin,

MARLOW, MICHAEL L. (1988) .. Economics
B.A., George Washington University, 1975; Ph.D., Virginia Polytechnic Institute,
1978. Professor.

MARSALEK, KIMBERLY C. (2006) College of Engineering
B.S., California Polytechnic State University, San Luis Obispo, 2006. Academic
Advisor.

B.S., Worcester Polytechnic Institute, 1994; M.S., Georgia Institute of Technology,
1995; Ph.D., 2003. Assistant Professor.

MARSHALL, KATHRYN G. (2007) Economics
B.A., University of Texas, 1980; Ph.D., University of California, Berkeley, 1990.
Assistant Professor.

MARTIN, KATHLEEN J. (2002) Ethnic Studies
B.A., California State University, Northridge, 1992; M.A., University of California,

MARTIN, TAMMY S. (1998) .. Career Services

MARTINEZ, CHARMAINE (2006) Art and Design
B.F.A., University of Notre Dame, 1993; M.F.A., University of Wisconsin-
Madison, 2003. Assistant Professor.

MARTINEZ, WILLIAM, JR. (1993) Modern Languages and Literatures
B.A., San Diego State University, 1986; M.A., 1988; Ph.D., University of California,
Irvine, 1993. Professor and Department Chair.

MARX, STEVEN R. (1988) .. English
Professor Emeritus.

MASE, G. THOMAS (2007) ... Mechanical Engineering
B.S.M.E., Michigan State University, 1980; M.S.M.E., University of California,
Berkeley, 1982; Ph.D., 1987. Associate Professor.

MAY, THOMAS A. (1979) .. Administration and Finance
B.S., California Polytechnic State University, San Luis Obispo, 1977. Licensed
Building Contractor (B), Licensed Landscape Contractor (C27), Certified
Asbestos Building Inspector, Certified Asbestos Contractor/Supervisor. Project
Manager, Facility Services.

McBRIDE, SUSAN L. (1979) .. College of Education

MCCELL, MICHAEL D. (1999) University Advancement
B.A., Old Dominion University, 1982; J.D., Wake Forest University, 1986.
Associate Vice President/Chief Development Officer.

MCCLURE, PAMELA H. (2005) Orfalea College of Business

MCCORMICK, KATHRYN E. (2003) Art and Design
B.S., University of Cincinnati, 1996; M.S., 2001. Assistant Professor.

MCLEAN, COLE C. (2005) ... Architectural Engineering
B.S., California State University, San Diego, 1996; M.S., 1997; Ph.D., 2002.
Assistant Professor. Registered Civil Engineer, California.

MCDERMOTT, STEVEN T. (1989) Communication Studies

MCDERMOTT, STEVEN T. (1989) Communication Studies
McGRATH, JUSTIN (2006) .. Intercollegiate Athletics

McKIM, BONNIE L. (2001) ... College of Liberal Arts
B.S., California Polytechnic State University, San Luis Obispo, 1993; M.S., 2000;

McKIM, PATRICK C. (1973) .. Social Sciences
Professor Emeritus.

MCKINLAY, KRISTINA I. (2002) Orfalea College of Business
B.A., Westminster College, 1979; M.Div., San Francisco Theological Seminary,
Academic Advisor.

MCKINLEY, LESLIE (1995) .. Orfalea College of Business
B.S., University of La Verne, 2005. Director of College and Alumni Relations.

MCKINSTRY, JOHN A. (1968) Social Sciences
A.B., University of California, Los Angeles, 1961; A.M., University of Southern

McLAMORIE, A. LYSON (1991) Music
Professor.

McQUAID, PATRICIA (1996) Management
B.S., Case-Western Reserve University, 1978; M.B.A., Eastern Michigan
University, 1982; M.S., Auburn University, 1988; Ph.D., Auburn University,
1996. Professor.

MEAGHER, JAMES M. (1988) Mechanical Engineering
B.S., University of Akron, 1978; M.S., 1981; Ph.D., University of California,

M.A., University of California, Berkeley, 1983; Ph.D., 1988. Assistant Professor.

MEDINA, ELSA (2000) ... Mathematics
B.S., California Polytechnic State University, San Luis Obispo, 1994; M.S.,
1996; Ph.D., University of Northern Colorado, 2000. Associate Professor.

MEDIZADE, MASON (1984) Mechanical Engineering
B.S., Abadan Institute of Technology, 1978; M.S., University of Southern
California, 1980; Ph.D., 1984. Professor.

B.S., University of California, Santa Barbara, 1998; M.S., University of Colorado,
2001; Ph.D., 2003. Assistant Professor.

B.S., California Polytechnic State University, 1983; M.S., 1989; Ph.D., University of California,
Davis, 1996. Professor.

MELVIN, BARBARA A. (1973) Administration and Finance
B.S., California Polytechnic State University, San Luis Obispo, 1973; M.P.A.,
University of San Francisco, 1981. Director, Human Resources.

B.S., University of California, Irvine, 2000; M.A., University of California,
San Diego, 2001; Ph.D., 2004. Assistant Professor.

MENON, UNNY (1978) .. College of Engineering, Industrial and Manufacturing
Engineering
A.P., Sheffield Polytechnic, England, 1969; M.Phil., 1972; Ph.D. University of Nottingham,
1985. Professor and Associate Dean. Registered Professional Engineer, Great Britain.

METCALF, LYNN E. (1986) ... Marketing
B.A., University of Oregon, 1978; M.I.M., American Graduate School of
International Management, 1981; Ph.D., University of Southern California,
1986. Professor.

MIKLOWITZ, PAUL S. (1988) Philosophy
B.A., University of California, Santa Cruz, 1977; M.A., University of Chicago,
1979; M.Phil., Ph.D., Yale University, 1988. Professor.

MILICH, TOM (2006) ... Intercollégiate Athletics
B.S., California Polytechnic State University, Long Beach, 1978. Head Coach.

MILLÁN, JOSÉ A. (1998) .. Student Academic Services
B.S., California Polytechnic State University, San Luis Obispo, 1991; M.A.,
2006. Academic Advisor/Coordinator, Supplemental Workshops in Math.

MILLER, ADRIENNE (2006) Office of Student Rights and Responsibilities
B.A., University of California at Berkeley, 1974; M.A., 1977; J.D., Hastings
School of Law, 1977. Coordinator, Office of Student Rights and Responsibilities.

MILLER, CHARLES R. (Tad) (1987) Accounting
B.A., College of Wooster, 1970; M.B.A., University of Arizona, 1980; Ph.D.,

MILLER, MICHAEL B. (1997) Art and Design
B.A., University of California, Irvine, 1986; M.F.A., University of Southern
California, 1988. Associate Professor.

MILLER, MICHAEL D. (2006) University Library
B.A., Long Island University, 1971; M.S., 1972; M.P.S., New York University,

Professor. AIA, Registered Architect, California.

MILOSEVIC, MARY (1980) Career Services
B.A., Sonoma State College, 1978; M.A., California Polytechnic State University,

MIMNAUGH, FAITH (1996) Intercollégiate Athletics
Coach.

MINTZ, STEVEN (2006) Accounting
B.S., Long Island University, 1967; M.B.A., Syracuse University, 1969; D.B.A.,

MITRA, SUDESHNA (2006) Civil and Environmental Engineering
B.S., Bengal Engineering College, India, 1998; M.Engr., National University of
Singapore, 2002; M.S., University of Arizona, 2005; Ph.D., Arizona State
University, 2006. Assistant Professor.

MOAZZAMI, SARA (1991) Civil and Environmental Engineering
B.S., George Washington University, 1981; M.S., University of California,

MOLINE, MARK A. (1999) Biological Sciences
B.A., St. Olaf College, 1987; Ph.D., University of California, Santa Barbara,
1996. Associate Professor.

MOELTER, MATTHEW J. (1998) Physics
B.S., University of California, Irvine, 1981; Sc.M., Brown University, 1983;
Ph.D., 1989. Associate Professor.

MONTICALVO, JOSEPH (1983) Food Science and Nutrition
B.S., University of Rhode Island, 1972; M.S., 1975; Ph.D., 1979. Professor.

MONTELONGO, JOSE (2004) University Library
University of Texas at Austin, 1995; Ph.D., New Mexico State University, 2002.
Senior Assistant Librarian.

MONTGOMERY, WAYNE R. (1982) University Library
A.B., University of California, Berkeley, 1977; M.L.S., University of California,
Los Angeles, 1981; M.A., California Polytechnic State University, San Luis
Obispo, 1988. Senior Assistant Librarian.

B.S., California Polytechnic State University, San Luis Obispo, 1997; M.S.,
Stanford University, 1998. Assistant Professor. Registered Professional Engineer,
Licensed General Contractor, LEED Accredited.

MOODY, LYNN E. (1999) Earth and Soil Sciences
B.S., University of Cincinnati, 1974; M.S., California Polytechnic State
University, San Luis Obispo, 1989; Ph.D., University of California, Riverside,
1993. Associate Professor.

MOORE, CAROLE M. (1980) Career Services
B.A., California Polytechnic State University, San Luis Obispo, 1976; M.A.,

MORENO, J. KELLY (1991) Psychology and Child Development
B.S., University of California, Santa Barbara, 1989; M.S., University of Utah,

MORI, BARBARA L. ROWLAND (1986) Social Sciences
Professor and Department Chair.

2007-2009 Cal Poly Catalog
MORRIS, ANDREW D. (1998) .. History

MORRISON, KENT E. (1979) .. Mathematics
B.A., University of California, Santa Cruz, 1971; Ph.D., 1977. Professor and Department Chair.

MORTON, CORNEL N. (2002) .. Student Affairs
B.S., Tennessee State University, 1970; M.A., 1974; Ph.D., Kent State University, 1983. Vice President for Student Affairs.

MOSS, ROBB E. S. (2006) .. Civil and Environmental Engineering
B.S., North Carolina State University, 1995; M.S., Utah State University, 1997; Ph.D., University of California, Berkeley, 2003. Assistant Professor. Registered Professional Engineer, California.

MOTTMANN, JOHN (1974) ... Physics

MUELLER, GERRY K. (1984) Office of the President

MUELLER, JAMES R. (1980) Mathematics
B.A., University of Wisconsin, 1975; Ph.D., California Institute of Technology, 1982. Professor.

MULLIGAN, PATRICIA A. (1988) College of Education

MULLISEN, RONALD S. (1977) Mechanical Engineering
B.S., California State Polytechnic College, 1969; M.Eng., 1976; Ph.D., Colorado State University, 1983. Professor Emeritus. Registered Professional Engineer, California.

MUMPORD, FRANK (1999) .. Cal Poly Corporation
B.S., Eastern Illinois University, 1976. Executive Director.

MUNROE, PATRICK A. (1980) Journalism

MURRAY, WILLIAM R. (1999) Mechanical Engineering
B.S., University of Texas, Austin, 1975; M.S., 1976; Ph.D., Massachusetts Institute of Technology, 1988. Professor.

MWANGI, JAMES (2003) ... Architectural Engineering
B.Sc., University of Nairobi, Kenya, 1984; M.Sc., University of Lagos, Nigeria; Ph.D., University of California, Davis, 2001. Assistant Professor. Registered Civil Engineer, California.

NADEL, JEFF (1991) ... College of Engineering

NAFISI, AHMAD (1983) ... Electrical Engineering
B.S., Arya Mehr University of Technology, Iran, 1975; M.S., University of Southern California, 1977; Ph.D., 1983. Professor.

NAHIL, MAHMOOD (1987) Electrical Engineering
B.S., University of Teheran, 1959; M.S., University of Michigan, 1963; Ph.D., Massachusetts Institute of Technology, 1967. Professor.

NAKAMURA, RAYMOND M. (1980) Kinesiology
B.S., Northern Illinois University, 1965; M.S. 1967; M.S., DePaul University, 1980; Ph.D., University of Toledo, 1974. Professor Emeritus.

NAKAMURA, ROYDEN (1978) Biological Sciences

NEEL, JOEL (2002) .. Administration and Finance
B.A., California State University, Hayward, 1989; MCRP, California Polytechnic State University, San Luis Obispo, 1993. Assistant Director, Capital and Environmental Planning, Facilities Planning and Capital Projects.

NEFF, GRACE ANN (1995) Chemistry and Biochemistry
B.S., New Mexico State University, 1980; Ph.D., University of Oregon, 1998. Assistant Professor.

NELSON, CRAIG J. (1994) .. University Advancement

NELSON, LINDEN L. (1970) Psychology and Child Development
B.A., University of Northern Iowa, 1966; Ph.D., University of California, Los Angeles, 1970. Professor Emeritus.

NELSON, YARROW M. (1999) Civil and Environmental Engineering
B.S., University of California, Berkeley, 1979; M.S., Cornell University, 1992; Ph.D., 1997. Professor.

NEUENHOFER, ANSGAR (2001) Architectural Engineering
B.S., Technical University at Aachen, Germany, 1988; M.S., University of California, Berkeley, 1991; Ph.D., Technical University at Aachen, Germany, 1994. Associate Professor. Registered Civil Engineer, California.

NEUHAUS, TOM (1998) .. Food Science and Nutrition
B.S., Oberlin College, 1975; M.S., University of Maryland, 1982; Ph.D., Cornell University, 2000. Associate Professor.

NEY, CHERYL L. (2006) ... Academic Programs
B.S., Arizona State University, 1977; M.S., Baylor University, 1980; Ph.D., University of Chicago, 1986. Associate Vice Provost for Academic Programs.

NICHLSON, LISA M. (2001) Food Science and Nutrition
B.S., California State University, Northridge, 1985; M.S., 1987; Ph.D., University of Southern California, 1999. Associate Professor. Registered Dietitian.

NICKLESEN, NONA (NICKY) (2000) Parent Program
B.S., California Polytechnic State University, San Luis Obispo, 1995. Parent Program Coordinator.

B.A., University of California, Berkeley, 1991; M.S., University of California, Davis, 1994; Ph.D., 2000. Associate Professor.

NICOVIC, RALPH R. (1978) Electrical Engineering
B.S., California Polytechnic State University, San Luis Obispo, 1975; M.S., 1983. System Specialist, Network Analyst and DLAN Administrator.

NIKU, SAEED B. (1983) .. Mechanical Engineering
B.S., Tehran Polytechnic University, 1975; M.S., Stanford University, 1976; Ph.D., University of California, Davis, 1982. Professor. Registered Professional Engineer, California.

NOEL, JAY E. (1990) ... Agribusiness
B.S., University of California, Davis, 1973; M.S., 1974; Ph.D., 1979. Professor.

NOLAND, JAYMIE J. (1999) Animal Science

NOORI, MOHAMMAD (2005) College of Engineering
B.S., University of Illinois at Urbana-Champaign, 1977; M.S., Oklahoma State University, 1980; Ph.D., University of Virginia, 1984. Dean.

NOTERMANN, ELLEN M. (1979) College of Architecture and Environmental Design

NULTMAN, DENNIS M. (1977) College of Education

B.A., California Polytechnic State University, San Luis Obispo, 1996. Associate Director of Communications.

NUTTALL, BRENT (2003) Architectural Engineering
B.S., California Polytechnic State University, San Luis Obispo, 1986; M.S., University of California, Berkeley, 1987. Assistant Professor. Registered Structural and Civil Engineer, California.

NUWORSOO, CORNELIUS K. (2005) City and Regional Planning
B.S., University of Science and Technology, Ghana, 1981; M.S., Morgan State University, 1986; M.C.P., University of California, Berkeley, 2002; Ph.D., 2004. Assistant Professor. American Institute of Certified Planners. Institute of Transportation Engineers.

O'BRYANT, CAMILLE P. (1999) Kinesiology
B.A., Smith College, 1983; M.S., 1986; Ph.D., Ohio State University, 1996. Associate Professor.
OGREN, SANDRA G. (2004) University Advancement

OKADA, DARYL (2006) Associated Students, Incorporated
B.S., California Polytechnic State University, San Luis Obispo, 1997. IT Programmer.

Olsen, Eric (2004) Industrial Technology
B.S., University of Maine at Orono, 1979; M.B.A., Virginia Polytechnic Institute and State University, 1987; Ph.D., The Ohio State University, 2004. Assistant Professor.

OLVERA, NELDA (1993) Student Academic Services

OPAVA-STITZER, SUSAN (1993) Research and Graduate Programs

ORJI, JOHN (1987) History
B.A., University of Nigeria, 1967; M.A., Rutgers University, 1975; Ph.D., Rutgers University, 1977. Associate Professor.

OVERMAN, DOUG (1976) Administration and Finance
B.S., California Polytechnic State University, San Luis Obispo, 1976. Assistant Director, Facility Services.

OWEN, FRANKLIN C. (1998) Mechanical Engineering
B.S., Mississippi State University, 1978; MSME, Oregon State University, 1983; Ph.D., University of Texas, 1998. Associate Professor. Registered Professional Engineer, Maine.

PAL, NIRUPAM (1995) Civil and Environmental Engineering
B.S., Calcutta University, India, 1984; M.S., 1986; Ph.D., New Jersey Institute of Technology, 1993. Professor.

PANETTA, DANIEL L. (1986) Architecture

PAPATHAKIS, PEGGY (2006) Food Science and Nutrition
B.S., California Polytechnic State University, San Luis Obispo, 1977; M.S., University of California, Davis, 2000, Ph.D., 2005. Assistant Professor. Registered Dietitian.

PARKS, DENNIS R. (2000) Cal Poly Continuing Education

PARKS, ROSEANN N. (2002) University Advancement

PASCUAL, CHRISTOPHER C. (2000) Mechanical Engineering
B.S., Cornell University, 1985; M.S., Georgia Institute of Technology, 1996; Ph.D., 1999. Professor. Registered Professional Engineer, California.

PATTERSON, W. KEITH (1998) Horticulture and Crop Science
B.S., University of Arkansas, 1969; M.S., 1978; Ph.D., University of Missouri, 1985. Associate Professor.

PATTIN, JAMES SCOTT (2002) Mechanical Engineering
B.S., Georgia Institute of Technology, 1979; M.S., California Institute of Technology, 1980; Ph.D., 1985. Associate Professor.

PATTIN, LINDA J. (1991) Mathematics

PEACH, DAVID (1987) Management

PECK, ROXY L. (1979) .. College of Science and Mathematics
B.A., University of California, Riverside, 1972; Ph.D., 1979. Associate Dean and Professor.

PEDERSEN, JOY (2002) Student Life and Leadership

PEDERSEN, MARY E. (1981) College of Agriculture, Food and Environmental Sciences
B.A., University of California, Santa Barbara, 1973; M.S., University of California, Los Angeles, 1976; Ph.D., 1980. Associate Dean.

PEDROTTI, JENNIFER TERAMOTO (2003) Psychology and Child Development
B.A., University of California, Davis, 1996; M.S., University of Kansas, 2000; Ph.D., 2003.

PENDERGAST, CAROL (2002) College of Education

PERACCA, MARY L. (2001) Health and Counseling Services

PEREZ, MARINA E. (1975) Health and Counseling Services

PERRYMAN, ELIZABETH K. (1972) Biological Sciences
B.S., Memphis State University, 1964; M.S., Texas Technological College, 1967; Ph.D., University of Arizona, 1972. Professor Emeritus.

PESACRETA, SANDRA J. (2001) Health and Counseling Services
B.S., California State University, Dominguez Hills, 1993; Masters in Nursing and Family Nurse Practitioner, University of California, Los Angeles, 1995. Nurse Practitioner. ANCC Board Certified, 1996.

PETERSEN, GEORGE J. (2004) College of Education

B.S., University of California, Davis, 1999; Ph.D., Cornell University, 2003. Assistant Professor.

PETERSON, JOHN C. (2007) Horticulture and Crop Science
B.S., University of Rhode Island, 1974; Ph.D., Rutgers University, 1978. Professor and Department Head.

PETRAY, MANNIE JO (2006) English
B.A., Arkansas Tech University, 1988; M.A., Purdue University, 1991; Ph.D., 2004. Assistant Professor.

B.S., California Polytechnic State University, San Luis Obispo, 1998; M.S., Oklahoma State University, 2000; Ph.D., University of Kentucky, 2004. Assistant Professor.

PHEAROH, CLAYTON (1986) Architectural Engineering
B.S., California Polytechnic State University, San Luis Obispo, 1972; M.S., 1975. Associate Professor. Registered Civil and Structural Engineer, California.

PHILLIPS, JOHN C. (1974) Horticulture and Crop Science
B.S., Washington State University, 1967; M.S., Colorado State University, 1969; Ph.D., Oregon State University, 1974. Professor and Interim Department Head. Pest Control Advisor, California.

PHILLIPS, STEPHEN J. (2005) Architecture

PIERCE, MELISSA (2001) Admissions, Recruitment and Financial Aid

2007-2009 Cal Poly Catalog
PIERCE, TODD J. (2005) ...English
B.A., Southern California College, 1988; M.A., Oregon State University, 1992;
M.F.A., University of California, Irvine, 1995; Ph.D., Florida State University, 2003. Assistant Professor.

PIETERS, MARYLIN (1979) ...Health and Counseling Services

PIRTO, DOUGLAS D. (1985)Natural Resources Management
B.S., University of Nevada, Reno, 1970; M.S., Colorado State University, 1971;
Ph.D., University of California, Berkeley, 1977. Professor and Department Head.
Registered Professional Forester, California.

PILKINGTON, WAYNE (2005)Electrical Engineering
B.S., University of Rochester, 1999; Ph.D., 2005. Assistant Professor.

PIERCE, TODD J. (2005) ...English
B.A., University of California, Santa Cruz, 1991; Ph.D., Idaho State University, 2001.

B.S., Humboldt State College, 1968; M.S., Humboldt State University, 1972;
Ph.D., Colorado State University, 1976. Professor. Registered Professional Forester, California.

POH, JENS G. (1973) ..Architecture
B.Arch., University of Melbourne, Australia, 1964; M.Bldg.Sci., University of
Sydney, 1967; Ph.D., 1970. Professor, Graduate Coordinator. Registered Architect,
Australia.

POKORNY, CORNEL K. F. (1983)Computer Science
B.S., North Carolina State University, 1970; M.S., 1976; Ph.D., Utah State
University, 1979. Professor.

PLUMMER, WILLIAM E. (1979)Animal Science
B.A., University of California, San Diego, 1975; M.S., 1978; Ph.D., 1981. Assistant Professor.

POLING, JOHN E. (1976) ..Physics

B.A., San Diego State University, 1985; M.S., University of California, Los Angeles, 1995;
Ph.D., 2002. Special Assistant to the Vice Provost, Academic Programs and Undergraduate Education.

PUGA-HABAGIER, A. REZA (1979)Industrial and Manufacturing Engineering
B.S., University of Colorado, 1972; M.S., University of California, 1973; Ph.D.
University of Iowa, 1977. Professor. Certified in Production and Inventory Management (CPIM).

PRESTON, WILLIAM L. (1980)Social Sciences
B.A., Fresno State College, 1971; M.A., California State University, Fresno, 1973;

PROCTOR, ANDREW J. (1973)Kinesiology

PUHL, SUSAN M. (1999) ...Kinesiology
B.S.Ed., Southeast Missouri State University, 1996; M.A.T., 1978; Ph.D.,
Pennsylvania State University, 1986. Professor.

PUJIO-SUARI, JORDI (1998)Aerospace Engineering
B.S., Purdue University, 1988; M.S., 1990; Ph.D., 1993. Professor and Department Chair.

PULITANO, ELVIRA (2006)Ethnic Studies
Laurea (B.A.), Università di Messina, Italy, 1993; University of New Mexico, 1997;
Ph.D., 2002. Assistant Professor.

QENANI-PETRELA, EIVIS (2002)Agrisbusiness
B.S., University of Tirana, Albania, 1987; M.A., Washington State University, 1991;
Ph.D., 2002. Assistant Professor.

QUARLES, MARKEL (1999)Career Services

B.S., University of New Orleans, 1970; J.D., Loyola University School of Law,
1971. Director, Graduate Programs in Accounting.

RAGSDALE, DAVID O. (1991)Administration and Finance

RAGSDALE, JOSEPH J. (2000)Landscape Architecture
B.A., University of California, Berkeley, 1991; M.F.A., University of Virginia,
2000. Assistant Professor.

RAHIM, ASHRAF (2003) ...Civil and Environmental Engineering
B.S., University of Minas, Egypt, 1984; M.S., 1991; Ph.D., University of Mississippi,

RAINLEY, PAUL E. (1987) ..Industrial and Manufacturing Engineering,
Materials Engineering
B.S.M.E., B.S.Met.E., Purdue University, 1967; M.S., Massachusetts Institute of Technology, 1968; Ph.D., Texas A & M University, 1981. Professor, Industrial and Manufacturing Engineering and Materials Engineering. Registered Professional Engineer, Texas.

RAMEZANI, CYRUS A. (1999)Finance
B.A., University of California, Santa Cruz, 1984; M.S., 1988; M.S., University of California,
Berkeley, 1991; Ph.D., 1992. Professor and Area Chair.

RAMIREZ, RICHARD M. (1975)Administration and Finance
B.A., New Mexico State University, 1971; M.B.A., California Polytechnic State
University, San Luis Obispo, 1998. Associate Vice President for Finance.

RAMOS, GEORGE (2003) ...Journalism
B.S., California Polytechnic State University, San Luis Obispo, 1969. Professor
and Department Chair.

RAMOS DOYLE, ELAINE M. (1972, 1976) Research and Graduate Programs
Senior Grants Analyst.

RANDAZZO, ANTHONY JAMES (1977)Industrial Technology
B.S., San Jose State College, 1965; M.A., 1968; Ph.D., Washington State
University, 1976. Professor Emeritus.

RAWLINGS, DON (1980) ...Mathematics
B.S., Arizona State University, 1974; M.A., University of California, San Diego,

REAVES, SCOTT (2003) ..Food Science and Nutrition
B.S., California Polytechnic State University, San Luis Obispo, 1991; Ph.D.,
University of Arizona, 1995. Assistant Professor.

REGIER, RONALD (1987) ...College of Liberal Arts

REICH, JONATHAN (2001) ...Architecture
B.A., University of Washington, Seattle, 1979; B.A.E.D., 1979; M.Arch.,
University of California, Berkeley, 1983. Professor. AIA, Registered Architect,
California and Washington.

REIN, STEVEN (1998) ..Statistics
B.A., University of California, Los Angeles, 1987; M.A., University of California,
Berkeley, 1989; Ph.D., 1993. Associate Professor.

REINHARDT, JAMES (2002)Cal Poly Corporation
B.S.B.A., Bryant College, 1978; M.B.A., National University, 1982. Associate
Executive Director. Certified Public Accountant, California.

RJSTEK, DYLAN Q. (2003) ..Mathematics
B.S., California Polytechnic State University, San Luis Obispo, 1996; M.A.,
Washington University, 1997; Ph.D., 2001. Assistant Professor.

REYNOLDS, NANCY J. (1986)Administration and Finance
B.S., California Polytechnic State University, San Luis Obispo, 1977. Assistant
Director, Fiscal Services.

RICH, MARGARET (PEGGY) S. (1996)Chemistry and Biochemistry
B.S., University of California, Los Angeles, 1979; Ph.D., University of Oregon,
1990. Associate Professor.

RIJAL, SATWANT S. (1969) Architectural Engineering B.S., University of Delhi, India, 1961; M.S., University of Minnesota, 1964; Ph.D., University of New Mexico, 1969. Professor Emeritus. Registered Civil Engineer, California.

SAVAGE, RICHARD (2002) Materials Engineering
B.S., Juniata College, 1975; Ph.D., Indiana University, 1979. Associate Professor.

SCHAEFFER, CAROLE L. (1987) Housing and Residential Life
B.A., Alfred University, 1985; M.S., 1987. Associate Director of Housing/Director of Residential Life and Education.

SCHAFFNER, ANDREW (1997) Statistics
B.S., California Polytechnic State University, San Luis Obispo, 1992; M.S., University of Washington, 1994; Ph.D., 1997. Associate Professor.

SCHAFFNER, DAVID J. (1972) Agribusiness
B.S., University of California, Davis, 1964; M.B.A., University of California, Berkeley, 1975; M.S., California Polytechnic State University, San Luis Obispo, 1978; Ph.D., Golden Gate University, 1980. Professor Emeritus.

SCHAE, JOSEPH K. (2006).......................... Philosophy
B.A., University of California, San Diego, 1995; Ph.D., University of Chicago, 2006. Assistant Professor.

SCHECHTER, MONICA (2000) International Education and Programs
B.A., University of Minnesota, 1984; M.P.A., University of Colorado, Denver, 1993. Associate Director, Study Abroad and CSU International Programs.

SCHNIPP, ALVIN J. (1988) Theatre and Dance
B.S., Millersville State College, 1974; M.A., Bowling Green State University, 1979; Ph.D. University of California, Los Angeles, 1985. Professor.

SCHOONOVER, ROD W. (1994) Chemistry and Biochemistry
B.S., University of Kansas, Lawrence, 1986; M.S., University of Michigan, Ann Arbor, 1989; Ph.D., 1993. Professor.

SCHULTZ, CRAIG J. (1989) Information Technology Services
B.S., California Polytechnic State University, Pomona, 1982; B.S., San Jose State University, 1989; M.B.A., California Polytechnic State University, San Luis Obispo, 1992. Director, User Support Services.

SCHULTZ, NED W. (1976) Psychology and Child Development

SCHUSTER, PETER J. (2003) Mechanical Engineering
B.A., Cornell University, 1991; M.S., Stanford University, 1992; Ph.D., Michigan Technology University, 2000. Associate Professor.

SCHWARTZ, DEBORA (1996) English

SCHWARTZ, PETER V. (2005) Physics
B.S., Massachusetts Institute of Technology, 1986; M.S., Princeton University, 1995; Ph.D., 1998. Assistant Professor.

SCOTT, KENNETH C. (1975) Agribusiness
B.S., Brigham Young University, 1970; Ph.D., Washington State University, 1975. Professor.

SCROVEN, TAL (1980) Philosophy
B.A., University of South Florida, 1976; M.A., 1977; Ph.D., University of Southern California, 1980. Professor and Department Chair.

B.S., California Polytechnic State University, San Luis Obispo, 1998. Assistant for Presidential Events and Programs.

B.S., Abadan Institute of Technology, 1965; M.S., Oklahoma State University, 1973; Ph.D., 1976. Professor Emeritus.

SELBY, MICHAEL J. (1991) Psychology and Child Development
B.S., University of California, Santa Barbara, 1971; M.S., California Polytechnic State University, San Luis Obispo, 1981; Ph.D., Memphis State University, 1988. Professor. Licensed Psychologist, California.

SELF, BRIAN (2006) Mechanical Engineering
B.S., Virginia Polytechnic Institute and State University, 1988; M.S., 1991; Ph.D., University of Utah, 1996. Associate Professor.

SENA, JAMES (1987) Management

B.S., Northwestern University, 1997; M.S., University of California, San Diego, 1999; Ph.D., 2003. Assistant Professor.

SETTLE, ALLEN K. (1970) Political Science

B.S., University of Tripoli, 1974; M.S., University of Southern California, 1978; Ph.D., Oregon State University, 1985. Professor.

SHAFFER, MARY K. (1980) Information Technology Services
B.A., Sonoma State University, 1974. Policy and Program Assurance Specialist, Office of the CIO.

SHAFFER, RICHARD A. (1974) Social Sciences

SHAH, RAMESH T. (1969) Mechanical Engineering
B.E., Maharaja Sayajirao University of Baroda, India; Dr. Ing., Hochschule fur Schwarzenbach, Magdeburg, East Germany, 1999. Professor Emeritus. Registered Professional Engineer, California.

SHANI, ABRAHAM B. (Rami) (1983) Management
B.A., University of Tel Aviv, 1972; M.A., 1978; Ph.D., Case Western Reserve University, 1981. Professor and Area Chair.

SHAPIRO, JONATHAN (1998) Mathematics
B.A., University of California, Berkeley, 1988; Ph.D., 1995. Associate Professor.

B.Sc., Edinburgh University, 1985; Ph.D., 1989. Associate Professor.

SHEIKH, ZAHED (2006) College of Engineering
B.S., AryaMehr University of Technology, Iran, 1978; M.S., University of Iowa, 1981; Ph.D., 1985. Director, Project Based Learning Institute.

SHELTON, MARK D. (1982) College of Agriculture, Food and Environmental Sciences
B.S., University of Idaho, 1977; M.S., Purdue University, 1980; Ph.D., Utah State University, 1989. Associate Dean, Registered Professional Entomologist.

SHEPHERD, LINDA O. (2002) Political Science
B.A., University of California, Los Angeles; M.S., California State University, Sacramento, 1990; M.A., University of California, Davis, 1994; Ph.D., 1998. Associate Professor.

SIHIBATA, MARTIN (1990) Career Services
B.A., University of California, Los Angeles, 1975; M.P.A., California State University, Los Angeles, 1983; additional graduate work, University of Southern California, 1985. Director.

B.S., Cornell University, 1989; M.S., University of California, Berkeley, 1991; Ph.D., 1994. Associate Professor.

SHUMAN, STEFANIE (1977) Testing Services

SIEMBHEDDA, WILLIAM J. (1997) City and Regional Planning

SILVESTRI, MICHAEL G. (1978) Chemistry and Biochemistry
B.S., University of California, Santa Barbara, 1973; Ph.D., University of California, Santa Cruz, 1977. Professor.

SIMER, JAN W. (1977) Chemistry and Biochemistry

B.S., California Polytechnic State University, San Luis Obispo, 1978; M.S., University of California, Berkeley, 1992. Assistant Professor. Registered Professional Engineer, Certified Project Management Professional.

SINGH, JAGJIT (Jay) (2003) Industrial Technology
B.S., Poona University, Pune, India, 1992; M.S., Michigan State University, 1998; Ph.D., 2002. Assistant Professor.

SIROIS, DAWN M. (1995) College of Engineering

SMIDT, ROBERT K. (1978) Statistics B.S., University of Nebraska, 1974; M.S., 1975; Ph.D., Iowa State University, 1980. Professor.

SMITH, TERRY L. (1980) Earth and Soil Sciences B.S., University of Nebraska, Lincoln, 1972; M.S., 1975; Ph.D., Iowa State University, 1980. Professor.

STUBLER, CRAIG P. (1997) Earth and Soil Sciences B.S., California Polytechnic State University, Santa Barbara. Assistant Professor.

SUN, CHENG (1989) Electrical Engineering B.S., National Taiwan University, Taiwan, 1958; M.S., Cornell University, 1962; Ph.D., 1965. Professor.

SUNGER, NILGUN (1989) Physics B.S., Middle East Technical University, Turkey, 1979; Ph.D., University of Missouri, 1985. Professor.
SUTLIFF, DALE A. (1973) .. Landscape Architecture
B.S.L.A., California State Polytechnic College, Pomona, 1965; M.R.P., University
California.

SUTLIFF, MICHAEL A. (1997) .. Kinesiology
B.A., Biola University, 1986; M.S., National University, 1990; Dr. of Arts, Middle
Tennessee State University, 1992. Associate Professor.

SWANSON, DOUGLAS (2006) .. Journalism
B.A., Eastern New Mexico University, 1984; M.A., 1991; Ed.D., Oklahoma State
University, 1999. Associate Professor.

SWARTZ, TERESA A. (1991) .. Marketing
B.S., Clarion University of Pennsylvania, 1974; M.B.A., 1977; Ph.D., Ohio State
University, 1981. Professor.

SWEARINGEN, DON E. (1974) .. Architecture
B.Arch., Oklahoma State University, 1968; M.Arch., University of Illinois, 1972.
Professor. Registered Architect, Arizona.

SWEATT, LISA I. (2000) .. Psychology and Child Development
B.S., University of California, Irvine, 1989; M.A., Ohio State University, 1992;
Ph.D., Loyola University Chicago, 1999. Assistant Professor. Licensed Psychologist, California.

SYDNOR, WILLIAM E. (1981) .. Student Academic Services
B.A., Whittier College, 1971; M.A., University of California, Riverside, 1974;
M.A., California Polytechnic State University, San Luis Obispo, 1986. Coordinator,
Student Sessions; Study Skills Advisor/Instructor, Academic Skills Center.

SZE, LAWRENCE (1998) .. Mathematics
B.S., Louisiana State University, Baton Rouge, 1986; M.A., University of California,
Los Angeles, 1989; Ph.D., Penn State University, 1998. Associate Professor.

SZAŁKOWSKA, BOGDAN (2000) .. Computer Science
B.A., Wroclaw University of Technology, 1996; M.S., 1998; Ph.D., Wroclaw
University of Technology, 2000. Associate Professor.

TANDON, SHYAMA (1983) .. Electrical Engineering
B.S., Banaras University, India, 1965; M.S., University of Iowa, 1971; Ph.D.,

TAUFIK (1999) .. Electrical Engineering
B.S., Northern Arizona University, 1993; M.S., University of Illinois at Chicago,
1995; Dr.Eng., Cleveland State University, 1999. Associate Professor.

TAYLOR, EMILY N. (2005) .. Biological Sciences
B.A., University of California, Berkeley, 1998; Ph.D., Arizona State University, 2005.
Assistant Professor.

TAYLOR, KEVIN M. (1999) .. Kinesiology
B.A., Newcastle and Sunderland Polytechnics, Newcastle, England, 1986; M.S.,
Central Washington University, 1990; Ph.D., University of South Carolina, 1994.
Associate Professor.

TERRY, RAYMOND D. (1974) .. Mathematics
B.S., State University of New York, 1966; M.S., Michigan State University, 1968;
Ph.D., 1972. Professor.

TEXTER, DALE (1991) .. Cal Poly Corporation
B.S., California State University, Northridge, 1976. Chief Financial Officer.

THATCHER, TRACY A. (2005) .. Civil and Environmental Engineering
B.S., University of California, Davis, 1984; M.S., University of California, Berkeley, 1991; Ph.D., 1996. Assistant Professor. Registered Professional Engineer, California.

THOMA, JENNIFER A. (1983) .. Academic Records

THOMPSON, JOHN JAY (1998) .. Modern Languages and Literatures
B.A., University of California, Santa Barbara, 1986; M.A., Yale University, 1987;
M.Phil., 1989; Ph.D., 1993. Professor.

THOMPSON, RICHARD P. (1990) .. Natural Resources Management
B.S., Oklahoma State University, 1974; M.S., 1978; Ph.D., Texas A&M
University, 1990. Professor. Registered Professional Forester, California and
Oklahoma.

THOMPSON, ROBERT C. (1981) .. Agribusiness
B.S., California State Polytechnic College, 1969; M.S., University of California,
Davis, 1970; Ph.D., Colorado State University, 1996. Professor.

THOMSON, JENNIFER (2006) .. Associated Students, Incorporated
B.S., California Polytechnic State University, San Luis Obispo, 2003; M.B.A.,

THORNCROFT, GLEN E. (1998) .. Mechanical Engineering
B.S., University of Central Florida, 1988; MSME, 1991; Ph.D., University of

THULIN, ANDREW J. (1998) .. Animal Science
B.S., California Polytechnic State University, San Luis Obispo, 1977; M.S.,
Kansas State University, Manhattan, 1979; Ph.D., 1985. Professor and Department
Head.

TIEFTE, BRIAN C. (1999) .. Marketing

TODOROV, Todor D. (2003) .. Mathematics
B.S., University of Sofia, 1975; Ph.D., University of Sofia and Bulgarian
Academy of Sciences, 1982. Assistant Professor.

TOKER, UMT (2005) .. Industrial Technology
B.A., Ohio State University, 1964; Ph.D., Stanford University, 1969. Professor and Area Chair.

TOMLINSON, DOROTHY (1983) .. Testing Services
Coordinator. Certified Test Administrator.

TONG, PHILLIP S. (1988) .. Dairy Science
B.S., University of California, Davis, 1977; M.S., Cornell University, 1982; Ph.D.,
1986. Professor and Director of the Dairy Products Technology Center.

TORNAZEZKI, LOU (2006) .. Industrial Technology
B.A., Ohio State University, 1964; Ph.D., Stanford University, 1969. Professor and Area Chair.

TORGESON, EVELYN M. (1989) .. English
B.A., California Polytechnic State University, San Luis Obispo, 1978; M.A.,
1983; Ph.D., University of California, San Diego, 1989. Associate Professor Emeritus.

TRICE, TOM R. (2002) .. English
B.A., Louisiana College, 1981; M.A., Louisiana State University, 1987; Ph.D.,
University of Illinois, 1998. Assistant Professor.

TROXEL, PATRICIA (1990) .. History
B.A., Whitman College, 1978; M.A., University of California, Davis, 1981; M.A.,
Princeton University, 1983; Ph.D., 1986. Associate Professor.

TRYON, BETTE J. (1976) .. Psychology and Child Development
B.A., University of Maryland, 1966; M.S., 1973, Ph.D., Syracuse University, 1976.
Professor Emeritus.

TSO, JIN (1988) .. Aerospace Engineering
B.S., National Taiwan University, 1971; M.S., 1973; Ph.D., Johns Hopkins
University, 1983. Professor.

TUMMER, CLARK S. (1999) .. Computer Science
B.S., Kings College, 1979; M.A., Pennslyvania State University, 1981; J.D.,
University of Maine, 1986; Ph.D., University of California, Irvine, 1999. Professor.

UYYTEWAAL, JOHAN M. (2000) .. Administration and Finance
B.S., Lycée Louis Le Grand, Paris-France, 1977; M.S.C.E., School of Public
Works, Paris-France, 1980; M.S.C.E., University of California, Berkeley, 1982;
M.B.A., University of California, Los Angeles, 1989. Assistant Director, Building
Design and Construction, Facilities Planning and Capital Projects. Registered
Professional Engineer, California.

UYYTEWAAL, KIMBERLY C. (1998) .. Office of the President
Executive Assistant.
VAHEY, TERRY (1984) .. Administration and Finance

VAKALIS, IGNIATOS (2006) Computer Science
B.S., University of Patras, Greece, 1982; M.S., Western Michigan University, 1988; Ph.D., 1992. Professor and Department Chair.

VALEY-LAVER, DEBRA L. (1991) ... College of Liberal Arts, Psychology and Child Development
B.S., University of California, Irvine, 1983; M.S., The Claremont Graduate University, 1988; Ph.D., 1992. Professor and Associate Dean.

VALLE, VICTOR (1992) ... Ethnic Studies
B.A., California State University, Long Beach, 1974; M.A., 1978; M.S.I., Northwestern University, 1981. Professor and Department Chair.

VANASUPA, LINDA S. (1991) Materials Engineering

VAN DRAANEN, NANINE A. (1996) Chemistry and Biochemistry
B.S., Illinois State University, 1982; M.S., 1983; Ed.D., Pepperdine University, 1991. Professor and Associate Dean.

VANESS, HELEN (1987) Student Academic Services
B.S., University of California, Long Beach, 1972. Information Technology Consultant.

VELÁSQUEZ, GLORIA (1985) Modern Languages and Literatures

VERNON, J. SCOTT (1991) ... College of Agriculture, Food and Environmental Sciences
B.S., University of California, Berkeley, 1969; M.S., Texas A&M University, 1974; Ph.D., University of California, Davis, 1981. Professor and Department Chair.

WALKER, KENDRICK W. (1973) Philosophy

B.S., Louisiana Tech University, 1965; Ph.D., Iowa State University, 1969. Professor Emeritus.

WALSH, DANIEL W. (1986) ... College of Engineering, Biomedical and General Engineering, and Materials Engineering
B.S., Rensselaer Polytechnic Institute, 1973; M.S., 1976; Ph.D., 1985. Professor and Associate Dean.

B.S., Ohio State University, 1970; M.S., 1972. Professor.

WALTERS, DIRK R. (1969) Biological Sciences

WANG, FEI (2005) Electrical Engineering
B.S., Peking University, 2000; M.S., University of Cincinnati, 2002; Ph.D., 2005. Assistant Professor.

WARNER, WENDY J. (2006) Agricultural Education and Communication
B.S., The Ohio State University, 1998; Ph.D., University of Florida, 2006. Assistant Professor.

WARNICK-WAIT, PATRICIA (1977)... Academic Records

WATABE BEI ZEL, MADOKA (1993) Food Science and Nutrition

WATERBURY, ARCHIE M. (1973) Biological Sciences

WATSON, WILLIAM E. (2002) Administration and Finance
B.A., University of Redlands, 1980. University Police Chief and Director, University Police.

WEATHERFORD, ALAN M. (1986) Finance
B.A., Louisiana State University, 1969; A.D., Northwestern State University, 1977; M.B.A., University of Dallas, 1981; Ph.D., The University of Texas, Dallas, 1985. Associate Professor.

WEBB, KAREN (1995) Administration and Finance
B.A., University of California, Los Angeles, 1978. Assistant Vice President, Administration and Finance.

WEBBER, ROBERT (2001) English

WEBER, BARBARA J. (1996) College of Science and Mathematics
B.S., University of Tennessee, Knoxville, 1994; M.A., California Polytechnic State University, San Luis Obispo, 2004. Academic Advisor.

WEBNER, DAVID J. (1994) College of Agriculture, Food and Environmental Sciences
B.S., University of Notre Dame, 1972; M.S., Pennsylvania State University, 1975; Ph.D., 1979. Dean.

WEISENTHAL, HOWARD (1984) Architecture

WALDEN, NANCY J. (1996) Health and Counseling Services

WALDORF, DANIEL (1998) Industrial and Manufacturing Engineering
B.S., University of Illinois at Urbana-Champaign, 1989; M.S., 1991; Ph.D., 1996. Associate Professor. Registered Professional Engineer, California.

B.S., University of Chicago, 1988; M.S., Cornell University, 1993; Ph.D., 1995. Associate Professor.
WELLMAN, RICHARD, MAJ (2005)..Military Science
B.S., University of Kansas, 1997.

WENDT, DEAN E. (2002)...Biological Sciences
B.S., California Polytechnic State University, San Luis Obispo, 1993; A.M., 1995; Ph.D., Harvard University, 1999. Associate Professor.

WENZL, MICHAEL J. (1969)...English
B.A., University of Oregon, 1963; M.A., 1965; Ph.D., University of New Mexico, 1969; postdoctoral study, University of California, Berkeley. Professor.

WETZEL, S. JEAN (1996)..Art and Design

WHITE, DONALD E. (1987)...Industrial and Manufacturing Engineering
B.S., University of California, Berkeley, 1965; M.S., Stevens Institute of Technology, 1967; Ph.D., Case Western Reserve University, 1971; M.B.A., Pepperdine University, 1980. Professor.

WHITE, MATTHEW E. (2001)..Mathematics
B.S., Cornell University, 1990; M.S., California Polytechnic State University, San Luis Obispo, 1994; Ph.D., University of California, Santa Barbara, 2000. Assistant Professor.

WHITEFORD, MARY A. (1982)..Academic Programs

WIDMAN, JAMES M. (2004)..Mechanical Engineering
BSME, Michigan Technological University, 1987; MSME, Stanford University, 1988; Ph.D., Stanford University, 1995. Associate Professor.

WILD, ROSEMARY (1999)..Management

WILEMON, CARBIE (2002)..Administration and Finance
B.A., California Polytechnic State University, San Luis Obispo, 1999. Human Resources Manager.

WILLIAMS, JEAN M. (2000)..Political Science
B.A., Pomona College, 1988; M.A., The Johns Hopkins University, 1996; Ph.D., 1998. Associate Professor and Department Chair.

WILLIAMS, JOANNE (1991)..Cal Poly Corporation
B.S., California Polytechnic State University, San Luis Obispo, 1987. Director, Human Resources.

WILLIAMSON, DANIEL P. (1970)..Economics
B.A., University of California, Santa Barbara, 1966; Ph.D., University of California, San Diego, 1973. Professor Emeritus.

WILT, PETER J. (1983)...College of Liberal Arts

WINEBRENNER, TERRENCE C. (1983)..Communication Studies
B.S., Southwest Missouri State University, 1971; M.A., 1972; Ph.D., Ohio State University, 1985. Professor.

WINSTEAD, CANDACE B. (2005)..Biological Sciences
B.A., Augustana College, 1991; Ph.D., Loyola University, 1999. Assistant Professor.

WOLF, MARIANNE McGARRY (1994)...Agribusiness

WOLLMAN, MICHAEL T. (1982)..Electrical Engineering
B.E.E., Cornell University, 1964; M.S., University of Hawaii, 1966; Ph.D., University of California, Santa Barbara, 1975. Professor Emeritus.

WONG, JEFFREY C. (2002)..Horticulture and Crop Science
B.S., University of California, Berkeley, 1974; M.S., University of Illinois at Champaign, 1999; Ph.D., 2002. The J. G. Boswell Foundation of Pasadena Endowed Chair.

WONG, KINSLEY (1989)...Housing and Residential Life
B.S., California Polytechnic State University, San Luis Obispo, 1990. Assistant Director for Housing Information Systems.

WOOD, JOHN (2006)...Housing and Residential Life

WOOD, ZOE J. (2003)..Computer Science
B.A., University of California, Santa Cruz, 1992; B.S., 1997; M.S., California Institute of Technology, 2000; Ph.D., 2003. Assistant Professor.

WOOTEN, RUDY A. (1977)...Animal Science

WU, XI (2005)..Mechanical Engineering
B.S., Chong Qing University, 1991; Dr. Eng., Cleveland State University, 2005. Assistant Professor.

YANG, TAO H. (1997)...Industrial and Manufacturing Engineering
B.S., Tunghai University, Taiwan, 1978; M.S., San Jose State University, 1982; Ph.D., Arizona State University, 1987. Associate Professor.

YELLAND, GEORGE L. (1988)..Information Technology Services

YEUNG, PO SAI MARIE (2006)..Biological Sciences
B.S., The Chinese University of Hong Kong, 1995; M.S., California Polytechnic State University, San Luis Obispo, 2001; Ph.D., Cornell University, 2004. Assistant Professor.

YILDIZ, ILHAM (2007)...BioResource and Agricultural Engineering
B.S., University of Ankara, 1983; M.S., 1985; M.S., The Ohio State University, 1987; M.S.M.E., 1993; Ph.D., 1993. Associate Professor.

YIP, CHRISTOPHER L. (1988)..Architecture

YONG, YUEN-CNEN (1978)...Mechanical Engineering
B.S., University of Malaya, 1969; M.E., University of California, Davis, 1971; Ph.D., 1984. Professor. Registered Professional Engineer, Great Britain and Malaysia.

YOSHIMURA, MICHAEL A. (1975)..Biological Sciences
B.A., Stanford University, 1970; M.S., University of Hawaii, 1972; Ph.D., University of Arizona, 1975. Professor and Department Chair.

YU, XIAO-HUA (HELEN) (2000)..Electrical Engineering
B.S., TsingHai University, People's Republic of China, 1988; M.S., Temple University, 1992; Ph.D., University of California, Irvine, 1998. Associate Professor.

ZAMMIT, RONALD E. (1986)..Physics
B.S., Louisiana State University, 1969; M.S., Purdue University, 1971; Ph.D., 1975. Professor.

ZHIANG, XIAOZHENG (JANE) (2003).......................................Electrical Engineering
Diplom, University of Erlanger-Nuremberg, Germany, 1997; Ph.D., Georgia Institute of Technology, 2002. Assistant Professor.

ZEUSCHNER, RAYMOND L. (1980)...Communication Studies

B.S., California Polytechnic State University, San Luis Obispo, 1981; M.S., University of California, Davis, 1983; D.Engr., 1986. Professor. Registered Mechanical Engineer, California.

ZOHNS, MICHAEL D. (1974)...Horticulture and Crop Science
B.S., California Polytechnic State University, San Luis Obispo, 1972; M.S., 1975. Professor.

ZULFACAR, MALIHA (2002)...Social Sciences

ZUUR, THOMAS L. (1983)...Academic Records

ZWEIFEL, K. RICHARD (1972)...College of Architecture and Environmental Design
Appendix

HIGHER EDUCATION ACT (HEA)
www.academics.calpoly.edu/ees/HEA.htm
Under the Higher Education Act of 1965 (HEA) and its many
amendments, Cal Poly is required to make certain disclosures and
institutional information "readily available" to prospective and enrolled
students, employees, the general public and the department of
education on an annual basis (20 U.S.C. Section 1092(a)). For
additional information, please contact the Dean of Students Office at
(805) 756-0327.

Privacy Rights of Students in Education Records
www.calpoly.edu/_records/ferpa_use.htm
The federal Family Educational Rights and Privacy Act (FERPA) of
1974 (20 U.S.C. 1232g) and regulations adopted thereunder (34 C.F.R.
99) set out requirements designed to protect students' privacy in their
records maintained by the campus. The statute and regulations govern
access to student records maintained by the campus and the release of
such records. The law provides that the campus must give students
access to records directly related to the student, and must also provide
access to records that are not directly related to the student, but are
so related as to be reasonably related to the student. The right to
a hearing under this law does not include any right to challenge the
appropriateness of a grade determined by the instructor. The law
generally requires the institution to receive a student's written consent
before releasing personally identifiable data about the student. The
institution has adopted a set of policies and procedures governing
implementation of the statute and the regulations. Copies of these
policies and procedures may be obtained at the Office of Academic
Records or the Educational Equity Services Office. Among the types
of information included in the campus statement of policies and
procedures are:
1) the types of student records maintained and the information they
contain; 2) the official responsible for maintaining each type of record;
3) the location of access lists indicating persons requesting or receiving
information from the record; 4) policies for reviewing and expunging
records; 5) student access rights to their records; 6) the procedures for
challenging the content of student records; 7) the cost to be charged for
reproducing copies of records; and 8) the right of the student to file a
complaint with the Department of Education. The Department of
Education has established an office and review board to investigate
complaints and adjudicate violations. The designated office is: Family
Policy Compliance Office, U.S. Department of Education,
Washington, D.C. 20202-4605.

The campus is authorized under the Act to release "directory information" concerning students. "Directory information" may include the student's name, address, telephone listing, electronic mail address, photograph, date and place of birth, major field of study, participation in officially recognized activities and sports, weight and height of members of athletic teams, dates of attendance, grade level, enrollment status, degrees, honors, and awards received, and the most recent previous educational agency or institution attended by the student. The above-designated information is subject to release by the campus at any
time unless the campus has received prior written objection from the student specifying what information the student requests not be
released. Written objections should be sent to the University Registrar.

The campus is authorized to provide access to student records to
campus officials and employees who have legitimate educational
interests in such access. These persons have responsibilities in the
campus' academic, administrative or service functions and have reason
for accessing student records associated with their campus or other
related academic responsibilities. Student records may also be
disclosed to other persons or organizations under certain conditions
(e.g., as part of accreditation or program evaluation; in response to a
court order or subpoena; in connection with financial aid; or to other
institutions to which the student is transferring).

Completion/Graduation Rates
www.ipa.calpoly.edu/federal/fed.html
In 2006, the graduation rate for Cal Poly freshmen who entered the
University in the Fall of 2000 was 67.7%. For more detailed
information, please contact Institutional Planning and Analysis at 805
756-2461.

Equity in Athletics Disclosure Act (EADA)
www.calpoly.edu/~inststdy/federal/fed.html
The Equity in Athletics Disclosure Act requires co-educational
institutions of postsecondary education that participate in a Title IV,
federal student financial assistance program, and have an intercollegiate
athletic program, to prepare an annual report to the Department of
Education on athletic participation, staffing, and revenues and expenses,
by men's and women's teams.

In compliance with this requirement, information contained in the
current report for Cal Poly San Luis Obispo is available on the US
Department of Education's web site at http://ope.ed.gov/
athletics/Search.asp. Alternatively, a link is also available to this and
other publications through Cal Poly's Institutional Planning & Analysis
web site (see link at top of this section). A paper copy of the report is
available upon request.

Campus Security Report (Clery Act)
www.qfd.calpoly.edu/Police/
Crime statistics for Cal Poly are provided for all prospective and
current students, faculty and staff on the website, along with critical
updates and prevention advisories. These statistics are reported
monthly to the Federal and State Departments of Justice as well as to
the Office of the Chancellor of the CSU. Crime statistics are published
to inform the campus community and to meet mandated reporting
requirements. A printed copy of the Campus Security Report is
available upon request by the University Police Department.

Institutional and Financial Assistance Information
Student Financial Assistance. Director, Financial Aid, Admin. 212,
756-2927:
1. A description of the federal, state, institutional, local, and private
student financial assistance programs available to students who enroll
at Cal Poly;
2. For each aid program, a description of procedures and forms by
which students apply for assistance, student eligibility requirements,
criteria for selecting recipients from the group of eligible applicants,
and criteria for determining the amount of a student’s award;
3. A description of the rights and responsibilities of students receiving
financial assistance, including federal Title IV student assistance
programs, and criteria for continued student eligibility under each
program;
4. The satisfactory academic progress standards that students must
maintain for the purpose of receiving financial assistance and criteria
by which a student who has failed to maintain satisfactory progress
may reestablish eligibility for financial assistance;
5. The method by which financial assistance disbursements will be
made to students and the frequency of those disbursements;

2007-2009 Cal Poly Catalog
6. The terms of any loan received as part of the student's financial aid package, a sample loan repayment schedule, and the necessity for repaying loans;
7. The general conditions and terms applicable to any employment provided as part of the student's financial aid package;
8. The responsibility of Cal Poly for providing and collecting exit counseling information for all student borrowers under the federal student loan programs; and
9. The terms and conditions for deferral of loan payments for qualifying service under the Peace Corps Act, the Domestic Volunteer Service Act of 1973, or comparable volunteer community service.

Return of Federal Title IV student assistance funds. Director, Financial Aid, Admin. 212, 756-2927.

Cost of Attending Cal Poly. Director, Financial Aid, Admin. 212, 756-2927: fees and tuition (where applicable); the estimated costs of books and supplies; estimates of typical student room, board, and transportation costs; and, if requested, additional costs for specific programs.

Refund Policies. Registrar, Admin. 222, 756-2531: return of unearned tuition and fees or other refundable portions of institutional charges.

Facilities and Services available to Students with Disabilities. Director, Disability Resource Center, Student Services Bldg. (124), 756-1395.

Reporting Criminal Actions or Other Emergencies. University Police, Building 74, 756-2281.

Prevention of Drug and Alcohol Abuse and Rehabilitation Programs. Office of the Vice President for Student Affairs, Admin. 209, 756-1521.

Grievance Procedures for Students. The Dean of Students Office, Bldg 124, Rm 125, 756-03271.

Teacher Certification Examinations, pass rates, teacher preparation programs. College of Education, Bldg 2, Rm 120, 756-2126.

CAMPUS SMOKING POLICY
Please view the revised smoking policy for the Cal Poly campus implemented January 1, 2004 at http://policy.calpoly.edu/cap/cap100/cap190.htm

CAREER PLACEMENT
The Career Services office (805-756-2501) may furnish, upon request, information about the employment of students who graduate from programs or courses of study preparing students for a particular field. This information includes data concerning the average starting salary and the percentage of previously enrolled students who obtained employment. The information may include data collected from either graduates of the campus or graduates of all campuses in the California State University system.

MILITARY SELECTIVE SERVICE ACT
The federal Military Selective Service Act (the "Act") requires most males residing in the United States to present themselves for registration with the Selective Service System within thirty days of their eighteenth birthday. Most males between the ages of 18 and 25 must be registered. Males born after December 31, 1959 may be required to submit a statement of compliance with the Act and regulations in order to receive any grant, loan, or work assistance under specified provisions of existing federal law. In California, students subject to the Act who fail to register are also ineligible to receive any need-based student grants funded by the state or a public postsecondary institution. Selective Service registration forms are available at any U.S. Post Office, and many high schools have a staff member or teacher appointed as a Selective Service Registrar. Applicants for financial aid can also request that information provided on the Free Application for Federal Student Aid (FAFSA) be used to register them with the Selective Service. Information on the Selective Service System is available and the registration process may be initiated online at http://www.sss.gov.

DETERMINATION OF RESIDENCE FOR NONRESIDENT TUITION PURPOSES
The law governing residence for tuition purposes at the California State University is California Education Code sections 68000-68090, 68120-68134, and 89705-89707.5, and California Code of Regulations, Title 5, sections 41900-41916. This material can be viewed on the Internet by accessing the California State University's website at www.calstate.edu/GC/resources.shtml.

Each campus's Admissions Office is responsible for determining the residence status of all new and returning students based on the Application for Admission, Residency Questionnaire, Reclassification Request Form, and, as necessary, other evidence furnished by the student. A student who fails to submit adequate information to establish eligibility for resident classification will be classified as a nonresident.

Generally, establishing California residence for tuition purposes requires a combination of physical presence and intent to remain indefinitely. An adult who, at least one full year prior to the residence determination date for the term in which enrollment is contemplated, can demonstrate physical presence in the state combined with evidence of intent to remain in California indefinitely, may establish California residence for tuition purposes. A minor normally derives residence from the parent(s) they reside with or most recently reside with. Evidence demonstrating intent may vary from case to case but will include, and is not limited to, the absence of residential ties to any other state, California voter registration and voting in California elections, maintaining California registration and driver's license, maintaining active California bank accounts, filing California income tax returns and listing a California address on federal tax returns, owning residential property or occupying or renting an apartment where permanent belongings are kept, maintaining active memberships in California professional or social organizations, and maintaining a permanent military address and home of record in California.

Non-citizens establish residence in the same manner as citizens, unless precluded by the Immigration and Nationality Act from establishing domicile in the United States.

Exceptions to the general residence requirements are contained in California Education Code sections 68070-68084 and California Code of Regulations, Title 5, Subchapter 3, Article 4, sections 41906-41906.5, and include, but are not limited to, members of the military and their dependents, certain credentialed employees of school districts and most students who have attended high school in California and graduated or attained the equivalent. Whether an exception applies to a particular student cannot be determined before the submission of an application for admission and, as necessary, additional supporting documentation. Because neither campus nor Chancellor's Office staff may give advice on the application of these laws, applicants are strongly urged to review the material for themselves and consult with a legal advisor.

Nonresident students seeking reclassification are required to complete a supplemental questionnaire including questions concerning their financial dependence, which will be considered along with physical presence and intent in determining reclassification.

Residence determination dates
Fall September 20 Spring April 1
Winter January 5 Summer July 1

Students classified as non-residents may appeal a final campus decision within 120 days of notification by the campus. A campus residence classification appeal must be in writing and submitted to:

The California State University, Office of General Counsel,
401 Golden Shore, 4th Floor, Long Beach, CA 90802-4210

The Office of General Counsel can either decide the appeal or send the matter back to the campus for further review.

2007-2009 Cal Poly Catalog
Students incorrectly classified as residents or incorrectly granted an exception from nonresident tuition are subject to reclassification as nonresidents and payment of nonresident tuition in arrears. If incorrect classification results from false or concealed facts, the student is subject to discipline pursuant to Section 41301 of Title 5 of the California Code of Regulations.

Resident students who become nonresidents or who no longer meet the criteria for an exception must immediately notify the Admissions Office.

Changes may have been made in the rate of nonresident tuition and in the statutes and regulations governing residence for tuition purposes in California between the time this information is published and the relevant residence determination date. Students are urged to review the statutes and regulations stated above.

USE OF SOCIAL SECURITY NUMBER

Applicants are required to include their correct social security numbers in designated places on applications for admission pursuant to the authority contained in Section 41201, Title 5, California Code of Regulations, and Section 6109 of the Internal Revenue Code (26 U.S.C. 6109). The University uses the social security number to identify students and their records including identification for purposes of financial aid eligibility and disbursement and the repayment of financial aid and other debts payable to the institution. Also, the Internal Revenue Service requires the University to file information returns that include the student's social security number and other information such as the amount paid for qualified tuition, related expenses, and interest on educational loans. This information is used by the IRS to help determine whether a student, or a person claiming a student as a dependent, may take a credit or deduction to reduce federal income taxes.

STUDENT CONDUCT

Inappropriate conduct by students or by applicants for admission is subject to discipline as provided in Sections 41301 through 41304 of Title 5, California Code of Regulations. These sections are:

41301. **Standards for Student Conduct.** The University is committed to maintaining a safe and healthy living and learning environment for students, faculty, and staff. Each member of the campus community must choose behaviors that contribute toward this end. Student behavior that is not consistent with the Student Conduct Code is addressed through an educational process that is designed to promote safety and good citizenship and, when necessary, impose appropriate consequences.

(a) **Student Responsibilities**

Students are expected to be good citizens and to engage in responsible behaviors that reflect well upon their university, to be civil to one another and to others in the campus community, and to contribute positively to student and university life.

(b) **Unacceptable Student Behaviors**

The following behavior is subject to disciplinary sanctions:

1. Dishonesty, including:
 - Cheating, plagiarism, or other forms of academic dishonesty that are intended to gain unfair academic advantage.
 - Furnishing false information to a University official, faculty member, or campus office.
 - Forgery, alteration, or misuse of a University document, key, or identification instrument.
 - Misrepresenting oneself to be an authorized agent of the University or one of its auxiliaries.
2. Unauthorized entry into, presence in, use of, or misuse of University property.
3. Willful, material and substantial disruption or obstruction of a University-related activity, or any on-campus activity.
4. Participating in an activity that substantially and materially disrupts the normal operations of the University, or infringes on the rights of members of the University community.
5. Willful, material and substantial obstruction of the free flow of pedestrian or other traffic, on or leading to campus property or an off-campus University-related activity.
6. Disorderly, lewd, indecent, or obscene behavior at a University-related activity, or directed toward a member of the University community.
7. Conduct that threatens or endangers the health or safety of any person within or related to the University community, including physical abuse, threats, intimidation, harassment, or sexual misconduct.
8. Hazing, or conspiracy to haze. Hazing is defined as: any method of initiation or pre-initiation into a student organization or student body, whether or not the organization or body is officially recognized by an educational institution, which is likely to cause serious bodily injury to any former, current, or prospective student of any school, community college, college, university or other educational institution in this state (Penal Code 245.6), and in addition, any act likely to cause physical harm, personal degradation or disgrace resulting in physical or mental harm, to any former, current, or prospective student of any school, community college, university, or other education-al institution. The term “hazing” does not include customary athletic events or school sanction events. Neither the express or implied consent of a victim of hazing, nor the lack of active participation in a particular hazing incident is a defense. Apathy or acquiescence in the presence of hazing is not a neutral act, and is also a violation of this section.
9. Use, possession, manufacture, or distribution of illegal drugs or drug-related paraphernalia, (except as expressly permitted by law and University regulations) or the misuse of legal pharmaceutical drugs.
10. Use, possession, manufacture, or distribution of alcoholic beverages (except as expressly permitted by law and University regulations, or public intoxication while on campus or at a University-related activity.
11. Theft of property or services from the University community, or misappropriation of University resources.
12. Unauthorized destruction, or damage to University property or other property in the University community.
13. Possession or misuse of firearms or guns, replicas, ammunition, explosives, fireworks, knives, other weapons, or dangerous chemicals (without the prior authorization of the campus president) on campus or at a University-related activity.
14. Unauthorized recording, dissemination, or publication of academic presentations (including handwritten notes) for a commercial purpose.
15. Misuse of computer facilities or resources, including:
 - Unauthorized entry into a file, for any purpose.
 - Unauthorized transfer of a file.
 - Use of another's identification or password.
 - Use of computing facilities, campus network, or other resources to interfere with the work of another member of the University community.
 - Use of computing facilities and resources to send obscene or intimidating and abusive messages.
 - Use of computing facilities and resources to interfere with normal University operations.
 - Use of computing facilities and resources in violation of copyright laws.
 - Violation of a campus computer use policy.

2007-2009 Cal Poly Catalog
(16) Violation of any published University policy, rule, regulation or presidential order.
(17) Failure to comply with directions of, or interference with, any University official or any public safety officer while acting in the performance of his/her duties.
(18) Any act chargeable as a violation of a federal, state, or local law that poses a substantial threat to the safety or well-being of members of the University community, to property within the University community or poses a significant threat of disruption or interference with University operations.
(19) Violation of the Student Conduct Procedures, including:
(A) Falsification, distortion, or misrepresentation of information related to a student discipline matter.
(B) Disruption or interference with the orderly progress of a student discipline proceeding.
(C) Initiation of a student discipline proceeding in bad faith.
(D) Attempting to discourage another from participating in the student discipline matter.
(E) Attempting to influence the impartiality of any participant in a student discipline matter.
(F) Verbal or physical harassment or intimidation of any participant in a student discipline matter.
(G) Failure to comply with the sanction(s) imposed under a student discipline proceeding.
(20) Encouraging, permitting, or assisting another to do any act that could subject him or her to discipline.
(c) Procedures for Enforcing this Code
The Chancellor shall adopt procedures to ensure students are afforded appropriate notice and an opportunity to be heard before the University imposes any sanction for a violation of the Student Conduct Code.
(d) Application of this Code
Sanctions for the conduct listed above can be imposed on applicants, enrolled students, students between academic terms, graduates awaiting degrees, and students who withdraw from school while a disciplinary matter is pending. Conduct that threatens the safety or security of the campus community, or substantially disrupts the functions or operation of the University is within the jurisdiction of this Article regardless of whether it occurs on or off campus. Nothing in this Code may conflict with Education Code section 66301 that prohibits disciplinary action whether it occurs on or off campus. Students who will require a professional or commercial license provided by a local, state, or federal government agency in order to engage in an occupation for which the CSU may be training them must meet the immigration requirements of the Personal Responsibility and Work Opportunity Reconciliation Act to achieve licensure. Information concerning these requirements is available from the Academic Programs Office, Admin. 315; 756-2246.

AVERAGE SUPPORT COST PER FULL-TIME EQUIVALENT STUDENT AND SOURCES OF FUNDS
The total support cost per full-time equivalent student includes the expenditures for current operations, including payments made to students in the form of financial aid, and all fully reimbursed programs contained in state appropriations. The average support cost is determined by dividing the total cost by the number of full-time equivalent students (FTES). The number of projected 2006/07 full-time equivalent students (FTES) is 348,262. The number of full-time equivalent students is determined by dividing the total academic student load by 15 units per term (the figure used here to define a full-time student’s academic load).

The 2006/07 average support cost per full-time equivalent student based on General Fund appropriation and State University Fee revenue only is $10,928 and when including all sources as indicated below is $12,086. Of this amount, the average student fee support per FTE is $3,551, which includes all fee revenue in the CSU Operating Fund (e.g., State University Fee, nonresident tuition, application fees, miscellaneous course fees).

<table>
<thead>
<tr>
<th></th>
<th>Amount</th>
<th>Average Cost Per FTES</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Support Cost</td>
<td>$4,209,119,000</td>
<td>$12,086</td>
<td>100.0</td>
</tr>
<tr>
<td>State Appropriation</td>
<td>2,788,910,000</td>
<td>8,008</td>
<td>66</td>
</tr>
<tr>
<td>Student Fee Support1</td>
<td>1,016,931,000</td>
<td>2,920</td>
<td>24</td>
</tr>
<tr>
<td>Other Income and Reimbursements2</td>
<td>403,278,000</td>
<td>1,158</td>
<td>10</td>
</tr>
</tbody>
</table>

1. Student fee support represents campus 2006/07 final budget submitted State University Fee revenue deposited in the State Treasury/state higher education fund.
2. The other income and reimbursements represent campus other fee 2006/07 final budget revenues submitted, as well as reimbursements in the CSU Operating Fund.

The average CSU 2006/07 academic year, resident, undergraduate student fees required to apply to, enroll in, or attend the university is $3,199. However, the costs paid by individual students will vary depending on campus, program, and whether a student is part-time, full-time, resident, or nonresident.
Absence, leaves of, 62.
Academic advising, 19.
Academic calendar, 8.
Academic freedom, statement on, 17.
Academic honors, 55.
Academic minors, 55.
Academic obligations, 67.
Academic probation and disqualification, 68.
Academic programs, 12.
Academic renewal, 64.
Academic requirements and policies, 47.
Academic standards, 67.
Academic year, 11.
Accelerated blended engineering program, 181.
Accessibility of Cal Poly electronic and information technology resources, 18.
Accounting, concentration, 152.
MS program, 165.
Admissions, 37.
early decision, 40.
regular decision, 40.
subject requirements, 38.
undergraduate requirements, 37-41.
Adult degree program, 287.
Advanced placement, 49.
Advancement to candidacy, 74.
Advising, academic, 23, 35.
Aerospace engineering, 185.
AERO courses, 291.
MS program, 186.
Aeronautics concentration, 186.
Agribusiness, 91.
AGB courses, 296.
MBA specialization, 163.
minor, 93.
MS program, 93.
Agribusiness finance and appraisal concentration, 92.
Agribusiness management concentration, 92.
Agribusiness marketing concentration, 92.
Agribusiness policy concentration, 93.
Agricultural business, 91.
Agricultural communication, AGC courses, 299.
minor, 82.
Agricultural education, and communication, 94.
AGED courses, 300.
MS specialization, 88.
Agricultural engineering, bioresource and, 100.
(BRAE) courses, 322.
Agricultural engineering technology, MS specialization, 88.
Agricultural enterprise projects, 81.
Agricultural mechanics concentration, 95.
Agricultural science, 94.
Agriculture specialist credential, 169.
Agricultural supplies and services concentration, 95.
Agricultural systems management, 101.
(BRAE) courses, 322.
Agricultural teaching credentials, 96.
Agriculture, Food and Environmental Sciences, college of, 79.
AG courses, 294.
MS program, 87.
Alcohol on campus, 503, 504.
Alumni association, 26.
American politics concentration, 246.
Anatomy-physiology concentration, 267.
Animal science, 97.
ASCI courses, 313.
Food science concentration, 112.
BCLAD credential, 169.
Bilingual crosscultural language and academic development (BCLAD), 169.
Biochemical engineering, MS specialization, 181.
Biochemistry, 270.
Bioengineering, concentration, 191.
MS specialization, 181.
Biological sciences, 264.
MS program, 269.
Biology, 264.
BIO courses, 317.
minor, 266.
Biomedical engineering, 188.
BMED courses, 321.
concentration, 191.
MS specialization, 181.
Biowaste and natural resource engineering, 100.
BRAE courses, 322.
Architecture, 136.
ARCH courses, 305.
MS program, 138.
Off-campus programs, 21, 136.
Architecture and environmental design, college of, 130.
Advising center, 132.
Architecture planning track, 138.
ART, courses, 309.
Art minor, 222.
Art and design, 220.
ASI children's center, Orfalea family and, 30.
ASI Events, 29.
Associated students, inc. (ASI), 28.
Astronautics concentration, 186.
Astronomy, 281.
ASTR courses, 316.
Athletic program grants-in-aid, 44.
Athletics, eligibility, 69.
tercollegiate, 288.
Attendance, 62.
Auditing of courses, 65.
Australia study program, 22.
Average annual cost of education, 505.
Awards, teachers, 475, 477.
Bachelor's degree, definition, 10.
requirements, 52.
second, 56.
Basic food science concentration, 112.
BCLAD credential, 169.
Bilingual crosscultural language and academic development (BCLAD), 169.
Biochemical engineering, MS specialization, 181.
Biochemistry, 270.
Bioengineering, concentration, 191.
MS specialization, 181.
Biological sciences, 264.
MS program, 269.
Bioresource and agricultural engineering, 100.
BRAE courses, 322.
2007-2009 Cal Poly Catalog
Biotechnology minor, 262.
programs, 19.
Blended BS+MS programs, 75.
Bookstore, El Corral, inside front cover, 26
Botany, 264.
BOT courses, 322.
Business administration, 151.
MBA program, 162.
Business, Orfalea college of, 148.
BUS courses, 326.
advising center, 150.
minor, 160.
Calendar, academic, 8.
California State University, 472.
Cal Poly at sea, 22.
Cal Poly Corporation (formerly
Foundation), 26.
Campus map, inside back cover.
Campus security report (Clery Act), 502.
Cancellation of registration, 44.
Campus Center, 34.
Community service programs, 30, 34.
Commencement, 34.
Confirmation of admission, 41.
Connections for academic success (CAS),
43.
Construction management, 144.
CM courses, 341.
minor, 145.
Continuing education, 286.
Continuing education in agriculture, 94.
Cooperative education (CoOp), 31.
Counseling and family psychology
concentration, 251.
Counseling and guidance, MA
specialization, 173.
Counseling (psychological) services, 32.
Course, miscellaneous fee, 290.
numbering system, 11.
reserves, 24.
substitution, 55.
Courses, definition, 10.
descriptions, 290.
list by prefix, 289.
CRPReg. 61.
Craft center, 29.
Credentials, 169.
Credit by examination, 51.
Credit cards, use of, 43.
Credit for, community college courses, 49.
graduate credit taken by
undergraduates, 56.
military service, 51.
noncollegiate instruction, 51.
Credit/no credit grading, 64.
grades, 75.
Criminal justice concentration, 255.
Crop and soil science concentration, 96.
Crop science, 114.
CRSC courses, 351.
minor, 116.
MS specialization, 89.
Cross-cultural studies and international
development concentration, 255.
CSU, The, 472.
Culinary science and management in
nutrition concentration, 113.
Culminating experience (graduate degree),
76.
Dairy products technology, center, 19, 89,
104.
Dance, minor, 257.
DANC courses, 357.
Dean of students, 31.
Dean's list, 55.
Debts owed to the University, 42.
Definitions, 10.
Degree, definitions, 10.
programs, list of, 12.
requirements, 53.
Design reproduction technology
concentration, 231.
Determination of residence for nonresident
tuition purposes, 503.
Developmental psychology concentration,
251.
Dietetic internship, 111.
Dining, 26.
Diplomas, 58.
Disability resource center, 31.
Disciplinary procedures, 69.
Dismissal, 68.
Disqualification, 68.
Distance learning, 286
Distinguished teachers, 475, 477.
Diversity, 16.
Document systems management, MBA
specialization, 163, 230.
Double-counting, 56.
Double majors, 55.
Dropping a class, 62.
Drugs, 503, 504.
Early decision option, 40.
Earth and soil sciences, 106.
ERSC courses, 384.
Ecology concentration, 267.
Economics, 156.
ECON courses, 360.
minor, 160.
Education specialist credential, 171.
Education, college of, 167.
EdD program, 175.
EDUC courses, 363.
MA program, 172.
teaching credentials, 169.

2007-2009 Cal Poly Catalog
Educational leadership, EdD program, 175. and administration, MA specialization, 174.
Educational leave, 63.
Educational opportunity program (EOP), 33.
Educational talent search (ETS), 34.
El Corral Bookstore, inside front cover, 26.
Electrical engineering, 204.
EE courses, 368.
honors program, joint BS/MS, 205.
MS program, 207.
Electronic publishing and imaging concentration, 232.
Electronics, 204, 283.
Electronics concentration, 283.
Electro-optics concentration, 283.
Elementary education, 168, 237.
Eligibility for, athletics, 69.
index for admissions, 37.
student activities, 69.
ELM (Entry level mathematics), 47.
E-mail - an official means of communication to students, 18.
Emeriti, faculty, 475.
staff, 475.
Employment, students, 30.
equity, 16.
Endowed chairs, 20.
Engineering, college of, 176.
advising center, 178.
BS + MS, accelerated blended program, 181.
ENGR courses, 381.
MS program, 180.
Engineering management, MBA/MS specialization, 164, 182.
English, 225.
ENGL courses, 375.
MA program, 227.
minor, 226.
English placement test (EPT), 47.
Enology concentration, 86.
Enrollment, intrasystem and intersystem, 63.
open university (at Cal Poly), 286.
policy, 62.
status, 62.
Enterprise project, 81.
Entrepreneurship and small business concentration, 155.
Entry level mathematics (ELM) requirement, 47.
Environmental biotechnology institute (EBI), 19.
Environmental design, 130.
EDES courses, 363.
MS specialization, 138.
Environmental engineering, 192.
ENVE courses, 382.
Environmental horticultural science, 114.
EHS courses, 373.
MS specialization, 89.
Environmental interpretation and assessment concentration, 108.
Environmental management, and protection, 125.
concentration, 109.
Environmental impact mitigation strategies concentration, 127.
Environmental planning and assessment concentration, 125.
Environmental policy and management concentration, 127.
Environmental science and technology concentration, 109.
Environmental studies and sustainability concentration, 255.
Environmental studies minor, 263.
Epicenter, 29.
Equine science minor, 98.
Equity in athletics disclosure act (EADA), 502.
Escape route, 29.
Ethics and society concentration, 244.
Ethnic studies, 228.
ES courses, 385.
minor, 228.
Evaluation for graduation, 53.
Examination, credit by, 51.
Exchange programs, 21.
Exercise science and health promotion concentration, 275.
Expenses, 32, 42, 44.
Experimental classes, 11.
Faculty, advisor award, 477.
list of, 478.
emeriti, 475.
Fairness board, 17, 69.
Family educational rights and privacy act (FERPA), 18, 502.
Federal work study program, 45.
Fee waivers, student, 43.
Fees, and expenses, 42.
and debts owed to the university, 42.
FERPA, 18, 502.
Field and wildlife biology concentration, 267.
Financial aid, 44.
Financial management, concentration, 153.
First year connection, 32.
Fisheries, marine biology and, concentration, 268.
Food science, 115.
minor, 118.
Food science and nutrition, 110.
FSN courses, 391.
MS specialization, 89.
Foreign (Modern) languages, 239.
MLL courses, 438.
Foreign (international) students, 40.
grant students, 73.
programs and services, 23.
Forest and environmental practices concentration, 125.
Forestry and natural resources, 123.
concentration, 96.
FNR courses, 386.
Forestry sciences, MS program, 127.
Formal study plan, 76.
Foundation – see Cal Poly Corporation, 26.
Fraternities, 34.
French, minor, 239.
FR courses, 390.
Freshman requirements, admissions, 37.
Fruit science, 114.
FRSC courses, 390.
minor, 116.
Full-time status, undergraduate, 62.
grade, 76.
Gallery, UU, 34.
Gender harassment, 16.
General biology concentration, 268.
General education requirements, 56.
General engineering, 188.
General management, MBA specialization, 162.
Geographic information systems minor, 82.
Geology, 253.
GEOG courses, 394.
Geology, minor 281.
GEOL courses, 395.
Geosciences teaching, concentration, 108.
German, minor, 240.
GER courses, 395.
Gerontology minor and certificate, 248.
Golden bear program, 22.
Grade point average, 53, 64.
grade students, 76.
Grading, 64.
Graduate, academic requirements, 74.
admission, 71.
programs, 70.
Graduate credit taken by undergraduates, 56, 76.
Graduate school services, 31.
Graduate studies – accounting (GSA) courses, 398.
Graduate studies – business (GSB) courses, 399.
Graduate studies in education, 171.
Graduation, evaluation for, 53.
grade students, 77.
Graduation rate, 502.
Graduation requirements, 53.
grade students, 77.
Graduation with honors, 55.
Graduation writing requirement (GWR), 54.
grade students, 77.
Grants, financial, 45.
research, 24.
Graphic communication, 230.
document systems management, MBA specialization, 163.
GRC courses, 396.
minor, 232.
Military selective service, 503.
Military service, credit for, 51.
Minors, 55.
 definition, 11.
 list of, 12.
Miscellaneous course fees 290.
Mission statement, 6.
Modes of instruction, 11.
Modern languages and literatures, 239.
 MLL courses, 438.
Molecular and cellular biology concentration, 268.
Molecular biology concentration, 272.
Multicultural center, 34.
Multidisciplinary design minor, 185.
Multiple subject teaching credential, 169, 237.
Music, 241.
 MU courses, 440.
 minor, 242.
Mustang lanes, 29.
Natural resources, management, 123.
 recreation concentration, 125.
Nondiscrimination policy, 16.
Nonresident tuition, 42, 503.
Nursery and floriculture production concentration, 118.
Nutrition, 110.
 and food industries concentration, 113.
 minor, 113.
 science concentration, 113.
Off-campus architecture programs, 136.
 Open house, 35.
 Open university (enrollment), 286.
 Orfalea College of Business, 148.
 Orfalea family and children’s center, 30.
 Organizations concentration, 255.
 Orientation programs, 35.
 Ornamental horticulture, 114.
 (Environmental horticultural science) concentration, 96.
 (EHS) courses, 373.
 Ornamental plant production minor, 116.
 Osher lifelong learning institute, 286.
 Outdoor, adventure, and resource recreation concentration, 129.
 Outreach, 33.
 Outstanding, faculty advisor award, 477.
 staff, 477.
 Overseas programs, 25.
Packaging minor, 161.
 Parent program, 33.
 Pattee, Alan, scholarships, 43.
 Performing arts center, 26.
 Peru study program, 22.
 Petitions, academic, 68.
 Philosophy, 243.
 PHIL courses, 444.
 minor, 243.
 Photography and digital imagery concentration, 221.
Physical education, 274.
 KINE courses, 420.
 PE courses, 444.
Physical science (PSC) courses, 453.
 Physics, 281.
 minor, 281.
 PHYS courses, 446.
 Placement services, career, 35, 503.
 Placement exams, academic, 47.
 Plagiarism and cheating, 18.
 Planned educational leave, 63.
 Plant protection minor, 117.
 Plant protection science, MS specialization, 90.
 PPSC courses, 452.
 Police, university, 26.
 Policies on the rights of individuals, 16.
 Political science, 245.
 POLS courses, 449.
 PolyCAT, 24.
 Poly Escapes, 29.
 Polymers and coatings, concentration, 271, 272.
 science, MS program, 273.
 PolySearch, 24.
 Pony prints, 24.
 Post-baccalaureate applicants, 72.
 Poultry management minor, 99.
 PM courses, 448.
 PREFACE, 24.
 Prefixes, colleges, departments, and courses, 289.
 Pre-law concentration, 246.
 Preprofessional preparation, health careers, 25.
 Prerequisites, definition, 11.
 eligibility for enrollment, 62.
 graduate students, 77.
 President’s, message, 5.
 honors list, 55.
 Presidents, past Cal Poly, 475.
 Pride Alliance, 35.
 Print and electronic resources, library, 23.
 Printing and imaging management concentration, 232.
 Privacy rights (FERPA), 502.
 Probation, academic, 68.
 graduate students, 74.
 Professional practice, MS specialization, 138.
 Professional programs, 286.
 Program, change of major, 55.
 Project report, 78.
 Provost’s leadership award for partnership in philanthropy, 477.
 Psychology, 248.
 and child development, 248.
 minor, 248.
 MS program, 251.
 PSY courses, 453.
 Public policy, MPP, 247.
 Public safety, 26.
 Pupil personnel services credential, 171.
 Quality hours, 64.
 points, 64.
 Quantitative economics concentration, 157.
 Quarter system, 11.
 units, 11.
 Quick facts, 7.
 Rangeland resources minor, 83.
 Real estate economics concentration, 157.
 Real property development minor, 133.
 Recreation, parks, and tourism, administration, 128.
 management, MS specialization, 90.
 REC courses, 457.
 Recreation center, 35.
 Recreational sports, ASI, 35.
 Refund of fees, 42.
 Registration, 61.
 cancellation, 44.
 fees, 42.
 Religious studies, minor, 243.
 RELS courses, 460.
 Renewable energy institute, 19.
 Renewal, academic, 67.
 Repeating a course, 65.
 graduate students, 77.
 Report in progress, 65.
 Requirements, for graduation, 53.
 Research and graduate programs, 70.
 Research and project involvement, 24.
 special conditions, 77.
 Research, MS specialization, 187.
 Residence, academic requirements, 53.
 determination of, 503.
 halls, 32.
 Resident tuition, 42.
 Residential Life, 32.
 ResNet, 32.
 Responsible use of information technology resources, 18.
 Retention and outreach, 33.
 Returning students, 41, 63.
 graduate students, 77.
 same major, 40.
 different major, 40.
 Rights and responsibilities, student academic, 17.
 Rights of the individual, 16, 502.
 Rose float, 29.
 ROTC, 120.
 Rules and policies, changes in, 2.
 SAFER program, 35.
 Safety on campus, 26, 502.
 San Francisco urban design internship program, 136.
 SAT exams, 37, 39.
 Satisfactory progress, 65.
 Scholarships, 44.
Science and mathematics, college of, 260.
 advising center, 261.
 health professions advising center, 262.
 SCM courses, 460. Second, bachelor's degree, 56.
 master's degree, 78.
 Seminar classes, 11.
 Senior project, 54.
 Service learning, and civic engagement, 24.
 courses, 34.
 Service programs, community, 34.
 Sexual harassment policy, 16.
 Single subject teaching credential, 169.
 Smoking policy, 503.
 Social sciences, 253.
 SOCS courses, 462.
 Social security number use, 504.
 Social services concentration, 255.
 Social security number use, 504.
 Social sciences, 253.
 Smoking policy, 503.
 Student academic rights and responsibilities, 17.
 Student academic services, 33.
 Student affairs, 27.
 Student body fee, 43.
 Student classification, 56.
 Student conduct and discipline, 69, 504.
 Student employment, 30.
 Student fee waivers, 43.
 Student governance, 28.
 Student grievance procedures, 69.
 Student life and leadership, 34.
 Student orientation, advising, and resources (SOAR), 35.
 Student rights and responsibilities, 33.
 Student support services (SSS), 34.
 Studio art concentration, 222.
 Study and travel, U.S. and abroad, 21.
 Substitution, of courses, 55.
 Summer advising program (SOAR), 35.
 Summer institute, 36.
 Supervision courses, 11.
 Support courses, 10.
 Sustainability practices, 25.
 Sustainable agriculture minor, 84.
 Sustainable environments minor, 133.
 Systematics and biodiversity concentration, 268.
 Systemwide tests, 47.
 Tax specialization, 165.
 Teacher education division, 169.
 Teaching, concentration, 255, 275, 280.
 credits, 169.
 Teaching English as a second language (TESL) certificate program, 226.
 Technical communication certificate program, 226.
 Technology elective, 56.
 Testing services, 35.
 Tests, admission requirements, 39.
 English placement (EPT), 47.
 entry level mathematics (ELM), 47.
 systemwide requirements, 47.
 Thai study program, 22.
 Theatre, 256.
 minor, 257.
 TH courses, 467.
 Thesis, 78.
 Time limit, graduate students, 78.
 TOEFL, graduate students, 35, 73.
 undergraduate students, 35, 40.
 Tourism planning and management concentration, 129.
 Transcripts, 64.
 Transfer, credit, 49.
 requirements, 38.
 Transportation planning, MCRP/MS specialization, 143, 183.
 Travel, study and, U.S. and abroad, 26.
 Trustees of the CSU, 472.
 Tuition, determination of residence for nonresident tuition, 503.
 fees, 42.
 Turfgrass management concentration, 118.
 Unit load, maximum, 62.
 Units, definition, 11.
 number required for graduation, 53.
 University administration, 474.
 University advancement, 26.
 University honors program, 28.
 University police, 26.
 University studies, 25.
 UNIV courses, 469.
 University union, McPhee, 29.
 University writing lab, 25.
 University year, 11.
 Upward bound, 34.
 Urban forestry concentration, 125.
 U.S. cultural pluralism requirement, 61.
 UU Gallery, 29.
 Values, technology and society minor, 235.
 Vegetable science, 114.
 VCISC courses, 469.
 Veterinary science, 97.
 VS courses, 469.
 Visitors within the CSU, 63.
 Viticulture concentration, 86.
 Viticulture, wine and, minor, 84.
 Volunteer services, 24, 34.
 Water engineering, MS specialization, 182.
 Water science minor, 84.
 Watershed management and hydrology concentration, 125, 127.
 Week of welcome (WOW), 35.
 Western intellectual tradition, minor, 258.
 Wildland fire and fuels management concentration, 125.
 Wildlife biology, field and, concentration, 267.
 Wine and viticulture, 85.
 minor, 84.
 WVIT courses, 470.
 Wine business concentration, 86.
 Withdrawal, from courses, 66.
 from term, 66.
 from previous terms, 67.
 unauthorized, 65.
 Withdrawal from the institution and financial aid, 44.
 Writing, graduation requirement (GWR), 25, 54.
 skills office, 25.
 proficiency examination (WPE), 25.
 Women's engineering program, 179.
 Women's programs and services, 35.
 Women's studies, minor, 259.
 WS courses, 470.
 Work study programs, 45.
 Zoology, 264.
 ZOO courses, 471.
sustain\'ability

environment

economy

society

technology