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Abstract 

Conditions are given for a Ck map T to be a Newton map, that 
is, the map associated with a differentiable real-valued function via 
Newton’s method. For finitely differentiable maps and functions, these 
conditions are only necessary, but in the smooth case, i.e. for k = ∞ , 
they are also sufficient. The characterisation rests upon the structure 
of the fixed point set of T and the value of the derivative T � there, 
and it is best possible as is demonstrated through examples. 
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1 Introduction 

Newton’s method (Nm) for computing successive approximations of zeros of 
functions is one of the most widely used methods in all of applied mathe
matics; variants and generalisations also play a prominent role in numerous 
other disciplines [2, 3, 8, 10, 11]. Conceptually, Nm becomes especially trans
parent within a dynamical systems context. The purpose of this brief note 
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is to characterise, in the simplest possible setting, the local properties of the 
dynamical systems thus encountered. 

Throughout, let f : I → R be a differentiable function, defined on some 
open interval I ⊂ R , and denote by Nf its associated Nm transformation, 
that is 

f(x)
Nf (x) = x − , ∀x ∈ I : f �(x) �= 0 ; (1)

f �(x) 

for Nf to be defined for every x ∈ I , set Nf (x) := x whenever f �(x) = 0 . 
Nm for finding roots (zeros) of f , i.e., real numbers x ∗ with f(x ∗) = 0 , 

amounts to picking an initial point x0 ∈ I and iterating Nf , thus generating 
the sequence 

xn = Nf (xn−1) = Nf
n(x0) , ∀n ∈ N , 

where, here and throughout, for any map T : I → R and any n ∈ N , � � 
T n(x) = T T n−1(x) , provided that T n−1(x) ∈ I , and T 0(x) = x . Note 
that Nf (x) = x precisely if f(x)f �(x) = 0 ; that is, the only fixed points of 
Nf occur where either f or f � vanish. Thus for f(xn)f �(xn) = 0 , and only 
then, does Nm terminate at xn: If f(xn) = 0 , a root has been found, and 
otherwise (1) breaks down due to a horizontal tangent to the graph of f at 
xn (see Figure 1). 

Clearly, if (xn) converges to x ∗, say, and if Nf is continuous at x ∗, then 
Nf (x ∗) = x ∗ , i.e., x ∗ is a fixed point of Nf , and f(x ∗) = 0 . (The trivial 
alternative f ≡ const. is tacitly excluded here, see Lemma 4 below.) It is 
this correspondence between the roots of f and the fixed points of Nf that 
suggests that Nm be studied as a dynamical system. Under a mild assump
tion, each (isolated) fixed point x ∗ is attracting, that is, limn→∞ Nf

n(x0) = x ∗ 

for all x0 sufficiently close to x ∗ . (For x0 further away from any root, the 
sequence (xn) may exhibit a considerably more complicated long-term be
haviour [2, 3, 11].) This aspect of Nm is put into perspective by the main 
result of the present note, Theorem 11 below, which completely characterises 
the local dynamical properties of Nf . 

2 Newton maps 

The definition of a Newton map given below entails a relationship between 
the analytic properties of a function f and the analytic properties of its 
associated Nm transformation Nf . It is a simple fact, rarely alluded to in 
studies of Nm, that in general these properties are quite independent. 

Example 1. The function f(x) = |x|3/2 is C1 but not C2, yet it has a C∞ 

Nm transformation, namely Nf (x) = 1
3 x . 
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Figure 1: Visualising Nm: The first few iterates x1, x2, x3 are found graphi
cally, both by means of tangents to the graph of f (broken line) and via the 
graph of Nf (solid line). Note how the point x2 

∗ with f �(x2
∗) = 0 causes Nf 

to have a discontinuity. 

Example 2. It is easily seen that the function � � 
−2) 
� 

exp −x−2 + |x| + cos(x if x = 0 � ,
f(x) = 

0 if x = 0 , 

is C∞, and both f and f � vanish only at x ∗ = 0 . Nevertheless 

−1 = lim infx→0 Nf (x) < lim supx→0 Nf (x) = 1, 

hence Nf is not even continuous at x ∗ . 

Since Nf may fail to be continuous even if f is C∞, in order to ensure the 
applicability of Nm, some explicit assumption on the smoothness of Nf has 
to be imposed. To formulate such conditions concisely, let N∞ = N ∪ {∞} 
and stipulate that ∞−1 := 0 and ∞± j = ∞ for all j ∈ N . 

In view of (1), for Nf to be C l for some l ∈ N∞ , one might demand 
that f be at least C l+1, but Examples 1 and 2 show that this assumption is 
neither necessary nor sufficient. Simply imposing further conditions on Nf 

also seems problematic as long as it is not clear whether any such condition 
is satisfied for a reasonably large class of functions. Thus it is inevitable to 
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address the following general inverse problem: Given a C l map T , does there 
exist a function f such that T = Nf ? 

Definition 3. Let I ⊂ R be an open interval, and l ∈ N∞ . A map T ∈ C l(I) 
is called a Newton map (associated with f), if T = Nf for some differentiable 
function f : I → R . 

Clearly, not every T ∈ C l(I) is a Newton map, even if l = ∞ , as the 
trivial example T (x) = −x shows, for which every f with Nf = T lacks 
differentiability at x ∗ = 0 . As will become clear shortly, most maps are 
not Newton, but a satisfactory characterisation is not available for finitely 
differentiable maps. However, in the smooth case, i.e. for l = ∞ , there is a 
simple characterisation of Newton maps, as provided by Theorem 11 below. 

For any map T , denote by Fix [T ] the set of fixed points of T , that 
is, Fix [T ] := {x ∈ I : T (x) = x} , and say that Fix [T ] is attracting if 
limn→∞ T n(x0) ∈ Fix [T ] for all x0 sufficiently close to Fix [T ] . 

Lemma 4. Let f : I → R be differentiable, and assume that Nf is continu
ous. Then Fix [Nf ] is either empty or a (possibly one-point) interval; in the 
latter case, 

Nf (x) − x ∗ 

lim sup = δ for some δ ∈ [0, 1] (2)x→x ∗ 
x − x ∗ 

holds for every x ∗ ∈ Fix [Nf ] . 

Proof. It will first be shown that both sets Z0 := {x ∈ I : f(x) = 0} and 
Z1 := {x ∈ I : f �(x) = 0} of zeros of f and f �, respectively, are (possibly 
empty or one-point) subintervals of I. Moreover, if Z1 �= I , that is, if f is 
not constant, then Z1 ⊂ Z0 ; in fact, the two sets coincide unless Z0 contains 
exactly one point, in which case Z1 may be empty. Since Fix [Nf ] = Z0 ∪ Z1 

the first part of the lemma follows immediately from this. 
If Z1 = I , then Fix [Nf ] = I , so let Z1 � ∅ be different from I. Pick = 

a ∈ Z1 , suppose, by way of contradiction, f(a) �= 0 and, without loss of 
generality, that b := sup{x ≥ a : f(y) = f(a) for all y ∈ [a, x]} belongs to I. 
Clearly, f(b) = f(a) and f �(b) = 0 , hence Nf (b) = b . By the Mean Value 
Theorem there exists a sequence bn � b such that 0 < |f �(bn)| ≤ 1 for all n. 
But then 

lim infn→∞ |Nf (bn) − b| ≥ limn→∞ |f(bn)| = |f(b)| = |f(a)| > 0 , 

clearly contradicting the continuity of Nf . Therefore f(a) = 0 , hence Z1 ⊂ 
Z0 . If a1 < a2 both belong to Z0 then, by the previous argument and the 
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Mean Value Theorem, Z0 contains a point strictly between a1 and a2. Since 
Z0 is closed, it contains, with any two points, the whole segment joining these 
points. Thus Z0 is an interval. If Z0 is not a singleton then Z0 ⊂ Z1 and 
therefore Z0 = Z1 . The latter equality also holds if Z0 is one-point because 
Z1 � ∅ . Finally, if Z1 is empty then clearly Z0 = cannot contain more than 
one point. 

Assertion (2) is trivially true if x ∗ is an interior point of Fix [Nf ] . Without 
loss of generality therefore assume that x ∗ is, say, a right boundary point of 
Fix [Nf ] = Z0 . Choose δ > 0 so small that J := ] x ∗ , x ∗ + δ ] ⊂ I and, for 
0 < t ≤ δ , let 

Nf (x ∗ + t) − x ∗ 

h(t) := ; (3)
t 

the function h is continuous on ]0, δ ] , and h(t) � 1 for all t > 0 . = Since 
x �= Nf (x) for x ∈ J , 

f �(x) 1 
= , ∀x ∈ J , 

f(x) x − Nf (x) 

which after integrating both sides from x to x ∗ + δ , and using the auxiliary 
function h defined in (3), can be written as � � δ � 

1 dt 
f(x) = f(x ∗ + δ) exp − , ∀x ∈ J . (4) 

x−x ∗ 1 − h(t t 

Assume f(x ∗ + δ) > 0 without loss of generality. If h(t) > 1 for all t > 0, 
then (4) implies that f(x ∗) � 0 , contradicting x Thus h(t) < 1 for = ∗ ∈ Z0 . 
all t > 0 , and in particular 

Nf (x) − x ∗ 

lim supt�0 h(t) = lim sup ≤ 1 .x�x ∗ 
x − x ∗ � � 

∗)j 
� 

Fix j ∈ N . Dividing (4) by (x − x = δj exp −j δ 
t−1dt yields

x−x ∗ 

� � � δ j − 1 − jh(t) dt 
(x−x ∗ )−j f(x) = f(x ∗ +δ)δ−j exp , ∀ x ∈ J . (5) 

x−x ∗ 1 − h(t) t 

To bound lim supt�0 h(t) from below, pick ε > 0 and assume that h(t) < −ε 
for all sufficiently small t > 0 . In this case, (5) with j = 1 shows that 

∗ + δ)δ−(1+ε)−1 ∗ )−ε(1+ε)−1 ∗ (x − x ∗ )−1f(x) ≥ f(x (x − x →∞ , as x � x , 

which contradicts the differentiability of f at x ∗ . Since ε > 0 was arbitrary, 
lim supt�0 h(t) ≥ 0 . � 
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Remark 5. (i) Lemma 4 should be contrasted with the simple fact that 
for every closed set A ⊂ R there exists a C∞ map T with T (I) ⊂ I and 
Fix [T ] = A ∩ I . 

(ii) Under the conditions of Lemma 4 there is no analogue to (2) for the 
corresponding lim inf which, as simple examples show, can be any number 
between, and including, the trivial bounds −∞ and δ. 

As pointed out earlier, the applicability of Nm rests on the correspondence 
between the roots of f and the fixed points of Nf — and the attractiveness 
of the latter. Mere continuity of Nf does not guarantee that Fix [Nf ] is 
attracting. 

Example 6. Consider the C1 function � �� � |x|−1 

0 = 0 ,|x|3/2 exp − t−1 sin t dt if x �
f(x) = 

0 if x = 0 , 

for which the associated Nm transformation ⎧ ⎨ 1 + 2 sin(|x|−1) 
x if x = 0 � ,

Nf (x) = 3 + 2 sin(|x|−1) ⎩ 
0 if x = 0 , 

is continuous yet obviously not C1 . The only fixed point of Nf , and corre
spondingly the only root of f and f �, is x ∗ = 0 . Since, for every j ∈ N , the 
points ± 2 (4j − 1)−1 are 2-periodic, Fix [Nf ] = {0} is not attracting.

π 

Thus while Fix [Nf ] is topologically simple whenever Nf is continuous, 
to make Nm practical for approximating zeros, more smoothness is required. 
Only the case of Nf being at least C1 will therefore be considered from now 
on. (For the same reason, the legitimate case l = 0 has been excluded from 
Definition 3.) Also, the properties of Nf 

� , albeit not completely determined by 
the smoothness of f , do depend on the latter. To describe this dependence, 
for every k ∈ N∞ , define the set � � � � 

Δk := 0, 1
2 , 

2
3 , . . . , 1 − k−1 ∪ 1 − k−1 , 1 , (6) 

and note that [0, 1] = Δ1 ⊃ Δ2 ⊃ . . . ⊃ Δ∞ = {1 − j−1 : j ∈ N∞} . 

Lemma 7. Let f : I → R be differentiable, and assume that Nf ∈ C1(I) . 
Then Fix [Nf ] is either empty or an attracting (possibly one-point) interval. 
Moreover, if Fix [Nf ] � then= ∅ and f ∈ Ck(I) with k ∈ N∞ 

Nf 
� (Fix [Nf ]) = {δ} for some δ ∈ Δk . (7) 
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Proof. The assertions are trivially true if f is constant or Fix [Nf ] = ∅ . 
Therefore assume that f is not constant and Fix [Nf ] is not empty, hence a 
subinterval of I, by Lemma 4. If x ∗ is an interior point of Fix [Nf ] then Nf 

� ≡ 1 
in a neighbourhood of x ∗ , and the assertion is again true. Thus assume 
without loss of generality that x ∗ is a right boundary point of Fix [Nf ] . By 
Lemma 4, Nf 

� (x ∗) ∈ Δ1 , so x ∗ obviously is attracting from the right, unless 
perhaps for Nf 

� (x ∗) = 1 . In the latter case, with the notations introduced in 
the proof of Lemma 4, the function h defined in (3), supplemented by h(0) := 
Nf 
� (x ∗) = 1, is continuous on [0, δ] and can be written as h(t) = 1 − H(t), 

where H is also continuous on [0, δ ] , and H(t) �= 0 unless t = 0 . With this, 
(4) takes the form � � δ � 

dt 
f(x) = f(x ∗ + δ) exp − , ∀ x ∈ J . 

x−x ∗ tH(t)
 

∗) 
� δ


Since f(x = 0 and f(x ∗ + δ) =� 0 , the integral dt must diverge to 
0 tH(t) 

+∞. As H is continuous and, except possibly at t = 0 , does not change 
sign, H(t) > 0 and so h(t) < 1 whenever 0 < t ≤ δ . From Nf (x ∗ + t) − x ∗ = 
th(t) < t and h(0) = 0 it follows that x ∗ < Nf (x0) < x0 and therefore 
Nf

n(x0) � x ∗ provided that x0 ∈ J . In other words, x ∗ is attracting from 
the right. 

It remains to verify (7) for f ∈ Ck(I) . To this end, assume first that 
k < ∞ and f(x ∗) = f �(x ∗) = · · · = f (k)(x ∗) = 0 . In this case, since f is 
Ck, the left-hand side in (5) with j = k tends to a finite limit as x � x ∗ . 
Consequently, � δ k − 1 − kh(t) dt 

limε�0 < +∞ . (8) 
ε 1 − h(t) t 

If h(0) < 1 − k−1 , then the integrand in (8) would eventually be positive 
near t = 0 , which clearly is impossible. Therefore h(0) ≥ 1 − k−1 . Since 
h(0) ≤ 1 by the same argument, 

Nf 
� (x ∗ ) = h(0) ∈ [1 − k−1 , 1] ⊂ Δk . 

If k = ∞ and f (j)(x ∗) = 0 for all j ∈ N, then similar reasoning shows that � 
Nf 
� (x ∗) ∈ [1 − j−1 , 1] = {1} ⊂ Δ∞ .j∈N

Finally assume that f(x ∗) = f �(x ∗) = · · · = f (j)(x ∗) = 0 yet f (j+1)(x ∗) �= 
0 for some j with 0 ≤ j < k . The same argument as before with k replaced by 
j shows that Nf 

� (x ∗) ∈ [1−(j +1)−1 , 1] . If h(0) > 1−(j +1)−1, then (5) with 
j replaced by j + 1 would imply that limx�x ∗ (x − x ∗)−(j+1)f(x) = 0 , which 
contradicts f (j+1)(x ∗) = 0 . � Thus Nf 

� (x ∗) = h(0) = 1−(j +1)−1 ∈ Δ∞ ⊂ Δk . 
� 
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Example 8. Lemma 7 is best possible in the following sense: For every 
k ∈ N∞ and δ ∈ Δk there exists a Ck function f with Nf ∈ C1 having a 
single fixed point x ∗ such that N � (x ∗) = δ . For k ∈ N and δ ∈ Δk\{1} letf 

γ = (1 − δ)−1 and consider the function � � � 
xγ 1 + 1 x(1+γ)(1+k) sin(x−γ ) if 0 < |x| < 1 ,

f(x) = 2k+4 

0 if x = 0 , 

where, for non-integer γ, each argument x has to be replaced by |x| . Taking 
I = ] − 1, 1[ , it is readily checked that f ∈ Ck(I) and Nf ∈ C1(I) . Moreover, 
x ∗ = 0 is the only fixed point of Nf in I, and Nf 

� (x ∗) = 1 − γ−1 = δ . For 
δ = 1 , an example is provided by the Ck function f(x) = exp(−|x|−1) + � � 
1 exp(−(k + 4)|x|−1) sin exp(|x|−1) for which Nf is C1, has x ∗ = 0 as its 
2 
only fixed point, and Nf 

� (x ∗) = 1 . Simple examples in the case k = ∞ are 
f(x) = xγ for δ < 1 , and f(x) = exp(−|x|−1) for δ = 1 , respectively. 

An important special case for which Lemma 7 can be strengthened is the 
case of a root of finite multiplicity. Recall that x ∗ ∈ I is a root of f ∈ Ck(I) 
of multiplicity j ∈ N if f(x) = (x − x ∗)j g(x) for all x ∈ I , where g ∈ Ck(I) 
and g(x ∗) = 0 . �
Lemma 9. Let x ∗ be a root of f ∈ Ck(I) of finite multiplicity j. Then, 
for some open interval J ⊂ I containing x ∗ , Nf ∈ Ck−1(J) , and Nf 

� (x ∗) = 
1 − j−1 ; in particular, Fix [Nf ] ∩ J = {x ∗} is attracting. 

Proof. Since f(x) = (x − x ∗)jg(x) for some g ∈ Ck with g(x ∗) = 0 , �
(j − 1)g(x) + (x − x ∗)g�(x)

Nf (x) − x ∗ = (x − x ∗ ) = (x − x ∗ )h(x) , (9)
jg(x) + (x − x ∗)g�(x) 

where h is Ck−1 on some open interval J ⊂ I containing x ∗, and Nf 
� (x ∗) = 

h(x ∗) = 1 − j−1 . Thus, for J chosen sufficiently small, Fix [Nf ] ∩ J = {x ∗} , 
and the fixed point x ∗ clearly is attracting. � 

3 Main theorem 

Lemma 7 contains necessary conditions for a map to be Newton. In general it 
is too much to expect that every T ∈ C1(I) whose fixed point set is attracting 
and satisfies (7) would be a Newton map associated with some f ∈ Ck(I) . 
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Example 10. Let I = ] − 1, 1[ and consider the map ⎧ 

which has x = 0 as its only and attracting fixed point and, with T �(x ∗) := 0 , 

x 

T (x) = log |x| 
⎨ 

⎩ 0 

if 0 < |x| < 1 , 

if x = 0 , 

∗ 

is C1 on I. Obviously T �(x ∗) ∈ Δk for all k ∈ N∞ . Suppose that Nf = T for 
some f ∈ Ck(I) . Then, with some nonzero constant C, 

f(x) = Cx(1 − log x) , ∀x : 0 < x < 1 . 

Clearly, this function cannot be extended to even a differentiable function 
on I. Thus Nf �= T for every f ∈ Ck(I) . The fact that in this example T 
is barely C1 is not important, as it is easy to find similar examples with T 
showing any finite degree of differentiability: For every l ∈ N (and k ∈ N∞) 
there exist maps T ∈ C l(I) such that T �(Fix [T ]) = {δ} with δ ∈ Δk , yet 
Nf �= T for all f ∈ Ck(I) . 

Example 10 shows that there is no hope for a converse of Lemma 7 to hold, 
even if Nf is assumed to be more regular than C1 . However, the situation is 
much clearer for smooth maps, that is, for l = ∞ . In this case, the converse 
of Lemma 7 does actually hold, i.e., the stated conditions are also sufficient. 

Theorem 11. Let k ∈ N∞ , and suppose T ∈ C∞(I) . Then T is a Newton 
map, associated with f ∈ Ck(I) , if and only if Fix [T ] either is empty or an 
attracting (possibly one-point) interval, and 

T �(Fix [T ]) = {δ} , for some δ ∈ Δk . (10) 

Moreover, the function f is uniquely determined up to a multiplicative con
stant if either δ ∈ {0, 1 , 1 , . . . , 1 − k−1}\{1} or the set I\Fix [T ] is connected. 

2 3 

Proof. If T is a Newton map then, by Lemma 7, Fix [T ] is an attracting 
interval (which may be empty or one-point), and (10) holds. Thus only the 
converse statement and the uniqueness assertion have yet to be proved. To 
this end, three cases will be distinguished; throughout let g(x) := x − T (x) . 

Case 1. Assume that Fix [T ] = ∅ . Then g is nonvanishing and C∞ on I, 
and so is �� x � 

dt 
f(x) = exp , ∀x ∈ I , 

ξ g(t) 

where ξ is any point in I. Since g is C∞ and does not vanish on I, the 
solution f of the first-order ODE f �/f = 1/g , or equivalently, Nf = T , is 
unique up to multiplication by a constant. 
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Case 2. Assume that x ∗ ∈ Fix [T ] and T �(x ∗) = δ with δ ∈ Δk\{1} . 
Clearly this implies that Fix [T ] = {x ∗} , and T can be written as 

T (x) = x ∗ + δ(x − x ∗ ) + (1 − δ)(x − x ∗ )2h(x) , 

with a uniquely determined h ∈ C∞ . Note that (x − x ∗)h(x) � 1 for all = 
x ∈ I . Let γ = (1 − δ)−1 , pick points x−, x+ ∈ I with x− < x ∗ < x+ , and 
define f : I → R by ⎧ � � � x+ ⎪ ∗)γ dt ⎪ c+(x+ − x exp − if x > x ∗ , ⎨ x g(t) 

f(x) := 0 if x = x ∗ , (11) � � ⎪ � ⎪ x ⎩ −(x ∗ − x−)γ dt c exp 
x− g(t) if x < x ∗ ; 

here c+, c− are nonzero real constants. Since x ∗ is the only fixed point of T 
in I it follows that f ∈ C∞(I\{x ∗}) , and Nf = T . By using the identity � � � + 

∗ )γ
x dt 

(x − x ∗ )γ = (x + − x exp −γ , ∀ x > x ∗ , (12) 
x t − x ∗ 

a short computation yields � � 
+ 

� x+ 
h(t)dt ∗ (x − x ∗ )−γ f(x) = c exp −γ , ∀ x > x . 

x 1 − (t − x ∗)h(t) 

An analogous computation for x < x ∗ yields � � � x h(t)dt 
(x ∗ − x)−γ f(x) = c − exp γ , ∀ x < x ∗ . 

x− 1 − (t − x ∗)h(t) 

h(t)
Since the integrand is C∞ on I, both one-sided limits for 

1 − (t − x ∗)h(t) 
|x − x ∗|−γ f(x) , as x approaches x ∗, are finite and nonzero. If δ = 1 − j−1 for 
some 1 ≤ j ≤ k then, for f to be Cj on I, these two one-sided limits have to 
be equal or, equivalently, � � � +x h(t)dt 

c − = (−1)j c + exp −j 
x− 1 − (t − x ∗)h(t) 

must hold. In the latter case, for all x ∈ I , � � � x+ 
h(t)dt∗ )jf(x) = c +(x − x exp −j , 

x 1 − (t − x ∗)h(t) 

10
 



which shows f ∈ Ck(I) . Since the two-parameter family defined in (11) 
contains all solutions of Nf = T on x < x ∗ and x > x ∗ separately, the 
solution of Nf = T is unique up to multiplication by a nonzero constant if 
δ ∈ {0, 1 , 1 , . . . , 1 − k−1}\{1} .

2 3 
If, on the other hand, δ > 1 − k−1 , and correspondingly γ > k , then 

f ∈ Ck(I) for any choice of the constants c+, c−, and f(x ∗) = f �(x ∗) = · · · = 
f (k)(x ∗) = 0 . 

Case 3. Assume that T �(Fix [T ]) = {1} . If Fix [T ] = I , then trivially 
T is the Newton map associated with f ≡ 1 . Without loss of generality, 
therefore, assume that x ∗ is the right boundary point of Fix [T ] . In this case 

T (x) = x − (x − x ∗ )2h(x) , 

where h ∈ C∞(I) and h(x) > 0 whenever x > x ∗ , and h(x) = 0 for all 
x ∈ Fix [T ] ; in particular, therefore, h(x ∗) = 0 . As before, pick x+ ∈ I with 
x+ > x ∗ and, analogously to (11), let � �� � + 

exp − x dt if x > x ∗ ,
x g(t)f+(x) := 

0 if x ≤ x ∗ . 

Using (12), with γ replaced by j, and recalling that g(t) = (t − x ∗)2h(t) , it 
follows that limx�x ∗ (x − x ∗)−j f+(x) = 0 for all j ∈ N . Thus f+ ∈ C∞(I) 
and Nf+ (x) = T (x) whenever x > x ∗ or x ∈ Fix [T ] . If Fix [T ] has a left 
boundary point in I as well, then define f− in a “mirrored” manner and let 

+f+ + c−f− + −f = c with nonzero constants c , c . Clearly, f ∈ C∞(I) and 
Nf = T for any choice of c+, c− . 

The assertion concerning uniqueness up to multiplication by a constant 
is now obvious from the three cases detailed above. � 

Corollary 12. Suppose T ∈ C∞(I) . Then T is a Newton map, associated 
with f ∈ C∞(I) , if and only if Fix [T ] is either empty or an attracting 
(possibly one-point) interval, and 

T �(Fix [T ]) = {1 − j−1} , for some j ∈ N∞ . (13) 

Moreover, f is uniquely determined up to a multiplicative constant unless 
j = ∞ in (13) and the set I\Fix [T ] is not connected. 

The next corollary requires T to be not only C∞ but even real-analytic. 
Recall that a map is real-analytic if it can be represented by its Taylor’s 
series in a neighbourhood of every point in its domain. Real-analytic Newton 
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T ( x) T ( x)T ( x) 

Figure 2: Three C∞ maps T which are not Newton maps associated with any 
Ck function on the interval I because Fix [T ] is not attracting (left), Fix [T ] 
is not an interval (middle), and T �(x ∗) �∈ Δk for any k ∈ N∞ , respectively. 

maps are especially easy to characterise. Although analyticity is a strong 
assumption indeed, the class of real-analytic functions is of great historical 
[7, 11] and practical relevance, as it contains, for example, all rational and 
trigonometric functions and compositions thereof [1, 6]. If f is real-analytic 
then so is Nf , provided the latter map is continuous [1, 2]. 

Corollary 13. Let T be real-analytic on I, and T (x) �≡ x . Then T is a 
Newton map, associated with a real-analytic function f , if and only if T has at 
most one fixed point in I, and, in case a fixed point x ∗ exists, T �(x ∗) = 1−j−1 

for some j ∈ N . Moreover, f is unique up to multiplication by a constant. 

Example 14. For f(x) = exp(−x) and fj (x) = xj , j ∈ N , clearly Nf (x) = 
x + 1 and Nfj (x) = (1 − j−1)x , respectively. Thus all cases contained in 
Corollary 13 can occur. 

Example 15. The much-studied logistic map Fµ(x) = µx(1−x) is a Newton 
map associated with a real-analytic function on I =]0, 1[ if and only if µ ∈ M , 
with M := ] −∞, 1] ∪ {1 + j−1: j ∈ N} . Indeed, Fµ = Nfµ with functions 

� �(1−µ)−1 

x 
fµ(x) = �for µ = 1 , 

µx + 1 − µ 

and f1(x) = exp(−x−1) . Note that while fµ is real-analytic on I for all 
µ ∈ M , it is only in the trivial case µ = 0 that fµ could be extended to a 
real-analytic function such that Nfµ (x) = Fµ(x) for all x ∈ R . Consequently, 
Fµ is not a Newton map on R unless µ = 0 . 

Example 16. It must be emphasised that Theorem 11 and Corollaries 12 
and 13 do not force the set Fix [T ] of a Newton map T ∈ C∞(I) to attract 
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all points in I. In fact, the map T may at the same time exhibit some stable 
dynamical feature other than a fixed point. For a simple concrete example 
consider the (real-analytic) function 

23 + x
f(x) = x ,

1 + x2 

for which the associated Newton map 

34x
Nf (x) = − 

3 + x4 �√ √ � 
has the stable (in fact, super-attracting) 2-periodic orbit 3, − 3 . 

Remark 17. It is well known that if f is a rational function (i.e., a quotient 
of two polynomials) then Nf can be extended uniquely to (and studied ap
propriately as) a smooth function Nf on R, the one-point compactification 
of R. Though finite, Fix [ Nf ] generally contains more than one point [2, 3]. 
Corollary 13, however, clearly still applies to Fix [ Nf ] ∩ I for every interval 
I on which f is real-analytic. 

The above results about Newton maps have an immediate bearing on 
the distribution of the floating-point fractions of the iterates xn = Nf

n(x0) , 
that is, on the numerical data generated by Nm. (See [9] for an account on 
the relevance of fraction parts distributions for practical computations.) In 
particular, this distribution depends significantly on the analytic properties 
of Nf discussed in this note; the interested reader is referred to [6] for details. 
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