Lifted p-Adic Homology with Compact Supports of the Weierstrass Family and Its Zeta Endomorphism

GORO KATO

School of Mathematics, The Institute for Advanced Study, Princeton, New Jersey 08540, U.S.A.

Communicated by Hans Zassenhaus and S. Chowla

The relations among the generators for the lifted p-adic homology with compact supports of the various subfamilies of the Weierstrass family in characteristic $p > 0$ ($p \neq 2, 3$) are explicitly given in Section 2. Then, the universal coefficient spectral sequence and the zeta endomorphism in Section 3 enable one to compute explicitly the lifted p-adic homology with compact supports of all fibres, including all the elliptic curves and all their singular degenerations in the family.
$W_{Z/p}$ which is isomorphic to $\text{Spec} \left(\mathbb{Z}/p\mathbb{Z} \right) [g_2, g_3]$. Therefore, each fibre of $W_{Z/p}$ has exactly one point at ∞, which is a rational point in the fibre.

Let $A = \mathbb{Z}/p\mathbb{Z} [g_2, g_3]$ and let $A = (\mathbb{Z}/p\mathbb{Z})[g_2, g_3]$. Then, from the long exact sequence corresponding to the triple $(\text{points at } \infty, W_{Z/p}, U)$, $\cdots \to H^i_\text{c}(W_{Z/p}, d^1 \otimes \mathbb{Z}/p\mathbb{Z}) \to H^i_\text{c}(U, d^1 \otimes \mathbb{Z}/p\mathbb{Z}) \to \cdots$ and the first group being zero for $i \neq 2$, we have $H^i_\text{c}(W_{Z/p}, d^1 \otimes \mathbb{Z}/p\mathbb{Z}) \cong H^i_\text{c}(U, d^1 \otimes \mathbb{Z}/p\mathbb{Z})$ for $i = 1$. By the definition in [5], we have

\[H^i_\text{c}(U, d^1 \otimes \mathbb{Z}/p\mathbb{Z}) = H^2_\text{c}(\mathbb{Z}/p\mathbb{Z} [g_2, g_3]), \quad H^2_\text{c}(\mathbb{Z}/p\mathbb{Z} [g_2, g_3]) \times [g_2, g_3]) - U, \quad \Gamma^*_2(\mathbb{A}^2(\text{Spec}(\mathbb{Z}/p\mathbb{Z} [g_2, g_3]))) \otimes \mathbb{Z}/p\mathbb{Z}). \] (1)

Note also that a unique singular point of each fibre over p on the closed subscheme $\mathcal{A} = (g_2^3 - 27g_3^2 = 0)$ lies in the affine open U.

If one knows

(i) the lifted p-adic homology with compact supports of U and

(ii) the zeta endomorphism of the homology group,

then one can determine the lifted p-adic homology with compact supports of all the fibres in the family. This is because the zeta function of a fibre is given by

\[Z_p(T) = \frac{\prod_{p | q - \text{odd}} P_{p,q}(T)}{\prod_{p | q - \text{even}} P_{p,q}(T)}. \]

where $P_{p,q}$ is the reverse characteristic polynomial of the endomorphism of the $E_{p,q}$-term of the universal coefficient spectral sequence $\text{Tor}^d_\mathbb{Z}(\mathbb{Z}/p\mathbb{Z} [g_2, g_3], W(k(\mu)) \otimes \mathbb{Z}/p\mathbb{Z})$, where $W(k(\mu))$ is the complete discrete valuation ring, e.g., for a perfect field $k(\mu)$. Furthermore, the above universal coefficient spectral sequence abuts upon the finitely generated lifted p-adic homology with compact supports of the fibre, which gives the zeta function of that fibre (see [5, 6] Chaps. 5 and 6). See [4] also.

The topics of this paper are (i) and (ii) above for the Weierstrass family. The preimage of $\text{Spec}((\mathbb{Z}/p\mathbb{Z} [g_2, g_3, A^{-1}])$ of U is the open subfamily considered in [1].

2. Module Structure

Let $A = (\mathbb{Z}/p\mathbb{Z} [g_2, g_3]) = \mathbb{A}^2(\text{Spec}(A))$. One can use the covering \{$A^2(\text{Spec}(A)), A^2(\text{Spec}(A)) - (Y^2 - 4X^3 + g_2X + g_3 = 0)$\} to compute the cohomology group (1) in the Introduction. Then the long sequence $\cdots \to H^0(A^2(\text{Spec}(A)), A^2(\text{Spec}(A)) - U, \quad \Gamma^*_2(A^2(\text{Spec}(A))) \otimes \mathbb{Z}/p\mathbb{Z})$
\[\rightarrow H^n(A^{2}(\text{Spec}(A))), \Gamma_3^n(A^{2}(\text{Spec}(A)))^\dagger \otimes \mathbb{Z} \mathbb{Q} \rightarrow H^n(A^{2}(\text{Spec}(A))) \rightarrow U, \]
\[
\Gamma_3^n(A^{2}(\text{Spec}(A)))^\dagger \otimes \mathbb{Z} \mathbb{Q} \rightarrow 0 \quad \text{is induced. The second and third groups are cohomologies of the global sections.}
\]

Theorem 2.1. The \(A^\dagger \otimes \mathbb{Z} \mathbb{Q} \)-module \(H_1^2(U, A^\dagger \otimes \mathbb{Z} \mathbb{Q}) \) has the recursive cohomologous relations among the generators

\[
2(i-1) d C^{-i} dX \wedge dY \sim (6i-13) 6g_2 X C^{-i-1} dX \wedge dY
\]
\[
-(6i-11) 9g_3 C^{-i-1} dX \wedge dY
\]
\[
4(i-1) \Delta XC^{-i} dX \wedge dY \sim (6i-11) g_3^3 C^{-i-1} dX \wedge dY
\]
\[
-(6i-13) 18g_3 X C^{-i-1} dX \wedge dY,
\]

\(i \geq 2 \), where \(C = Y^2 - 4X^3 + g_2 X + g_3 \) and \(d \) is the discriminant \(g_3^2 - 27g_3^3 \). In particular, \(H_1^2(U, A^\dagger \otimes \mathbb{Z} \mathbb{Q}) \) is generated by \{\(C^{-i} dX \wedge dY, X C^{-i} dX \wedge dY \} \text{ for } i \geq 1 \text{ over } A^\dagger \otimes \mathbb{Z} \mathbb{Q}.

Proof. The cohomology group (1) in the Introduction is the abutment of the spectral sequence \(H^q(A^2(A), A^2(A)-U, \Gamma_3^n(A^2(d)))^\dagger \otimes \mathbb{Z} \mathbb{Q} \). Then we have the isomorphisms by Lemma 1 in [2]:

\[
H_1^2(U, A^\dagger \otimes \mathbb{Z} \mathbb{Q}) \cong H^2(A^2(A)-U, \Gamma_3^n(A^2(d)))^\dagger \otimes \mathbb{Z} \mathbb{Q})
\]
\[
\cong \text{Coker}(\Gamma_3^2(A[X, Y, C^{-1}])) \quad (2)
\]

The cohomologous relations, induced by the map \(d_{1,0}^1 \) in (2), among the elements of \(\Gamma_3^2(A[X, Y, C^{-1}]) \) are given by

\[
2iX^k Y^{i+1} C^{-i-1} dX \wedge dY \sim jX^k Y^{i-1} C^{-i} dX \wedge dY
\]
\[
12iX^k Y^{i} C^{-i-1} dX \wedge dY + kX^{k-1} Y^{i} C^{-i} dX \wedge dY
\]
\[
\sim g_2 iX^k Y^{i} C^{-i-1} dX \wedge dY.
\]

Then we have

\[
\frac{(6i-11)}{6(i-1)} C^{-i-1} dX \wedge dY \sim \frac{2g_2}{3} X C^{-i} dX \wedge dY + g_3 C^{-i} dX \wedge dY
\]
\[
\frac{6i-13}{6(i-1)} X C^{-i-1} dX \wedge dY \sim \frac{g_2}{18} C^{-i} dX \wedge dY + g_3 X C^{-i} dX \wedge dY.
\]

The equations (4) plainly imply Eq. (CR) in Theorem 2.1. The generation of \(H_1^2(U, A^\dagger \otimes \mathbb{Z} \mathbb{Q}) \) by the elements \{\(C^{-i} dX \wedge dY, X C^{-i} dX \wedge dY \} \text{ for } i \geq 1 \text{ over } A^\dagger \otimes \mathbb{Z} \mathbb{Q}.

can be shown in the same way as in the case of characteristic zero (see [2]). The universal coefficient spectral sequence implies, if U_d is the open subfamily of non-singular fibres,

$$H^*_*(U, A^+ \otimes \mathbb{Q}) \otimes \mathbb{Z}_p \cong H^*_*(U_d, (A^{-1}A)^+ \otimes \mathbb{Q}), \quad (5)$$

where $A^{-1}A$ denotes the localization of A at the discriminant A. (The latter was computed in [1] to be free of rank two over $(A^{-1}A)^+ \otimes \mathbb{Q}$.) Applying the long exact sequence for $k = 2, 1, 0$ in the following Note 1, we have the exact sequence

$$0 \to A^+ \otimes \mathbb{Q} \to A^+ \otimes \mathbb{Q} \to A^+ \otimes \mathbb{Q}/A \cdot A^+ \otimes \mathbb{Q} \to 0.$$

From this, we extract the short exact sequence

$$0 \to H^*_*(U, A^+ \otimes \mathbb{Q}) \to H^*_*(U, A^+ \otimes \mathbb{Q}) \to H^*_*(U, A^+ \otimes \mathbb{Q}) \to 0.$$

That is, $H^*_*(U, A^+ \otimes \mathbb{Q})$ has no non-zero A-torsion; i.e., $H^*_*(U, A^+ \otimes \mathbb{Q})$ is torsion free. Therefore the equations (CR) tell us that there is no cohomologous relation among the set of generators in spite of the "t" completion of the base ring A; hence, the inclusion (6) in Section 3 follows. Otherwise, the homology groups on the left in (5) would become free of rank one over $(A^{-1}A)^+ \otimes \mathbb{Q}$.

Remark 1. The isomorphism in (5) can be given by $C^{-1} dX \wedge dY \to Y dX$ and $X C^{-1} dX \wedge dY$ as $(A^{-1}A)^+ \otimes \mathbb{Q}$-modules (see [1]).

Corollary 2.2. Let U' be the closed Weierstrass subfamily over $A/(A \cdot A)$, where $A = (\mathbb{Z}/p \mathbb{Z})[g_2, g_3]$ and $\Delta = g_2^3 - 27g_3^2$, i.e., U' is the closed subscheme over $A/\Delta \cdot A$ consisting of all the singular fibres of U. Then, the lifted p-adic homology with compact supports of this Weierstrass subscheme is generated by $\{C^{-1} dX \wedge dY, X C^{-1} dX \wedge dY\}_{i \geq 1}$ over $A^+ \otimes \mathbb{Q}/A \cdot A^+ \otimes \mathbb{Q}$.
Note 1. Since generally we have, for a non-zero-divisor \(\Delta \in \mathcal{A} \),
\[
\text{Tor}_i^\Delta(H^i_\Delta(U, \mathcal{A} \otimes \mathbb{Z} \mathbb{Q})), \mathcal{A} / \Delta \mathcal{A})
\]
\[
= \begin{cases}
H^i_\Delta(U, \mathcal{A} \otimes \mathbb{Z} \mathbb{Q}) / \Delta \cdot H^i_\Delta(U, \mathcal{A} \otimes \mathbb{Z} \mathbb{Q}), & i = 0, \\
\ker(\text{mult. by } \Delta), & i = 1, \\
0, & i \geq 2,
\end{cases}
\]
respectively, we have the long exact sequence
\[
\begin{array}{cccc}
\text{---} & \to & H^i_\Delta(U, \mathcal{A} \otimes \mathbb{Z} \mathbb{Q}) & \to H^i_\Delta(U, \mathcal{A} \otimes \mathbb{Z} \mathbb{Q}) \\
& & & \to H^i_\Delta(U', \mathcal{A} \otimes \mathbb{Z} \mathbb{Q}) / \Delta \cdot \mathcal{A} \otimes \mathbb{Z} \mathbb{Q} \to \text{---}
\end{array}
\]
from the corresponding universal coefficient spectral sequence (see [6, Chap. 5]).

Proof. Since \(H^i_\Delta(U', \mathcal{A} \otimes \mathbb{Z} \mathbb{Q}) / \Delta \cdot \mathcal{A} \otimes \mathbb{Z} \mathbb{Q} \) is obtained by taking the cohomology of the cochain complex, which is obtained by tensoring the cochain complex
\[
C^*(\mathcal{A}^2(A), \mathcal{A}^2(A) - U, \mathcal{A}^* \otimes \mathbb{Z} \mathbb{Q})
\]
with \(\mathcal{A} \otimes \mathbb{Z} \mathbb{Q} / \Delta \cdot \mathcal{A} \otimes \mathbb{Z} \mathbb{Q} \) over \(\mathcal{A} \otimes \mathbb{Z} \mathbb{Q} \) (see [5]), the assertion of Corollary 2.2 is obtained from (CR) in Theorem 2.1 by substituting \(\Delta = 0 \); i.e.,
\[
(6i - 13) 2g_2XC^{-(i-1)} dX \wedge dY \sim (6i - 11) 3g_3XC^{-(i-1)} dX \wedge dY
\]
\[
(6i - 11) g_2^3XC^{-(i-1)} dX \wedge dY \sim (6i - 13) 18g_3XC^{-(i-1)} dX \wedge dY.
\]

Remark 2. Let \(\tilde{\mathcal{A}} = \mathcal{A} \otimes \mathbb{Z} \mathbb{Q} / \Delta \cdot \mathcal{A} \otimes \mathbb{Z} \mathbb{Q} \). One can observe that
\[
H^i(U, \tilde{\mathcal{A}}) \otimes \mathcal{A} \tilde{\mathcal{A}}_g \quad \text{and} \quad H^i(U, \tilde{\mathcal{A}}) \otimes \mathcal{A} \tilde{\mathcal{A}}_g,
\]
where \(\tilde{\mathcal{A}}_g \) and \(\tilde{\mathcal{A}}_g \) are localizations at \(g_2 \) and \(g_3 \), respectively, are generated by \(\{ C^{-i} dX \wedge dY \}_{i \geq 1} \) or, since \(g_2 \neq 0 \) implies \(g_3 \neq 0 \), \(\{ XC^{-i} dX \wedge dY \}_{i \geq 1} \) over \(\tilde{\mathcal{A}}_g \), \(i = 2, 3 \). Note also that if \(g_2 = 0 \) (then \(g_3 = 0 \)), (4) computes the homology of the singular fibre over \(\mu = (g_2 = g_3 = 0) \); i.e., the corresponding homology group is trivial.

Note 2. We have the short exact sequence
\[
0 \to H^i_\Delta(U, \mathcal{A} \otimes \mathbb{Z} \mathbb{Q}) \to H^i_\Delta(U, \mathcal{A} \otimes \mathbb{Z} \mathbb{Q}) \to H^i_\Delta(U', \tilde{\mathcal{A}}) \to 0
\]
from the universal coefficient spectral sequence (see the proof of Theorem 2.1 and [6, Chap. 3]) induced by the short exact sequence

$$0 \to \mathbb{A}^1 \otimes \mathbb{Q} \xrightarrow{\text{mult. by } d} \mathbb{A}^1 \otimes \mathbb{Z} \otimes \mathbb{Q} \to \mathbb{Q} \to 0;$$

see Note 1.

Corollary 2.3. Let U^0 and U^3 be the corresponding closed subfamilies of the Weierstrass obtained by pulling back the Weierstrass family to the closed subsets $(g_2 = 0)$ and $(g_2 = 3)$ of the base scheme, respectively. Then, the module structures of $H_c^i(U^0, \mathbb{Z}_p[g_3] \otimes \mathbb{Q})$ and $H_c^i(U^3, \mathbb{Z}_p[g_3] \otimes \mathbb{Q})$ over $\mathbb{Z}_p[g_3] \otimes \mathbb{Z} \otimes \mathbb{Q}$ are given from (CR) or equations (4) by substituting $g_1 = 0$ and $g_1 = 3$, respectively. That is, the equations (4) become (43) and (40) for $g_2 = 3$ and $g_2 = 0$, respectively,

$$\frac{6i - 11}{6(i - 1)} \, C^{-i} dX \wedge dY - 2XC^{-i} dX \wedge dY + g_3 C^{-i} dX \wedge dY - 2(6i - 13) \, XC^{-i} dX \wedge dY - 2g_3 XC^{-i} dX \wedge dY + C^{-i} dX \wedge dY$$

$$(4^3)$$

$$\frac{6i - 11}{6(i - 1)} \, C^{-i} dX \wedge dY - g_3 C^{-i} dX \wedge dY$$

$$(4^0)$$

If $g_3 = +1$, i.e., the singular fibre over $\mu = (g_2 = 3, g_3 = 1)$, then the corresponding homology of this projective line with an ordinary double point is free of rank one; one can choose, for example, $C^{-1} dX \wedge dY$ as a basis element. For $g_3 = -1$ use (CR) to have the corresponding statement. If $g_3 \neq 0$ in (40), then the open subfamily of U^0 defined by "$g_3 \neq 0"$ has the homology generated by two elements $C^{-1} dX \wedge dY$ and $XC^{-1} dX \wedge dY$

Proof. The above statements can be observed plainly from (CR) and (4).

3. Zeta Endomorphism

Define a ring endomorphism $F^*: \mathbb{Z}_p[g_2, g_3]^+ \to \mathbb{Z}_p[g_2, g_3]^+$ over \mathbb{Z}_p as $F(g_2) = g_2^p$ and $F(g_3) = g_3^p$ and let f be the pth power map of the Weierstrass scheme in characteristic p. Then the first zeta endomorphism $H_c^*(F, f)$ is induced on the lifted p-adic homology with compact supports of the Weierstrass family $M = H_c^*(U, \mathbb{Z}_p[g_2, g_3]^+ \otimes \mathbb{Z} \otimes \mathbb{Q})$. The homology
group $H^j(U, \mathbb{Z}_p[\mathbb{Z}_2, \mathbb{Z}_3]) \otimes \mathbb{Q}$ becomes a vector space of dimension two after being tensored with the quotient field of the ring $\mathbb{Z}_p[\mathbb{Z}_2, \mathbb{Z}_3]$. Since M is torsion free (see, the proof of Theorem 2.1, Notes 1 and 2 in Section 2) we have the inclusion

$$M \hookrightarrow M \otimes \mathbb{Q}_p(\mathbb{Z}_2, \mathbb{Z}_3)$$ \hspace{1cm} (6)

Let \mathcal{K}^+ be the quotient field of $\mathbb{Z}_p[\mathbb{Z}_2, \mathbb{Z}_3]^\dagger$. Then $M \otimes \mathbb{Q}_p(\mathbb{Z}_2, \mathbb{Z}_3) \otimes \mathcal{O}_{\mathcal{M}(\mathcal{K}, \mathcal{K})}, \mathcal{K}^+$ is $H^j(U_\mathcal{K}, \mathcal{K}^+)$, where $U_\mathcal{K}$ is the generic fibre of U, i.e., the p-adic homology with compact supports of an elliptic curve. Therefore, the zeta matrix, like the one computed in [1], induces a semi-linear endomorphism of the free module

$$M \otimes (A^{-1}\mathcal{O}_{\mathcal{M}(\mathbb{Z}_2, \mathbb{Z}_3)})^\dagger$$ \hspace{1cm} (7)

of rank two over $(A^{-1}\mathcal{O}_{\mathcal{M}(\mathbb{Z}_2, \mathbb{Z}_3)})^\dagger$. The zeta endomorphism of M is obtained by restricting the zeta matrix of (7) on M by the inclusion (6). We now compute it explicitly as follows:

$$H^j(F, f)(C^{-1} dX \land dY),$$ \hspace{1cm} (B_1)

$$H^j(F, f)(XC^{-1} dX \land dY).$$ \hspace{1cm} (B_2)

(B_1) equals

$$\frac{1}{Y^{2p} - 4X^{3p} + g_2^pX^p + g_3^p} \frac{dX^p \land dY^p}{C^p - pT} dX \land dY,$$

where $C = Y^2 - 4X^3 + g_2X + g_3$ and T is a polynomial in g_2, g_3, X, and Y. Similarly (B_2) equals

$$\frac{p^3XC^{2p-1}Y^{p-1}}{C^p - pT} dX \land dY.$$

Rewrite $C^p - pT$ as $C^p(1 - pT/C^p)$. Then (B_1) and (B_2) become

$$\sum_{i \geq 0} p^{i+2}T^iX^{p-1}Y^{p-1}C^{-p(i+1)} dX \land dY$$ \hspace{1cm} (B'_1)

$$\sum_{i \geq 0} p^{i+2}T^iX^{2p-1}Y^{p-1}C^{-p(i+1)} dX \land dY.$$ \hspace{1cm} (B'_2)

Let $2j = p' - 1$, where p' is uniquely determined by p and the even power
of Y in T. Then the first equation of (3) implies that the terms $X'Y^2/C^{-p(l+1)}dX \wedge dY$ in (B_1') and (B_2') can be written as

$$
\frac{(2j-1) \cdots (2j-2\beta+1) \cdots 3 \cdot 1}{k(k-1) \cdots (k-j+1)} X'C^{-p(l+1)+\gamma}dX \wedge dY.
$$

Now the second equation in (3) implies that the term $X'C^{-p(l+1)+\gamma}dX \wedge dY$ can be written as a linear combination of $\{XC^{-k}dX \wedge dY, C^{-k}dX \wedge dY\}_{k \geq 1}$ by Theorem 2.1 over $\mathbb{Z}_p[g_2, g_3]^1 \otimes \mathbb{Q}$ (see [2]). Consequently, over $d^{-1}\mathbb{Z}_p[g_2, g_3]^1 \otimes \mathbb{Q}$, (B_1) and (B_2) can be written as linear combinations of $C^{-1}dX \wedge dY$ and $XC^{-1}dX \wedge dY$ by (CR) in Theorem 2.1 (see also Remark 1). Therefore, the zeta matrix of the $(d^{-1}\mathbb{Z}_p[g_2, g_3]^1)^*$-module (7) is obtained. As a consequence, we have the first zeta endomorphism of $M = H^*(U, \mathcal{O} \otimes \mathbb{Q})$.

Remark 3. The zeta matrix via bounded Witt cohomology for the Weierstrass open subfamily, i.e., over $(\mathbb{Z}/p\mathbb{Z})[g_2, g_3, d^{-1}]$, will be published in [3] when it has been made elegant enough. See [7] also.

REFERENCES

7. S. Lubkin, Generalization of p-adic cohomology; Bounded Witt vectors. A canonical lifting of a variety in characteristic $p \neq 0$ back to characteristic zero, Compositio Math. 34 (1977), 225–277.