Carbon Transfer from Labeled Leaf Litter into Mineral Soil at the University of Missouri Baskett Research Area, a Deciduous Forest in the Eastern United States.

Shayne R. Bradshaw
Department of Chemistry, California State University East Bay,
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory.

Introduction
We have analyzed samples of soil for their carbon-14 isotopic signature. This ratio was used to determine the amount of carbon flux through the soil profile in plots at the University of Missouri Baskett research area, a deciduous forest in the Eastern United States. Carbon-14 enriched leaf litter was added to 5 plots at the site and allowed to decompose with sampling done each year.

Materials and methods
Fig. 2. Collection. The samples were extracted from each plot and sent to Oak ridge National Laboratory where they were put through a 2mm sieve and dried at 70°C for several days (until constant mass was reached). These samples were then sent to LLNL.

Fig. 3. Preparation Soil samples were combusted to produce CO2 gas. The CO2 was condensed on a graphitization rig where it was reduced at 570°C with a stoichiometric amount of H2 gas in the presence of an iron catalyst to bind onto. The graphite produced was pounded into aluminum targets.

Fig. 4. Analysis The targets were analyzed in an accelerator mass spectrometer. Targets were sputtered with cesium. The ion beam was accelerated using electric potentials to collide with a foil and break the isobar bonds. The ions in the beam were separated using magnetic fields. The 13C. And 14C were both measured.

Results
The concentration of radiocarbon in 2009 taken from the first 0-5 cm has increased by 58 +/- 8% since 2007. This increase is beyond the standard error and furthermore passes a t-test at α=0.005 and can be used to calculate the carbon flux from the enriched 14C leaf litter on the surface to the 0-5cm mineral soil depth.

Using the following mixing model, we were able to quantify the carbon transferred to the 0-5 cm mineral soil depth.

\[
(\Delta^{14}C)_{\text{soil}} = (\Delta^{14}C)_{\text{added litter}} + (\Delta^{14}C)_{\text{soil}}
\]

Where the carbon concentration weighted by the 14C signature from 2009 is a combination of soil carbon from 2007 plus the carbon transferred from the added leaf litter. "a" is the weighted carbon concentration of the soil in 2007 before labeled litter addition, and "b" is the weighted carbon concentration of the labeled litter from 2009.

Substituting and evaluating with:

\[
\Delta^{14}C_{\text{soil}} (2007) = 113, \quad \Delta^{14}C_{\text{soil}} (2007) = 93, \quad \Delta^{14}C_{\text{soil}} (2009) = 171
\]

We determined that 8% of the carbon present in the 0-5cm mineral soil mixture in 2009 was transferred from the added leaf litter.

Using t-tests, there is not enough evidence to support the claim that there is more radiocarbon present in the 2007 5-15cm depth than in the 2007 5-15cm at the 0.25 level. The same applies to the 2009 15-30cm relative to the 2007 15-30cm depth.

Discussion
Although some of the litter decomposed and transferred as dissolved organic matter down through the soil profile, an explanation that accounts for much of the 8% flux of carbon from the added leaf litter from 2007 to 2009 is due to the

- Macrobota, in particular earthworms found at the site.
- Climate also plays a role in the rate of decomposition and resulting flux of carbon.

Conclusions
Using the mixing model we determined 8% of the carbon present in the 0-5cm depth of the mineral soil at the Missouri Ozarks site was transferred from the enriched radiocarbon leaf litter. The remaining fraction of carbon was the initial carbon present before the 2007 litter addition.

Acknowledgments
I thank Karis McFarlane for her help interpreting the AMS results and her guidance in putting this project together. I also thank Paula Zermeno for her assistance in the graphitization process and explanation for calculating the manometric carbon percent. Thanks also to Paul Hanson for designing and implementing the EBIS-AmeriFlux Study.

For further information
Regarding research conducted on carbon retention and flux in the soil carbon reservoir, refer to the Enriched Background Isotope Study (EBIS).

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

LLNL-POST-444378