
A COMPARATIVE STUDY OF THE NPM, PYPI, MAVEN, AND RUBYGEMS

OPEN-SOURCE COMMUNITIES

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Saurav Gupta

June 2024

© 2024

Saurav Gupta

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: A comparative study of the NPM, PyPI,

Maven, and RubyGems open-source com-

munities

AUTHOR: Saurav Gupta

DATE SUBMITTED: June 2024

COMMITTEE CHAIR: Ayaan M. Kazerouni, Ph.D.

Assistant Professor of Computer Science

COMMITTEE MEMBER: Stephen R. Beard, Ph.D.

Assistant Professor of Computer Science

COMMITTEE MEMBER: John Clements, Ph.D.

Professor of Computer Science

iii

ABSTRACT

A comparative study of the NPM, PyPI, Maven, and RubyGems open-source

communities

Saurav Gupta

Open-source software (OSS) ecosystems, defined as environments composed of pack-

age managers and programming languages (e.g., NPM for JavaScript), are essential

for software development and foster collaboration and innovation. Although their sig-

nificance is acknowledged, understanding what makes OSS communities healthy and

sustainable requires further exploration. This thesis quantitatively assesses the health

of OSS projects and communities within the NPM, PyPI, Maven, and RubyGems

ecosystems. We explore five research questions addressing project standards, commu-

nity responsiveness, contribution distribution, contributor retention, and newcomer

integration strategies. Our analysis shows varied documentation practices, insider

engagement levels, and contribution patterns. Our findings highlight both strengths

and different areas for improvement across ecosystems. For example, RubyGems ex-

cels in the adoption of project documentation and exhibits the most even distribution

of contributions among all contributors, including highly active contributors. and a

very responsive community, but it needs to improve contribution retention and at-

tract newcomers to the projects. Meanwhile, NPM and Maven show a trend toward

getting new contributors, characterized by a high ratio of individual contributions.

They need to better adopt a code of conduct, pull request templates, and increase the

number of active contributors in a project. This thesis offers insights to developers

and maintainers on how to strengthen ecosystems and support vibrant communities

effectively.

iv

ACKNOWLEDGMENTS

I am writing to express my sincere gratitude to Dr. Ayaan M. Kazerouni, my thesis

advisor, for his immense contribution in providing me with valuable insights, guid-

ance, and knowledge throughout the research process. His expertise and support have

played a crucial role in shaping this thesis and overcoming obstacles.

I want to sincerely thank my committee members, Dr. Stephen R. Beard and Dr.

John Clements, for dedicating their invaluable time to being on my committee and

supporting me on my research journey.

I want to thank my parents for their unwavering support and the opportunities they

have provided me. Their encouragement and belief in my abilities have been a con-

stant source of motivation.

I thank Andrew Guenther for uploading this template on GitHub.

Lastly, I would like to thank all my friends and well-wishers who have offered their

encouragement and understanding during this undertaking.

This thesis would not have been possible without these individuals’ collective support

and guidance.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 Introduction . 1

2 Background . 5

2.1 Software Ecosystem . 5

2.2 Project Metadata files in OSS . 6

2.3 The Dynamics of Community Interaction in OSS 8

2.4 OSS Participation . 9

2.5 Newcomer to the OSS and First-timer Engagement 10

3 Study Overview . 12

3.1 Selection of Ecosystems . 12

3.2 Data Collection and Analysis . 13

4 Project Metadata . 16

4.1 RQ1.How prevalent are community guideline documents in repositories
in the four ecosystems? . 16

4.2 Method . 17

4.3 Results . 18

5 Community Responsiveness and Participation 23

5.1 RQ2.How do project insiders respond to issues opened by outsiders in
four ecosystems? . 23

5.1.1 Method . 24

5.1.2 Results . 26

vi

5.2 RQ3. How is the distribution of contributions among project contrib-
utors characterized within four ecosystems? 28

5.2.1 Method . 29

5.2.2 Results . 30

6 Contributor Attraction and Retention . 35

6.1 RQ4.What is the contributor retention rate within four ecosystems? . 35

6.1.1 Method . 36

6.1.2 Results . 37

6.2 RQ5.What percentage of repositories across four ecosystems feature
a “good first issue” label, and what proportion of contributions to
projects within each ecosystem come from newcomers? 39

6.2.1 Method . 40

6.2.2 Results . 41

7 Discussion . 44

8 Future Work . 49

BIBLIOGRAPHY . 52

vii

LIST OF TABLES

Table Page

3.1 Example of Combined Dataset from 4 Package Registries 15

5.1 Descriptive statistics of the median commit difference between high-
contributing and low-contributing authors in a repository across ecosys-
tems . 31

7.1 Overview of Key Ecosystem Characteristics 48

viii

LIST OF FIGURES

Figure Page

3.1 Representation of data collection across four ecosystems 13

4.1 Collecting project metadata from GitHub repositories for each ecosys-
tem . 18

4.2 Percentage of repositories in each ecosystem that had README files 19

4.3 Percentage of Description Inclusion across Ecosystems 20

4.4 Percentage of Pull Request Template Availability across Ecosystems 21

4.5 Percentage of Contributing Guidelines Presence across Ecosystems . 21

4.6 Percentage of License Inclusion across Ecosystems 22

4.7 Percentage of Code of Conduct Adoption across Ecosystems 22

5.1 Highlighting Insider Engagement with Outsider Issues through Com-
ments . 25

5.2 Percentage of Issues in Each Ecosystem with Outsider-Opened Issues
and Insider Comments . 27

5.3 Median Insider Response Time to Outsider-Opened Issues Across
Repositories in Each Ecosystem . 28

5.4 Highlighting the normalized transformation of the commits of top
100 contributors in ecosystems . 33

5.5 Comparative analysis of IQR distribution for the contribution gap
between high-contributing and low-contributing commit authors in
a repository across ecosystems . 34

5.6 Comparative analysis of the median number of contributors in a
repository for each ecosystem . 34

6.1 Comparative Analysis of Contributor Engagement in OSS Ecosys-
tems by Percentage of Repeat Contributors and Their Average Sub-
sequent Contributions . 38

ix

6.2 Highlighting the process of finding the GFI Label across ecosystem
repositories . 40

6.3 Comparative Analysis of GFI Adoption in Ecosystems 42

6.4 Comparative Analysis of Newcomer Contribution Across Ecosystems 42

x

Chapter 1

INTRODUCTION

The evolution of Open-source software (OSS) ecosystems has been pivotal in shaping

the modern software landscape. In this thesis, following Davis et al. [1], we define

an “ecosystem” as a collection of software projects that are developed and co-evolve

in the same programming language and environment. We refer to ecosystems by the

names of their default package registries, such as “NPM” [2] for JavaScript, “PyPI”

[3] for Python, “Maven” [4] for Java, and “RubyGems” [5] for Ruby.

The long-term sustainability of OSS projects (and the ecosystems in which they live)

can be affected by factors like community interaction dynamics and recruitment and

retention of contributors [6, 7, 8, 9]. This thesis presents a comparative analysis of

a number of OSS community metrics for the NPM, PyPI, Maven, and RubyGems

ecosystems. We studied the GitHub repositories and community interactions in the

top 1,000 most downloaded packages in each ecosystem. Our findings reveal di-

verse practices and highlight strengths and areas for improvement. For instance, the

RubyGems community excels in the adoption of documentation (e.g., having a high

presence of Contributing guidelines, Code of Conduct, and Pull Request Template

Files in repositories) but struggles with contributor retention, while the NPM and

Maven ecosystems are good at attracting new contributors but need to improve in

certain other aspects (like the adoption of documentation and project insiders’ en-

gagement with external contributors).

1

We answer five core research questions, organized into three themes: project meta-

data, dynamics of community engagement, and recruitment and retention of contrib-

utors.

Project Metadata.

RQ1: How prevalent are community guideline documents in repositories in the four

ecosystems?

We checked repositories for the presence of key files that provide project guidelines.

These file naming conventions and their roles are standardized on GitHub.1 Specifi-

cally,

• README.md, which provides an overview of the project and usage instructions.

• CONTRIBUTING.md, which details guidelines for contributing to the project.

• PULL REQUEST TEMPLATE.md, which offers a template to standardize pull

request submissions.

• CODE OF CONDUCT.md, which sets expected behavior norms for contribu-

tors.

• LICENSE, which specifies the legal terms for software use and distribution.

Community Responsiveness and Participation.

RQ2: How do project insiders respond to issues opened by outsiders in the four

ecosystems? Active engagement and support are good indicators of the overall health

and responsiveness of the OSS project. We studied the rate and speed of response by

project maintainers (“insiders”) to issues opened by external users (“outsiders”).

1See the Building Communites documentation page at https://docs.github.com/en/communities.

2

RQ3: How is the distribution of contributions among project contributors charac-

terized within four ecosystems? The distribution of contributions towards projects

highlights the inclusivity and collaborative breadth within each project’s ecosystem.

We analyzed the number of commits by contributors to determine the distribution of

contributions between highly active members and lower-contributing members.

Contributor Attraction and Retention.

RQ4: What is the contributor retention rate within four ecosystems? Contributor

involvement provides community effectiveness in terms of member retention and the

sustainability of their engagement in OSS projects. We studied member engagement

in terms of its retention rates by analyzing the frequency of subsequent pull requests

within the project of an ecosystem.

RQ5: What percentage of repositories across four ecosystems feature a “good first

issue” label, and what proportion of contributions to projects within each ecosystem

come from newcomers? The presence of a “good first issue” label signals a project’s

openness to incorporating support and motivates new contributors. This study eval-

uates the community’s welcomeness to newcomers by analyzing the prevalence of GFI

labels across ecosystems. It also seeks to investigate the effectiveness of the GFI labels

through the percentage of newcomers contributing to OSS projects.

Summary of findings. This work compares the NPM, PyPI, Maven, and RubyGems

ecosystems across various quantitative metrics, including repository metadata, in-

sider engagement, contribution disparity, contributor retention, GFI welcomeness,

and newcomer contribution. Our findings have revealed distinct patterns and corre-

lations within each ecosystem:

3

• NPM and Maven ecosystems exhibit trends toward attracting more newcomers

to projects.

• PyPI demonstrates strength across all metrics but faces challenges in contribu-

tion disparity among contributors.

• RubyGems showcases a strong community but requires an influx of newcomers.

• The presence of “Good First Issue” labels correlates with increased newcomer

contributions across all ecosystems.

Thesis highlights the patterns in the form of strengths and areas for improvement in

each ecosystem, along with several avenues for future research. Firstly, further in-

vestigation is needed to understand the underlying reasons behind observed patterns.

While thesis focused on quantitative analysis, qualitative research could provide valu-

able insights into the motivations driving ecosystem behaviors. Additionally, future

studies could extend our analysis to other OSS ecosystems, encompassing a broader

range of variables and contexts. By continuing to explore these areas, we can deepen

our understanding of OSS dynamics and contribute to the advancement of sustainable

and thriving open-source communities and health.

This thesis’s outline is as follows. We examine the evolution and significance of OSS

ecosystems (Chapter 2: Background); Selection of Ecosystems and Data collection

(Chapter 3: Study Overview); Methods and findings for each research theme are

presented in Chapter 4 (Project Metadata), 5 (Community Responsiveness and Par-

ticipation), and 6 (Contributor Attraction and Retention). The discussion (Chapter

7) reflects on our findings, and Chapter 8 outlines future work.

4

Chapter 2

BACKGROUND

2.1 Software Ecosystem

The landscape of open-source software (OSS) has evolved significantly, transforming

from a niche movement into a mainstream force within the software industry. The

emergence of software package managers like npm, PyPI, Maven, and RubyGems has

been pivotal in this transformation, making them indispensable for modern software

development practices by providing an extensive repository of reusable code, libraries,

and tools.

OSS began as a collaborative venture among enthusiasts and has become a funda-

mental aspect of the global software infrastructure. This evolution is marked by crit-

ical milestones, such as the introduction of the GNU General Public License (GPL)

in the 1980s and the emergence of significant projects like Linux and Apache [10].

The proliferation of OSS platforms reflects a shift in software development, moving

from proprietary to open and collaborative models, significantly impacting develop-

ment practices, economic models, and technological innovation [11]. The shift has

enabled rapid prototyping, community-driven innovation, and reduced barriers to en-

try for startups, thereby democratizing software development. The impact extends

to how businesses leverage OSS for competitive advantage, integrating open-source

components into their proprietary solutions to enhance agility and innovation for the

software ecosystem and architectural health [12].

The success of an OSS project is intricately linked to its community. OSS communi-

ties, composed of volunteers, demonstrate diverse structures and governance models.

5

Contributors’ motivations vary, ranging from a passion for technology and a desire

for peer recognition to collaborative learning and professional development opportu-

nities [13]. The diversity within OSS communities often reflects a broader spectrum

of skills, perspectives, and collaborative dynamics, enriching the development process

[13, 14].

Managing OSS platforms presents unique challenges. Sustaining active participation,

ensuring quality control, and addressing security vulnerabilities are constant concerns.

The disparity in contributions and the need for effective project governance also pose

significant hurdles [14]. The effectiveness of governance models in balancing openness

with the need for structure and leadership is critical to the sustainability and health

of these projects [15].

OSS is instrumental in driving innovation in the software industry, facilitating a cul-

ture of open collaboration that has been key to several technological breakthroughs.

This culture extends beyond the industry, impacting education and promoting global

digital equity [16, 17]. Thus, studying OSS ecosystems is not merely about under-

standing software development practices but exploring collaborative innovation, com-

munity dynamics, and the democratization of technology, providing crucial insights

into the future of software development and the global tech community at large [16].

2.2 Project Metadata files in OSS

Project metadata files like the README.md, CONTRIBUTING.md, LICENSE,

CODE OF CONDUCT.md, and PULL REQUEST TEMPLATE.md are pivotal in

shaping collaborative development practices.

6

The README.md file is often the first point of contact for anyone encountering

an open-source project. It provides a window into the software, offering essential

information about its purpose, usage, and installation processes [18]. The impact

of comprehensive README files on project popularity cannot be overstated; clear

documentation is closely linked to the success of open-source projects. Studies have

indicated that well-documented projects tend to attract more contributors and users,

enhancing their visibility and viability within the community [19].

The code of conduct in OSS projects is a vital element that outlines expected

behaviors and norms within the community. It serves as an interaction guideline,

promoting a respectful and inclusive environment. This aspect of the presence of an

OSS health file is integral to fostering a healthy community dynamic and is essential

for collaborative software development.

Licensing in OSS is another crucial component. It specifies the terms under which

the software can be used, modified, and distributed. Different licenses offer varying

degrees of freedom and restriction, influencing how the software can be integrated into

other projects. Licensing decisions can significantly affect the adoption and spread of

the software [20].

Using pull request templates and detailed descriptions enhances the compre-

hensibility and usability of software repositories [21]. Such practices ensure that

contributions are consistent and well-documented, facilitating more accessible code

reviews and collaborations. They contribute significantly to the overall quality and

maintainability of the software [22].

7

2.3 The Dynamics of Community Interaction in OSS

This section explores the role of core members of OSS project development teams

(“project insiders”), focusing on their influence on community engagement.

The immediacy and quality of interactions are pivotal in shaping user experience

and encouraging active participation. Quick, constructive responses to queries and

suggestions are essential, whether from beginners seeking help or experts offering

advanced insights. Such interactions create a welcoming atmosphere that encourages

users to transition from passive observers to active contributors. This shift is crucial

for the ongoing growth and improvement of the software, as noted in the studies of

Bettenburg et al. and Jensen et al. [23, 24]. The OSS Insider’s role in facilitating

high-quality interactions is invaluable in fostering a vibrant community.

The strength of the OSS model lies in its diverse and global user base, which brings

a wide range of perspectives and skills [25]. The OSS Insider’s ability to effectively

engage with this diverse community is crucial. They must navigate cultural and

linguistic differences with inclusive and adaptable communication strategies. Such an

inclusive approach not only enhances the problem-solving process but also strengthens

the collaborative foundation of the OSS community. It ensures that the software stays

relevant and resilient in the face of rapid technological changes, as explored by Marin

et al. and Mendez-Duron et al. [26, 27].

Users frequently contribute to the software’s evolution by reporting bugs, suggesting

new features, or even directly offering code solutions. A participatory approach en-

sures that OSS projects are continually refined and remain aligned with the needs of

their user base. The OSS Insider is instrumental in facilitating and nurturing a feed-

8

back loop. This role is essential in maintaining the project’s relevance and operational

effectiveness, as highlighted in studies by Daniel et al. [28].

The role of the OSS Insider extends beyond technical expertise. It involves nurturing

a vibrant, inclusive, and collaborative community. Such efforts are crucial in ensur-

ing that OSS projects achieve technical excellence and become successful communal

software development models.

Given the pivotal role of community interactions in shaping the trajectory of OSS

projects, it is imperative to explore the multifaceted nature of participation within

ecosystems. This discussion will highlight the various roles and contributions that

individuals undertake, underscoring their collective impact on the advancement and

sustainability of open-source initiatives.

2.4 OSS Participation

This section explores how diverse forms of participation within OSS communities

impact the overall success of OSS projects, both in terms of community engagement

and market achievement.

Contributors to OSS projects embody various roles, ranging from programmers to

designers, testers, documenters, and end-users providing feedback. Such a range of

roles, as highlighted by Hars and Ou and Daniel et al., contributes to the holistic

development of OSS projects, fostering innovation and ensuring the software meets

a broad spectrum of user needs [29, 30]. An inclusive environment leads to robust,

versatile software products that align closely with user requirements. A diverse com-

position within OSS communities, encompassing different cultural, educational, and

professional backgrounds, enhances creative problem-solving and software adaptabil-

9

ity. According to Xu et al. and MR Mart́ınez-Torres, such diversity is pivotal in

developing user-friendly software that caters to a diverse market [31, 32].

Market success is closely linked to the nature and extent of community engagement.

Diverse and active communities contribute to a positive reputation, increased relia-

bility, and a broader user base, which are essential for achieving market success, as

discussed by Daniel et al. and Shah [30, 33].

Recognizing the spectrum of participation that enriches OSS, the narrative advances

to the integration and engagement of newcomers and external contributors. Their

inclusion is crucial for bringing fresh ideas and sustaining the vibrancy of OSS com-

munities, necessitating strategies that promote their active involvement and ensure

the ongoing evolution of open-source projects.

2.5 Newcomer to the OSS and First-timer Engagement

This section delves into the critical role of newcomers in OSS projects. It highlights

the significance of their contributions and challenges and explores strategies for effec-

tively attracting and onboarding first-time participants into projects.

Newcomers, particularly first-timers, are the lifeblood of OSS communities. Successful

integration of newcomers leads to a continuous replenishment of skills, ideas, and

perspectives, which is crucial for the long-term success of OSS projects [34, 35]. A

newcomer’s early interactions with a project are critical as they learn about the

project’s culture, collaboration practices, and technical details. This engagement

fosters a culture of inclusivity and constant learning, which are fundamental values

of the OSS philosophy.

10

Despite their potential contributions, newcomers often encounter significant barriers.

Barriers range from technical challenges, such as understanding complex codebases,

to social obstacles, like integrating into an established community with its unique

culture and norms. Overcoming such challenges is vital for ensuring diversity, which

fuels innovation and growth in the OSS ecosystem [36].

One effective strategy for integrating newcomers is through “good first issue” labeled

issues and pull requests. Such tasks are introductory tasks tailored to help first-

timers understand the project’s codebase and workflow. Adopting this method not

only eases the entry of newcomers but also demonstrates a commitment to building

an inclusive and nurturing OSS community. Initiatives like these are essential for

lowering the barriers to entry and ensuring that the community remains vibrant and

innovative [37].

11

Chapter 3

STUDY OVERVIEW

This thesis aims to quantitatively measure the health of open-source software (OSS)

projects and communities at an ecosystem scale. We achieve this through analysis

of metrics collected from repository mining across four major OSS ecosystems: NPM

(Node Package Manager), PyPI (Python Package Index), Maven (for Java), and

RubyGems (for Ruby). This study captures a snapshot of the current health of

these OSS communities. In this chapter, we discuss the motivation behind selecting

these four ecosystems and outline the data collection and analysis basis for further

research, guided by our research questions.

3.1 Selection of Ecosystems

Recent surveys and studies highlight the widespread popularity and usage of JavaScrip-

t/Node.js, Python, Java, and Ruby (and their respective package registries). The

StackOverflow Developer Survey of 2023 [38] consistently shows JavaScript, Python,

and Java among the most popular programming languages used by developers globally

with the following distribution:

• JavaScript: 63.61%

• Python: 49.28%

• Java: 30.55%

• Ruby: 6.23%

12

Particularly, JavaScript has maintained its position as the most used programming

language, highlighting npm’s relevance in current development practices [38]. Python,

extensively applied in diverse fields, remains highly favored for its versatility and ease

of use. Java’s long-standing presence continues to be significant, reflecting its steady

demand across various sectors. While Ruby may not rank as highly in recent surveys,

its inclusion is justified by its dedicated community and specific applications in web

development. By focusing on this diverse quartet, this study encompasses a broad

spectrum of OSS activities.

3.2 Data Collection and Analysis

A comprehensive investigation of the top 1000 GitHub repositories across npm, PyPI,

Maven, and RubyGems formed the basis of this study. We selected the most down-

loaded packages from each package manager/registry. These 4000 data points, repre-

senting GitHub repositories, formed the basis for our further explorations based on

the research questions (see Figure 3.1).

Figure 3.1: Representation of data collection across four ecosystems

13

We utilized JavaScript to write scripts for fetching data from the GitHub open APIs

using REST and GraphQL. The following example code snippet was used to fetch

data from the package registries.

const axios = require("axios");

const fs = require("fs");

async function fetchData(apiUrl, ecosystem) {

let allRecords = [];

for (let offset = 0; offset < 1000; offset += 250) {

try {

const response = await axios.get(

apiUrl,

{ params: { from: offset } }

);

const records = response.data.objects;

allRecords = allRecords.concat(records);

} catch (error) {

console.error("Error fetching data:", error);

break;

}

}

const csvData = allRecords.map((record) => ({

name: record.package.name,

githubURL: record.package.links.repository,

ecosystem: ecosystem

}));

}

// Example API URLs of the registries with passed ecosystem arg

fetchData("https://registry.npmjs.com/-/v1/search", "npm");

fetchData("https://pypi.org/pypi", "pypi");

fetchData("https://search.maven.org", "maven");

fetchData("https://rubygems.org/api/v1/search.json", "rubygems");

Table 3.1 depicts 20 example packages that we studied, 5 from each ecosystem.

We used the Python libraries NumPy and Pandas [39, 40] for data analysis and

Seaborn [41] for data visualization.

14

Table 3.1: Example of Combined Dataset from 4 Package Registries
Name Github URL Ecosystem
debug https://github.com/debug-js/debug npm
fs-extra https://github.com/jprichardson/node-fs-extra npm
glob https://github.com/isaacs/node-glob npm
react https://github.com/facebook/react npm
webpack https://github.com/webpack/webpack npm
requests https://github.com/psf/requests pypi
certifi https://github.com/certifi/python-certifi pypi
PyYAML https://github.com/yaml/pyyaml pypi
s3transfer https://github.com/boto/s3transfer pypi
pyjwt https://github.com/jpadilla/pyjwt pypi
java-annotations https://github.com/JetBrains/java-annotations maven
shiro https://github.com/apache/shiro maven
javafx-controls https://github.com/openjdk/jfx maven
java-jwt https://github.com/auth0/java-jwt maven
volley https://github.com/google/volley maven
json https://github.com/flori/json rubygems
rack-test https://github.com/rack/rack-test rubygems
ruby-jwt https://github.com/jwt/ruby-jwt rubygems
rails-dom-testing https://github.com/rails/rails-dom-testing rubygems
ruby-progressbar https://github.com/jfelchner/ruby-progressbar rubygems

The following chapters present the methods and results for our research questions.

15

https://github.com/debug-js/debug
https://github.com/jprichardson/node-fs-extra
https://github.com/isaacs/node-glob
https://github.com/facebook/react
https://github.com/webpack/webpack
https://github.com/psf/requests
https://github.com/certifi/python-certifi
https://github.com/yaml/pyyaml
https://github.com/boto/s3transfer
https://github.com/jpadilla/pyjwt
https://github.com/JetBrains/java-annotations
https://github.com/apache/shiro
https://github.com/openjdk/jfx
https://github.com/auth0/java-jwt
https://github.com/google/volley
https://github.com/flori/json
https://github.com/rack/rack-test
https://github.com/jwt/ruby-jwt
https://github.com/rails/rails-dom-testing
https://github.com/jfelchner/ruby-progressbar

Chapter 4

PROJECT METADATA

In this chapter, we examine the presence of project metadata files within open-source

software development across four ecosystems. Our focus lies on assessing the preva-

lence and adoption of key documents such as the README, CODE OF CONDUCT,

and CONTRIBUTING files. These documents play a critical role in establishing

collaborative, inclusive, and respectful communities within the open-source land-

scape. We aim to understand the extent to which these GitHub-recommended files

are adopted within open-source projects. The methodology involves analyzing data

from 4,000 GitHub repositories and examining the presence of specified files and keys.

Our findings offer insights into the community health metrics of major open-source

ecosystems, revealing trends in documentation practices and areas for potential im-

provement.

4.1 RQ1.How prevalent are community guideline documents in reposito-

ries in the four ecosystems?

GitHub Metadata, including files like README, CODE OF CONDUCT, and CON-

TRIBUTING, is crucial for managing open-source software projects. These docu-

ments create a foundation for building collaborative, inclusive, and respectful com-

munities [6]. Given the rapid expansion of the open-source ecosystem, understanding

the role and influence of these metadata is increasingly important in software develop-

ment research. This research question seeks to empirically examine how widely these

16

GitHub-recommended files and guidelines are adopted in open-source communities

and their significance.

4.2 Method

In the analysis, data was sourced from the 4,000 repositories, where each repository

underwent examination for the presence of 6 files or keys (See Figure 4.1). Below are

the files/keys used in the analysis along with their descriptions:

• README.md: It contains important information about the project, including

how to use it, install it, and contribute to it, serving as the entry point for users

and developers to understand and enhance project visibility and accessibility.

• Description: It provides a brief overview of the project, helping users quickly

understand its purpose and relevance.

• PULL REQUEST TEMPLATES.md: It guides contributors in submitting mean-

ingful and well-structured pull requests, streamlining the review process, and

improving collaboration within the project.

• CONTRIBUTING.md: It outlines the project’s contribution process, including

instructions for reporting issues, submitting code changes, participating in dis-

cussions, and encouraging community engagement and external contributions.

• LICENSE: It specifies the terms and conditions under which the project’s code

and resources can be used, modified, and distributed. Including a license ensures

legal clarity and protection for both project maintainers and users.

• CODE OF CONDUCT.md: It establishes behavioral expectations and guide-

lines for project participants, promotes a respectful and inclusive community

17

environment, and enforces positive interactions while mitigating potential con-

flicts or harassment incidents [42].

Figure 4.1: Collecting project metadata from GitHub repositories for each
ecosystem

The dataset was categorized by ecosystem, with a focus on the percentage of repos-

itories in each that included various specified files. This organization facilitates a

straightforward comparative analysis across different ecosystems.

4.3 Results

README File Inclusion: All ecosystems exhibited a nearly universal presence of

README files in the 1000 most popular packages. This was largely expected and

aligns with conventional norms in open-source projects. NPM and PyPi each show-

cased a full 100%, followed closely by RubyGems at 99.88% and Maven at 98.85%.

The inclusion of this data, while seemingly obvious, is vital for the sake of complete-

ness and underscores the README file’s critical role as an entry point for community

members and contributors [18] (See Figure 4.2).

Description Inclusion: Nearly all repositories across ecosystems had included de-

scriptions, with NPM at 99.18%, PyPI at 95.07%, RubyGems at 97.65%, and Maven

18

Figure 4.2: Percentage of repositories in each ecosystem that had
README files

slightly lower at 95.61%. This suggests that most repositories adequately inform

potential contributors and users about their projects (See Figure 4.3).

Pull Request Template Availability: In the category of Pull Request Template

Availability, RubyGems and PyPI led with 37.18% and 35.96% of their repositories

featuring templates for pull requests, respectively. NPM followed at 25.43%, with

Maven having the lowest at 21.55%. This variation in template availability across

ecosystems suggests an interesting area for further exploration, particularly regarding

the impact of pull request templates on the quality and efficiency of contributions (See

Figure 4.4).

Presence of Contributing.md: Presence of contributing.md was most prevalent in

RubyGems at 57.41% and PyPI at 56.16%, followed by NPM at 50.97% and Maven

19

Figure 4.3: Percentage of Description Inclusion across Ecosystems

at 45.61%. This shows a moderate to high commitment to guiding new contributors

across ecosystems (See Figure 4.5).

License Inclusion: Nearly all repositories included a license, with PyPI at 99.26%

and RubyGems at 97.06%, reflecting a strong adherence to legal best practices. NPM

followed closely at 97.34%, and Maven had the lowest at 89.64% (See Figure 4.6).

Code of Conduct Adoption: RubyGems repositories had the highest presence of

a CODE OF CONDUCT.md file at 48.00%, followed by PyPI at 43.35%, NPM at

38.30%, and Maven at 35.77% (See Figure 4.7). However, it’s notable that none of the

ecosystems reached a presence of 50% or more for the inclusion of a code of conduct

file. This finding underscores a collective need for improvement across all ecosystems

regarding the adoption of a code of conduct.

20

Figure 4.4: Percentage of Pull Request Template Availability across
Ecosystems

Figure 4.5: Percentage of Contributing Guidelines Presence across Ecosys-
tems

21

Figure 4.6: Percentage of License Inclusion across Ecosystems

Figure 4.7: Percentage of Code of Conduct Adoption across Ecosystems

22

Chapter 5

COMMUNITY RESPONSIVENESS AND PARTICIPATION

In this chapter, we examine the dynamics of community engagement within OSS

ecosystems, focusing on the interaction between project insiders and external contrib-

utors. The chapter is structured to address specific research questions that explore

community responsiveness and participation patterns.

5.1 RQ2.How do project insiders respond to issues opened by outsiders

in four ecosystems?

OSS projects are defined by their collaborative nature, drawing on the diverse con-

tributions of a global community of developers. This community typically comprises

insiders who are regular and long-term contributors, and outsiders who contribute

occasionally or are new to the project. The success of OSS projects relies heavily

on the vitality and participation of their community. This community influences the

developed software’s quality, sustainability, and progress [7, 8]. In an era where OSS

underpins much of the global digital infrastructure, the roles of these contributors

become even more significant.

Outsiders’ contributions bring fresh perspectives, innovative ideas, and diverse skills.

Yet, their involvement is often impeded by barriers such as unfamiliarity with the

project’s codebase and community dynamics. The insiders’ responsiveness to out-

siders’ contributions and queries is therefore vital. It fosters effective collaboration,

a sense of belonging, and motivation among newcomers; otherwise, they abandon the

project [36].

23

5.1.1 Method

The data about the repository’s issues and their comments was sourced from 4,000

GitHub repositories using the GitHub API. We collected the following data about

each issue:

• Issue Created Time: The timestamp when the issue was opened provides a

baseline for measuring response times.

• Author Association: An attribute indicating the author’s relationship with

the project on GitHub. Possible values are: COLLABORATOR, CONTRIBUTOR,

MANNEQUIN, MEMBER, NONE, and OWNER [43]. An insider is defined as someone

whose author association is COLLABORATOR, MEMBER, or OWNER.

• Total Comments: The number of comments on an issue, aiding in assessing

the level of engagement it received.

• Response Time from an Insider: This metric calculates the time from an

issue’s opening to the first comment by an insider.

We focused on two objectives.

First, we quantified the engagement of community insiders with issues raised by out-

siders in our chosen open-source ecosystems. Issues opened by outsiders were iden-

tified by filtering the dataset based on the ‘author association’ status. We analyzed

the responses of insiders, identified by their ‘author association’ statuses, to assess

their engagement with these issues.

Aggregating the data on an ecosystem level allowed for assessing insider engagement

across different communities. We measured the rate of insider response, i.e., the per-

centage of outsider-opened issues that received comments from insiders. This metric

24

Figure 5.1: Highlighting Insider Engagement with Outsider Issues through
Comments

measures how frequently insiders in various ecosystems engage with contributions

from outsiders (See Figure 5.1).

The second objective was to assess the speed of response from insiders. This involved

calculating the median time (in hours) insiders took to respond to issues raised by

outsiders. The time interval between creating an issue by an outsider and posting the

first comment by an insider was determined.

The median time-to-response for each ecosystem was calculated to provide a represen-

tative measure of responsiveness. Calculating the median instead of the mean helped

mitigate the effect of outliers, ensuring a more accurate representation of the typical

response behavior within each community.

25

5.1.2 Results

The total number of issues opened by outsiders in each ecosystem: Maven (44,786),

NPM (46,664), PyPI (38,390), and RubyGems (20,435).

The analysis revealed a nuanced landscape of insider engagement across various

ecosystems. In the Maven ecosystem, 43.46% of the issues opened by outsiders re-

ceived comments from insiders, while the NPM ecosystem showed a similar engage-

ment rate of 43.13%. Conversely, PyPI and RubyGems ecosystems demonstrated

relative higher engagement rates, with 56.47% and 57.55%, respectively (see Figure

5.2). These findings suggest a more active insider response to outsider contributions

in the latter ecosystems.

These statistics indicate significant variance in the degree of insider participation

among ecosystems. In some, nearly half of the outsider issues receive insider attention,

reflecting a potentially supportive and inclusive environment for new contributors.

The responsiveness analysis of different ecosystems provided key insights. Maven

insiders had the longest median response time of 36.52 hours among the four, while

NPM was the most responsive with a median response time of 9.43 hours. The PyPI

and RubyGems ecosystems had intermediate response times of 17.94 and 12.52 hours,

respectively (see Figure 5.3).

The variation in response times might be influenced by community size, issue volume,

or management practices within each ecosystem. NPM’s lower median response time

could highlight efficient community management in addressing outsider contributions.

In contrast, Maven’s longer response time could indicate areas for improvement in

community interaction or support structures.

26

Figure 5.2: Percentage of Issues in Each Ecosystem with Outsider-Opened
Issues and Insider Comments

Summarizing the engagement and response time metrics findings, it becomes evident

that NPM insiders seem to respond quickly, but only if they respond. RubyGems

appears to be the best in both regards: they are comparatively more likely to respond

and to respond quickly. Insiders from Maven, though not frequently responding, tend

to take the longest time when they do engage.

It is essential to note that none of these response times are inferior. Even at 36 hours,

the response time in Maven is still only 1.5 days, which is commendable for volunteers

maintaining open-source projects.

27

Figure 5.3: Median Insider Response Time to Outsider-Opened Issues
Across Repositories in Each Ecosystem

5.2 RQ3. How is the distribution of contributions among project con-

tributors characterized within four ecosystems?

Exploring how contributions are distributed within a community is crucial to under-

standing the dynamics of collaborative participation in OSS. In this context, contribu-

tions refer to the code changes made by community members, including code additions

and deletions in the form of commits to GitHub. This research question identifies

whether contributions are concentrated among a few members or more evenly spread

across the participant base.

This analysis provides insights into the extent and variety of community involvement.

When contributions are concentrated among a few individuals, it may indicate a hier-

28

archical or potentially oligarchic structure1. This concentration can be a risk factor for

the project’s adaptability and resilience [44]. In contrast, a more evenly distributed

pattern of contributions is often a marker of a diverse and inclusive environment.

This diversity fosters innovative problem-solving and a more comprehensive range of

perspectives and contributes to a robust and sustainable community ecosystem [45].

5.2.1 Method

We gathered data on the number of commits made by the top 100 contributors in a

GitHub repository across four ecosystems to assess their contributions to the projects.

The number of commits was chosen as the primary measure of contribution over other

metrics, such as lines of code added or deleted. Commits represent discrete, inten-

tional contributions to a project, capturing the frequency of a contributor’s engage-

ment and providing a straightforward method for quantitative analysis [46, 47]. Our

analytic steps are defined below and summarized in Figure 5.4.

Across different repositories, the total number of commits per project varied sig-

nificantly, making direct comparisons between projects unfeasible. To address this

challenge and ensure a fair comparison, it became essential to implement a normal-

ization technique. Consequently, for each repository, we used the commit count of

the contributor with the most commits as the benchmark against which to normalize

values. This was achieved through a process known as MaxScaling or Integer Scaling

Normalization, as described in [48].

1An “oligarchic structure” in the context of OSS communities refers to a situation where a small
group of individuals or entities holds a disproportionate amount of control or influence over the
project’s direction, decision-making processes, and contributions. This can lead to centralization of
power and may limit broader community engagement.

29

Following this, a series of summary statistics were employed to further describe the

distribution of these normalized commit counts per author, representing their contri-

butions to the repository. These statistics included the median number of commits,

and the inter-quartile range (IQR) across all contributors to a project.

The IQR, specifically, quantifies the spread of the middle 50% of the data, offering a

measure of the variability in contributor activity levels. Moreover, by analyzing the

IQR, we gain insights into the differences in commit counts between high-contributing

(Q3) authors versus low-contributing (Q1) authors within a repository. This approach

ensures a nuanced understanding of participation and highlights the range of engage-

ment levels among contributors in each repository.

We used the standard IQR-based formula to identify outliers [49], i.e., contributors

with exceptionally high or low commit counts. Data points falling beyond Q1−1.5×

IQR and Q3 + 1.5× IQR were classified as outliers and excluded from the analysis.

By concentrating on data within the IQR, we mitigated the potential skewing effect

of extreme contributions on our analysis.

5.2.2 Results

Figure 5.5 and Table 5.1 represent the distribution of the Interquartile Range (IQR)

of the number of commits per author for a repository within a specific ecosystem.

For a given ecosystem, we compute the median spread of contributions within each

repository (i.e., a median of IQRs). A higher Median IQR indicates a greater disparity

between ‘high contributing’ and ‘low contributing’ authors within that ecosystem,

suggesting that most contributions come from a smaller group of authors. Conversely,

a lower Median IQR suggests a smaller difference in contribution levels, indicating a

more evenly distributed pattern of contributions among contributors.

30

In Table 5.1, the NPM ecosystem’s median IQR of 0.009 says that the difference in

contributions between the 75th-percentile contributor and the 25th-percentile con-

tributor was 0.9% of the max number of commits in that repository. So, for example,

if the repository’s highest contributor made 1000 commits, then the difference be-

tween the 75th-percentile contributor and the 25th-percentile contributor would be 9

commits.

Table 5.1: Descriptive statistics of the median commit difference between
high-contributing and low-contributing authors in a repository across
ecosystems

Ecosystem Median IQR Percentage of commit difference
NPM 0.009 0.9%
PyPI 0.012 1.2%
RubyGems 0.005 0.5%
Maven 0.007 0.7%

PyPI had the highest median IQR value (see Table 5.1) among the studied ecosys-

tems. This might indicate that a few contributors contribute substantially more than

others, pointing to a concentrated source of contributions. Conversely, the RubyGems

ecosystem exhibits the lowest IQR of 0.005 (or 0.5% of commits difference), indicating

a lower difference between high-contributing and low-contributing commit authors,

suggesting a more egalitarian contribution pattern. These extremes in median IQR

values—highest in PyPI and lowest in RubyGems—highlight the variability in con-

tribution dynamics across different ecosystems.

Sitting in the middle are the NPM and Maven ecosystems. For NPM, the me-

dian IQR of 0.009 (or 0.9% of commits gap between high-contributing and low-

contributing) might suggest a pattern where fewer contributors contribute more sub-

stantially. Maven, with a median IQR of 0.007 (0.7% of commits) has a comparatively

more even distribution of contributions, showing a broader engagement across its con-

tributor base.

31

Affecting our interpretation of these results is the number of unique individuals con-

tributing in a given ecosystem. In an ecosystem with a large number of contributors

(e.g., NPM), commit counts are likelier to have higher spread than in an ecosystem

with a smaller number of contributors (e.g., RubyGems).

Therefore, we wanted to also considered the total number of contributors per repos-

itory. However, the GitHub API only provides the top 100 contributors for a given

repository. Therefore, the number of unique contributors is “capped” at 100 in this

dataset.

Nevertheless, we calculated the median number of contributors across ecosystems and

integrated this data with the distribution of contributions (see Figure 5.6). RubyGems

has the largest median at 77, suggesting a wide contributor base. Paired with the fact

that RubyGems also had the lowest median IQR, this suggests relatively even contri-

bution levels between high-contributing and low-contributing commit authors. PyPI

has a median of 54 contributors per repository, and the highest median IQR. This

suggests a smaller, more active contributor group for the average repository. NPM

and Maven have lower medians of 30 and 34 contributors per repository, and lower

median IQRs, suggesting contributions are less evenly spread compared to RubyGems

but more so than PyPI.

32

Figure 5.4: Highlighting the normalized transformation of the commits of
top 100 contributors in ecosystems

33

Figure 5.5: Comparative analysis of IQR distribution for the contribution
gap between high-contributing and low-contributing commit authors in a
repository across ecosystems

Figure 5.6: Comparative analysis of the median number of contributors in
a repository for each ecosystem

34

Chapter 6

CONTRIBUTOR ATTRACTION AND RETENTION

The health and sustainability of OSS projects depend on their ability to attract

contributors and to retain them over time. In this chapter, we study the intricacies

of contributor retention rates within the four ecosystems. We also investigate the

effectiveness of the presence of a “good first issue” label in attracting and retaining

contributors, thereby ensuring the continued growth and innovation of projects.

6.1 RQ4.What is the contributor retention rate within four ecosystems?

Prior work has underscored the importance of contributor retention in OSS projects.

Zhou et al. emphasized that the patterns of engagement and retention are influenced

significantly by the involvement of sponsoring companies in OSS projects [50]. More-

over, Rashid, Clarke, and O’Connor discussed the challenges of knowledge loss due to

contributor turnover, suggesting the need for proactive knowledge retention strategies

in OSS projects [51]. Finally, Yamashita et al. discovered that larger projects tend

to attract and retain more contributors [52]. This highlights the direct impact of

contributor retention on the sustainability and effectiveness of OSS projects.

This study aims to contrast and compare the patterns of contributor engagement

in the four ecosystems, focused on ascertaining the proportion of contributors who

persist beyond their initial involvement and analyzing the frequency and nature of

their continued engagement in these different environments.

35

6.1.1 Method

There can be various forms of contributions to a project to measure engagement

(e.g., code contributions, documentation, feature requests, and bug reports). We

have chosen to focus on Pull Requests (PRs) due to their significance in collabora-

tive contributions [21, 22]. We looked at PRs raised in all 4000 repositories in our

dataset between October 2022 and October 2023. Each PR record contains details

like its creation time, username, user type, status (open or closed), and the author’s

association with the repository.

We only selected PRs from project outsiders.1 To do this, we specifically focused on

the PRs that were not submitted by bots and where the author’s association did not

contain the enum values COLLABORATOR, MEMBER, or OWNER.

Contributors’ data was organized chronologically based on PR creation times for each

repository to facilitate the identification of contributors with any subsequent PR in

a repository. Our analysis depended on two essential metrics for each repository to

evaluate engagement.

1. Percentage of Contributor Retention (PCR):

PCR =
Total number of contributors with more than one PR

Total number of contributors
× 100%

This metric measures the likelihood of contributors becoming repeat contribu-

tors in a project community after their initial contribution in a year. The period

considered is between October 2022 and October 2023.

1For this study, external contributors are defined as individuals contributing to a repository for
the first time within the 1-year data collection timeframe, with author association values with the
project as CONTRIBUTOR, FIRST TIMER, or FIRST TIME CONTRIBUTOR. These enum values are defined
in GitHub [43].

36

2. Average of Contributor Repeat-Contribution (ACR):

ACR =
Total number of PRs from contributors with more than one PR

Total number of contributors with more than one PR

This metric measures the average number of contributions per repeat contrib-

utor for a repository in a year. This helps us calculate the extent to which

authors continued to contribute after their first PR in the given period. The

period considered is between October 2022 and October 2023.

6.1.2 Results

Upon analyzing the engagement of contributors in four ecosystems, distinct patterns

were observed in Figure 6.1.

PyPI led with a 36.12% rate of contributors submitting subsequent PRs within a

year, suggesting strong retention. Maven followed closely with a 34.14% retention

rate. RubyGems and NPM showed potential areas for improvement in contributor

engagement strategies, with retention rates of 26.66% and 21.85%, respectively.

Contributors to Maven demonstrated the highest level of activity, with an average of

10 subsequent pull PRs submitted to the same repository within a year. This indicates

a significant level of sustained engagement in comparison to NPM, where the average

was notably lower at 6 subsequent PRs. PyPI and RubyGems exhibited moderate

activity levels, with averages of 8 and 9 subsequent PRs, respectively. It is impor-

tant to clarify that these figures represent averages of PRs to the same repository,

which may not fully capture contributors’ overall activity across multiple projects.

Therefore, while some contributors may not show long-term engagement with a single

project, they could be highly active across different projects within the ecosystem.

37

This distinction underscores the variability in contributor engagement patterns and

suggests the presence of diverse forms of participation that extend beyond long-term

contributions to individual projects.

Considering both metrics, PyPI and Maven emerge as ecosystems with robust contrib-

utor engagement, balancing retention with active subsequent contributions. Despite a

lower retention rate, RubyGems sees active engagement from those who stay. NPM,

having the lowest figures in both metrics, may need to implement more effective

engagement mechanisms to foster and sustain contributor participation.

Figure 6.1: Comparative Analysis of Contributor Engagement in OSS
Ecosystems by Percentage of Repeat Contributors and Their Average Sub-
sequent Contributions

1All contributions are calculated based on the Pull Requests raised by an individual over one
year in a repository.

38

6.2 RQ5.What percentage of repositories across four ecosystems feature

a “good first issue” label, and what proportion of contributions to

projects within each ecosystem come from newcomers?

Welcoming new contributors is essential for fostering a collaborative and dynamic

ecosystem that values various contributions beyond just coding, such as community

management and outreach [53, 54, 55].

A critical aspect of community welcomingness is the adoption of labels such as “good

first issue” (GFI), which are instrumental in guiding newcomers to appropriate start-

ing tasks [56, 57]. The presence and proper use of GFI labels indicate a project’s

readiness to integrate support and motivate new contributors. This study seeks to

extend the understanding of community welcomingness by examining the prevalence

of GFI labels across ecosystems, thus providing a quantitative measure of a commu-

nity’s efforts to lower entry barriers for newcomers.

We also study the percentage of contributors who newcomers to open-source soft-

ware in general. Understanding how different ecosystems attract and integrate new

members is essential. Analyzing this ratio can offer insights into the inclusivity and

growth potential of these communities.

The findings are expected to provide valuable strategies for community leaders and

maintainers with targeted strategies to enhance newcomer inclusion. GFI labels show

ecosystem receptivity, and contribution reflects activity. These analyses provide ac-

tionable insights into integrating and retaining new contributors in OSS projects.

39

6.2.1 Method

We first identified GitHub repositories that support newcomer integration through

the GFI label to assess community welcomingness. We collected and examined the

issue labels from all the ecosystem’s repositories. By filtering, we isolated repositories

with the GFI label in their list of available labels. The proportion of repositories

with GFI labels was then calculated against the total number of repositories within

each ecosystem (see Figure 6.2). This metric served as an indicator of how welcoming

a project is to first-time contributors and encouraged helpful contributions to the

project, as it is recommended by GitHub [58].

Figure 6.2: Highlighting the process of finding the GFI Label across ecosys-
tem repositories

To identify contributors who are newcomers participating in open-source in general

(based on GitHub activity), we collected data about contributors who made pull

requests to a repository in our corpus between October 2022 and October 2023.

We focused on two primary keys for each record: the author’s username and the

timestamp of the pull request.

40

From this list of PRs and authors, we identified first-time contributors as those who

had never made a PR to any GitHub repository before. This was done by employing

the GitHub search API to verify the absence of any past pull request contributions by

these individuals (during any time period), using their usernames and creation times

as parameters.

Subsequently, an analysis was conducted to calculate the percentage of contributors

(within the October 2022 to October 2023 period) who made their first ever GitHub

contributions during that period.

6.2.2 Results

Figure 6.3 shows that the PyPI ecosystem leads with 35.99% of its repositories mark-

ing its issues containing the GFI label, suggesting a proactive stance in targeting and

motivating newcomers. The NPM ecosystem demonstrates a lower presence of the

label, with 23.33% of repository labels featuring it. Maven follows with 21.70% of

its repositories indicating GFI, while RubyGems shows the lowest among all with

12.73%, potentially reflecting a lesser emphasis on or need for newcomer orientation.

Figure 6.4 displays the percentage of contributors who are newcomers without prior

contributions in GitHub for each ecosystem. The Maven ecosystem displayed the

highest percentage, with 10.73% of contributors (within the period of October 2022

to October 2023) making their first-ever pull request. The PyPI ecosystem followed

closely with 9.20%, while NPM accounted for 8.72%. The RubyGems ecosystem had

the lowest observed percentage of new contributors, with 5.38%, potentially indicating

a more mature or saturated community.

Taking these results together (Figures 6.3 and 6.4), PyPI shows a robust initial wel-

come indicated by its high GFI label adoption. Yet, its newcomer contribution, while

41

Figure 6.3: Comparative Analysis of GFI Adoption in Ecosystems

Figure 6.4: Comparative Analysis of Newcomer Contribution Across
Ecosystems

42

substantial, is not the highest among the ecosystems. The Maven ecosystem, though

not the frontrunner in GFI labels, leads in newcomer contributions, hinting at the

possibility of other factors that may affect the process of integrating newcomers.

PyPI and NPM show harmony with considerable measures in both areas, reflecting

a well-rounded ecosystem. Conversely, RubyGems, lagging in both areas, points to

opportunities for growth in community engagement strategies.

43

Chapter 7

DISCUSSION

We summarize and discuss the results from our research questions. We discuss each

ecosystem’s strengths, challenges, and potential areas for improvement. Our results

are summarized in Table 7.1. We aim to understand the interplay between com-

munity dynamics, organizational structures, and newcomer experiences within these

open-source software environments. From contrasting approaches to acquiring new

contributors in NPM and Maven ecosystems, to addressing contribution disparities

within PyPI, and examining the need for newcomer-focused initiatives in RubyGems,

each section offers valuable insights into the evolving landscape of open-source collab-

oration. Furthermore, the discussion underscores the significance of context-specific

strategies, such as the adoption of “good first issue” labels, in fostering newcomer

assimilation and community accessibility.

Acquiring New Contributors in NPM and Maven Ecosystems. The anal-

ysis of NPM’s and Maven’s trend towards acquiring new contributors highlights a

contrast between the lower presence of repository metadata files, insider engagement,

contribution disparity, and the positive focus on GFI welcomeness and newcomer

contribution. In Maven, a lower engagement rate and extended response times might

reflect limitations in community organization or resource allocation, which is crucial

for effective responsiveness [59]. On the other hand, NPM has the fastest response

and the lowest engagement rate out of all the ecosystems, which may be due to the

large volume of contributors spread across multiple projects within its ecosystems.

Regarding newcomer retention, NPM demonstrates a lower retention rate compared

to Maven. While NPM struggles with retaining newcomers, Maven shows a rela-

44

tively higher rate of retaining new contributors and has a slightly higher newcomer

contribution than NPM. This suggests differing approaches to newcomer integration

and attraction strategies within the two ecosystems, but both of them are showing

positive trends toward acquiring new contributors.

PyPI’s Contribution Disparity. The PyPI ecosystem demonstrates strength

across various metrics, including the high presence of repository metadata, insider

engagement with a quick response time of approximately 18 hours, and a welcoming

environment for newcomers, as evidenced by its high GFI welcomeness and high new-

comer contributions. It also has the highest contribution retention rate among all the

ecosystems. However, a notable concern arises from the significant contribution dis-

parity within the PyPI ecosystem, indicating that only a few individuals contribute

a substantial amount of code compared to others (§5.2.2). This suggests a potential

hierarchical structure where a small group exerts significant effort. Such imbalances

may pose challenges to diversity and innovation. This imbalance suggests potential

issues related to accessibility, project complexity, or varying levels of expertise among

contributors. Addressing this disparity is crucial to ensuring a more equitable dis-

tribution of contributions and fostering a diverse and sustainable contributor base

within the PyPI ecosystem.

Strong Community, Need for Newcomer Focus in RubyGems. In the RubyGems

ecosystem, the strength of its community base and project metadata is evident, as

reflected in its highest presence of repository metadata files and insider engagement,

with response times averaging around 13 hours. Additionally, it suggests a more

evenly spread contribution pattern with the highest median of 77 active contributors

per project, indicating a more egalitarian and inclusive environment where a broader

range of contributors participate in the project development, fostering diverse per-

spectives and robust problem-solving. Contribution patterns reflect the underlying

45

social and organizational structures of OSS communities. A more centralized contri-

bution pattern, as seen in PyPI, might result from established contributors’ control

or the presence of highly skilled individuals, which can limit broader community

engagement and innovation. On the other hand, a decentralized pattern, such as

in RubyGems, promotes a healthier ecosystem by encouraging participation from a

wide range of contributors. However, there are notable areas for improvement, par-

ticularly in contributor retention, which remains at a moderate level and requires

attention. Similarly, the lower presence of the “good first issue” (GFI) label, found

in only 12.73% of repositories, and the lowest newcomer contribution rate at 5.38%

highlight the need for enhanced focus on newcomer onboarding initiatives. This trend

suggests that although projects within the RubyGems ecosystem appear to be in a

mature state, there is minimal emphasis on facilitating the integration of new con-

tributors. Addressing these challenges could foster a more inclusive and sustainable

contributor ecosystem within RubyGems, ensuring continued growth and innovation.

It highlights the need for community managers and project leaders to foster envi-

ronments that welcome newcomers and maintain a balance between experienced and

new contributors.

GFI label attracts newcomer contributions. The notable adoption of a GFI

label in ecosystems like PyPi, as reflected in 35.99% of its repositories featuring

these labels, highlights a proactive approach to engaging newcomers. This strategy

aligns with Carillo, Huff, and Chawner’s findings, emphasizing the significance of tai-

lored initiatives like GFI labels in enhancing newcomer assimilation within Free/Open

Source Software projects. Such labels facilitate initial involvement by directing new-

comers to suitable tasks and fostering a sense of belonging and community integration.

The contrast with ecosystems like RubyGems, where GFI label adoption is compar-

atively lower, might reflect different community dynamics or an already established

contributor base, pointing to the importance of context-specific strategies to boost

46

community accessibility and newcomer orientation [37]. The variation in newcomer

contribution rates across different ecosystems, particularly Maven’s leading position

and RubyGem’s lower end, suggests the influence of factors beyond GFI label adop-

tion. Maven’s higher newcomer contribution rate may be attributed to a supportive

community culture or effective mentorship programs. This underscores the need for

a holistic approach to fostering newcomer engagement. This approach should en-

compass welcoming initiatives like GFI labels and active mentorship and community

support, emphasizing the complex interplay of factors shaping newcomer experiences

in OSS ecosystems.

47

Table 7.1: Overview of Key Ecosystem Characteristics

48

Chapter 8

FUTURE WORK

Qualitative Study of Newcomers’ and Contributors Experiences. The inves-

tigation presented in this thesis primarily quantifies the behaviors and patterns within

OSS communities, highlighting what happens in terms of newcomer integration, con-

tributor retention, and community engagement. However, the quantitative data lacks

the depth to explain why these patterns exist or how the individuals involved perceive

their experiences. Future studies could employ qualitative methods to delve into the

subjective experiences of newcomers in OSS communities. This approach would un-

cover the motivations, challenges, and personal journeys of contributors, offering a

richer understanding of the factors that contribute to a welcoming and inclusive com-

munity environment. Such studies would complement the current findings by adding

depth to our understanding of the dynamics within OSS ecosystems, particularly from

the perspective of those newly integrating into these communities.

Longitudinal Analysis of Community Dynamics. This thesis provides a snap-

shot of community engagement, contribution patterns, and newcomer experiences at

a specific point in time and limit (e.g., contribution patterns evaluated only the top

100 contributors, and newcomer experiences data taken from October 22 to October

2023). A longitudinal study would allow us to track how these aspects evolve, pro-

viding insights into the sustainability of community practices, the long-term impact

of initiatives aimed at newcomers, and how changes in the ecosystem (such as the

introduction of new technologies or shifts in community governance) affect partici-

pation and retention rates. This could help in understanding how OSS communities

49

adapt to challenges and changes over time, and what strategies are most effective in

ensuring their longevity and vibrancy.

Study of Tech Support for Community Engagement. There is a need to ex-

plore and expand beyond the boundaries of GitHub datasets to explore a broader

spectrum of technological tools and platforms that facilitate community engagement

and support within OSS projects. One avenue of investigation involves diving into

community dashboards such as Stack Overflow, which serve as invaluable repositories

of knowledge and expertise for developers seeking assistance with coding challenges

and troubleshooting. Moreover, we intend to analyze the impact of project-specific

community websites like Dev.to, which offer dedicated spaces for developers to share

insights, exchange ideas, and seek guidance tailored to particular OSS projects. Fur-

thermore, there are discussion forums like Reddit, where vibrant communities congre-

gate to discuss a wide array of topics, including software development. By examining

the role of these diverse platforms in nurturing community engagement and providing

technical support, we aim to offer comprehensive insights into the multifaceted nature

of tech support mechanisms within the OSS ecosystem.

Expansion across varied OSS Ecosystems. The scope of our research, primarily

focusing on ecosystems like NPM, PyPi, Maven, and RubyGems, opens the door for

future work to explore a broader spectrum of OSS communities. In broadening our

research ecosystem scope, we see two main paths:

1. Horizontal Expansion (Language Paradigm Analysis): One promising

direction involves broadening the study to encompass additional programming

languages such as Go and Rust, along with their respective ecosystems. By

doing so, we can delve into how diverse language paradigms influence community

engagement and contribution patterns. Through comparative analysis across

50

these language ecosystems, valuable insights can be gained into the nuanced

dynamics shaping open-source software development.

2. Vertical Expansion (Domain-specific Comparisons): Another crucial

aspect of our future work entails exploring communities within distinct de-

velopment domains, examining communities within distinct development do-

mains—such as application versus library development or front-end versus back-

end frameworks—and comparative analysis among frontend or backend libraries

can shed light on how the nature of the project impacts contributor behavior

and community strategies. This approach will allow for a more nuanced under-

standing of the factors that foster or hinder effective community engagement

across a wider array of OSS projects.

51

BIBLIOGRAPHY

[1] James C Davis, Christy A Coghlan, Francisco Servant, and Dongyoon Lee. The

impact of regular expression denial of service (redos) in practice: an

empirical study at the ecosystem scale. In Proceedings of the 2018 26th

ACM joint meeting on european software engineering conference and

symposium on the foundations of software engineering, pages 246–256, 2018.

[2] NPM. Node Package Manager. https://www.npmjs.com.

[3] PyPI. Python Package Index. https://pypi.org.

[4] Sonatype. Sonatype Central Repository. https://maven.org.

[5] RubyGems. RubyGems. https://rubygems.org/.

[6] Joseph Feller and Brian Fitzgerald. Understanding open source software

development. Addison-Wesley Longman Publishing Co., Inc., 2002.

[7] Rajdeep Kaur, Kuljit Kaur Chahal, and Munish Saini. Understanding

community participation and engagement in open source software projects:

A systematic mapping study. J. King Saud Univ. Comput. Inf. Sci.,

34:4607–4625, 2020.

[8] Georg J. P. Link. The value of engaging with open source communities. In

Proceedings of the 13th International Symposium on Open Collaboration

Companion, 2017.

[9] Mariam Guizani, Thomas Zimmermann, Anita Sarma, and Denae Ford.

Attracting and retaining oss contributors with a maintainer dashboard. In

52

https://www.npmjs.com
https://pypi.org
https://maven.org
https://rubygems.org/

Proceedings of the 2022 ACM/IEEE 44th International Conference on

Software Engineering: Software Engineering in Society, pages 36–40, 2022.

[10] J. Bosch. Software ecosystems: Taking software development beyond the

boundaries of the organization. J. Syst. Softw., 85:1453–1454, 2012.

[11] R. Schreiber. Organizational influencers in open-source software projects.

International Journal of Open Source Software and Processes, 2023.

[12] Simone da Silva Amorim, John D McGregor, Eduardo Santana de Almeida,

and Christina von Flach G. Chavez. Software ecosystems architectural

health: Challenges x practices. In Proccedings of the 10th European

Conference on Software Architecture Workshops, pages 1–7, 2016.

[13] Amel Charleux and Robert Viseur. Exploring impacts of managerial decisions

and community composition on the open source projects’ health. In

Proceedings of the 2nd International Workshop on Software Health, pages

1–8, 2019.

[14] Dominik Wermke et al. Committed to trust: A qualitative study on security &

trust in open source software projects. 2022 IEEE Symposium on Security

and Privacy (SP), pages 1880–1896, 2022.

[15] Jonas Gamalielsson, Björn Lundell, and Anders Mattsson. Open source

software for model driven development: a case study. In IFIP International

Conference on Open Source Systems, pages 348–367. Springer, 2011.

[16] Yaxin Liu et al. Towards understanding developers’ collaborative behavior in

open source software ecosystems. J. Softw., 12:393–405, 2017.

[17] Jonathan P. Allen. Democratizing business software: Small business ecosystems

for open source applications. Commun. Assoc. Inf. Syst., 30:28, 2012.

53

[18] Shohei Ikeda, Akinori Ihara, R. Kula, and Ken-ichi Matsumoto. An empirical

study on readme contents for javascript packages. ArXiv, abs/1802.08391,

2018.

[19] N. Carvalho, Alberto Simões, and J. J. Almeida. Open source software

documentation mining for quality assessment. Comput. Sci. Inf. Syst.,

pages 785–794, 2013.

[20] Christopher Vendome, G. Bavota, M. D. Penta, M. Vásquez, D. Germán, and

D. Poshyvanyk. License usage and changes: a large-scale study on github.

Empirical Software Engineering, 22:1537–1577, 2017.

[21] Georgios Gousios, M. Storey, and Alberto Bacchelli. Work practices and

challenges in pull-based development: the contributor’s perspective. In

Proceedings of the 38th International Conference on Software Engineering.

ACM, 2015.

[22] Jason Tsay, Laura A. Dabbish, and J. Herbsleb. Influence of social and

technical factors for evaluating contribution in github. In Proceedings of the

36th International Conference on Software Engineering. ACM, 2014.

[23] Nicolas Bettenburg. Mining development repositories to study the impact of

collaboration on software systems. 2011 44th Hawaii International

Conference on System Sciences, 2011.

[24] Carlos Jensen, Scott King, and Victor Kuechler. Joining free/open source

software communities: An analysis of newbies’ first interactions on project

mailing lists. 2011 44th Hawaii International Conference on System

Sciences, 2011.

[25] Jenny Liang, T. Zimmermann, and Denae Ford. Understanding skills for oss

communities on github. Proceedings of the 30th ACM Joint European

54

Software Engineering Conference and Symposium on the Foundations of

Software Engineering, 2022.

[26] S. L. T. Maŕın, M. R. Mart́ınez-Torres, and F. Barrero. Analysis of virtual

communities supporting oss projects using social network analysis. Inf.

Softw. Technol., 52:296–303, 2010.

[27] Rebeca Méndez-Durón and C. Garćıa. Returns from social capital in open

source software networks. Journal of Evolutionary Economics, 19:277–295,

2009.

[28] Sherae L. Daniel, V. Midha, Anol Bhattacherjee, and Shivendu Pratap Singh.

Sourcing knowledge in open source software projects: The impacts of

internal and external social capital on project success. J. Strateg. Inf. Syst.,

27:237–256, 2018.

[29] Alexander Hars and Shaosong Ou. Working for free? motivations for

participating in open-source projects. International Journal of Electronic

Commerce, 6:25–39, 2002.

[30] Sherae L. Daniel, Ritu Agarwal, and K. Stewart. The effects of diversity in

global, distributed collectives: A study of open source project success. Inf.

Syst. Res., 24:312–333, 2013.

[31] Bo Xu and Donald R. Jones. Volunteers’ participation in open source software

development: a study from the social-relational perspective. Data Base,

41:69–84, 2010.

[32] M. R. Mart́ınez-Torres. Analysis of activity in open-source communities using

social network analysis techniques. Asian Journal of Technology

Innovation, 22:114–130, 2014.

55

[33] Sonali K. Shah. Motivation, governance, and the viability of hybrid forms in

open source software development. Manag. Sci., 52:1000–1014, 2006.

[34] Sebastiano Panichella. Supporting newcomers in software development

projects. In 2015 IEEE International Conference on Software Maintenance

and Evolution (ICSME), 2015.

[35] Shahab Bayati. Understanding newcomers success in open source community.

In Proceedings of the 40th International Conference on Software

Engineering: Companion Proceeedings, pages 224–225, 2018.

[36] Igor Steinmacher et al. Why do newcomers abandon open source software

projects? In 2013 6th International Workshop on Cooperative and Human

Aspects of Software Engineering (CHASE), 2013.

[37] Kévin D. Carillo, S. Huff, and B. Chawner. What makes a good contributor?

understanding contributor behavior within large free/open source software

projects - a socialization perspective. J. Strateg. Inf. Syst., 26:322–359,

2017.

[38] Stackoverflow. Stack overflow 2023 developer survey: Most popular

technologies programming scripting and markup languages.

https://survey.stackoverflow.co/2023/#section-most-popular-

technologies-programming-scripting-and-markup-languages, 2023.

Accessed: 2024-01-12.

[39] Travis E Oliphant. Python for scientific computing. Computing in Science &

Engineering, 9(3):10–20, 2007.

[40] Wes McKinney. Data structures for statistical computing in python. In

Proceedings of the 9th Python in Science Conference, volume 445, pages

51–56, 2010.

56

https://survey.stackoverflow.co/2023/#section-most-popular-technologies-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-programming-scripting-and-markup-languages

[41] Michael Waskom. Seaborn: statistical data visualization. Journal of Open

Source Software, 6(60):3021, 2021.

[42] Parastou Tourani, Bram Adams, and Alexander Serebrenik. Code of conduct in

open source projects. In 2017 IEEE 24th International Conference on

Software Analysis, Evolution and Reengineering (SANER), pages 24–33.

IEEE, 2017.

[43] Github. Github-enums. https://docs.github.com/en/graphql/reference/

enums#commentauthorassociation, 2024. Accessed: 2024-01-19.

[44] Karni Lotan Marcus. The pyramid fallacy: Self-organizing decentralized open

systems for sustainable collective action. SAGE Open,

8(2):2158244018778322, 2018.

[45] Stefan Kambiz Behfar, Ekaterina Turkina, and Thierry Burger-Helmchen.

Network tie structure causing oss group innovation and growth. Problems

and perspectives in management, 15(15, Iss. 1):7–18, 2017.

[46] Oliver Arafat and Dirk Riehle. The commit size distribution of open source

software. In 2009 42nd Hawaii International Conference on System

Sciences, pages 1–8. IEEE, 2009.

[47] Carsten Kolassa, Dirk Riehle, and Michel A Salim. The empirical commit

frequency distribution of open source projects. In Proceedings of the 9th

international symposium on open collaboration, pages 1–8, 2013.

[48] S. Patro and K. K. Sahu. Normalization: A preprocessing stage. ArXiv,

abs/1503.06462, 2015.

[49] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

57

https://docs.github.com/en/graphql/reference/enums#commentauthorassociation
https://docs.github.com/en/graphql/reference/enums#commentauthorassociation

[50] Minghui Zhou, A. Mockus, Xiujuan Ma, Lu Zhang, and Hong Mei. Inflow and

retention in oss communities with commercial involvement. ACM

Transactions on Software Engineering and Methodology (TOSEM), 25:1 –

29, 2016.

[51] Mehvish Rashid, Paul M. Clarke, and Rory V. O’Connor. A mechanism to

explore proactive knowledge retention in open source software communities.

Journal of Software: Evolution and Process, 32, 2020.

[52] Kazuhiro Yamashita, Yasutaka Kamei, Shane McIntosh, Ahmed E. Hassan,

and Naoyasu Ubayashi. Magnet or sticky? measuring project

characteristics from the perspective of developer attraction and retention.

J. Inf. Process., 24:339–348, 2016.

[53] Felipe Fronchetti, Igor Wiese, Gustavo Pinto, and Igor Steinmacher. What

attracts newcomers to onboard on oss projects? tl; dr: Popularity. In Open

Source Systems: 15th IFIP WG 2.13 International Conference, OSS 2019,

Montreal, QC, Canada, May 26–27, 2019, Proceedings 15, pages 91–103.

Springer, 2019.

[54] Jaswinder Singh, Anu Gupta, and Preet Kanwal. The vital role of community

in open source software development: A framework for assessment and

ranking. Journal of Software: Evolution and Process, page e2643, 2023.

[55] Israr Qureshi and Yulin Fang. Socialization in open source software projects: A

growth mixture modeling approach. Organizational Research Methods,

14(1):208–238, 2011.

[56] W. Xiao et al. Recommending good first issues in github oss projects. In 2022

IEEE/ACM 44th International Conference on Software Engineering

(ICSE). IEEE, 2022.

58

[57] X. Tan and M. Zhou. A first look at good first issues on github. In Proceedings

of the 28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering.

ACM, 2020.

[58] GitHub. Encouraging helpful contributions to your project with labels.

https://docs.github.com/en/communities/setting-up-your-

project-for-healthy-contributions/encouraging-helpful-

contributions-to-your-project-with-labels, 2024. Accessed:

2024-02-18.

[59] Amir Hossein Ghapanchi, Claes Wohlin, and Aybüke Aurum. Resources

contributing to gaining a competitive advantage for open source software

projects. ArXiv, abs/1401.5712, 2014.

[60] Cal Poly Github. http://www.github.com/CalPoly.

[61] Wiki. Software ecosystem.

https://en.wikipedia.org/wiki/Software_ecosystem.

59

https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/encouraging-helpful-contributions-to-your-project-with-labels
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/encouraging-helpful-contributions-to-your-project-with-labels
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/encouraging-helpful-contributions-to-your-project-with-labels
http://www.github.com/CalPoly
https://en.wikipedia.org/wiki/Software_ecosystem

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 Software Ecosystem
	2.2 Project Metadata files in OSS
	2.3 The Dynamics of Community Interaction in OSS
	2.4 OSS Participation
	2.5 Newcomer to the OSS and First-timer Engagement

	3 Study Overview
	3.1 Selection of Ecosystems
	3.2 Data Collection and Analysis

	4 Project Metadata
	4.1 RQ1.How prevalent are community guideline documents in repositories in the four ecosystems?
	4.2 Method
	4.3 Results

	5 Community Responsiveness and Participation
	5.1 RQ2.How do project insiders respond to issues opened by outsiders in four ecosystems?
	5.1.1 Method
	5.1.2 Results

	5.2 RQ3. How is the distribution of contributions among project contributors characterized within four ecosystems?
	5.2.1 Method
	5.2.2 Results

	6 Contributor Attraction and Retention
	6.1 RQ4.What is the contributor retention rate within four ecosystems?
	6.1.1 Method
	6.1.2 Results

	6.2 RQ5.What percentage of repositories across four ecosystems feature a ``good first issue" label, and what proportion of contributions to projects within each ecosystem come from newcomers?
	6.2.1 Method
	6.2.2 Results

	7 Discussion
	8 Future Work
	BIBLIOGRAPHY

