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ABSTRACT

Evaluating and Improving Domain-Specific Programming Education: A Case Study

with Cal Poly Chemistry Courses

William Fuchs

Programming is a key skill in many domains outside computer science. When used

judiciously, programming can empower people to accomplish what might be impossi-

ble or difficult with traditional methods. Unfortunately, students, especially non-CS

majors, frequently have trouble while learning to program. This work reports on the

challenges and opportunities faced by Physical Chemistry (PChem) students at Cal

Poly, SLO as they learn to program in MATLAB. We assessed the PChem students

through a multiple-choice concept inventory, as well as through “think-aloud” inter-

views. Additionally, we examined the students’ perceptions of and attitudes towards

programming. We found that PChem students are adept at applying programming

to a subset of problems, but their knowledge is fragile; like many intro CS students,

they struggle to transfer their knowledge to different contexts and often express mis-

conceptions about programming. However, they differ in that the PChem students

are first and foremost Chemistry students, and so struggle to recognize appropriate

applications of programming without scaffolding. Further, many students do not per-

ceive themselves as competent general- purpose programmers. These factors combine

to discourage students from applying programming to novel problems, even though

it may be greatly beneficial to them. We leveraged this data to create a workshop

with the goal of helping PChem students recognize their programming knowledge as

a tool that they can apply to various contexts. This thesis presents a framework for

addressing challenges and providing opportunities in domain-specific CS education.
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Chapter 1

INTRODUCTION

Programming is a key component of research in domains outside of computer science.

For example, the field of Bioinformatics utilizes computer science to drive advances

in biology. In order for researchers to succeed in their fields, it is important that

they are able to program. Purely computing professionals cannot write the software

for them, because they do not have the necessary background knowledge. Similarly,

researchers do not need to be trained in the full breadth of computer science because

much of the field will be irrelevant to them. There are exceptions to this; some niche

fields will require researchers to be experts in computer science as well as their other

domain. However, for most researchers, programming is simply a supporting skill that

enables them to be more productive. These researchers who program are referred to

as end-user programmers, and it is estimated that for every professional software

engineer there are at least four end-user programmers [24]. End-user programmers

are computationally literate - they can express themselves through the medium of

computing, which allows them to think about their domain in new, interesting ways

[11].

As programming continues to be used in other sciences, more students will learn pro-

gramming in the context of their domains. These courses will focus on programming

to different degrees, and may or may not be taught by CS faculty. In domain-specific

programming courses, students are able to directly see the applications of program-

ming to their field and focus on the most relevant programming constructs for their

field. This means that they do not have to transfer programming knowledge into

their domain, which is widely regarded as a large challenge to students [11]. How-
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ever, it is also possible that students will not learn much programming through an

integrated curriculum [15]. The Physical Chemistry curriculum at Cal Poly offers

an excellent opportunity to observe the challenges and opportunities presented by a

domain-specific programming course.

Cal Poly currently teaches MATLAB programming to Chemistry students in the

Physical Chemistry (PChem) series of courses [19]. This is a 5-course series that is

required for all Chemistry and Biochemistry majors at Cal Poly. The programming

component of the series was introduced in 2013 with the intent to deepen students’

Chemistry knowledge through programming [19]. Studies have been done on the

efficacy of the Cal Poly Chemistry curriculum as a whole, but the programming

aspect of the curriculum has not yet been evaluated [19]. This thesis seeks to examine

the programming aspect of the PChem curriculum taught at Cal Poly through two

research questions:

RQ1. To what extent are PChem students developing their computational thinking

ability?

RQ2. Do Chemistry students perceive themselves as effective programmers, and do

they believe that programming is a valuable skill for their Chemistry careers?

RQ1 seeks to understand the challenges faced by the students as they learn to pro-

gram, while RQ2 is aimed at understanding student attitudes towards computing.
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Chapter 2

BACKGROUND

In this section, we will cover what it means to be “computationally literate”, why

knowledge transfer from one domain to another is difficult, how metacognition plays

into problem solving, how academic motivation impacts learning outcomes, and how

people learn to program.

2.1 Computational Thinking and Literacy

Computing can be thought of as a new medium through which people can express

themselves. People who are able to utilize computing are computationally literate [11].

As with traditional literacy, there is a gradient to computational literacy: people can

be end-users of software, creators of software, or anywhere in between. It is difficult

to develop computational literacy, but the benefits are numerous [11]. For example,

people who leverage computing are more productive and are able to think about their

domains in new, interesting ways. In contrast, people who are not computationally

literate will often suffer productivity costs.

Computational thinking is a term coined by Jeannette Wing to describe the thought

processes that are involved in solving programming problems [34]. Mark Guzdial

describes computational thinking as the practice of “applying computing ideas to fa-

cilitate computing work in other disciplines” [11]. As computational thinking involves

expressing oneself through computing, it is a form of computational literacy. The abil-

ity to program is not the end goal of computational thinking; it is another tool to be

utilized by students to explore their domain. Students who are able to think compu-
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tationally will see productivity gains and will be able to interact with the material

differently than students who have not been taught computational thinking [11].

Defining computational thinking in a way that is useful in practice is difficult. Given

that computational thinking has been adopted as a core practice under the Next

Generation Science Standards, Weintrop et al. developed a taxonomy as a definition

[31]. The taxonomy supports practical lessons that infuse math and science curricula

with computational thinking.

While computational thinking can be applied to any domain, this thesis will focus

on its application to science. Computational thinking and science have a reciprocal

relationship: computing can deepen a student’s understanding of science concepts,

while science provides an authentic context for the application of computing [31].

2.2 Knowledge Transfer

Applying prior knowledge to novel situations is known as knowledge transfer. Some-

times, prior knowledge is applicable and applying it is appropriate. This is known as

positive transfer. Other times, applying prior knowledge is detrimental to solving the

problem. This is known as negative transfer. Transfer issues in computer science are

well known, but explicitly teaching for transfer can help [11, 25]. Robust, abstract

mental models are key for transfer.

Positive transfer is affected by many factors. Among them is learning with under-

standing rather than learning by memorization [4]. Wertheimer found that students

who learn and apply a procedure via rote memorization are unable to transfer their

knowledge to similar problems [33]. On the other hand, students who are explicitly

taught the reasoning behind the procedure are able to solve the problems. This makes
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sense, as understanding involves learning an abstract concept that can then be ap-

plied to similar problems. Students who memorize do not learn at the abstract level,

and so are unable to identify that the problems are similar. When presented with the

similar problems, the memorization students said: “We haven’t learned this yet”.

Another factor that impacts transfer is the context in which knowledge is acquired.

When learning occurs in only one context students struggle to disentangle their knowl-

edge from that context, negatively impacting transfer [10]. In contrast, teaching

across multiple contexts with explicit demonstration of a wide range of applications

improves knowledge transfer. This is because people learning in multiple contexts

are more likely to identify the key components of what they are learning and form

abstract mental models that are applicable to a wide array of problems. One way

to encourage abstract mental models is to give students multiple, slightly different,

specific cases of a concept. As they go through the specific cases they are likely to

construct a more abstract mental model of the concept.

Teaching students to use multiple abstract levels can help students develop robust

mental models that transfer well [4]. Students who are taught only at a specific

level are unlikely to understand the limits of what they have learned. Bransford uses

the example of students constructing business plans: students who construct business

plans for a complex problem may not realize that their plan works well for “fixed-cost”

businesses, but not for others. However, if they are taught to represent their solution

at multiple different levels of abstraction, they are likely to realize the broader classes

of problems that it can and cannot solve.

Negative transfer can range from outright preventing people from solving a problem

to reducing the efficiency of their solution. Luchins and Luchins found that people’s

prior knowledge can blind them to simpler, more efficient solutions when faced with a

new problem [18]. They instructed participants on one method of solving a complex
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series of problems, and then gave them a much simpler problem. The control group,

who did not receive the instruction on complex problem solving, were able to solve

the simple problem with a simple, efficient solution. In contrast, the experimental

group applied the complex solution to the simple problem. While both worked, the

control group was much more efficient.

2.3 Metacognition and Problem Solving

Developing a program as a solution to a problem is a complicated process that goes

far beyond simply writing code. Metacognition is an awareness of one’s thought

processes. Solving complex problems involves high levels of metacognitive awareness;

expert programmers explicitly monitor their progress and evaluate the effectiveness

of their problem solving strategies [17]. Frameworks designed to teach students how

to solve problems can improve metacognition. One of the most popular frameworks

is the design recipe, described in How to Design Programs [7].

The design recipe is a metacognitive aid that helps students problem-solve with pro-

gramming. It is a 6-step process, briefly described below.

1. Determine data definitions from the problem statement. What information

must be represented? How can it be represented?

2. Define a function stub. What does a function that solves this problem take as

inputs and produce as outputs?

3. Work through examples to illustrate the purpose of the function.

4. Create a function template. Incorporate the data definitions into the function
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5. Define the function. Leverage the examples to fill out the function template to

solve the problem.

6. Test the function. Translate examples into test cases and ensure that the func-

tion passes.

As students work through a problem using the design recipe, they build up their

solution in small steps. They then iteratively improve on this solution.

Metacognition can also improve knowledge transfer. Students who understand them-

selves as learners and can reason about their learning process are more likely to

transfer knowledge without explicit prompting [4]. Emphasizing metacognition helps

students evaluate their progress towards understanding and develop knowledge ac-

quisition skills. Students who realize that they do not understand a concept will seek

out knowledge and incorporate it into their mental models until they are able to solve

a given problem. Students who do not have these metacognitive skills may negatively

transfer inappropriate knowledge because they fail to realize that they do not un-

derstand the problem, fail to seek out supplementary knowledge, or fail to properly

incorporate new knowledge into their mental models.

2.4 Academic Motivation

Academic motivation is an important factor in student success; high motivation begets

higher academic achievement because motivated students are more likely to engage in

activities that help them learn [14]. Motivation is affected by many factors, some of

which are out of the instructors control (i.e. natural interest in the subject). However,

instructors have a large amount of influence over student motivation and they can
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design courses to maximize motivation, as detailed by Brett Jones with the MUSIC

model of academic motivation [14].

The MUSIC model breaks motivation into 5 components: “eMpowerment”, “Use-

fulness”, “Success”, “Interest”, and “Caring”. While it is not clear the minimum

number of components that must be satisfied to sufficiently motivate students, it ap-

pears that more is better. Instructors have varying degrees of control over each of the

5 components, but they can still make a positive impact in every component.

Authenticity is important to students’ perception of “usefulness”. Students perceive

skills taught in an authentic context to be more broadly useful than skills taught in a

contrived, or “toy” context. As an example, students learning to program with block-

based programming languages perceive the class as unauthentic, even though they

are still learning important programming skills [32]. So, teaching as authentically

as possible while monitoring and addressing student perceptions of authenticity can

increase student motivation.

2.5 Learning to Program

It is widely known that students experience difficulty when learning to program. This

is partly due to students needing to develop a notional machine in order to reliably

solve even trivial programming questions [11]. A notional machine is an abstract ide-

alization of a computer through which the programmer understands the capabilities

of a computer and how to control it [6]. Developing an accurate mental model of a

notional machine is considered one of the most challenging components of learning

to program [26]. As a result, novice programmers’ mental models are frequently in-

complete or rife with misconceptions. These misconceptions recur systemically, and

so can be classified into meta-misconceptions, which Roy Pea calls “super-bugs” [23].

8



Pea proposes three language-independent super-bugs: the “hidden mind”, “goal-plan

merge”, and metacognitive bugs. Pea also proposes two language-dependent super-

bugs: knowledge unavailability and knowledge inaccessibility.

The hidden mind is the idea that a computer is an intelligent agent that collabo-

rates with a programmer. Novices conceive of programming as a conversation with

a computer, which, although pedagogically helpful, leads them to overgeneralize and

believe that the computer can “understand” implied intent as a human would. Mod-

ern programming languages further this misconception by hiding certain aspects of

programming, such as memory management. It is difficult for novices to construct

an accurate notional machine when they do not understand what parts of a program

must be explicitly defined and which can be left implicit. This causes them to leave

out key parts of their programs that should be “obvious” to a human interpreter,

such as else statements or variable declarations [23].

The goal-plan merge class of bugs arise when students understand the components

of a program, but can not connect them together to achieve a goal. To solve a

problem, programmers must identify and address the various sub-goals contained in

the problem. These sub-goals often appear similar but contain important, subtle

differences. In merging their solutions to the sub-problems, novices are prone to drop

out at least one sub-goal, thereby producing a buggy solution that does not reliably

solve the original problem [23].

Metacognitive bugs occur when students do not accurately monitor their cognitive

process as they are solving a problem [23]. These bugs occur during program reading,

writing, and debugging. Students struggle to act as a computer would while tracing

a program, often forgetting or redoing commands. This can be attributed to poor

bookkeeping: few students use metacognitive aids such as writing out what their

notional machine is doing at each step. As discussed in Section 2.3, careful reflection
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on one’s knowledge and programming skills and process could be key to developing

programming expertise.

The knowledge unavailability bugs arise when students simply do not have adequate

knowledge to solve a problem [23]. This can be as clear as not knowing the syntax

for a conditional in a particular language, or as abstract as misunderstanding how

control flows in a program. Many flaws in student’s notional machines are due to

knowledge unavailability. Knowledge inaccessibility bugs, on the other hand, occur

when students possess the correct knowledge, but are unable to apply it [23]. Students

struggle to transfer their programming knowledge from one context to another when

the contexts have surface-level differences, despite underlying deep similarities [1, 29].

Students may grasp a programming construct in a given context, but do not see how

it applies to a different context. This super-bug occurs frequently in science courses

that emphasize computational thinking: students do not always learn as much general

purpose programming as expected [11]. As discussed in Section 2.2, this is a problem

of knowledge transfer — students know how to program, but that knowledge is tightly

coupled to the context in which they learned to program, so they struggle to apply

it elsewhere. These students may pass a test, but be unable to write a successful

program.

2.6 Summary

Computational thinking can improve productivity and success in domains outside

of computer science. However, transferring knowledge from one domain to another

is difficult. There are teaching strategies that have been shown to facilitate knowl-

edge transfer. Writing code is only part of the programming process. Metacognitive

self-regulation of ones problem-solving process is necessary to consistently develop
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effective solutions. Motivation is key to student success; students who are more aca-

demically motivated in a given course are likely to perform better than students who

are less motivated.

Domain-specific computer science courses teach programming in the context of the

target domain. This has the potential to reduce the necessity for knowledge transfer

and improve student motivation to learn programming by providing an authentic

context for its application. In the next chapter, we discuss how we measured Cal

Poly PChem students’ programming abilities.
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Chapter 3

UNDERSTANDING CHEMISTRY STUDENTS’ PROGRAMMING ABILITIES

In this chapter, we cover how we systematically classified the programming knowledge

of the PChem students. We first cover our initial quantitative approach, then our

interview process, and finally discuss our findings.

3.1 Measuring Knowledge of Programming

While there are many ways to assess student knowledge, multiple-choice tests are

frequently used due to their ease of administration and high interpretability. Concept

inventories are carefully developed tests that evaluate student understanding of a

set of concepts [12]. If a concept inventory is validated, then it has been shown to

accurately test the concepts that it claims to be testing. Validated concept invento-

ries have been applied to many fields, including computer science education research.

The Second CS1 Assessment (SCS1) is a validated, multiple-choice concept inven-

tory that tests introductory computer science knowledge [21]. After examining the

PChem curriculum, we determined that an introductory-level assessment would be

appropriate for the PChem students. The MATLAB Computer Science 1 Assessment

(MCS1) is an assessment created by researchers at the Ohio State University for first

year engineering students [2]. The MCS1 is isomorphic to the SCS1, which means

that it tests the same concepts and learning outcomes as the SCS1. As the MCS1

uses MATLAB, it is better suited for our purposes. We elected to use the MCS1 to

evaluate PChem student’s MATLAB knowledge.
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While the MCS1 assesses students’ knowledge, it is also important to understand

student’s attitudes, which we measure with the Attitudes Towards Computing (ATC)

survey [30]. Attitudes are tightly tied to academic motivation, which is a key factor

in student success. The MUSIC model of academic motivation lists “empowerment”,

“usefulness”, “success”, “interest” and “caring” as components of motivation [14].

The ATC directly measures “usefulness” and “interest”, as well as motivation as a

whole. Intuitively, students who do not perceive programming as useful or interesting

are less likely to fully engage with course material. On the other hand, students

with positive attitudes towards computing are more likely to persist in the field and

demonstrate more advanced computing knowledge. Either way, student attitudes are

an important factor in their performance.

Performance on the MCS1 could be impacted by confounding variables such as prior

programming experience. To account for this, we created a set of demographic ques-

tions to measure extracurricular programming experience. We also collected data on

academic progress, major, gender, ethnicity. The question about languages used in

prior programming experience had a free-response “other” option that some students

used to provide unsolicited feedback on the assessment.

We administered the MCS1, ATC, and demographic questions as a combined survey

on Canvas, the learning management system that Cal Poly uses. We created the

survey by first presenting the MCS1, then the ATC, and finally the demographic

questions. With the cooperation of the Chem faculty at Cal Poly, we were able to

require that all students in PChem 2 and PChem 3 complete our survey (n=68).

While students were required to complete the survey, their performance on the MCS1

was not used in their course grade.

In general, students performed poorly on the MCS1. There are a variety of possible

explanations for this. It could be that the test was long and did not count for a grade,
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so students may have sacrificed accuracy for speed. Or, it could be that the test was

context-agnostic, so the students may have struggled to transfer their Chemistry-

specific programming knowledge. It could have been that students did not recognize

the syntax for certain expressions, because it is different than the syntax that they

learned in class. It is likely a combination of these factors and others. Regardless,

student responses in the free-response section of the survey led us to believe that most

students were guessing on many of the questions. One student said:

I feel like I am actually very good when it comes to MATLAB, but only

if I have been taught the material or spend a lot of time on Mathworks

teaching myself. I know I did not do well on this assessment, but that is

just because I am not a super genius when it comes to code. If I had been

taught all of the stuff on this exam (aka if I took another CS class down

the line) I think I would excel at it

This quote exemplifies the general student attitude after taking the MCS1; they felt

that it was very difficult and not related to what they have learned in class, which

caused them give up on problems and guess. This made the data noisy, which made

it difficult to discern students’ abilities from this test.

Upon further review of the MCS1 and consultation with the Chemistry faculty, we

found that many of the MCS1 questions were not accessible to the PChem students

because they used constructs that were not covered in class. This is congruent with

prior research that shows that the SCS1 is a difficult exam, and so is not suitable as

an introductory-level CS pre-test [22]. As the programming portion of the PChem

curriculum amounts to an introductory CS course, giving the exam to any students in

PChem 1 or 2 is a de facto pre-test. In light of this, we decided that a shorter, more

accessible test would give us better results. We elected to give this modified MCS1
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as a think-aloud interview instead of a multiple-choice exam because the interview

format allows us to gain richer insights into the student’s programming abilities. The

interview process is described in the next section.

3.2 Interview Process

Our goal with interviews was to develop a theory about the extent of PChem students’

computational thinking abilities, as well as their attitudes towards programming. We

structured the interviews as a selection of seven MCS1 problems followed by three

open-ended questions to gauge student’s attitudes towards computer science. In order

to collect rich data about students’ problem solving process, we asked them to think

aloud as they worked and explain their rationale for each answer. The interviews

were given in-person or over Zoom, and the audio was recorded and transcribed.

The MCS1 questions were selected to test each PChem learning objective multiple

times. The PChem learning objectives were directly taken from the paper describing

the creation of the PChem curriculum [19]. We then coded each MCS1 question with

the PChem learning objectives involved in solving it. Each researcher independently

coded the questions, and we then discussed until we arrived at a consensus. The

learning objectives, keys, and frequency with which the objective was tested in the

MCS1 can be found in Table 3.1. There were some PChem learning objectives that are

never tested in the MCS1, such as “Symbolically solve and integrate using MATLAB”.

This makes sense because the MCS1 was designed to test general introductory CS

knowledge, while the PChem curriculum was designed to teach physical chemistry

with the help of programming. While there are many concepts shared between the

two, they do not overlap completely. We cannot test learning objectives that are

not included in the MCS1, and we should not include MCS1 questions that don’t
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test learning objectives. So, to create an effective assessment we selected a subset of

MCS1 problems that test each expressed learning objective multiple times.

Table 3.1: PChem learning objectives and the frequency with which they
appear in the MCS1

Learning Objective Frequency

Perform symbolic math (multiplication, addition, subtraction, divi-
sion, exponentiation, and differentiation) using MATLAB.

4

Write scripts to execute a sequence of commands. 3
Symbolically solve and integrate using MATLAB. 0
Assign values to arrays, address elements in an array, perform
element-by- element multiplication, addition, subtraction, division,
and exponentiation on arrays; use arrays to plot functions.

1

Perform numerical integration using MATLAB. 0
Write and use custom functions. 4
Solve single-variable differential equations numerically and plot the
resulting functions.

0

Solve multivariable differential equations numerically and plot the
resulting functions.

0

Create and diagonalize a matrix in MATLAB. 0
Write and execute simple code, including FOR loops, nested loops,
and conditionals.

2

We adapted the MCS1 questions to ensure that students would be able to solve each

question using only what they were taught in the PChem series. For example, the

MCS1 uses string operations in several problems, but PChem students do not learn to

work with strings. So, we replaced the string operations with arithmetic operations,

while preserving the other concepts that the question was designed to test. We worked

with the PChem faculty to ensure that all of the interview questions were solvable by

the PChem students.

Next, we adapted the ATC questions to better fit the interview format. Multiple-

choice questions are ideal for processing on a large scale, but we wanted richer data

from our interviews. So, we created three open-ended questions, adapted from the

ATC. The questions were:
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1. How do you feel about MATLAB?

2. Do you use MATLAB if it’s not specifically asked for in a question or problem?

3. How do you feel about your computing abilities?

As we began interviewing students, it became clear that there were subtleties in their

programming knowledge that were not being captured by the initial set of interview

questions. To maximize the power of the interviews, we decided to follow a grounded

theory approach. In grounded theory, a theory is iteratively built up over multiple

rounds of data collection [27]. There are multiple interpretations of grounded theory.

We are using the Straussian version of grounded theory which allows for engaging

with the literature as the theory is constructed. We modified our theory after each

round of interviews, and used the subsequent round to validate our modifications.

The classes of changes that we made to the interview questions are described below.

Brute Forcing Answers We observed students brute-forcing problems by check-

ing and discarding answers. For some problems this is acceptable, as verifying

an answer requires the skill that the question is designed to test. However,

other problems were designed to test deeper computational thinking abilities;

providing answers as scaffolding made it difficult to determine if students were

demonstrating true computational thinking ability or simply good test taking

strategies. To solve this, we changed some of the multiple choice problems to

short answer problems. In particular, problem 5 requires students to construct

an ordering of statements from a list to manipulate a variable into a particular

value. As a multiple choice problem, this tests a student’s ability to trace a

series of variable mutation statements. However, as a short answer problem

the solution space is too large for students to brute force. They must under-

stand the relationships between different statements, weed out the unnecessary
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statements, and construct a plan to achieve their goal. All of these are complex

computational thinking skills. Removing the answer choices allowed us to more

clearly understand student’s computational thinking abilities.

Stumbling Blocks As trained computer scientists, it was challenging for us to an-

ticipate what aspects of a problem students would have difficulty with. Ideally,

students would only struggle with the computing constructs that a problem is

designed to test. When students stumble over unrelated aspects we cannot dis-

cern with certainty the extent of their knowledge in the target construct. For

example, problem 3 tests a student’s knowledge of functions and control flow

through a function that squares all of the odd numbers in an array. In the first

version, we used the modulo operator (denoted by %) to determine if a number

is even or odd, called its parity. The modulo operator produces the remainder

after integer division. So, x % 2 == 0 is True when x is even and False when

x is odd. This is a frequent pattern for determining parity in computer science.

However, since PChem students do not learn the modulo operator, they would

be unlikely to solve this problem, even if they understood functions and control

flow completely. Since modulo is not a core concept that we are testing, we

modified the problem to test for parity by comparing integer division by two

and division by two. The students were generally able to trace this line, which

allowed us to gain insight into the target constructs of functions and control

flow.

Tracing vs. Explaining In some problems, we are trying to test students’ ability

to correctly trace a program. Tracing a program involves stepping through it

as a computer would, keeping track of state in order to determine what will be

output. In this case, we are focused on evaluating how closely their notional

machines approximate a computer at a low level, because tracing a program
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requires an accurate notional machine. Other times, we are trying to evaluate

how they are understanding the program at an abstract level: what patterns

do they recognize, are they identifying the purpose of a block of code, etc. The

skills required to understand a program are a superset of the skills required to

trace the same program. This means that students who can trace a program

and students who understand the program will both be able to solve many of

the same problems. In order to differentiate between these two ability levels,

we changed problem 3 from a multiple choice problem to an “explain” problem.

Students were asked to “explain in plain English” what would be output, rather

than explicitly asked to solve the problem. Some students mechanically traced

the entire problem while others analyzed it and explained the purpose of each

section. Most students fell somewhere in the middle, which gave us rich data

about their understanding of several different constructs.

In order to systematically process the data from the interviews, we needed a learning

taxonomy. A learning taxonomy is a tool used to classify different levels of cognition.

We used the Matrix Taxonomy, a two dimensional adaptation of Bloom’s learning

taxonomy [8]. The key insight that led to the creation of the Matrix taxonomy is

that the ability to comprehend a program and the ability to produce a program are

semi-independent skills. In the Matrix taxonomy, levels of program production are

on the Y-axis, while levels of program interpretation are on the X-axis. This allows

us to visualize where students fall on the interpretation production plane. Figure 3.2

depicts the Matrix Taxonomy with various key programming activities placed on it.

To capture student’s abilities across different constructs, we created a multi-strand

taxonomy, where each strand captures ability in an independent area. Learning to

program effectively involves understanding multiple different computing constructs.

Often, these constructs are not directly related, and mastery of one does not imply
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Figure 3.1: The Matrix Taxonomy, reproduced from Fuller et. al [8]
C - Creating, Ap - Applying, R - Recognizing, U - Understanding, An - Analyzing,

E - Explaining

mastery of any others. Student’s mastery of each construct can be placed on its own

taxonomy. Castro and Fisler applied this to programming students using the SOLO

taxonomy, a different learning taxonomy [5]. We applied the same idea, but with

the Matrix taxonomy instead. We settled on three strands: Control Flow, Variables

& Arrays, and Functions. Control Flow covers statement ordering, conditionals, and

loops. Variables & Arrays cover variable assignment and mutation, as well as all array

operations. We chose to combine variables and arrays since all MATLAB variables
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are actually arrays. Functions covers creating custom functions, as well as calling

functions and scope of the variables and parameters local to the function.

Most questions only test one or two strands. Some questions require students to

produce a program, while others only required them to interpret a program. So, the

highest that a student could score on each axis for a given question was capped by

that question. For example, it is impossible to demonstrate the ability to produce a

program on question 3, since it asks only for an explanation of the provided program.

After each interview, we placed the student on each strand of our taxonomy. In

grounded theory, these documents are referred to as memos, and are used to help

construct a theory. We constructed memos by observing the level of ability expressed

in each strand for each question. We found quotes from the student that illustrated

their ability level for every construct tested in that problem and placed these quotes

on the taxonomy appropriately. Misconceptions were placed in the bottom left box,

which is outside of the producing-interpreting plane. The first three interviews were

coded by one researcher. We then discussed the coding until we arrived at a consensus.

After the first three interviews, both researchers had a shared understanding of the

meaning of each level in the Matrix taxonomy, so only one person coded the remaining

interviews.

Once we finished coding an interview, we observed where the student’s abilities were

clustered. Usually, students consistently demonstrated the same ability level, al-

though some students demonstrated significantly different ability for the same con-

struct in different problems. This phenomenon is further discussed in the following

section.
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Listing 3.1: Named statements similar to those used in Problem 5

1 alpha : a = b / z ;
2 bravo : b = c + x ;
3 c h a r l i e : y = y ∗ b ;
4 de l t a : x = c ∗ a ;
5 f o x t r o t : y = z − y ;

3.3 Interview Results

A tabular summary of the students’ programming abilities, determined qualitatively

from the interviews, can be seen in Table 3.2 for the Control Flow strand, Table 3.3

for the Variables & Arrays strand, and Table 3.4 for the Functions strand.

In Control Flow, Table 3.2, most students were able to reach the Understand/Apply

level. Students at this level are able to understand MATLAB control flow and apply

it to achieve their goals. For example, Problem 5 asks students to manipulate a

variable using only predefined statements like those in Listing 3.1. Students at the

Understand/Apply level understand that lines of code are executed sequentially and

apply that to construct and test different orderings. However, they often exhibit a

“brute force” style approach by testing seemingly random orderings until they find

one that works. In contrast, students at the Analyze/Apply level analyze the provided

statements to determine general rules that they can then use to construct an ordering.

While solving problem 5 and thinking aloud, one student said:

So the thing that I’m looking for first is which one will actually affect A,

because that’s the one that I’m trying to change, and then I just need to

set the variables that are in the one that affects A to be the the correct

form. -P7

Which demonstrates the Analyze/Apply level.
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Similarly, most students in Variables & Arrays, Table 3.3, were able to reach the

Understand/Apply level. Students at this level understand how variables work, which

they can then apply to their programming. Importantly, students at the Understand

level do not express misconceptions about variables. In contrast, students at the

Remember/Apply level can remember facts about variables and apply them to code,

but they often express misconceptions. Students at the Remember/None level can

recall facts about variables, but they are unable to apply them to programming

problems.

Functions, Table 3.4, proved to be difficult for students. Students also expressed

the most varied levels in this strand. A student at the Remember/Apply level could

be expected to remember some facts about functions and apply them to program-

ming. However, they often express important misconceptions that can sideline their

attempts to apply their knowledge. Students at this level use a trial-and-error ap-

proach, which can lead to frustration as they encounter errors [8]. Problem 3 asked

students to explain a function. A student at the Understand/Apply level would cor-

rectly explain the function line by line. While technically correct, this explanation

shows that they are considering the function as a collection of lines of code, not as

a single entity that accomplishes a task. On the other hand, students at the Ana-

lyze/Apply level were able to read the function and describe it in terms of its inputs,

outputs, and purpose. Going further, a student at the Evaluate/Create level could

evaluate the quality of a function and create alternative solutions. This could look

like recognizing that a function should be decomposed into smaller functions, and

performing the decomposition.

In the following subsections, we discuss the interview results for the programming

questions, as well as the attitude questions.
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Table 3.2: Number of students in each cell on the Control Flow strand of
the Matrix Taxonomy

Control Flow
Create
Apply 1 5 2
None

Remember Understand Analyze Evaluate

Table 3.3: Number of students in each cell on the Variables & Arrays
strand of the Matrix Taxonomy

Variables & Arrays
Create
Apply 1 6
None 1

Remember Understand Analyze Evaluate

Table 3.4: Number of students in each cell on the Functions strand of the
Matrix Taxonomy

Functions
Create
Apply 2 1 1
None 2

2 Remember Understand Analyze Evaluate

Note that two students only expressed misconceptions, and so are in the bottom left
corner of the taxonomy.
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3.3.1 Recurring Patterns

While processing the interviews, we noticed recurring patterns of thought across the

groups of students. In this section, we detail the different patterns that we have

found.

Belief that “if-and” is a programming construct Many students (P2, P3, P4,

P5, P6, P8) could not correctly evaluate an expression like and(true, and(true,

false)), but had no problem evaluating a similar expression inside of an if statement.

When asked to solve problem 1, a Boolean logic problem, one student said:

We’ve never gone over a problem like this, or the logic behind this... I

would really just be guessing on this. -P5

Then, while solving problem 4, they correctly traced an and inside of an if statement:

A is greater than B and B is greater than C, so that’s not true because 3

is not greater than 7. -P5

Furthermore, only one student (P1) recognized the and() syntax in problem 1 after

seeing Boolean logic used within an if statement. This furthers the idea that stu-

dents are viewing “if-and” as its own MATLAB construct. Students who hold this

misconception would likely place in the Understand/Apply cell of the Control Flow

strand, Table 3.2. They can write an “if-and” statement like option A in Listing 3.2,

but they could not analyze alternatives, such as option B.

Unable to recognize “matrix append” When presented with code like Listing

3.3, only one student (P7) was able to recognize that it would create a matrix with
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Listing 3.2: Two ways to write an “if-and”

1 % Option A
2 i f ( and (x , y ) )
3 disp (”x and y ”)
4 end
5
6 % Option B
7 c = and (x , y )
8 i f ( c )
9 disp (”x and y ”)

10 end

Listing 3.3: One way to append values to a matrix in MATLAB

1 x = [ ’ ’ ] ;
2 x = [ x ’B ’ ]
3 x = [ x ’A ’ ]

the values [‘B’ ‘A’] by appending them to the empty matrix. This works by assigning

x the value of a new matrix, created from the old values of x and an additional value.

The other students expressed some familiarity with the matrix creation syntax, but

they could not figure out that values were being appended to the matrix. One student

said:

I don’t think that is true because if you want to write in matrix format

yeah, it’s been in you have to do like X, say the first one, then the second

one. -P1

This student clearly recognizes the matrix syntax, but they think that the matrix

could only be created with a matrix literal like x = [‘B’ ‘A’]. Although appending

to a matrix uses the same matrix creation operation as initializing the matrix with

static values, students were unable to identify the matrix creation operation in the

append code.
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Listing 3.4: A short function that does not return anything

1 function [ r e s ] = compute (x , y )
2 x = x − y ;
3 y = x / y ;
4 end
5 a = 9 ;
6 b = 6 ;
7 compute (a , b)

Students who hold this misconception would land in the Understand/Apply cell in

the Variables & Arrays strand of the taxonomy. They understand how to work with

arrays in one way, but they do not have a robust or abstract enough mental model

to analyze alternative solutions, such as appending with the method used in Listing

3.3.

Negative transfer of math knowledge to MATLAB Some students appeared

to inappropriately apply their prior math knowledge to programming. For example,

consider the following snippet:

When given code like Listing 3.4, one student said that they could not solve it because:

calculating X & Y based off of each other I would think that we would need

a value to start with - P6

They came to this conclusion after trying to solve for x (line 2) and y (line 3) by

substituting, as they would solve a system of equations. However, x and y were previ-

ously defined as parameters to the function, so this problem is solvable by substituting

in the arguments a and b (line 7).

Other students appeared to think of functions in mathematical terms, such as this

student when presented with a function similar to Listing 3.5 to trace:
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Listing 3.5: A complex function involving conditionals, prints, and looping

1 function [ r e t ] = square evens ( numbers )
2 r e t = zeros (1 , length ( numbers ) ) ;
3 for i =1: length ( numbers )
4 va l = numbers ( i ) ;
5 i f ( f loor ( va l / 2) == ( va l / 2 ) )
6 va l = power ( va l , 2 ) ;
7 disp ( va l ) ;
8 end
9 r e t ( i ) = va l ;

10 end
11 end
12
13 in numbers = [ 1 , 2 , 4 , 3 , 5 ] ;
14 output = square evens ( in numbers ) ;

[Referring to line 14 in Listing 3.5] That would generate a function of those

numbers that would do some math on those numbers to create some value

-P8

The square evens function above returns a list with all of the even numbers squared.

However, the student felt that it should return only a single value, as a mathematical

function would. This negative transfer prevented them from solving the problem.

While mathematical principles overlap significantly with programming principles,

some students’ appear to believe that MATLAB follows mathematical principles at

inappropriate times.

Difficulty with Functions As can be seen in Table 3.4, Functions were more difficult

for students than either of the other two strands. Five students (P3, P4, P5, P6, P8)

expressed misconceptions about functions. Of them, two students (P4, P8) exclusively

expressed misconceptions about functions. While the misconceptions were varied,

they all fall under the umbrella of “Functions”. The different misconceptions are

described below.
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Some students (P4, P8) appeared to have a general lack of knowledge about functions.

They exclusively expressed misconceptions. Referring to line 2 of Listing 3.5, one

student said:

And then numbers are also a set of the zeros. -P8

It is likely that there are several misconceptions at play in this response. This student

believes that the zeros function is going to modify the numbers variable. This

implies that they do not recognize that length(numbers) is itself a function call

that returns a value. They also do not understand that MATLAB is “pass-by-value”,

so a function cannot modify its parameters. So, zeros could never modify numbers,

even if it were passed numbers directly. The rest of this student’s explanation of the

square evens function (Listing 3.5) continued similarly. Overall, it appeared that

they were trying to construct a mental model of how functions work on the fly.

Another student, when presented with a function like Listing 3.4, said:

I feel like I haven’t seen this before -P4

They were referring to the function declaration syntax. While it is possible that they

have not been exposed to this particular way of defining a function, they have been

taught to “Write and Use Custom Functions” during PChem [19]. Neither of these

students were able to explain or solve any of the function problems.

Some students held more nuanced misconceptions about arguments, parameters, and

scope. Referencing code similar to lines 2 and 3 of Listing 3.4, one student said

calculating X & Y based off of each other I would think that we would need

a value to start with - P6

29



Listing 3.6: An example problem that demonstrates scope

1 function [ s o l u t i o n ] = c a l c u l a t e ( a , b , c )
2 s o l u t i o n = a ∗ c + 0 .5 ∗ b ∗ c ∗ c ;
3 end
4
5 x = 4 ;
6 y = 16 ;
7 z = 12 ;
8 s o l u t i o n = c a l c u l a t e (x , y , z ) ;
9 disp (b ) ;

While we previously used this example to demonstrate negative transfer of math

knowledge, it also shows a lack of understanding about how parameters work inside

functions. Since x and y are defined as parameters, they must have a value in the

function body. As the student does not recognize this, they may not understand the

concept of parameters.

Other students correctly mapped arguments to parameters, but did not understand

the scope of the parameters. When solving a problem similar to Listing 3.6, one

student said

A would be like X and then B would be Y and C would be Z so B would

probably be like 16 -P5

This demonstrates that they correctly mapped the arguments to parameters, but

they incorrectly believed that the parameters to calculate are still defined on line 9,

outside of the function body.

Only P7, who had several prior programming classes, could explain that line 9 would

produce an error because b is undefined outside the scope of the function body.
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3.3.2 Attitudes Towards Programming

Patterns emerged in the students’ attitudes towards programming as well. Overall,

most students viewed their programming skills as specific and limited. One student

(P7) was pursuing a CS minor and displayed higher self-efficacy. However, unless

otherwise mentioned, the following observations hold true for the rest of the sample.

Students are confident and capable in the subset of MATLAB skills that

they view as helpful PChem students often treat programming as an advanced

graphing calculator, using it to solve difficult equations and create high-quality plots.

Prior to PChem, they would do this with a calculator and a spreadsheet program such

as Excel. For many students, MATLAB is an easier option, so they use it frequently

and are confident in their abilities. All students except P7 and P8 expressed this

sentiment. A quote from one student sums up their collective attitude nicely:

So I literally threw my calculator away and start doing everything on

MATLAB. -P1

Students have low self-efficacy for general purpose programming Although

students are confident in the subset of skills that they regularly use in PChem, they

do not believe that they are generally strong programmers. When asked “How do

you feel about your computing abilities?”, one student responded simply:

I feel like they’re pretty weak -P3

Another said:
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Within the limits of chemistry, I think I feel like very good about my

MATLAB skills... But if you gave me something like outside of that I

wouldn’t really know what I’m doing -P5

Students have learned a large amount of programming through the PChem course, but

seem to believe that it only applies to PChem. In reality, they have learned general-

purpose MATLAB, in the context of PChem. That being said, transfer problems

are very common in CS education, and current research holds that transfer must be

taught explicitly [11].

Students do not feel that they understand the fundamentals of MATLAB

This makes them feel lost as they learn new constructs, because they do not know

where to fit them into their mental model of programming. Students repeatedly

expressed the sentiment that they feel they are missing key components of MATLAB,

despite their ability to solve PChem problems programmatically. One student said:

I think with chemistry they do a really good job of teaching us. But there’s

no like okay we’re only going to be doing like MATLAB and like learning

the very basics of the basics. - P5

Students do not always perceive programming as a useful skill Although

they acknowledge that programming is a large, and growing, part of research in many

domains, they do not know if programming will be directly useful to them in the

future. One student said:

I should probably understand everything computationally little bit more

because that’s the way that the research is moving and I think that’s you

know, an important part of the research future. So I want to develop these
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skills more but I’m like I don’t know what specific applications it really

looks like. -P3

While another student appeared to view the PChem programming curriculum as

non-authentic because they are using MATLAB instead of Python:

we’re not learning Python or anything which I know is what’s generally

used on industry and a lot more out in the field -P8

It is possible, perhaps even likely, that students are mistaken in their perception of

the authenticity of the course. Authenticity falls under “usefulness” in the MUSIC

model of academic motivation [14]. Students have a vague sense that programming

is important, but they do not believe that the programming that they are doing is

useful or authentic. This results in lower student motivation, which can lead to worse

learning outcomes.

3.4 Discussion

From the interviews, we found that students are comfortable using MATLAB as

essentially a graphing calculator: they can create plots, solve differential equations,

etc. However, many students lack an understanding of programming at an abstract

level. This means that they can modify examples to achieve their goals, but when the

examples do not directly apply to the problem at hand they are at a loss. This shows

up in all strands of the taxonomy as the Understand/Apply or Remember/Apply

cells, because students are able to apply what they know, but they do not possess

deep enough knowledge to analyze or evaluate alternatives. In this section, we discuss

our theory about why the students are at this level.
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While students often demonstrated the same level of ability consistently throughout

the interview, some students were more sporadic. Occasionally, students demon-

strated an understanding of a construct during one question, but demonstrated a

misconception about the same construct in a different question. One example of

this is the “if-and” misconception discussed in Section 3.3.1. As several students

demonstrated the same phenomenon, we theorize that this is because students learned

Boolean logic in the context of conditionals, and do not understand the abstract con-

cept of expressions. This is supported by the students’ struggles with the “matrix

append” operation, as in Listing 3.3. Even if students had never seen this specific

pattern before, they should be able to reason about it if they understand abstract

constructs such as expressions. After all, “matrix append” is a specific combination

of expressions and operators, but those expressions and operators follow the same

rules as anywhere else in MATLAB. It appears that PChem students do not have a

good mental model of the abstract rules of programming, which manifests as miscon-

ceptions.

It is possible that many of the students’ misconceptions are a result of them trying to

construct a mental model of programming without understanding the fundamentals.

In the PChem curriculum, students learn primarily through practical, context-specific

examples [19]. So, they construct their mental models from a small number of exam-

ples, rather than from an abstract understanding of the components of a program.

While this empowers students to begin programming quickly, it likely contributes

to student’s knowledge transfer issues, as their programming knowledge is locked to

the context of the examples through which they learned. This can lead to shallow,

internally inconsistent mental models, which are exposed by misconceptions like the

“if-and” and “matrix append” patterns discussed previously. Additionally, as stated

in Section 3.3.2, students feel that they have gaps in their MATLAB knowledge. It is

possible that additional instruction on the fundamentals of programming languages
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would help students construct a robust mental model of programming and increase

their confidence. This could improve their ability to transfer their knowledge from

one context to another.

Supporting the idea that students have not learned to program at an abstract level,

we found that students are able to experience some benefits of MATLAB with only

a shallow understanding of programming. For instance, once students become com-

fortable using MATLAB to solve differential equations, they prefer to use MATLAB

over solving the problem by hand. As mentioned in Section 3.3.2, one student went

so far as to stop using their calculator completely.

Although students are successful at using MATLAB as a calculator, they seem to rely

on copying and modifying examples. When asked how they feel about MATLAB, one

student said:

I want to say it’s from my perspective at least, as a calculator, so to why

calculating huge derivative or taking huge you know differentials, right?

So it’s a lot of copy and paste code. -P1

This implies that students are frequently referencing examples to solve simple prob-

lems. In this case, a shallow understanding allows the students to be successful, so

they have not developed a deeper understanding. This shallow understanding consti-

tutes fragile knowledge, which contributes to the difficulty students have transferring

their programming skills to different domains. It is possible that explicitly drawing

connections between seemingly disparate examples would encourage students to cre-

ate a more abstract mental model of programming. This could deepen their knowledge

and improve their programming abilities.
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While students possess practical knowledge of some programming constructs, they

struggle with other constructs. Examples of this are students’ collective difficulty

with functions and loops. The “Functions” strand, Table 3.4, showcases this well.

There are a variety of potential reasons why students could be failing to learn these

constructs; one explanation is a perceived lack of utility. Functions only show their

full utility when programs become complex and code re-use becomes a necessity.

Likewise, looping is only necessary when a block of code must execute many times. If

a block must only repeat a few times, students may simply repeat the necessary code,

rather than learning a new looping construct. If the programming required in PChem

does not showcase the utility of these constructs, students are liable to consider them

superfluous. Since “usefulness” is a key component of academic motivation [14], a

perceived lack of utility could cause students to lose motivation, which leads to poorer

learning outcomes. It is possible that additional demonstrations of the utility of each

construct could better motivate students and improve learning outcomes.

While our interviews rarely allowed students the opportunity to demonstrate true

“Create” abilities, we believe that students struggle to create programming solutions

for novel problems. For example, Problem 5 requires students to construct an ordering

of statements to manipulate a variable to hold a specific value. This problem can be

solved by brute forcing all of the available orderings, or by creating an ordering.

Only three students decided to create their own ordering. We believe that this is

because students struggle to translate their understanding of a problem to a MATLAB

program. This is a daunting, multi-step process, so it may be easier for students to

brute force orderings instead of developing their own ordering. We believe that explicit

instruction in problem decomposition and problem solving would improve student’s

ability to solve novel problems.
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Compounding this issue, we found that most PChem students do not perceive them-

selves as general-purpose programmers. When asked “How do you feel about your

computing abilities?”, almost all students expressed a lack of confidence in their abil-

ities outside of the PChem context. One student said:

I don’t think I’d be able to take these skills outside of class and use them

elsewhere

Another student responded:

I know how to do explicitly what I’ve learned, and not much else.

Students believe that they have only learned “PChem programming”, and so are

unlikely to use programming to solve problems outside of the context of the PChem

series. This perception is limiting.

3.4.1 Our Theory

Our theory is two pronged: first, the PChem students do not have a robust men-

tal model of programming, and second, they do not have the tools to solve complex

problems with programming. The first prong causes them to struggle and become

frustrated as they write programs, which erodes their confidence and makes program-

ming a tedious task. The second prong causes them to not even know where to

begin when faced with a complicated problem that they can not easily modify an

example to solve. All of this combines to discourage PChem students from applying

programming to novel problems. We believe that a workshop designed specifically for

the PChem students could improve their programming experience and, ideally, help
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them see programming as a powerful tool that they can apply to a diverse array of

problems.

As an example, consider two students, A and B. Student A has an abstract mental

model of programming, much like the one in Figure 3.2. This model shows how lines

of code could be mapped to abstract constructs like “Expressions”, “Operators”, and

“Statements”. Since this model is so abstract, it encompasses much of the MATLAB

syntax with only three constructs. Whenever student A encounters a new line of code,

they can understand it in terms of their mental model, without updating their mental

model. This is shown in Figure 3.2 with the line d = and(b,c). Student B, on the

other hand, has a much more specific mental model, like the one visualized in Figure

3.3. Since each of their “abstract” constructs are more specific, they are not re-used

as easily. Even though they recognize variable assignment and understand and(b,

c) in the context of an if statement, they can’t fully understand d = and(b, c)

with their mental model because they don’t have an appropriate abstract construct

for and(b, c). Compared to student A, student B will frequently encounter lines of

code that do not fit into their mental model. This forces them to update their mental

model to understand the new line, which can be frustrating and difficult.

When student A sees a line of code like if and(a, b) they understand it as an if

statement that contains an and expression as the conditional. Since they know that

an if statement only executes if the conditional evaluates to true, they know that it

will not run unless both a and b are true. When student B sees the same line of code,

they view it as an “if-and” statement. While they arrive at the same conclusion that

it will only run if both a and b are true, it is not a robust mental model. This model

will break down when student B needs to do something more complex, like construct

a more complex conditional such as if and(b, or(c, d)).
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Figure 3.2: Example of an abstract mental model
This model maps lines of code to the abstract constructs used in the line. Since the

model is abstract, new lines of code are easily assimilated without modifying the
mental model. This mental model aligns well with MATLAB.

Figure 3.3: Example of a less abstract mental model
This model maps lines of code to semi-abstract constructs. Since the model is

specific, assimilating new lines of code often involves updating the mental model.
The line d = and(b, c) does not fit entirely into either construct in the mental

model, so a new construct must be created. This mental model does not align well
with MATLAB.
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We believe that most of the PChem students have mental models of programming

that are closer to student B than they are to student A. This makes it more difficult

for the students to comprehend and write programs. In the next chapter, we discuss

the development of a workshop based on these findings to help students choose to

“reach for computing” to solve future problems.
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Chapter 4

CREATING AN INTERVENTION

We were given the opportunity to put our theory into practice by running an 80-

minute workshop with the PChem 3 students. In this chapter, we will cover the design

of the workshop, lessons learned from the implementation, and recommendations

going forward.

4.1 Designing the Workshop

Our goal is to help the PChem students “reach for programming” as a tool to solve

problems that they will encounter in the future. As the students have already learned

a large amount of programming through the PChem curriculum, we do not need to

teach them any new MATLAB constructs. Instead, we can focus the workshop on

teaching them to transfer their existing knowledge. We planned to do this by show-

casing the abstract relationships between constructs that they have already learned

and teaching a “design recipe” to help them approach new problems.

4.1.1 Abstract Programming Fundamentals

The “if-and” and “matrix append” misconceptions discussed in Section 3.3 imply

that the PChem students faced challenges recognizing known constructs (e.g. the

and operator) when they were presented in a different context. As discussed in

Section 3.4.1, we believe that they are struggling because they have not learned how

all of the constructs are connected. We theorize that making these connections will
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Listing 4.1: Expressions used in the workshop

1 12 − 8
2 and ( True , Fa l se )
3 f a l s e
4 sym ( ‘ a ’ )
5 or ( True , Fa l se )
6 17
7 12 > 7

Listing 4.2: Statements used in the workshop

1 % What do y , f , and k e v a l u a t e to ?
2 x = 12 ;
3 y = 8 / 2 ;
4 c = @(a , b) ( aˆ2 + b ˆ 2 ) ˆ 0 . 5 ;
5 h = true ;
6 f = c ( x/y , y ) ;
7 k = and (h , f > 4 . 5 ) ;

improve their mental models, which will allow them to solve problems more robustly.

So, a primary goal of the workshop was to help students transition to a more abstract

mental model.

To facilitate this, we spent the first half of the workshop on the “building blocks” of

programming: statements and expressions. We introduced statements as “anything

that causes something to happen in a program”, and expressions as “anything that

has a value”. Intermittently throughout the presentation, we had the students work

on short problem sets in small groups. These problem sets can be found in Listings

4.1 and 4.2. The problem sets were designed to showcase everything that had been

covered in the previous few slides in order to solidify students’ knowledge and help

them identify areas of confusion.
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4.1.2 Design Recipe

Although being able to write code is a necessary condition for programming a so-

lution to a problem, it is not sufficient. In order for students to be able to utilize

their programming knowledge as the tool that it is, they must know how to break a

problem down into programmable chunks. In software engineering, this is referred to

as problem decomposition, and students are often taught the design recipe [7]. We felt

that the full design recipe, while helpful for software engineering, was not a good fit

for the PChem students. To this end, we developed a simplified design recipe (Figure

4.1) that is more appropriate for the style of problem that the PChem students face.

We introduced our design recipe in the context of an example problem. The example

problem was:

Given a list of grades and an average class grade to meet, create a program

that calculates the average excluding the highest N grades and lowest N

grades from the calculation and returns whether curving is required or not.

Curving is required if the calculated average is below a given minimum

required average.

We designed the example problem to be simple enough to compute examples by

hand, while being complicated enough to be an authentic vessel for the design recipe.

One way to apply our design recipe to this problem can be seen in Figure 4.2, which

shows Step 1, and Figure 4.3, which illustrates Step 3. After Step 3, we would convert

each “sub-problem black box” to pseudo-code, and then convert the pseudo-code to

MATLAB.

43



A Simplified Design Recipe

1. Understand the goal(s) & data What are you trying to ac-
complish? What is the data that you are given to accomplish
this? Think of your program as an opaque “black box” that
takes inputs and produces outputs. If you had a magic box
that could solve your problem, what would you input? What
would be output?

2. Do an Example Solve a simple example by hand. As you go
through this process, think about what steps you are taking. If
an example is not appropriate for your problem, you can substi-
tute another activity that requires you to engage thoughtfully
with the problem.

3. Identify sub-goals & create plans What needs to happen to
move from the input data to the output solution? What are
the steps that you identified as you worked through an ex-
ample? What do they each take as input and produce as
output? Break your original “black box” into a pipeline of
smaller “black boxes” that feed into each other to solve the
original problem.

4. Write & check pseudo-code Fill out each of your small
“black boxes” with pseudo-code that converts the input into
the output. Then, check the psuedo-code to make sure that it
is actually solving every sub-problem, and the original prob-
lem. It is tempting to skip this step, but it is much easier to
catch errors at this stage than it is to debug MATLAB code.

5. Translate pseudo-code into MATLAB Convert your
pseudo-code into syntactically correct MATLAB code.

6. Test your solution Run your solution on the input data. Ver-
ify that it works for all conceivable types of input data, not
only the test cases that you have. To accomplish this, you
may have to fabricate “tricky” input data.

Figure 4.1: A modified design recipe

After the example problem, we gave the class a more complicated problem to solve in

small groups. We wanted our problem to be simple enough to solve in 20 minutes, but

complex enough to show the benefit of the design recipe. An ideal problem would:
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Figure 4.2: An example “black box” diagram
This diagram corresponds to Step 1 of our design recipe, Figure 4.1

Figure 4.3: An example of sub-problems in a “black box” diagram
This diagram corresponds to Step 3 of our design recipe, Figure 4.1. In more

complicated problems, it may be necessary to further decompose each “sub-problem
black box” into a series of sub-sub-problem black boxes. This process can continue
until the black boxes are small enough to easily be translated into pseudo-code.

1. Have nuances that could be missed without going through an example

2. Be difficult or impossible to solve without decomposing into smaller problems

3. Be easy to verify that each sub-problem is working correctly

We decided that loading and filtering a data set before fitting a curve and interpolating

a value would satisfy these criteria. To make the problem more authentic for the

PChem students, we worked with Dr. McDonald, a Chemistry professor, to find a

suitable data set. Dr. McDonald gave us Morse potential data and an equation that

it should fit. We modelled bad sensor readings by inserting ‘-1’ values randomly in

the data.
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We felt that students would be more likely to follow the design recipe steps if they

were scaffolded, so we created a design recipe worksheet. The worksheet includes

an empty “black box” model for students to fill out, as in Figures 4.2 and 4.3. It

also includes a section for students to translate their “sub-problem black boxes” into

pseudo-code. To drive home the point that students should not begin coding until

they have theoretically solved the problem, we asked that they run through the entire

worksheet before writing any MATLAB code.

4.2 Running the Workshop

Student engagement during the workshop was excellent. Students were keen to vol-

unteer answers, energetic in their group work, and asked insightful questions. We ran

the workshop during Week 9, the second to last week of instruction in the quarter.

Our workshop was prefaced with a reminder from Dr. McDonald that the MATLAB

portion of the final exam is rapidly approaching. It is possible that this contributed

to the high level of student engagement.

The abstract programming fundamentals section went smoothly. Students quickly

grasped the concepts of expressions, statements, and operators. They had no trouble

evaluating the first set of expressions, seen in Listing 4.1. We then moved on to

variables, which they were already familiar with. Despite this, they remained engaged

throughout the variables section. The next exercise asked them to trace a more

complicated program and report the values of the variables at the end, seen in Listing

4.2. This problem includes an and outside of an if statement in line 7. While many

students struggled to recognize the and outside of an if during the interviews, plenty

of students were able to correctly evaluate the program during the workshop, even

though we did not explicitly call out the “if-and” misconception. I believe that the

46



fundamentals portion of the workshop pushed students to expand and abstract their

mental models to the point where something previously intractable became trivial.

In the design recipe portion of the workshop, we guided students through the example

problem as a whole class on the whiteboard. To maintain engagement, we solved the

problem interactively with the class. For example, when we reached step 3 of our

design recipe (Figure 4.3), we asked the class to come up with sub-problems. The

class quickly arrived at a set of correct sub-problems, which we used for the remainder

of the example. In this way, we were able to work with the class to solve a problem,

rather than simply lecturing to them. We feel that this helped the students better

internalize the steps of the design recipe.

The final portion of the workshop was dedicated to applying the skills previously

covered to a more complex problem. We ended up with around 20 minutes to spend on

the problem. The workshop instructors floated around the room answering questions

and checking in with the students as they worked. While most students embraced the

design recipe and filled out the worksheet before coding, some students still attempted

to problem solve directly in MATLAB. These students tended to ask questions that

they would have answered themselves, had they stuck to the design recipe. Rather

than giving the answers away, we asked them to go back to the design recipe. They

usually quickly realized that they had misinterpreted or not fully understood part of

the problem. They were then able to course correct and continue solving the problem.

It took around 15 minutes for most students to finish the design recipe worksheet,

leaving only 5 minutes for them to implement their solutions. This time pressure was

not ideal, as many students got stuck on filtering the data. This was an unanticipated

stumbling block. We quickly ran through one pattern to filter the data in front of

the class. This was a small missed opportunity; had we anticipated this difficulty, we

could have made a point of showing students how to search through documentation
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or online resources to find answers for themselves. While this would have been nice,

it was not a goal of the workshop.

Several students came up to us after the workshop and expressed gratitude. Anecdo-

tally, the general consensus was that the workshop was helpful, but could have been

even more impactful if it came earlier in the PChem curriculum. Still, I believe that

the workshop may help some students “reach for computing” in the future.

4.3 Lessons Learned

While the workshop was successful, several things could have been improved. In this

section, we discuss lessons learned from the first running of the workshop.

An 80-minute workshop was an excellent first step, but more time would have been

beneficial. The workshop could have been more effective as two 80-minute workshops,

or one 3-hour workshop. This extra time would have allowed us to make sure that

every student understands the material. For example, we could have given students

more time on the final problem, or answered any lingering questions. We could

also have spent more time on the fundamentals, challenging students to explain the

“matrix append” operation discussed in Section 3.3. We did not want to bring this up

without sufficient time to fully explain it, lest we risk introducing more misconceptions

than we address. While there will never be enough time to cover everything in a

workshop, a longer workshop would have allowed us to cover material in more detail.

The workshop could have been more effective in a different class. Students in PChem

1 and PChem 2 are in the midst of learning MATLAB. Holding the workshop during

one of those courses could have made learning new constructs easier for the students.

This could have a compounding effect on student motivation and enjoyment of pro-
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gramming, which could lead to improved student outcomes. Additionally, several

students told us that they would have loved to have a workshop like this during

PChem 1 or 2.
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Chapter 5

FUTURE WORK & CONCLUSION

5.1 Future Work

Future work in this area could focus on confirming and extending the results that

we have found. In particular, the effectiveness of the workshop should be rigorously

evaluated and the interview results should be confirmed with the general PChem

population.

In order to properly carry out future work, one would need a concept inventory that

is valid for the PChem students. A modified version of the MCS1 could work, but it

would need to be shown to be valid for the concepts being tested. Once this is done,

the assessment could be deployed to confirm the interview results and evaluate the

workshop.

Our theory could be more thoroughly tested by deploying an appropriate assessment

to all PChem students. The interview results were key to constructing our theory,

but the sample size was small. One could then use students’ performance on the

assessment to confirm or reject the theory that we developed from interviews.

Evaluating the workshop is important to show that it is actually helping students.

This can be done with a pre- and post- test of the new concept inventory. Additionally,

it would be worthwhile to hold the workshop in an earlier PChem class to determine

where it will be most effective. This can be done by looking at learning outcomes

among the PChem students longitudinally.
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Additionally, it is possible that a workshop is not the best format for instruction.

A workshop is a one-time intervention, but the abstract programming ideas should

be covered every time a new programming construct is introduced. With explicit

instruction on how new constructs fit into the existing “map” of programming, in-

structors can encourage students to develop a particular mental model. This addi-

tional guidance could be helpful to students, particularly those who are struggling.

The “Abstract Thinking” section of Figure 3.2 shows how one of the existing PChem

MATLAB worksheets could be modified to refer back to abstract concepts while in-

troducing new constructs.

Ⓒ	2015	Cal	Poly	Department	of	Chemistry	and	Biochemistry	

Symbolic Math in MATLAB 

Introduction 
Although	MATLAB	Lab	is	designed	to	do	numerical	calculations,	it	is	capable	of	
doing	symbolic	math.		Using	symbolic	math	in	MATLAB	is	fairly	straightforward	and	
quite	powerful.			Let’s	begin	our	introduction	with	just	six	commands:	clc,	clear all,	
diff,	syms,		subs,	and	double.	
	
clc	 	 	 	 	 Clears	screen	
clear all	 	 	 	 Clears	variable	values	
syms	 	 	 	 	 Tells	MatLab	that	these	are	symbolic	variables	
diff	 	 	 	 	 Takes	partial	derivative	
subs	 	 	 	 	 Evaluates	a	symbolic	expression		
double		 	 	 	 Converts	to	a	decimal	approximation	
	

Example 
Here	is	a	simple	example	in	which	we	define	a	function,	take	a	partial	derivative	of	
the	function,	and	then	evaluate	the	derivative	at	a	specific	value	of	x	and	y.	
	
>> syms g x y f h 
>> f=log(x)+x^2/(x+y) 
>> g=diff(f,x) 
>> h=subs(g,{x,y},{3,4}) 
>> double(h) 
 
ans = 
    1.0068 

Abstract Thinking 
syms	x	creates	a	variable	named	‘x’	that	has	the	symbolic	value	‘x’.	The	same	thing	
could	be	accomplished	explicitly	with	x	=	sym(‘x’).	Symbolic	values	are	exact	
representations.	
	
Recall	that	variables	are	named	containers	that	hold	values.	The	value	inside	a	
variable	can	be	accessed	using	the	variable’s	name.	This	is	an	expression.	So,	if	x	is	a	
variable,	we	can	access	the	value	of	x	using	the	expression:	
	 	

Ⓒ	2015	Cal	Poly	Department	of	Chemistry	and	Biochemistry	

	
>>	syms	x	
>>	x	
x	=	
		
			x	
	
Recall	that	expressions	can	be	classified	based	on	the	type	of	value	that	they	
evaluate	to.	Expressions	that	evaluate	to	a	symbolic	value	are	symbolic	expressions.	
Symbolic	expressions	can	be	composed	by	combining	other	symbolic	expressions	
using	normal	arithmetic	operators.	
	
Consider script below. 
>> x = sym(‘x’) 
>> y = sym(1/3) 
>> f = x + y 
f = 
 
    x + 1/3 
 
f contains the symbolic expression `x + 1/3`. If instead we had written: 
>> x = 5 
>> y = 7 
>> f = x + y 
f = 
 
    12 
 
f would contain the non-symbolic value `12`.  The same arithmetic operator (+) was 
used. All arithmetic operators work for both symbolic and non-symbolic arithmetic 
values.	

Practice 
	

1. Derive	an	expression	for	!!"
!#$
"
%
	for	a	van	der	Waals	fluid.		Check	your	

expression	using	MATLAB.	
	

2. Derive	an	expression	for	!!"
!%
"
#$
	for	a	van	der	Waals	fluid.		Check	your	

expression	using	MATLAB.	

Figure 5.1: A modified PChem MATLAB worksheet
We added the “Abstract Thinking” section to this worksheet as an example of how
the existing PChem worksheets could be modified to encourage students to form an

abstract mental model of programming.

Finally, the methodology covered in this thesis could be applied to other domain-

specific programming courses. We have shown one way to create a data-driven inter-

vention to improve student learning outcomes. Domain-specific programming courses

already have numerous benefits. Enhancing them with our methodology could pro-

vide more opportunity for students.
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5.2 Conclusion

In this thesis, we have presented a methodology for evaluating and improving domain-

specific programming courses. We started by assessing students with a concept in-

ventory and an attitudes survey. We found that the concept inventory was not ap-

propriate for our student group, so we transformed it into an interview format to give

richer data. From this data, we developed a theory: students do not have an abstract

mental model of programming and do not feel confident applying their programming

knowledge to novel problems. To address this, we created a workshop with the goal

of improving students’ mental models and providing them with the skills that they

need to approach complicated problems. While we did not have time to rigorously

evaluate the workshop, we anecdotally found it to be effective. The results from

this case study are encouraging. Our methodology could be applied to other domain-

specific programming courses to address student challenges and provide students with

additional opportunities in computing.
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