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ABSTRACT

On The Numerical Range of Compact Operators

Montserrat Dabkowski

One of the many characterizations of compact operators is as linear operators which

can be closely approximated by bounded finite rank operators (theorem 25). It is

well known that the numerical range of a bounded operator on a finite dimensional

Hilbert space is closed (theorem 54). In this thesis we explore how close to being

closed the numerical range of a compact operator is (theorem 56). We also describe

how limited the difference between the closure and the numerical range of a compact

operator can be (theorem 58). To aid in our exploration of the numerical range of

a compact operator we spend some time examining its spectra, as the spectrum of a

bounded operator is closely tied to its numerical range (theorem 45). Throughout,

we use the forward shift operator and the diagonal operator (example 1) to illustrate

the exceptional behavior of compact operators.
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Chapter 1

BACKGROUND

We begin with some definitions and useful results we wish to remind the reader of.

We will omit the proofs, which can be found in the provided references.

Axiom 1 (Axiom of Completeness). Every nonempty set of real numbers that is

bounded has a supremum and an infimum.

Theorem 1 (Archimedean Property. [1], Theorem 1.4.2).

1. If x ∈ R, then there exists some n ∈ N such that n > x

2. If y ∈ R is such that y > 0, then there exists some n ∈ N such that 1
n
< y

Theorem 2 (Cayley-Hamilton Theorem. [3], Theorem 8.37). Let V be a complex

vector space and T ∈ L(V ). If p is the characteristic polynomial of T , then p(T ) = 0.

Theorem 3 ([2], Theorem 6.11). If V , W are metric spaces and T : V −→ W is a

function, then the following are equivalent:

1. T is continuous

2. lim
n→∞

fn = f in V implies lim
n→∞

T (fn) = Tf in W

3. T−1(G) is an open subset of V for every open set G ⊆ W
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4. T−1(F ) is a closed subset of V for every closed set F ⊆ W

Theorem 4 (Cauchy-Schwarz Inequality. [2], Theorem 8.11). Let V be an inner

product space and f, g ∈ V . Then, |⟨f, g⟩| ≤ ∥f∥ ∥g∥. Equality holds if and only if

f, g are scalar multiples of one another.

Def: A Banach space is a complete normed vector space.

Theorem 5 (Open Mapping Theorem. [4], Theorem 12.1). If V , W are Banach

spaces, G is open in V , and T : V −→ W is continuous and onto, then T (G) is open

in W .

Def: Let V , W be normed vector spaces and T ∈ L(V,W ). The norm of T , denoted

∥T∥, is defined by ∥T∥ = sup{∥Tf∥ : f ∈ V and ∥f∥ = 1}. We say that T is

bounded if ∥T∥ < ∞. We use B(V,W ) to denote the set of bounded linear maps

from V to W .

Theorem 6 ([2], Theorem 6.48). Let V , W be normed vector spaces and

T ∈ L(V,W ). Then, T is continuous if and only if T is bounded.

Def: A Hilbert space, H, is an inner product space, such that under the norm

induced by the inner product H is a Banach space.

Theorem 7 ([2], Theorem 6.16). Let H be a complete metric space. If U is a closed

subspace of H, then U is complete.
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Note. A subspace of a Hilbert space is not necessarily Hilbert. However, since Hilbert

spaces are complete metric spaces, theorem 7 tells us that a closed subspace of a Hilbert

space is Hilbert.

Def: Let V be an inner product space and U ⊆ V . The orthogonal complement

of U , denoted U⊥, is the set U⊥ = {v ∈ V : ⟨u, v⟩ for all u ∈ U}.

Theorem 8 ([2], Theorem 8.40a). Let V be an inner product space and U ⊆ V , then

U⊥ is a subspace of V .

Note. We will be using the notation U to denote the closure of U .

Theorem 9 ([2], Theorem 8.42). Let H be a Hilbert space and U be a subspace of H.

Then, U = H if and only if U⊥ = {0}.

Def: Let H be a Hilbert space and {hn : n ∈ N} ⊆ H. We say {hn : n ∈ N} is a basis

for H, if for each h ∈ H there exist hn1 , . . . , hnk
∈ {hn : n ∈ N} and α1, . . . , αk ∈ C,

such that h = α1hn1 + · · ·+ αkhnk
.

Def: Let H be a Hilbert space and let

S = {hn : n ∈ N, ⟨hn, hm⟩ = 0 if n ̸= m and ⟨hn, hm⟩ = 1 otherwise} ⊆ H

We say S is an orthonormal basis for H, if for each h ∈ H there exist αn ∈ C such

that h =
∞∑
n=1

αnhn.

Theorem 10 (Tychonoff-Alaoglu Theorem. [8], Problem 17). Let H be a Hilbert

space and B be the unit ball in H. Then, B is weakly compact.
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Theorem 11 (Heine-Borel Theorem. [13], Theorem 241). Let K ⊆ Rn. Then, K is

compact if and only if K is closed and bounded.

Def: Let V,W be inner product spaces and T ∈ L(V,W ). The adjoint of T is the

function T ∗ ∈ L(W,V ) defined by ⟨Tf, g⟩ = ⟨f, T ∗g⟩ for every f ∈ V and every

g ∈ W . We say T is self-adjoint if T ∗ = T . We say T is normal if T ∗T = TT ∗.

Theorem 12 ([2], Theorem 10.11). Let V , W be Hilbert spaces and T ∈ B(V,W ).

Then, T ∗ ∈ B(W,V ), (T ∗)∗ = T , and ∥T ∗∥ = ∥T∥.

Theorem 13 ([2], Theorem 10.12). If V , W , and U are Hilbert spaces, then:

1. (S + T )∗ = S∗ + T ∗ for all S, T ∈ B(V,W )

2. (αT )∗ = αT ∗ for all α ∈ F and all T ∈ B(V,W )

3. I∗ = I

4. (S ◦ T )∗ = T ∗ ◦ S∗ for all T ∈ B(V,W ) and all S ∈ B(W,U)

Theorem 14 ([2], Theorem 10.13). If V , W are Hilbert spaces and T ∈ B(V,W ),

then:

1. null T ∗ = (range T )⊥

2. range T ∗ = (null T )⊥

3. null T = (range T ∗)⊥

4. range T = (null T ∗)⊥
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Theorem 15 ([2], Theorem 10.14). Let V , W be Hilbert spaces and T ∈ B(V,W ).

Then, T has dense range if and only if T ∗ is one-to-one.

Theorem 16 ([2], Theorem 10.19). Let H be a Hilbert space. T ∈ B(H) is invertible

if and only if T ∗ is invertible. Futhermore, if T is invertible, then (T ∗)−1 = (T−1)∗.

Theorem 17 ([2], Theorem 10.22). Let V be a Banach space. If T ∈ B(V ) and

∥T∥ < 1, then I − T is invertible and (I − T )−1 =
∞∑
n=0

T n.

Theorem 18 ([2], Theorem 10.25). Let V be a Banach space. Then,

{T ∈ B(V ) : T is invertible} is an open subset of B(V ).

Theorem 19 ([2], Theorem 10.38). Let H be a nonzero complex Hilbert space and

T ∈ B(H). Then, {α ∈ C : T − αI is not invertible} is a nonempty subset of C.

Theorem 20 ([2], Theorem 10.54). Let H be a complex Hilbert space and T ∈ B(H).

Then,

1. There exist unique self-adjoint operators A =
T ∗ + T

2
and B =

i(T ∗ − T )

2
, such

that T = A+ iB

2. T is normal if and only if AB = BA

Theorem 21 ([2], Theorem 10.57). Let H be a Hilbert space and T ∈ B(H) be

normal. If α, β are distinct eigenvalues of T , then the corresponding eigenvectors are

orthogonal.

5



Chapter 2

COMPACT OPERATORS

In this chapter we introduce compact operators. We include just enough proofs so

that someone wanting to read about numerical ranges of compact operators (typically

not included in most standard introductions to compact operators) can obtain enough

background on compact operators to follow the later work with their numerical ranges.

Def: An operator T defined on a Hilbert space H is said to be compact if for every

bounded sequence (fn) in H, the sequence (Tfn) has a convergent subsequence. We

use C(H) to denote the set of all compact operators on H.

Theorem 22 ([2], Theorem 10.67). Let H be a Hilbert space and T ∈ B(H). If

range T is finite, then T ∈ C(H).

The following proof is adapted from the proof given in [2].

Proof. Assume H is a Hilbert space, T ∈ B(H), and dim(range T ) < ∞. Since

range T is finite dimensional, there exists a finite basis for range T . Applying

the Gram-Schmidt procedure, we obtain a finite orthonormal basis {e1, . . . , em} for

range T . Let (fn) be a bounded sequence in H. Since {e1, . . . , em} is an orthonormal

basis for range T , for each n ∈ N, we can write Tfn = ⟨Tfn, e1⟩e1+ · · ·+ ⟨Tfn, em⟩em.

For each n ∈ N and each j ∈ {1, . . . ,m},

|⟨Tfn, ej⟩| ≤ ∥Tfn∥ ∥ej∥ (2.1)
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= ∥Tfn∥ (2.2)

≤ ∥T∥ ∥fn∥

≤ ∥T∥ sup{∥fn∥ : n ∈ N}

Line (2.1) follows from the Cauchy-Schwarz inequality. Line (2.2) follows from the ej’s

being of unit length. Thus, we have shown that for each j ∈ {1, . . . ,m}, (⟨Tfn, ej⟩) is a

bounded sequence in C. Thus, by the complex version of the Bolzano-Weierstrass the-

orem, for each j ∈ {1, . . . ,m}, there exists some convergent subsequence (⟨Tfnk
, ej⟩).

Thus, by taking subsequences of subsequences, we can find a subsequence (Tfnl
)

such that lim
l→∞

⟨Tfnl
, ej⟩ = αj ∈ C for every j ∈ {1, . . . ,m}. Therefore, by the alge-

braic limit theorem, lim
l→∞

Tfnl
= α1e1 + · · · + αmem ∈ H. Thus, we have shown that

T ∈ C(H), as desired.

The following is a prototypical compact operator and will be used as a basic example

in the following sections.

Example 1. Let (bn) be a sequence in F such that lim
n→∞

bn = 0. Define T ∈ B(ℓ2) by

T (a1, a2, . . .) = (a1b1, a2b2, . . .). T is compact.

Proof. For each n ∈ N, define Tn ∈ B(ℓ2) by

Tn(a1, a2, . . .) = (a1b1, . . . , anbn, 0, . . .)

(i.e. Tn is the same as T for the first n entries, and has 0’s in all the other entries).

For a fixed n ∈ N, elements of range Tn have the form

(a1b1, . . . , anbn, 0, . . .) = a1b1(1, 0, . . .)+a2b2(0, 1, 0, . . .)+ · · ·+anbn(0, . . . , 0, 1, 0, . . .).
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Thus, for a fixed n ∈ N, each element of range Tn can be written as a linear combina-

tion of n elements. Since the standard basis vectors are clearly linearly independent,

{(0, . . . , 0, 1, 0, . . .)i : i ∈ {1, . . . , n} and bi ̸= 0} is a basis for range Tn. Therefore,

dim(range Tn)< ∞. Since bounded operators with finite range are compact (this is

theorem 22), it follows that Tn is compact for each n ∈ N.

Next, we show that lim
n→∞

Tn = T . This is equivalent to showing lim
n→∞

||Tn − T || = 0.

Let ϵ > 0. By definition,

||T − Tn|| = sup{||(T − Tn)(an)|| : (an) ∈ ℓ2, ||(an)|| = 1}

So, it suffices to show ||(T − Tn)(an)|| < ϵ for an arbitrary (an) ∈ ℓ2 with ||(an)|| = 1.

Since ||(an)|| = 1, we have that
√ ∞∑

n=0

|an|2 = 1, and so
∞∑
n=0

|an|2 = 1. Hence, because

ϵ2 > 0, there exists N1 ∈ N, such that whenever n1 ≥ N1,
∞∑

i=n1

|ai|2 < ϵ2. Since

lim
n→∞

bn = 0, and 1 > 0, there exists some N2 ∈ N, such that whenever n2 ≥ N2,

|bn| < 1. Let N = max{N1, N2}.

By definition,

||(T − Tn)(an)|| = ||(0, . . . , 0, an+1bn+1, an+2bn+2, . . .)||

=

√√√√ ∞∑
i=n+1

|aibi|2

Thus, ||(T − Tn)(an)||2 =
∞∑

i=n+1

|aibi|2.
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So, letting n ≥ N , we have that

||(T − Tn)(an)||2 =
∞∑

i=n+1

|aibi|2

=
∞∑

i=n+1

(|ai||bi|)2

=
∞∑

i=n+1

|ai|2|bi|2

<
∞∑

i=n+1

|ai|2 · 1 (2.3)

=
∞∑

i=n+1

|ai|2

< ε2 (2.4)

Line (2.3) follows from |bi|2 < 1, because i ≥ n + 1 ≥ N + 1 ≥ N2 + 1 > N2. Line

(2.4) follows from
∞∑

i=n+1

|ai|2 < ϵ2, because i ≥ n+ 1 ≥ N + 1 ≥ N1 + 1 > N1.

Since norms are always non-negative and ε > 0, we can take the square root of both

sides of the above inequality (without worrying about it changing directions), to find

||(T − Tn)(an)|| < ε whenever n ≥ N . Thus, by the definition of supremum,

||T − Tn|| < ε, whenever n ≥ N . Thus, lim
n→∞

||Tn − T || = 0, and so lim
n→∞

Tn = T .

What we have shown is that (Tn) has a limit point T . Since C(ℓ2) is a closed subset

of B(ℓ2) and (Tn) is a sequence in C(ℓ2), it follows that T ∈ C(ℓ2).

Theorem 23 ([2], Theorem 10.68). Let H be a Hilbert space. If T ∈ C(H), then

T ∈ B(H).
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The following proof is adapted from the proof given in [2].

Proof. Assume H is a Hilbert space and T ∈ H. Seeking a contradiction, assume

that T is not bounded. Then, there exists some bounded sequence (fn) in H, such

that lim
n→∞

∥Tfn∥ = ∞. Since T is compact, there exists some convergent subsequence

(Tfnk
) converging to some y ∈ H. Since H is a Hilbert space, it follows that

∥y∥ < ∞. If we consider only (∥Tfnk
∥) and (∥Tfn∥), we cannot have one converging

to something with finite norm and the other not. Thus, no subsequence of (Tfn) can

converge, contradicting that T ∈ C(H). Therefore, we must conclude that T ∈ B(H),

as desired.

Note. It seems intuitive that C(H) is a subspace of B(H). This is true and can be

easily checked, so we omit its proof. More is true, and is summarized in theorem 24.

Theorem 24 ([2], Theorem 10.69a). If H is a Hilbert space, then C(H) is a closed

subspace of B(H).

The proof of theorem 24 is omitted and can be found in Axler’s book ([2]).

Note. Compact operators are considered nice because they behave similarly to finite

rank operators. This is summarized in the following theorem.

Theorem 25. Let H be an infinite dimensional Hilbert space and T ∈ B(H).

T ∈ C(H) if and only if T is the limit of a sequence of operators in B(H) with finite

dimensional range.

10



Lemma 26. Let H be a Hilbert space and T ∈ C(H). Let {en : n ∈ N} be an orthonor-

mal basis for range T and Pn be the orthogonal projection of H onto span{e1, . . . , en}.

Then, lim
n→∞

∥PnT − T∥ = 0.

Proof of lemma 26. Let H be a Hilbert space and T ∈ C(H). Also, let {en : n ∈ N}

be an orthonormal basis for range T and Pn be the orthogonal projection of H onto

span{e1, . . . , en}. Seeking a contradiction, suppose lim
n→∞

∥PnT − T∥ ≠ 0. Then, there

exists some δ > 0 and a sequence (nj) in N, such that
∥∥Pnj

T − T
∥∥ ≥ δ. For ease of

notation, we will refer to the sequence (Pnj
) as simply (Pn). We claim that there ex-

ists some sequence (xn) in H with ∥xn∥ = 1 such that ∥(PnT − T )xn∥ ≥ δ

2
. To prove

this claim, we suppose not. Then, for every x ∈ H with ∥x∥ = 1, ∥(PnT − T )x∥ <
δ

2
.

This implies that δ
2

is an upper bound on {∥(PnT − T )x∥ : x ∈ H with ∥x∥ = 1}.

Since ∥PnT − T∥ = sup{∥(PnT − T )x∥ : x ∈ H with ∥x∥ = 1}, it follows by the

definition of supremum that ∥PnT − T∥ ≤ δ

2
. This contradicts that ∥PnT − T∥ ≥ δ.

Thus, we must conclude that there exists some sequence (xn) contained in H with

∥xn∥ = 1, such that ∥(PnT − T )xn∥ ≥ δ

2
as previously claimed.

Since T ∈ C(H) and (xn) is bounded, (Txn) must have some convergent subsequence.

Let (Txnk
) denote this convergent subsequence, and let y ∈ H be the element it

converges to. Let ε > 0. Then, there exists some K1 ∈ N such that whenever k ≥ K1,

∥Txnk
− y∥ <

ε

4
.

Since (Txnk
) −→ y, we know y ∈ range T . Thus, there exist some αi ∈ C, such

that y =
∞∑
i=1

αiei. That is, there exists some N ∈ N, such that whenever n ≥ N ,

11



∥∥∥∥ n∑
i=1

αiei − y

∥∥∥∥ < ε. Note that for n ≥ N ,

∥Pn(y)− y∥ =

∥∥∥∥∥Pn

(
∞∑
i=1

αiei

)
− y

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
i=1

αiPn(ei)− y

∥∥∥∥∥ (2.5)

=

∥∥∥∥∥
n∑

i=1

αiei − y

∥∥∥∥∥ (2.6)

< ε (2.7)

Line (2.5) follows from the continuity of Pn, since Pn ∈ B(H). Line (2.6) follows from

the definition of Pn. Line (2.7) follows from the fact that n ≥ N . Thus, we have

shown that lim
n→∞

Pny = y. Therefore, the subsequence (Pnk
y) must also converge to

y. Thus, there exists some K2 ∈ N such that whenever k ≥ K2, ∥Pnk
y − y∥ < ε

2
.

Let K = max{K1, K2}. Suppose k ≥ K. Now,

∥(Pnk
T − T )xnk

∥ = ∥(Pnk
− I)Txnk

∥

= ∥(Pnk
− I)Txnk

+ (Pnk
− I)y − (Pnk

− I)y∥

= ∥(Pnk
− I)(Txnk

− y) + (Pnk
− I)y∥

≤ ∥(Pnk
− I)(Txnk

− y)∥+ ∥(Pnk
− I)y∥ (2.8)

≤ ∥(Pnk
− I)∥ ∥(Txnk

− y)∥+ ∥(Pnk
− I)y∥

≤ (∥Pnk
∥+ ∥I∥) ∥(Txnk

− y)∥+ ∥(Pnk
− I)y∥

= 2 ∥(Txnk
− y)∥+ ∥(Pnk

− I)y∥ (2.9)

< 2
(ε
4

)
+ ∥Pnk

y − y∥ (2.10)

<
ε

2
+

ε

2
(2.11)

12



= ε

Line (2.8) follows from the triangle inequality. Line (2.9) follows from the fact that

orthogonal projection operators have norm 1. Line (2.10) follows from the fact that

k ≥ K ≥ K1. Line (2.11) follows from the fact that k ≥ K ≥ K2. Thus, we have

shown that ∥(Pnk
T − T )xnk

∥ < ε. This contradicts that ∥(PnT − T )xn∥ ≥ δ

2
for

every n ∈ N, since we have just shown we can make a subsequence arbitrarily small.

Thus, we must conclude that lim
n→∞

∥PnT − T∥ = 0.

Proof of theorem 25. (=⇒) Suppose T ∈ C(H). Since H is a Hilbert space and

range T is closed, it follows by theorem 7 that range T is a Hilbert space. Thus,

there exists an orthonormal basis for range T , which we will denote {en : n ∈ N}.

Let Pn denote the orthogonal projection of H onto span{e1, . . . , en}. By lemma 26,

we know lim
n→∞

PnT = T . Since T ∈ C(H), by theorem 23 T ∈ B(H). And since

Pn ∈ B(H) for each n ∈ N, it follows that PnT ∈ B(H) for each n ∈ N. Also note

that dim(range PnT ) ≤ dim(span{e1, . . . , en}) = n. So, PnT has finite dimensional

range for each n ∈ N. Thus, by lemma 26 we have shown that T is the limit of a

sequence of operators in B(H) with finite dimensional range.

(⇐=) Assume T ∈ B(H) is such that lim
n→∞

Tn = T , where Tn ∈ B(H) and

dim(range Tn) < ∞ for each n ∈ N. Then, by theorem 22, Tn ∈ C(H) for each n ∈ N.

Since C(H) is closed (this is theorem 24), it follows that T ∈ C(H).

Therefore, T ∈ C(H) if and only if it is the limit of a sequence of operators in B(H)

with finite dimensional range.

13



Theorem 27 ([2], Theorem 10.69b). Let H be a Hilbert space. If T ∈ C(H) and

S ∈ B(H), then ST, TS ∈ C(H).

The following proof is adapted from the proof given in [2].

Proof. Let H be a Hilbert space. Assume T ∈ C(H) and S ∈ B(H). Let (fn) be

some bounded sequence in H. Since T ∈ C(H), there exists some convergent sub-

sequence (Tfnk
) of (Tfn). Let us call the element (Tfnk

) converges to y. Then,

lim
k→∞

Tfnk
= y. Since S is a bounded linear operator, it is continuous. Thus,

lim
k→∞

S(Tfnk
) = S( lim

k→∞
Tfnk

) = Sy. Thus, we have shown that (STfn) has a conver-

gent subsequence (STfnk
). Thus, by definition we have ST ∈ C(H).

Now, we turn to showing that TS is compact. Since (fn) is bounded there exists

some M > 0 such that ∥fn∥ ≤ M for every n ∈ N. Since S ∈ B(H), ∥S∥ < ∞. Now,

∥Sfn∥ ≤ ∥S∥ ∥fn∥

< ∥S∥M (2.12)

< ∞ (2.13)

Line (2.12) follows from (fn) being bounded. Line (2.13) follows from S being

bounded. Thus, we have shown that (Sfn) is a bounded sequence. Since T is compact,

(TSfn) must have a convergent subsequence. Thus, TS ∈ C(H).

Theorem 28 ([2], Theorem 10.73). Let H be a Hilbert space. T ∈ C(H) if and only

if T ∗ ∈ C(H).
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The following proof is adapted from the proof given in [2].

Proof. (=⇒) Assume T ∈ C(H). By theorem 23, T ∈ B(H), hence T ∗ ∈ B(H), since

∥T∥ = ∥T ∗∥ (this is theorem 12). Since C(H) is a two-sided ideal, it follows that

TT ∗ ∈ C(H). Let (fn) be a bounded sequence in H. Thus, there exists some

M > 0, such that ∥fn∥ < M for each n ∈ N. Let ε > 0. Since T ∈ C(H),

there exists some convergent subsequence of (TT ∗fn). We will call this subsequence

(TT ∗fnj
). Since (TT ∗fnj

) convergent and H is a Hilbert space, it follows that

(TT ∗fnj
) is Cauchy. Thus, there exists some N ∈ N, such that whenever nj, nk ≥ N ,∥∥TT ∗fnj
− TT ∗fnk

∥∥ <
ε2

2M
. Now,

∥∥T ∗fnj
− T ∗fnk

∥∥2 = ⟨T ∗fnj
− T ∗fnk

, T ∗fnj
− T ∗fnk

⟩

= ⟨T ∗(fnj
− fnk

), T ∗(fnj
− fnk

)⟩

= ⟨fnj
− fnk

, TT ∗(fnj
− fnk

)⟩ (2.14)

≤
∥∥fnj

− fnk

∥∥∥∥TT ∗(fnj
− fnk

)
∥∥ (2.15)

≤ (
∥∥fnj

∥∥+ ∥fnk
∥)
∥∥TT ∗(fnj

− fnk
)
∥∥ (2.16)

< (M +M)
ε2

2M
(2.17)

= ε2

Line (2.14) follows from the definition of the adjoint. Line (2.15) follows from the

Cauchy-Schwarz inequality. Line (2.16) follows from the triangle inequality and the

fact that ∥h∥ = ∥−h∥ for every h ∈ H. Line (2.17) follows from the fact that (fn) is

bounded and that nj, nk ≥ N . Since norms are nonnegative taking the square root

of both sides of the inequality yields
∥∥T ∗fnj

− T ∗fnk

∥∥ < ε. Thus, we have shown

that (T ∗fnj
) is a Cauchy sequence. Therefore, (T ∗fnj

) is a convergent subsequence of

(T ∗fn). Thus, T ∗ is compact.
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(⇐=) Assume T ∗ ∈ C(H). Then, by the forward direction (T ∗)∗ = T is compact.

Therefore, T ∈ C(H) if and only if T ∗ ∈ C(H), as desired.

Theorem 29 ([2], Theorem 10.74). Let H be a Hilbert space. If T ∈ C(H), then

range T contains no infinite-dimensional closed subspaces.

The following proof is adapted from the proof given in [2].

Proof. Assume T ∈ C(H), where H is a Hilbert space. Seeking a contradiction,

suppose U is an infinite-dimensional closed subspace of range T . By theorem 23, T

is bounded. Thus, T is continuous. Hence, T−1(U) is a closed subspace of H by

theorem 3. Since U, T−1(U) ⊆ H are closed, it follows by theorem 7, that U and

T−1(U) are complete subspaces of H. Since H is a Hilbert space, U and T−1(U)

must be inner product spaces. Thus, under the norm induced by the inner product U

and T−1(U) are metric spaces. Since U and T−1(U) are complete metric spaces and

are subspaces of H, it follows that U and T−1(U) are Hilbert spaces in their own right.

Define S = T
∣∣∣
T−1(U)

. S very clearly maps T−1(U) onto U . Thus, by the Open

Mapping Theorem, S will map the open unit ball in T−1(U) to some open subset of

U containing 0. Hence, there exists some r > 0 such that

{g ∈ U : ∥g∥ < r} ⊆ {Tf : f ∈ T−1(U) and ∥f∥ < 1}
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Since U is a Hilbert space and dim(U) = ∞, by applying the Gram-Schmidt procedure

to some linearly independent sequence in U , we obtain an orthonormal sequence (en)

contained in U . Since
r

2
∈ R and en ∈ U for each n ∈ N, it follows that

ren
2

∈ U .

Furthermore,
∥∥∥ren

2

∥∥∥ =
r

2
< r. So,

ren
2

∈ {g ∈ U : ∥g∥ < r} ⊆ {Tf : f ∈ T−1(U) and ∥f∥ < 1}

Thus, for every n ∈ N, there exists fn ∈ T−1(U) with ∥fn∥ < 1 such that Tfn =
ren
2

.

In this way we construct the bounded sequence (fn). Now, we examine the sequence

(Tfn):

∥Tfn − Tfm∥2 =
∥∥∥ren

2
− rem

2

∥∥∥2
=
〈ren

2
− rem

2
,
ren
2

− rem
2

〉
=
〈r
2
(en − em),

r

2
(en − em)

〉
=

r

2

r

2
⟨en − em, en − em⟩

=
r2

4
(⟨en, en⟩ − ⟨en, em⟩ − ⟨em, en⟩+ ⟨em, em⟩)

=
r2

4
(1− 0− 0 + 1) (2.18)

=
r2

2

Line (2.18) follows from the en’s being orthonormal. Since r > 0 and norms are

nonnegative, taking the square root gives ∥Tfn − Tfm∥ =
r√
2

=

√
2r

2
. Since r is

some fixed positive real number, we can never guarantee that ∥Tfn − Tfm∥ < ε for

every ε > 0 for n,m greater than or equal to some appropriate N ∈ N. That is, (Tfn)

is not Cauchy, and more importantly, no subsequence of (Tfn) is Cauchy. Thus, by

the contrapositive, it follows that no subsequence of (Tfn) is convergent. Therefore,

T is not compact, contradicting the assumption that T ∈ C(H). Thus, we must

conclude that range T cannot contain any closed infinite-dimensional subspaces.
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The following theorem is vital to proving the Fredholm Alternative Theorem. We

omit its proof as it can be found in Axler’s book ([2]).

Theorem 30 ([2], Theorem 10.77). Let H be a Hilbert space. If T ∈ C(H), then

range (T − αI) is closed for every α ∈ F\{0}.

Lemma 31 ([2], Lemma 10.83). If T ∈ L(V ) is one-to-one but not onto, then

range T ⊋ range T 2 ⊋ range T 3 ⊋ · · ·

The following proof is adapted from the proof given in [2].

Proof. Assume T ∈ L(V ) is one-to-one but not onto. Let n ∈ N and f ∈ V . Then,

T nf = T n−1(Tf) ∈ range T n−1. Since T nf is a typical element of range T n, it follows

that range T n ⊆ range T n−1 for each n ∈ N. Thus, we have the chain

range T ⊇ range T 2 ⊇ range T 3 ⊇ · · · . So, we need only show that none of these

subsets can be equalities. Since T is not onto, there exists some f ∈ V such that

f ̸∈ range T . For any n ∈ N, T nf ∈ range T n. However, T nf ̸∈ range T n+1. If it

were, then there would exist some g ∈ V such that T nf = T n+1g = T n(Tg). Then,

applying the fact that T is one-to-one n times, we would get f = Tg ∈ range T . This

would be a contradiction, so we must have T nf ̸∈ range T n+1. Thus, we have shown

that for each n ∈ N, there exists some element (namely T nf) that is in range T n

but not in range T n+1. Thus, range T n+1 ⊊ range T n for each n ∈ N. Therefore,

range T ⊋ range T 2 ⊋ range T 3 ⊋ · · · , as desired.
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Theorem 32 (Fredholm Alternative Theorem). Let H be a Hilbert space and T ∈

C(H). Given α ∈ F\{0}, the following are equivalent:

1. T − αI is not invertible

2. α is an eigenvalue of T

3. T − αI is not onto

The following proof is adapted from Axler’s proof of his theorem 10.85, which can be

found in [2].

Proof. Let H be a Hilbert space, T ∈ C(H), and α ∈ F\{0}.

(2 ⇒ 1) Assume α is an eigenvalue of T . Then, Tv = αv for some v ∈ H\{0}.

Therefore, (T − αI)v = 0. So, v ∈ null (T − αI). Thus, T − αI is non-invertible.

(3 ⇒ 1) Assume T − αI is not onto. Then, T − αI cannot be invertible.

(1 ⇒ 2) Assume T − αI is not invertible. Seeking a contradiction, suppose α is not

an eigenvalue of T . Then, (T − αI)v = 0 has no nonzero solutions v ∈ H. Since it is

always true that (T − αI)0 = 0, null (T − αI) = {0}. Thus, we see that T − αI is

one-to-one. Since T − αI is non-invertible, it must follows that T − αI is not onto.

Thus, we can apply lemma 31 to obtain the chain

range (T − αI) ⊋ range (T − αI)2 ⊋ range (T − αI)3 ⊋ · · · . For each n ∈ N,

(T − αI)n = (T + (−αI))n

= T n(−αI)0 + nT n−1(−αI) + · · ·+ nT (−αI)n−1 + T 0(−αI)n (2.19)

= T n − αnT n−1 + · · ·+ (−α)n−1nT + (−α)nI

= T n − αnT n−1 + · · ·+ (−α)n−1nT − (−α)n−1I
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Line (2.19) follows from expansion using the binomial theorem. Since C(H) is a

subspace of B(H) and an ideal in B(H), it follows that

T n − αnT n−1 + · · ·+ (−α)n−1nT ∈ C(H)

For ease, we define S = T n−αnT n−1+ · · ·+(−α)n−1nT . Thus, what we have shown

is (T − αI)n = S − (−α)n−1I for some S ∈ C(H). Since α ̸= 0, (−α)n−1 ̸= 0. Thus,

by theorem 30, we have that range (T − αI)n = range (S − (−α)n−1I) is a closed

subspace of H.

Since range (T − αI)n ⊋ range (T − αI)n+1, there exists some fn ∈ range (T − αI)n

such that fn ̸∈ range (T − αI)n+1. Since 0 is in both range (T − αI)n and

range (T − αI)n+1, it must be that case that fn ̸= 0. Thus, we may assume without

loss of generality that ∥fn∥ = 1 (otherwise, we could just divide by ∥fn∥).

Since range (T − αI)n+1 ⊊ range (T − αI)n, range (T − αI)n+1 is a proper subspace

of range (T − αI)n. So, we can write

range (T − αI)n = range (T − αI)n+1
⊕

(range (T − αI)n+1)⊥

Thus, because fn ∈ range (T − αI)n, we know that fn = hn + gn, where

hn ∈ range (T − αI)n+1 and gn ∈ (range (T − αI)n+1)⊥. Because we have

fn ̸∈ range (T − αI)n+1, it follows gn ̸= 0. If hn = 0, then we automatically have

fn = gn. If hn ̸= 0, we could simply replace fn with gn, since gn ∈ (range (T−αI)n+1)⊥

and gn ∈ range (T − αI)n+1. Therefore, we can assume without loss of generality

that fn ∈ (range (T − αI)n+1)⊥.

So far, we have shown there exists some nonzero

fn ∈ range (T − αI)n ∩ (range (T − αI)n+1)⊥ with ∥fn∥ = 1 for each n ∈ N. In this
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way we construct a sequence (fn). Let n,m ∈ N such that n < m. Then,

Tfn − Tfm = Tfn − αfn + αfn − Tfm + αfm − αfm

= Tfn − αfn − (Tfm − αfm)− αfm + αfn

= (T − αI)fn − (T − αI)fm − αfm + αfn (2.20)

Since fn ∈ range (T − αI)n, we know (T − αI)fn ∈ range (T − αI)n+1. Similarly,

because fm ∈ range (T − αI)m, we know (T − αI)fm ∈ range (T − αI)m+1. Since

m > n, m+ 1 > n+ 1. Thus, we know

range (T − αI) ⊋ · · · ⊋ range (T − αI)n+1 ⊋ · · · ⊋ range (T − αI)m+1 ⊋ · · ·

Hence, (T−αI)fm ∈ range (T−αI)m+1 implies that (T−αI)fm ∈ range (T−αI)n+1.

Since n < m, n ≤ m. Thus, fm ∈ range (T −αI)m ⊆ range (T −αI)n+1. Notice that

in this case the subset can be equal, because it is possible that n+1 = m. Thus, since

range (T −αI)n+1 is a subspace of H, it follows that αfm ∈ range (T −αI)n+1. Thus,

we have shown that each term in line (2.20), except αfn, is in range (T − αI)n+1.

And so, (T − αI)fn − (T − αI)fm − αfm ∈ range (T − αI)n+1.

Since fn ∈ range (T − αI)n ∩ (range (T − αI)n+1)⊥, it follows that

αfn ∈ (range (T − αI)n+1)⊥. Now,

∥Tfn − Tfm∥2 = ⟨Tfn − Tfm, T fn − Tfm⟩

= ⟨(T − αI)fn − (T − αI)fm − αfm + αfn,

(T − αI)fn − (T − αI)fm − αfm + αfn⟩

= ⟨(T − αI)fn − (T − αI)fm − αfm, (T − αI)fn − (T − αI)fm − αfm⟩

+ ⟨(T − αI)fn − (T − αI)fm − αfm, αfn⟩

+ ⟨αfn, (T − αI)fn − (T − αI)fm − αfm⟩+ ⟨αfn, αfn⟩
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= ∥(T − αI)fn − (T − αI)fm − αfm∥2 + 0 + 0 + ∥αfn∥2 (2.21)

≥ ∥αfn∥2

Line (2.21) follows from the fact that (T − αI)fn − (T − αI)fm − αfm is per-

pendicular to αfn. Since norms are always nonnegative, taking the square root

of both sides of the inequality yields ∥Tfn − Tfm∥ ≥ ∥αfn∥. Thus we have that

∥Tfn − Tfm∥ ≥ ∥αfn∥ = |α| ∥fn∥ = |α|.

Since α ̸= 0, |α| > 0. Thus, for ε = |α|, for every N ∈ N, whenever n,m ≥ N ,

∥Tfn − Tfm∥ ≥ |α| = ε. Thus, (Tfn) cannot have any Cauchy subsequences. Conse-

quently, (Tfn) cannot have any convergent subsequences, contradicting the assump-

tion that T ∈ C(H). Therefore, we must conclude that α is an eigenvalue of T .

(1 ⇒ 3) Assume T − αI is not invertible. Thus, by theorem 16,

(T − αI)∗ = T ∗ − αI is not invertible. Since 1 ⇒ 2, it follows α is an eigenvalue of

T ∗. Thus, null (T ∗ − αI) ̸= {0}. Hence, (null (T ∗ − αI)⊥ ⊊ H. By theorem 14,

range (T − αI) = ((null (T − αI)∗)⊥. Since ((null (T − αI)∗)⊥ = (null (T ∗ − αI)⊥,

it follows that range (T − αI) ⊊ H. Hence, range (T − αI) ⊊ H. That is, T − αI is

not onto, as desired.

Therefore, we have shown 1 ⇐⇒ 2 ⇐⇒ 3.

Note. The above is not how we traditionally state the Fredholm Alternative Theorem.

Traditionally it is stated as:
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If T ∈ C(H), where H is a Hilbert space, and α ∈ F\{0}, then exactly one of the

following holds:

1. Tf = αf has no nonzero solution f ∈ H

2. g = Tf − αf has a solution f ∈ H for every g ∈ H

(1) is equivalent to the statement “α is an eigenvalue of T ”. (2) is equivalent to the

statement “T − αI is onto H”.

Lemma 33 is useful in proving the Spectral Theorem for Self-Adjoint Compact Oper-

ators. We omit its proof as it can be found in Axler’s book ([2]).

Lemma 33 ([2], Lemma 10.93). Let H be a Hilbert space, T ∈ C(H), and

σ(T ) = {α : T − αI is not invetible}. Then, for each δ > 0, {α ∈ σ(T ) : |α| ≥ δ} is

a finite set.

The following lemma is useful in proving theorem 35. We omit its proof as it can be

found in Axler’s book ([2]).

Lemma 34 ([2], Lemma 10.96). Let H be a nonzero Hilbert space. If T ∈ C(H), then

T ∗T − ∥T∥2 I is not invertible.

Theorem 35 ([2], Theorem 10.99). Let H be a nonzero Hilbert space. If T ∈ C(H)

is self-adjoint, then either ∥T∥ or −∥T∥ is an eigenvalue of T .

The following proof is adapted from the proof given in [2].
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Proof. Let H be a nonzero Hilbert space. Assume T ∈ C(H) is self-adjoint. Then,

T ∗ = T . So by lemma 34, T 2 − ∥T∥2 I is not invertible. Since

T 2−∥T∥2 I = (T + ∥T∥ I)(T −∥T∥ I), it must follow that T + ∥T∥ I is not invertible

or T −∥T∥ I is not invertible. Therefore, by the Fredholm Alternative Theorem, ∥T∥

is an eigenvalue of T or −∥T∥ is an eigenvalue of T .

Theorem 36 is necessary for proving the Spectral Theorem for Self-Adjoint Compact

Operators. Since the proof can be found in Axler’s book ([2]), we omit it here. Simi-

larly, theorem 37 is necessary for proving the Spectral Theorem for Normal Compact

Operators and we omit its proof for the same reason.

Theorem 36 ([2], Theorem 10.102). If U is an invariant subspace for a self-adjoint

operator T , then:

1. U⊥ is an invariant subspace for T

2. T
∣∣∣
U⊥

is a self-adjoint operator on U⊥

Theorem 37 ([2], Theorem 10.103). Let H be a Hilbert space and T ∈ B(H). If

there exists an orthonormal basis for H consisting of eigenvectors of T , then:

1. If F = R, then T is self-adjoint

2. If F = C, then T is normal

Theorem 38 (Spectral Theorem for Self-Adjoint Compact Operators). Let H be a

Hilbert space. If T ∈ C(H) is self-adjoint, then:

24



1. There is an orthonormal basis for H consisting of eigenvectors of T

2. There is a countable set Ω, an orthonormal family {en : n ∈ Ω} ⊆ H, and a

family {αn : n ∈ Ω} ⊆ R\{0}, such that Tf =
∑
n∈Ω

αn⟨f, en⟩en for every f ∈ H

The following proof is adapted from Axler’s proof of his theorem 10.106, which can

be found in [2].

Proof. Assume H is a Hilbert space and T ∈ C(H) is self-adjoint.

(1) Define U to be the span of the eigenvectors of T . Since self-adjoint operators have

real eigenvalues, it follows U = {v : Tv = αv for some nonzero v ∈ H and α ∈ R}.

It is easily verifiable that U is an invariant subspace for T . Thus, by theorem 36, U⊥

is also an invariant subspace for T , and T
∣∣∣
U⊥

is a self-adjoint operator on U⊥.

We claim that T
∣∣∣
U⊥

has no eigenvalues. Seeking a contradiction, suppose α is an eigen-

value of T
∣∣∣
U⊥

. Then, there exists some nonzero v ∈ U⊥ ⊆ H, such that T
∣∣∣
U⊥

v = αv.

This implies that v is an eigenvector of T . Thus, by definition of U , v ∈ U . Since

U ∩ U⊥ = {0}, it follows v = 0, contradicting that v ̸= 0. Thus, we must conclude

that T
∣∣∣
U⊥

has no eigenvalues as previously claimed.

By theorem 8 U⊥ is a closed subspace of a Hilbert space, thus U⊥ is a Hilbert space.

Since T
∣∣∣
U⊥

is a self-adjoint operator on U⊥ and it has no eigenvalues (as just shown),

it follows by theorem 35 that U⊥ = {0}. So by theorem 9, U = H.

For each eigenvalue α of T , we know there exists an orthonormal basis for null (T−αI)

that consists of eigenvectors of T correspoding to the eigenvalue α, because every
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Hilbert space has an orthonormal basis. We will refer to this basis as Uα. We claim

that
⋃
α∈A

Uα is an orthonormal family in H, where A is the set of all eigenvalues of

T . Let v ∈
⋃
α∈A

Uα. Then v ∈ Uα for some α ∈ A. Since Uα is an orthonormal basis,

it follows ∥v∥ = 1. Let v, u ∈
⋃
α∈A

Uα. If v = u, then ⟨v, u⟩ = ⟨v, v⟩ = ∥v∥2 = 1.

If v ̸= u, then either v, u ∈ Uα for some α ∈ A or v ∈ Uα and u ∈ Uβ for some

distinct α, β ∈ A. In the first case, ⟨v, u⟩ = 0, because Uα is an orthonormal basis.

In the second case, because α, β are distinct eigenvalues of a self-adjoint operator,

the corresponding eigenvectors u, v must be orthogonal by theorem 21. Thus, in the

second case, we have ⟨v, u⟩ = 0 as well. Therefore,
⋃
α∈A

Uα is an orthonormal family

in H, as claimed.

Since
⋃
α∈A

Uα is the set of all the unit length eigenvectors of T , it follows that

span
{ ⋃

α∈A
Uα

}
= U . As we showed previously, U = H. Thus, span

{ ⋃
α∈A

Uα

}
= H.

Therefore, by definition
⋃
α∈A

Uα is an orthonormal basis for H.

(2) Part (1) tells us there is an orthonormal basis of H consisting of eigenvectors

of T. For ease in proving this second part, we will use {en : n ∈ Γ} to denote this

orthonormal basis of eigenvectors. Let {αn : n ∈ Γ} be the set of corresponding

eigenvalues. Since T is self-adjoint theorem 37 gives us that {αn : n ∈ Γ} ⊆ R. Let

f ∈ H. Since {en : n ∈ Γ} is a basis for H, f =
∑
n∈Γ

⟨f, en⟩en. Now,

Tf = T

(∑
n∈Γ

⟨f, en⟩en

)

=
∑
n∈Γ

T (⟨f, en⟩en) (2.22)

=
∑
n∈Γ

⟨f, en⟩Ten
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=
∑
n∈Γ

⟨f, en⟩αnen

Line (2.22) follows from the fact that T ∈ C(H) ⊆ B(H) and that bounded linear

operators are continuous. Define Ω = {n ∈ Γ : αn ̸= 0}. Then we can write

Tf =
∑
n∈Ω

⟨f, en⟩αnen. Thus, it only remains to show that Ω is countable. Lemma 33

says that if σ(T ) is infinite, then σ(T ) consists of 0 and a sequence in R converging

to 0 (F in general, we use R because T is self-adjoint). We can index this sequence by

N. Thus, if σ(T ) were infinite, it would be countably infinite. Thus, we know σ(T )

is always countable as it is either finite or countably infinite. Since

Ω ⊆ {αn : n ∈ Γ} ⊆ {α : α an eigenvalue of T} ⊆ σ(T )

it must follow that Ω is countable.

Theorem 39 (Spectral Theorem for Normal Compact Operators). Let H be a com-

plex Hilbert space and T ∈ C(H). Then, there exists an orthonormal basis for H

consisting of eigenvectors of T if and only if T is normal.

The following proof is adapted from Axler’s proof of his theorem 10.107, which can

be found in [2].

Proof. Let H be a complex Hilbert space and T ∈ C(H).

(=⇒) Assume there exists an orthonormal basis for H consisting of eigenvectors of

T . Since F = C, by theorem 37, T is normal.

(⇐=) Assume T is normal. By theorem 20, there exist self-adjoint operators

A =
T ∗ + T

2
and B =

i(T ∗ − T )

2
on H, such that T = A + iB. Since T is normal,
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theorem 20 gives us that AB = BA. Since T ∈ C(H), theorem 28 yields T ∗ ∈ C(H).

Since C(H) is a subspace, it follows that A,B ∈ C(H).

Let α ∈ R. We claim that null (A− αI) is an invariant subspace B. It is well known

that the null space forms a subspace, so we need only show that null (A − αI) is

invariant for B. Let f ∈ null (A− αI). Now,

(A− αI)Bf = ABf − αBf

= BAf −B(αf) (2.23)

= B(Af − αf)

= B((A− αI)f)

= B0 (2.24)

= 0

Line (2.23) follows from the fact that AB = BA. Line (2.24) follows from the as-

sumption that f ∈ null (A−αI). Thus Bf ∈ null (A−αI). Therefore, null (A−αI)

is an invariant subspace for B as claimed.

Since B ∈ C(H) and null (A− αI) is invariant for B, we have that

B
∣∣
null (A−αI)

∈ C(null (A−αI)). Since B is self-adjoint, B
∣∣
null (A−αI)

is self-adjoint too.

Thus, by the Spectral Theorem for Compact Self-Adjoint Operators, there exists an

orthonormal basis for null (A− αI) consisting of eigenvectors of B (technically, this

basis consists of eigenvectors of B
∣∣
null (A−αI)

, which are necessarily also eigenvectors

of B).
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If α is not an eigenvalue of A, then null (A− αI) = {0}. It follows that

B
∣∣
null (A−αI)

= B
∣∣
{0} = 0, which is not very interesting. However, the above tells us

that if α is an eigenvalue of A, there exists an orthonormal basis for null (A − αI)

consisting of eigenvectors of B. Let this orthonormal basis be denoted Uα. Define A

to be the set of eigenvalues of A. By the exact same argument as in the proof of the

Spectral Theorem for Self-Adjoint Compact Operators, we can conclude that
⋃
α∈A

Uα

is an orthonormal family in H.

Since A is self-adjoint, by the proof of the Spectral Theorem for Self-Adjoint Compact

Operators we can conclude that span
{ ⋃

α∈A
Vα

}
= H, where Vα is an orthonormal ba-

sis for null (A− αI) consisting of eigenvectors of A. Since eigenvectors of B form an

orthonormal basis for null (A− αI), it follows that they must also be eigenvectors of

A. Thus, we have
⋃
α∈A

Uα =
⋃
α∈A

Vα. Thus span
{ ⋃

α∈A
Uα

}
= span

{ ⋃
α∈A

Vα

}
. There-

fore, span
{ ⋃

α∈A
Uα

}
= H. Thus, by definition

⋃
α∈A

Uα is an orthonormal basis for H.

So, it only remains to show that the elements of this orthonormal basis are eigen-

vectors of T . Let v ∈
⋃
α∈A

Uα. Then, v ∈ Uα for some eigenvalue α of A. Since Uα

consists of eigenvectors of B, there must exist some corresponding eigenvalue β of B.

Thus, Bv = βv. Since Uα is an orthonormal basis for null (A − αI), it follows that

v ∈ null (A− αI). Thus, (A− αI)v = 0. It follows Av = αv. Now,

Tv = (A+ iB)v

= Av + iBv

= αv + iβv

= (α + iβ)v
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Since v ̸= 0 (as it is an eigenvector of B) and α + iβ ∈ C, it follows that v is

an eigenvector of T . Therefore,
⋃
α∈A

Uα is an orthonormal basis for H consisting of

eigenvectors of T .

Thus, we have shown that T is normal if and only if there exists an orthonormal basis

for H consisting of eigenvectors of T .
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Chapter 3

SPECTRA

Theorem 40 (Inverse Mapping Theorem). If H and K are Banach spaces and A ∈

B(H,K) is bijective, then A−1 ∈ B(K,H) (that is, A−1 is bounded.)

Proof. Assume H,K are Banach spaces and A ∈ B(H,K) is bijective. It immediately

follows that A−1 : K −→ H. So, it only remains to show that A−1 is bounded. Since

A is bounded, it is continuous by theorem 6. Since A is bijective, it is also onto.

Let G be an arbitrary open set in H. Then, by the Open Mapping Theorem, A(G)

is open in K. By theorem 3, it follows that A−1 is continuous. Therefore, A−1 is

bounded, as desired.

Recall by theorem 6, for a linear map from one normed vector space to another,

boundedness is equivalent to continuity. Thus, the Inverse Mapping Theorem lets us

immediately conclude that the inverse of a continuous map is also continuous.

Note. On a general Hilbert space (one that is possibly infinite-dimensional), it is not

the case that an operator is one-to-one if and only if it is onto.

Example 2. The forward shift operator, S, is one-to-one but not onto.

Proof. Suppose (an), (bn) ∈ ℓ2(N) are such that S(an) = S(bn). Evaluating, we have

that (0, a1, a2, . . .) = (0, b1, b2, . . .), which is true if and only if 0 = 0 and an = bn for

all n ∈ N. Thus, we see that S is one-to-one.
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To see that S is not onto, let (an) ∈ ℓ2(N) be such that a1 ̸= 0. Therefore, there

exists no (bn) ∈ ℓ2(N) such that S(bn) = (an), because S(bn) = (0, b1, b2, . . .). Thus,

S is not onto.

Example 3. The backward shift operator, S∗, is onto but not one-to-one.

Proof. Let (an) ∈ ℓ2(N). This implies S∗(0, a1, a2, . . .) = (a1, a2, . . .) = (an). Thus,

S∗ is onto.

To see that S is not one-to-one, let (an), (bn) ∈ ℓ2(N) be such that a1 ̸= b1 but

an = bn for all n ∈ N\{1}. Thus, (an) ̸= (bn), however, S∗(an) = S∗(bn), because

(a2, a3, . . .) = (b2, b3, . . .). Thus, S∗ is not one-to-one.

From the above examples with the shift operators, we see that an operator A ∈ B(H)

can fail to be invertible for one of two reasons: it is not one-to-one or it is not onto.

However, this is not the only way to break non-invertibility down into pieces.

Def: Let A ∈ B(H). The spectrum of A, denoted σ(A), is the set

σ(A) = {λ ∈ C : A− λI is not invertible}.

Theorem 41 ([2], Theorem 10.76). Let H be an infinite-dimensional Hilbert space.

If T ∈ C(H), then 0 ∈ σ(T ).

The following proof is adapted from the proof given in [2].
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Proof. Let H be an infinite-dimensional Hilbert space. Assume T ∈ C(H). Seeking

a contradiction, suppose 0 ̸∈ σ(T ). Thus, T is invertible. Hence, T is onto. That

is, range T = H, and so dim(range T ) = ∞. We will next show that range T is

closed. To see this, let f ∈ H be a limit point of range T . By definition, there exists

a sequence (fn) in H with fn ̸= f for each n ∈ N, such that lim
n→∞

fn = f . Since (fn) is

convergent it must be Cauchy. Since H is a Hilbert space, it is complete. Thus, (fn)

converges to an element in H = range T . Since limits are unique, and (fn) converges

to f , it follows that f ∈ range T . Thus, range T contains all its limit points, and so is

closed. Since range (T ) is infinite-dimensional and is closed, this contradicts theorem

29. Therefore, we must conclude that 0 ∈ σ(T ), as desired.

Def: Let A ∈ B(H). The point spectrum of A, denoted σp(A) or Π0(A), is the set

of all eigenvalues of A; that is, σp(A) = {λ ∈ C : Av = λv for some v ∈ H\{0}}.

From the previous definition we see that eigenvalues work in a similar way on finite

or infinite dimensional space.

Claim 1. If A ∈ B(H), then σp(A) = {λ ∈ C : A− λI is not one-to-one}.

Proof. Assume A ∈ B(H).

(⊆) Let λ ∈ σp(A). Then, Av = λv for some v ∈ H\{0}. Hence, we have

0 = Av − λv = (A − λI)v. And so, v ∈ null (A − λI). Since v ̸= 0, it follows that

null (A− λI) ̸= {0}, and so A− λI is not one-to-one. Therefore, we have

σp(A) ⊆ {λ ∈ C : A− λI is not one-to-one}.

(⊇) Let λ ∈ C be such that A−λI is not one-to-one. Then, there exist u, v ∈ H such
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that u ̸= v and (A− λI)v = (A− λI)u. Thus,

0 = (A− λI)v − (A− λI)u

= (A− λI)(v − u)

= A(v − u)− λ(v − u)

Hence, A(v − u) = λ(v − u). Since v ̸= u, v − u ̸= 0, and so λ is an eigenvalue of A

with corresponding eigenvector v − u. Hence, λ ∈ σp(A). It follows that

{λ ∈ C : A− λI is not one-to-one} ⊆ σp(A).

Therefore, σp(A) = {λ ∈ C : A− λI is not one-to-one}, as desired.

Def: Let V be a metric space and U ⊆ V . We say U is dense in V, if U = V , where

U denotes the closure of U .

Note. We don’t divide σ(A) into {λ ∈ C : A− λI is not one-to-one} and

{λ ∈ C : A− λI is not onto}, because A− λI can fail to be onto in two ways:

1. range (A− λI) is not closed

2. range (A− λI) is not dense in H

These two ways of failure are not disjoint since it is possible that range (A − λI) ̸=

range (A− λI) and range (A− λI) ̸= H.

Def: An operator A is bounded below, if there exists some δ > 0, such that

||Af || ≥ δ||f || for all f ∈ H with f ̸= 0.
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Claim 2. If B ∈ B(H), then B is bounded below if and only if B is one-to-one and

range B is closed.

Proof. (=⇒) Assume B is bounded below, therefore, there exists some δ > 0, such

that ||Bf || ≥ δ||f || for all f ∈ H\{0}. To show B is one-to-one, let f ∈ null (B).

Consequently, Bf = 0, so ||Bf || = ||0|| = 0. Since B is bounded below, we have that

0 ≥ δ||f ||. Since norms are always non-negative, this inequality only holds if ||f || = 0,

that is if f = 0. Thus, we’ve shown null B ⊆ {0}. Since the reverse containment is

automatic, we have that null B = {0}, and so B is one-to-one.

It remains to show that range B is closed. We will do this using the limit point

characterization since H is a Hilbert space; note that this works on the less restrictive

Banach space as well. Let y ∈ H be a limit point of range B. Thus, there exists a

sequence (yn) in range B such that lim
n→∞

yn = y and yn ̸= y for each n ∈ N. Since (yn)

is in range B, there exists some sequence (vn) in H such that (Bvn) = (yn). Since

lim
n→∞

yn = y in H, (yn) is a Cauchy sequence. Let ϵ > 0. Consequently, ϵδ > 0. Thus,

because (yn) is a Cauchy sequence, there exists some N ∈ N such that whenever

n,m ≥ N ,

ϵδ > ||yn − ym||

= ||Bvn −Bvm|| (3.1)

= ||B(vn − vm)||

≥ δ||vn − vm|| (3.2)

Line (3.1) follows from (Bvn) = (yn), and line (3.2) follows from B being bounded

below.
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Since δ > 0, we can divide both sides of the above inequality to obtain ϵ > ||vn−vm||.

Thus, we have shown that (vn) is a Cauchy sequence in H. Since H is a Hilbert space

it follows that (vn) converges to some v ∈ H. Since B is bounded, it is continuous, and

so Bv = B
(
lim
n→∞

vn

)
= lim

n→∞
Bvn = lim

n→∞
yn = y. Thus, by definition, y ∈ range B.

Therefore, range B contains all its limit points, and so is closed.

(⇐=) Assume rangeB is closed and B is one-to-one. Define the linear map

B̃ : H −→ range B by B̃v = Bv for each v ∈ H. Since B is one-to-one, B̃ is also

one-to-one. B̃ is clearly onto by definition and so B̃ is invertible. We also note that

H is a Banach space since it is a Hilbert space and that range B is a Banach space

too as it is a subspace of a Banach space. Thus, by the Inverse Mapping Theorem,

we conclude that B̃−1 is bounded since B̃ is bounded (note B̃ is bounded because B

is bounded).

Since B̃ is invertible and the zero map is not invertible we know B̃−1 ̸= 0, and so

||B̃−1|| ≠ 0. Thus, we can define δ =
1

||B̃−1||
, which we will show bounds B below.

Let v ∈ H\{0}. Since v ̸= 0, Bv ̸= 0 because null B = {0} (this is because B is

one-to-one). Now,

||v|| = ||Iv||

= ||B̃−1(B̃v)||

= ||B̃−1(Bv)||

≤ ||B̃−1|| · ||Bv||

=
1

δ
||Bv||

Thus, δ||v|| ≤ ||Bv||. Therefore, B is bounded below as desired.
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Claim 3. An operator A ∈ B(H) is invertible if and only if A is bounded below and

A has dense range in H.

Proof. (=⇒) Assume A ∈ B(H) is invertible. Consequently, A must be onto, and so

range A = H. Since range A ⊆ range A ⊆ H, it must be the case that range A = H.

Thus, it remains only to show that A is bounded below. Since A is invertible, it

cannot be the zero operator, and so A−1 ̸= 0. Hence, ||A−1|| ̸= 0. Thus, we can

define δ =
1

||A−1||
. Now, for v ∈ H\{0},

||v|| = ||A−1(Av)||

≤ ||A−1|| · ||Av||

=
1

δ
||Av||

Thus, δ||v|| ≤ ||Av||; that is, A is bounded below, as desired.

(⇐=) Assume A ∈ B(H) is bounded below and A has dense range in H. Since A is

bounded below it follows by Claim 2 that A is one-to-one and range A is closed. Since

range A is closed, range A = range A. Since A has dense range in H, by definition

range A = H. Thus, range A = H, and so A is onto. Since A is both one-to-one and

onto, it is invertible.

Claim 3 suggests a way to divide the spectrum:

Def: Let A ∈ B(H). The approximate point spectrum of A, denoted σap(A), is

the set σap(A) = {λ ∈ C : A− λI is not bounded below}.
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Def: Let A ∈ B(H). The compression spectrum of A, denoted Γ(A), is the set

Γ(A) = {λ ∈ C : A− λI does not have dense range}.

Note. Claim 3 tells us that σ(A) = σap(A) ∪ Γ(A).

Def: Let A be a bounded linear operator. The spectral radius of A, denoted r(A),

is r(A) = sup{|λ| : λ ∈ σ(A)}.

Proposition 1 ([9], Theorem 5.6.12). Assume A is a square matrix with complex

entries. Then,

1. r(A) < 1 if and only if lim
n→∞

An = 0

2. r(A) > 1 if and only if lim
n→∞

∥An∥ = ∞

Theorem 42 ([12] Theorem 1.2.4). Assume A is a bounded linear operator, then:

1. If ||I − A|| < 1, then A is invertible

2. σ(A) is a nonempty compact subset of C

3. If A is invertible, then σ(A−1) = { 1
λ
: λ ∈ σ(A)}

4. σ(A∗) = {λ : λ ∈ σ(A)}

5. The spectral radius formula holds; that is, r(A) = lim
n→∞

||An||1/n. In particular,

r(A) ≤ ||A||

6. If A is an operator on a finite-dimensional space then σ(A) = σp(A)
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Proof. (1) Since I − A is a bounded linear operator with ||I − A|| < 1, it follows by

theorem 17 that I − (I − A) = A is invertible.

(2) By theorem 19, σ(A) is nonempty.

Next, we show that σ(A) is compact. First, we show it is closed by showing the

complement is open. By theorem 18, we know that I = {T ∈ B(H) : T is invertible}

is open in C. Now, define the operator-valued function φ : C −→ B(H) by

φ(λ) = A − λI. We claim that φ is continuous at each λ0 ∈ C. Let ε > 0. Define

δ = ε and suppose |λ− λ0| < δ. Now,

||φ(λ)− φ(λ0)|| = ||A− λI − (A− λ0I)||

= ||(λ0 − λ)I||

= |λ0 − λ| · ||I||

= |λ0 − λ|

< δ

= ε

Therefore, φ is continuous at each λ0 ∈ C. Since φ is continuous and I is open in C,

it follows that φ−1(I) = C\σ(A) is open in C. Thus, the complement, σ(A), must be

closed in C.

Lastly, we show that σ(A) is bounded. Since σ(A) is nonempty, there exists some

λ ∈ σ(A). Note we can demand that λ ̸= 0 (the only scenario in which we cannot is

when σ(A) = {0}, in which case the spectrum is clearly bounded). Since λ ∈ σ(A),

by definition, A− λI is not invertible. Thus, −1
λ
(A− λI) = −1

λ
A+ I is not invertible.

Thus, by the contrapositive of (1), 1 ≤ ||I − (−1
λ
A + I)|| = || 1

λ
A|| = 1

|λ| ||A||. Thus,

|λ| ≤ ||A||. Since A is bounded by assumption, |λ| ≤ ||A|| < ∞, and so σ(A) is
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bounded. Therefore, σ(A) is a compact subset of C.

(3) Assume A is invertible.

(⊆) Let α ∈ σ(A−1). Then, A−1 − αI is not invertible. Note that α ̸= 0, since

A−1 − 0I = A−1 is invertible. Now,

A−1 − αI = A−1(I − αA)

= −αA−1

(
−1

α
I + A

)
= −αA−1

(
A− 1

α
I

)

Since A−1 is invertible, −αA−1 is invertible. Since A−1 −αI is not invertible, it must

follow that A − 1
α
I is not invertible. Thus, 1

α
∈ σ(A). Hence, α ∈ { 1

λ
: λ ∈ σ(A)},

and so σ(A−1) ⊆ { 1
λ
: λ ∈ σ(A)}.

(⊇) Let γ ∈ { 1
λ
: λ ∈ σ(A)}. Then, γ = 1

λ
for some λ ∈ σ(A). Since λ ∈ σ(A), A−λI

is not invertible. Note that λ ̸= 0, because A− 0I = A is invertible. Now,

A− λI = A(I − λA−1)

= −λA

(
−1

λ
I + A−1

)
= −λA(A−1 − γI)

Since A is invertible, −λA is invertible. Since A− λI is not invertible, it must follow

that A−1 − γI is not invertible, and so γ ∈ σ(A−1). Thus, { 1
λ
: λ ∈ σ(A)} ⊆ σ(A−1).

Therefore, σ(A−1) = { 1
λ
: λ ∈ σ(A)}.

(4) In order to prove (4), we claim that if A is not invertible, then A∗ is not invertible.

Seeking a contradiction, suppose A∗ is invertible. Then, I = (A∗)−1A∗ and
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I = A∗(A∗)−1. Taking the adjoint of both sides of both equations gives us:

I∗ = ((A∗)−1A∗)∗

= A∗∗((A∗)−1)∗

= A((A∗)−1)∗

and

I∗ = (A∗(A∗)−1)∗

= ((A∗)−1)∗A∗∗

= A((A∗)−1)∗A

Since I∗ = I, we have I = A((A∗)−1)∗ and I = ((A∗)−1)∗A. That is, A−1 = ((A∗)−1)∗,

contradicting the assumption that A is not invertible. Therefore, we must conclude

that A∗ is not invertible as we claimed.

(⊆) Let γ ∈ σ(A∗). Then, A∗ − γI is not invertible. So, by our claim we have

that (A∗ − γI)∗ = A∗∗ − γI = A − γI is not invertible. Hence, γ ∈ σ(A), and so

γ = γ ∈ {λ ∈ C : λ ∈ σ(A)}. Thus, σ(A∗) ⊆ {λ : λ ∈ σ(A)}.

(⊇) Let α ∈ {λ : λ ∈ σ(A)}. Consequently, α = λ for some λ ∈ σ(A). Since

λ ∈ σ(A), A − λI is not invertible. So, by our claim, (A − λI)∗ = A∗ − λI is not

invertible. Thus, α = λ ∈ σ(A∗), and so {λ : λ ∈ σ(A)} ⊆ σ(A∗).

Therefore, σ(A∗) = {λ : λ ∈ σ(A)}.

(5) To stay within the scope of this thesis, we will prove only the finite-dimensional

case, where A is a complex-valued m x m matrix. Case II of this proof is adapted

from the proof given in [7].
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Case I: If r(A) = 0, then by definition of the spectral radius we must have σ(A) = {0}.

Thus, 0 is the only eigenvalue of A. Hence, the characteristic polynomial for A is

p(z) = zm. By the Cayley-Hamilton Theorem, p(A) = Am = 0. Clearly, for all

n ∈ N such that n ≥ m, An = 0. Thus, for n ≥ m, ∥An∥1/n = ∥0∥1/n = 01/n = 0.

Therefore, lim
n→∞

∥An∥1/n = 0 = r(A).

Case II: Suppose r(A) ̸= 0. Consider 1
n
> 0 for n ∈ N and define A+ =

1

r(A) + 1
n

A

and A− =
1

r(A)− 1
n

A. Since r(A) ≥ 0, r(A) + 1
n

is always positive. By

picking n sufficiently large we can ensure that r(A)− 1
n

is positive as well, since

r(A) ̸= 0. Thus, we have that
1

r(A) + 1
n

and
1

r(A)− 1
n

are both positive. Since

the spectral radius is defined by r(A) = sup{|λ| : λ ∈ σ(A)} and non-negative

constants “factor out” of the supremum, it follows that r(A+) =
1

r(A) + 1
n

r(A)

and r(A−) =
1

r(A)− 1
n

r(A). Since 1
n
> 0, r(A)+ 1

n
> r(A) and r(A)− 1

n
< r(A).

Thus, r(A+) =
1

r(A) + 1
n

r(A) < 1 and r(A−) =
1

r(A)− 1
n

r(A) > 1. Thus, by

Proposition 1, lim
n→∞

(A+)n = 0. Hence, for ε = 1, there exists some N1 ∈ N

such that whenever n ≥ N1, ||(A+)n|| < 1. Thus, by definition of (A+)n,∣∣∣∣∣∣∣∣( 1

r(A) + 1
n

A

)n∣∣∣∣∣∣∣∣ < 1. So, ||An|| < ||(r(A) + 1
n
)n|| = |(r(A) + 1

n
)|n. Thus,

||An||1/n < |r(A) + 1
n
|. Also by Proposition 1, r(A−1) > 1, lim

n→∞
∥(A−)n∥ = ∞.

So, for the specific ε = 1, there exists N2 ∈ N such that ∥(A−)∥ > 1. That is,

by the definition of A−,
∥∥∥∥( 1

r(A)− 1
n

A

)n∥∥∥∥ > 1. So,

∥An∥ >
∥∥(r(A)− 1

n
)n
∥∥ = |r(A) − 1

n
|n. Thus, ∥An∥1/n > |r(A) − 1

n
|. Thus,

we have shown |r(A) − 1
n
| < ∥An∥1/n < |r(A) + 1

n
|. Therefore, by the squeeze

theorem, it follows that lim
n→∞

∥An∥1/n = r(A), as desired.

(6) Assume A ∈ B(V ) and dim(V ) < ∞. We claim that σ(A)C = σap(A)
C .

(⊆) Let λ ∈ σ(A)C . Since A is bounded, we know A− λI is bounded. By definition

of the spectrum, A − λI is invertible. Thus, by claim 3, it follows that A − λI is
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bounded below, and so λ ∈ σap(A)
C by definition. Hence, σ(A)C ⊆ σap(A)

C .

(⊇) Let λ ∈ σap(A)
C . Then, A − λI is bounded below, and so by claim 2, A − λI

is one-to-one. Since dim(V ) < ∞, one-to-one is equivalent to onto. Thus, A − λI is

bijective, and so λ ∈ σ(A)C by definition. Thus, σap(A)
C ⊆ σ(A)C .

Therefore, σ(A)C = σap(A)
C . Taking the complement of both sides yields

σ(A) = σap(A), as desired.

Theorem 43 ([12] Theorem 1.2.7). For each A ∈ B(H), if σ(A) is bounded, then the

boundary of σ(A) is contained in σap(A). In particular, σap(A) ̸= ∅.

Lemma 44. If x is a boundary point of S, then there exists a sequence (xn) not

contained in S such that lim
n→∞

xn = x.

Proof of Lemma 44. Let x be a boundary point of S. For each n ∈ N, 1
n
> 0. So,

the open ball B(x, 1
n
) around x of radius 1

n
contains at least one point in S and at

least one point in SC . Thus, B(x, 1
n
) ∩ SC ̸= ∅. Define this intersection to be Bn.

Thus, for each n ∈ N, we know there exists some xn ∈ Bn. Thus, we construct a

sequence (xn) contained in SC . Now, we argue that lim
n→∞

xn = x. Let ε > 0. By the

Archimedean Property, there exists some N ∈ N such that 1
N

< ε. Let n ≥ N . Then,

1
n
≤ 1

N
< ε. By construction of the Bn’s we have |xn − x| < 1

n
, and so |xn − x| < ε.

Therefore, lim
n→∞

xn = x.

The following proof is adapted from the proof given in [12].

Proof of Theorem 43. Seeking a contradiction, let λ be in the boundary of σ(A) and

λ ̸∈ σap(A). Since λ is in the boundary of σ(A), by lemma 4 there exists a sequence

(λn) not contained in σ(A) such that lim
n→∞

λn = λ. We claim that there exists some
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k > 0 and M ∈ N, such that whenever n ≥ M , ∥(A− λnI)f∥ ≥ k ∥f∥ for every

f ∈ H. To prove this claim, suppose not. Then, for every k > 0 and every M ∈ N,

there exists some n ≥ M and some fn such that ∥(A− λnI)fn∥ < k ∥fn∥. We will

assume without loss of generality that ∥fn∥ = 1, otherwise we could simply replace

fn with
fn

∥fn∥
(as the above inequality does not even hold for fn = 0.) Let ε > 0,

then there exists some M ∈ N such that whenever n ≥ M , |λn − λ| < ε
2
. With ε

2
> 0

and M ∈ N fixed, we know by the above that there exists some n ≥ M and some fn

with ∥fn∥ = 1 such that ∥(A− λnI)fn∥ < ε
2
. Thus,

∥(A− λI)fn∥ = ∥(A− λnI)fn + (λnI − λI)fn∥

≤ ∥(A− λnI)fn∥+ ∥(λnI − λI)fn∥

= ∥(A− λnI)fn∥+ |λn − λ| ∥fn∥

= ∥(A− λnI)fn∥+ |λn − λ|

<
ε

2
+

ε

2

= ε

= ε ∥fn∥

Thus, we have shown for every ε > 0, there exists some fn ∈ H\{0} such that

∥(A− λI)fn∥ < ε ∥fn∥, which is precisely the negation of the definition of bounded

below. So, A− λI is not bounded below, contradicting the assumption that

λ ̸∈ σap(A). Therefore, there exists some k > 0 and M ∈ N, such that whenever

n ≥ M , ∥(A− λnI)f∥ ≥ k ∥f∥ for every f ∈ H, proving our claim.

Recall σ(A) is compact by theorem 42 part (2), and so it is closed. Since λ is a

boundary point of σ(A), it follows λ ∈ σ(A). Since λ ∈ σ(A) = σap(A) ∪ Γ(A) (by

claim 3), if we show λ ̸∈ Γ(A) we will be forced to conclude λ ∈ σap(A), contradicting

the assumption that λ ̸∈ σap(A).

Let g ∈ H\{0}. We will show that g ∈ range (A− λI), which will let us conclude
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that H = range (A− λI) because 0 ∈ range (A− λI) automatically. Let ε > 0, then
k

∥g∥
ε > 0, so there exists some N ∈ N such that whenever n ≥ N , |λn − λ| < k

∥g∥
ε.

Since λn ̸∈ σ(A), A−λnI is invertible. Thus (A−λnI)
−1g is some element in H\{0},

which we will call fn. We know fn ̸= 0, because g ̸= 0 and ker(A− λnI) = {0}). So,

(A − λnI)fn = g. By our claim, if n ≥ K ≥ M , then ∥(A− λnI)fn∥ ≥ k ∥fn∥; that

is, ∥g∥ ≥ k ∥fn∥.

Now,

∥(A− λI)fn − g∥ = ∥(A− λnI)fn − g + (λnI − λI)fn∥

≤ ∥(A− λnI)fn − g∥+ ∥(λnI − λI)fn∥

= ∥g − g∥+ |λn − λ| ∥fn∥

= |λn − λ| ∥fn∥

≤ |λn − λ|∥g∥
k

(3.3)

<

(
k

∥g∥
ε

)
∥g∥
k

(3.4)

= ε

Line (3.3) follows from the fact that k ∥fn∥ ≤ ∥g∥ whenever n ≥ K and line (3.4)

follows from the fact that |λn − λ| < k

∥g∥
ε whenever n ≥ K.

Thus, we have shown that whenever n ≥ K, ∥(A− λI)fn − g∥ < ε; that is,

lim
n→∞

(A− λn)fn = g. Hence, g ∈ range (A− λI). Thus, H ⊆ range (A− λI), and so

H = range (A− λI). Hence, A− λI has dense range, and so by definition λ ̸∈ Γ(A).

Thus, since λ ∈ σ(A) = σap(A) ∪ Γ(A), it must follow that λ ∈ σap(A), contradicting

the assumption that λ ̸∈ σap(A). Therefore, we must conclude that λ ∈ σap(A), and

so ∂σ(A) ⊆ σap(A). Since σ(A) is compact and σ(A) ̸= ∅, the previous containment

gives us that σap(A) ̸= ∅ as well.
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We now make the leap from the spectrum to the numerical range with the following

theorem. We will discuss the numerical range in more depth in chapter 4.

Theorem 45 ([12] Theorem 1.2.11). For each A ∈ B(H), σ(A) ⊆ W(A).

The following proof draws from the proof given in [12].

Proof. Assume A ∈ B(H). Let λ ∈ σ(A). By Claim 3, σ(A) = σap(A) ∪ Γ(A). Thus,

λ ∈ σap(A) or λ ∈ Γ(A).

Case I: If λ ∈ σap(A), then A − λI is not bounded below. That is, for every δ > 0,

there exists f ∈ H\{0} such that ∥(A− λI)f∥ < δ ∥f∥. Thus, for each n ∈ N,

there exists some fn ∈ H\{0} such that ∥(A− λI)fn∥ < 1
n
∥fn∥. Since each

fn ̸= 0, ∥fn∥ ̸= 0. Thus,
∥(A− λI)fn∥

∥fn∥
<

1

n
. Thus by linearity, we have that∥∥∥∥(A− λI)

(
fn

∥fn∥

)∥∥∥∥ <
1

n
.

Define the sequence (gn) by gn =
fn
∥fn∥

for each n ∈ N. We note that

∥gn∥ =

∥∥∥∥ fn
∥fn∥

∥∥∥∥ =
∥fn∥
∥fn∥

= 1 for every n ∈ N. Let ε > 0 and N = 1. Then, by

the Archimedean Property there exists some N ∈ N such that 1
N

< ε. Thus, by

the above work, whenever n ≥ N ,

∥(A− λI)gn∥ =

∥∥∥∥(A− λI)

(
fn

∥fn∥

)∥∥∥∥ <
1

N
≤ 1

n
< ε

Thus, we have constructed a sequence (gn) contained in H, such that ∥gn∥ = 1

and lim
n→∞

∥(A− λI)(gn)∥ = 0. Note that because ∥gn∥ = 1 for each n ∈ N,

(⟨Agn, gn⟩) is a sequence contained in W(A).

We claim that lim
n→∞

⟨Agn, gn⟩ = λ. Let ε > 0. Since lim
n→∞

∥(A− λI)(gn)∥ = 0,

there exists some N ∈ N, such that whenever n ≥ N , ∥(A− λI)gn∥ < ε. Thus,
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letting n ≥ N , we have

|⟨Agn, gn⟩ − λ| = |⟨Agn, gn⟩ − λ ∥gn∥2 | (3.5)

= |⟨Agn, gn⟩ − λ⟨gn, gn⟩|

= |⟨Agn, gn⟩+ ⟨−λgn, gn⟩|

= |⟨Agn − λgn, gn⟩|

= |⟨(A− λI)gn, gn⟩|

≤ ∥(A− λI)gn∥ ∥gn∥ (3.6)

= ∥(A− λI)gn∥ (3.7)

< ε (3.8)

Line (3.5) and (3.7) follow from the fact that ∥gn∥ = 1. Line (3.6) follows from

the Cauchy-Schwarz inequality. Line (3.8) follows from the assumption that

n ≥ N . Therefore, lim
n→∞

⟨Agn, gn⟩ = λ, as we claimed.

Since lim
n→∞

⟨Agn, gn⟩ = λ and (⟨Agn, gn⟩) is contained in W(A), it follows that

either λ = ⟨Agn, gn⟩ for some n ∈ N or λ ̸= ⟨Agn, gn⟩ for every n ∈ N. In the

former case, λ ∈ W(A) ⊆ W(A). In the latter case, λ is by definition a limit

point of W(A), and so λ ∈ W(A).

Case II: Assume λ ∈ Γ(A). Then, A− λI does not have dense range in H; that is,

range (A− λI) ̸= H. Since range (A− λI) ⊆ H, there exists some h ∈ H such

that h ̸∈ range (A− λI). Since range (A − λI) ⊆ range (A− λI), it follows

that h ̸∈ range (A − λI). Since H = range (A − λI)
⊕

(range (A − λI))⊥, it

follows that h = f + g, where f ∈ range (A − λI) and g ∈ (range (A − λI))⊥.

Since h ̸∈ range (A − λI), it must follow that g ̸= 0. If f = 0, then h = g.

If f ̸= 0, then we could simply replace h with g, since g ∈ H and necessarily
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g ̸∈ range (A−λI) (this is because g ̸= 0 and the intersection of a space with its

orthogonal complement is {0}). Thus, by replacing h with g, we may assume

without loss of generality that h ∈ (range (A − λI))⊥. We may also assume

without loss of generality that ∥h∥ = 1; otherwise, we could simply divide by

∥h∥ as h ̸= 0, since h ̸∈ range (A− λI) and 0 ∈ range (A− λI). So, we have

some h ∈ H such that ∥h∥ = 1 and h ∈ (range (A− λI))⊥.

By definition, for every f ∈ H, (A− λI)f ∈ range (A− λI). Thus,

⟨(A− λI)f, h⟩ = 0 for every f ∈ H. In particular, this holds for f = h. So,

0 = ⟨(A− λI)h, h⟩

= ⟨Af − λh, h⟩

= ⟨Ah, h⟩+ ⟨−λh, h⟩

= ⟨Ah, h⟩ − λ⟨h, h⟩

= ⟨Ah, h⟩ − λ ∥h∥2 (3.9)

= ⟨Ah, h⟩ − λ

Line (3.9) follows from the fact that ∥h∥ = 1. Therefore, λ = ⟨Ah, h⟩ ∈ W(A).

Thus, Γ(A) ⊆ W(A) ⊆ W(A).

Therefore, by cases I and II, we have that σ(A) = σap(A)∪Γ(A) ⊆ W(A), as desired.

Next, we look at the spectra of a non-compact operator and a prototypical compact

operator. To do so we need the following two technical lemmas.

Lemma 46. (1, λ, λ2, λ3, . . .) ∈ ℓ2 if and only if λ ∈ D. Furthermore, (1, λ, λ2, λ3, . . . )

is an eigenvector of S∗ with corresponding eigenvalue λ if and only if λ ∈ D.
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Proof. Note
∞∑
n=0

|λn|2 =
∞∑
n=0

(|λ|2)n is a geometric series. Thus, it converges if and only

if |λ|2 < 1. Therefore, (1, λ, λ2, λ3, . . .) ∈ ℓ2 if and only if λ ∈ D.

Note that (1, λ, λ2, λ3, . . .) is not the zero vector due to the first entry. Also observe

that,

S∗(1, λ, λ2, λ3, . . .) = (λ, λ2, λ3, λ4, . . .)

= λ(1, λ, λ2, λ3, . . .)

Therefore, (1, λ, λ2, λ3, . . .) is an eigenvector of S∗ with corresponding eigenvalue λ.

We note it is only an eigenvector if (1, λ, λ2, λ3, . . .) ∈ ℓ2, which is true if and only if

λ ∈ D.

Def: For a set Ω ⊆ C, define Ω∗ = {γ : γ ∈ Ω}.

Lemma 47 ([8], problem 85). If A ∈ B(H), then σp(A
∗) = (Γ(A))∗.

Proof. (⊆) Let λ ∈ σp(A
∗). Then, λ is an eigenvalue of A∗, and so A∗ − λI is not

one-to-one. By 15 it follows that (A∗ − λI)∗ = A− λI does not have dense range in

H. That is, λ ∈ Γ(A). Thus, λ ∈ (Γ(A))∗. Therefore, σp(A
∗) ⊆ (Γ(A))∗.

(⊇) Let λ ∈ (Γ(A))∗. Then, λ ∈ Γ(A). Thus, A − λI does not have dense range

in H. Hence, by theorem 15, (A − λI)∗ = A∗ − λI is not one-to-one. Thus, λ is an

eigenvalue of A∗, and so λ ∈ σp(A
∗). Therefore, (Γ(A))∗ ⊆ σp(A

∗).

Thus, σp(A
∗) = (Γ(A))∗, as desired.

Example 4. For the forward shift operator S ∈ L(ℓ2), the spectrum decomposes as

follows:

1. σp(S) = D
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2. σ(S) = D

3. σap(S) = ∂D

4. Γ(S) = D

Proof. (1) By lemma 46, λ is an eigenvalue of S∗ if and only if λ ∈ D. Therefore,

σp(S) = D.

(2) First, we will show that ∥S∥ = 1 using the equivalent definition,

∥S∥ = sup{∥S(an)∥ : (an) ∈ ℓ2 with ∥(an)∥ = 1}. Let (an) ∈ ℓ2 with ∥(an)∥. Then,

∥S(an)∥2 = ∥(0, a0, a1, . . .)∥2

= |0|2 + |a0|2 + |a1|2 + · · · (3.10)

=
∞∑
n=0

|an|2

= ∥(an)∥2

= 1 (3.11)

Line (3.10) follows from the definition of the ℓ2 norm. Line (3.11) follows from the

assumption that ∥(an)∥ = 1. Since norms are always nonnegative, taking the square

root of both sides of the equation yields ∥S(an)∥ = 1. Therefore, ∥S∥ = sup{1} = 1,

as desired. By theorem 42 part (6), r(S) ≤ ∥S∥ = 1. By definition

r(S) = sup{|λ| : λ ∈ σ(S)}. Thus, |λ| ≤ 1 for every λ ∈ σ(S). Therefore, σ(S) ⊆ D.

Next, we show that D ⊆ σ(S). Since D ⊆ σ(S), it follows D ⊆ σ(S). Since σ(S)

is compact, we have that σ(S) = σ(S). Thus, D ⊆ σ(S). Therefore, σ(S) = D, as

desired.
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(3) Since σ(S) = D, it follows by theorem 43 that ∂D ⊆ σap(S). Since ∂D = ∂D, we

have ∂D ⊆ σap(S). We claim that if λ ∈ D, then ∥S(an)− λ(an)∥ ≥ (1− |λ|) ∥(an)∥

for all (an) ∈ ℓ2. To prove this claim, let λ ∈ D and (an) ∈ ℓ2. Thus, |λ| < 1, and so

1− |λ| > 0. Hence, |1− |λ|| = 1− |λ|. By the reverse triangle inequality,

∥S(an)− λ(an)∥ ≥ | ∥S(an)∥ − ∥λ(an)∥ | (3.12)

= | ∥(an)∥ − |λ| ∥(an)∥ | (3.13)

= |(1− |λ|) ∥(an)∥ |

= (1− |λ|) ∥(an)∥

Line (3.12) is by the triangle inequality, as mentioned previously. Line (3.13) follows

from the fact that ∥S(an)∥ = ∥(0, a0, a1, . . .)∥ =

√ ∞∑
n=0

|an|2 = ∥(an)∥. Thus, if λ ∈ D,

then S − λI is bounded below as claimed. The contrapositive of this claim is that if

S − λI is not bounded below, then λ ∈ DC . That is,

σap(S) ⊆ DC = {λ ∈ D : |λ| ≥ 1} = ∂D ∪ DC

Since σap(S) ⊆ σ(S) = D, it must follow that σap(S) ⊆ ∂D, since σap(S) ∩ DC
= ∅.

Therefore, σap(S) = ∂D, as desired.

(4) First, we show that σp(S
∗) = D. By lemma 46, if λ ∈ D then λ is an eigenvalue of

S∗. Thus, we know D ⊆ σp(S
∗). To show the reverse containment, let γ ∈ σp(S

∗). By

definition, γ is an eigenvalue of S∗. Let (an) ∈ ℓ2 be the corresponding eigenvector.

Then, S(an) = γ(an); that is, (a1, a2, . . .) = (γa0, γa1, . . .). Comparing entries, we

have an+1 = γan for every n ∈ N ∪ {0}. It follows that an = γna0 for every n ∈ N.

Thus, the eigenvector is (a0, γa0, γ2a0, . . .). We note that a0 ̸= 0, since if a0 = 0, then

(an) = 0, contradicting the definition of eigenvector. Since (an) ∈ ℓ2, S∗(an) ∈ ℓ2,
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and so
∞∑
n=0

|γna0|2 converges. Note

∞∑
n=0

|γna0|2 =
∞∑
n=0

|γn|2|a0|2

= |a0|2
∞∑
n=0

|γn|2

= |a0|2
∞∑
n=0

(|γ|2)n

Since this is a geometric series it is convergent if and only if |γ|2 < 1. Thus, it is

convergent if and only if |γ| < 1. Thus, γ ∈ D. Thus, we have shown that σp(S
∗) ⊆ D.

Therefore, σp(S
∗) = D.

By lemma 47, D = (Γ(S))∗. Therefore, D∗ = Γ(S). Since D∗ = D, it follows D = Γ(S),

as desired.

Example 5. Let (bn) be a sequence in C such that lim
n→∞

bn = 0. Define the diagonal

operator T ∈ C(ℓ2) by T (an) = (anbn). The spectrum of T decomposes as follows:

1. σp(T ) = {bn : n ∈ N}

2. σ(T ) = {bn : n ∈ N} ∪ {0}

3. σap(T ) = {bn : n ∈ N} ∪ {0}

4. Γ(T ) = {bn : n ∈ N} ∪ {0}

Proof. (1)(⊆) Let λ ∈ σp(T ). Let (an) ∈ ℓ2 be the corresponding eigenvector. Then,

T (an) = λ(an); that is, (a1b1, a2b2, . . .) = (λa1, λa2, . . .). Comparing entries, we have

that for each n ∈ N, anbn = λan. Thus, for each n ∈ N, an = 0 or λ = bn. Since (an)

is an eigenvector we cannot have an = 0 for every n ∈ N. Thus, there must be some
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n ∈ N such that λ = bn. Hence, λ ∈ {bn : n ∈ N}. Thus, σp(T ) ⊆ {bn : n ∈ N}.

(⊇) Let bk ∈ {bn : n ∈ N}. Define (cn) by cn = 0 for each n ∈ N\{k} and cn = 1 for

n = k. Since ∥(cn)∥ = 1, (cn) ∈ ℓ2. Observe that

T (cn) = (0b1, 0b2, . . . , 0bk−1, 1bk, 0bk+1, . . .)

= (0, . . . , 0, bk, 0, . . .)

= bk(0, . . . , 0, 1, 0, . . .)

= bk(cn)

Thus, bk is an eigenvalue of T . Thus, by definition bk ∈ σp(T ). Hence,

{bn : n ∈ N} ⊆ σp(T ).

Therefore, {bn : n ∈ N} = σp(T ), as desired.

(2) By part (1), we know for each n ∈ N, bn is an eigenvalue of T . Thus, T − bnI

is not one-to-one, and hence not invertible. Thus, {bn : n ∈ N ⊆ σ(T ). By theorem

41, 0 ∈ σ(T ). Thus, {bn : n ∈ N} ∪ {0} ⊆ σ(T ). To show the reverse containment,

let λ ∈ σ(T ). Either λ = 0 or λ ̸= 0. If λ = 0, then λ ∈ {bn : n ∈ N} ∪ {0}.

If λ ̸= 0, by the Fredholm Alternative Theorem, λ is an eigenvalue of T . Thus,

λ ∈ σp(T ) = {bn : n ∈ N} ⊆ {bn : n ∈ N} ∪ {0}. Thus, we have shown that every

λ ∈ σ(T ) is also in {bn : n ∈ N} ∪ {0}; that is, σ(T ) ⊆ {bn : n ∈ N} ∪ {0}. Therefore,

σ(T ) = {bn : n ∈ N} ∪ {0}.

(3) By claim 2, σap(T )
C = {λ ∈ C : T−λI is one-to-one and range (T−λI) is closed}.

Since T − λI is one-to-one if and only if λ is not an eigenvalue of T , we have

{λ ∈ C : T − λI is one-to-one} = σp(T )
C
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= {bn : n ∈ N}C (3.14)

= {λ ∈ C : λ ̸= bn for any n ∈ N}

Line (3.14) follows by part (1) of this example. By theorem 30, range (T − λI) is

closed for every λ ̸= 0. Thus, {λ ∈ C : range (T − λI) is closed} = {0}C . Hence,

σap(T )
C = σp(T )

C ∩ {0}C (3.15)

= (σp(C) ∪ {0})C

= ({bn : n ∈ N} ∪ {0})C (3.16)

Line (3.15) follows from claim 2. Line (3.16) follows from part (1) of this exam-

ple. By taking the complement of both sides of the above equation, we obtain

σap(T ) = {bn : n ∈ N} ∪ {0}.

(4) Since T ∗(an) = (anbn), it follows by the same argument as in part (1) that

σp(T
∗) = {bn : n ∈ N}. Thus, σp(T

∗)C = {bn : n ∈ N}C . Since T is compact, T ∗ is

compact. Thus, by theorem 30, {λ ∈ C : range (T ∗ − λI) is closed} = {0}C . Thus,

σap(T
∗)C = σp(T

∗)C ∩ {0}C (3.17)

= (σp(T
∗) ∪ {0})C

= ({bn : n ∈ N} ∪ {0})C

Line (3.17) follows from claim 2. By taking the complement of both sides of the above

equation, we have σap(T
∗) = {bn : n ∈ N} ∪ {0}. By lemma 47, Γ(T ) = (σap(T

∗))∗.

Therefore, Γ(T ) = {bn : n ∈ N} ∪ {0}.
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Chapter 4

NUMERICAL RANGE

Def: Let A ∈ B(H). The numerical range of A, denoted W(A), is the set

W(A) = {⟨Av, v⟩ : v ∈ H, ∥v∥ = 1}.

The following result that the numerical range of a bounded operator is always convex,

known as the Toeplitz-Hausdorff Theorem, is one of the most famous results about

the numerical range of a general bounded operator. We will make much use of this

result throughout the rest of this thesis.

Theorem 48 (Toeplitz-Hausdorff Theorem). If A ∈ B(H), then W(A) is a convex

subset of C.

The following proof is adapted from [11].

Proof. Assume A ∈ B(H), where H is a Hilbert space. Let λ, µ ∈ W(H) be distinct.

We will show that tλ + (1 − t)µ ∈ W(A) for t ∈ [0, 1]. Since λ ̸= µ, we can define

α =
−µ

λ− µ
and β =

1

λ− µ
. We claim that tλ + (1 − t)µ ∈ W(A) if and only if

t ∈ W(αI + βA).

(=⇒) Let tλ + (1 − t)µ ∈ W(A). Then, there exists some v ∈ H with ∥v∥ = 1 such

that tλ+ (1− t)µ = ⟨Av, v⟩. Since λ− µ ̸= 0, we can solve for t:

t =
1

λ− µ
⟨Av, v⟩ − µ

λ− µ

= β⟨Av, v⟩+ α
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= ⟨βAv, v⟩+ α ∥v∥2

= ⟨βAv, v⟩+ α⟨v, v⟩

= ⟨βAv, v⟩+ ⟨αv, v⟩

= ⟨βAv + αv, v⟩

= ⟨(αI + βA)v, v⟩

∈ W(αI + βA) (4.1)

Line (4.1) follows from ∥v∥ = 1.

(⇐=) Let t ∈ W(αI + βA). Then, there exists some v ∈ H with ∥v∥ = 1 such that

t = ⟨(αI + βA)v, v⟩. By properties of inner products, it follows

t = ⟨(αI + βA)v, v⟩

= ⟨αv + βAv, v⟩

= ⟨αv, v⟩+ ⟨Av, v⟩

= α⟨v, v⟩+ β⟨Av, v⟩

= α + β⟨Av, v⟩

Thus, since β ̸= 0,
t− α

β
= ⟨Av, v⟩ ∈ W(A). By the definition of α and β defined

earlier, we have that

t− α

β
=

t+ µ
λ−µ

1
λ−µ

=

(
t+

µ

λ− µ

)
(λ− µ)

= t(λ− µ) + µ

= λt+ µ(1− t)
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Thus, λt + µ(1 − t) ∈ W(A). Therefore, tλ + (1 − t)µ ∈ W(A) if and only if

t ∈ W(αI + βA) as previously claimed.

Since λ, µ ∈ W(A), there exist u, v ∈ H with ∥u∥ = 1 and ∥v∥ = 1, such that

λ = ⟨Au, u⟩ and µ = ⟨Av, v⟩. Now,

⟨(αI + βA)u, u⟩ = ⟨αu, u⟩+ β⟨Au, u⟩

= α⟨u, u⟩+ β⟨Au, u⟩

= α + βλ

=
−µ

λ− µ
+

λ

λ− µ
(4.2)

=
λ− µ

λ− µ

= 1

Line (4.2) follows from the definition of α and β. Similarly, we also have

⟨(αI + βA)v, v⟩ = α + βµ (4.3)

=
−µ

λ− µ
+

µ

λ− µ

= 0

Line (4.3) follows from the definition of α and β.

Define g : R −→ C by g(θ) = ⟨Sv, u⟩e−iθ + ⟨Su, v⟩eiθ, where u, v are defined above,

and S = αI + βA. Note that since u, v ∈ H are fixed, ⟨Sv, u⟩, ⟨Su, v⟩ ∈ C are also
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fixed. Thus, because e−iθ, eiθ are continuous, it follows that g is continuous. Thus,

the imaginary part of g, denoted Img, is a continuous real-valued function. Note that

g(θ + π) = ⟨Sv, u⟩e−i(θ+π) + ⟨Su, v⟩ei(θ+π)

= ⟨Sv, u⟩e−iθe−iπ + ⟨Su, v⟩eiθeiπ

= −⟨Sv, u⟩e−iθ − ⟨Su, v⟩eiθ

= −g(θ)

From the above equality and the fact that g(0) = g(2π), it follows that

Im(g(0)) = −Im(g(π)). Thus, we see that Im(g(0)) and Im(g(π)) have opposite signs.

Since Img is a continuous function and Im(g(0)) and Im(g(π)) have opposite signs,

it follows by the Intermediate Value Theorem that there exists some θ0 ∈ (0, π) such

that Im(g(θ0)) = 0.

We claim that v and eiθ0u are linearly independent. We proceed by contradiction.

Assuming v and eiθ0u are linearly dependent, there exists some γ ∈ C such that

v = γeiθ0u, unless eiθ0u = 0v, in which case we would contradict that ∥u∥ = 1. Now,

0 = ⟨(αI + βA)v, v⟩ (4.4)

= ⟨(αI + βA)γeiθ0u, γeiθ0u⟩

= (γeiθ0)(γe−iθ0)⟨(αI + βA)u, u⟩

= (γeiθ0)(γe−iθ0) (4.5)

= |γ|2
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Line (4.4) follows from the previously proven fact that ⟨(αI + βA)v, v⟩ = 0. Line

(4.5) follows from the similar previously proven fact that ⟨(αI + βA)u, u⟩ = 1. Since

|γ|2 = 0, it must follow |γ| = 0, and so γ = 0. This implies that ∥v∥ = ∥0∥ = 0,

which contradicts the assumption that ∥v∥ = 1. Therefore, we must conclude that v

and eiθ0u are linearly independent as previously claimed.

Since v and eiθ0u are linearly independent, it follows that (1 − t)v + teiθ0u ̸= 0 for

every t ∈ [0, 1]. Thus,
∥∥(1− t)v + teiθ0u

∥∥ ̸= 0. Hence, for each t ∈ [0, 1], we can

define the unit vector zt =
(1− t)v + teiθ0u

∥(1− t)v + teiθ0u∥
. We note that the function mapping

t 7→ zt is continuous, because t and 1 − t are continuous functions and v, eiθ0u ∈ H

are fixed. Also note that

⟨(αI + βA)z0, z0⟩ =
〈
(αI + βA)

v

∥v∥
,

v

∥v∥

〉
= ⟨(αI + βA)v, v⟩ (4.6)

= 0 (4.7)

Line (4.6) follows from the fact that ∥v∥ = 1. Line (4.7) follows from the definition

of v. Thus, we have shown 0 ∈ W(αI + βA). Similarly, we also have

⟨(αI + βA)z1, z1⟩ =
〈
(αI + βA)

eiθ0u

∥eiθ0u∥
,

eiθ0u

∥eiθ0u∥

〉
=

eiθ0e−iθ0

∥eiθ0∥2

〈
(αI + βA)

u

∥u∥
,

u

∥u∥

〉
=

eiθ0e−iθ0

∥eiθ0∥2
⟨(αI + βA)u, u⟩ (4.8)

=
eiθ0e−iθ0

∥eiθ0∥2
(4.9)

=
|eiθ0|2

|eiθ0|2
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= 1

Line (4.8) follows from the fact that ∥u∥ = 1. Line (4.9) follows from the definition

of u. Thus, we have shown 1 ∈ W(αI + βA).

Lastly, define f : [0, 1] −→ C by f(t) = ⟨(αI + βA)zt, zt⟩. Since the function that

maps t 7→ zt is continuous and the inner product is continuous, it follows that f is a

continuous function as well. By the work above, we have that

f(0) = ⟨(αI + βA)z0, z0⟩ = 0 and f(1) = ⟨(αI + βA)z1, z1⟩ = 1. Therefore, by the

Intermediate Value Theorem, it must follow that [0, 1] ⊆ W(αI + βA). Therefore, by

the very first claim (i.e. tλ+ (1− t)µ ∈ W(A) ⇐⇒ t ∈ W(αI + βA)), it follows that

tλ+ (1− t)µ ∈ W(A) for every t ∈ [0, 1]; that is, W(A) is convex.

Theorem 49. Let H1 and H2 be inner product spaces. If T1 ∈ B(H1) and T2 ∈ B(H2),

then W(T1

⊕
T2) = conv{W(T1) ∪ W(T2)}.

Proof. Assume H1, H2 are inner product spaces and T1 ∈ B(H1), T2 ∈ B(H2).

(⊆) Let λ ∈ W(T1

⊕
T2). Thus, λ =

〈
(T1

⊕
T2)h, h

〉
H1

⊕
H2

for some h ∈ H1

⊕
H2

with ∥h∥H1
⊕

H2
= 1. Since h ∈ H1

⊕
H2, there exist h1 ∈ H1 and h2 ∈ H2 such that

h = h1 ⊕ h2. Note

λ =
〈
(T1

⊕
T2)h, h

〉
H1

⊕
H2

=
〈
(T1

⊕
T2)(h1 ⊕ h2), h1 ⊕ h2

〉
H1

⊕
H2

= ⟨T1h1 ⊕ T2h2, h1 ⊕ h2⟩H1
⊕

H2 (4.10)
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= ⟨T1h1, h1⟩H1 + ⟨T2h2, h2⟩H2 (4.11)

= ∥h1∥2H1

〈
T1

h1

∥h1∥
,

h1

∥h1∥

〉
H1

+ ∥h2∥2H2

〈
T2

h2

∥h2∥
,

h2

∥h2∥

〉
H2

Line (4.10) follows from the definition of the direct sum of two operators. Line (4.11)

follows from the definition of the inner product in the direct sum of two inner product

spaces. By definition,
〈
T1

h1

∥h1∥
,

h1

∥h1∥

〉
H1

∈ W(T1) and
〈
T2

h2

∥h2∥
,

h2

∥h2∥

〉
H2

∈ W(T2).

By definition of the inner product in H1

⊕
H2, ∥h∥2H1

⊕
H2

= ∥h1∥2H1
+∥h2∥2H2

. There-

fore, ∥h1∥2H1
+ ∥h2∥2H2

= 1. Thus, by the definition of the convex hull, we have

λ = ∥h1∥2H1

〈
T1

h1

∥h1∥
,

h1

∥h1∥

〉
H1

+ ∥h2∥2H2

〈
T2

h2

∥h2∥
,

h2

∥h2∥

〉
H2

∈ conv{W(T1)∪W(T2)}.

Hence, we have shown that W(T ) ⊆ conv{W(T1) ∪ W(T2)}.

(⊇) Let λ ∈ conv{W(T1) ∪ W(T2)}. Then λ =
n∑

i=1

tiαi, where αi ∈ W(T1) ∪ W(T2),
n∑

i=1

ti = 1, and 0 ≤ ti ≤ 1. Since αi ∈ W(T1) ∪ W(T2), αi ∈ W(T1) or αi ∈ W(T2).

Assume without loss of generality that αi ∈ W(T1). Then, there exists some ui ∈ H1

with ∥ui∥H1
= 1, such that ⟨T1ui, ui⟩H1

= αi. Since H2 is a vectorspace, 0 ∈ H2.

Thus, ui ⊕ 0 ∈ H1

⊕
H2. Note that

〈
(T1

⊕
T2)(ui ⊕ 0), ui ⊕ 0

〉
H1

⊕
H2

= ⟨T1ui ⊕ T20, ui ⊕ 0⟩H1
⊕

H2

= ⟨T1ui, ui⟩H1 + ⟨T20, 0⟩H2

= αi + 0

= αi

By definition of the inner product in H1

⊕
H2, ∥ui ⊕ 0∥2H1

⊕
H2

= ∥ui∥2H1
+∥0∥2H2

= 1.

Thus, ∥ui ⊕ 0∥H1
⊕

H2
= 1. Thus, by definition we have that

αi = ⟨(T1

⊕
T2)(ui ⊕ 0), ui ⊕ 0⟩H1

⊕
H2

∈ W(T1

⊕
T2). Since W(T1

⊕
T2) is convex

(this is the Toeplitz-Hausdorff theorem), it follows that λ ∈ W(T1

⊕
T2). Thus,
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conv{W(T1) ∪ W(T2)} ⊆ W(T1

⊕
T2).

Therefore, W(T1

⊕
T2) = conv{W(T1) ∪ W(T2)}, as desired.

Proposition 2. If A ∈ B(H), then σp(A) ⊆ W(A).

Proof. Assume A ∈ B(H). Let λ ∈ σp(A). It follows by definition that λ is an

eigenvalue of A. Thus, there exists some nonzero v ∈ H such that Av = λv. Since

v ̸= 0, ∥v∥ ≠ 0. Hence, A v
∥v∥ = λ v

∥v∥ and
∥∥∥ v
∥v∥

∥∥∥ = 1. Hence,〈
A v

∥v∥ ,
v

∥v∥

〉
=
〈
λ v

∥v∥ ,
v

∥v∥

〉
= λ

〈
v

∥v∥ ,
v

∥v∥

〉
= λ. Thus, λ ∈ W(A). Therefore,

σp(A) ⊆ W(A), as desired.

Proposition 3. If A ∈ B(H), then W(A) lies in the closed disk of radius ∥A∥ centered

at 0.

Proof. Assume A ∈ B(H). Let a ∈ W(A). Then, a = ⟨Av, v⟩ for some v ∈ H with

∥v∥ = 1. Now,

|a| = |⟨Av, v⟩|

≤ ∥Av∥ ∥v∥ (4.12)

= ∥Av∥

≤ ∥A∥ (4.13)

Line (4.12) follows by the Cauchy-Schwarz inequality. Line (4.13) follows from the

definition of the operator norm. Therefore, we have shown that W(A) lies inside the

closed disk of radius ∥A∥, centered at 0.
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Claim 4. If A ∈ B(H), then W(A∗) = {λ : λ ∈ W(A)}

Proof. Assume A ∈ B(H).

(⊆) Let µ ∈ W(A∗). Then there exists v ∈ H with ∥v∥ = 1 such that µ = ⟨A∗v, v⟩.

By the definition of the adjoint µ = ⟨A∗v, v⟩ = ⟨v, A∗∗v⟩ = ⟨v, Av⟩. Thus,

µ = ⟨v, Av⟩ = ⟨Av, v⟩. Since v ∈ H and ∥v∥ = 1, ⟨Av, v⟩ ∈ W(A). Thus, µ ∈ W(A).

Since µ = µ, it follows that W(A∗) ⊆ {λ : λ ∈ W(A)}.

(⊇) Let γ ∈ {λ : λ ∈ W(A)}. Then, γ ∈ W(A). Hence, there exists some v ∈ H

with ∥v∥ = 1 such that γ = ⟨Av, v⟩. By definition of the adjoint, γ = ⟨v,A∗v⟩.

Therefore, γ = γ = ⟨v, A∗v⟩ = ⟨A∗v, v⟩. By definition ⟨A∗v, v⟩ ∈ W(A∗). Hence,

{λ : λ ∈ W(A)} ⊆ W(A∗).

Therefore, W(A∗) = {λ : λ ∈ W(A)}.

Example 6. Let S ∈ B(ℓ2) denote the forward shift operator. Then, W(S) = D (the

open unit disk.)

Proof. We will prove that W(S) = D by showing W(S∗) = D, where S∗ is the adjoint

of S. Note that S∗ is the backward shift operator.

(⊆) In the proof of σp(S) = D, we showed ∥S∥ = 1, hence, ∥S∗∥ = 1 since an operator

and its adjoint have the same norm. Thus, by proposition 3, W(S∗) lies inside D;

that is, W(S∗) ⊆ D. Thus, we only need to show that W(S∗) contains no points

in ∂D to complete the forwards containment. Let λ ∈ ∂D. Consequently, |λ| = 1.

Seeking a contradiction, suppose λ ∈ W(S∗). Then, there exists some (an) ∈ ℓ2 with

∥(an)∥ = 1, such that λ = ⟨S∗(an), (an)⟩. Thus,

1 = |λ|

= |⟨S∗(an), (an)⟩| (4.14)
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≤ ∥S∗(an)∥ ∥(an)∥ (4.15)

= ∥S∗(an)∥

≤ ∥S∗∥ ∥(an)∥

= 1

Line (4.15) follows by the Cauchy-Schwarz inequality. From the above we obtain the

inequality 1 ≤ ∥S∗(an)∥ ≤ 1. Thus, we have ∥S∗(an)∥ = 1. Hence, ∥S∗(an)∥2 = 1.

Since ∥(an)∥ = 1, we have ∥(an)∥2 = 1, as well. Hence, ∥S∗(an)∥2 = ∥(an)∥2. It fol-

lows, by definition of the ℓ2-norm, that
∑∞

n=1 |an|2 =
∑∞

n=0 |an|2. Therefore, it must

be the case that |a0|2 = 0, and so a0 = 0. Also by the above, we must have equality

between lines (4.14) and (4.15): |⟨S∗(an), (an)⟩| = ∥S∗(an)∥ ∥(an)∥. Thus, S∗(an) is

simply a scalar multiple of (an). In particular, the scalar multiple must be λ because

λ = ⟨S∗(an), (an)⟩. Therefore, we have S∗(an) = λ(an). So, by definition of the back-

ward shift operator, S∗, we have (a1, a2, a3, . . .) = (λa0, λa1, λa2, . . .). Equating en-

tries, we obtain an = λna0 for each n ∈ N. Thus, we have S∗(an) = a0(1, λ, λ
2, λ3, . . . ).

Since a0 = 0, we see S∗(an) = (0). Thus, (an) = (0). So, ∥(an)∥ = 0, which contra-

dicts that ∥(an)∥ = 1. Therefore, we must conclude that W(S∗) contains no points

in ∂D. Therefore, W(S∗) ⊆ D.

(⊇) Let λ ∈ D. Then, |λ| < 1. Hence, by lemma 46, λ is an eigenvalue of S∗. Thus,

by proposition 2, λ ∈ W(S∗). Thus, D ⊆ W(S∗).

Therefore, W(S∗) = D. So, by claim 4, W(S) = W(S∗∗) = {λ : λ ∈ D} = D, as

desired.
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Def: Let Λ be a set and λn1 , λn2 , . . . , λnk
∈ Λ. The convex combination of

λn1 , λn2 , . . . , λnk
is t1λn1 + t2λn2 + · · · + tkλnk

, where 0 ≤ t1, t2, . . . , tk ≤ 1 and

t1 + t2 + · · ·+ tk = 1.

Def: Let Λ be a set. The convex hull of Λ, denoted conv(Λ), is the set of all finite

convex combinations of Λ. The infinite convex hull of Λ, denoted conv∞(Λ), is the

set of all infinite convex combinations of Λ.

Lemma 50. Let Λ be a set and α, β ∈ C. Then,

1. conv(αΛ) = αconv(Λ)

2. conv(Λ + β) = conv(Λ) + β

Proof. Let Λ be a set and α, β ∈ C.

(1) By definition of conv(Λ), x ∈ αconv(Λ) if and only if

x = α(t1λn1 + t2λn2 + . . .+ tkλnk
)

for some λn1 , λn2 , . . . , λnk
∈ Λ and 0 ≤ t1, t2, . . . , tk ≤ 1 such that t1+t2+ · · ·+tk = 1.

Now,

x = α(t1λn1 + t2λn2 + . . .+ tkλnk
)

= t1αλn1 + t2αλn2 + . . .+ tkαλnk

∈ conv(αΛ)

Therefore, conv(αΛ) = αconv(Λ).
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(2) Also by the definition of conv(Λ), x ∈ conv(Λ+ β) if and only if there exist some

λn1 , λn2 , . . . , λnk
∈ Λ and 0 ≤ t1, t2, . . . , tk ≤ 1 with t1 + t2 + · · · + tk = 1 such that

x = t1(λn1 + β) + t2(λn2 + β) + · · ·+ tk(λnk
+ β). Now,

x = t1(λn1 + β) + t2(λn2 + β) + · · ·+ tk(λnk
+ β)

= t1λn1 + t1β + t2λn2 + t2β + · · ·+ tkλnk
+ tkβ

= t1λn1 + t2λn2 + · · ·+ tkλnk
+ (t1 + t2 + · · ·+ tk)β

= t1λn1 + t2λn2 + · · ·+ tkλnk
+ β

∈ conv(Λ) + β (4.16)

Line (4.16) follows from the fact that t1 + t2 + · · ·+ tk = 1. Therefore,

conv(Λ + β) = conv(Λ) + β.

Note. By replacing the finite sums with infinite sums in the previous proof we find

that conv∞(αΛ) = αconv∞(Λ) and conv∞(Λ + β) = conv∞(Λ) + β.

Proposition 4 (Shapiro, Prop 2.6). If Λ = {λn ∈ C : n ∈ N} is a countable set of

complex numbers, then conv∞(Λ) = conv(Λ).

The following proof is adapted from the proof given in [14].

Proof. Clearly, conv(Λ) ⊆ conv∞(Λ). To show the reverse containment, let

p ∈ conv∞(Λ). Define Λp = Λ − p. Then, by lemma 50 and the following note,

conv∞(Λ) − p = conv∞(Λp). Since p ∈ conv∞(Λ), it follows that 0 ∈ conv∞(Λp).

Seeking a contradiction, suppose that p ̸∈ conv(Λ). Then 0 ̸∈ conv(Λp). Thus,

there exists a line separating 0 from conv(Λp). We note that this separating line is
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not necessarily a strictly separating line, since if 0 were a limit point of Λ the con-

vergence would violate the strict separation. By some rotation eiθ about the origin

and lemma 50, conv(eiθΛp) ⊆ H+, where H+ denotes the closed upper half-plane. It

follows that conv∞(eiθΛp) ⊆ H+. Since eiθΛp ⊆ conv(eiθΛp), we also have eiθΛp ⊆ H+.

Since 0 ∈ conv∞(Λp), 0 ∈ eiθconv∞(Λ). Thus, by lemma 50, 0 ∈ conv∞(eiθΛp). Thus,

we can write 0 =
∞∑
n=1

ane
iθλn, where 0 ≤ an ≤ 1 for each n ∈ N with

∞∑
n=1

an = 1, and

λn ∈ Λp for each n ∈ N. If only finitely many an’s are nonzero, then we automatically

have 0 ∈ conv(eiθΛp), which by lemma 50 gives 0 ∈ conv(Λp), contradicting that

0 ̸∈ conv(Λp). Therefore, we must have that infinitely many an’s must be nonzero.

Let anj
denote these infinitely many nonzero scalars. Note that

0 =
∞∑
n=1

ane
iθλn

=
∞∑
n=1

an(Re(eiθλn) + iIm(eiθλn))

=
∞∑
n=1

anRe(eiθλn) + i
∞∑
n=1

anIm(eiθλn)

Thus, it follows that
∞∑
n=1

anIm(eiθλn) = 0. Since eiθΛp ⊆ H+, it follows that

Im(eiθλn) ≥ 0 for every n ∈ N. By assumption an ≥ 0 for every n ∈ N. Thus,

anIm(eiθλn) ≥ 0 for each n ∈ N. Thus, the only way
∞∑
n=1

anIm(eiθλn) = 0 can hold is

if anIm(eiθλn) = 0 for each n ∈ N. Therefore, we must have Im(eiθλn) = 0 for each

an ̸= 0; that is, for each n ∈ N such that an ̸= 0, eiθλn ∈ R. Note that for each

n ∈ N, eiθλn ̸= 0, because if eiθλn = 0, then λn = 0, and since λn ∈ conv(Λp), this

would imply that 0 ∈ conv(Λp), contradicting that 0 ̸∈ conv(Λp).
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Recall that anj
denotes the infinitely many nonzero an’s. Thus,

∞∑
j=1

anj
eiθλnj

= 0,

where 0 < anj
≤ 1 for each nj ∈ N, and

∞∑
j=1

anj
= 1. Since each λn ̸= 0, we know that

each λnj
̸= 0. Since anj

> 0 and eiθλnj
̸= 0, the only way

∞∑
j=1

anj
eiθλnj

= 0 can hold

is if at least one eiθλnj
is negative and at least one is positive. So, assume eiθλnl

< 0

and eiθλnm > 0. Then, [eiθλnl
, eiθλnm ] is an interval on the real line containing the

origin. Since λnl
, λnm ∈ Λp, it follows that [eiθλnl

, eiθλnm ] ⊆ eiθconv(Λp) by lemma 50.

In particular, 0 ∈ eiθconv(Λp). Thus, 0 ∈ conv(Λp), contradicting that 0 ̸∈ conv(Λp).

Therefore, we must conclude that p ∈ conv(Λ). Thus,

conv∞(Λ) ⊆ conv(Λ). Therefore, conv∞(Λ) = conv(Λ), as desired.

Example 7. Let (bn) be a sequence in C such that lim
n→∞

bn = 0. Define the diag-

onal operator T ∈ C(ℓ2) by T (an) = (anbn). Then, W(T ) is the convex hull of the

eigenvalues of T .

Proof. Let B = {bn : n ∈ N}. Note that by example 5, B = σp(T ), which by definition

is the set of all eigenvalues of T .

(⊆) Let x ∈ conv(B). Then, x =
k∑

i=1

tibni
, where 0 ≤ t1, . . . , tk ≤ 1,

k∑
i=1

ti = 1, and

bn1 , . . . , bnk
∈ B. Since each bni

is an eigenvalue of T , let uni
∈ ℓ2 be the corresponding

unit eigenvectors. Since T is normal (this is obvious or can easily be shown), these

eigenvectors must be orthogonal by theorem 21. Define u =
k∑

i=1

√
tiuni

. Note that

∥u∥2 =

〈
k∑

i=1

√
tiuni

,
k∑

i=1

√
tiuni

〉

=
k∑

i=1

〈
√
tiuni

,

k∑
i=1

√
tiuni

〉

=
k∑

i=1

(
k∑

j=1

⟨
√
tiuni

,
√

tjunj
⟩

)
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=
k∑

i=1

(
k∑

j=1

√
ti(
√

tj)⟨uni
, unj

⟩

)

=
k∑

i=1

ti⟨uni
, uni

⟩ (4.17)

=
k∑

i=1

ti (4.18)

= 1

Line (4.17) follows from the eigenvectors being orthogonal. Line (4.18) follows from

the eigenvectors being of unit length. Since norms are always non-negative it follows

that ∥u∥ = 1. Thus, ⟨Tu, u⟩ ∈ W(T ).

Also note that,

⟨Tu, u⟩ =

〈
T

(
k∑

i=1

√
tiuni

)
, u

〉

=

〈
k∑

i=1

T (
√
tiuni

), u

〉

=

〈
k∑

i=1

√
tibni

uni
, u

〉

=
k∑

i=1

〈√
tibni

uni
, u
〉

=
k∑

i=1

〈
√
tibni

uni
,

k∑
j=1

√
tjunj

〉

=
k∑

i=1

(
k∑

j=1

⟨
√
tibni

uni
,
√

tjunj
⟩

)

=
k∑

i=1

⟨
√
tibni

uni
,
√
tiuni

⟩

=
k∑

i=1

√
ti(

√
ti)bni

⟨uni
, uni

⟩
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=
k∑

i=1

tibni
⟨uni

, uni
⟩ (4.19)

=
k∑

i=1

tibni
(4.20)

= x

Line (4.19) follows from the eigenvectors being orthogonal. Line (4.20) follows from

the eigenvectors being of unit length. Thus, we have shown that x = ⟨Tu, u⟩. Thus,

we have that x = ⟨Tu, u⟩ ∈ W(T ). Therefore, conv(B) ⊆ W(T ).

(⊇) Let x ∈ W(T ). Then, x = ⟨T (vn), (vn)⟩ for some (vn) ∈ ℓ2 with ∥(vn)∥ = 1.

Thus, ∥(vn)∥2 = 1. So, by definition of the ℓ2-norm,
∞∑
n=1

|vn|2 = 1. We note that

|vn|2 ≥ 0 for each n ∈ N, and clearly |vn|2 ≤ 1 for each n ∈ N. Note that

x = ⟨Tv, v⟩

= ⟨(vnbn), (vn)⟩

=
∞∑
n=1

vnbnvn

=
∞∑
n=1

|vn|2bn

This last line is an infinite convex combination of bn’s. Thus, x ∈ conv∞(B). By

proposition 4, conv∞(B) = conv(B). Hence, x ∈ conv(B). And so, W(T ) ⊆ conv(B).

Therefore, W(T ) = conv(B), as desired.

We now turn to generalizing the previous example. To do so, we first remind the

reader of the difference between a basis and an orthonormal basis:
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Def: Let H be a Hilbert space and {hn : n ∈ N} ⊆ H. We say {hn : n ∈ N} is a basis

for H, if for each h ∈ H there exist hn1 , . . . , hnk
∈ {hn : n ∈ N} and α1, . . . , αk ∈ C,

such that h = α1hn1 + · · ·+ αkhnk
.

Def: Let H be a Hilbert space and let

S = {hn : n ∈ N, ⟨hn, hm⟩ = 0 if n ̸= m and ⟨hn, hm⟩ = 1 otherwise} ⊆ H

We say S is an orthonormal basis for H, if for each h ∈ H there exist αn ∈ C such

that h =
∞∑
n=1

αnhn.

Theorem 51. If T ∈ C(H) is normal, then W(T ) is the convex hull of the eigenvalues

of T .

Proof. Assume T ∈ C(H) is normal. By the spectral theorem for normal compact

operators, there exists an orthonormal basis for H composed of eigenvectors of T .

Let {en}∞n=1 denote these eigenvectors and Λ = {λn}∞n=1 denote the corresponding

eigenvalues.

(⊆) Without any modification we use the proof of example 7 to conclude conv(Λ) ⊆

W(T ).

(⊇) Let x ∈ W(T ). Then, x = ⟨Tf, f⟩ for some f ∈ H with ∥f∥ = 1. Since {ej}∞j=1

is an orthonormal basis for H, there exist αj ∈ C such that
∞∑
n=1

αnen. Since ∥f∥ = 1,

∥f∥2 = 1. Thus,

1 =

〈
∞∑
n=1

αnen,

∞∑
n=1

αnen

〉

=
∞∑
n=1

〈
αnen,

∞∑
n=1

αnen

〉
(4.21)
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=
∞∑
n=1

(
∞∑

m=1

⟨αnen, αmem⟩

)
(4.22)

=
∞∑
n=1

(
∞∑

m=1

αnαm⟨en, em⟩

)

=
∞∑
n=1

|αn|2 (4.23)

Lines (4.21) and (4.22) follow from the inner product being continuous in one com-

ponent. Line (4.23) follows from the en’s being orthonormal. We note that |αn|2 ≥ 0

for each n ∈ N. Clearly, it must also be the case that |αn|2 ≤ 1 for each n ∈ N. Now,

x = ⟨Tf, f⟩

=

〈
T

(
∞∑
n=1

αnen

)
,

∞∑
n=1

αnen

〉

=

〈
∞∑
n=1

T (αnen),
∞∑
n=1

αnen

〉
(4.24)

=

〈
∞∑
n=1

αnλnen,
∞∑
n=1

αnen

〉

=
∞∑
n=1

(〈
αnλnen,

∞∑
n=1

αnen

〉)
(4.25)

=
∞∑
n=1

(
∞∑

m=1

⟨αnλnen, αmem⟩

)
(4.26)

=
∞∑
n=1

(
∞∑

m=1

αnλn(αm)⟨en, em⟩

)

=
∞∑
n=1

|αn|2λn (4.27)

∈ conv∞(Λ) (4.28)

Line (4.24) follows from the continuity of T . Lines (4.25) and (4.26) follow from the

inner product being continuous in one component. Line (4.27) follows from the en’s

being orthonormal. Line (4.28) follows from
∞∑
n=1

|αn|2 = 1. By Proposition 4, we have

72



x ∈ conv∞(Λ) ⊆ conv(Λ).

Therefore, W(T ) = conv(Λ).

We now turn to some results on the numerical range of non-normal compact operators.

We look at a few definitions and preliminary results vital to proving these theorems.

Def: Let B be a Banach space, (xn) be a sequence contained in B, and x ∈ B. We

say (xn) converges weakly to x, if for each b ∈ B, lim
n→∞

⟨xn, b⟩ = ⟨x, b⟩.

Lemma 52 ([6], Theorem 4.8.7). Let H be a Hilbert space and T ∈ B(H). Then

T ∈ C(H) if and only if (xn) converging weakly to x implies (Txn) converges to x.

Lemma 53. Let H be an infinite-dimensional Hilbert space and T ∈ C(H). If λ ̸= 0

is a limit point of W(T ), then there exists some x ∈ H with ∥x∥ ≤ 1, such that
λ

∥x∥2
∈ W(T ). Therefore, λ ∈

(
0,

λ

∥x∥2

]
(a line segment in the complex plane).

The following proof is motivated by [5].

Proof. Assume H is an infinite-dimensional Hilbert space and T ∈ C(H). Let λ be

a limit point of W(T ). By definition, there exists some sequence (λn) in W(T ), such

that lim
n→∞

λn = λ and λn ̸= λ for each n ∈ N. Since each λn ∈ W(T ), there exist

xn ∈ H with ∥xn∥ = 1 such that λn = ⟨Txn, xn⟩ for each n ∈ N. Consider this new

sequence (xn) in H. Since ∥xn∥ = 1 for each n ∈ N, the sequence (xn) is contained in

B, where B is the unit ball in H. By the Tychonoff-Alaoglu Theorem, B is weakly
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compact. In a metric space weakly compact is equivalent to weakly sequentially com-

pact. Thus, there exists some subsequence (xnk
) of (xn) that converges weakly to

some x ∈ B ⊆ H. Thus, by lemma 52, lim
k→∞

Txnk
= Tx. Since the inner product is

continuous in each component, it follows that lim
k→∞

⟨Txnk
, xnk

⟩ = ⟨Tx, x⟩.

Since lim
n→∞

⟨Txn, xn⟩ = lim
n→∞

λn = λ any subsequence of (⟨Txn, xn⟩) must also converge

to λ. Since we just showed the subsequence (⟨Txnk
, xnk

⟩) converges to ⟨Tx, x⟩, it must

follow that ⟨Tx, x⟩ = λ. Since λ ̸= 0, it is not possible for x = 0, since ⟨Tx, x⟩ = λ

and ⟨T0, 0⟩ = ⟨0, 0⟩ = 0. Hence, we must have x ̸= 0. Thus, ∥x∥ ≠ 0 and ∥x∥2 ̸= 0.

Hence,

λ

∥x∥2
=

1

∥x∥2
⟨Tx, x⟩

=
1

∥x∥

〈
1

∥x∥
Tx, x

〉
=

1

∥x∥

〈
T

(
x

∥x∥

)
, x

〉
=

〈
T

(
x

∥x∥

)
,

x

∥x∥

〉

=

〈
T

(
x

∥x∥

)
,

x

∥x∥

〉
(4.29)

∈ W(T ) (4.30)

Line (4.29) follows from ∥x∥ being real. Line (4.30) follows from
∥∥∥∥ x

∥x∥

∥∥∥∥ = 1. Since

x ∈ B, ∥x∥ ≤ 1. Thus, λ lies in the line segment

(
0,

λ

∥x∥2

]
⊆ C.

Def: Let S be a convex set. A point x ∈ S is an extreme point of S if x does not

lie in the interior any line segment joining two points of S.
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Claim 5. Let H be an infinite-dimensional Hilbert space, T ∈ C(H), and x ∈ H

be as in the conclusion of lemma 53. If λ ̸= 0 is an extreme point of

[
0,

λ

∥x∥2

]
(the intersection of a ray from 0 and W(T )) and λ is a limit point of W(T ), then

λ ∈ W(T ).

Proof. Let H be an infinite-dimensional Hilbert space, T ∈ C(H), and x ∈ H be

defined as in lemma 53. Assume λ ̸= 0 is an extreme point of

[
0,

λ

∥x∥2

]
and is

a limit point of W(T ). Since λ is an extreme point of

[
0,

λ

∥x∥2

]
, either λ = 0 or

λ =
λ

∥x∥2
. By assumption λ ̸= 0, so we must have λ =

λ

∥x∥2
. Therefore, by lemma

53, λ =
λ

∥x∥2
∈ W(T ).

Recall that for a compact operator T , 0 ∈ σ(T ) ⊆ W(T ) (by theorems 41 and 45).

Thus, claim 5 hints that W(T ) can be expressed as all rays from 0 intersected with

W(T ). We formalize this in the following proposition, which will be of use later.

Proposition 5. Let H be a Hilbert space. If T ∈ C(H), then

W(T ) = {[0, b] : b ∈ W(T )}.

Proof. Let H be an infinite dimensional Hilbert space. Assume T ∈ C(H).

(⊆) Let x ∈ W(T ). Clearly, x ∈ [0, x]. Note that [0, x] ⊆ {[0, b] : b ∈ W(T )} ⊆ W(T ).

Thus, W(T ) ⊆ {[0, b] : b ∈ W(T )}.

(⊇) Consider [0, b], where b ∈ W(T ). By theorem 41, 0 ∈ σ(T ). By theorem 45,

σ(T ) ⊆ ∂W(T ). Therefore, 0 ∈ W(T ). Thus, by the convexity of W(T ), we know

[0, b] ⊆ W(T ). Hence, {[0, b] : b ∈ W(T )} ⊆ W(T ).
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Therefore, W(T ) = {[0, b] : b ∈ W(T )}, as desired.

Note. It is well known that the numerical range of a bounded operator on a finite

dimensional Hilbert space is closed (theorem 54). Since compact operators are closely

related to finite dimensional operators (this is theorem 25), it seems plausible that

its numerical range would be close to that of a finite dimensional operator. This is

summarized in theorem 56.

Theorem 54. Let H be a Hilbert space and T ∈ B(H). If H is finite dimensional,

then W(T ) is closed.

Lemma 55. Let H be a Hilbert space and T ∈ B(H). Define q : H −→ C by

q(v) = ⟨Tv, v⟩ for each v ∈ H. Then, q is continuous on H.

Proof of lemma 55. Let H be a Hilbert space and T ∈ B(H). Define q : H −→ C

by q(v) = ⟨Tv, v⟩ for each v ∈ H. Let ε > 0 and v0 ∈ H. If T = 0, we note q = 0

which is continuous. If T ̸= 0, then ∥T∥ ≠ 0. Define δ = max
{
1,

ε

3 ∥T∥ (∥v0∥+ 1)

}
.

Suppose v ∈ H is such that ∥v − v0∥ < δ. Now,

|q(v)− q(v0)| = |⟨Tv, v⟩ − ⟨Tv0, v0⟩|

= |⟨Tv − Tv0, v − v0⟩+ ⟨Tv − Tv0, v0⟩+ ⟨Tv0, v⟩ − ⟨Tv0, v0⟩|

= |⟨Tv − Tv0, v − v0⟩+ ⟨Tv − Tv0, v0⟩+ ⟨Tv0, v − v0⟩|

≤ |⟨Tv − Tv0, v − v0⟩|+ |⟨Tv − Tv0, v0⟩|+ |⟨Tv0, v − v0⟩| (4.31)

≤ ∥T (v − v0)∥ ∥v − v0∥+ ∥T (v − v0)∥ ∥v0∥+ ∥Tv0∥ ∥v − v0∥ (4.32)

≤ ∥T∥ ∥v − v0∥2 + 2 ∥T∥ ∥v − v0∥ ∥v0∥ (4.33)

< ∥T∥ ∥v − v0∥+ 2 ∥T∥ ∥v − v0∥ ∥v0∥ (4.34)
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< ∥T∥ ε

3 ∥T∥ (∥v0∥+ 1)
+ 2 ∥T∥ ε

3 ∥T∥ (∥v0∥+ 1)
∥v0∥ (4.35)

<
ε

3
+

2ε

3

= ε

Line (4.31) follows from the triangle inequality. Lines (4.32) and (4.33) follow from the

Cauchy-Schwarz inequality. Line (4.34) follows from the fact that ∥v − v0∥ < δ ≤ 1.

Line (4.35) follows from the fact that ∥v − v0∥ < δ ≤ ε

3 ∥T∥ (∥v0∥+ 1)
. Therefore, q

is continuous on H.

Proof of theorem 54. Assume H is a finite dimensional Hilbert space and T ∈ B(H).

Since H is a finite dimensional metric space, it is homeomorphic to Rn, where

n = dim(H). Since the closed unit ball B is closed and bounded, it follows by

the Heine-Borel Theorem that B is compact. By lemma 55 q is continuous. Thus,

q(B) = W(T ) is compact. Again, by the Heine-Borel Theorem, q(B) = W(T ) is

closed and bounded. Therefore, W(T ) is closed, as desired.

Note. Since convex sets are necessarily path connected, we will be using that the

boundary points of the numerical range not contained in the numerical range are

limit points of the numerical range.

Theorem 56 (De Barra et al, Theorem 1). Let H be an infinite-dimensional Hilbert

space and T ∈ C(H), then:

1. 0 ∈ W(T ) if and only if W(T ) is closed.

2. If 0 ̸∈ W(T ), then 0 is an extreme point of W(T ).
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The following proof is adapted from [5].

Proof. Let H be an infinite-dimensional Hilbert space and T ∈ C(H).

(1) (=⇒) Assume 0 ∈ W(T ). Let λ be a limit point of W(T ). If λ = 0, we automati-

cally have λ ∈ W(T ) by assumption. If λ ̸= 0, by lemma 53
λ

∥x∥2
∈ W(T ) for some

x ∈ H with ∥x∥ ≤ 1. Since W(T ) is convex, the line segment

[
0,

λ

∥x∥2

]
is contained

in W(T ). Also by lemma 53, λ ∈

(
0,

λ

∥x∥2

]
. Thus, λ ∈ W(T ). Therefore, W(T ) is

closed.

(⇐=) Assume W(T ) is closed. Consequently, W(T ) = W(T ). By theorem 45,

σ(T ) ⊆ W(T ). Since T is compact, 0 ∈ σ(T ), by theorem 41. Thus, we have

the desired 0 ∈ σ(T ) ⊆ W(T ) = W(T ).

Therefore, 0 ∈ W(T ) if and only if W(T ) is closed.

(2) Assume 0 ̸∈ W(T ). Seeking a contradiction, suppose 0 is not an extreme point

of W(T ). Then, 0 is contained on the interior of some line segment [a, b] on ∂W(T ).

Since 0 is on the interior of [a, b], we can break it into two line segments: [a, 0] and

[0, b]. Note that these line segments are the intersection of rays from 0 and W(T ),

since a, b ∈ ∂W(T ). Since 0 is on the interior of [a, b], we know that a, b ̸= 0. Since

a, b ∈ ∂W(T ), by the note a, b are limit points of W(T ). Clearly, a is an extreme

point of [a, 0] and b is an extreme point of [0, b]. Thus, a, b ∈ W(T ) by Claim

5. By the convexity of W(T ), the line segment [a, b] lies in W(T ). Thus, we have
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0 ∈ [a, b] ⊆ W(T ), which contradicts the assumption that 0 ̸∈ W(T ). Therefore, we

must conclude 0 is an extreme point of W(T ).

Lemma 57 and theorem 58 were formulated and proved while reading [5] (but do not

appear in the paper).

Lemma 57. Let H be an infinite dimensional Hilbert space, T ∈ C(H), and

0 ̸∈ W(T ). Suppose [0, b] is the intersection of a ray from 0 and W(T ). If

λ ∈ W(T ) ∩ [0, b], then [λ, b] ⊆ W(T ).

Proof. Let H be an infinite dimensional Hilbert space, T ∈ C(H), and 0 ̸∈ W(T ). Let

[0, b] denote the intersection of a ray from 0 and W(T ). Assume λ ∈ W(T ) ∩ [0, b].

Since [0, b] ⊆ W(T ), b ∈ W(T ). If b ∈ W(T ), then by convexity we automatically have

[λ, b] ⊆ W(T ). If b ̸∈ W(T ), then b ∈ W(T )\W(T ); that is, b is a limit point of W(T ).

If b = 0, then [0, b] = {0} ⊆ W(T )\W(T ). Thus, there can be no λ ∈ W(T ) ∩ [0, b],

contradicting our assumption. Hence, we must have b ̸= 0. Thus, by lemma 53,

there exists some x ∈ H with ∥x∥ ≤ 1 such that b ∈

(
0,

b

∥x∥2

]
and

b

∥x∥2
∈ W(T ).

Since 0 < ∥x∥ ≤ 1, it follows that (0, b] ⊆

(
0,

b

∥x∥2

]
; that is,

b

∥x∥2
sits on the

same ray from 0 as b does, just potentially “farther out” than b on this ray. Since

[0, b] is the intersection of this ray from 0 with W(T ), it is not possible for
b

∥x∥2

to fall strictly after b on this ray. If
b

∥x∥2
did fall strictly after b on this ray, then

b

∥x∥2
̸∈ W(T ). Thus,

b

∥x∥2
̸∈ W(T ), contradicting lemma 53. Since

b

∥x∥2
cannot fall

strictly after b, we cannot have ∥x∥2 < 1. Hence, ∥x∥2 = 1. And so, ∥x∥ = 1. Thus,

b =
b

∥x∥2
∈ W(T ). Therefore, by convexity [λ, b] ⊆ W(T ), as desired.
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The following figure illustrates the argument from the proof of lemma 57:

0

λ
b

b

∥x∥2

Figure 1.

Note. If T is a bounded operator on a finite dimensional Hilbert space, then by

theorem 54 W(T )\W(T ) = ∅. Theorem 56 says that for a compact operator on

an infinite dimensional Hilbert space, W(T )\W(T ) = ∅ if and only if 0 ∈ W(T ).

The next theorem describes that for a compact operator T on an infinite dimensional

Hilbert space and 0 ̸∈ W(T ), W(T )\W(T ) is small (either {0} or the union of line

segments).

Theorem 58. Let H be an infinite dimensional Hilbert space, T ∈ C(H), and

0 ̸∈ W(T ). Let b ∈ W(T )\W(T ) and [0, c] be the intersection of W(T ) with the ray

from 0 that contains b. Then, either b = 0, or [0, b] ⊆ W(T )\W(T ) and there exists

λ ∈ W(T ) such that b ∈ [0, λ], [0, λ) ⊆ W(T )\W(T ), and (λ, c] ⊆ W(T ).

Proof. Let H be an infinite dimensional Hilbert space and T ∈ C(H). Assume

0 ̸∈ W(T ). Suppose b ∈ W(T )\W(T ) and b ̸= 0. Since 0 ∈ W(T ), by con-

vexity [0, b] ⊆ W(T ). So, we need only show that [0, b] ∩ W(T ) = ∅. Seek-

ing a contradiction, suppose there exists λ ∈ [0, b] ∩ W(T ). Then, by lemma 57,
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[λ, c] ⊆ W(T ). Since b ∈ [λ, c], it follows that b ∈ W(T ), contradicting the assump-

tion that b ∈ W(T )\W(T ). Therefore, we must conclude that [0, b] ∩ W(T ) = ∅.

Hence, [0, b] ⊆ W(T )\W(T ).

By lemma 53, there exists x ∈ H with ∥x∥ ≤ 1 such that b ∈

(
0,

b

∥x∥2

]
and

b

∥x∥2
∈ W(T ). Note we can write

(
0,

b

∥x∥2

]
=

{
tb : 0 < t ≤ 1

∥x∥2

}
. Define

t0 = inf
{
t : 0 < t ≤ 1

∥x∥2
and tb ∈ W(T )

}
. We note that the infimum exists by the

Axiom of Completeness, since this set is bounded (below by 0 and above by 1/ ∥x∥2)

and is nonempty, since
b

∥x∥2
∈ W(T ).

Define λ = t0b. Since it’s possible the above set does not achieve its infimum, all we

can conclude is that λ ∈ W(T ). Since ∥x∥ ≤ 1, it follows 1 ≤ 1

∥x∥2
. Since b ̸∈ W(T ),

t0 ≥ 1. Hence, b falls “before” t0b on the line segment [0, c] (or b = t0b). That is,

b ∈ [0, t0b].

By definition of infimum, t0 ≤ t for each 0 < t ≤ 1

∥x∥2
such that tb ∈ W(T ). Thus,

t0b falls “before” each tb ∈ W(T ) that lies on

(
0,

b

∥x∥2

]
. This implies (0, t0b) contains

no points in W(T ), otherwise we would contradict the definition of infimum. Thus,

(0, t0b) ⊆ W(T )\W(T ). Since 0 ∈ W(T )\W(T ), it follows [0, t0b) ⊆ W(T )\W(T ).

For every ε > 0, [t0b+ ε, c] ⊆ W(T ) by lemma 57. Thus, (t0b, c] ⊆ W(T ).
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Example 8 ([5]). Define T ∈ B(ℓ2) by

T (a1, a2, a3, . . . , an, . . .) =

(
a1, a1 + a2, a3,

1

2
a4, . . . ,

1

n− 2
an, . . .

)
. W(T )\W(T ) is

the union of the two symmetric half-open line segments that contain 0.

Solution. Note that we can write T = T1

⊕
T2, where T1 ∈ C(F2) and T2 ∈ C(ℓ2)

are defined by T1(a1, a2) = (a1, a1 + a2) and T2(an) =

(
1

n
an

)
. Since lim

n→∞
1
n
= 0,

T2 is of the form described in example 1, and so is T2 compact. By example 5,

σp(T2) =
{

1
n
: n ∈ N

}
. By example 7, we know W(T2) = conv{σp(T )}. Thus,

W(T2) = (0, 1].

On the other hand it can be shown that W(T1) = {z ∈ C : |z − 1| ≤ 1
2
}.

Thus, by theorem 49, W(T ) = conv{ {z ∈ C : |z− 1| ≤ 1
2
}∪ (0, 1]}, which is depicted

in the figure below:

Figure 2. W(T )
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Therefore, we see that W(T ) is:

Figure 3. W(T )

Thus, W(T )\W(T ) is:

Figure 4. W(T )\W(T )

Which is the union of two half open line segments that contain 0, lie tangent to the

circle {z ∈ C : |z − 1| = 1
2
}, and are symmetric about the real axis.

Note. From the proof of theorem 58, it is not clear whether the endpoint λ of the

line segment making up W(T )\W(T ) is in W(T ) or not. From the provided example

(as well as the other examples in [5]), it seems plausible that λ ∈ W(T ) always. This

is in fact the case ([10]), however, proving it requires the essential numerical range

which is beyond the scope of this thesis. Lemma 5 provides a sufficient condition: If

λ is an extreme point of W(T ), then λ ∈ W(T ).
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Chapter 5

FUTURE WORK

In this thesis we explored the numerical range of a compact operator. We showed

how a compact operator on a Hilbert space can be approximated by bounded finite

rank operators (theorem 25). To illustrate, we introduced a prototypical compact

operator (example 1). We showed the numerical range of this compact operator, and

in fact all normal compact operators, is the convex hull of its eigenvalues (example

7 and theorem 51). We suspected that the numerical range of a compact operator

would be similar to an operator on a finite dimensional Hilbert space (which is closed

by theorem 54). We showed they share some similarity: the numerical range of a

compact operator being closed depends on whether 0 is contained in the numerical

range or not (theorem 56). We showed that the difference between the closure and

the numerical range of a compact operator is a union of line segments that contain 0

(theorem 58). Lastly, we pointed out that a sufficient condition for these line segments

to be open is for the nonzero endpoint to be an extreme point of the closure of the

numerical range (an application of lemma 5).

Some questions that arose during the course of our research which we were unable to

answer are:

• W(T )\W(T ) is {0}, one line segment containing 0, or the union of two line

segments containing 0 ([10]). It seems plausible to prove W(T )\W(T ) consists

of at most two line segments containing 0 using convexity.

84



• The line segments that make up W(T )\W(T ) (described in theorem 58) are

always half open ([10]). Is it possible to prove this without resorting to the

essential numerical range?

• When W(T )\W(T ) is symmetric (such as in example 8), what is revealed by

such symmetry?
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