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ABSTRACT

Towards On-Device Detection of Sharks with Drones

Daniel Moore

Recent years have seen several projects across the globe using drones to detect sharks,

including several high profile projects around alerting beach authorities to keep people

safe. However, so far many of these attempts have used cloud-based machine learning

solutions for the detection component, which complicates setup and limits their use

geographically to areas with internet connection. An on-device (or on-controller)

shark detector would offer greater freedom for researchers searching for and tracking

sharks in the field, but such a detector would need to operate under reduced resource

constraints. To this end we look at SSD MobileNet, a popular object detection

architecture that targets edge devices by sacrificing some accuracy. We look at the

results of SSD MobileNet in detecting sharks from a data set of aerial images created

by a collaboration between Cal Poly and CSU Long Beach’s Shark Lab. We conclude

that SSD MobileNet does suffer from some accuracy issues with smaller objects in

particular, and we note the importance of customized anchor box configuration.
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Chapter 1

INTRODUCTION

Shark populations o� the California coast have increased in recent years [30][7], a

successful result of protective measures. However, this brings with it increased po-

tential for human-shark interactions, including shark bites. Protecting beach-goers

in an ecologically-friendly way is an ongoing challenge for countries across the world

that are home to shark populations. However, modern UAV technology may o�er a

less destructive alternative to more traditional culling strategies.

UAVs (unmanned aerial vehicles)|or drones as they are colloquially referred to|

are revolutionizing the ability of beach communities with sharks to maintain safe

beaches through the implementation of real-time shark noti�cation systems that alert

lifeguards when sharks are present in the water [8]. Though still an area of research,

these systems hold promise for aiding beach authorities in identifying shark species

and discriminating between sharks that may pose danger to humans and those that do

not [8]. Not only have drones become useful for real-time shark beach alerts, they also

have greatly expanded opportunities for shark research. While traditional methods

such as autonomous underwater vehicles (AUVs), remotely operated vehicles (ROVs),

shark cages, and observation from boats o�er some visibility into shark activity, many

of these methods of data collection involve close proximity with sharks in a way that

is known to alter their behavior [8]. Drones o�er an ideal birds-eye-viewpoint for

observing sharks, and their small size and low noise output make them unlikely to

in
uence shark activity [8].
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While the task of detecting sharks for beach safety can be done by patrolling a

�xed area of water surrounding a beach, using a drone to �nd and study sharks for

research is more exploratory in nature. Depending on the drone and controller, this

may involve searching for sharks on a small screen embedded in the controller or

attached tablet while 
ying. Sometimes sharks are missed during 
ight but later

noticed during viewing of the recorded video on a larger screen [34]. Though drone


ight times are on the order of 12-40 minutes (which can limit tracking) [12], multiple

drones or a battery charger can enable several hours worth of 
ying [8]. On a small

controller screen, after several hours of searching, pilot fatigue may a�ect their ability

to locate sharks for study [8]. In this scenario, real-time shark detection could also be

useful in helping scientist drone pilots �nd sharks in the �eld. To be useful to a pilot,

and because shark research observations may take place at remote locations far from

an internet connection, shark detection processing would need to take place on the

drone itself or on the controller/tablet. Such a system, even if operating at limited

accuracy, could aid shark researchers in their search for sharks.

However, detection in these scenarios would require a machine learning model capable

of performing reasonably well with limited computing resources. In this work we look

at the performance of SSD MobileNet [29][22], a lightweight object detection model,

as a candidate for on-device shark detection.
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Chapter 2

RELATED WORK

2.1 Drones and Shark Research

Marine biologists use a variety of tools for studying sharks in the wild including

satellite tags, recoverable biologgers, underwater video systems, acoustic telemetry,

animal-borne cameras and aerial video capture to name a few [10]. Aerial methods,

including manned aircraft, drones, and balloons are useful for doing population sur-

veys over a large area or for studying animal behavior from above [10]. Though sharks

spend much of their time in deep water not visible from the air, aerial studies are still

useful for analyzing behavior of larger species in coastal or shallower ecosystems [10].

Additionally, there have been a few attempts to identify via aerial study the inter-

section of areas of high shark activity with areas of high human activity in order to

better protect both sharks and humans from mutually harmful interactions [10].

As drones have become more popular, they o�er a cheaper alternative to manned

aircraft surveys. UAVs are also safer than manned aircraft, something made poignant

by the death of at least 11 marine mammal researchers in aerial survey airplane

crashes over the last several decades [19]. UAVs come in a wide variety of capacities

from expensive military-grade drones with a large range and a 
ight time of a couple

days to consumer-grade devices with localized ranges and 
ight times less than an

hour [10]. Larger drones have the same bene�ts of manned aircraft|larger area

coverage and ability to 
y further o�shore. Rotored drones have the ability to 
y

in a stationary position or to follow slow-moving animals for behavioral analysis,

enabling aerial observation of feeding activities, socializing, interspecies interaction,
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and other behaviors in a way that is impossible for manned surveys by plane. Drones

are also likely to be substantially less noisy than manned aircraft, with a potentially

lower impact on the behavior of the animals under study [10]. UAV data can also

be combined with data from other tracking sources to supplement more traditional

means of gathering data. For an exploration of the advantages of using drones to

study sharks, see Butcher et al. [8].

In aerial and other types of studies, video may be analyzed in real-time or saved

for later analysis [8]. When analyzing after-the-fact, the task of manually counting

hundreds of sharks in video footage is a daunting one, as well as going through large

time periods of footage to identify segments worthy of attention by researchers. To

speed up these e�orts, researchers have turned to computer vision techniques [10].

2.2 Deep Learning and Drones

Since the the Deep Convolutional Neural Network (DCNN) AlexNet [24] emerged

as victor in the Large Scale Visual Recognition Challenge (ILSRVC) [35] in 2012,

the computer vision community has shifted focus from handcrafted feature extrac-

tion towards deep learning [28]. DCNN architectures have not only the advantage

of improved accuracy, but they also require less domain-speci�c knowledge. As com-

puter vision research has evolved, research into new applications of domain-speci�c

features has been largely supplanted by inquiry into new network architectures and

new network training regimens [28].

In the last 5 years or so, three of the most popular computer vision architecture

families that have emerged are Faster-RCNN (Faster Regions with Convolutional

Neural Net features) [33], YOLO (You Only Look Once) [32], and SSD (Single Shot

MultiBox Detector) [29]. Faster-RCNN represents a more accurate two-stage family
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Table 2.1: Comparison by Hossain et al. [21] of the speed of various object
detection architectures on UAVs equipped with di�erent NVIDIA Jetson
modules and one UAV streaming to a machine on the ground

of detectors that �rst proposes candidate regions and then re�nes them. YOLO and

SSD represent the family of \single shot" detectors, which generate detections in a

dense manner across an entire image in a single stage. Faster-RCNN is a common

\go-to" solution for computer vision tasks, while YOLO and SSD are often used

in scenarios requiring near-real-time speed at the expense of some accuracy. These

characteristics make YOLO and SSD likely candidates for running on-board a UAV

device.

Using deep learning object detection with a drone in real-time can be done either

on the UAV device itself or on a ground station computer receiving a video stream

from the drone. Hossain et al. [21] compared the performance of various computer

vision architectures on several UAV con�gurations, including UAVs with 1) on-device

detection with a NVIDIA Jetson embedded GPU, 2) on-device detection with a non-

GPU processor (such as a Raspberry Pi) augmented with an Intel Neural Compute

Stick (NCS), and 3) o�-device detection in which data is streamed to a ground station

where detection is performed with a full video card. Table 2.1 on page 5and Table 2.2

on page 6show the results of their comparison. Note that SSD performs at the highest

speed in both tables.
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Table 2.2: Comparison by Hossain et al. [21] of the speed of YOLO and
SSD MobileNet on various GPU-less UAVs, mostly augmented by a Mo-
vidius Neural Compute Stick (NCS). For info on the di�erence between
SSD MobileNet and plain SSD see Background section.

2.3 Deep Learning and Sharks

As both drones and deep learning have gained popularity, there have been several

applications of deep learning computer vision architectures to the detection of sharks.

Saqib and Sharma et al. compared results of Faster-RCNN object detection of aerial

shark images with various base networks in two studies [36][37]. More recently, the

SharkEye project|a joint e�ort between SalesForce, the Benio� Ocean Initiative

from the University of California Santa Barbara, and San Diego State University|

used drones with regular 
ight paths to collect video data and stream to SalesForce's

Einstein Vision system in order to report the number of sharks in real-time to beach-

goers and scientists [4]. Another project by the University of Wollongong in Australia,

also named Sharkeye, similarly provides real-time detection to smart watches and

phones of beachgoers and lifeguards [17]. This system works by streaming footage

from a blimp and drones to a beach laptop ground station, which then sends the

data to a YOLO-based [32] machine learning pipeline in the cloud. A computer

monitor at the ground station with a view of the blimp's camera feed was noted as

giving lifeguards an increased ability to respond to people in trouble even without

the object detection [17]. Besides the above, other projects include SharkSpotter,
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a partnership between Ripper Corp. and abovementioned Dr. Nabin Sharma at

the University of Technology Sydney [5].Finally, New South Wales' Department of

Primary Industries' SharkSmart program [3] is worth mentioning because of their use

of drones to monitor sharks, but we were unable to �nd evidence of machine learning

use on their website.

Most of the shark detection solutions so far have run the machine learning portion

of the solution on a server or in the cloud as opposed to on the drone itself [4][17].

This is obviously optimal from a computing perspective and also avoids modifying

the drone (which can have implications on FAA compliance), taking advantage of

the drone's built in streaming capabilities. After their trials however, Gorkin et al.

expressed a desire to \explore where it makes sense to do the process computing `at

the edge' (on the beach) sending only essential data or noti�cations via the cloud,

given the bandwidth constraints (that may vary from beach to beach) as well as

operating costs" [17]. Bandwidth issues are even more relevant to the shark researcher

who may travel to exotic locations far from wireless infrastructure. While a ground

station with a good video card may �t this need, a more streamlined option would

be to run the model on the drone itself or on a tablet connected to a controller. A

simpli�ed con�guration like this might also enable participation by citizen scientists,

thus expanding the number of drones collecting data. Such a con�guration would

need a model conforming to the more restricted computing resources available.

Starting with some student class projects and continuing with the summer SURP

program, Cal Poly has recently partnered with the Shark Lab at CSU Long Beach

to create a data set of shark aerial footage of over 4,000 labelled images from 60

videos including multiple days, drone heights, and lighting conditions [25]. Various

student groups have experimented with architectures such as Mask RCNN, YOLO,

and Faster-RCNN, including a �eld test of Faster-RCNN against a live video stream

7



from a drone via YouTube. On-board deployment of the object detector has also been

discussed for the future. SSD MobileNet is one of the fastest state-of-the-art object

detectors, designed for object detection on edge devices, making it a good candidate

for use in on-device detection with drones. We look at SSD MobileNet's performance

on shark data and compare our results with those from Faster-RCNN.
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Chapter 3

BACKGROUND

3.1 Object Detection

The general problem ofobject recognition|that is, identifying the category and loca-

tion of all the objects present in an image|is usually organized into several related

problems. Object classi�cation or object categorizationis the identi�cation of objects

present in an image without determining their locations.Object detectioninvolves

identifying both the object classes in an image as well as their locations, usually

denoted by bounding boxes. Object detection can be eitherspeci�c, for detecting a

single type of object (faces, pedestrians, etc.) orgeneric, aiming to determine the class

and location of objects from a variety of object categories.Semantic segmentation

assigns a category (but not a speci�c object) to each pixel in an image, whileobject

instance segmentationdetermines which object instance each pixel belongs to [28].

3.2 SSD MobileNet

Modern object detection architectures can be divided into two categories: single and

two-stage detectors. Two-stage detectors like Faster-RCNN [33] perform a region

selection in the �rst stage to select candidate regions from the image, then re�ne and

categorize those regions in the second stage. Single-stage detectors skip the region

selection stage and instead perform a large number of object detections over the whole

image. Single-stage detectors have traditionally been faster, but have lagged behind

the accuracy of two-stage detectors [28].
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Figure 3.1: The SSD original architecture. A VGG-16 base network is
followed by a tapering series of feature maps, allowing detections to be
made at 6 di�erent resolutions. At each resolution detections are made
across the layer using anchor boxes, producing for each detection a per
class probability and a box position. The tensor
ow/models implemen-
tation we used used MobileNets v1 as a base network instead of VGG-16.
Adapted from the original SSD paper [29].

SSD, standing for \single shot detector", is a single-stage detector which has gained

popularity because of its speed and simplicity [29]. SSD is composed of a base network

followed by a tapering series of detection layers of diminishing height and width

(see Figure 3.1 on page 10). The original SSD [29] used VGG-16 [39] as a base

network, but di�erent base networks may be used and varying results have been

examined [23] using base networks like MobileNet [22] and ResNet [18].

MobileNet [22] is a convolutional neural network which trades some accuracy for per-

formance by replacing convolution operations with the less computationally expensive

depthwise separable convolutionsintroduced by Sifre [38]. It includes hyperparam-

eters for adjusting the tradeo� between speed and accuracy. As the name implies,

MobileNet targets lower-performance environments like embedded and mobile de-

vices. SSD with MobileNet as a base network is a popular combination, combining

two architectures which both aim to increase speed while retaining reasonable accu-

racy.

10



After the base network, SSD adds successively smaller convolutional feature layers.

From each of these layers SSD performs detection using object detectors in a grid

pattern across the feature layer, with the grid size scaled according to the layer's size.

The fact that di�erent layers of varying size each have their own set of detectors has

the e�ect of applying object detection at a variety of image resolutions and object

sizes. The earlier feature layers are larger, corresponding to �ner resolution and

smaller object detection. For each layer's grid, at each point in the grid detection

occurs at several varying aspect ratios such as 1:1, 1:3, 3:1, 1:2, 2:1, etc. Each of these

aspect ratio positions on a grid in a layer constitutes adefault box or anchor box,

which predicts a con�dence per category and a box location as a relative o�set from

the anchor box. In contrast with 2-stage architectures containing a separate region

proposal stage, SSD's strategy is to cover most of the image with anchor boxes of

varying size/resolution and aspect ratio, thereby generating a large and �xed number

of detections corresponding to each layer/grid position/aspect ratio. During training,

this large number of anchor box detections is then matched with ground truth boxes

by �rst matching each ground truth box to the detection box with the highest IoU,

and then matching remaining detection boxes to any ground box with an IoU of over

0.5. IoU stands forintersection over union and is a common measure of how much

two boxes overlap. Given two bounding boxes, the IoU is calculated as the area of

their intersection divided by the area of their union.

After creating a large number of detections driven by the dense placement of anchor

boxes, SSD uses anon-maximum suppressionstep. In general,non-maximum sup-

pressionis an algorithm for removing duplicate overlapping detection boxes detecting

the same object. First, detected boxes with a con�dence less than a set threshold are

discarded (0.01 in the original SSD), eliminating most of the detections. Then the

detected box with the maximum con�dence is chosen and all other detected boxes

overlapping with an IoU more than 0.5 aresuppressed, i.e. discarded. Then the next

11
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