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ABSTRACT

Graph Theoretical Modelling of Electrical Distribution Grids

Iris Kohler

This thesis deals with the applications of graph theory towards the electrical distribution

networks that transmit electricity from the generators that produce it and the consumers

that use it. Specifically, we establish the substation and bus network as graph theoretical

models for this major piece of electrical infrastructure. We also generate substation and

bus networks for a wide range of existing data from both synthetic and real grids and show

several properties of these graphs, such as density, degeneracy, and planarity. We also

motivate future research into the definition of a graph family containing bus and substation

networks and the classification of that family as having polynomial expansion.
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Chapter 1

INTRODUCTION

Modern society heavily relies on electricity. Lights, air conditioning, heating, computers,

internet access, food storage, and a growing number of vehicles all require electricity to

function. Furthermore, key components of modern infrastructure, including water, medical

services, and telecommunications, rely on consistent access to electricity [51]. This heavy

reliance on the electrical system means it is critical to make sure this infrastructure keeps

running correctly.

With computer technology advancing rapidly, computer tools are used more and more to

maintain grid performance and quickly solve problems. These tools and the models they use

must be exible, as electrical infrastructure constantly grows and new sources of energy are

introduced. In this thesis, we propose the use of a graph-theoretical model. Graph theory

is a subject of math with applications in many domains, such as transportation networks.

Since electrical infrastructure involves routing power through di�erent components with

clear starting and ending nodes (power generators and consumers respectively), it appears

to be well-suited for this type of model.

This thesis collects relevant information to hopefully allow for future research in the graph-

theoretical applications for power grids. In Chapter 2, we give relevant background in-

formation about both about electrical infrastructure and graph theoretical properties of

interest. In Chapter 3, we discuss road networks, which is the result of applying graph

theory to roads, and existing non-graph-theoretical tools and data used in power systems

analysis. In Chapter 4, we establish a graph-theoretical model for power systems and prove

some properties about it. In Chapter 5, we examine properties of graphs we created from

pre-existing data. Finally, in Chapter 6, we propose several possible directions to continue

this research.
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Chapter 2

BACKGROUND

2.1 Electrical Grids

The electrical distribution grid refers to the infrastructure that transmits electrical power

from generators and distributes it to consumers [51].Electrical power, measured in Watts,

has an associated voltage and current. Current , measured in Amperes, is the speed of

electrons owing through a circuit, and voltage, measured in Volts, is the force applied on

each electron. The relationship between power, current, and voltage can be shown with

the equation P = IV , where P represents power,I represents current, andV represents

voltage.

There are two ways that electricity ows: alternating and direct current [64]. Alternating

current, or AC, refers to electrical generation and transmission circuits where the direction

of ow of electricity quickly switches direction. The direction usually changes 100 or 120

times per second, which results in 50 or 60 cycles per second (50/60 Hz). Direct current

(DC), on the other hand, refers to electrical generation and transmission circuits where

the direction of the ow of electricity stays constant. Historically, power was generated

and transmitted using DC equipment [51]. However, AC is used for most generation and

transmission today, as it is more cost-e�cient. However, DC circuitry is still used to transfer

electricity over long distances.

In the United States, electricity is typically generated between 5 to 34.5 kilovolts (kV).

Because many power generators are located far away from consumers, that electricity has

to travel a long distance. However, when travelling at long distances, electricity meets a

lot of resistance, causing a loss in power. Because of this, the voltage of electrical power is

increased, or stepped up, to overcome that resistance. During transmission, the voltage is

anywhere from 69 to 765 kV, depending on how far the electricity needs to travel. It is im-

portant to note that electricity does not necessarily stay at one voltage during transmission.

Electric power may be split o�, and each split comes with a decrease in voltage; this may

happen multiple times throughout transmission. At consumer level distribution networks,

2



Figure 2.1: The interconnections of the North American bulk power system
from the North American Electric Reliability Corporation [50]

where distances are much smaller, electricity is stepped down to much safer levels{usually

between 15 and 34.5 kV.

A major independent grid where all electrical infrastructure is connected together is known

as aninterconnection. Often, geographically-close interconnections may be connected using

DC circuitry. The electrical grids of the continental United States and Canada and part of

the Mexican grid are connected together in 4 distinct interconnections.

Substationsare components of the electrical grid that are in charge of, among other impor-

tant tasks, stepping the voltage of electric power up or down, collecting multiple sources

into one output, and distributing power through one or more outputs [51]. This can be

generalized to substations taking one or more input power sources and having one or more

output power sources, with each input and output having an associated voltage. In other

words, substations handle stepping up, stepping down, splitting, and/or combining sources

of electrical power. An electrical grid consists of power generators passing power to one

or more substations, each of which then pass power to one or more substations, and so on

until the power is �nally transferred to distribution networks.
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Figure 2.2: Conceptual ow chart of the electricity supply chain from the U.S.
Department of Energy [51]

Substations are composed of multiplebuses, which handle power coming in or out [64].

Speci�cally, a transmission busroutes power into a substation and adistribution bus routes

power out of a substation. As power moves from transmission buses and distribution buses

in a substation, its voltage may be stepped down or stepped up as described before.

Figure 2.3 shows a 240-bus model based on the WECC interconnection mapped to its geo-

graphic area. This small example shows the ow of electricity from generators to consumers,

and it also demonstrates how AC voltage is stepped down. The two DC lines show electrical

transfer over long distances.

2.2 Graph Properties

Since electrical distribution grids are formed of buses and substations with transmission

lines between them, they are structurally suited for a graph-theoretical representation.

Furthermore, given that these systems exist in real life, there are physical limits on the size

of the network. Every time an input is split into multiple outputs, the voltage across each

output drops to maintain current. This means there will only be so many transmission lines

attached to each substation and to each bus.

For this reason, we are interested in the properties of sparse graphs. Graph sparsity refers

to how the numbers of edges of graphs in that family grow as their numbers of vertices get

larger [18]. A graph is considered sparse if it has some sort of bound on the ratio of edges to

vertices. Many graph theoretical algorithms involve graph traversal, which involves visiting

vertices and travelling along edges to the next vertex. For this reason, algorithms on sparse

graphs can often take advantage of that sparsity in order to solve problems faster.

The following sections give de�nitions of graph sparsity and provide examples of properties

that can be taken advantage of by algorithms on sparse graphs. We also provide planar

graphs as an example of sparse graphs and highlight the algorithmic improvements that can

be obtained by restricting algorithms to planar graphs.
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