
TOWARDS A COMPLETE FORMAL SEMANTICS OF RUST

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Alexa White

March 2021



© 2021

Alexa White

ALL RIGHTS RESERVED

ii



COMMITTEE MEMBERSHIP

TITLE: Towards a Complete Formal Semantics of

Rust

AUTHOR: Alexa White

DATE SUBMITTED: March 2021

COMMITTEE CHAIR: Aaron Keen, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Maria Pantoja, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Theresa Migler, Ph.D.

Professor of Computer Science

iii



ABSTRACT

Towards a Complete Formal Semantics of Rust

Alexa White

Rust is a relatively new programming language with a unique memory model designed

to provide the ease of use of a high-level language as well as the power and control

of a low-level language while preserving memory safety. In order to prove the safety

and correctness of Rust and to provide analysis tools for its use cases, it is necessary

to construct a formal semantics of the language. Existing efforts to construct such a

semantic model are limited in their scope and none to date have successfully captured

the complete functionality of the language. This thesis focuses on the K-Rust imple-

mentation [9], which is implemented in a rewrite-based semantic framework called K,

and expands it to include a larger subset of the Rust language. The K framework

allows Rust programs to be executed by the defined semantic model, and the imple-

mentation is tested with several Rust programs by comparing the results of execution

to the Rust compiler itself.

iv



ACKNOWLEDGMENTS

Thanks to:

• My advisor, Dr. Aaron Keen, and my committee members Dr. Maria Pantoja

and Dr. Theresa Migler, for their time and assistance

• Rasmus the cat, for providing emotional support

• Andrew Guenther, for uploading this template

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The Rust Programming Language . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Borrowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Mutable Variables and References . . . . . . . . . . . . . . . . 6

2.1.4 Rules of Borrowing . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.5 Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Semantic Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The K-Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Syntax and Rules . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Patina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 RustBelt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 KRust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 K-Rust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 K-Rust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2.1 Lifetime TC . . . . . . . . . . . . . . . . . . . . . . . 26

vi



4.2.2.2 Parameter TC . . . . . . . . . . . . . . . . . . . . . 27

4.2.2.3 Expressions TC . . . . . . . . . . . . . . . . . . . . . 27

5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 The Match Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Type Checking Semantics . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Matching Literals . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.2 Matching Named Variables . . . . . . . . . . . . . . . . . . . . 38

5.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Type Checking and Evaluating a Match Expression . . . . . . . . . . 40

6 Testing and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Translating Rust Programs . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 Rust to Surface-Rust . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.2 Surface-Rust to Core-Language . . . . . . . . . . . . . . . . . 46

6.2 Testing Benchmarks and Example Test Cases . . . . . . . . . . . . . 47

6.2.1 Match Test Example . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.2 Compiler Rejection Example . . . . . . . . . . . . . . . . . . . 50

7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vii



LIST OF TABLES

Table Page

4.1 Compound Type Definitions . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Translating Rust to Surface-Rust . . . . . . . . . . . . . . . . . . . 46

6.2 Translating Surface-Rust to Core-Language . . . . . . . . . . . . . 47

viii



LIST OF FIGURES

Figure Page

2.1 Assignment Move Example . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Function Move Example . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Function Borrow Example . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Mutable Borrow Example . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Lifetime Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Lifetime Example Corrected . . . . . . . . . . . . . . . . . . . . . . 9

2.7 K Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 LAMBDA Language . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Operational Semantics Configuration . . . . . . . . . . . . . . . . . 19

4.2 Rewrite Rules for Non-Atomic Read . . . . . . . . . . . . . . . . . 20

4.3 Core-language Example . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Type System Configuration . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Type Checking Architecture [9] . . . . . . . . . . . . . . . . . . . . 26

4.6 Rewrite Rules for Lifetimes . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Rewrite Rules Parameter Binding . . . . . . . . . . . . . . . . . . . 28

4.8 Rewrite Rules for Function Decomposition and Return TC . . . . . 28

4.9 Rewrite Rule for Function Call . . . . . . . . . . . . . . . . . . . . 29

4.10 Rewrite Rules for Branch Decomposition . . . . . . . . . . . . . . . 30

4.11 Rewrite Rules for Assignment Decomposition . . . . . . . . . . . . 31

5.1 Matching Literals Example . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Matching Named Variables Example . . . . . . . . . . . . . . . . . 33

5.3 Type Checking Syntax for Match Expressions . . . . . . . . . . . . 34

5.4 Match Branch Type Checking Syntax . . . . . . . . . . . . . . . . . 35

5.5 Rewrite Rules for Match Type Checking . . . . . . . . . . . . . . . 36

5.6 Operational Syntax for Match Expressions . . . . . . . . . . . . . . 39

5.7 Rewrite Rules for Match Operations . . . . . . . . . . . . . . . . . 40

5.8 Match Example Rust Code . . . . . . . . . . . . . . . . . . . . . . 40

ix



5.9 Match Example Surface-Rust Code . . . . . . . . . . . . . . . . . . 41

5.10 Match Example Core-Language Code . . . . . . . . . . . . . . . . . 43

6.1 Match Test Example Rust Program . . . . . . . . . . . . . . . . . . 48

6.2 Match Test Example Surface-Rust Program . . . . . . . . . . . . . 49

6.3 Match Test Example Core-Language Program . . . . . . . . . . . . 50

6.4 Compiler Rejection Example Rust Program . . . . . . . . . . . . . 50

6.5 Compiler Rejection Example Surface-Rust Program . . . . . . . . . 51

6.6 Compiler Rejection Example Results . . . . . . . . . . . . . . . . . 52

x



Chapter 1

INTRODUCTION

Building a formal semantics of a programming language is a critical prerequisite to

proving the safety, correctness, and reliability of programming tools implemented in

that language. Semantic models serve as the basis for both analyzing and verifying

the behavior of a given program as well as for bringing into focus the subtleties and

ambiguities of the language itself. Rust, a relatively recently developed language

with a syntax similar to C or C++, was designed with the intention of preserving

memory safety and performance while still providing the power and control of a low-

level language. One of the main features of Rust is its enforcement of ownership and

borrowing of values, which allows for low overhead memory management without

the need for a garbage collector. The language has seen wide success due to its

unique ability to bridge the gap between low-level systems programming and high-

level application programming. However, Rust’s core principles of ownership and

borrowing have not yet been thoroughly formalized which will be required to prove

its safety guarantees and functional correctness.

Rust’s claims of providing memory safety while preserving performance have sig-

nificant implications for the field of computer science, but they have yet to be formally

proven, and it is possible that not all of them hold. In order to verify the safety of

the language and to construct tools for formal analysis of programs written in Rust,

it is first necessary to construct a formalization of the semantics of the language. A

set of formal semantics for a programming language is a way of modeling the com-

putational meaning of a program written in that language with a precisely defined

notation. This provides an abstract representation of the language that can be used

to reason about specific use cases and ensure the correctness of the compiler.

1



In the few years since the release of Rust, multiple efforts have been made to

formalize its semantics and prove the safety and correctness of the language. The first

of these efforts, Patina [14], attempted to formalize of subset of an earlier version of

Rust and provided some syntactic proofs for these semantics, but was made somewhat

obsolete with Rust’s first stable release, which drifted from Patina’s language model.

RustBelt [8], considered to be one of the best efforts so far to formalize the Rust

language, focuses on a subset of the language and is then extended to include the

libraries that use unsafe code. The paper reports the verification of what they consider

the most important Rust libraries and leaves the extension to other libraries as an

area of future work. Another implementation, Oxide [18], attempts to distill the

complex language to make it easier to understand the semantic rules and provides a

foundation for future research on the semantics of Rust. Oxide deals only with an

abstract notion of memory and focuses on the safe portion of Rust, ignoring standard

library abstractions implemented using unsafe code. Two implementations, KRust

[17] and K-Rust [9], both make use of the K framework to define their semantics.

K is a rewrite-based semantic framework that can be compiled into an executable

interpreter and used to conduct formal analysis on the defined language. These

works differ from previous efforts in that the use of K allows them to present concrete

executables for their languages, as opposed to the formal proofs given in other works.

The main limitation of these and other similar efforts to formalize the semantics

of the Rust language is that they are either limited to high-level abstractions of Rust

or focus on only its core features with other features left to be explored in future

work. In order to formalize the complete language, it is necessary to extend these

implementations until their semantics encompass the entirety of Rust. In particu-

lar, extending and further validating the K-Rust implementation, which is publicly

available, is the primary focus of this thesis.

The major contributions of this thesis are:

2



• Reworking the K-Rust implementation so that it is compatible with a newer

version of the K framework

• Extending the functionality of the K-Rust implementation to include pattern

matching semantics

• Testing and validating the functionality of the extended K-Rust implementation

against the Rust execution environment

The rest of this thesis is structured as follows: Chapter 2 provides background

information about the Rust programming language and the K framework. Chapter

3 discusses related works in more detail. Chapter 4 describes the K-Rust implemen-

tation in more detail and Chapter 5 describes my contributions to it. Chapter 6

discusses testing and validation of this implementation. Chapter 7 discusses possibil-

ities for future work, and Chapters 8 concludes.

3



Chapter 2

BACKGROUND

2.1 The Rust Programming Language

Rust, originally released in 2015, was created with the fundamental goal of empower-

ing users to more confidently program in a wider range of applications[10]. Low-level

systems programming in languages like C and C++ traditionally require great caution

and discipline to avoid the pitfalls common to applications like memory-management

and concurrency. Rust claims to have the ease of use of a high-level programming

language while at the same time providing the user with control of low-level details

free of these pitfalls. In this way Rust challenges the status quo of programming

language design in hopes to provide both speed and safety as well as ergonomics and

productivity without making the usual trade-offs.

The feature unique to Rust which makes its safety guarantees possible is its system

of ownership and borrowing. This strategy for memory-management does not require

the programmer to explicitly allocate and free memory and also eliminates the need

for a garbage collector, thereby preserving both speed and safety of the program. The

following sections further detail the mechanics of this system and provide examples

of its use.

2.1.1 Ownership

In the ownership system, variables are responsible for freeing their own resources.

To ensure that each resource is freed exactly once, Rust enforces that every resource

must have exactly one owner. This guarantees that no variable attempts to free a

previously freed resource, and that no resources are left dangling with no owner to

4



free them. Rust outlines the following three basic rules for the ownership system,

which are checked at compile time [10]:

1. Each value has a variable referred to as the value’s owner.

2. Each value can have only one owner at a time.

3. When the owner goes out of scope, the value is dropped.

While these rules are straightforward, they can make programming extremely incon-

venient, as resources can be accessed by only one variable. To address this problem,

Rust provides the ability to transfer ownership of a value from one variable to another.

One way of doing this is with a move. Consider the code in Figure 2.1, which moves

ownership with an assignment. On line 1, the variable x allocates memory for a new

String, and becomes the owner of that allocation. On line 2, the String is moved from

x to the new variable y with an assignment. When ownership is moved, y becomes

the sole owner of the String and x can no longer access it. On line 3, the value of x is

printed. Since x no longer owns any value, this code will result in a compiler error.

1 let x = String::from("Hello World");

2 let y = x;

3 println!("{}", x);

Figure 2.1: Assignment Move Example

Ownership transfer also occurs when a function is called. When a variable is

passed as an argument to a function, the ownership is moved to the function param-

eter. Returning a value from a function will also move its ownership. Consider the

code in Figure 2.2. As before, the variable x is the initial owner of the String value.

When the function is called on line 5, the ownership of the string is moved to the

variable s in the function, and x can no longer access it. The variable x no longer owns

any value, so line 6 will once again result in a compiler error. If line 6 is removed, the

5



code will compile and will print the value of the moved String (“Hello World”) from

inside the function.

1 fn function(s: String) {

2 println!("{}", s);

3 }

4 let x = String::from("Hello World");

5 function(x);

6 println!("{}", x);

Figure 2.2: Function Move Example

2.1.2 Borrowing

Always moving values can be impractical, especially in the case of function calls as

seen in the above examples. To avoid this, Rust also allows borrowing of values using

references. Syntactically, the & symbol before a variable is used to reference the

variable’s value, and the * symbol is used for dereferencing. A borrowed value can

be temporarily used by another variable without moving ownership of the value, but

instead moving a reference to the value. Since the variable does not own the value,

it will not be de-allocated when the reference goes out of scope.

Consider the example code in Figure 2.3. This is the same code as in Figure 2.2,

but now we make the function call with a reference to the variable x, and change the

function parameter to be a reference to a String. Since the String is borrowed and

not moved, the variable x keeps ownership of the value and the code will compile.

When the code is run, the String will be printed once from inside the function and

again on line 6.

2.1.3 Mutable Variables and References

In order to change the value a variable points to, the programmer must specify that

the variable is mutable, as all variables are considered immutable by default. To

6



1 fn function(s: &String) {

2 println!("{}", s);

3 }

4 let x = String::from("Hello World");

5 function(&x);

6 println!("{}", x);

Figure 2.3: Function Borrow Example

create a mutable variable, the keyword mut is used before the variable name when

it is declared. A mutable reference can also be created by using &mut before the

variable name.

Consider the example code in Figure 2.4. In this example, the function attempts

to modify the value of the String. To allow this, the variable x, which owns the String,

is declared as mutable on line 4. On line 6, we pass a mutable reference of the String

to the function, which now takes a mutable reference to a String as an argument.

The reference to the String is mutated on line 2, and then printed on line 6 with the

owner, variable x. This code will compile and print the expected “Hello World”.

1 fn function(s: &mut String) {

2 s.push_str(" World");

3 }

4 let mut x = String::from("Hello");

5 function(&mut x);

6 println!("{}", x);

Figure 2.4: Mutable Borrow Example

2.1.4 Rules of Borrowing

Allowing references is a major convenience for programming, but it introduces some

issues into the ownership system, such as possible data races or dangling references.

For this reason Rust places the following restrictions on references, which are checked

at compile time [10]:

7



1. At any given time, only one of the following conditions can be true:

• a value has one mutable reference

• a value has any number of immutable references

2. The scope of a reference cannot outlive the scope of the original owner

2.1.5 Lifetimes

The previous sections refer to variables and references going “out of scope” to de-

termine when a resource should be de-allocated to prevent dangling references. This

section will provide a brief overview of how Rust determines that scope with the con-

cept of lifetimes. Similar to types, lifetimes are often implicit and must be inferred

by the compiler, so in cases of ambiguity they must be properly annotated by the

programmer to ensure that references used at runtime are valid. The Rust compiler

uses a borrow checker to compare lifetimes and check that the rules for borrowing are

maintained. Syntactically, lifetimes are annotated with a ‘ symbol followed by an ar-

bitrary name for the lifetime. These annotations are used to specify the relationships

between multiple lifetimes.

Consider the code in Figure 2.5. In this example, two strings are created, then

passed to a function which returns the longer of the two strings. The resulting string

is then printed. This code will result in a compiler error due to the return type of the

function longest string. The function returns a reference, but the function signature

does not indicate where the reference was borrowed from. Because of this, the lifetime

of the output of the function is not clear to the borrow checker, so the compiler will

reject the program.

To fix this code, we must add lifetime annotations to the function signature. Note

that lifetime annotations do not change the actual length of any lifetimes, but rather

8



1 fn longest_string(s1: &str, s2: &str) -> &str {

2 if s1.len() > s2.len() {

3 s1

4 } else {

5 s2

6 }

7 }

8 let x = String::from("a string");

9 let y = String::from("a longer string");

10 let result = longest_string(x.as_str(), y.as_str());

11 println!("{}", result);

Figure 2.5: Lifetime Example

inform the compiler how ambiguous lifetimes are related to each other. In this case

we must tell the compiler how the lifetime of the output of the function relates to

the lifetimes of its input. The annotations are shown in Figure 2.6. The lifetime

annotation ‘a is used to tell the compiler that the function takes two inputs, each

with a lifetime at least as long as ‘a, and has an output with a lifetime at least as long

as ‘a. At runtime, the lifetime substituted for ‘a will be the overlap of the lifetimes

of s1 and s2, and since lifetimes are nested, this will always be the smaller of the two

lifetimes. This code compiles and prints the longer of the two strings, as expected.

1 fn longest_string<‘a>(s1: &‘a str, s2: &‘a str) -> &‘a str {

2 if s1.len() > s2.len() {

3 s1

4 } else {

5 s2

6 }

7 }

8 let x = String::from("a string");

9 let y = String::from("a longer string");

10 let result = longest_string(x.as_str(), y.as_str());

11 println!("{}", result);

Figure 2.6: Lifetime Example Corrected

As previously mentioned, the Rust compiler is sometimes able to infer lifetimes,

so annotation is not always necessary. Excluding explicit annotation of lifetimes is

referred to as lifetime elision. The compiler will follow a defined set of rules to infer a

9



lifetime, and will give an error if any references remain for which the lifetime could not

be determined. Determining the lifetime of all references in a program and verifying

that they adhere to the borrowing rules theoretically allows Rust to guarantee the

memory safety of the program at compile time.

2.2 Semantic Formalization

A semantics for a programming language is a model for the computational meaning

of a program written in that language [12]. Semantics are used as an abstraction of

the real execution of a program, which would be too complex to describe directly.

They instead represent the most relevant aspects of possible executions and ignore

details not pertaining to the correctness of the program. Correctness is typically

defined by the input and output of the program and whether or not it terminates.

Semantics are called formal when they are written in a notation with a precisely

defined meaning. Two different levels of semantics are static semantics and dynamic

semantics. Static semantics include only the checks that can be performed at compile-

time before actually running a program, such as type checking and borrow checking

in the case of Rust. Dynamic semantics are a model of the run-time behavior of a

program and include the observable behaviors of a program when it is executed.

2.3 The K-Framework

K [16] is a rewrite-based semantic framework that can be used to define the semantics

of a programming language that can then be compiled into an executable interpreter

for the defined language. K provides the user with several tools for conducting for-

mal analysis of the defined language, including the ability to execute programs with

the compiled interpreter. A programming language is defined in K with three main

components: configurations, computations, and rules. These components are further

10



detailed in the following sections. K has been used to formalize a number of large

programming languages, including C [5], Java [3], JavaScript [13], and PHP [7].

2.3.1 Configurations

Configurations represent the program state with a set of labeled cells. Cells are defined

by the user to capture the necessary components of the language being defined. They

can be nested, and can contain lists, sets, maps, and multisets. Some examples

of cells in a configuration are an environment mapping variables to their memory

addresses, a store mapping addresses to values, a stack for function calls, or a multiset

of concurrent threads.

Figure 2.7 shows the syntax for declaring a configuration. This is the configuration

for a simple language defined in the K tutorial [2]. The entire configuration is typically

nested in a top-level cell labeled T. Line 3 defines the k cell, which initially contains

the contents of the program from the input file. This is accomplished with the $PGM

keyword. It is common practice to label the cell holding the contents of the program

k. Line 4 defines an environment cell labeled env, which is initialized to an empty

map. Similarly, line 5 defines the store cell which contains a map.

1 configuration

2 <T>

3 <k> $PGM:Exp </k>

4 <env> .Map </env>

5 <store> .Map </store>

6 </T>

Figure 2.7: K Configuration

2.3.2 Computations

Computations in K are the list of computational tasks to be performed in the program

being executed, where each task is a term over the defined syntax of the language, and

11



are typically stored in the k cell of the configuration. Syntactically, these tasks are

separated by the ∼> (“followed by”) operator, and . denotes the empty computation.

The initial state of the computations will be the entire text of the input program.

Computations are performed by rewriting the terms using the defined rewrite rules

for the language. The execution of a program is finished when no more rewrite rules

can be applied to any of the terms in the computations.

2.3.3 Syntax and Rules

The syntax of the language is defined with the keyword syntax followed by the name

of the syntax object and a list of terms that are considered that type of object. Rules

are the defined rewrite instructions that match to terms in computations. They are

defined with the keyword rule and use the rewrite symbol =>. Rules manipulate the

contents of the configuration cells to change the state of the program.

Consider the example in Figure 2.8 (from the K tutorial), which defines a very

simple language called LAMBDA. This subset of the language defines the syntax

objects Val and Exp. A Val defined on lines 4-5, can be either a variable (using

K’s builtin KVar syntax), or a lambda expression (written lambda x . y, where x

is the variable and y is the expression). An Exp, defined on lines 6-7, can be a

Val, or one Exp followed by another. On line 7, the attributes strict and left are

used to specify the evaluation strategy for the term. Strict specifies that both terms

must be evaluated to a KResult object before rewrite rules can be applied. Here

a KResult is defined to be a Val. The left attribute specifies that the term should

be left associative. The binder attribute on line 5 invokes K’s builtin substitution

module, which handles how variables are bound to the lambda expressions. Several

other attributes exist in the framework for specifying the evaluation strategies that

should be used for a given term.

12



On line 10, the rewrite rule is defined. This rule rewrites a lambda expression

followed by a Val in the k cell by binding the Val V to the KVar X in the Exp E

(written E[V/X]). The syntax category (also called sort) can be specified as a tag

on the terms. For example, here X must be of sort KVar, E must be of sort Exp,

and V must of sort Val. The ... at the end of the rule specifies that the rest of the

contents in the k cell should be ignored and not modified, and only the matching

term is rewritten.

1 module LAMBDA

2 imports KVAR-SYNTAX

3

4 syntax Val ::= KVar

5 | "lambda" KVar "." Exp [binder]

6 syntax Exp ::= Val

7 | Exp Exp [strict, left]

8 syntax KResult ::= Val

9

10 rule <k> (lambda X:KVar . E:Exp) V:Val => E[V / X] ... </k>

11

12 endmodule

Figure 2.8: LAMBDA Language

Consider the following sample code that could be executed by this semantics:

(lambda x . x) (lambda y . (y z) ) a

The configuration for this language contains only the k cell. Initially, the compu-

tations in the k cell will be the entire line of code, along with ∼> . (“followed by

the empty computation”) at the end to signify the end of the program. Because the

computation is initially in the form Exp Exp, (where the first Exp is (lambda x . x)

(lambda y . (y z) ) and the second is a), the rewrite rule cannot yet apply. This is

because rules do not just apply anywhere they match, but only where they have been

given permission to apply by means of evaluation strategies specified for language

constructs. In this case, the strict attribute allows the arguments to be evaluated

13



before the semantic rules are applied. Both Exp will be evaluated until they reach

a KResult (in this language a Val) or until they cannot be evaluated further. The

first Exp is also of the form Exp Exp, where its first Exp is the Val (lambda x . x)

and its second is the Val (lambda y . (y z)). Since this construct is left associative,

the configuration will now look like this (note that no rewrite rules have been applied

yet, but the evaluation strategies have changed K’s internal structure for storing the

terms from (Exp Exp) to ((Val Val) Exp)):

<k>

( (lambda x . x ) (lambda y . (y z) ) ) a ∼> .
</k>

The rewrite rule can now be applied, since we have a term containing a lambda

expression followed by a Val. Here X is the KVar x, E is the Exp x, and V is Val

(lambda y . (y z) ). Applying the rule results in the following configuration:

<k>

(lambda y . (y z) ) a ∼> .
</k>

Since the first Exp has now reached a KResult, the second Exp can be evaluated.

Since the Exp a is already of sort Val, the rewrite rule can be applied again, where

X is the KVar y, E is the Exp (y z), and V is KVar a. After the second rewrite

the remaining computation in the k cell does not match any of the defined rules, so

execution stops. The final output will be the resulting configuration, as expected:

<k>

a z ∼> .
</k>

14



Chapter 3

RELATED WORK

3.1 Patina

Patina [14] is considered to be the first major research effort to semantically formalize

Rust. Patina formalizes the Rust type system to capture the core features of memory

safety and provides partial syntactic proofs. This work focused on an earlier version

of the Rust language which at the time was not yet stable, and the newer versions

released have since drifted from the language model of Patina. The memory layout

and validity decisions made in this work also cause problems, as these decisions have

not yet been concretely specified by Rust itself. Despite its issues, Patina provided a

starting point for following research into formalizing Rust’s ownership and borrowing

system.

3.2 Oxide

Oxide [18] is a work focused on formalizing a language that represents a distilled

version of the Rust language. This language, called Oxide, has syntax very similar to

Rust but deals only with an abstract notion of memory. This allows Oxide to sidestep

the requirement of specific memory layouts for its types, motivated by the fact that

Rust does not have a formal specification for memory layout and validity guarantees,

especially in regard to its unsafe code base. Oxide also requires fully annotated type

bindings in order to make the semantics easier to follow and avoid the complexities

that come with a type inference system.

15



Oxide is focused primarily on formalizing the ownership system and so the lan-

guage includes only the safe portions of Rust and ignores its libraries implemented

with unsafe code. The main contributions of this work are proving the first syntactic

type safety result for the Rust language and providing the first inductive definition

for Rust’s borrow checker. The authors intended for the Oxide language to provide a

basis for future work on formalizing Rust by extending the language to include Rust

libraries implemented with unsafe code.

3.3 RustBelt

In RustBelt [8], the authors claim to give the first machine-checked formal proof of

safety for a language that represents a core subset of the Rust language they call

λRust. Like Oxide, λRust focuses on the subset of the Rust language containing its

safe libraries. Unlike Oxide, however, the work provides a method for including

unsafe Rust libraries into the proof by describing the verification conditions that the

unsafe features must satisfy to be considered a safe extension of the language. This

verification is carried out on some important libraries commonly used in Rust, such

as Cell, RefCell, and Mutex. The ability of λRust to support unsafe libraries in a way

proven to be safe within the language makes this work widely considered to be one

of the most significant efforts so far to fully formalize Rust.

3.4 KRust

By utilizing the K framework, KRust [17] presents a formal operational semantics

on a subset of Rust. The distinguishing feature of this work is that the use of K

to define the language yields a formal interpreter and builtin verification tools that

can be used to execute and test real Rust programs. This work claims to present

the first formal executable semantics for Rust. The semantics defined with KRust

16



were thoroughly tested on hundreds of programs, including the official Rust test

suite. Executable semantics in K also have the advantage of providing formal analysis

tools for additional research, such as state-space explorers, which can be used in

applications like debuggers and verification of functional correctness. One of the

main limitations of this work is that, similar to other related works, it does not cover

any of Rust’s unsafe libraries. It also leaves out some significant features of safe Rust,

including the type system and lifetime annotations. These and other extensions to

the KRust language are left for future work.

3.5 K-Rust

Not to be confused with KRust, K-Rust [9] is another executable formal semantics for

Rust implemented in the K framework. K-Rust encompasses all of Rust’s safe libraries

and, unlike KRust, includes the totality of Rust’s type system. This implementation

is separated into operational semantics, which can be thought of as the run-time

execution of a Rust program, and a type checking semantics, which can be thought

of as the compile-time type and borrow checking for a program. The K configuration

also includes a memory model with memory operations. This implementation was

tested with several Rust programs by comparing the results with those of the Rust

execution environment. Similar to its contemporaries, K-Rust is an incomplete subset

of the Rust language and leaves the extension of the semantics for future work.

As it constitutes the basis for this work, the implementation details of K-Rust

will be described in more detail in the following chapter.

17



Chapter 4

K-RUST

The K-Rust implementation is made up of two separate components: a type checking

semantics that models Rust’s ownership system, and an operational semantics for

a core subset of the Rust language referred to as core-language. The operational

semantics consists of the memory level, which contains a memory model together

with memory operations, and the core-language level, which contains the operational

semantic rules for the core-language based on the memory model. The type checking

semantics is referred to as the surface-rust level. To run a Rust program with the

K-Rust implementation, it must first be translated into surface-rust. If it is correct

on the surface-rust level type system semantics, it is translated into core-language

and run on the operational semantics. Core-language is a purely functional language

with syntax that captures the behavior of Rust’s safe constructors. Surface-rust is

an extension of core-language which is syntactically similar to Rust, and includes

variable modifiers like mutabilities and lifetimes as well as an annotated type system.

The entirety of the original K-Rust implementation can be found at [1].

4.1 Operational Semantics

This section discusses the operational semantics of K-Rust. For reference, the K

configuration for these semantics is shown in Figure 4.1. The three main components

of this configuration are threads, closures, and memory.

The memory model of K-Rust is the basis on which the rest of the operational

semantics are built. As shown on line 21 of Figure 4.1, the memory cell of the

configuration contains a memaddress cell, a blocks cell, and a memorystatus cell.

18



1 <T>

2 <threads>

3 <thread multiplicity="*">

4 <k> $PGM:Exp </k>

5 <env> .Map </env>

6 <clstack> .List </clstack>

7 </thread>

8 </threads>

9

10 <closures>

11 <closureCnt> 0:Int </closureCnt>

12 <funclosure> .Map </funclosure>

13 <closure multiplicity = "*">

14 <crId> 0:Int </crId>

15 <crContext> .Map </crContext>

16 <crParams> .FnParams </crParams>

17 <crBody> .K </crBody>

18 </closure>

19 </closures>

20

21 <memory>

22 <memaddress> 0:Int </memaddress>

23 <blocks>

24 <block multiplicity="*">

25 <baddress> .K </baddress>

26 <bnum> 0:Int </bnum>

27 <bstore> .Map </bstore>

28 </block>

29 </blocks>

30 <memorystatus> .Map </memorystatus>

31 </memory>

32 </T>

Figure 4.1: Operational Semantics Configuration

19



Memaddress is an integer counter for the number of blocks that have been allocated.

Memorystatus is a map from memory locations to their statuses. A memory status

is an integer pair, where the first integer is the number of operations that write the

memory location and the second is the number of operations that read the memory

location. Finally, the blocks cell can contain any number of block cells, indicated by

the “multiplicity=“*”” tag on line 24. The block cell represents an allocated block of

memory. This includes the address of the block (baddress), the number of data items

stored in the block (bnum), and a block store mapping the indices of the block to the

data itself (bstore). The memory blocks contain units of primitive data types, and

the block structure allows for the creation of compound data types like structs and

arrays. The memory statuses are used to keep track of variable ownership.

The memory operational semantics rules include allocating a new block, atomic

reads and writes, non-atomic reads and writes, appending a block, freeing a block,

and compare and swap. As an example of these operations, Figure 4.2 shows the

non-atomic read rewrite rules.

1 rule <k>

2 readna(address(N:Int), I:Int) => readnac(address(N),I:Int) ...

3 </k>

4 <memorystatus>

5 ... (N |-> memstatus(_,(K:Int => K+Int1))) ...

6 </memorystatus>

7

8 rule <k>

9 readnac(address(N:Int), I:Int) => V ...

10 </k>

11 <memorystatus>

12 ... (N |-> memstatus(_,(K:Int => K-Int1))) ...

13 </memorystatus>

14 <baddress> address(N:Int) </baddress>

Figure 4.2: Rewrite Rules for Non-Atomic Read

The call to a non-atomic read readna takes an address and an Int as arguments.

An address is a wrapper for an Int, which here represents the memory location being

20



read and is labeled N. The second Int, labeled I, is an offset into this memory location.

The first rewrite rule increments the number of operations reading from block N by 1

in the memorystatus cell on line 5. It also rewrites this computation in the k cell on

line 2 to a readnac with the same address and offset as arguments to finish the read.

The second rule handles the read itself. Similar to the first rule, the memorystatus

for reads is now decremented by 1 on line 12 since after this rewrite rule is applied

the read will be finished. To read the value, the block with address N is located on

line 14. Line 15 then locates the value V associated with the offset I in this block.

The computation is then rewritten to the value V in the k cell on line 9, and the read

is completed.

The two other components of the operational semantics configuration shown in

Figure 4.1 are threads, which hold the threads of execution of the program, and

closures, which handle functions. As with memory blocks, the multiplicity tag on the

thread and closure cells allow for any number of each to exist at once. Each thread cell

contains the k cell which holds the computations of the program, along with the env

cell mapping variables to their values, and the clstack cell, which holds environments

in the function call stack and is used to restore the environment on a function call

return. The closures cell contains the closures themselves as well as the total number

of closures (closureCnt), and a map from function names to their respective closure

ID number (functionclosure). Each closure cell has a unique integer ID (crId), an

environment map to be used in evaluating the function body (crContext), the function

parameters (crParams), and the function body (crBody).

The operational semantics of K-Rust include rules for function definitions and

calls, arithmetic operations, branching statements, forking, and the memory opera-

tions described previously.

21



As an example of core-language, Figure 4.3 shows a simple Rust program followed

by its core-language translation. This program defines the function sum from one,

which takes an i32 n and recursively sums every number from 1 to n. It then calls the

function with the variable x = 100. In core-language, a statement “if E then E1 else

E2” is rewritten to “case E of {E2, E1}”. The reordering of the branch expressions

is due to the structure of the case rewrite rules. In the K-Rust implementation,

branching case statements can only be used on Int types (where booleans are rewritten

to either 0 or 1). Each branch expression correlates to an Int (starting at 0 and

incrementing by 1 for each branch) which is matched to the Int in the test expression.

For if-then statements, the second branch comes first as it correlates to a false test,

which would be rewritten to 0. These case semantic rules are modified in the following

chapter to include other types and more freedom to define the case expression values

being matched. After running the second program with the operational semantics,

the k cell contains the expected result of 5050, matching the output of the Rust

program.

1 fn sum_from_one(n: i32) -> i32 {

2 if n == 0 {

3 return 0

4 }

5 else {

6 return n + sum_from_one(n - 1)

7 }

8 }

9 let x = 100;

10 sum_from_one(x)

1 fn sum_from_one(n) {

2 case n == 0 of {

3 n + sum_from_one(n - 1),

4 0

5 }

6 };

7 let x = 100 in (sum_from_one(x))

Figure 4.3: Core-language Example

22



4.2 Type System

The type system semantics are defined on the surface-rust language. Surface-rust is an

extension of core-language which includes variable modifiers for verifying ownership

and type-checking correctness of a program. Types are given the syntactic sort RType.

The RTypes included in the type system are the primitive types i32 and bool, as well

as pointer types and compound types. Pointer types can be either an own type or a

reference type. An own type, denoted own(RType), represents the owner of a value of

type RType. A reference type, denoted ref(Lifetime, Mutability, RType) is a reference

to a value of type RType, where Lifetime refers to the lifetime of the owner of the value

and Mutability indicates whether the reference is mutable or immutable (denoted mut

and imm). Lifetimes are either a wrapped integer indicating the lifetime or a lifetime

annotation. Compound types can be function types, sum types, or product types. A

function type is denoted fnTy(Lifetimes; RTypes; RType), where the fields represent

lifetime variables for the function, a list of parameter types, and the return type.

Sum types are equivalent to Rust’s enum types, and product types are equivalent to

Rust’s struct types. They are denoted sumTy(RTypes) and prodTy(RTypes), where

the RTypes are a list of types for all the fields of the compound type. Table 4.1 shows

examples of the compound types and their Rust equivalents.

Table 4.1: Compound Type Definitions
Rust Surface-Rust

fn main() {...} main :=: fnTy(;;void)
fun main() ...

fn putX<’a>(x: i32, p: &<’a>mut Point) ->bool {...} putX :=: fnTy(’a; i32, ref(’a,mut,own(ty(Point))); bool)
fun put(x, p) ...

struct Point (i32, i32)
or
struct Point {x: i32, y: i32}

Point :=: prodTy(i32,i32)

enum PointOption {
TwoD(i32, i32),
ThreeD(i32, i32, i32),
}

TwoD :=: prodTy(i32, i32)
ThreeD :=: prodTy(i32, i32, i32)
PointOption :=: sumTy(ty(TwoD), ty(ThreeD))

23



4.2.1 Configuration

The configuration for the type system semantics is shown in Figure 4.4. The k cell

holds the contents of the input program. The varCtx cell holds the total number

of variables that currently exist in the varCnt cell, and a map from the variables to

their type information in the varInfo cell. When a variable is created, the integer

in the varCnt cell is used to uniquely index it in the varInfo map, allowing variables

of the same name to shadow one another without losing their original values. The

env cell holds a map from variable names to their integer indexes in the varInfo map.

The stackEnv contains a list of lifetimes treated as a stack. Whenever a new lifetime

starts, the current environment is saved to the stackEnv cell and restored when that

lifetime ends. The depGraph cell holds a map representing the Reference Dependence

Graph (RDG), which is used to model the reference relations between variables and is

used in borrow checking. The currentLft cell holds an integer representing the current

lifetime. This number is incremented when a new lifetime starts and decremented

when a lifetime ends. The comtypes cell stores any number of comtype cells. These

cells represent the definition of either a sum type or a product type. They contain an

integer ID (ctyId), an integer representing the kind of compound type, where 0 is a

product type and 1 is a sum type (ctyKind), a map containing all the field types of

the compound type (ctyElem), and the total number of fields in the type (cntElem).

Note that for simplicity, this implementation does not allow for the fields of a struct

to have names, and instead maps integer indexes to field types in the ctyElem cell.

Finally, the ctyCnt cell stores the total number of compound types that have been

defined, and is used to set the unique integer ID of a compound type when it is

created.

24



1 configuration

2 <T>

3 <k> $PGM:Rust </k>

4 <varCtx>

5 <varCnt> 0:Int </varCnt>

6 <varInfo> .Map </varInfo>

7 </varCtx>

8 <typeCtx> .Map </typeCtx>

9 <env> .Map </env>

10 <stackEnv> .List </stackEnv>

11 <depGraph> .Map </depGraph>

12 <currentLft> 0:Int </currentLft>

13 <comtypes>

14 <comtype multiplicity="*" >

15 <ctyId> -1:Int </ctyId>

16 <ctyKind> 0:Int </ctyKind>

17 <ctyElem> .Map </ctyElem>

18 <cntElem> 0:Int </cntElem>

19 </comtype>

20 </comtypes>

21 <ctyCnt> 0:Int </ctyCnt>

22 </T>

Figure 4.4: Type System Configuration

4.2.2 Rules

Figure 4.5 shows the process of evaluating a program with the type checking seman-

tics. “TC” is short for Type Checking. The arrows represent how each computational

item is decomposed using the rewrite rules. Since all code aside from type declara-

tions must be wrapped in a function, Function TC is the starting point for all type

checking decomposition. This is divided into four main parts: Lifetimes TC, Param-

eters TC, Expressions TC, and Return TC. The following sections detail these four

components and provide examples of the primary rewrite rules responsible for the

type checking decomposition.

25



Figure 4.5: Type Checking Architecture [9]

4.2.2.1 Lifetime TC

In surface-Rust, the keywords newlft and endlft are used to begin and end lifetimes.

The rules for these terms are shown in Figure 4.6. The rewrite rule for newlft in-

crements the number in the currentLft cell and saves the current environment to the

stackEnv cell so it can be restored when this lifetime ends. The rewrite rule for endlft

decrements the currentLft number, sets the env cell to the environment on the top

of the stack in the stackEnv cell, and removes it from the stack. It then rewrites the

endlft computation to a removeLifetime computation, which takes as arguments the

currentLft before it was decremented and the map stored in the varInfo cell. The

rewrite rules for removeLifetime are responsible for removing all the variables that

have gone out of scope with the end of the current lifetime. This process involves

checking the lifetime information in varInfo for each variable and removing dead vari-

ables from the RDG, which is discussed further in the Expression TC section.

26



1 rule <k> newlft => . ... </k>

2 <currentLft> C:Int => C +Int 1 </currentLft>

3 <stackEnv> .List => ListItem(Rho) ... </stackEnv>

4 <env> Rho:Map </env>

5

6 rule <k> endlft => removeLifetime(L,VR,.Map,.Set) ... </k>

7 <currentLft> L:Int => L -Int 1 </currentLft>

8 <stackEnv> ListItem(Rho) => .List ... </stackEnv>

9 <env> _ => Rho:Map </env>

Figure 4.6: Rewrite Rules for Lifetimes

4.2.2.2 Parameter TC

The bindParamTypes term handles the parameter checking and binding. This set

of rules, shown in Figure 4.7, iterates through all the parameters of a function and

for each creates a new variable which is bound to the type specified in the fnTy

definition. This rule will get stuck if the number of function parameters does not

match the number of specified types. To maintain the necessary type information

for variables, K-Rust stores them as a 6-tuple in the form (L,M, T, L1, L2, B). The

first three fields are the static variable information. L is the integer lifetime of the

variable, M is the mutability (mut or imm), and T is the type. The second three fields

are dynamic information, which may be modified during the type checking process.

L1 is the highest lifetime for which this variable has been immutably borrowed, and

L2 is the highest lifetime for which this variable has been mutably borrowed. B is a

boolean indicating whether or not the variable has been initialized. This 6-tuple is

referred to as a variable’s varInfo, and is what a variable’s ID is mapped to in the

varInfo cell.

4.2.2.3 Expressions TC

The rtTyCK term handles the return type checking. This rule, shown in Figure 4.8

along with the rule for function decomposition, simply compares the return type of

27



1 rule bindParamTys((P:Ident,Ps:CIdents); (T:RType, Ts:RTypes); Ls)

2 => createVar(P,imm) ∼> bindParamTy(P,T) ∼> bindParamTys(Ps;Ts;Ls)

3

4 rule bindParamTys(.CIdents; .RTypes; _) => .

5

6 rule <k> bindParamTy(P,T) => . ... </k>

7 <env> ... P |-> I:Int ... </env>

8 <varInfo>

9 ... var(I) |-> varInfo(_,_,(_ => T),_,_,(_ => true)) ...

10 </varInfo>

Figure 4.7: Rewrite Rules Parameter Binding

the function body to the return type specified in the fnTy definition. To get the

return type of the function body, which is initially represented by a single term of

sort Exp, the rule has a strict attribute to force the evaluation of the body before

comparison. This rewrite rule is what triggers the expression TC. There are three

main components of expression TC: function call TC, branch TC, and assignment

TC. Expressions in K-Rust are modeled with the sort Rvalue. The KResult sort of

expTy(RValue, RType, Int, Int, Int, Mutability) is used to store information about the

RValues as expressions are evaluated, where the fields in order are the RValue itself,

the type of the expression, the lifetime of the expression, whether the expression

is immutably borrowed, whether it is mutably borrowed, and the mutability of the

expression.

1 rule <k> fun F:Ident (P:CIdents) newlft E:Exp endlft =>

2 newlft ∼> bindParamTys(P;Ts;Ls) ∼> rtTyCK(E,T) ∼> endlft ...

3 </k>

4 <typeCtx>

5 ... (F |-> (fnTy(Ls:LftVars; Ts:RTypes; T:RType))) ...

6 </typeCtx>

7

8 rule rtTyCK(expTy(_,T:RType,_,_,_,_),T) => .

9 rule rtTyCK(T,T) => .

Figure 4.8: Rewrite Rules for Function Decomposition and Return TC

28



The function call term has a strict attribute on the expressions passed as argu-

ments to the function being called. After these expressions are evaluated, the rewrite

rule, shown in Figure 4.9, invokes the term argTyCK for argument type checking and

then rewrites the call to an expTy term with an RType matching the function return

type. Argument TC iterates through the function arguments and for each argument

checks that it has the same type as the respective function parameter, then moves

the argument with the move term. The rewrite rules for move modify the varInfo

of variables that have the own type to indicate that they have been moved (the ini-

tialization field is set to false) as long as they are not already immutably or mutably

borrowed.

1 rule <k>

2 call F:Ident (Rs:CExps) =>

3 argTyCK(Rs,Ts) ∼> expTy(call F(Rs),T,L,-1,-1,imm) ...

4 </k>

5 <typeCtx> ... (F |-> fnTy(_;Ts:RTypes;T:RType)) ... </typeCtx>

6 currentLft> L:Int </currentLft>

Figure 4.9: Rewrite Rule for Function Call

The rules for branch TC, shown in Figure 4.10, decompose if-then statements

first by checking that the conditional has type bool by evaluating it with the strict

attribute. They then evaluate the first branch using the execBranch term. This rule

also has a strict attribute and simply evaluates the expression until it reaches a KRe-

sult. The computation is then rewritten to the processBranch term, which takes as

arguments the contents of the varInfo and depGraph cells before the branch execution

as well as the second branch expression. ProcessBranch executes the expression it

was passed using the execBranch term and restores the varInfo and depGraph maps

that were saved before executing the branches. It then uses the terms combineBr-

wInfoWith and mergeDG to perform a branch merge. This is necessary because the

different branch expressions can result in different possible lifetimes for variables. For

example, a variable may be initialized in only one of the branches, or a variable may

29



borrow a different resource in each branch. To solve this problem, the RDG is used

to model all possible reference relations between variables.

The RDG is represented as a map from a variable ID to a set of variable IDs that

the variable references. These can be thought of as edges in the graph. Operations

on the RDG include adding new edges, modifying existing edges, merging, removing

nodes, and finding all the direct successors of a given node. Merging two RDGs

involves taking the set union of the set of variables in each RDG which a given

variable points to. The mergeDG term will merge the two RDGs of the branch

executions. The rules for combineBrwInfoWith modify the varInfo cell by adding any

new variables from branch execution and combining the varInfo for variables in both

by setting the L1 and L2 values to the minimum of the two. That is, the largest

lifetime for which the variable is borrowed will be set to the minimum of the largest

lifetime for which it was borrowed during the execution of either branch expression.

1 rule <k>

2 if expTy(_,bool,_,_,_,_) then E1:Exp else E2:Exp =>

3 execBranch(E1) ∼> processBranch(Rho1,Rho2,E2) ...

4 </k>

5 <varInfo> Rho1:Map </varInfo>

6 <depGraph> Rho2:Map </depGraph>

7

8 rule <k>

9 processBranch(R:Map,G:Map,E) => execBranch(E) ∼>
10 combineBrwInfoWith(Rho1) ∼> mergeDG(Rho2) ∼> void ...

11 </k>

12 <varInfo> Rho1:Map => R </varInfo>

13 <depGraph> Rho2:Map => G </depGraph>

14 rule execBranch(_:KResult) => .

Figure 4.10: Rewrite Rules for Branch Decomposition

The rules for decomposing an assignment, shown in Figure 4.11, involve the term

processLR, which further decomposes into a compatibility check between the left

and right hand sides of the assignment cpdCK, binding the value to the variable

with updateL, and finally moving the value with the previously described move term.

30



The cpdCK term simply compares the types and lifetimes of the two sides of the

assignment expression for compatibility. The variable binding that occurs in the

rules for updateL checks that Rust’s borrowing rules are followed with the assignment

using the trySetBorrow term and updates the varInfo and RDG accordingly with the

updateDG term.

1 rule L:LValue := R:RValue => processLR(lhs(L),R) ∼> void

2

3 rule processLR(L:ExpTy,R:ExpTy) => cpbCK(L,R) ∼> updateL(L,R) ∼> move(R)

4

5 rule <k>

6 updateL(lhsTy(var(I:Int),_),expTy(R,T:RType,_,_,_,_)) =>

7 updateDG(var(I),R,T) ∼> trySetBorrow(R,T,L) ...

8 </k>

9 <varInfo>

10 ... var(I) |-> varInfo(L,_,(_ => T),_,_,(_ => true)) ...

11 </varInfo>

12

13 rule <k>

14 updateL(lhsTy(V,_),expTy(R,T:RType,_,_,_,_)) =>

15 updateDG(V,R,T) ∼> trySetBorrow(R,T,L) ...

16 </k>

17 <varInfo>

18 (.Map => V |-> varInfo(-1,-1,true)) Rho:Map

19 </varInfo>

20 <currentLft> L:Int </currentLft>

21 requires (notBool (V in keys(Rho)))

22

23 rule <k>

24 updateL(lhsTy(V,T),expTy(R,T:RType,_,_,_,_)) =>

25 updateDG(V,R,T) ∼> trySetBorrow(R,T,L) ...

26 </k>

27 <currentLft> L:Int </currentLft>

28 <depGraph> Rho:Map </depGraph>

Figure 4.11: Rewrite Rules for Assignment Decomposition

31



Chapter 5

IMPLEMENTATION

This chapter details the contributions to the K-Rust implementation made by this

thesis. An overview of Rust’s match expressions is followed by a description of the

rules added to both the type checking semantics and the operational semantics of

K-Rust to support these match expressions.

5.1 The Match Syntax

In Rust match expressions, patterns are compared to a value to determine the control

flow of the program. The syntax of these expressions is shown below: with the match

keyword followed by the value to be matched, then one or more pattern-expression

branches.

match VALUE {
PATTERN => EXPRESSION,

PATTERN => EXPRESSION,

PATTERN => EXPRESSION,

}

Rust requires that the patterns be exhaustive. That is, they must account for

every possibility of the value being matched. One easy way to achieve this is by

using the wildcard pattern “_” in the last branch, which will match to any value.

The simplest way to match patterns is by matching literals. Here the patterns being

matched to are all fixed values. For example, Figure 5.1 matches an integer value

to integer literals to print the value as a string, and ends with a wildcard pattern to

account for all remaining integers not included in the previous patterns. The value

of x will match to the first pattern and the program will output “one”, as expected.

32



1 let x = 1;

2 match x {

3 1 => println!("one"),

4 2 => println!("two"),

5 3 => println!("three"),

6 _ => println!("other"),

7 }

Figure 5.1: Matching Literals Example

Rust also allows matching named variables. The match expression will start a

new scope, so a named variable in a pattern will shadow any variables of the same

name outside of the scope of the expression. The example in Figure 5.2 from the Rust

documentation [10] shows a match expression with a named variable in a pattern. The

variable x is declared as an Option type, a builtin enum type that can be either None

or Some(T), where T is a value. Here x is initialized to Some(5). The pattern on line

4 will compare the values inside the Some values, which here do not match. On line

5, the named variable y is used. This will match to any value in the Some value of

x, so the branch will be taken. Since the match expressions starts a new scope, this

y variable will shadow the previously declared y variable on line 2. Instead of the

value 10 that y was initialized to, the new y variable is bound to the inner value of

the Some value of x. Thus, the output will be “Matched, y = 5”. After the match

expression, the new y goes out of scope and the value of y will once again be 10.

1 let x = Some(5);

2 let y = 10;

3 match x {

4 Some(50) => println!("Got 50"),

5 Some(y) => println!("Matched, y = {:?}", y),

6 _ => println!("Default case, x = {:?}", x),

7 }

Figure 5.2: Matching Named Variables Example

Match expressions can also be used to destructure structs by matching against

all the fields of the struct in each pattern. The destructuring functionality is outside

33



the scope of this implementation and will be described further in the Future Work

chapter.

5.2 Type Checking Semantics

As the type checking semantics are responsible for type checking and borrow checking,

the rules added for match expressions perform type checking on the values, patterns,

and expressions of the match construct as well as borrow checking on the branches.

The syntax added to support match statements is shown in Figure 5.3. A match

expression is written as the match keyword followed by an RValue and a CExp (a

list of expressions) in curly brackets. This rule has a strict attribute on the RValue so

that the value will be evaluated before it is matched. Because the “=>” operator is

used in K rewrite rules, it is replaced with the operator “>>” in surface-rust syntax

for the pattern-expression branches. Similary, the wildcard underscore character,

which is also used in K rewrite rules, is replaced with a double underscore “ ”. The

rule on line 6 simply evaluates this wildcard to an expTy with the value “wildcard”,

which is used in the match expression rewrite rules.

1 syntax Exp ::= "match" RValue "{" CExps "}" [strict(1)]

2 | Exp ">>" "{" Exp "}"

3 | "__"

4

5 syntax RValue ::= "wildcard"

6 rule __ => expTy(wildcard,#TyUndef,0,-1,-1, imm)

Figure 5.3: Type Checking Syntax for Match Expressions

Similar to decomposition of if-then statements, match expressions are decomposed

by checking each branch one by one, then merging branches with the same process-

Branch rules used by the if-then statements, shown in Figure 4.10. This ensures that

differing variable lifetimes for different branches are consolidated. Figure 5.4 shows

the syntax of sort TyCKItem (type check item), which is used to define terms used in

34



match branch checking. The branchItem term, defined on line 2, is the main construct

used to iterate over match branches. The fields of this term are the RValue of the

value being matched, the RType of the value being matched, an RType to hold the

type of the branch expressions, an Int to hold the current branch number, a list of

expressions making up the body of the match expression, and Int used in determining

if the patterns are exhaustive. The third and sixth terms are both specified to be the

generic KItem sort and given the strict attribute because the these fields are both

passed as syntax terms that must be evaluated before the branchItem rewrite rules

are applied (getBranchType and isWildcard respectively). The matchPatternTypes

term simply verifies that two terms have the same type, and is strict in the second

field to evaluate the type of the expression being compared to the type in the first

field.

1 syntax TyCKItem ::=

2 "branchItem" "(" RValue ";" RType ";" KItem

3 ";" Int ";" CExps ";" KItem ")" [strict(3,6)]

4 | matchPatternTypes(RType, KItem) [strict(2)]

5 | getBranchType(Exp) [strict]

6 | isWildcard(KItem, KItem) [strict]

Figure 5.4: Match Branch Type Checking Syntax

5.2.1 Matching Literals

Figure 5.5 presents the rewrite rules for decomposing match statements. The first

rule on line 1 rewrites the match expressions into the first branchItem term. For a

match expression to type check, all the patterns must have the same type as the value

being matched, and all expressions must have the same type as one another. Since

the type of the branch expressions can be anything, the type of the first branch must

be evaluated first and then compared to all subsequent branches. To accomplish this,

the rule on line 2 rewrites a branchItem on its first iteration by matching the value 1 in

the current branch number field. It also requires that the first expression in the match

35



1 rule match expTy(R,T,A,B,C,D) Es:CExps => branchItem(R; T; T; 1; Es; 0)

2 rule <k>

3 branchItem(R:RValue;T1;T2;1;E1 >> {E2}, Es:CExps;A) =>

4 matchPatternTypes(T1, E1)

5 ∼> execBranch(E2)

6 ∼> processBranch(Rho1,Rho2,

7 branchItem(R;T1;getBranchType(E2);2;Es;isWildcard(A, E1))) ...

8 </k>

9 <varInfo> Rho1:Map </varInfo>

10 <depGraph> Rho2:Map </depGraph>

11 rule <k>

12 branchItem(R;T1;T2;N;E1 >> {E2}, Es:CExps;A) =>

13 matchPatternTypes(T1, E1) ∼> matchPatternTypes(T2, E2) ∼>
14 execBranch(E2) ∼> processBranch(Rho1,Rho2,

15 branchItem(R;T1;T2;N +Int 1;Es; isWildcard(A, E1))) ...

16 </k>

17 <varInfo> Rho1:Map </varInfo>

18 <depGraph> Rho2:Map </depGraph>

19

20 rule getBranchType(expTy(_,T,_,_,_,_)) => T

21 rule getBranchType(void) => void

22

23 rule matchPatternTypes(_, expTy(wildcard,_,_,_,_,_)) => .

24 rule matchPatternTypes(T, expTy(_,T,_,_,_,_)) => .

25 rule matchPatternTypes(own(T), expTy(_,T,_,_,_,_)) => .

26 rule matchPatternTypes(void, void) => .

27

28 rule isWildcard(_, expTy(wildcard,_,_,_,_,_)) => expTy(1,i32,0,-1,-1,imm)

29 rule isWildcard(E, _) => E

30 rule branchItem(_;_;_;_;.CExps; expTy(1,i32,0,-1,-1,imm)) => .

Figure 5.5: Rewrite Rules for Match Type Checking

statement body is of the form “Exp >> {Exp}”. To type check the first branch, this

rule first matches the type of the value being matched T1 and the type of pattern of

the first expression E1 using the matchPatternTypes term on line 4. The rules for

this term, shown on lines 23-26, will type check as long as the types are the same or

the type of the pattern is a wildcard. The next step, shown on lines 5-7, is executing

the branch expression E2 and processing the branch using the processBranch term

shown previously in Figure 4.10. The third field of the processBranch term should be

the next branch to be evaluated, so here it is set to a new branchItem term on line

36



7. On this first iteration, the Rtype in the third field is set to the type of first branch

expression using the term getBranchType on the expression E2. The rules for this

term, shown on lines 20-21, simply rewrite to the type of the expression passed. The

branch number field is increased to 2 so this rule is not used again on the subsequent

branches. The expressions passed will be the list of expressions without the first

expression already type checked by this rule. Finally, the field used to check that

patterns are exhastive is evaluated with the term isWildcard.

For simplicity, exhaustive patterns are enforced by requiring that all match ex-

pressions must contain a wildcard pattern. This is accomplished by the isWildcard

term. Every branchItem has as its last field an integer which is initialzed to 0 and set

to 1 whenever a wildcard pattern is encountered. Unreachable patterns (patterns that

cannot be reached because the patterns above it are exhaustive) are only a compiler

warning in Rust and so are ignored by this implementation. This means the wildcard

pattern can occur in any of the branches within the match expression, though any

pattern that comes after a wildcard will be unreachable. The isWildcard rewrite rules

are shown on lines 28-29. When all the branches of a match expression have been

checked, the resulting branchItem containing an empty expression list must have a 1

in last field to pass the type checker, shown on line 30. This ensures that a wildcard

pattern was encountered at some point during the branch checking, so the match

expression is guaranteed to be exhaustive.

The second rule for rewriting branch items, shown on line 12, rewrites the remain-

ing branch expressions in much the same way as the first rule. The only difference

is that now the type of each branch expression is compared to the type of the first

expression using the matchPatternTypes term.

37



5.2.2 Matching Named Variables

The defined behavior in Rust for binding a named variable in a pattern is as follows.

Named variables in a pattern are bound to the value being matched with one of

three binding modes (move, copy, or reference), where the scope of the binding is

the expression of the given branch. The binding mode is specified in the pattern. If

no mode is specified, it will be move by default. If the value implements Copy (a

method for copying the value into a new location), it will be copied instead. To bind

a reference to the value, the keyword ref can be used before the variable name in the

pattern, or ref mut for a mutable reference. This is used in place of the & operator

so there is no effect on the matching itself; ref is exclusively an indicator of how

to bind the value to the variables in a pattern. To handle cases where a referenced

value is matched to a non-referenced pattern, Rust has a strategy for determining the

binding mode of a pattern. If this case is encountered, the value is dereferenced and

the binding mode is changed to reference. If the reference is mutable, the binding

mode will be changed to mutable reference unless it is already set to reference, in

which case it is not changed. The process of dereferencing the value repeats for

nested references until the value itself is reached.

The above rewrite rules will work for matching named variables with one addi-

tion. When defining a pattern containing a named variable in surface-rust, the ex-

pression that follows must first bind the value being matched to the variable named

in the pattern. This step can be accomplished when translating a Rust program

into the surface-rust syntax by rewriting the term “match VALUE {PATTERN(x)

=> EXPRESSION}” to “match VALUE {PATTERN(x) >> let x = VALUE in

{EXPRESSION}}”. Because of the rules already defined for assignment, this will

achieve the desired result of any named variables shadowing previously defined vari-

ables of the same name inside the body of the match expression. Here the binding

38



mode for the variable can be defined explicitly in the code itself, so it does not need

to be determined from the pattern.

5.3 Operational Semantics

The match expression rules for the operational semantics are much simpler than those

for the type checking semantics. They involve evaluating the pattern value to find the

correct branch to take. Since the only types allowed in the operational semantics are

integers and arrays, these rules are defined only for matching integers. These rules

expand upon the previously defined case statements for the operational semantics,

which originally could not have defined patterns, but instead used increasing integer

values as the default for pattern values and were used only for rewriting if-then

statements. The expanded syntax terms for Exp, shown in Figure 5.6, include the

same terms from the type checking semantics for pattern-expression and wildcard.

The pattern-expression term is strict on the first Exp to evaluate the pattern before

matching occurs. Instead of “match VALUE {...}”, the syntax for a match expression

in core-language is “case VALUE of {...}”.

1 syntax Exp ::=

2 Exp ">>" "{" Exp "}" [strict(1)]

3 | "__"

Figure 5.6: Operational Syntax for Match Expressions

Figure 5.7 shows the rewrite rules for match operations, which in the operational

semantics are rewritten to the term caseItem. A caseItem has the value being matched

as the first agrument and the list of expressions making up the body of the match ex-

pression as the second argument. The term is strict in the first argument to evaluate

the value being matched before matching occurs. The rule on line 4 rewrites if-then

statements to a case statement where the first pattern is 1 for true and the second is

0 for false (recall that in the the operational semantics booleans are rewritten to inte-

39



gers). This rule eliminates the need to translate if-then statements in core-language,

as the rewrite rule will translate them automatically. The rule for decomposing a

case statement, shown on line 6, rewrites the case statement as a caseItem. The

caseItem rewrite rules iterate through the branches of the case statement. The rule

for a caseItem with a mismatched pattern, shown on line 8, checks the pattern of the

first expression, then rewrites the term to a caseItem with the remaining expressions.

The rules for a matching pattern, shown on lines 10 and 12, rewrite to the branch

expression if the pattern matches the value or the pattern is a wildcard.

1 syntax CaseItem

2 ::= caseItem(Exp, ExpList) [strict(1)]

3

4 rule if E:Exp then E1:Exp else E2:Exp => case E of {1 >> {E1}, 0 >> {E2}}

5

6 rule case I of { EL:ExpList} => caseItem(I, EL)

7

8 rule caseItem(I, P >> {_}, EL:ExpList) => caseItem(I, EL)

9

10 rule caseItem(I, I >> {E}, EL:ExpList) => E

11

12 rule caseItem(I, __ >> {E}, EL:ExpList) => E

Figure 5.7: Rewrite Rules for Match Operations

5.4 Type Checking and Evaluating a Match Expression

1 let x = 1;

2 match x {

3 0 => false,

4 _ => true

5 }

Figure 5.8: Match Example Rust Code

This section demonstrates the rewrite process for a simple match expression in

both the type checking semantics and the operational semantics. The Rust code in

40



Figure 5.8 matches an integer variable x, and will evaluate to false if the integer value

is 0 and true otherwise.

First the code will be evaluated with the type checking semantics. The translation

into surface-rust code is shown in Figure 5.9. The code on lines 1-2 will create the

variable x and initialize its value to 1. Next the match expression is encountered.

1 let x in {

2 x := 1;

3 match x {

4 0 >> {false},

5 __ >> {true}

6 }

7 }

Figure 5.9: Match Example Surface-Rust Code

Match terms are strict on the value being matched, so it will be evaluated first.

This will involve a simple variable lookup, which will result in the RValue expTy (1,

i32, 0, -1, -1, imm), representing the i32 1. The first rewrite rule for match terms can

now apply. It will put the match expression into a branchItem term as follows:

branchItem(1; i32; i32; 1; 0 >> {false}, __ >> {true}; 0)

Now the rewrite rules for branchItem will be applied. Since the integer in the

fourth field is 1, the rule for checking the first branch arm of the match expression

will apply on the expression “0 >> {false}”. The branchItem will be rewritten as

follows, where Rho1 is the varInfo map containing the variable x and Rho2 is the

depgraph map, which is currently empty.

matchPatternTypes(i32, 0) ∼> execBranch(false) ∼>
processBranch(Rho1, Rho2, branchItem(1; i32; getBranchType(false);

2; __ >> {true}; isWildcard(0, 0)))

The matchPatternTypes term will rewrite to the empty computation, since the

type of the expression 0 is i32. The execBranch term will similarly rewrite to the

41



empty computation as the expression false type checks. Next the rewrite rule for

processBranch will apply. The computation now looks like this:

execBranch(branchItem(1; i32; getBranchType(false); 2; __ >> {true};
isWildcard(0, 0)))

∼> combineBrwInfoWith(Rho1) ∼> mergeDG(Rho2) ∼> void

First the execBranch term will evaluate the second branchItem term. Now the

fourth field of the branchItem is 2, so the rule for evaluating the remaining branches

of the match expression will apply. This rule will match the types of the branch

expressions by comparing them to the type of the first branch expression. The bran-

chItem term is strict in the third and sixth fields, so before rewriting the term, the

getBranchType and isWildcard terms must be evaluated. The getBranchType term

evaluates to the type of the expression false, which is bool. Since the value passed to

isWildcard is not a wildcard, it will evaluate to 0. The computation now looks like

this:

branchItem(1; i32; bool; 2; __ >> {true}; 0)

∼> combineBrwInfoWith(Rho1) ∼> mergeDG(Rho2) ∼> void

After rewriting the brachItem term for the second branch of the match expression,

the computation looks like the following (note that since no borrowing occurs, the

values of Rho1 and Rho2 do not change throughout this process).

matchPatternTypes(i32, __) ∼> matchPatternTypes(bool, true) ∼>
execBranch(true) ∼> processBranch(Rho1, Rho2, branchItem(1; i32;

bool; 3; .CExps, isWildcard(0, __)))

∼> combineBrwInfoWith(Rho1) ∼> mergeDG(Rho2) ∼> void

As before, the matchPatternTypes terms both rewrite to the empty computation

since the types match, and execBranch rewrites to the empty computation because

the expression true will type check. Now the rewrite rules for the second process-

BranchTerm can apply, resulting in the following computation.

42



execBranch(branchItem(1; i32;

bool; 3; .CExps, isWildcard(0, __))) ∼>
∼> combineBrwInfoWith(Rho1) ∼> mergeDG(Rho2) ∼> void

∼> combineBrwInfoWith(Rho1) ∼> mergeDG(Rho2) ∼> void

The isWildcard term will be evaluated before rewriting the branchItem term.

Since this expression is a wildcard, the term will evaluate to 1. Now the computation

looks like this:

branchItem(1; i32; bool; 3; .CExps, 1) ∼>
∼> combineBrwInfoWith(Rho1) ∼> mergeDG(Rho2) ∼> void

∼> combineBrwInfoWith(Rho1) ∼> mergeDG(Rho2) ∼> void

The branchItem term has a 1 in the wildcard field, meaning it encountered a

wildcard pattern in at least one branch, and an empty list of expressions, so it will

be rewritten to the empty computation. Since the Rho1 and Rho2 maps did not

change throughout the process, the combineBrwInfoWith and mergeDg terms will

not change the contents of the varInfo and depgraph maps and will all rewrite to the

empty computation. The type checking of the match expression is now complete.

The next step is to evaluate the code on the operational semantics. For this it

must be translated into core-language, which is shown in Figure 5.10.

1 let x = 1 in (

2 case x of {

3 0 >> {false},

4 __ >> {true}

5 }

6 )

Figure 5.10: Match Example Core-Language Code

As with the type checking semantics, the focus of this example will be only the

rewrite rules for the case expression. The case term is strict on the value being

matched, so the first step is a variable lookup on x, which will result in the Int value

43



1. Then the rule for case terms will apply to rewrite the expression into a caseItem

term as follows.

caseItem(1, (0 >> {false}, __ >> {true}))

Now the caseItem will attempt to find a matching rewrite rule by examining the

pattern of the first expression 0 >> false. This pattern of 0 does not match the value

1, so the computation is rewritten to a caseItem with the remaining expression list.

caseItem(1, (__ >> {true}))

Now the pattern being compared is a wildcard, so it will match the value 1. The

computation is then rewritten to the expression of this branch: true. In core-language,

booleans are rewritten to integers, so the final result of this code will be the value 1.

44



Chapter 6

TESTING AND VALIDATION

6.1 Translating Rust Programs

In order to run Rust programs on the compiled K framework models, they must first

be translated into the defined syntax for those models. As previously mentioned,

the language defined for the type checking semantics is called surface-rust, and the

syntax for the operational semantics is called core-language. Running a Rust program

with the entire implementation requires that the program first be translated into

surface-rust and run on the type checking semantics, then translated further into

core-language and run on the operational semantics. The details of this translation

are provided below.

6.1.1 Rust to Surface-Rust

As the syntax for surface-rust closely resembles that of Rust, translating a Rust

program into surface-rust is fairly straightforward. Table 6.1 highlights the main

syntactic differences between Rust and surface-rust and how they are translated. In

surface-rust, all compound types, including function types, must be defined at the

start of the program with the “:=:” operator. Surface-rust also uses the keyword fun

instead of Rust’s fn for functions and the newlft and endlft keywords to start and

end a function body in place of curly brackets. To create new variables, surface-rust

uses the new keyword and desired variable type. New variables cannot be initialized

directly, and the scope of a new variable must be strictly specified by the “in {}”

following the variable declaration. Row three of the table shows how a new variable

of type Point is defined in surface-rust and then set to a certain value using the “:=”

45



operator. This row also shows how functions are called in surface-rust, with the call

keyword. The last row of the table shows the match syntax translation.

Table 6.1: Translating Rust to Surface-Rust
Rust Surface-Rust

fn main() {...}

main :=: fnTy(;;void)
fun main() newlft
...
endlft

struct Point {x: i32, y: i32} Point :=: prodTy(i32,i32)

let p = Point {x: 0, y: 1};
let x = get(&mut p);
...

let p = new(ty(Point)) in {
p.1 := 0
p.2 := 1
let x = call get(& mut p) in {...}

let x = 19;
match x {

0 => 0,
1 => 1,

=> 2
}

let x = new(i32) in {
x := 19
match x {

0 >> {0},
1 >> {1},
>> {2}

}

6.1.2 Surface-Rust to Core-Language

After a surface-rust program passes the type checker, it must be translated again into

the syntax of core-language. Table 6.2 shows some of the main syntactic differences

between surface-rust and core language. It is assumed that any program being run

on the operational semantics has already passed the type checker, so there is no

need for type annotations in core-language. The function syntax for core-language

is the same as that of Rust. The match syntax is the same as that of surface-rust

except the match keyword is replaced with case of. Row three illustrates how

variable declarations are replaced with function calls in core-language. Creating a

value with the new keyword in surface-rust is replaced with a memory allocation.

46



The na keyword used to translate dereferences refers to non-atomic memory reads.

The syntax for assigning a value to a variable does not change. The last row of

the table shows how a sequential composition of expressions is translated into a tail

function call, a call which does not allocate any stack space.

Table 6.2: Translating Surface-Rust to Core-Language
Surface-Rust Core-Language

fun main() newlft
...
endlft

fn main () {...}

match x {
0 >> 0,
1 >> 1,
>> 2

}

case x of {
0 >> {0},
1 >> {1},
>> {2}

}
let x = e1 in {e2} (fn(x){e2})(e1)
new(T) allocate(N), where N is the size of the type T
*v * na v
x := v x := v
*x := v x := na v
e1; e2 tailcall((fn (#anonymous) {e2}) (e1))

6.2 Testing Benchmarks and Example Test Cases

The main tests used to validate this implementation were the tests provided by the

K-Rust implementation at [1]. As a newer version of the K-framework required sig-

nificant refactoring of the original implementation, these tests were used to verify

that the implementation retained the original functionality. The tests are organized

into six categories: ownership, branches, sum types, product types, lifetimes, and

functions. Many of the tests are examples taken from the Rust documentation [10].

In addition to these tests, additional tests were created to target the functionality

of the new match semantic rules. Some examples of these tests are provided in the

47



following sections. To test a program, the results of the K execution are compared

to the results of the Rust compiler. The purpose of testing on a semantic model for

a language is twofold: testing must verify that the implementation correctly models

the Rust language as specified, and also serves to verify the correctness of the Rust

compiler itself. For example, test cases taken directly from the Rust documentation

are assumed to compile correctly, so the K execution should match the Rust compiler

in these cases. If the Rust compiler accepts the program and produces the correct

result, the K execution should do the same. If the Rust compiler rejects the program,

the K execution should get stuck at the same point as the Rust compiler. That is,

the reason for rejecting the program should be the same for both executions. Testing

the Rust compiler involves creating test cases by deriving the expected result from

the documented Rust specifications, then verifying the Rust compiler matches the

K execution for the semantic model of these specifications. For the purpose of this

implementation, tests created for the match expression rules serve only to test the

correctness of the implementation itself, though the test cases provided by the K-Rust

implementation include both types.

6.2.1 Match Test Example

1 fn f(X:Box<i32>,Y:Box<i32>) -> i32 {
2 match *X {
3 1 => *X + 1,

4 2 => *X + 10,

5 _ => *Y

6 }
7 }
8 let x = Box::new(1);

9 let y = Box::new(3);

10 f(x,y)

Figure 6.1: Match Test Example Rust Program

48



This example was created to test the match semantics and shows the execution of

a Rust program from beginning to end with the K framework implementation. The

original Rust program is shown in Figure 6.1. This program creates two variables

using the Box constructor (a builtin Rust struct that allocates values on the heap

instead of the stack). It then calls the function f with the two variables which will

return an i32 value based on a match statement. This program will compile and will

match the first branch of the match expression, so the output will be 2.

Figure 6.2 shows the program translated into surface-rust syntax. This code passes

the type checker as expected (the contents of the k cell are the empty computation

when execution is finished).

1 Box :=: prodTy(i32)

2 main :=: fnTy(;;i32)

3 f :=: fnTy(;own(ty(Box)),own(ty(Box));i32)

4 fun f(X, Y) newlft

5 let return in {
6 match X.(1) {
7 1 >> {return := X.(1) + 1},
8 2 >> {return := X.(1) + 10},
9 __ >> {return := Y.(1)}

10 };
11 return

12 }
13 endlft

14 fun main() newlft

15 let x = new(ty(Box)) in {
16 x.(1) := 1;

17 let y = new(ty(Box)) in {
18 y.(1) := 3;

19 call f(x,y)

20 }
21 }
22 endlft

Figure 6.2: Match Test Example Surface-Rust Program

49



Finally, Figure 6.3 shows the core-language translation of the program (sc is an

atomic memory read). After execution finishes the k cell contains the expected result

of 2. Since this test matches the behavior of the Rust compiler it is considered passed.

1 fn f(X,Y) {
2 case (*sc X) of {
3 1 >> {(*sc X) + 1},
4 2 >> {(*sc X) + 10},
5 __ >> {(*sc Y)}
6 }
7 };
8 let x = allocate(1) in (

9 x := na 1;

10 let y = allocate(1) in (

11 y :=na 3;

12 f(x,y)

13 )

14 )

Figure 6.3: Match Test Example Core-Language Program

6.2.2 Compiler Rejection Example

This example, from the test cases provided by the K-Rust implementation, shows

a test program that is rejected by the Rust compiler. The original Rust program

(from the Rust documentation [10]) is shown in Figure 6.4. This program results in a

compiler error because y borrows x on line 4, then x goes out of scope and is dropped

on line 5, but y attempts to reference the dropped value on line 6. This is an example

of a “used after free” error.

1 let y;

2 {
3 let x = 5;

4 y = &x;

5 }
6 println!("{}", &y);

Figure 6.4: Compiler Rejection Example Rust Program

50



Since the borrow checker is part of the type checking semantics, this program

should not pass the type checking stage of execution. Figure 6.5 shows the surface-

rust translation of the program.

1 main :=: fnTy(;;void)

2

3 fun main() newlft

4 let y in {
5 newlft

6 let x = new(i32) in {
7 *x := 5;

8 y := & imm x

9 }
10 endlft;

11 let print = & imm y in void

12 }
13 endlft

Figure 6.5: Compiler Rejection Example Surface-Rust Program

Figure 6.6 shows the resulting k cell when execution is finished. Clearly this

program did not pass the type checker. Examining the contents of this cell shows

where the execution got stuck. The “#freezer” followed by a rule name indicates

that the computation got stuck while trying to complete the named rewrite rule.

Computations are rewritten from left to right, so the first term in the k cell is the

term that was unable to match any rule. Here the term is lessInt, which was written

somewhere inside the frozen term processLR. By examining the semantic rules and the

rest of the resulting configuration, it can be determined that the lessInt term is used

by the cpbCK term for compatibility checking an assignment within the processLR

rule. The lessInt term is a K builtin which will rewrite to the empty computation

if the first integer agrument is less than or equal to the second. Here it is used for

comparing lifetimes of the left and right hand sides of the assignment, since a value

can only be assigned to a variable if the variable’s lifetime includes the value’s lifetime.

After the two newlft terms, the variable x had a lifetime of 2, so when y was set to

a reference to x, its lifetime also became 2. Since the previous lifetime ended on line

51



10, the lifetime of the new variable print on line 11 is 1. Then when lessInt is called,

the lifetime of the right hand side of the expression (y) has a lifetime of two (the first

argument to lessInt), but the lifetime of the left hand side (print) has a lifetime of 1

(the first field of the expTy in the second lessInt argument), so the rule gets stuck.

This is the same reason that the program was rejected by the Rust compiler, so this

test passes.

1 <k>

2 lessInt(2, expTy(1, i32, 0, -1, -1, imm ) ) ∼>
3 expTy(& imm var(0),

4 ref(1, imm, ref(2, imm, own(i32))), 1, 1, -1, mut)

5 ∼> #freezerprocessLR(_,_)_LSTATEMENT_TyCKItem_KItem_KItem1_(

6 lhs(print)∼>.) ∼> void ∼>
7 #freezerrtTyCK(_,_)_LFUNCTION_TyCKItem_Exp_K0_ (void∼>.)
8 ∼> endlft ∼> .Decls ∼> .

9 </k>

Figure 6.6: Compiler Rejection Example Results

52



Chapter 7

FUTURE WORK

7.1 Implementation

The primary focus of future work for this implementation should be further expanding

its scope. While the match semantics for the type checking system can include structs

and named variables, the operational semantics currently only supports the primitive

types of integer and boolean. The first goal of any future work would be to include

the third type allowed by the operational semantics: arrays. Arrays in core-language

are a way of representing compound data types at the memory level. Including them

in the match semantic rules would allow support for the destructuring of structs

and enums allowed by Rust. Destructuring involves matching against a compound

data type like a struct by matching against each of the individual fields within the

type. Patterns of the type being matched may contain fields with literals, fields with

named variables, or some combination of the two. Matching against compound types

is possible with the type checking semantics because it simply verifies that all patterns

have the same type as the value being matched. However, matching compound data

types to determine which branch to take, as the operational semantics would do,

requires more complex rewrite rules that take into account proper variable bindings.

Another option for expanding the implementation is including semantic rules for

Rust’s unsafe constructors. These are Rust libraries that are implemented using

unsafe code, which allows the use of features that are not checked by the compiler for

memory safety. Unsafe libraries are largely ignored by efforts to formalize Rust, with

the exception of the Rustbelt implementation [8], which outlines a verification process

for including unsafe features in the formal proofs given for safe Rust. A non-trivial

53



number of Rust’s core libraries are implemented with some amount of unsafe code,

and more focus should be placed on these features in future work exploring the safety

of the language.

7.2 Testing

The requirement of manually translating programs from Rust to surface-rust to core-

language creates a bottleneck in the testing capability of this implementation. Cre-

ating an automated translation process of programs would allow for a much more

exhaustive testing suite that could take unaltered Rust programs as input directly.

This could be achieved by adding rewrite rules to the implementations which would

simply rewrite the input language syntax to its appropriate translation before the ex-

ecution begins. K provides support for such rules with the structural attribute. This

is used for rules that only serve to rearrange the structure of a computation without

making any computational steps. Tests that are rejected by the compiler would still

require manual verification of the reason for failure, but an automated translation

tool would significantly improve the practical usefulness of this implementation.

54



Chapter 8

CONCLUSION

This thesis had the primary goal of getting incrementally closer to a complete formal

semantics of the Rust programming language. This was achieved by expanding the

scope of K-Rust, a formal semantic model implemented in the rewrite based semantic

framework K. The implementation is now compatible with version 5 of the K frame-

work, the most recent version to date. It is also able to perform type checking, borrow

checking, and operational execution on Rust’s match expressions. All tests run on

the implementation match the results of the Rust compiler, both for cases where the

program is accepted and executed and cases where the compiler rejects the program.

The goal of any future testing, which would be made more efficient with automated

program translation capabilities, would be to further verify the correctness of the

implementation and ideally identify use cases where the Rust compiler produces an

incorrect result based on the defined rules for ownership and borrowing.

In summary, the major contributions of this work include:

• Reworking the K-Rust implementation so that it is compatible with a newer

version of the K framework

• Extending the functionality of the K-Rust implementation to include pattern

matching semantics

• Testing and validating the functionality of the extended K-Rust implementation

against the Rust execution environment

Formal semantics, while often overlooked or disregarded in practice, are essential

for ensuring the safety and reliability of programming tools. Rust’s principles of

55



ownership and borrowing present an interesting new programming language paradigm

with great potential, but will ultimately require more work in order to formally verify

their safety guarantees.

56



BIBLIOGRAPHY

[1] K-rust formal semantics for the rust programming language in the

k-framework. https://securify.sce.ntu.edu.sg/SoftVer/KRUST/.

[2] K tutorial. https://github.com/kframework/k/tree/master/k-

distribution/tutorial, 2020.

[3] D. Bogdanas and G. Roşu. K-java: A complete semantics of java. In

Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’15, page 445–456, New York,

NY, USA, 2015. Association for Computing Machinery.

[4] D. Bogdanas and G. Roşu. K-java: A complete semantics of java. SIGPLAN

Not., 50(1):445–456, Jan. 2015.

[5] C. Ellison and G. Rosu. An executable formal semantics of c with applications.

In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’12, page 533–544, New York,

NY, USA, 2012. Association for Computing Machinery.

[6] C. Ellison and G. Rosu. An executable formal semantics of c with applications.

SIGPLAN Not., 47(1):533–544, Jan. 2012.

[7] D. Filaretti and S. Maffeis. An executable formal semantics of php. In

European Conference on Object-Oriented Programming, pages 567–592.

Springer, 2014.

[8] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer. Rustbelt: Securing the

foundations of the rust programming language. Proc. ACM Program.

Lang., 2(POPL), Dec. 2017.

57

https://securify.sce.ntu.edu.sg/SoftVer/KRUST/
https://github.com/kframework/k/tree/master/k-distribution/tutorial
https://github.com/kframework/k/tree/master/k-distribution/tutorial


[9] S. Kan, D. Sanán, S.-W. Lin, and Y. Liu. K-rust: An executable formal

semantics for rust. arXiv preprint arXiv:1804.07608, 2018.

[10] S. Klabnik and C. Nichols. The Rust Programming Language. No Starch Press,

USA, 2018.

[11] N. D. Matsakis and F. S. Klock. The rust language. In Proceedings of the 2014

ACM SIGAda Annual Conference on High Integrity Language Technology,

HILT ’14, page 103–104, New York, NY, USA, 2014. Association for

Computing Machinery.

[12] P. D. Mosses. Formal semantics of programming languages: — an overview —.

Electronic Notes in Theoretical Computer Science, 148(1):41 – 73, 2006.

Proceedings of the School of SegraVis Research Training Network on

Foundations of Visual Modelling Techniques (FoVMT 2004).

[13] D. Park, A. Stefănescu, and G. Roşu. Kjs: A complete formal semantics of

javascript. In Proceedings of the 36th ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 346–356, 2015.

[14] E. R. Reed. Patina : A formalization of the rust programming language. 2015.

[15] G. Rosu. K: a rewrite-based framework for modular language design,

semantics, analysis and implementation-version 2. Technical report, 2006.

[16] G. Ros,u and T. F. S, erbănută. An overview of the k semantic framework. The

Journal of Logic and Algebraic Programming, 79(6):397 – 434, 2010.

Membrane computing and programming.

[17] F. Wang, F. Song, M. Zhang, X. Zhu, and J. Zhang. Krust: A formal

executable semantics of rust. In 2018 International Symposium on

Theoretical Aspects of Software Engineering (TASE), pages 44–51, 2018.

58



[18] A. Weiss, D. Patterson, N. D. Matsakis, and A. Ahmed. Oxide: The essence of

rust, 2019.

59


	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 The Rust Programming Language
	2.1.1 Ownership
	2.1.2 Borrowing
	2.1.3 Mutable Variables and References
	2.1.4 Rules of Borrowing
	2.1.5 Lifetimes

	2.2 Semantic Formalization
	2.3 The K-Framework
	2.3.1 Configurations
	2.3.2 Computations
	2.3.3 Syntax and Rules


	3 Related Work
	3.1 Patina
	3.2 Oxide
	3.3 RustBelt
	3.4 KRust
	3.5 K-Rust

	4 K-Rust
	4.1 Operational Semantics
	4.2 Type System
	4.2.1 Configuration
	4.2.2 Rules
	4.2.2.1 Lifetime TC
	4.2.2.2 Parameter TC
	4.2.2.3 Expressions TC



	5 Implementation
	5.1 The Match Syntax
	5.2 Type Checking Semantics
	5.2.1 Matching Literals
	5.2.2 Matching Named Variables

	5.3 Operational Semantics
	5.4 Type Checking and Evaluating a Match Expression

	6 Testing and Validation
	6.1 Translating Rust Programs
	6.1.1 Rust to Surface-Rust
	6.1.2 Surface-Rust to Core-Language

	6.2 Testing Benchmarks and Example Test Cases
	6.2.1 Match Test Example
	6.2.2 Compiler Rejection Example


	7 Future Work
	7.1 Implementation
	7.2 Testing

	8 Conclusion
	BIBLIOGRAPHY

