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ABSTRACT

Design, Modeling and Control of a Two-wheel Balancing Robot Driven by BLDC

Motors

Charles T. Refvem

The focus of this document is on the design, modeling, and control of a self-balancing two wheel

robot, hereafter referred to as the balance bot, driven by independent brushless DC (BLDC) motors.

The balance bot frame is composed of stacked layers allowing a lightweight, modular, and rigid

mechanical design. The robot is actuated by a pair of brushless DC motors equipped with Hall

effect sensors and encoders allowing determination of the angle and angular velocity of each wheel.

Absolute orientation measurement is accomplished using a full 9-axis IMU consisting of a 3-axis

gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer.

The control algorithm is designed to minimize deviations from a set point specified by an external

radio remote control, which allows the remote operator to steer and drive the bot wirelessly while it

remains balanced. Multiple dynamic models are proposed in this analysis, and the selected model

is used to develop a linear-quadratic regulator based state-feedback controller to perform reference

tracking. Controller tracking performance is improved by incorporating a pre-filter stage between

the setpoint command from the remote control and the state-feedback controller.

Modeling of the actuator dynamics is considered briefly and is discussed in relation to the con-

trol algorithm used to balance the robot. Electrical and software design implementations are also

presented with a focus on effective implementation of the proposed control algorithms.

Simulated and physical testing results show that the proposed balance bot and controller design are

not only feasible but effective as a means of achieving robust performance under dynamic tracking

profiles provided by the remote control.
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Chapter 1

AN INTRODUCTION TO BALANCING ROBOTS

Self-balancing robots have existed for years. Most notably the Segway has been prominent in media

over the last two decades. The principle is simple: a robot is equipped with one or more wheels

allowing it drive forward and backward to compensate as the robot begins to fall. While practical

implementations are limited, balance bots are pertinent in the �eld of control theory, because they

are naturally unstable systems. In other words, without a closed-loop feedback controller the balance

bot is bound to fall over if given even a slight perturbation from equilibrium. Only through proper

controller design can a stable system be achieved. The same theory used in the development of a

balance bot can be applied to any system that is naturally unstable, such as a rocket or a spacecraft.

In recent years, more attention has been focused on balancing robots as computers have become

more capable and actuators have become more powerful. Several remarkable examples of the recent

attention to balancing robots can be found by looking at the line of products produced by Boston

Dynamics1. Nearly all of their designs require stabilization of otherwise naturally unstable systems.

The robot Handle, produced by Boston Dynamics and shown in Figure 1.1, is an excellent example

of a wheeled balancing robot. Handle is a package handling robot designed to agilely maneuver in

a warehouse moving packages between pallets.

There are many other smaller scale but similar products available, such as the Hoverboard2, the

Sphero3, and the Onewheel4. The Hoverboard and Onewheel even incorporate the human element

as part of the control loop.

1Boston Dynamics is a robotics company started in 1992 that focuses mainly on walking bipedal and quadrupedal
robots. They are most famous for their quadrupedal robot BigDog developed for the US military.

2The Hoverboard is a two wheeled balancing scooter that the rider stands on in an upright, forward-facing, position.
The rider can then apply forward or backward pressure with his or her feet to drive and steer the scooter.

3Sphero is a small spherical robot that moves by rolling its outer shell. Owners can steer and drive the robot
wirelessly.

4The Onewheel is a single wheel scooter that the rider stands on similar to a skateboard. The rider can lean
forward or backward as well as left and right to drive and steer the scooter.
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Figure 1.1: The robot Handle, created by Boston Dynamics.

1.1 Prior Work

There has been considerable prior work done in the �eld of balancing robots, both commercially and

academically focused. Since 2018 alone, several thousand scholarly articles regarding two-wheeled

balancing robots have been published. While the �eld is rather saturated, the project remains

popular among students studying control theory due to the appealing small scale and considerable

depth of study. This section will highlight several notable works over the last two decades.

A researcher at The University of Western Australia School of Mechanical Engineering completed

a master's thesis titled Balancing a Two-Wheeled Autonomous Robot[14] in 2003. The author

proposes a simpli�ed linear model of the balance bot considering only forward motion and tilting

motion. Several di�erent control algorithms are proposed, including state feedback regulator design

using both LQR and pole placement as well as a tracking controller design using a PID controller.
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The paper additionally discusses implementation of a Kalman �lter to provide usable data from

sensor measurements. The photograph in Figure 1.2 shows the balance bot used in [14].

Figure 1.2: A two-wheel balancing robot designed at The University of Western Aus-
tralia School of Mechanical Engineering[14].

A paper presented at the the 2010 IEEE/RSJ International Conference on Intelligent Robots and

Systems proposes a control algorithm using Backstepping Sliding-Mode Control and Fuzzy Basis

Function Networks[7]. Although no physical implementation was created, simulated testing shows

that the methods proposed in [7] can not only stabilize the balance bot, but also track trajectories

in an X-Y plane. The implementation of Sliding-Mode Control reduces the need to have an accurate

set of parameters describing the system, thereby o�ering more robust control.

Researchers at the Department of Electrical and Computer Engineering, Sri Lanka Institute of Infor-

mation Technology published a paper surveying implementation techniques for two-wheel balancing

robots in 2019[11]. The work compares multiple controller and �lter designs commonly used in

3



balancing robots. The testing results found in this e�ort suggest that a PD controller is ideal for

developing stability with minimal oscillation. Figure 1.3 shows the balance bot used for validation

in [11].

Figure 1.3: A two-wheel balancing robot designed at The Department of Electrical and
Computer Engineering, Sri Lanka Institute of Information Technology [11].
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Chapter 2

DYNAMIC MODELING

2.1 Modeling Goals

This chapter covers the dynamic model of a self-balancing robot subject to a set of assumptions

regarding the physical dynamics. The balance bot is reduced to a set of rigid bodies: the wheels

and the body of the robot. The drawings in Figures 2.1 and 2.2 depict schematic representations of

the balance bot.

2.1.1 Initial Scope

The initial scope is to model the system assuming the balance bot has only two degrees of freedom,

or DOF, as indicated in Figure 2.1. Modeling the system with two DOF provides enough freedom

to balance the bot and to drive the bot forward and backward, but without the ability to turn. For

this simpli�ed model, there are four states representing the position and velocity for each degree

of freedom. With these four states, the dynamics of the actuators are ignored; however, additional

states representing the actuator dynamics could be considered allowing the dynamic behavior of the

motors to be included in the system model. Actuator dynamics are considered in greater detail in

Section 7.5.

2.1.2 Revised Scope

The model is extended to include a third DOF: rotation about a vertical axis. This additional DOF

is added to allow the robot to steer while driving and balancing. This extension adds two additional

states to the system: position and velocity for the vertical rotary axis. The actuator models could

be included in this augmented system as well but are not included in the following analysis.
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Figure 2.1: Schematic representation of the 2-DOF balance bot model coordinate def-
initions.

2.2 Coordinate System and Parameter De�nitions

2.2.1 Two Degree-of-Freedom Model

The simpli�ed, 2-DOF model of the balance bot considers two rigid bodies: the body and two wheels

connected by an imaginary1 axle. The body, with mass mb is at an angle � from the vertical axis;

the angle � is also referred to as the pitch angle. The wheels are lumped together with mass 2mw

and roll on what is assumed to be a at horizontal surface. The entire system is displaced a distance

x, measured to the center of the imaginary axle connecting the two wheels.

1The 2-DOF model assumes that both wheels are connected by a rigid axle and therefore spin with the same
angular velocity. Physically, the two wheels are free to spin independently; however, if both motors are always driven
with the same duty-cycle, and the wheels remain in contact with the ground, they will remain nearly synchronized.
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Figure 2.2: Schematic representation of the 3-DOF balance bot model coordinate def-
initions.

2.2.2 Three Degree-of-Freedom Model

The 3-DOF model of the balance bot considers three rigid bodies: the body and the two wheels

considered independently. The body has massmb and is at a pitch angle � from the vertical axis

and has rotated by an angle about the vertical axis; the angle  is also referred to as theyaw

angle. The wheels each have massmw and roll on a at horizontal surface. The entire system is

displaced a distancex measured to the center of the wheels.
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2.3 System Modeling using Energy Methods

The balance bot models considered here have either two or three DOF. Depending on the selected

model, 2-DOF or 3-DOF, two or three second-order di�erential equations are necessary to describe

the dynamics of the entire system2.

Using methods from classical mechanics, such as Newton-Euler methods, would lead to the correct

set of equations, but would introduce excess variables and equations in the process; these excess

equations would result from the pin forces and reaction forces that show up when summing moments

and forces for each body. These extra terms can be eliminated through substitution. Instead, other

methods are used in this analysis that do not introduce extra terms in the �rst place.

Energy methods, such as used in Lagrangian mechanics, provide a solution without consideration

of the pin and reaction forces. Lagrange's equation, shown in Equation 2.1, is often a more direct

method for �nding the system of ODEs constituting the equations of motion.

d
dt

�
@L
@_qi

�
�

@L
@qi

= Qi i = 1 ; 2; : : : (2.1)

Where L is a property called the Lagrangian, qi is a generalized coordinate describing one of the

degrees of freedom in the system, andQi is a generalized non-conservative force acting on the

generalized coordinateqi . The set of generalized coordinates are the parameters necessary to de�ne

the position and orientation of the system and constrain each degree of freedom.

For the 2-DOF model, there are two generalized coordinates:q1 = x, the horizontal displacement,

and q2 = � , the pitch angle.

For the 3-DOF model, there are three generalized coordinates:q1 = x, the horizontal displacement,

q2 = � , the pitch angle, and q3 =  , the yaw angle.

The generalized forces represent the non-conservative forces that can do work on the system due to

displacement along each generalized coordinate. For the balance bot, the generalized forcesQ1, Q2,

and Q3 come solely from the torque applied by the motors. The proposed model neglects rolling

resistance and bearing friction; if these passive dissipative forces were to be included as part of the

2Two or three second-order di�erential equations are necessary if the actuator dynamics are ignored. Additional
di�erential equations are required if the motor modeling is to be incorporated into the complete system model.
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model, terms representing the friction forces and rolling resistance would appear inQ1, Q2, and Q3

as well.

A systematic way to validate the selection of generalized coordinates is to conceptually freeze all

but one of the selected coordinate axes in succession, while considering the range of motion of the

remaining unfrozen axis. After considering each axis one by one, if each remaining axis is able to

change freely while the others are frozen, then the set of generalized coordinates is valid3.

For the 2-DOF model, if the wheels of the balance bot were frozen to the ground, then the horizontal

displacement,x, would be constrained, but the pitch angle, � , would be free to change; if the angle

of the body were frozen, then� would be constrained, but x would free to change. Thus, each axis

is able to move independently of each other axis. Similar conclusions can be made for the 3-DOF

model.

The parameter L is a property of the system called the Lagrangian, which describes the di�erence

between kinetic energy,T, and potential energy, V .

L = T � V (2.2)

The integral of L with respect to time is called the action. According to the principle of least action,

all physical systems must minimize action over any period of time[9]. Lagrange's equation, shown

above as Equation 2.1, de�nes a set of di�erential equations describing how motion about each

degree of freedom can change with respect to time such that the principle of least action is satis�ed.

Lagrange's equation can be derived using the calculus of variations[9].

2.4 Two Degree-of-Freedom Model

This section covers the derivation of the equations of motion for the 2-DOF model of the balance

bot using the Lagrangian and Lagrange's equation.

3This validation comes from the idea of holonomic constraints. For a valid set of generalized coordinates the system
constraints must be holonomic.
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2.4.1 Potential Energy

The potential energy in the system is purely due to the gravitational potential energy of the body

and is de�ned relative to a datum at the center of the wheel. The potential energy of the wheels

could be considered as well, but the model assumes that the wheels will never change elevation, so

the potential energy of the wheels always remains constant.

V = mbr b cos� g (2.3)

2.4.2 Kinetic Energy

The kinetic energy in the system is due to the linear and angular velocities of the body and both

wheels. The linear and angular velocities must be expressed in terms of the coordinate systems that

will be used in the Lagrangian so that the kinetic energyT is de�ned with respect to the generalized

coordinatesq1 : : : qn .

T =
1
2

mx _x2 + mbr b cos� _x _� +
1
2

I �
_� 2 (2.4)

Where mx is a constant describing the e�ective composite mass for motion along thex-axis and

I � is a constant describing the e�ective composite inertia for motion about the pitch axis. A full

derivation of Equation 2.4 can be found in Appendix A.

mx = mb + 2mw + 2
I w;yy

r 2
w

and I � = mbr 2
b + I b;yy

2.4.3 Lagrangian

In this section the Lagrangian is used with Lagrange's equation to develop the system of ODEs

describing the equations of motion. The Lagrangian is de�ned as the di�erence between kinetic and

potential energy.

L = T � V (2.5)

L =
1
2

mx _x2 + mbr b cos� _x _� +
1
2

I �
_� 2 � mbr b cos� g (2.6)
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Plugging L into Lagrange's equation results in a system of two second-order di�erential equations.

mx •x + mbr b cos� •� = � 2
1

r w
Tm + mbr b sin � _� 2 (2.7)

mbr b cos� •x + I �
•� = 2Tm + mbr b sin � g (2.8)

A derivation for Equations 2.7 and 2.8 can also be found in Appendix A. These two second-order

di�erential equations are coupled; that is, the highest derivatives, •x and •� , appear in both equations.

The two coupled equations can be described together in a single matrix equation, which can then

be decoupled using matrix inversion techniques.

2

6
4

mx mbr b cos�

mbr b cos� I �

3

7
5

2

6
4

•x

•�

3

7
5 =

2

6
4

� 2 1
r w

Tm + mbr b sin � _� 2

2Tm + mbr b sin � g

3

7
5 (2.9)

2.5 Three Degree-of-Freedom Model

This section repeats the analysis determining the equations of motion, but for the 3-DOF model of

the balance bot.

2.5.1 Potential Energy

The potential energy in the system does not change with the additional degree of freedom.

V = mbr b cos� g (2.10)

2.5.2 Kinetic Energy

The kinetic energy in the system changes considerably with the addition of the third degree of

freedom and becomes signi�cantly more complicated. As above, the linear and angular velocities

must be determined in terms of the generalized coordinates before the kinetic energy can be expressed

in terms of these coordinates.
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