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ABSTRACT

CLEAVER: CLassification of Everyday Activities Via Ensemble Recognizers

Samantha Hsu

Physical activity can have immediate and long-term benefits on health and reduce

the risk for chronic diseases. Valid measures of physical activity are needed in order

to improve our understanding of the exact relationship between physical activity and

health. Activity monitors have become a standard for measuring physical activity; ac-

celerometers in particular are widely used in research and consumer products because

they are objective, inexpensive, and practical. Previous studies have experimented

with different monitor placements and classification methods. However, the majority

of these methods were developed using data collected in controlled, laboratory-based

settings, which is not reliably representative of real life data. Therefore, more work

is required to validate these methods in free-living settings.

For our work, 25 participants were directly observed by trained observers for two

two-hour activity sessions over a seven day timespan. During the sessions, the partic-

ipants wore accelerometers on the wrist, thigh, and chest. In this thesis, we tested a

battery of machine learning techniques, including a hierarchical classification schema

and a confusion matrix boosting method to predict activity type, activity intensity,

and sedentary time in one-second intervals. To do this, we created a dataset contain-

ing almost 100 hours worth of observations from three sets of accelerometer data from

an ActiGraph wrist monitor, a BioStampRC thigh monitor, and a BioStampRC chest

monitor. Random forest and k -nearest neighbors are shown to consistently perform

the best out of our traditional machine learning techniques. In addition, we reduce

the severity of error from our traditional random forest classifiers on some moni-

tors using a hierarchical classification approach, and combat the imbalanced nature

of our dataset using a multi-class (confusion matrix) boosting method. Out of the
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three monitors, our models most accurately predict activity using either or both of

the BioStamp accelerometers (with the exception of the chest BioStamp predicting

sedentary time). Our results show that we outperform previous methods while still

predicting behavior at a more granular level.
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Chapter 1

INTRODUCTION

Physical activity is important for improving health and reducing risk for diseases

such as cardiovascular disease, stroke, obesity, diabetes, metabolic syndrome, and

some cancers [5, 55, 28]. Accurate measures of physical activity are vital to obtaining

a better understanding of the dose-response relationship between physical activity

and health [50]. Over recent years, considerable interest has grown in regards to

the assessment of physical activity, and human activity monitoring and recognition

has been widely studied, using wearable sensors called activity monitors that enable

continuous monitoring [55, 36]. Activity monitors are capable of evaluating activity

type, duration, and intensity, and speci�cally accelerometer-based activity monitors

have become the ideal measurement tool of choice. They are inexpensive, lightweight,

and small enough so that they are unobtrusive to the participants wearing them for

long periods of time, making objective activity monitoring practical. Accelerometers

are widely used by researchers for assessing physical activity, especially for assessing

free-living subjects (i.e., in real-world conditions). [15, 38, 57, 6, 11].

Objective physical activity assessment in a free-living environment is a necessity

for a comprehensive understanding of the association between physical activity and

health. There have been many successful physical activity classi�cation studies with

accelerometers in laboratory-controlled settings which enable the data to be of high

quality [19, 21, 38, 6]. However, there is evidence that the laboratory data does not

accurately represent human behavior in a free-living, uncontrolled setting [27, 17].

Data collection in a controlled lab setting is also limited to short durations, which

is unrealistic for real life applications when an individual would wear the activity

monitor for longer periods of time [38].
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Earlier work has implemented regression methods to model the relationship be-

tween accelerometer data and energy expenditure [8, 13, 24]. More recently, machine

learning algorithms have been used in activity classi�cation research, as they can �t

a greater variety of activity metrics and provide better prediction accuracy than the

regression techniques [6, 15, 57]. However, further exploration of machine learning

methods needs to be done in this domain.

Dr. Sarah Kozey Keadle of the Cal Poly Kinesiology and Public Health Depart-

ment has conducted research validating commercially available monitors for assess-

ing sedentary behavior [33], validating two novel machine learning methods and a

laboratory-calibrated neural network in a free-living environment [37], comparing hip

and wrist accelerometer estimates of moderate-vigorous physical activity [59], and

predicting sedentary behvavior from a wrist-worn accelerometer using machine learn-

ing [41]. However, these studies had small samples and did not ensure a range of

activity types were included in the validation. To address this gap, Dr. Keadle re-

cruited 25 subjects, who participated in two two-hour free-living activity sessions over

a period of seven consecutive days. Participants wore accelerometers on the wrist,

thigh, and chest, and were directly observed by the trained research assistants during

these sessions. The direct observation served as the ground truth for this work; we

combined the ground truth observation data with the raw accelerometer data from

the three activity monitors to create our dataset.

The objective of this work is to predict an individual's physical activity/posture

based on wrist, thigh, and chest accelerometer data. Dr. Keadle is particularly

interested in investigating the following:

1. What monitor placement and machine learning method best determines seden-

tary vs. non-sedentary behavior?

2. How do our sedentary vs. non-sedentary models compare to previous methods?
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3. What monitor placement and machine learning method best estimates activity

intensity level?

4. What monitor placement and classi�er best predicts posture into 5 general

posture classes?

5. What monitor placement and machine learning model best predicts posture/in-

tensity into 14 posture classes?

While we were addressing Dr. Keadle's questions, we came up with a couple

additional questions of our own. Speci�cally, we were interested in investigating new

approaches to predict our most granular set of 14 class variables. Our additional

questions are:

6. Does a hierarchical random forest ensemble improve classi�cation accuracy for

predicting 14 posture classes?

7. Does using a confusion matrix boosting method improve classi�cation accuracy

for predicting 14 posture classes?

To address our seven research questions, we used the activity monitor data and

the ground truth observation data from the Cal Poly Kinesiology and Public Health

Department and created a dataset on which we ran a battery of machine learning

methods.

The contributions of this work are as follows:

� Development of the proper ground truth dataset.

� Testing a range of machine learning techniques on three novel sets of monitor

data.
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� Demonstrating that the predictions of our most granular, 14-class models can

be aggregated into 4 class variables and produce similar distributions to new

models that have been retrained to learn the less granular coding scheme.

� A hierarchical classi�cation schema that performs competitively with traditional

classi�cation models.

� Implementation of a multi-class boosting method that uses the confusion matrix

as an error measure to better train classi�ers on our imbalanced dataset.

� A collection of studies that address our seven research questions.

This document is organized as follows. Chapter 2 covers background informa-

tion relevant to physical activity classi�cation and machine learning methods. Then

Chapter 3 explores related work in the �eld of physical activity recognition. Chapter

4 describes our experimental design and implementation. Results are presented in

Chapter 5, and Chapter 6 discusses the conclusions of this study. Finally, Chapter 7

concludes with potential directions for future work.
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Chapter 2

BACKGROUND

Physical activity is one of the most bene�cial things a person can do for their health

[32]. Not only does it improve overall physical and mental health, but also reduces the

risk of chronic noncommunicable diseases such as cardiovascular disease, obesity, dia-

betes, metabolic syndrome, and some types of cancer. Cardiovascular disease (CVD)

is the leading cause of death in the world, killing 17.3 million per year - this �gure is

expected to rise to over 23.6 million by 2030 [2]. Obesity and diabetes are key risk

factors associated with CVD and are also among the top risks and causes of global

deaths. In the United States, 39.8% of adults are considered obese and 9.4% of the

entire American population is diabetic [10, 1]. As technology continues to in
uence

modern lifestyle to become more sedentary and relatively inactive compared to pre-

vious generations, promoting an active lifestyle is crucial to improving health and

reducing preventable deaths in the future. According to the American Heart Associ-

ation's 2015 Heart Disease and Stroke Statistics Update, 31% of U.S. adults report

participating in no leisure time physical activity [2]. Objective and accurate methods

of measuring physical activity are required in order to improve our understanding of

the exact association between physical activity and speci�c health outcomes.

Traditionally, physical activity has been measured by self-report questionnaires.

Although self-reports are easily administered, low-cost methods that can collect de-

tailed information about an individual's physical activity, people tend to overestimate

the amount of time they spend participating in vigorous activity, and underestimate

the amount of time they spend participating in unstructured daily physical activity

(e.g., walking) [15]. Wearable activity monitors have been developed to objectively

capture physical activity with respect to type, duration, and intensity by analyzing
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and quantifying human body movements. These activity monitors have advanced

from only being able to evaluate the quantity of physical activity (e.g., pedometers),

to activity recognition systems that are capable of assessing the quantity and quality

of physical activity (e.g., �tness and activity trackers - Fitbit, Apple Watch, Garmin)

[27]. Wearable activity sensors provide feedback about the user's routine with re-

spect to physical activity and thus motivate a more active lifestyle [21]. Wearable

accelerometers have been deemed the ideal choice for collecting measurements of phys-

ical activity and sedentary behavior. Their small dimensions and light weight allow

them to be conveniently worn for extended periods of time while collecting data across

multiple aspects of physical activity (i.e., total activity, time in di�erent activity in-

tensity levels, predicted energy expenditure) and remaining relatively inexpensive,

making them the most widely studied in the activity recognition �eld.

Over recent decades, researchers have used classi�cation algorithms with accelerom-

eter data to measure and predict energy expenditure [57, 19], sedentary time[37], ac-

tivity type and intensity [6], locomotion time [56], and other aspects of human activity.

Earlier research focused on classifying activity from data collected in laboratory set-

tings. Although the most common daily activities - sitting, standing, walking, and

lying - have been successfully recognized with accelerometers [39, 22, 43, 23, 29, 40],

it's been shown that experiments on laboratory data are not accurate indicators

for how the classi�ers perform on real-life data [27]. This is due to the fact that

laboratory-collected data can potentially fail to represent behavior that happens out-

side of the laboratory. Studies using laboratory data tend to use data that cover

minimal periods of time per activity - sitting, walking on a treadmill, or lying down

for a number of seconds, for example. The amount of variability of movement during

these couple of minutes in each activity is more likely to be reduced since the activity

is only performed for a short period of time. This makes small postural changes, such

as typing while sitting, less likely to be recorded because the sitting activity is only

6



recorded for a few seconds. Because capturing real daily life data is essential to better

understand and quantify the relationship between physical activity and speci�c health

outcomes, it is important to evaluate free-living data to achieve valid classi�cation

accuracy. Researchers have experimented with a range of data processing methods

for activity recognition. Earlier work has used simple regression methods to estimate

energy expenditure [8, 13] and classify physical activity [24]. More recently, machine

learning approaches have been explored in the physical activity recognition domain,

and shown to outperform traditional regression methods [15, 6, 57]. Machine learning

methods have the ability to capture more sophisticated dependencies and nonlinear-

ities than simple regression methods; therefore, they can classify speci�c behaviors

that cannot be characterized by simple linear relationships with acceleration data

[19]. A variety of machine learning algorithms have been applied to physical activity

classi�cation, including support vector machines (SVMs) [53, 27, 38], random forests

[18, 19], decision trees [6, 27], and arti�cial neural networks [15, 57].

2.1 Classi�cation

The main objective of this work is to determine an individual's activity based on

their movements collected from an ActiGraph wrist monitor, a BioStampRC thigh

monitor, and a BioStampRC chest monitor. In attempt to do so, this work uses

the following models:k-nearest neighbors, support vector machines (SVM), random

forests, boosting algorithms, and a hierarchical ensemble.

2.1.1 K -Nearest Neighbors

The K -Nearest Neighbors (K NN) classi�er is one of the simplest supervised learning

classi�cation algorithms [26]. KNN is a lazy evaluation algorithm; it doesn't use the

training set to build a model, but rather keeps the training set to predict the test
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Figure 2.1: K NN example: The star will be classi�ed by the majority vote
of its k-nearest neighbors [47]

set. K NN predicts the class of a pointd based on its proximity to points with a

known class label. The algorithm works by calculating the distance between point

d and every other point in the training set D, selecting thek most similar (i.e.,

closest) points to d, and assigningd's class to be the majority class from thek

closest points. As demonstrated in Figure 2.1, di�erent chosen values ofk may result

in a di�erent classi�cation of a point d. The distance (or similarity) between two

points can be calculated by multiple distance and similarity measures. Some common

distance/similarity measures include:

� Euclidean distance:

d(d1; d2) =

vu
u
t

nX

i =1

(d1[A i ] � d2[A i ])2 (2.1)

� Manhattan distance:

d(d1; d2) =
nX

i =1

jd1[A i ] � d2[A i ]j (2.2)

� Cosine similarity:

cos(d1; d2) =
d1 � d2

kd1k � kd2k
=

P n
i =1 d1[A i ] � d2[A i ]p P n

i =1 d1[A i ]2 �
p P n

i =1 d2[A i ]2
(2.3)
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2.1.2 Support Vector Machine

A Support Vector Machine (SVM) is a supervised machine learning algorithm that

essentially builds a hyperplane separating two classes ind-dimensional feature space

[12]. Given a training set (X; Y ) = ( x i ; yi ), an SVM attempts to select an optimal

hyperplaneh(x) = w � x + b, w.r.t. a specialized criterion. The optimal hyperplane

will have maximized the distance between the nearest data point from either class

of the training set, called the margin. SVMs use the points in the training set that

are closest to the hyperplane, called support vectors, to establish the hyperplane

equation. The optimization problem of �nding the hyperplane that maximizes the

margin is represented as:

min
w ;b

�
kwk2

2

�
(2.4)

subject to constraints:

yi (w � x i + b) � 1; 8x i 2 X (2.5)

Figure 2.2 shows potential hyperplanes and an optimal hyperplane separating two

classes.

(a) Some potential hyperplanes separat-
ing two classes.

(b) The optimal hyperplane maximizes
the margin between two classes.

Figure 2.2: Support Vector Machine hyperplane example [44]
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2.1.3 Random Forests

Random Forest is a bagging extension of the Decision Tree classi�er [7]. Decision

trees are simple and e�cient supervised learning classi�ers that represent a tree-like

model of decisions. The C4.5 recursive decision tree induction algorithm, proposed

by Quinlan in [52], divides the data into smaller and smaller subsets based on chosen

attributes until either the subset contains only points with the same class label or

there are no more attributes to split the data on, and constructs the tree. The splitting

attribute can be selected based on the information gain measure or the information

gain ratio, so that the data is split into the purest subsets.

Shown in Algorithm 1, Random Forest builds an ensemble of decision trees, where

each decision tree is built from a subset of the training data and a subset of the at-

tributes. The subsets of training data are built from resampling the training set with

replacement, while the subsets of attributes are randomly sampled without replace-

ment. By creating decision trees from di�erent subsets of the training data, Random

Forests can help prevent the over�tting problem that decision trees sometimes ex-

hibit. In addition, combining the decision trees allows variance to decrease without

increasing the bias, which allows for Random Forest to achieve a higher accuracy than

decision trees.

2.1.4 Boosting

Boosting is an ensemble technique for reducing misclassi�cation error of any given

classi�er. The main idea of boosting is to sequentially train a set of weak classi�ers

into a strong one, and in doing so generating an ensemble of classi�ers. Each new

classi�er is built to correct its predecessor's errors by giving higher weights to the

misclassi�ed data points in the training set. This way, the new classi�er knows which

points to focus on. The �nal classi�er is built through weighting the full ensemble's

10



Algorithm 1 Random Forest
Data: Training set D, attribute set A
Result: Random forest classi�er
selectm = number of attributes to select for each decision tree
selectN = number of decision trees to build
while j � N do

build set D j � D
select m random attributesA j

1,...,A j
m

build decision treeTj

end
for each data pointd 2 D do

get classi�cation decisionsc1,...,cN from treesT1,...,TN

class(di ) = mode(c1,...,cN )
end

votes by their weighted classi�cation error rate. The classic example of a boosting

classi�er is AdaBoost, or the Adaptive Boosting algorithm [25]. In our work, we use

an extension of the original AdaBoost algorithm, AdaBoost-SAMME [62], which we

describe in further detail in Chapter 4.

Similar to AdaBoost, gradient boosting also sequentially trains an ensemble of

classi�ers, with each new classi�er attempting to correct the previous one. The dif-

ference between gradient boosting and AdaBoost is that, rather than updating the

weights of every misclassi�ed point at every iteration, gradient boosting attempts to

train the new classi�er with the residual errors made by its predecessor. It gradually

minimizes the loss function using gradient descent to �nd the mistakes in the previous

classi�er's attempt.

2.1.5 Hierarchical Classi�cation

Traditional classi�cation problems involving no inherent class hierarchy are sometimes

referred to as 
at classi�cation problems. In hierarchical classi�cation problems, the

classes are structured in a hierarchy with parent-child relationships between classes.

This hierarchical structure can either be a tree or a directly acyclic graph (DAG). In

11
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