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ABSTRACT 

Knee Angle and Axes Crosstalk Correction in Gait, Bicycling, and Elliptical Training Exercises 

Jordan Skaro 

 

 When conducting motion analysis using 3-dimensional motion capture technology, errors 

in marker placement on the knee results in a widely observed phenomenon known as ñcrosstalkò 

[1-18] in calculated knee joint angles (i.e., flexion-extension (FE), adduction-abduction (AA), 

internal-external rotation (IE)). Principal Component Analysis (PCA) has recently been proposed 

as a post hoc method to reduce crosstalk errors and operates by minimizing the correlation 

between the knee angles [1, 2]. However, recent studies that have used PCA have neither 

considered exercises, such as cycling (C) and elliptical training (E), other than gait (G) nor 

estimated the corrected knee axes following PCA correction. The hypothesis of this study is that 

PCA can correct for crosstalk in G, C, and E exercises but that subject-specific PCA corrected 

axes differ for these exercises. 

 Motion analysis of the selected exercises were conducted on 8 normal weight (body 

mass index (BMI) = 21.70 +/- 3.20) and 7 overweight participants (BMI = 27.45 +/- 2.45). An 

enhanced Helen Hayes marker set with 27 markers was used to track kinematics. Knee joint FE, 

AA, and IE angles were obtained with Cortex (Motion Analysis, Santa Rosa, CA) software and 

corrected using PCA to obtain corrected angles for each exercise. Exercise-specific corrected 

knee joint axes were determined by finding axes that reproduced the shank and ankle body 

vectors taken from Cortex when used with the PCA corrected angles. Then, PCA corrected gait 

axes were used as a common set of axes for all exercises to find corresponding knee angles. 

Paired t-tests assessed if FE-AA angle correlations changed with PCA. Multivariate Paired 

Hotellingôs T-Square tests assessed if the PCA corrected knee joint axes were similar between 

exercises. ANOVA was used to assess if Cortex angles, PCA corrected angles, and knee angles 

using PCA corrected gait axes were different. 
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 Reduced FE-AA angle correlations existed for G (p<0.001 for Cortex and p=0.85 for PCA 

corrected), C (p=0.01 for Cortex and p=0.77 for PCA corrected), and E (p<0.001 for Cortex and 

p=0.77 for PCA corrected). Differences in the PCA corrected knee axes were found between G 

and C (p<0.0014). Then, differences were found between Cortex, PCA corrected, and C and E 

knee angles using the PCA corrected G axes (p<0.0056). 

 The results of this study suggest that if PCA is used to reduce crosstalk errors in motions 

other than G then it is recommended to adopt the use of a PCA corrected axes set determined 

from G to produce the PCA corrected angles. 
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Chapter 1  

INTRODUCTION 

Accurate measurement of knee joint kinematics has numerous important clinical 

applications. Motion analysis using 3-dimensional (3D) motion capture technology provides 

critical information used to evaluate knee motion during activities. Clinical analyses rely on this 

information for pre- and post-intervention assessments of patient dynamic functionality [19-22]. 

Other assessment methods can be used, such as visual analysis, physical examination, and 

static magnetic resonance imaging (MRI), but the accuracy is limited by the examiner, MRI 

resolution, and how the analyses are interpreted. Precise results are desired for patients that 

potentially have tibial or femoral torsion, inward twisting of the shin and thigh bones, respectively, 

where the lower extremity kinematics play an important role in the surgeonôs decision for de-

rotation osteotomy [23-25]. Consequently, surgeons commonly refer to gait (G) analysis to 

determine if surgery is necessary to create neutral alignment of the lower extremity during stance 

phase and to reduce off-axis loading of the knee in children with cerebral palsy, patellofemoral 

instability, and Osgood-Schlatter disease [26, 27]. There is evidence that revisional surgeries are 

often required which are physically demanding of the patient [28, 29]. 

Accurately measuring knee axes and kinematics has proved to be difficult [30, 31]. 

Eulerian or Cardan angle systems are typically used to describe knee joint kinematics [32]. 

Describing 3D knee joint kinematics requires two body segment coordinate systems (CSs), one 

for the femur and another for the tibia, and a third joint CS. The body segment CSs are defined by 

placing retroreflective markers on the surface of the skin on specific lower extremity bony 

landmarks following a standardized marker set [3, 33-36]. Knee joint kinematics which are 

calculated from the trajectory of the markers is commonly reported as three sequential rotations 

(Euler angles) about three distinct axes of the joint CS: flexion-extension (FE), abduction-

adduction (AA), and internal-external rotation (IE) [37]. To place these markers, experimenters 

must palpate the bony landmarks which can introduce experimental errors [38]. This is a 

significant limitation due to the fact that experiments are performed by researchers with varying 

methods and skill levels. Marker misplacement has been identified as the largest source of 

between-laboratory and within-laboratory kinematic variability resulting in up to 75% of the 



2 
 

variance between laboratories [39, 40]. Inconsistent marker placements around the knee also 

modify the joint CS definition which yields significant errors and an overestimation of the AA and 

IE rotation angles throughout a variety of activities [4-6, 34, 41-43]. The latter error is commonly 

known as the kinematic ñcrosstalkò effect [7, 8, 44, 45] and affects the kinematics of joints that 

undergo relatively large rotations about one major axis [9], specifically the FE rotations of the 

knee joint in G. Thus, misplacement of these markers and crosstalk lead to incorrect results for 

the knee joint axes and angles, respectively. 

Crosstalk develops from misplacement of the markers which define the joint CS during 

motion capture experiments. This is analogous to the motion perceived of a ball by the two 

people playing and by someone watching in a simplified 2D case shown in Figure 1.1. Person 1 

and 2 playing catch would perceive the motion of the ball primarily in the X-direction because 

their CS is set as such by their vision. While Person 3, standing askew to the ball path, would 

perceive the ball being thrown in both the Xô- and Yô-directions because their CS set by their 

vision is defined askew to the ball path. Notice in the second case, the path of the ball is the 

same but distributed differently among the X-Y and Xô-Yô-directions. Also, if the ball was thrown 

further, the Xô component of the ball trajectory would increase with the Yô component, creating a 

correlation between the Xô and Yô components of the ball trajectory. 
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Figure 1.1: A diagram of the ball throwing example. Left diagram displays the ball motion when 

the CS is aligned with Person 1 and 2ôs perspective. Right diagram displays the ball motion when 

the CS is aligned with Person 3ôs perspective. 

 

In the case of joint motion, FE is the primary rotation of the knee joint, thus it should 

behave similar to the ball motion perceived by Person 1 and 2. Though, if incorrect marker 

placement skews the CS of the knee, then it will cause knee motion to be interpreted as Person 

3. This will cause shank motion to be interpreted as FE and AA instead of primarily FE and there 

will be a correlation between FE and AA. This can be visualized using a simple case of knee 

flexion while sitting with minimal shank IE rotation (Figure 1.2). Sitting while flexing and extending 

your knee, the motion would be expected to be predominantly FE. It can be seen that if there is 

slight marker misplacement and joint CS mis definition then some of the motion would be 

misinterpreted as AA to allow the shank to complete its observed trajectory. In a case of severe 

marker misplacement, AA is misinterpreted for a larger portion of the shankôs motion. In both of 

these cases, AA will increase proportionality to FE and, thus, will create a correlation between FE 

and AA. Correcting crosstalk in the ball and knee flexion example would require rotating the CS to 

allow the trajectory to again be primarily in the x and FE components, respectively. This is the 

most correct way to interpret knee motion. 
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By not correcting the knee angles and axes for crosstalk to get accurate results, 

inappropriate pre- and post-intervention assessments of patient dynamic functionality may be 

performed. This may lead to inappropriate surgical interventions with the purpose of creating 

neutral alignment of the knee in children with cerebral palsy, patellofemoral instability, and 

Osgood-Schlatter disease. By increasing the efficiency for these surgical interventions, the 

physical and financial demand of the patient would be minimized. 

 

 

Figure 1.2: A simplified 2D model describing the impact crosstalk and joint CS definition have on 

the angles reported from motion capture analysis with two scenarios. One scenario with slight 

crosstalk due to slight marker misplacement and a second with severe crosstalk due to severe 

marker misplacement. The model can be visualized as sitting with the thigh fixed while swinging 

the shank through a normal range of motion. 

 

Several other methods have been studied to reduce crosstalk errors [10-17, 46-48]. 

Some of those methods are implemented as a post hoc technique to identify the functional knee 
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axes using range-of-motion trials such as squats or passive knee flexion prior to data collection 

[15, 46]. The functional knee axes were then used to determine the knee kinematics instead of 

relying on knee axes defined by marker placement. Though those techniques are less susceptible 

to the human error encountered during marker placement they are limited by the patientôs 

physical ability. If the patient is physically-impaired, they might not be able to accomplish these 

trials and continue through the experiment. One study eliminates crosstalk in the knee angles by 

altering the joint CS to zero AA and IE at maximum knee FE and minimizing the quadratic 

variations in knee AA and IE angles [16, 17]. While that technique has been shown to reduce 

crosstalk, it may also eliminate important existing mechanisms of the knee joint. In another study, 

an algorithm is implemented that utilizes standard walking trials to identify the true knee joint axes 

and has shown to be successful in reducing crosstalk [10, 13]. The algorithm operated by 

minimizing the knee AA angles to correct the knee flexion axis after data collection. In direct 

comparison studies, the knee AA minimization method was shown to reduce kinematic errors [10, 

13] and matched ultrasound measurements of tibial torsion in healthy subjects [49]. Despite being 

successful, this algorithm identifies the true knee axes using iterative guessing rather than the 

more efficient statistical optimization. That method is also ineffective at finding the true knee axes 

in populations with large AA motion during gait. 

More recently, a post hoc correction method has been studied which uses PCA to correct 

for crosstalk [1, 2] and has shown to be less susceptible to marker placement errors than a null 

space algorithm [46] and comparable to a knee AA minimization algorithm [10]. Implementing 

PCA requires no hardware setup which reduces the required time for experiments and utilizes a 

computationally efficient statistical algorithm that is available to anyone. This study addresses two 

limitations of previous studies that have used PCA to reduce crosstalk errors. First, previous 

studies that have used PCA have focused on reducing crosstalk errors as evidenced by reduced 

FE-AA correlations [1, 2] only in G studies and have not considered whether PCA is effective in 

reducing crosstalk errors for other exercises such as cycling (C) and elliptical training (E). 

Second, previous studies that used PCA have not calculated the corrected knee axes 

corresponding to the PCA corrected knee angles via statistical optimization [8]. C and E exercises 
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tend to produce higher flexion angles than in G and there may be a natural correlation between 

FE and AA angles seen at higher flexion angles [50-52]. Thus, PCA may not be appropriate for C 

and E, and different PCA corrected knee axes may be expected for G, C, and E exercises. 

The goals of this study were to 1) assess and compare the ability of PCA to reduce 

crosstalk errors for three types of exercises with differing knee kinematics: G, C, and E and 2) 

develop a protocol and algorithm that determines a common set of subject-specific knee axes 

from PCA corrected gait axes for determining PCA corrected knee angles for multiple exercises. 

To address the first goal, the first hypothesis was that PCA reduces correlations, an indicator of 

crosstalk, between knee FE and AA angles in G, C, and E exercises. To address the second 

goal, a second hypothesis is that the corrected and subject-specific FE and AA axes produced by 

PCA are different for G, C, and E. To address these hypotheses, the specific aims of this study 

were to 1) conduct motion analysis experiments with participants tested in G, C, and E 

experiments and process marker data in Cortex analysis software (Motion Analysis, Santa Rosa, 

CA, USA) to obtain Cortex knee angles and further post-process marker data with PCA to obtain 

PCA corrected knee angles, 2) obtain PCA corrected axes from PCA corrected angles via 

statistical optimization, and 3) propose a common set of axes from the G PCA corrected axes to 

determine new PCA corrected angles in C and E. Statistical analyses were performed to 

compare: FE-AA correlations in Cortex and PCA corrected angles; the PCA corrected axes in G, 

C, and E; and the C and E knee angles from Cortex, PCA-correction, and PCA-correction with a 

common set of knee axes. 
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Chapter 2  

METHODS 

Subject Selection and Informed Consent 

Protocols for this study were approved by Cal Polyôs Human Subjects Committee and 

were designed to minimize risk to human subjects. Nine male and six female participants 

volunteered for this study. Of the 15 subjects, eight were normal weight and seven were 

overweight, as defined by body mass index (BMI) [53]. Exclusion criteria included obesity, 

evidence of pre-existing conditions that may produce abnormal knee biomechanics (e.g. varus-

valgus misalignment, ligament injuries), and history of cardiovascular, respiratory, or metabolic 

diseases or complications. Each participant visited the Cal Poly HMB Lab where the study was 

explained in detail. Each participant was administered a Physical Activity Readiness 

Questionnaire (PAR-Q) to screen for their ability to engage in exercise and was asked questions 

pertaining to body weight, body height, and medical history to screen for eligibility. Once eligibility 

was confirmed informed consent was obtained.  

 

Experiments 

The participant completed a warm-up exercise (minimum of 5 minutes) and then changed 

into compression clothing. Then, 32 retroreflective markers were placed on anatomical landmarks 

(Top. Head, Front. Head, Rear. Head, R. Acromion, L. Acromion, C7, Sternum, R. ASIS, L. ASIS, 

R. PSIS, L. PSIS, V. Sacral, R. Thigh, L. Thigh, R. Knee, L. Knee, R. Fibula, L. Fibula, R. Tibial 

Tuberosity, L. Tibial Tuberosity, R. Shank, L. Shank, R. Ankle, L. Ankle, R. Heel, L. Heel, R. Toe, 

L. Toe, R. Knee Medial, L. Knee Medial, R. Knee Medial, L. Knee Medial) based on an enhanced 

Helen Hayes marker set. The participant stood in the center of the room to perform a static pose 

to calculate lower extremity joint centers and reference joint kinematics (Figures 2.1 ï 2.2). After 

the static pose capture, medial lower extremity markers were removed. 
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Figure 2.1: Participant performing a static pose, used to calculate knee and ankle joint centers 

and static joint reference configuration. Markers shown are based on an enhanced Helen Hayes 

markerset protocol. 

 

 

Figure 2.2: The Cortex knee coordinate system and knee joint center. 
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The HMB Lab includes a motion analysis system with Cortex analysis software and 12 

(six Owl, three Osprey, two Kestrel, one Eagle) digital cameras (Motion Analysis, Santa Rosa, 

CA, USA), used to track retroreflective markers and characterize motion kinematics. For G 

experiments, the participant walked across four ground force plates (AccuGait, AMTI, Watertown, 

MA, USA) that measured the time-dependent 3D force and 3D moment vectors. For C 

experiments, the participant pedaled a stationary bicycle (LifeCycle GX, LifeFitness, Rosemont, 

IL, USA) with custom pedals each instrumented with one 6-axis load cells (AD2.5D-250, AMTI, 

Watertown, MA). For E experiments, the participant pedaled an elliptical machine (XE795, Spirit 

Fitness, Jonesboro, AZ, USA) with custom pedals each instrumented with two 6-axis load cells 

(AD2.5D-250, AMTI, Watertown, MA) (Figure 2.3). 

 

 

Figure 2.3: (Left) A participant walking along the walkway during a gait experiment, with the right 

foot contacting 1 of 3 ground force plates with motion analysis cameras recording G (two 

cameras are visible to the left and right of the participantôs head in left photo). (Middle) pedaling 

the stationary bike instrumented with load cells on each pedal with markers tracking the pedal 

orientation. (Right) pedaling the elliptical instrumented with load cells on each pedal. 
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Marker trajectory was recorded in Cortex analysis software (Version 7.01, Motion 

Analysis) at 150 Hz and filtered using a 4th order Butterworth filter with a cutoff frequency of 8 Hz 

for G and 6 Hz for C and E. For G, the participants walked at their preferred walking speed. 

During C and E testing, the participants pedaled at a cadence of 70 revolutions per minute (RPM) 

at moderate machine resistance levels (levels 15 and 10 for C and E, respectively). After a warm-

up trial for each test, the participants repeated each test until three successful motion studies 

were captured. 

 

Analysis 

Kinematic 

For each exercise, kinematic variables FE, AA, and IE angles were collected from three 

trials and interpolated to 101 time points to reflect a full cycle from 0 to 100 percent. Dynamic 

angles were defined relative to a reference configuration where the shank was parallel to the 

thigh. A full G cycle was defined from initial heel strike (0%) to the next heel strike (100%) of the 

analyzed leg (Figure 2.4). A full C cycle was defined from top dead center (TDC) (0%) to the next 

TDC (100%) of the analyzed leg (Figure 2.5) [54]. A full E cycle is defined from the furthest 

forward pedal position (0%) to the next time at the forward pedal position (100%) (Figure 2.6). A 

custom algorithm was developed (MATLAB, MathWorks, Natick, MA, USA) to perform the data 

interpolation. 
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Figure 2.4: Heel strike (left) and toe off (right) which initiate the stance and swing phase of the G 

cycle, respectively. 

 

 

Figure 2.5: Coordinate system (left) used to define the crank angle and top dead center position 

for a pedal of the stationary bike. 
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Figure 2.6: The location used to define the zero-cycle position for a pedal of the elliptical. 

 

The dominant leg of each participant was studied. Knee angle data from the static pose 

of each participant was averaged, and subsequently subtracted from each participantôs 

interpolated dynamic trials to perform a static pose offset as done in previous studies [18]. The 

subtraction method produced nearly identical results as multiplicative decomposition, thus the 

subtraction method was used to perform the static pose offset for each participant. 

 

PCA Analysis 

To implement PCA, custom code was developed in MATLAB to follow previously 

determined procedures [1, 2, 55, 56]. PCA was implemented to reduce crosstalk by conducting a 

coordinate system transformation of the calculated knee angles to minimize FE-AA correlations 

(Figure 2.7) [55]. From the experiment, a nx3 matrix [X] of the original knee angles was collected. 

The means of each knee angle were subtracted from [X] to create a nx3 matrix [Xcentered]. A 

covariance matrix [S] of the knee angle data was calculated as 

  ╢
▪
╧╬▄▪◄▄►▄▀

╣╧╬▄▪◄▄►▄▀ (1) 
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Figure 2.7: Coordinate system transformation of the data axes performed by PCA. These data 

axes do not represent rotation axes defined by PCA. Vectors shown are unit vectors. 

 

An eigendecomposition of matrix [S] was calculated to produce a matrix of column eigenvectors, 

[P], according to 

  ╢ ╟╣╧ ╟. (2) 

Finally, the original knee angles, [X], were projected onto a new set of axes, as described by the 

eigenvectors in matrix [P]. This resulted in the calculation of a nx3 matrix [Z] which contained 

PCA corrected FE, IR, and AA angles 

  ╩ ╧ ╟. (3) 

After PCA correction, the knee angles are averaged across the three trials for each subject to be 

used for the rest of the analysis. The correlation coefficient (R) and coefficient of determination 

(R2) between the FE and AA angles were used to quantify crosstalk between the Cortex angles, 
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without PCA correction, and the PCA corrected angles. Larger R and R2 values indicated the 

presence of greater crosstalk. 

 

Calculating PCA Corrected Knee Axes 

Previous studies that performed PCA to correct G data didnôt calculate the corrected axes 

[1, 2]. Thus, custom MATLAB code was developed to determine the axes from the PCA corrected 

angles. Using Cortex and PCA corrected kinematics from dynamic trials, Cortex and simulated 

body vectors were calculated and PCA corrected knee axes were optimized to minimize the angle 

between the Cortex and simulated body vectors. The Rodriguesô rotation matrix [57] defined with 

a vector of rotation, ʖᴆ, and angle of rotation, ɡ, was used to rotate vectors in 3D space by one 

degree-of-freedom at a time during the analysis 

  ἠ╕╔Ⱦ══Ⱦ╘╔ ἓ ᴆ╕╔Ⱦ══Ⱦ╘╔Ἳἱἶ╕╔Ⱦ══Ⱦ╘╔ ᴆ╕╔Ⱦ══Ⱦ╘╔ ἫἷἻ╕╔Ⱦ══Ⱦ╘╔. (4) 

Cortex knee axes were defined from marker locations during the participantôs static pose. 

Initial body vectors were defined from the virtual joint centers calculated during the participantôs 

static pose. Initial body segment vectors were defined with the thigh body segment aligned with 

[0, 0, 1], [x, y, z], to establish a local coordinate system between the Cortex and simulated body 

vectors. Dynamic Cortex body vectors were defined by rotating the initial body vectors about the 

three Cortex knee axis by each axisô corresponding angle of rotation for each of the 101 time 

points during the motion cycle. Cortex knee angles with static offset were used as the angles of 

rotation. During this process, the AA and IE axes were rotated accordingly to model joint axes 

motion. 

 Simulated body vectors were defined by rotating the initial body vectors about the FE, 

AA, and IE axis and the corresponding angle of rotation for each of the 101 time points during the 

motion cycle 

  ╢ □◊■╪◄▄▀ ╢▐╪▪▓ᴆ╕╔Ⱦ══Ⱦ╘╔ ╡Ᵽ╕╔Ⱦ══Ⱦ╘╔ ╘▪ ◄ ╪■ ╢▐╪▪▓ᴆ╕╔Ⱦ══Ⱦ╘╔Ȣ (5) 

The knee axes were selected by the solver and the PCA corrected knee angles with static offset 

were used as the angles of rotation for the determination of the rotation matrix. During the rotation 

of the simulated body vectors, the IE axis was rotated accordingly to follow the shank body vector 
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and the FE axis stayed fixed since it is defined relative to the femur [32]. After each rotation of the 

IE axis, a floating axis knee CS (Figure 2.8) was used [32] to redefine the AA axis using the cross 

product 

  ══ᴆ ╘╔ᴆ Ø ╕╔ᴆȢ (6) 

The order of rotation used was FE, AA, then IE but is not limited to this order since the final body 

vector location is independent of the order in which component rotations occur [32].  

 To determine the PCA corrected knee axes, the custom code (MATLAB) was used to 

determine the Cortex and simulated body vectors at each time point. An initial simulated body 

vector was determined using the Cortex knee axes as an initial guess for the PCA corrected knee 

axes. The angle between the Cortex and simulated body vectors were then determined. PCA 

corrected knee axes were then modified to minimize the angle between the Cortex and simulated 

body vectors for the entire trial. The knee axes that yielded the least error throughout the entire 

trial were then chosen as the PCA corrected knee axes. 

 

 

Figure 2.8: Axis (FE, IR, AA) and body (Thigh, Shank, Ankle) vectors used in analysis. 

 

Calculating New Cycling and Elliptical Angles with Corrected Knee Axes from G 

A process similar to the one described in the previous section was used to calculate new 

C and E angles using the PCA corrected knee axes determined from G, C and E angles from G 

PCA corrected axes, instead of using the knee axes defined in Cortex. In this case, the initial and 

dynamic Cortex body vectors were already known from previous calculations, but the initial knee 

axes were known instead of the angles.  
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The Rodriguesô rotation matrix was used again to rotate the body vectors one degree-of-

freedom at a time using the axis of rotation and corresponding angle of rotation. The initial body 

vectors and Cortex body vectors calculated in the previous section were used again for this 

analysis. 

To determine the simulated body vectors, the PCA corrected angles from C and E were 

used as initial guesses with the PCA corrected knee axes from G to rotate the initial body vectors. 

The error between the simulated body vectors and Cortex body vectors was calculated as the 

angle between the two body vectors. 

The knee angles were adjusted at each time point to minimize the error between the 

Cortex and simulated body vectors. When the error reached the minimum value, the 

corresponding angles were stored. There were some stability issues when solving for the C and E 

knee angles with the PCA G axis which would results in spikes in the solution. The magnitude of 

the spikes was reduced by a custom interpolation and filtering code developed in MATLAB that 

used varying standard deviation values to identify data points to correct. A diagram for the non-

linear solver process and for the entire analysis can be seen in Figure 2.9 and Figure 2.10, 

respectively. 

 

Figure 2.9: Flowchart for reprocessing the knee angles for C and E. 
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Figure 2.10: Flowchart describing the entire analysis process. 
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Statistics 

To determine whether PCA reduced correlations between the FE and AA angles for all 

three exercises, regression analyses were performed on FE vs. AA angles pre- and post-PCA 

correction. To check for similarities between the PCA corrected G, C, and E knee axes a paired 

multivariate Hotellingôs T-squared test was performed. In this test, the G axes was used as 

reference. The regression analysis and T-squared test used a significance threshold of 0.05: 

p<0.05. To check for differences in C and E angles calculated from Cortex, PCA correction, and 

G PCA corrected axes, an ANOVA test was performed. For the ANOVA test, the difference data 

line was fit with a cubic trendline following the form 

  ╨ ═ ║● ╒● ╓●. (7) 

The p-values of the coefficients were observed and if all the coefficients showed a 

similarity to zero then Y was equal to zero, thus the knee angle sets being compared were 

similar. If the p-values of the coefficients were observed to be different than zero, then it was 

concluded that the knee angle sets being compared were different. The hypothesis was rejected 

if a single coefficient was dissimilar to zero. Bonferroni corrections were applied to a p-value < 

0.05. The 9 ANOVA tests used a significance threshold of 0.05/9: p<0.0056. 
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Chapter 3 

RESULTS 

Substantial crosstalk during G was found for certain participants which was expected 

(Figure 3.1). PCA correction resulted in negligible changes to the FE angles but noticeable 

changes to the AA angles (Fig 3.2-3.3). Regression analyses found reduced correlations (Table 

3.1) for FE-AA angles in G (p<0.001 for Cortex [strongly correlated] and p=0.851 for PCA 

corrected [not correlated]), C (p=0.011 for Cortex and p=0.770 for PCA corrected), and E 

(p<0.001 for Cortex and p=0.772 for PCA corrected). 

 

 

Figure 3.1: FE-AA angles from four participants with substantial crosstalk during gait (G). 
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Figure 3.2: Averaged Cortex and PCA Corrected FE-AA knee angles during gait (G), cycling (C), 

elliptical training (E). 

 

 

Figure 3.3: Typical FE and AA angles seen from a participant during gait (G), cycling (C), and 

elliptical training (E).  
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Table 3.1: R2-values for FE and AA angles for pre- and post-PCA correction for gait (G), cycling 

(C), and elliptical training (E) exercises, and post-angle correction using G axes for C and E 

exercises. Mean plus/minus one standard deviation values shown. * = significant difference 

between cortex and PCA values. 

Group G* C* E* 

Cortex 0.612 ° 0.287 0.415 ° 0.296 0.800 ° 0.213 

PCA corrected <0.001 ° 0.001 <0.001 ° <0.001 0.001 ° 0.002 

With G PCA 

Axes 
<0.001 ° 0.001 0.627 ° 0.297 0.446 ° 0.321 

 

The paired multivariate Hotellingôs T-squared test found significant differences in the PCA 

corrected knee axes between G and C and between G and E (Table 3.2, Figure 3.4).  

 

Table 3.2: Results from Multivariate Paired Hotellingôs T-Squared test for comparing the PCA 

corrected knee axes from cycling (C) and elliptical training (E) exercises to gait (G). * = significant 

difference between the PCA corrected knee axes sets. 

Groups p-value 

G, C <0.001 

G, E 0.001 

 

 

Figure 3.4: Plot showing Cortex and PCA corrected knee axes for gait (G), cycling (C), and 

elliptical training (E) exercises. The knee axes are represented by unit vectors. 
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The ANOVA test found significant differences between Cortex, PCA corrected, and the C 

and E knee angles when using G PCA corrected axes as most of the coefficients to the cubic 

trendline were significantly different than zero (pÒ0.002) (Table 3.4-3.5). The AA angle 

differences between the three methods for a typical participant during C is shown below as a 

visual of Table 3.4 (Figure 3.5). 

 

 

Figure 3.5: Plot showing the AA angle differences between Cortex, PCA corrected, and the knee 

angles when using gait (G) PCA corrected axes for a typical participant during cycling (C).  
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Table 3.3: ANOVA test results for comparing Cortex, PCA corrected, and PCA corrected with the 

G axes for cycling (C). P-values of A, B, C, and D from equation (4) are shown. 

Group Angle A B C D 

Cortex  

vs PCA 

FE <0.001 <0.001 <0.001 <0.001 

AA <0.001 0.001 0.004 0.043 

IE <0.001 <0.001 <0.001 <0.001 

Cortex vs 

PCA G Axes 

FE 0.002 <0.001 <0.001 0.005 

AA <0.001 <0.001 <0.001 <0.001 

IE <0.001 <0.001 <0.001 <0.001 

PCA vs 

PCA G Axes 

FE <0.001 0.118 0.472 0.995 

AA <0.001 <0.001 <0.001 <0.001 

IE <0.001 <0.001 <0.001 <0.001 

 

Table 3.4: ANOVA test results for comparing Cortex, PCA corrected, and PCA corrected with the 

G axes for elliptical training (E). P-values of A, B, C, and D from equation (4) are shown. 

Group Angle A B C D 

Cortex  

vs PCA 

FE 0.421 <0.001 <0.001 <0.001 

AA <0.001 <0.001 <0.001 <0.001 

IE <0.001 <0.001 <0.001 <0.001 

Cortex vs 

PCA G Axes 

FE <0.001 <0.001 <0.001 <0.001 

AA <0.001 <0.001 <0.001 <0.001 

IE <0.001 <0.001 <0.001 <0.001 

PCA vs 

PCA G Axes 

FE <0.001 <0.001 <0.001 <0.001 

AA <0.001 <0.001 0.012 0.363 

IE <0.001 <0.001 <0.001 <0.001 
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Chapter 4 

DISCUSSION 

This study further demonstrated that a PCA-based algorithm can successfully reduce FE-

AA correlation in all three exercises, as we hypothesized. Then, the PCA corrected knee axes 

differed between exercises, and for C and E, the PCA corrected knee angles were different than 

the knee angles calculated using G PCA corrected axes. 

These results reinforce previous findings that PCA can reduce crosstalk errors in G which 

was also seen in other studies on crosstalk correction in G [1, 2]. However, a novel finding of the 

present study was the use of PCA to calculate the G PCA corrected axes. Several studies on G 

analysis support that thereôs little to no natural FE-AA correlation within the flexion angles that 

occur in G [50-52]. Thus, with the assumption that no FE-AA correlation exists for the flexion 

angle range in a G experiment, then we propose that PCA analysis of G data is an appropriate 

method to determine anatomical knee axes corrected for marker placement errors. 

Another novel finding of the present study was that PCA can reduce FE-AA correlations 

in other exercises, such as C and E, that involve larger flexion angles and kinematic constraints 

on the feet because they remain in contact with a pedal during exercise. However, the results 

suggest that using PCA on C and E data may not be appropriate, because the PCA corrected 

axes varied between G, C, and E, and because differing FE-AA angles for C and E were 

calculated from PCA correction vs. when using G PCA corrected axes. These results were 

expected because 1) flexion angles were higher in C and E than in gait, 2) there exists evidence 

of natural FE-AA correlations at higher flexion angles [50-52], and 3) the foot is constrained by 

contact with pedals during the entire motion in C and E. 

Thus, these results have important research and clinical applications when attempting to 

reduce crosstalk errors when considering exercise other than G. As hypothesized, corrected and 

subject-specific FE and AA axes produced by PCA differed for G, C, and E. Thus, PCA may not 

be appropriate for exercises such as C and E that involve kinematics that differ substantially from 

G, one option as explored in this study may be to define a common set of PCA corrected axes 
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from G data. Then, as done in this study, a common set of knee axes determined from G may be 

used without PCA correction to obtain more accurate knee angles for other exercises, such as C 

and E, especially those that involve relatively high flexion angles. Basically, this approach is 

analogous to one that would only use PCA to reduce crosstalk errors for a subset of FE-AA 

angles that corresponds to the relatively low flexion angles for which the assumption of no 

correlation between FE-AA angles would be appropriate. 

This study didnôt reduce the AA variability and the range in G was not as much as 

previous studies where markers were intentionally misplaced to create crosstalk which resulted in 

large AA angles pre-PCA correction [1, 2]. For one study, the lateral knee marker was 

intentionally placed anterior and posterior of the appropriate location and calculated pre-PCA G 

AA ranges of ~17 and ~23 degrees, for anterior and posterior, respectively [1]. Another study 

found the pre-PCA G AA range to be ~18 degrees [2]. The pre-PCA AA range found in this study 

for each subject was 5.42 ± 2.07 degrees which is substantially less than the range found in 

those two studies. Despite the differing pre-PCA G AA ranges, the PCA corrected G AA ranges 

were similar. In previous studies, the PCA corrected G AA ranges were ~6 and ~2 degrees [1, 2] 

which was found to be 9.90 ± 3.27 degrees with a minimum of 4.67 degrees for the subjects in 

this study. In those studies, the AA angles were only displayed for a single typical subject which 

makes comparison difficult. 

Additional novel findings in this study were determining C and E knee angles that were 

similar to those found in previous studies. In general, our FE angles agreed qualitatively with 

previous studies for C [58] and E [59-62]. AA angle ranges higher than G were predicted for C 

which corroborated with a previous study for C [58] but were higher than the AA angle range 

found in another study [63]. Low AA angle ranges were predicted for E which matched the results 

from a study on kinematics during E [64] and was lower than measured in a previous study [61].  

This study has a few limitations. First, our methods didnôt incorporate techniques to 

eliminate errors induced by soft tissue artifact which is considered another leading source of error 

in motion analysis studies. Second, it is still unclear how to best reduce crosstalk errors when 
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studying G with other exercises that involve larger FE values. Regardless, a novel contribution of 

this study was the development and recommendation of one standardized protocol that involves 

using PCA only for G data, and then finding the G PCA corrected axes and using those axes to 

recalculate angles in C and E. Third, requiring the use of non-linear solvers to determine the PCA 

corrected axes, and the C and E knee angles using the G PCA corrected axes, may be a limiting 

factor for other gait and motion analysis labs as it requires specific software and complex 

algorithms. Though the algorithm was complex, it didnôt yield an exact solution due to the system 

of equations used to find the axes and angles being over constrained from having more equations 

than unknowns. Thus, two solutions were calculated by the solver for the PCA corrected knee 

axes for each trial and the C and E angles from G PCA corrected axes for each time point. From 

each of the two solutions, a single solution was determined using interpolation based on the 

objective functions set inside the solver. The opposite case would be to have more unknowns 

than equations, thus making the problem indeterminate. A problem with an equal amount of 

equations as unknowns can be solved for an exact solution. To help mitigate this limitation, future 

efforts could be to publish algorithms for open-access use and development.  

This study supports that PCA is an effective post hoc technique for reducing crosstalk in 

gait but not in cycling or elliptical training due to differing kinematics. A protocol is proposed to 

use PCA only for gait data, then using the G PCA corrected axes as subject-specific axes and to 

determine angles in activities with larger knee FE values than in G. The findings of this paper 

support that PCA is an effective correction technique to determine angles and axes that represent 

accurate knee motion and can be beneficial for motion analysis and rehabilitative surgery or 

consultation.  
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Appendix A: FE-AA plots for all subjects 

 

 

 

Figure A-1: FE-AA angles for subject 2016Aug12-02 during gait (G), cycling (C), and elliptical 
training (E). 
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Figure A-2: FE-AA angles for subject 2016Aug15-01 during gait (G), cycling (C), and elliptical 
training (E). 
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Figure A-3: FE-AA angles for subject 2016Aug19-01 during gait (G), cycling (C), and elliptical 
training (E). 
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Figure A-4: FE-AA angles for subject 2016Aug26-01 during gait (G), cycling (C), and elliptical 
training (E). 
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Figure A-5: FE-AA angles for subject 2016Sep01-01 during gait (G), cycling (C), and elliptical 
training (E). 



36 
 

 

 

 

 

Figure A-6: FE-AA angles for subject 2016Nov05-01 during gait (G), cycling (C), and elliptical 
training (E). 
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Figure A-7: FE-AA angles for subject 2017Jun19-01 during gait (G), cycling (C), and elliptical 
training (E). 




































