POLYCOMMIT: BUILDING BETTER HABITS THROUGH GAMIFICATION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Elliot Fiske

June 2017
COMMITTEE MEMBERSHIP

TITLE: Polycommit: Building Better Habits Through Gamification

AUTHOR: Elliot Fiske

DATE SUBMITTED: June 2017

COMMITTEE CHAIR: Foaad Khosmood, Ph.D.
Professor of Computer Science

COMMITTEE MEMBER: Zachary Peterson, Ph.D.
Professor of Computer Science

COMMITTEE MEMBER: Hugh Smith, Ph.D.
Professor of Computer Science
ABSTRACT

Polycommit: Building Better Habits Through Gamification

Elliot Fiske

Computer-assisted learning is older than Turing machines, and constantly evolves as technology improves. While some teachers are resistant to using technology in the classroom [25], “e-learning” techniques are becoming more common in almost every school, from K-12 to universities [32]. As technology becomes more widespread, it becomes crucial to examine the various methodologies of computer-assisted learning and find the techniques that are most effective.

This paper explores the effectiveness of one such methodology, spaced repetition. This technique applies to homework assignments available to students online. We include an exploration of several existing apps that use this technique, and introduce our own novel app, Polycommit. Polycommit was developed for use with several Cal Poly classes and was deployed during the first half of the Spring 2017 quarter. With careful attention to user feedback, we created a tool that motivated students to form better study habits. While our results do not show statistically significant improvement to student grades, this tool gives insight into how modern technology and gamification can be leveraged to create an engaging app that encourages positive study habits, and gives us a platform to develop future applications concerning gamification.
ACKNOWLEDGMENTS

Thanks to:

- Dr. Foaad Khosmood, without whose hard work and guidance this thesis wouldn’t have been possible

- Dr. Zoe Wood, Dr. Zachary Peterson, Dr. Hugh Smith and Dr. Robert Easton for supporting the study and allowing me to test the app in their classes

- Andrew Guenther, for uploading this template
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Table/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Learning Technology</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Definitions</td>
<td>1</td>
</tr>
<tr>
<td>1.2.1 Spaced Repetition</td>
<td>1</td>
</tr>
<tr>
<td>1.2.2 Gamification</td>
<td>3</td>
</tr>
<tr>
<td>2 Background</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Early Computing</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1 Pressey’s Teaching Machines</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Skinner’s Teaching Machines</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3 Behavior and Learning</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3.1 Rewards Scheduling</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Habit Formation</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Potential Hazards of Gamification</td>
<td>9</td>
</tr>
<tr>
<td>3 Related Work</td>
<td>12</td>
</tr>
<tr>
<td>3.1 Habit-Forming Apps</td>
<td>12</td>
</tr>
<tr>
<td>3.1.1 Duolingo</td>
<td>12</td>
</tr>
<tr>
<td>3.1.2 Memrise</td>
<td>12</td>
</tr>
<tr>
<td>3.1.3 Pocket Points</td>
<td>15</td>
</tr>
<tr>
<td>3.1.4 Habit Formation and User Interface</td>
<td>15</td>
</tr>
<tr>
<td>3.2 Gamification</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1 Classcraft</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1.1 Classcraft Study</td>
<td>18</td>
</tr>
<tr>
<td>3.2.2 Gamification in Other Educational Areas</td>
<td>18</td>
</tr>
<tr>
<td>4 App Overview</td>
<td>20</td>
</tr>
<tr>
<td>4.1 UI Overview</td>
<td>20</td>
</tr>
</tbody>
</table>
6.1.3 Experiment Duration 56
6.1.4 User Feedback 57
 6.1.4.1 Notifications 57
 6.1.4.2 Showing Answers 57
BIBLIOGRAPHY .. 59
APPENDICES
 A Polycommit Participation Disclaimer 63
 B Final Survey Content 65
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Average midterm scores for different segments of the population. Note that an “Active User” is a user with more than 5 commitment.</td>
<td>42</td>
</tr>
<tr>
<td>5.2</td>
<td>Table representing the percentage score on the midterm for students who answered similar questions in Polycommit for the class Introduction to Computer Graphics. NOTE: these midterm scores were self-reported, so their accuracy depends on the honesty of the reporting student.</td>
<td>47</td>
</tr>
<tr>
<td>5.3</td>
<td>Table representing the percentage score on the midterm for students who answered similar questions in Polycommit for the class Introduction to Computer Networks. NOTE: these midterm scores were self-reported, so their accuracy depends on the honesty of the reporting student.</td>
<td>47</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The “Forgetting Curve,” as presented by Dr. Pimsleur in 1967. The y-axis represents the subject’s likelihood of recalling a specific piece of information at the given time.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>The Leitner system. If a student answers a flashcard correctly, it is moved to a higher-numbered box that is reviewed less frequently.</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>A diagram depicting the patent for Sidney Pressey’s teaching machine. Candy was dispensed to the user after answering a question correctly.</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>A series of questions as presented by Skinner’s teaching machine. The question is “transformed” to several different modes that help the user learn the information faster.</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Variable ratio rewards scheduling. Note that as rewards are spaced out randomly, the desired behavior appears much more quickly.</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>The Duolingo interface. Notice the gamification elements and the encouragement to reach a “daily goal.”</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>Screenshot of the Memrise interface. Note the gamification elements, the social aspect, and the “Streak” clock encouraging consistent use of the app.</td>
<td>14</td>
</tr>
<tr>
<td>3.3</td>
<td>Screenshot of the Pocket Points interface.</td>
<td>16</td>
</tr>
<tr>
<td>3.4</td>
<td>Classcraft user interface. Note the student’s health and mana pool, as well as the list of other students in the classroom.</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>The login screen for Polycommit, shown if the user does not have an active session.</td>
<td>21</td>
</tr>
<tr>
<td>4.2</td>
<td>The main Cal Poly login portal. Note the URL that links back to my personal department folder.</td>
<td>22</td>
</tr>
<tr>
<td>4.3</td>
<td>A diagram explaining how the Cal Poly authentication is handled on the backend. Sites that the user sees in their browser window have a solid outline, and sites that the user does not see are outlined in dotted lines. Similarly, network calls made by the user’s computer are represented by a solid arrow, and network calls made by the Polycommit backend are represented by a dotted arrow.</td>
<td>23</td>
</tr>
</tbody>
</table>
4.4 The “Home” screen for *Polycommit*. Students can see their current progress and can click on a course to answer challenges. 30

4.5 The “course” screen for *Polycommit*. Students can see their current points and commitment and can see a list of challenges organized by date. 31

4.6 The “Challenge” screen for *Polycommit*. Students see the content of the challenge and can enter their answers. At the bottom is a link where students can give feedback on a challenge. 32

4.7 The Feedback form for questions. The id for the question is automatically filled in. The student can optionally enter their email address (off-screen) if they want to be contacted when the challenge is fixed. 33

4.8 The view of a challenge once it has been answered incorrectly. The main message assures the user that it still counts for commitment. A full explanation of the problem is under the list of the user’s attempts. 34

4.9 Three examples of “toast” notifications. These provide useful state-based information, such as whether a challenge was answered correctly. They also can provide feedback if an error occurred, such as a challenge not submitting due to poor network connectivity. 35

4.10 The Postman interface. A series of web requests are sent to the website, and a series of conditions determine whether the tests pass or fail. 36

4.11 The feedback link where students are encouraged to send feedback about *Polycommit*. 36

5.1 Graph of commitment versus the student’s percentage score for all classes. Note that the x-axis, commitment, represents the total number of *unique* days the student used the app. 39

5.2 Graph of Total Questions Answered vs. the student’s score on the midterm. 40

5.3 Count of scores for students that did *not* make an attempt on the Deadlock question in *Polycommit*. 43

5.4 Count of scores for students that *did* make an attempt on the Deadlock question in *Polycommit*. 44

5.5 Scatter plot where the X axis is the amount of scheduling problems the user answered *correctly* on *Polycommit*, and the Y axis is the total score they received on the 4 scheduling questions of the midterm. 45

5.6 Scatter plot where the X axis is the amount of scheduling problems the user answered *correctly* on *Polycommit*, and the Y axis is the total score they received on the 4 scheduling questions of the midterm. 46
5.7 Survey responses from users of Polycommit. 54
1.1 Learning Technology

Learning technology is becoming nearly universally used in classrooms, to the point where some teachers refer to it as “mandatory.” Yet there is still a “great variation in university lecturers’ use of technology,” with some teachers not even ready to replace their overhead slides with Powerpoint [25].

We will address the different methodologies teachers use to integrate technology with the classroom, paying special attention to gamification techniques and spaced repetition.

1.2 Definitions

1.2.1 Spaced Repetition

Spaced repetition is a learning technique first coined by Dr. Paul Pimsleur in 1967 [21]. Dr. Pimsleur noted the existence of a “forgetting curve.” (See Figure 1.1) The first moment a piece of information is learned, the subject is 100% likely to be able to correctly recall it. However, as early as the first day after initially learning the information, the subject’s retention rate of the information begins rapidly decaying. By reviewing the information, the retention rate is brought back to 100%, and the subsequent decay of retention is substantially flattened. That is, as students review information over time, it is encoded into their long-term memory, and they are less likely to forget it over a long period of time.

Dr. Pimsleur initially proposed spaced repetition as a technique solely for learning
Figure 1.1: The “Forgetting Curve,” as presented by Dr. Pimsleur in 1967. The y-axis represents the subject’s likelihood of recalling a specific piece of information at the given time.

A new foreign language, but spaced repetition has been proven to be effective for any classroom setting. As Kang notes in [9], it is intuitive that information needs to be practiced and reviewed over time to be fully integrated into a student’s understanding, but Dr. Pimsleur’s techniques provide a quantifiable, scientific schedule to maximize retention.

Kang et al. [9] also attempts to find the “Optimal Spacing Lag,” or the optimal time between each review session for a particular piece of information after a long period. They find that this optimal spacing lag is around 10% to 20% of the time between initial introduction of the information and the test date. That is, if the test is 10 weeks away, even the oldest information should be reviewed with at most a 1-2 week delay in between review sessions.

A simple example of spaced repetition is the Leitner system. Flashcards corre-
Figure 1.2: The Leitner system. If a student answers a flashcard correctly, it is moved to a higher-numbered box that is reviewed less frequently.

Corresponding to the desired source material are organized into numbered boxes. (See Figure 1.2). Each successive box is reviewed less frequently. That is, a student would review Box 1 twice per day, Box 2 once per day, Box 3 every 2 days, and so on. If a card is answered correctly, it is moved to a box that is reviewed less frequently. However, if the student answers incorrectly, the card is moved to a box that is reviewed more frequently.

Thus, tougher cards are reviewed more often, and cards the student knows will be reviewed less often. However, all cards are eventually reviewed, and even cards that the student always answers correctly are reviewed in the long term.

1.2.2 Gamification

The term “gamification” first appeared in 2008, but the concept was not well-known in the mainstream until 2011, with the advent of Foursquare [12]. Foursquare is an
app that takes the mundane concept of reviewing restaurants and finding new places to visit and turns it into an engaging, popular experience. Users of the app earn points for “checking in” at locations. This is a great example of gamification, which doesn’t have an easy, exact definition.

In Deterding’s paper [5], they propose a categorical definition based on the concept of “gamefullness,” which is the concept of presenting a systematic reward for a desired behavior. This definition illustrates the type of gamification we will be using for Polycommit; changing user behavior through point-based incentives.
Chapter 2
BACKGROUND

2.1 Early Computing

2.1.1 Pressey’s Teaching Machines

The concept of “Learning Machines” are actually older than Turing machines\(^1\). The earliest learning machine was patented by Sidney L. Pressey in 1928 (See Figure 2.1) [3]. This machine was designed for both testing and teaching. In testing mode, it would only give the user one chance to answer each question, but in teaching mode the user could try as many times as they liked. After answering a specified number of questions correctly, the machine would dispense a piece of candy. The machine came equipped with a “reward dial” that allowed the researcher to define how many questions the user had to respond to before they earned the candy.

Unfortunately, Pressey was not able to find a market for his teaching machines. Skinner would later argue that it was the general culture of the 1920s and 30s that stopped Pressey’s machines from gaining popularity; it wasn’t until the 1950s and 60s where novel technology was more readily accepted into the mainstream [26].

2.1.2 Skinner’s Teaching Machines

Dr. B. F. Skinner continued the work of Pressey. In 1958, he published a paper [27] describing his newer teaching machine based off punchcard computing technology. While using Skinner's machine, students receive a rotation of questions about a certain subject, and could not continue until they had answered each question in the rotation

\(^1\) We use the definition of “Learning Machines” provided in [3]. That is, a teaching machine is an automated device that provides questions to the user and automatically grades them.
correctly. The cycle of questions presented the information in varied ways. For instance, in Figure 2.2, a series of questions that teach the student how to spell “manufacture” is displayed. The first question simply asked the student to repeat the word, and the rest of the questions transform that question in various ways, which Skinner hoped would “hold the student’s attention” and force them to process the information in different ways, accelerating the learning process.

Dr. Skinner believed that computers would completely revolutionize classrooms. Students would be able to learn at their own pace, with the computer determining the optimal schedule for each student based on how they were performing. Skinner made it clear that he didn’t envision his computers as replacing human teachers, but rather supplementing their teaching, saving them time and making learning a more efficient process.

2.1.3 Behavior and Learning

Of course, B. F. Skinner is most famous for his creation of the “Skinner Box,” [28] a device that gave simple reinforcement to animals or humans in the lab in order to slowly shape their behavior, through a process known as operant conditioning. When a subject performed well according to the test, they would receive a small reward, while if they strayed from the purpose of the test, they would not receive a reward. Dr. Skinner argued that “much of what we know [about the learning process] has come from studying the behavior of lower organisms, [and] the results hold surprisingly well for human subjects” [26]. Skinner’s research hearkens back to the candy that was dispensed by the early teaching machines of Pressey.

It’s important to note the connection between operant condition and learning. Skinner believed that learning was simply a form of behavior modification, and that students could learn far more effectively by using the techniques Skinner had discov-
2.1.3.1 Rewards Scheduling

One of the ways that Skinner discovered that operant conditioning could be accelerated was through *variable ratio reinforcement scheduling*. [8]. There are several different schedules of reinforcement a researcher can use (See Figure 2.3).

The classical method is **continuous reinforcement**, where the reward is given for every single instance of the desired action.

Fixed-ratio scheduled reinforcement is where a reward is given after a set amount of instances of the desired behavior. This is similar to how Pressey’s machine dispensed candy after a set amount of correct answers.

Fixed-interval scheduled reinforcement is where a reward is dispensed for the first instance of a desired behavior *in a given time frame*. That is, if the time frame is 1 minute, a reward will be given on the first bar-press that occurs 1 minute or later than the last reward. This is the rewards schedule used by *Polycommit*.

Finally, the schedule that drives the most response is **variable ratio rewards scheduling**. Using this method, a reward is given after a random number of instances of the desired behavior. This scheduling is most engaging for the test subject, and causes them to be conditioned much faster. However, we decided this was not an appropriate scheduling system to use for *Polycommit*, as it would create an inconsistent experience for the user.

2.2 Habit Formation

Recent studies in behavior modification show that the most effective way to bring about a long-term change in behavior to an individual’s life is to form habits. BJ
Fogg, a Stanford researcher and a TED presenter, has done extensive research into how humans form their behavior patterns. In one of his papers, he breaks down the formation of new behaviors into a model that depends on what he calls “triggers.” While behavior can be modified long-term given enough motivation or ability, the most effective change in behavior comes from low-effort, routine tasks. As the user’s comfort level grows, their willingness to change their behavior also increases.

BJ Fogg ties these ideas directly into computer interface design in his most prominent paper [10]. He presents the idea that user interfaces should convey a comforting, friendly tone to increase the user’s comfort, and thus lower the barrier to creating new habits. He argues that human-computer interaction is surprisingly similar to human-human interaction. He showed several early examples of “assistant” computer applications, noting how they raise an emotional response, although the early technology of the time limited their effectiveness. It brings to mind Microsoft’s infamous Clippy character, which certainly made an impact in user’s lives, perhaps for being more annoying than helpful. Interesting to note is that this paper predates the release of Apple’s Siri personal assistant by one year.

Other studies back up Fogg’s characterization of habit formation and behavior modification. In a 2010 study by Dr. Lally, they emphasize the importance of familiarity to habit formation, and note that the easiest way to form habits is to tie them to an existing, automatic behavior. For instance, test subjects in the study by Dr. Lally determined that it was easiest to condition subjects to perform some action by instructing them to perform it right after eating breakfast in the morning. By using the powerful force behind an existing habit, it is possible to “reprogram” your behavior such that a new habit is formed with the new desired behavior.
2.2.1 Potential Hazards of Gamification

According to Dr. Renfree, the advent of “apps” and habit-forming application has created an essentially new field in psychology [23]. In his study, Dr. Renfree argues that the behavior modifications seen in apps like Lift and Memrise represent new advances into how habit-forming psychology operates.

However, he claims that most of these new effects are actually negative. For instance, he notes that oftentimes the new habits generated by these apps are “fragile,” since they are so dependent on a tight dopamine-based reinforcement loop. As soon as the loop is broken, the brain “loses interest” and the new information is deprioritized. As we attempt to bring gamification into the classroom, we need to ensure that we don’t bombard the user with information and make their understanding “fragile.”
Figure 2.1: A diagram depicting the patent for Sidney Pressey’s teaching machine. Candy was dispensed to the user after answering a question correctly.
Table 1. A set of frames designed to teach a third- or fourth-grade pupil to spell the word
manufacture.

1. **Manufacture** means to make or build. *Chair factories manufacture chairs.* Copy the
word here:

²³⁴⁵⁶⁷⁸⁹

2. Part of the word is like part of the word *factory*. Both parts come from an old word
meaning *make or build*.

³⁴⁵⁶⁷⁸⁹

3. Part of the word is like part of the word *manual*. Both parts come from an old word for *hand*. Many things used to be made by hand.

³⁴⁵⁶⁷

4. The same letter goes in both spaces:

¹²³⁴⁵⁶⁷⁸⁹

5. The same letter goes in both spaces:

¹²³⁴⁵⁶⁷⁸⁹

6. **Chair factories** ²³⁴⁵⁶⁷⁸⁹

Figure 2.2: A series of questions as presented by Skinner’s teaching ma-
chine. The question is “transformed” to several different modes that help
the user learn the information faster.

[3]

Figure 2.3: Variable ratio rewards scheduling. Note that as rewards are
spaced out randomly, the desired behavior appears much more quickly.
Chapter 3

RELATED WORK

3.1 Habit-Forming Apps

3.1.1 Duolingo

Several recent apps and products make use of spaced repetition to allow user to easily gain long-term recall of languages, class content, or any other information that needs to be learned. One such app is Duolingo (See Figure 3.1); in Duolingo, users learn a language by repeating small exercises every day.

The app encourages users to spend a small amount of time each day studying useful words and phrases, rather than cramming in a lot of knowledge at once. It encourages this behavior through the use of gamification. Each user earns “experience” in a language, eventually leveling up. Users connect their Facebook accounts and can see their friends’ levels and accomplishments, adding a social element to the app.

3.1.2 Memrise

Memrise (See Figure 3.2) is a web app that has very similar function to Commit. Memrise takes a series of flashcard-based questions and answers and automatically creates a “study plan” where the application breaks up flash cards and uses spaced repetition to encode the information in the user’s long-term memory. Memrise also uses gamification and social elements, as users earn points for every correct answer and can see their friends’ scores.

Interesting to note is that users can input any data they choose into Memrise to receive a custom study-guide. This would allow students to easily learn flashcards if
Figure 3.1: The Duolingo interface. Notice the gamification elements and the encouragement to reach a “daily goal.”
Figure 3.2: Screenshot of the Memrise interface. Note the gamification elements, the social aspect, and the “Streak” clock encouraging consistent use of the app.
they took the time to input them into the app.

Both of these applications heavily emphasize language learning, since the process of learning a language can easily be broken down into a series of small words and phrases, and re-emphasized using the process of spaced repetition. However, *Polycommit* focuses on one class at a time, allowing students to easily learn and retain class content without the investment of creating their own flashcards.

3.1.3 Pocket Points

Pocket Points is an app that attempts to create positive habits for its users through gamification [2]. When installed, the app rewards you for keeping your phone locked while in class. It uses GPS to ensure you’re on campus, then awards 1 point for every 20 minutes your phone is locked. These points can then be spent to earn discounts and coupons at local businesses. By incentivizing users with discounts and bonuses, Pocket Points attempts to shape its users’ behavior.

3.1.4 Habit Formation and User Interface

Previous work has been done to tie habit formation with online user interfaces [14]. In this book, Dr. Jeff Johnson describes how psychology ties into user interface design. He cites that familiar user interfaces lead to less mental stress, encouraging users to come back to your application repeatedly since it seems familiar and less stressful to them. We desire users to consistently use our application every day, so we must keep this in mind.
Figure 3.3: Screenshot of the Pocket Points interface.
3.2 Gamification

Gamification in the classroom has several other examples that can be compared to our application.

3.2.1 Classcraft

Classcraft is an intriguing example of gamification in education (See Figure 3.4). In Classcraft, students choose a “role” and go on the equivalent of a World of Warcraft raid with their fellow classmates. Classcraft is interesting in that it promotes cooperation and a variety of skills, so that students can assist each other where they might not have a certain skill.

Classcraft takes the typical elements of an RPG and converts them into an experience that supplements a typical classroom experience.

Figure 3.4: Classcraft user interface. Note the student’s health and mana pool, as well as the list of other students in the classroom.
Interesting to note is the emphasis Classcraft puts on integration with existing technologies such as Google Classroom. In order for this application to be widely adopted, it is definitely necessary to have the experience of the teacher go extremely smoothly. Thus, if an application ties directly in with existing technology that the teacher is already familiar with, it will be much more readily adopted by the educational community. It’s important to value the teacher’s time with this application, so it is necessary to make the UI recognizable, familiar and easy to work with, as well as integrating it with existing tools and perhaps even modeling the user interface after tools that many teachers will already be familiar with.

3.2.1.1 Classcraft Study

A study was done on the effectiveness of Classcraft as well as “ludicization” in the classroom in general [24]. Their study ran primarily in France, as this is the home country of the Classcraft company and application. It found that teachers valued the collaborative aspect of Classcraft the most, noting that the app encourages students to work together and support each others’ weaknesses rather than compete with one another.

3.2.2 Gamification in Other Educational Areas

So far, we have considered gamification in the classroom mostly in the context of STEM or language fields. While gamification does lend itself towards these subjects, as math problems and science problems can be easily generated by an algorithm, there have also been steps to gamify aspects of classes around liberal arts and the humanities [30].

This study by Dr. Wagner approaches a music class the same way Classcraft approaches subjects not focused on the humanity. It highlights the idea of a “flow”
where a student is fully immersed in the educational process and is fully engaged with the learning process, and notes that it is far easier to attain this “flow” state when the student is learning in the context of a video game.
Chapter 4

APP OVERVIEW

We carried out an experiment at California Polytechnic State University to test the efficacy of habit-based educational software. We created a web-based application called Polycommit that was connected to 4 college classes: Introduction to Computer Networks, Introduction to Computer Graphics, Introduction to Operating Systems, and Linear Analysis I. These classes were selected because they covered subject matter that was easy to convert to online quizzes. For instance, one staple linear analysis problem is to find the determinant of a matrix (often a whole number), which is easy to input into an online form. In addition, I had taken these classes in recent quarters and was familiar with the course content.

We presented Polycommit to each of the courses in the first 2 weeks of class. Students voluntarily signed up through a website hosted at https://polycommit.com/.

4.1 UI Overview

4.1.1 Onboarding and Login

Upon accessing https://polycommit.com/, students are presented with a prominent call to action button: ”Login with Cal Poly.” The button is styled with the official ”Cal Poly Green” color, #005A45 (See Figure 4.2).

After clicking the login button, users are brought to the main Cal Poly login portal screen. Observant users will note that the callback URL points to https://users.csc.calpoly.edu/~efiske/login.php. This is because the Cal Poly authentication service only will successfully make an authentication callback to a
website on Cal Poly ITS’ whitelist. In order to enable Cal Poly login, we had to implement a PHP script on the Cal Poly Unix servers’ www directory that redirected to the Cal Poly portal, then handled the response.

The full process for authentication is visible in Figure 4.3. The user is redirected to Cal Poly’s portal, which returns a ticket. That ticket is then passed to the Polycommit backend and verified via a HTTP call from the Polycommit server. Note that the ticket is only valid for the Polycommit service; if a ticket is compromised, no user data is endangered and an attacker can not log in to any other Cal Poly-based

Figure 4.1: The login screen for Polycommit, shown if the user does not have an active session.
Once the ticket is verified on the backend, the user’s session is created on the backend and the server responds with a session cookie.

The first time the user logs into Polycommit, they are presented with a legal disclaimer describing the nature of the study. The full text of the disclaimer is available in Appendix A. Users will be redirected back to this disclaimer if they don’t click the check mark to verify that they agree to the disclaimer. That is, even if the user tries to access a course page via URL, they will be sent back to the disclaimer.
until it is verified by the backend.

Figure 4.3: A diagram explaining how the Cal Poly authentication is handled on the backend. Sites that the user sees in their browser window have a solid outline, and sites that the user does not see are outlined in dotted lines. Similarly, network calls made by the user's computer are represented by a solid arrow, and network calls made by the Polycommit backend are represented by a dotted arrow.

4.1.2 Home Screen

Upon logging in, students click “Enroll” for the classes they wish to participate in. Upon enrolling, the classes are listed under the “Enrolled Classes” section (Figure 4.4). This page also lists the two main “scores” that students earn by answering questions: commitment and points.
Commitment is a numerical value that represents how many unique days a student has answered a question on the website. Students could earn up to 1% extra credit on their final grade in the class by getting 15 commitment.

Points are earned by answering questions. More points are awarded for correct answers, and bonus points are awarded based on the user’s current commitment. All participants in the experiment were placed in a raffle for $20 Amazon gift cards. Additional entries into the raffle were awarded by earning more points.

4.1.3 Course Screen

Each course page has a list of challenges (Figure 4.5) that are open to the student. Challenges are grouped by the week in which they are opened. If a student has completed all the challenges in a week, the week is displayed with a green check mark and does not expand. If there are open challenges in a week, the week is displayed in yellow with an “alert” icon, indicating that the student has an available challenge. This UI imparts a sense of urgency to the user, since they could potentially lose opportunities to earn commitment by not answering a question in a 24-hour period. Each challenge also lists the date it was opened, and the number of points awarded if the challenge is already completed.

Finally, the Course page lists the student’s points and commitment for the course, along with a tooltip that explains what “commitment” is. The commitment and point values are repeated from the home page since they are central to the experience of the app, and it is inherently satisfying to watch your points and commitment rise as you complete challenges.
4.1.4 Challenge Screen

The challenge screen is where students see the content of a challenge and input their answers. A challenge can either be multiple choice, short answer, or numerical. An example of a simple multiple choice challenge is at Figure 4.6.

At the bottom of the challenge screen is a link to submit feedback about a question. Through this link, students are brought to a Google form where they can provide feedback about a particular question. The feedback form is viewable at Figure 4.7.

The question feedback form was not utilized as frequently as the other feedback forms. Only 2 responses came in through this form.

Once the challenge is closed, students can see a list of their previous attempts along with the correct answer to the problem. Certain problems have their answers hidden; for instance, all Linear Analysis problems don’t show their answers because many challenges on Polycommit are directly from the assigned homework. Hiding the correct answer prevents students from quickly inputting a wrong answer to see the homework solutions. Additionally, if a question has received feedback as being confusing, an “Explanation” field provides detailed context about the answer the problem and potential pitfalls (See Figure 4.8).

4.1.5 Toasts

Polycommit uses “toasts” to convey temporary, state-based information to the user. For instance, when the user answers a question, they get immediate feedback in the form of a pop-up toast. Positive information, such as a correct answer, is styled with a green background and a check mark. Negative information, such as an incorrect answer or a server error, is bright red with an alert symbol that commands the user’s attention. Examples of each are at Figure 4.9.
4.2 User Rewards

In order to incentivize students to use Polycommit, we introduced two main rewards for participation.

4.2.1 Extra Credit

We made an agreement with the instructor of each course that a small amount of extra credit would be offered to students that made use of Polycommit. In order to make the UI uniform for all users, we introduced the same reward for all users: 1% extra credit added to the student’s final score in the class for earning 15 commitment. If students earned less than 15 commitment, they received a percentage of the extra credit proportionate to their commitment value. No additional credit was awarded for earning more than 15 commitment.

The experiment ran for 5 weeks, giving users ample time to reach this goal. The extra credit proved to be a strong motivator for participation, as several students contacted me about receiving the extra credit throughout the quarter.

We chose to offer extra credit for earning commitment rather than points, because we were more interested in students using the app consistently than rewarding correct answers.

4.2.2 Amazon Gift Card Drawing

In addition to the extra credit, we ran a raffle for 8 $25 Amazon gift cards. Students earn one additional entry into the raffle for every 50 points they earn using Polycommit. Students are reminded of the raffle on the home screen, where the number of raffle entries they had earned so far is displayed prominently across the top.

In order to maintain the legality of the raffle, any Cal Poly student could also
send me an email every week to receive an entry into the raffle. This was described in the disclaimer students read upon signing up for the experiment. No such emails were received throughout the duration of the experiment.

4.3 Technology Used

All the code for *Polycommit* is available here: https://github.com/elliotfiske/commitment

Polycommit has its origins in a Summer 2016 section of Dynamic Web Development (CPE 437), taught by Dr. Clint Staley. The base code and overall code architecture remain, as well as some of the platforms used. The app runs on a M*EAN* stack. It uses Node.js as a backend, with Express as a routing service and MySQL as a database. In addition, Sequelize is used to easily interface with the database from Javascript. Angular.js is used as a frontend framework, supplemented by Bootstrap for reactive layout.

Node.js and Javascript lends itself well to quick, iterative development. As a dynamically typed language with first-class and anonymous functions, it is easy to quickly make sweeping changes based on user feedback. However, since Javascript is an interpreted language, potential errors that a compiler could have caught may make it through to the live site. Because of this, it was extremely important to regularly run the backend code through comprehensive unit tests.

4.3.1 Test-First Methodology

All of the backend server code is thoroughly covered by various test cases. We used the service *Postman* to maintain a suite of tests that ensured all the data involved in *Polycommit* was both available and secure. *Postman* allows developers to run a series of web requests against a server, and verify that the correct response or error
code is returned (See Figure 4.10). For instance, one test suite logs in as a student and attempts to complete a challenge, create a class, and query the information of another student. Only the first request should complete successfully; the student’s unprivileged account should not be able to create classes or see other students’ data.

Writing test cases for new server functionality before beginning development allowed me to see edge cases before they arose, and allowed for the satisfaction of seeing the tests pass as I completed each feature. In addition, it protected the privacy of students’ answers and scores.

4.4 User Feedback

At the bottom of every page is a link encouraging users to send feedback to an email address (See Figure 4.11). Throughout the experiment, we received a large amount of excellent feedback that helped me refine the app’s usability.

4.4.1 Early Testing

Before the main experiment in Spring 2017 term, we ran a small dry run of the app to get a general feel for usability issues. The app was announced in CPE 464 in week 6, directly after the midterm. The main difference from the final iteration is the onboarding process. Instead of registering and logging in through the Cal Poly portal, students registered using an email address and had to click a link that was emailed to them to complete registration.

We discovered that this onboarding process had an extremely high drop-off rate. Of the 10 people that visited the posted link, only 4 entered their email, and only 2 successfully completed registration. As such, it became a huge priority to reduce the number of steps a user had to complete to begin using the app. The Cal Poly
authentication process described above decreased the number of steps the user needed to take to enter the app, and thus gave a huge boost to user engagement.
Figure 4.4: The “Home” screen for *Polycommit*. Students can see their current progress and can click on a course to answer challenges.
Figure 4.5: The “course” screen for *Polycommit*. Students can see their current points and commitment and can see a list of challenges organized by date.
Figure 4.6: The “Challenge” screen for Polycommit. Students see the content of the challenge and can enter their answers. At the bottom is a link where students can give feedback on a challenge.
Figure 4.7: The Feedback form for questions. The id for the question is automatically filled in. The student can optionally enter their email address (off-screen) if they want to be contacted when the challenge is fixed.
Oh no! You answered this challenge incorrectly.

Don't worry, it still counts towards earning the extra credit.

Previous Attempts:

90210
3300110102200
11030230011

The full Gantt chart looks like this:

\[
\begin{array}{cccc}
P1 & P1 & P1 & P1 & P0 & P0 & P0 & P0 & P2 & P3 & P3 & P3 & P3 \\
T=0 & T=4 & T=8 & T=12
\end{array}
\]

So your string should be: 111110000023333

Is this challenge incorrect?

If you haven't covered this challenge in class, or the answer is incorrect, please let me know at this link!

Figure 4.8: The view of a challenge once it has been answered incorrectly. The main message assures the user that it still counts for commitment. A full explanation of the problem is under the list of the user’s attempts.
Figure 4.9: Three examples of “toast” notifications. These provide useful state-based information, such as whether a challenge was answered correctly. They also can provide feedback if an error occurred, such as a challenge not submitting due to poor network connectivity.
Figure 4.10: The Postman interface. A series of web requests are sent to the website, and a series of conditions determine whether the tests pass or fail.

Figure 4.11: The feedback link where students are encouraged to send feedback about *Polycommit*.

This site was made with <3 by Elliot Fiske. Please send questions, complaints, ideas, and memes to elliotfiske@gmail.com
The user study was carried out over the first half of the Spring 2017 term at Cal Poly. 130 students signed up across 4 classes. By the end of the study, just over 3200 answers had been submitted to the application.

5.1 Data Gathering

5.1.1 Midterm Scores

In order to gauge the effectiveness of Polycommit, we collected scores on quizzes and exams and aggregated the data to be analyzed. For Introduction to Operating Systems, data collection was extremely simple as all the quizzes and midterms were administered through an online exam. This allowed us to easily obtain data on how students performed on specific midterm questions that aligned with questions asked in Polycommit.

However, the other classes were not as simple. The other classes administered paper midterms, and we did not have access to the papers as they were being graded. As such, we administered a secondary survey to the students in the class asking them to input their midterm scores for various questions.

5.1.2 Final Survey

After the experiment was concluded, all participants were sent a link to a survey where they could give feedback about their overall experience using Polycommit. As an incentive, any participant who filled out the survey received +3 Commitment
and +50 points (equal to an additional entry in the gift card raffle). A total of 70 participants filled out the post-experiment survey.

5.1.3 Limitations

Certain tradeoffs were necessary in order to run this experiment.

5.1.3.1 No Control Group

Most importantly, there is no true control group for this study. We decided that it would be more advantageous to offer the application to all students in each section of the classes. This simplified the onboarding process, as we could present the application to all members of the class at once, and allow anyone to sign up. It also prevented potential issues where students might perceive it as unfair that certain students were given access to a study resource and others were not. In addition, this allowed more students to participate in the experiment, giving us access to more data and more user feedback.

As such, it’s important to note that the students who participated in the study self-selected to become part of the experiment. Students who did not use the app can’t be considered a control group, because they are not a random selection from the whole population. Allowing students to self-select may have introduced confounding variables. For example, perhaps students who are confident in their study techniques would choose to not participate, making the average midterm scores higher for non-participants.

5.1.3.2 Self-Reporting Midterm Scores

As noted above, students were asked to input their midterm scores in an online form. We have no way of determining if this data was accurately entered; students may feel
tempted to enter a higher score than they actually received. Note that we do have access to the overall midterm scores, so the issue only arises when analyzing individual questions on the exams. Data that has been affected by this issue is clearly marked in the upcoming sections.

5.2 Overall Results

5.2.1 Cramming vs. Commitment

First, consider the relationship between a student’s overall score on the midterm and their Commitment (Figure 5.1).

![Commitment vs. Midterm Score](image)

Figure 5.1: Graph of commitment versus the student’s percentage score for all classes. Note that the x-axis, commitment, represents the total number of *unique* days the student used the app.

Note that we are showing the midterm percentage score, since the midterms in different classes have different total score values.
There is no clear correlation between a user’s commitment value and the score they got on the midterm. Thus, this data does not support the hypothesis that using spaced repetition to study for an exam improves the user’s score in a general test.

Next, we can compare the total number of questions answered by each user with their midterm score (Figure 5.2). If students received a benefit from the Commitment system, we might expect to see less of a correlation between total questions answered and midterm score. This is because if a user has a high number of questions answered but a low Commitment, this indicates they answered the questions all at once, in a “cram” session. According to our hypothesis, this would not help improve their long-term understanding of the course.

![Graph of Total Questions Answered vs. Midterm Score](image)

Figure 5.2: Graph of Total Questions Answered vs. the student’s score on the midterm.

Next, consider the mean of all midterm scores between students that didn’t answer any questions vs. the ones that did. For all classes except CPE 471, students that didn’t answer any questions in the app scored slightly higher on average than the
students that didn’t. The discrepancy in CPE 471 is most likely due to the smaller number of students that signed up for Polycommit.

Note that we define “Active Polycommit Users” as the sample of users with over 5 commitment.

5.2.2 Individual Questions

Certain questions on the midterm matched closely with the content of the questions that were repeated on Polycommit. We can analyze midterm results to see if the students that drilled related problems in Polycommit performed better on the related questions during the midterm.

5.2.2.1 Introduction to Operating Systems

One question that was shared between the midterm and Polycommit was a question about the 4 conditions for deadlock. The question on the midterm asked students to choose the correct 4 conditions from a series of dropdowns, while the question on Polycommit asked students to choose the incorrect condition from the list. The 4 conditions for deadlock are:

1. **Mutual exclusion**: At least one resource can only be held by one process at a time; this can result in other processes waiting for that resources

2. **Hold and wait**: A process must be holding at least one resource while waiting for other resources (held by other processes)

3. **No preemption**: Resources can only be released voluntarily by a process; Resources cannot be revoked
Table 5.1: Average midterm scores for different segments of the population. Note that an “Active User” is a user with more than 5 commitment.

<table>
<thead>
<tr>
<th>Class</th>
<th>Non-users Average</th>
<th>Polycommit Users Average</th>
<th>Active Polycommit Users Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Classes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midterm Average</td>
<td>72.93</td>
<td>76.12</td>
<td>76.88</td>
</tr>
<tr>
<td>Population Size</td>
<td>119</td>
<td>103</td>
<td>87</td>
</tr>
<tr>
<td>CPE 453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midterm Average</td>
<td>74.38</td>
<td>77.56</td>
<td>77.40</td>
</tr>
<tr>
<td>Population Size</td>
<td>14</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>CPE 464</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midterm Average</td>
<td>68.90</td>
<td>73.85</td>
<td>76.08</td>
</tr>
<tr>
<td>Population Size</td>
<td>47</td>
<td>42</td>
<td>34</td>
</tr>
<tr>
<td>CPE 471</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midterm Average</td>
<td>87.38</td>
<td>82.39</td>
<td>83.83</td>
</tr>
<tr>
<td>Population Size</td>
<td>34</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>MATH 244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midterm Average</td>
<td>74.43</td>
<td>85.87</td>
<td>85.87</td>
</tr>
<tr>
<td>Population Size</td>
<td>26</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>
4. **Circular wait**: A set of \(n\) waiting processes \(P_0, ..., P_n\) such that \(P_i\) is waiting for resources held by \(P_{(i+1)\%n}\)

The content of the question in *Polycommit* and the question in the midterm are very similar. We can see if individuals who answered the Deadlock question correctly in *Polycommit* had a higher score, on average, than the individuals who did not.

![Deadlock Question Scores (Non-Users)](image)

Figure 5.3: Count of scores for students that did not make an attempt on the Deadlock question in *Polycommit*.

The mean score for **non-users** is 3.30, and the mean score for **users** is 3.31. Thus, using *Polycommit* had a negligible effect on the average score of the participants. However, note that 23/26 **non-users** received a score greater than 3, while 34/37 **users** received a score greater than 3. This could reflect the fact that *Polycommit* only referenced 3 out of the 4 conditions for deadlock, as the 4th condition in the problem was a false plant. Although all 4 conditions are listed in the “explanation” field for the problem, by default if a student answers the question correctly they are brought back to the course page. Thus, students who participated in *Polycommit*
were only drilled on 3 out of the 4 conditions for deadlock, which would explain the overall performance on the midterm.

Next, we will examine problems related to scheduling. Scheduling, in Operating Systems, is the process by which a multithreaded CPU decides which processes get to run at a certain time. Since scheduling problems are easy to generate and automatically grade, several such problems were included in Polycommit. Below, we graph the amount of scheduling problems users answered correctly in Polycommit versus the score they got on the scheduling section of the midterm (See Figure 5.5).

Next, consider the users that attempted the scheduling problems on Polycommit, but got them wrong. The graph in Figure 5.6 includes all attempts on the scheduling problems, including incorrect ones.

Interesting to note is that students who answered the questions in Polycommit incorrectly scored worse on the actual midterm. This might indicate that students

![Figure 5.4: Count of scores for students that did make an attempt on the Deadlock question in Polycommit.](image)
who simply answered questions to earn commitment did not have as good an understanding of scheduling as those who did. However, as noted above, the limitations of this study do not permit us to draw scientific conclusions from this data.

5.2.2.2 Introduction to Computer Graphics

Questions about vector math, transformation matrices, and barycentric coordinates were practiced in Polycommit, and were subsequently tested on the midterm for Computer Graphics. Below is a table displaying the midterm performance of students who answered questions about each question on Polycommit.

![Performance on Polycommit vs. Performance on Midterm (Scheduling)](image)

Figure 5.5: Scatter plot where the X axis is the amount of scheduling problems the user answered correctly on Polycommit, and the Y axis is the total score they received on the 4 scheduling questions of the midterm.
Figure 5.6: Scatter plot where the X axis is the amount of scheduling problems the user answered correctly on Polycommit, and the Y axis is the total score they received on the 4 scheduling questions of the midterm.

5.2.2.3 Introduction to Computer Networks

Questions about IP Addressing, CRC Checksums and sliding window protocol were practiced in Polycommit, and were subsequently tested on the midterm for Computer Networks. Below is a table displaying the midterm performance of students who answered questions about each question on Polycommit.

5.3 User Feedback

At the end of the experiment, we contacted all of the participants with a final survey that asked them questions about their usage of the app. It also included two free-response questions that asked users to offer suggestions about how the app could be improved.
Table 5.2: Table representing the percentage score on the midterm for students who answered similar questions in *Polycommit* for the class Introduction to Computer Graphics. NOTE: these midterm scores were self-reported, so their accuracy depends on the honesty of the reporting student.

<table>
<thead>
<tr>
<th></th>
<th>Polycommit Users</th>
<th>Polycommit Non-Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Math</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>Number of Students</td>
<td>5</td>
<td>38</td>
</tr>
<tr>
<td>Transformation Matrices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td>92.1%</td>
<td>86.3%</td>
</tr>
<tr>
<td>Number of Students</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>Barycentric Coordinates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td>100%</td>
<td>97.7%</td>
</tr>
<tr>
<td>Number of Students</td>
<td>6</td>
<td>37</td>
</tr>
</tbody>
</table>

Table 5.3: Table representing the percentage score on the midterm for students who answered similar questions in *Polycommit* for the class Introduction to Computer Networks. NOTE: these midterm scores were self-reported, so their accuracy depends on the honesty of the reporting student.

<table>
<thead>
<tr>
<th></th>
<th>Polycommit Users</th>
<th>Polycommit Non-Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Addressing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td>74%</td>
<td>77.4%</td>
</tr>
<tr>
<td>Number of Students</td>
<td>15</td>
<td>73</td>
</tr>
<tr>
<td>CRC Checksums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td>94%</td>
<td>86.3%</td>
</tr>
<tr>
<td>Number of Students</td>
<td>16</td>
<td>72</td>
</tr>
<tr>
<td>Sliding Window Protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td>90%</td>
<td>76.9%</td>
</tr>
<tr>
<td>Number of Students</td>
<td>16</td>
<td>72</td>
</tr>
</tbody>
</table>
5.3.1 Rating Summary

The full survey is viewable in Appendix B. Users responded to several statements about the app using a standard Likert scale ranging from “Strongly Disagree” to “Strongly Agree.” A summary of the user responses is available at Figure 5.7. Notably, a majority of users responded quite positively to the app.

5.3.2 Free Response Summary

Before viewing the results, we predicted some categories that user responses might fall into. These categories are:

1. Problems or confusions with the user interface
2. Questions were not correct or were confusing
3. Questions did not represent test material
4. App needed more gamification, excitement, or incentive to use
5. Other

The total number of responses that fell under each category are:

<table>
<thead>
<tr>
<th>Category</th>
<th># Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems or confusions with the user interface</td>
<td>26</td>
</tr>
<tr>
<td>Questions were not correct or were confusing</td>
<td>9</td>
</tr>
<tr>
<td>Questions did not represent test material</td>
<td>5</td>
</tr>
<tr>
<td>App needed more gamification, excitement, or incentive to use</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>29</td>
</tr>
</tbody>
</table>
The full list of responses is available below. Note that answers are shown when a question is closed, so feedback asking for answers to be displayed is filed under “UI Issues” since the problem is essentially that the app failed to present the information in a way that users could find it.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>RESPONSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Interface</td>
<td>- There are some UI problems that could be fixed. Certain values like points and commitment weren’t consistent from page to page.</td>
</tr>
<tr>
<td>Problems</td>
<td>- Solving the can’t see answers even if actually trying was kind of frustrating</td>
</tr>
<tr>
<td></td>
<td>- I think this might be more useful if there was an app version with a notification each day. I wanted to keep up with Polycommit, but it’s pretty easy to forget to check in from day to day.</td>
</tr>
<tr>
<td></td>
<td>- Polycommit had one question a day, but the study guide had 70 questions on it. As a result, it wasn’t as helpful as I expected it to be because by the time of the exam, I feel like a large portion of the class material didn’t show up as a question on polycommit.</td>
</tr>
<tr>
<td></td>
<td>- Ability to review questions would be nice</td>
</tr>
<tr>
<td></td>
<td>- Also, explanations for answers would be helpful</td>
</tr>
<tr>
<td></td>
<td>- Ability to review the answers to questions</td>
</tr>
</tbody>
</table>

After missing all the allowed attempts, it would be nice to know what the answer is so we have a solution to work backwards from. Overall, however, the site was clean and easy to use.

Explanation if you keep missing the answer to the question.

Feedback box, more closely tie in with a professor’s class

fix all the bugs

Give us answers!

I realized that to earn unique commitment days it runs off of a 24 hour period and not actual days on a calendar. Maybe put a timer?

Including the correct answer so you aren’t left wondering

It would be nice to be given the correct answer if I answer incorrectly too many times. Also, the worked out solution would be helpful.

Make previous questions easily accessible like having an answered questions bank

Mobile friendliness
Provide some sort of answer system. I understand that if you provide the answers then individuals can just use them to get answers; however, for people who are genuinely using your program, it was not very helpful if you go the answer wrong.

Providing an explanations for solutions after a student has missed it after a certain number of times could be beneficial.

Quick Feedback or flagging of questions that need to be reviewed. Also the UI could be improved a bit so it has better aesthetic appeal :)

Remove the floating messages after a couple seconds, tell a user how many tries they have before they guess.

Reporting the correct answer was sometimes confusing

See the answer if we didn’t get it correct

Show answers afterwards. Have a scheduled time a question will come out.

Show the answer!

Show the answers

Showing answers after we run out of tries on a question, Having it be part of our grade (for incentive to use), having the teacher review the questions before putting them online

Some of the answers were not clear and did not show you how to do it, only gave you the correct answer. Showing the steps would be much appreciated! Other than that, very useful and helpful!

The software was a little buggy. The page often needed to be refreshed before displaying updated values.

There were some minor issues with commitment points not being tracked on one page, but tracked on the other page.

<table>
<thead>
<tr>
<th>Incorrect or Confusing Questions</th>
<th>Perhaps multiple choice would help a lot on questions whose answers can be more vague Also needs more memes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Possibly offer more difficult questions as well. Maybe also add steps on how to arrive at the correct answer</td>
</tr>
</tbody>
</table>
Some of the answer to the scheduling problems were wrong so it caused a lot of confusion.

Some of the answers for scheduling problems seemed to differ from the instructor’s solution after the problem was shown to him.

some of the questions had answers that were too strict

Some of the questions have wrong answers and that could be checked.

Sometimes the questions could be worded better

There were some issues with correctness/clarity of questions. I also thought having worked out solutions for some of the more difficult problems would have been nice. Overall, I enjoyed using Polycommit. Thank you!

When the answers were incorrect or they didn’t show the correct answer it really threw off my understanding of the material. I started to question a lot of what I thought I knew, and which ones of the questions were actually correct. This ended up really hurting me on the midterm, because I second guessed myself because of the PolyCommit questions that had been wrong that had not been fixed when I had last looked at them.

<table>
<thead>
<tr>
<th>Questions Did Not Match Test</th>
<th>Feedback box, more closely tie in with a professor’s class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>More relevant questions</td>
</tr>
<tr>
<td></td>
<td>Questions similar to what will be asked on tests and quizzes. Some sort of feedback when we get an answer correct. Maybe not the answer itself, but a hint or a point in the right direction of where to look for right answer</td>
</tr>
<tr>
<td></td>
<td>Some of the questions did not align correctly with the material we used in class and it would make more sense to have the weeks correspond to weeks in the quarter. I noticed that some of the questions continued to be posted in week 2 when were in week 4, etc.</td>
</tr>
<tr>
<td></td>
<td>The app is great but the questions did not really follow the class material</td>
</tr>
<tr>
<td>Needed More Incentive</td>
<td>More incentive to use it every day. I frequently forgot to do it everyday.</td>
</tr>
<tr>
<td>Other</td>
<td>Add hints when a question is answered wrong.</td>
</tr>
</tbody>
</table>
Adding an explanation for each solution would be very helpful. Also
more questions would be good.

buzz notification to try a problem

Emails or just a way to remind myself to do it every day!

Explain the answers in more depth

Helpful links to textbook pages

I know people get a lot of emails in college, but maybe a reminder
system could be created.

I think it would be nice to maybe have an optional daily reminder
setting or some sort of notification system.

I was never reminded to complete problems so I only did them the
first week.

I would love email notifications so that I remember to use it.

Instead of an answer, maybe add in a step by step solution

It would be nice to see the solutions to answers that you got wrong,
where applicable.

Maybe I missed it, but I thought maybe this was an app? I could’ve
been imagining things, but either way, I think that would be a great
extension of the site! Also, I think a good addition might be re-
minders. Either phone notifications or emails. For those of us who
are easily forgetful :)

More clarity/ hints on difficult questions

more questions

More questions being posted

More questions per day would help. There’s a lot of content to cover
in CPE 464.

More questions!

More questions! I know this was just a trial period, but more of the
same would be greatly appreciated

Notifications
Perhaps some sort of remind feature for the daily question

Reminder emails

Reminder emails or something like that could be really cool! There were some days when I just simply forgot to log on and do another question.

Reminders via email (optional of course). Solution explanation/breakdown.

Show the steps to the solution in order to better understand the material.

Some notification service to remind you to complete it

The favicon reminds me of the “browser tab crashed” favicon.

The timing of the submission was odd. I would do it at a certain time and my commit would not increase

Time Zone for updating score
Figure 5.7: Survey responses from users of Polycommit.
Overall, we have shown little statistical correlation between the use of Polycommit and improvements to student grades. However, given the overall positive user feedback received about the app, it may be worthwhile to move forward with the idea of improving student understanding through habit formation and gamification.

6.1 Potential Improvements

There are several improvements we could make to the experiment to draw a more definite conclusion about the effect of habit-forming gamification on student performance.

6.1.1 Experiment Scope

For the purposes of this thesis, we took a “breadth-first” approach to gathering data. That is, we released the app to a variety of classes (most were advanced Computer Science courses, but each covered completely separate topics) and allowed any students to participate in the experiment. This allowed us to get feedback and data from a variety of different perspectives.

However, after refining the experience based on the feedback from the “breadth-first” approach, the next step would be to take a “depth-first” approach to the experiment. That is, we would deploy the app in a more focused manner. We would choose a particular class, such as a introductory Calculus class, and deploy the app to every available section. This would give us more consistent data to work with, as we could compare the performance of different sections of the same class.
6.1.2 Control Group

A further improvement to the experiment would be implementing a control group. There are two main ways we could accomplish this.

One method would be to only offer the app to certain sections of a class, while still collecting the scores on quizzes, exams and homework from the non-using sections. This approach has the advantage of being easy to implement, but has the disadvantage of introducing confounding variables to the experiment. The population of students who choose one section over another is not randomly sampled; for instance, students with better studying habits might take a class in an earlier section, causing the average grade on quizzes and exams to be higher in certain sections.

Another method would be to only offer the app to a randomly selected sample of students in the class. This has the advantage of being more scientifically sound, as a random sample on a large population would rule out other factors that might affect student performance. However, it would complicate the onboarding process, as we would be unable to present the app to the entire class and allow anyone with a Cal Poly account to sign up. One method would be to have the app be part of a mandatory graded assignment, and send a link to each of the participating students that allows them to sign up. This would hopefully ensure that all the students that were selected to participate would actually engage with the app.

6.1.3 Experiment Duration

This experiment took place over the first 5 weeks of Spring Quarter 2017. To gain a more complete understanding of how students respond to the app and how habits are formed over time, it would be advantageous to run further experiments over longer periods of time. Data from different quarters could be compared, adjusting different
factors in the experiment to determine how users best respond to gamification.

In addition, several users requested that questions continue past week 5 so they could have a study tool for the final. Future experiments could run for the duration of the whole quarter, allowing us to collect data from all the assignments throughout the quarter, including the final.

6.1.4 User Feedback

6.1.4.1 Notifications

As noted in Table 5.4, users requested several additional features and improvements to the UI. One of the most requested features was the ability to receive notifications each day reminding the user to answer a question and thus earn Commitment. I had considered adding this to the app, but received some feedback during the dry run in Winter 2017 that email notifications would be annoying rather than useful. Thus, I chose to focus on other features rather than adding an element that might discourage certain students from using the app. For future experiments, an opt-in email notification system with a easy-to-use “Unsubscribe” option would likely increase user engagement while not annoying users that don’t wish to be notified.

6.1.4.2 Showing Answers

A number of users requested in the final survey that answers, or answer hints, be shown after completing a question. Originally, the app did not have that feature, but I added it partway into the experiment because several users contacted me about it. The number of students that requested this feature, although it already existed, indicates that the UI does not make it clear that the feature is available. Currently, if students get a question wrong and exceed the maximum number of attempts, the app
stays on the page with the closed challenge, and the answer is shown at the bottom of the screen. There could be some other indication that the answer is visible, perhaps on the course page itself.
BIBLIOGRAPHY

A research project on education software is being conducted by student Elliot Fiske and Dr. Foaad Khosmood in the Department of Computer Science and Software Engineering at Cal Poly, San Luis Obispo. The purpose of this study is to study the effectiveness of immersive educational software.

You are being asked to take part in this study by signing up for your indicated class on polycommit.com and answering a simple course-related question each day. Your participation will take approximately 2-5 minutes per day, at whatever time is most convenient for you. The total time cost to you will depend on the number of days you choose to participate in the project. If you agree to participate, you also agree to allow your professor to compare your answers with your course performance and provide the researchers with the comparisons; your name will not be given to the researchers. Please be aware that you are not required to participate in this research and you may discontinue your participation at any time without penalty or loss of benefits.

There are no risks anticipated with participating with the study. Your Cal Poly email address will be used strictly for logging in and notifications. Your confidentiality will be protected by storing the emails on a secure server. Stored email addresses will be destroyed upon completion of the research. After the course, your score on certain test questions for the course will be compared against your web activities by your professor. Anonymized data provided by the professor will be used by researchers to draw conclusions about the effectiveness of the learning methods.
Potential benefits associated with the study include being entered into a drawing for small rewards such as a $20 Amazon gift card. In addition, participation in the study gives you access to a study tool pre-loaded with questions that will help you study for a specific class, as well as a points-based incentive to study at regular intervals. Potential benefits include developing new instructional approaches using educational software.

All participants in the study can earn entries into a random drawing for a $20 Amazon gift card. There will be 3 such prizes available, and around 100 students are expected to participate. To earn an entry, students must complete a 1-week streak within the app. Anybody may email elliotfiske@gmail.com to receive a free entry, once per week. Participation in the study is not required to enter the raffle. Upon conclusion of the study at the end of the quarter, a random number generator will be used to select 3 random entries to receive a $20 Amazon gift card. There is expected to be roughly a 1 in 30 chance of winning.

If you have questions regarding this study or would like to be informed of the results when the study is completed, please feel free to contact Elliot Fiske (elliotfiske@gmail.com) or Foaad Khosmood (foaad@calpoly.edu). If you have concerns regarding the manner in which the study is conducted, you may contact Dr. Michael Black, Chair of the Cal Poly Institutional Review Board, at (805) 756-2894, mblack@calpoly.edu, or Dr. Dean Wendt, Dean of Research, at (805) 756-1508, dwendt@calpoly.edu.

If you agree to voluntarily participate in this research project as described, please indicate your agreement by checking below. Please save one copy of this form for your reference, and thank you for your participation in this research.
Appendix B

FINAL SURVEY CONTENT

Polycommit Final Survey

Thanks for using Polycommit! By filling out this survey, you'll earn +3 Commitment and +50 points! Nice!

* Required

What is your Cal Poly email?
NOTE: this will only be used to give you the points, all survey data will be kept completely anonymous.

Your answer

Which classes are you enrolled in?

- [] CPE 453
- [] CPE 464
- [] CPE 471
- [] MATH 244
Do you agree with the following statements? *

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neither Agree nor Disagree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Polycommit improved my understanding of class content</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Polycommit improved my scores on quizzes/exams</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Polycommit was easy to use</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I felt motivated to use the app every day</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I enjoyed using Polycommit</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>I would recommend Polycommit be used in other classes</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

How long did it take to complete an average question? *

- ○ Less than 30 seconds
- ○ Less than a minute
- ○ Less than 2 minutes
- ○ Less than 5 minutes
- ○ 5+ minutes
What’s the longest you spent on a question? *

- Less than 30 seconds
- Less than a minute
- Less than 2 minutes
- Less than 5 minutes
- 5+ minutes

What ways could Polycommit be improved? *

Your answer

(Optional) Any additional comments are appreciated!

Your answer

Submit

Never submit passwords through Google Forms.