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ABSTRACT 

Strategies for Increasing the Release of Pigments in Red Wine  

 

Briana Heywood 

 

 

 The perception of wine’s quality is directly influenced by its color.  Anthocyanin 

molecules are responsible for imparting color to red wines. They are extracted from grape 

skins during alcoholic fermentation.  This work compares the effects of three parameters: 

berry integrity, enzyme addition, and fermentation temperature, on phenolic compound 

extraction (total phenol, tannin and anthocyanin) during the production of Paso Robles’ 

Cabernet Sauvignon wine.  Analyses on phenolic compounds were completed during 

alcoholic fermentation and barrel aging over the course of eighteen months.  Berry integrity 

compared the degree of berry crushing (whole destemmed berries versus fully crushed 

berries).  Results showed that phenolic compound content after alcoholic fermentation seem 

to be unaffected by this parameter, while minor increases in total phenol concentration (3%) 

and tannin concentration (3%) during barrel aging were observed.  Adding pectinase-rich 

macerating enzymes increased the total phenols by 8.7 and 21.0% to the 2010 and 2011 

vintage, respectively, and tannin concentrations by 20.8 and 48.8%, respectively, during 

barrel aging.  Alcoholic fermentation temperature of 25.0C was compared to a fermentation 

temperature of 32.2C in the 2011 vintage.  When fermented at 32.2C, concentrations of 

total phenol and tannin were significantly increased (20.6% and 28.9%, for the 2010 and 

2011 vintages, respectively) when compared to 25.0C.  A cooler fermentation temperature 

led to 57.5% greater anthocyanin concentration throughout barrel aging.  The results 

suggested that fermenting berries at a cooler temperature (25.0C) increased anthocyanin 

levels and decreased total phenol and tannin concentration, which are desired outcomes for 

Paso Robles’ Cabernet Sauvignon wine quality. 
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CHAPTER 1 

INTRODUCTION 

  

1.1 Importance of the project 

The perception of a wines’ quality is directly influenced by its color (Bichescu et al. 

2013, Escott et al. 2016, Morrot et al. 2001).  Grapes sourced from the Paso Robles American 

Viticultural Area (AVA) contain ample amounts of tannin.  The struggle winemakers’ have is 

extracting anthocyanin molecules.  Anthocyanins are monomers responsible for providing 

color to red wine.  One way for color to remain stable in wine is to form polymeric pigments.  

Precipitation and degradation of anthocyanin during fermentation and aging can be avoided 

when they complex with tannins.  A typical red berry alcoholic fermentation begins with 

great color and tannin extraction.  The more anthocyanin and tannin extracted from the berry 

skin during the maceration process, the greater the opportunity for complexing reactions 

between anthocyanin and tannin.  Polymeric pigments are formed when a monomeric 

anthocyanin molecule binds with a tannin, creating a polymeric pigment resistant to 

precipitation. 

Winemakers could maximize color extraction during alcoholic fermentation by 

promoting anthocyanin extraction.  When red berries are harvested, they are left in contact 

with skins to maximize extraction of anthocyanin, tannin, flavan-3-ols, and various acids and 

polyphenolics (Fig 1).   
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Figure 1.  Structure of a ripe berry and pattern phenolics biosynthesis distribution 

between several organs and tissues.  Copyrighted with permission by Teixeira et al. 2013.  

 

 

Alcoholic fermentation typically lasts one to two weeks where skin and juice contact is 

encouraged by punch downs and pump overs (Section 3.5).  Glucose and fructose, the native 

sugars found in berries, are converted by yeast to produce ethanol.  Once the sugars are 

consumed, the wine is pressed off the skins, and additional color extraction after this step is 

not possible.  By encouraging more anthocyanin extraction from berry skins, a deeper, darker 

wine can be obtained.  Wines containing more color saturation are associated with higher 

quality (Escott et al. 2016, Morrot et al. 2001).  The objective of this research was to identify 

extraction processes that can be applied pre-fermentation or during alcoholic fermentation.  

Fermentation treatments included fermenting crushed versus destemmed berries, adding 

pectinase-rich macerating enzymes, and cool versus hot fermentation temperatures in efforts 

to impact pigment release and anthocyanin stabilization (Bichescu et al. 2013, Escott et al. 

2016).    
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1.2 Statement of hypotheses 

Commercial pectinase-rich enzyme preparations have shown to increase anthocyanin 

and phenolic extraction during alcoholic fermentation of red berries.  The increased 

extraction of anthocyanin monomers will complex with tannin to form stable polymeric 

pigments. This greater anthocyanin concentration would be persistent through aging in 

barrel.  Anthocyanin extraction would increase according to the concentration of enzyme 

preparation.   

Fermenting at cooler temperatures (25.0C) will lead to greater anthocyanin 

extraction during alcoholic fermentation of red berries when compared to a hot fermentation 

temperature (32.2C).   When anthocyanin molecules are exposed to high temperatures, color 

may decrease quickly and irreversibly by degradation of monomeric anthocyanin molecules 

(Hillmann et al. 2011).  Anthocyanin extraction would increase at lower fermentation 

temperatures and be persistent through maturation in barrel. 

Crushed berries will have greater extraction of anthocyanin versus whole destemmed 

berries due to the increase of exposed surface.  Anthocyanin molecules, which are located in 

the skin layer, will be more easily extracted from berries that have been crushed and 

destemmed.  The increased extraction of anthocyanin and tannin molecules will complex to 

form stable polymeric pigments that will not precipitate. Anthocyanin extraction will be 

persistently greater in berries that have been crushed and destemmed throughout barrel aging. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Overview of red winemaking 

 In a typical fermentation, red berries are crushed and destemmed, adjusted with acid, 

pumped into fermentation tanks, inoculated with yeast and nutrients, pressed off their skins, 

inoculated with malolactic bacteria, preserved with potassium metabisulfite, and barrel aged 

(Appendix A).   

 

2.2 Overview of phenolic compounds 

Phenolic compounds are a vast group of compounds that can be altered by various 

viticultural and enological practices thereby affecting color, bitterness and astringency of 

wine.   Phenolic compounds are naturally present in the berry, but they can also be introduced 

through various oak-derived adjuncts during the winemaking process.  Phenolic compounds 

consist of a benzene ring with at least one hydroxyl group attached.  These naturally 

occurring phenols are classified into two groups; flavonoid and non-flavonoid phenolics.  

 Flavonoid phenolics represent 80 to 90% of the phenolic content of conventionally 

produced red wine (Zoecklin et al. 1995).  These flavonoids are located in the seeds, skin and 

stems of grapes (Zoecklin et al. 1995).  Flavonoid rings contain two benzene rings linked by 

a chain containing three carbon atoms (Moreno and Peinado 2012).  They can exist free, or 

polymerize with either another flavonoid, sugar, nonflavonoid, or a combination of these 

compounds (Zoecklin et al. 1995).  Anthocyanin, tannin, and flavanols are phenolic flavonoid 

compounds.  Anthocyanin monomers are found in berry skin; they are the principal 

pigmentation source of red wine (Section 2.2.2).  Tannin directly effects mouthfeel, 
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imparting bitterness and the sensation of astringency (Section 2.2.3).  Tannin can bind to an 

anthocyanin to create a stable polymeric pigment.  Flavanols are found in the epidermis skin 

layer of the berry; they influence flavors (Fig. 1).  Catechin is a compound belonging to the 

subfamily of flavon-3-ols.  They specifically impart bitter flavors sourced from grape seeds 

and stems (Cheynier et al. 2006, Harbertson 2007, Lorrain et al. 2013).   

 

Figure 2.  Structures of important monomeric phenolic compounds in grapes and wines.  

Phenolics are displayed as a hydroxyl group (-OH) bonded to an aromatic hydrocarbon 

group.  Copyrighted with permission from Lorrain et al. 2013. 
 

Non-flavonoids have two sources of origin: grape non-flavonoids and non-grape non-

flavonoids.  Grape non-flavonoids are sourced from the berry, and non-grape non-flavonoids 

are sourced from oak adjuncts.  Grape non-flavonoids consist of hydroxycinnamates, 

stilbenes, and gallic acid.  Hydroxycinnamates are a class of aromatic acids found in the 

berry pulp layer (Fig. 1).  The oxidation of these hydroxycinnamates can contribute to the 

browning of must during prefermentation if esterified with tartaric acid (Kennedy et al. 

2006).  Stilbenes are also located in grape skins, and are produced by grapevines during 

ripening as a defense response to environmental stressors; they have anticarcinogenic and 
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antioxidative properties (Moreno-Arribas and Polo 2009).  Gallic acid is found in grape seed 

extract.  Gallic acids are antioxidants; they prevent oxidation reactions that can lead to 

browning (Moreno-Arribas and Polo 2009). 

Non-grape non-flavonoids come from oak products used in the winemaking process, 

such as oak chips, powders, and barrels.  Ellagitannin and vanillin are examples of non-grape 

non-flavonoids present in red wine, sourced from oak barrels (Harbertson 2007, Zoecklin et 

al. 1995). 

Table 1.  Phenolic levels in a “typical” Vitis vinifera red wine.  Adapted from 

Singleton and Noble 1976. 
 

________________________________________ 
 

Phenol Type        Concentration 

     (mg/L) 

________________________________________ 

 

Nonflavonoids    200   

Flavonoids 

Anthocyanin   150 

Condensed tannin  750 

Other flavonoids  250 

Flavanols   50 

________________________________________ 

 

2.2.1 Importance of phenolics 

 Wine phenolics affect the color, taste, mouthfeel and structure of a wine (Kennedy et 

al. 2006).  Variations in wine style are due to concentration and composition of phenolics, 

among other factors (Table 2) (Zoecklin et al. 1995).  
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Table 2.  Extractable low-molecular-weight phenolic compounds (mg kg−1) of 

Sauvignon Blanc (SB), Cabernet Sauvignon (CS) and Carménère (CA) grape 

pomace.  n=3. Statistical significance between cultivars (p<0.05).  Adapted from de 

la Cerda-Carrasco et al. 2015. 

 
  _______________________________________________________ 

   

Polyphenol  SB  CS  CA  

  _______________________________________________________ 

 
  Gallic acid  25.9±2.3b 13.2±0.5b 19.9±5.3ab 

  Caftaric acid  ND  2.6±0.1a 2.9±0.2a 

  Procyanidin B1  22.5±3.6b 10.6±0.9a 11.9±2.3a 

  Procyanidin B2  80.7±6.4a ND  ND 

  Procyanidin B3  40.8±4.9c 9.2±3.4a 18.8±3.9ab 

  Procyanidin B4  59.1±7.7c 17.0±1.0a 17.7±3.0a 

  (+)- Catechin  477.3±36.8b 87.7±3.3a 178.3±22.2b 

  (-)- Catechin  506.1±67.0b 68.4±5.1a 130.9±22.5a 

  Flavonols  ND  121.1±4.1b 75.6±9.9a 

  

  _______________________________________________________ 

   

 
 

To better understand phenolic complexity, it is necessary to consider the development of 

phenolic compounds in the vineyard, their extraction and modification during fermentation, 

and their fate during aging (Kennedy et al. 2006).  The latter sections will divulge on each 

topic. 

 

2.2.2 Anthocyanin 

Anthocyanins are the main source of pigmentation in red wine.  They have no flavor 

nor organoleptic properties.  Anthocyanins are found in berry skins, with the exception of 

Vitis vinifera Tenturier varieties.  Once extracted, anthocyanins can react with other must 

components to form anthocyanin derived pigments (Harbertson 2007).  Wine color stability, 

as determined by stable polymeric pigments, can be directly affected by interactions with 

other polyphenolic compounds, proteins and polysaccharides.  During fermentation, yeast 

can release secondary metabolic products that react with anthocyanin monomers.  
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Anthocyanin concentration can also be altered by potassium metabisulfite additions and pH 

values.  Lower pH wines contain more purple and ruby tones, and less brown and brick hues.  

Monomeric anthocyanin molecules can also react via self-association (monomeric 

anthocyanins reacting with other monomeric anthocyanins) and co-pigmentation (monomeric 

anthocyanins reacting with other phenolics) (He et al. 2012). 

  

2.2.2.1 Development 

Anthocyanin concentrations gradually accumulate during berry ripening (Rolle et al. 

2009).  The biosynthesis of anthocyanin is regulated by the enzyme phenylalanine ammonia-

lyase.  This enzyme increases activity at the start of veraison, creating berries of greater 

anthocyanin accumulation in higher ambient temperatures (Moreno and Peinado 2012).  

During veraison, the period between berry growth and berry ripening, cells are rapidly 

growing and expanding, and berry skin color changes to dark red and purple.  Anthocyanin 

monomers begin to accumulate in the hypodermal cell layer approximately two weeks before 

color development (Australian Wine Research Institute 2010).  All color extracted from red 

berry fermentations come from anthocyanin monomers, with the exception of Vitis vinifera 

Teinturier varieties (Ribereau-Gayon et al. 2000).  Accumulation of anthocyanin increases 

during the period of veraison, peaks, and then begins to decrease immediately before harvest 

(Fig. 3) (Ribereau-Gayon et al. 2000).   
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Figure 3.  Anthocyanin and tannin concentrations over the course of grape ripening.  

Adapted from Moreno and Peinado 2012. 

 
The extractability of anthocyanins increases through grape ripening due to cell wall 

degradation by naturally occurring pectolytic enzymes (El Darra et al. 2016, Rolle et al. 

2009). 

Several factors affect berry anthocyanin concentration in the vineyard, including 

temperature, sun exposure, and seasonal conditions.  Temperature influences the 

accumulation of anthocyanins, depending on a region’s growing degree days and diurnal 

temperature swings.  Greater anthocyanin concentration was observed at 20°C (controlled 

growing temperature) compared to 30°C, with the most sensitive timing for maximum 

anthocyanin concentration occurring 1-3 weeks after the start of veraison (Yamane et al. 

2006).  Sun exposure, determined in part by row orientation, height of canopy, and leaf 

thinning practices, influence anthocyanin accumulation.  Seasonal conditions can influence 

the quantity of anthocyanins, but not the general distribution of the different phenolic 

compounds (Yamane et al. 2006).  Berry anthocyanin content is genetically predetermined, 

and concentration varies greatly amongst cultivars (Rolle et al. 2009).    
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2.2.2.2 Types 

 There are five main types of anthocyanins; cyanidin, delphinidin, malvidin, peonidin 

and petunidin (Table 2).  All anthocyanin molecules are bound to a glucose or fructose 

molecule via a glycosidic bond (Moreno and Peinado 2012).   

 

Table 3.  Chemical structures of anthocyanidins.  Adapted from Moreno-Arribas 

and Polo 2009. 
___________________________________________ 

 

Anthocyanidins  R1  R2 

___________________________________________ 

  

Cyanidin   OH  H 

Peonidin   OCH3  H 

Delphinidin   OH  OH 

Petunidin   OCH3  OH 

Malvidin   OCH3  OCH3 

___________________________________________ 

     

   

Malvidin is the most abundant anthocyanin across all grape cultivars.  Concentration of the 

anthocyanidins present in fermenting juice and wine varies amongst cultivars (Fig. 4) 

(Moreno-Arribas and Polo 2009). 

 

 

Figure 4.  Relative anthocyanidin composition of six grape varieties.  Adapted from 

Moreno and Peinado 2012. 
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2.2.2.3 Extraction  

Wine color is the result of various molecular interactions of free monomers, 

anthocyanins, and polymeric pigments (Versari et al. 2007).  Monomeric anthocyanins in 

young red wine are the largest contributors to color (He et al. 2012).  In young wines, 

anthocyanin reactions are readily reversible.  Stable pigmented polymers depend on 

complexing reactions, self-association, and co-pigmentation for color stabilization.  The 

fermentation process extracts phenolic substances by macerating berries, whereby 

anthocyanin monomers from the hypodermal skin layer are released.  Anthocyanin extraction 

can be promoted through pectolytic enzyme treatments (Section 2.3), fermentation 

temperatures (Section 2.4), must freezing, and extended contact time (Ribereau-Gayon et al. 

2000, Sacchi et al. 2005).   

 

Table 4.  Anthocyanin composition post maceration of 4 different treatments.  V1: 

crushed grapes, fermented in wooden casks.  V2: crushed grapes, fermented in a 

rotating tank.  V3: 70°C thermovinification maceration. V4: -20°C for 24 hours pre-

fermentation.  Different subscripts in the same row indicate significant differences 

(p<0.05).  Adapted from Bichescu et al. 2013. 

____________________________________________________________________ 
 

Anthocyanins, ppm  Variant 1 Variant 2 Variant 3  Variant 4 

__________________________________________________________________________ 

 

Cyanidin    3.6 a  9.7 b  4.6 c  0.2 a 

Delphinidin   22.2 a  26.5 a  24.1 c  0.4 a 

Petunidin   23.4 a  30.4 b  31.2 a  0.9 a 

Peonidin   25.7 c  37.2 c  29.1 c  1.9 a 

Malvidin   140.6 a  139.4 ab 125.5 ab 37.0 b 

Total anthocyanins (ppm) 233.4 a   284.5 ab 236.1 ab 44.1 ab 

__________________________________________________________________________ 

 
 

Breaking the cap is another effective way to increase anthocyanin extraction during 

alcoholic fermentation by promoting skin to juice hydrophilic interactions.  The cap is a thick 

layer of grape solids, typically skins, seeds and stems (when present), that floats to the 

surface of a fermenting vessel due to the carbon dioxide produced during alcoholic 
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fermentation.  Breaking a fermenting cap can be done by hand or pneumatic tools (punch 

down), or by pulling juice from the bottom of a tank and pumping it over in efforts to break 

the cap (pump over)  (He et al. 2012).  Anthocyanin concentration is significantly influenced 

by grape maceration method (Ribereau-Gayon et al. 2000, Sacchi et al. 2005).   

Anthocyanin levels accumulate during the first days of alcoholic fermentation due to 

their solubility in aqueous solutions (Gomez-Miguez and Heredia 2004, Romero-Cascales et 

al. 2005).  Concentration of anthocyanin peaks and begins to decline during alcoholic 

fermentation, whereas tannin accumulation continues to rise (Fig. 5). 

 

Figure 5.  Relationship between fermentation time and extraction of tannin and 

anthocyanin.  Adapted from Moreno and Peinado 2012. 

 
Phenolic extraction is largely influenced by variety and the physiological maturity of the 

berry.  Color extraction can be modified by enological processes; the length and type of 

maceration can alter anthocyanin extraction (Fig. 6) (Casassa and Harbertson 2014, 

Ribereau-Gayon et al. 2000, Versari et al. 2007).   
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Figure 6.  Total anthocyanin levels for a control fermentation and an extended maceration 

during maceration.  Adapted from Casassa and Harbertson 2014.  

 

 
During traditional winemaking, about 40% of anthocyanins and 20% of tannins present in 

berry skins are successfully transferred into the resultant wine (Boulton 2001).  It is 

imperative to extract the maximum amount of anthocyanin in efforts to create stable 

polymeric pigments. 

 

2.2.2.4 Complexing reactions  

 Anthocyanin can complex with tannin and other phenolic acids to create polymeric 

pigments.  Anthocyanin can also react with polyphenols and other non-desirable compounds 

(pyruvic acid and acetaldehyde) to form long term color pigments (El Darra et al. 2016, 

Harbertson et al. 2002).  Research has shown anthocyanin condensing with other phenolic 

compounds including acetaldehyde, keto-acids, and cinnamates to form polymeric pigments 

(Harbertson 2007). Polymeric pigments are a stable source of color in wine (El Darra et al. 

2016, Singleton and Trousdale 1992).  Bonds are formed quickly during alcoholic 

fermentation in the abundance of monomeric anthocyanin.  Increasing tannin concentrations, 
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either through increased extraction or additions, can result in greater amounts of pigmented 

phenolic polymers (Singleton and Trousdale 1992).  Complexing reactions between 

anthocyanin and tannin impact astringency, color stability and quality of red wines (El Darra 

et al. 2016, Singleton and Trousdale 1992).  

 

2.2.2.5 Aging 

Anthocyanin levels decline during aging for several reasons: they can adsorb onto 

yeast cell walls and lees (Table 4), precipitate with tartrate salts, or they can be eliminated 

during fining or filtration processing.  Anthocyanin levels also decrease due to the 

incorporation of monomeric pigments into polymeric pigments.  (Moreno-Arribas and Polo 

2009, Vasserot et al. 1997).  Yeast strains can modify anthocyanin concentration during 

alcoholic fermentation; if an anthocyanin molecule does not complex with a phenolic 

compound immediately, the yeast will adsorb the anthocyanin monomer (Medina et al. 

2005).  Total anthocyanin concentration decreased an average of 17% post fermentation, with 

no significant differences among yeast strains.   

 

 

 

Figure 7.  Average percentage of anthocyanins removed during fermentation using 

different yeast strains.  Adapted from Medina et al. 2005. 
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2.2.3 Tannin 

2.2.3.1 Development 

Contradictory results have been published regarding peak tannin accumulation pre-

harvest.  Some studies suggest tannin accumulation increases at fruit set and declines at 

verasion, as illustrated in Fig. 8 (Hanlin and Downey 2009).  Other studies suggest tannin 

increases before verasion, reaching a maximum content per berry, before decreasing pre-

harvest  (Harbertson et al. 2002).  Differences are likely related to environmental conditions 

between vineyard sites and vineyard management (Hanlin and Downey 2009).  

Environmental drivers that could affect tannin concentration are temperature, soil type, 

irrigation practices, health and vigor of the vine, nutrition, and viticulture management 

practices (Hanlin and Downey 2009, Harbertson et al. 2002).  

 

Figure 8.  Pattern of tannin accumulation expressed in mg/g fresh berry weight and fresh 

berry weight expressed in grams (±SE, n=3) extracted from the skin of Cabernet 

Sauvignon during berry development.  Reproduced from Hanlin and Downey 2009. 
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2.2.3.2 Type  

 All tannins precipitate with proteins (Smith et al. 2015).  Tannin is classified as either 

condensed and hydrolyzable.  Condensed tannin is readily extracted from grape seeds, stems, 

and skins during maceration (Zoecklin et al. 1995).  Condensed tannin contribute the 

majority of total tannin concentrations to red wine (up to 4 g/L) (Smith et al. 2015).  Seed 

tannin becomes soluble in solution when the seed cuticle has been dissolved by ethanol 

produced during alcoholic fermentation.  Condensed tannin are polymeric flavan-3-ols that 

contain monomers of catechin, epicatechin, epigallocatechin, or epicatechin gallate; they are 

large macro-molecules formed by polymerization (Harbertson et al. 2002, Sarni-Manchado et 

al. 1999, Smith et al. 2015).  Condensed grape tannin is converted to more complex wine 

tannin during fermentation and aging.  Tannin is expressed in catechin equivalents (mg/L 

catechin equivalents) (Harbertson et al. 2002).  Understanding wine tannin is less clear than 

grape tannin chemistry due to modifications by yeast, enzymes, and other by-products (Smith 

et al. 2015, Harbertson et al. 2012).   

Hydrolyzable tannin is absent in grapes.  Hydrolyzable tannin is introduced with oak 

additives or holding vessels such as oak barrels, chips and powder (Hanlin and Downey 

2009).  They exist as esters.  Their structure consists of a glucose molecule acylated with 

galloyl groups (Smith et al. 2015).  Hydrolyzable tannin is a derivative of gallic acid, 

composed of polyols (glucose and quinic acid) linked to one or more gallotannin or ellagic 

tannin.  They are easily decomposed by hydrolysis (Gil-Munoz et al. 2009, Smith et al. 

2015).  Most enological tannin additives contain between 12% and 48% tannin, implying the 

manufacturer’s recommended doses are too insignificant to make an impact (Harbertson et al. 

2012). 
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2.2.3.3 Important sensory properties of wine 

Variations in tannin content, composition, and polymer length contribute to 

mouthfeel and aging properties of wine by affecting astringency, bitterness, color stability 

and aging potential (Zoecklin et al. 1995).  During aging, tannin levels decrease from 

oxidation and precipitation with protein (Zoecklin et al. 1995).  Most tannin is highly 

unstable and undergo various reactions as wine ages, changing the structural composition of 

the wine to yield new compounds and structures (Moreno-Arribas and Polo 2009).  

Understanding the fluctuation of tannin composition allows the winemaker to manipulate 

tannin to meet winery specifications (Hanlin and Downey 2009).  If a wine is too astringent 

or tannic, remediation can be done with fining agents, specifically gelatins, in efforts to 

remove excessive tannin (Zoecklin et al. 1995).  Gelatins preferentially remove high 

molecular weight grape tannin by adsorption, followed by settling or precipitation.   

 

2.2.3.4 Reactions 

The perception of astringency results from the interaction of tannin and salivary rich 

proteins, where tannins complex with proteins (Sarni-Manchado et al. 1999).  Astringency is 

described as a tactile sensation where salivary proteins are precipitated, reducing mouth 

lubrication and increasing perception of roughness and dryness in the mouth.  The level of 

astringency is related to tannin concentration, and increases with molecular weight (Cheynier 

et al. 2006).  Bitterness is a perception of taste.  Small molecules enter the taste receptor to 

activate the signal transduction process.   

Polymeric pigments are products formed from reactions of anthocyanins with tannin.  

Reactions of tannin and anthocyanin yield both large polymeric pigments (LPP’s) and small 

polymeric pigments (SPP’s) (Cheynier et al. 2006).  LPP’s precipitate proteins, while SPP’s 

cannot precipitate proteins.  Some reactions produce colorless, low molecular weight 
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compounds that do not involve tannin (Cheynier et al. 2006).  These reactions are outside the 

scope of this thesis, therefore will not be discussed.  It has been reported that there is no 

relationship between total tannin per berry and the amount of tannin extracted in the resulting 

wine (Harbertson et al. 2002).  Our research aims to provide insight to grape tannin 

concentrations and different fermentation processes in efforts to modify tannin levels for the 

winemaker’s benefit. 

 

2.3 Macerating enzymes 

2.3.1 Background 

Macerating enzymes help hydrolyze polysaccharides in efforts to extract phenolic 

compounds from grape skins.  In an aqueous wine solution, hydrolysis changes the 

permeability of the cell wall to promote the extraction of phenolic compounds from the grape 

cell wall (Li et al. 2015).  The degree of hydrolysis is widely influenced by the grape varietal, 

and the type, concentration and purity of the enzyme(s) applied (Li et al. 2015, Sacchi et al. 

2005).  During pre-fermentation maceration, tannin and monomeric anthocyanin have 

different degrees of solubility.  Anthocyanin and tannin derived from the berry skin are 

extracted first, and seed tannin is extracted afterwards.  Macerating enzymes have shown to 

accelerate this process of extraction by increasing speed of phenolic extraction, which may 

have the potential to decrease overall maceration time (Romero-Cascales et al. 2012).  

Commercial enzyme preparation addition extracted phenolic compounds by approximately 3 

days quicker when compared to the control in the study of Romero-Cascales et al. 2012 

(Table 5).   
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Table 5.  Chromatic parameters during the maceration process with a commercial 

enzyme.  C = control wine, E = wine with added enzyme.  Different letters within the 

same column have significant differences (p<0.05).  Reformatted from Romero-

Cascales et al. 2012. 
 

___________________________________________________________________________________ 

Time of Maceration      Total Phenolics          Total Tannin      Total Anthocyanin  

       (mg/L)           (mg/L) 

___________________________________________________________________________________ 

2 days C (n=9)   19ab   221.3a   31.4a 

2 days E (n=9)   18.4a   234.3a   32.2a 

5 days C (n=9)   39.5b   559.5b   195.1b 

5 days E (n=9)   42.8c   599.3c   287.6e 

7 days C (n=6)   45.4d   672.2d   284.1e 

7 days E (n=6)   50.4f   716.4e   435.9e 

10 days C (n=6)   47.7e   674.4d   333.7d 

10 days E (n=6)   54.4g   731.9e   528.1f 

15 days C (n=3)   47.5e   587.3bc   260.5e 

15 days E (n=3)   56.6h   666.6d   572.2f 

___________________________________________________________________________________ 

 
 

Commercial pectinases are generally sourced from Aspergillus sp., less commonly 

Trichoderma harzianum, with special interest rising over pectolytic yeasts such as 

Kluyveromyces marxianus (Piemolini-Barreto et al. 2014).  Commercial pectinases usually 

consist of several enzymes, mostly cellulases, hemicellulases and pectinases.  Cellulase 

activity breaks down cell walls to free trapped phenolic compounds.  Pectinases act on pectic 

substances, mostly pectin.  These pectic substances have high molecular weights, negative 

charges, acidic properties; they are glycosidic macromolecules (polysaccharides) (Jayani et 

al. 2005).  β-Glucosidase activity releases bound aromatic compounds important to aromatic 

white winemaking.  Contamination of commercial enzyme treatments by β-glucosidase 

activity can cleave the glucose moiety from the anthocyanin, creating a free anthocyanin that 

will readily decompose (Di Profio et al. 2011).  
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2.3.2 Types of enzymes 

Commercial macerating enzymes typically serve two primary functions; color 

extraction and clarification (Revilla and Gonzalez-San Jose 2003, Haight and Gump 1994).  

Specific to red winemaking, macerating enzymes are added to increase wine color by 

breaking down skin cell walls to allow greater anthocyanin and tannin extraction (Sacchi et 

al. 2005).  Macerating enzyme preparations contain pectinase activities, cellulases and 

hemicellulases.  Pectinase-rich macerating enzymes are most commonly used in winemaking 

(Haight and Gump 1994).  A list of common commercial pectinase-rich enzymes can be 

found in Table 6.  Pectolytic enzymes break down pectin, a polysaccharide responsible for 

binding plant cell wall material.  By attacking the pectic substances that bind the middle 

lamella and primary grape skin wall, anthocyanin and tannin are more readily extracted from 

the skin layer in the hypodermal tissue (El Darra et al. 2016, Haight and Gump 1994).   

 

Table 6.  Commercial pectinase preparations commonly used in winemaking.  

Adapted from Moreno-Arribas and Polo 2009. 
___________________________________________________________________ 
 

Commercial preparation to increase extraction of color and aroma compounds: 
 

Vinozyme FCE G (Novo Nordisk)   Lallyzyme EX-V (Lallemand)  

Vinozyme Vintage FCE (Novo Nordisk)  Red-style (Lallemand) 

Rapidase Ex color (DMS)    Endozyme Rouge (Lallemand) 

Rapidase X Press (DMS)    ColorPro (Scott Labs) 

Lallyzyme EX (Lallemand)    Color X (Scott Labs) 
 

Commercial pectinase preparations for clarification and filtration of juice and wine: 
 

Ultrazyme 100G (Novo Nordisk)   Zimopec PX I (Perdomini) 

Novoclair speed (Novo Nordisk)   Endozyme Active (AEB) 

Rapidase Filtration (DMS)    Endozyme Glucalyse (AEB) 

Rapidase Vinosuper (DMS)    Endozyme Glucapec (AEB) 

Vinoflow G (Novo Nordisk)    Endozyme ICS 10 (AEB) 

Rapidase CB (DMS)     Endosyme TMO (AEB) 

Rapidase CR (DMS)     White-style (Lallemand) 

Lallyzyme C (Lallemand) 

___________________________________________________________________ 
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In white winemaking, enzymes are generally added to increase juice yield and reduce 

turbidity (Revilla and Gonzalez-SanJose 2003).  The effect of clarifying enzymes on wine 

fermented and aged on heavy lees in efforts to increase the formation of polysaccharides and 

mannoproteins has been reported (Revilla and Gonzalez-San Jose 2003).  The effects of three 

enzymes and their concentrations was determined to be statistically significant on total juice 

yield compared to the control in Rubired fruit. 

 
2.3.3 Effect of enzymes on color of wines 

 Conflicting results have been reported on the use of color enhancing enzymes.  

Commercial pectinase-rich macerating enzymes have been reported to promote color 

extraction in red grapes and wine products (Bakker et al. 1999, Romero-Cascales et al. 2012, 

Kelebek et al. 2007, Li et al. 2015).  Others have reported pectinase-rich macerating enzymes 

negatively affect or diminish anthocyanin extraction (Bautista-Ortin et al. 2005, El Darra et 

al. 2016, Wightman et al. 1997).  One paper had conflicting results with vintage to vintage 

variation (Revilla and Gonzalez-SanJose 2003). 

Often, the effect of pectinase-rich macerating enzymes on wine phenolics are 

published immediately after alcoholic fermentation, not depicting if the enzymatically-

treated grapes had statistically significant phenolic concentrations at the time of bottling.  

Using conventional winemaking techniques, approximately 40% of anthocyanin molecules 

and 20% of tannin molecules are transferred into the resultant wine through vinification (El 

Darra et al. 2016).  Companies that formulate and sell pectinase-rich macerating enzymes 

claim to increase anthocyanin and phenolic extraction.  There seems to be more skepticism 

over advocacy of enzymes in the current enological world.  The active ingredients which 

make up the numerous enzyme trademarks are largely proprietary, and little in-house 

investigation nor research can be found in published papers (Di Profio et al. 2011). 
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2.3.3.1 Successful color enhancement 

When comparing different pre-treatment techniques, one study found that a 

macerating enzyme increased color intensity (measured by L*a*b*) by 22% over the control 

when using a Cabernet Sauvignon model wine solution immediately after alcoholic 

fermentation (Fig. 9) (El Darra et al. 2016). 

 

 

Figure 9.  Color Intensity (CI) of Cabernet Sauvignon grape must versus days of alcoholic 

fermentation when comparing three pretreatments: control, enzyme treatment (ET), 

thermovinification (TV), and pulsed electric field (PEF).  Adapted from El Darra et al. 

2016.  

 

The use of pectolytic enzymes, with rates varying from 0.01 g/L to 0.05 g/L at 20C,  gave 

Tinto Fino wines’ better chromatic characteristics that were more stable over time than their 

control wines throughout two years of storage (Revilla and Gonzalez-San Jose 2003).  

Another study reported the effect of two commercial pectinase-rich enzymes on phenolic 

composition; both enzyme preparations (3 g/L) improved the extraction of anthocyanin 

concentration, total phenolics, and tannin (Table 7) (Kelebek et al. 2007). 
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Table 7.  General composition of phenolic compounds, 6 months after alcoholic 

fermentation. n=3.  Different subscripts in the same row indicate statistical 

differences (p<0.01).  Adapted from Kelebek et al. 2007. 
 

__________________________________________________________________ 

 
Analysis   Control   Rapidase Ex Color Vinozyme G 

__________________________________________________________________ 
 

Total Phenolics (280A)  65.2±0.02a  73.1±0.05b  75.4±0.06b 

Tannin (g/L)   4.3±0.01a  4.5±0.00a  5.0±0.02b 

Color Intensity   0.986±0.04a  1.062±0.06b  1.105±0.05c  

__________________________________________________________________ 
  

 

Although the addition of enzymes extracted greater color intensity than the control, neither 

enzyme addition produced one specific anthocyanin concentration to be more pronounced 

(Kelebek et al. 2007).   

Total phenols were reported to increase 19% by the end of the maceration process 

(day 15), with the greatest extraction of phenolics occurring between day 7 and 15 of 

alcoholic fermentation.   The addition of the enzyme preparation (Lafase Grand Cru, Laffort 

Oenology, Bordeaux, 3 g/100kg berries) led to anthocyanin concentrations 6-8% higher than 

corresponding controls (Table 5) (Romero-Cascales et al. 2012).   

 

2.3.3.2 Non-successful color enhancement 

Pectinases was reported to not significantly increase anthocyanin extraction, but have 

been found to statistically increase other phenolic compounds, such as tannin and 

polyphenolics (Sacchi et al. 2005, Bautista-Ortin et al. 2005).  One study using pectinase-rich 

macerating enzymes produced statistically different results over the course of 2 vintages; 

increased anthocyanin and tannin concentrations resulted from the addition of two enzymes 

(2 g/hL) during the first vintage of experimentation, while the second vintage depicted no 

such benefit (Revilla and Gonzalez-SanJose 2003).  Two different pectinase-rich enzymes, 
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ColorPro® and Color X®  (Laffort, Petaluma CA, 100 mL/1000 kg berries) found a nil or 

negative effect on must anthocyanin concentration after fourteen days of alcoholic 

fermentation (Di Profio et al. 2011).  Adding the macerating enzyme Enozyme Vintage 

(Agrovin, Spain, 5 g/100 kg berry weight) did not produce statistically significant wines in 

the first 10 days of alcoholic fermentation at 25C when compared to the control vinification 

(Table 9) (Busse-Valverde et al. 2011). 

 

Table 8.  Anthocyanin composition during fermentative maceration of four 

vinification treatments; control vinification, must freezing with dry ice, low 

temperature prefermentative maceration and vinification with a commercial 

maceration enzyme.  Different letters within the same column indicate significant 

differences (p<0.05).  Adapted from Busse-Valverde et al. 2011. 
______________________________________________________________________________ 

                Total Anthocyanins (mg/L) 

       Day 2  Day 6  Day 10 

Control vinification (CW)    274.2a  561.2a  721.1a 

Must freezing with dry ice (DIW)    469.1b  715.6c  802.0b 

Low temperature prefermentative  maceration (LTPW) 438.1b  651.5b  789.6ab  

Commercial maceration enzyme    325.5a  561.4a  755.5ab   

______________________________________________________________________________ 

 

 

2.4 Fermentation temperature 

2.4.1 Berry development 

 The effects of temperature on berry phenolic composition begins during veraison.  

Use of a low temperature (20C) on berries resulted in significantly higher anthocyanin 

concentrations, specifically when applied one to three weeks after verasion in a greenhouse 

setting when compared to 35C (Yamane et al. 2006).  High temperatures (max 35C) during 

berry development has shown to reduce anthocyanin concentration to less than half in 
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Cabernet Sauvignon skins when compared to a control 6 weeks after veraison when grown in 

a phytotron (max 25C) (Mori et al. 2007).  The concentration of individual anthocyanin 

(delphinidin, cyanidin, petunidin, and peonidin) decreased significantly 6 weeks after 

veraison with the exception of malvidin derivatives when experimenting with Cabernet 

Sauvignon (Mori et al. 2007).   

The expression of anthocyanin biosynthesis is strongly affected by temperature, with 

lower temperatures causing an increase in the transcript levels.  Higher growing temperatures 

(35C) increase the degradation rate of anthocyanin by inhibiting their accumulation (Mori et 

al. 2007).  Vineyard temperatures will become increasingly important as global warming 

alters the ambient temperatures of revered wine producing regions around the world. 

 

2.4.2 Pre-fermentation temperatures 

Anthocyanin monomers are easily soluble in aqueous solution, whereas tannin is 

readily soluble in alcoholic solutions (Fig. 5).  This extraction order allows anthocyanin to be 

released from the skins first, followed by tannin extraction once fermentation has started to 

convert grapes’ natural sugars (glucose and fructose) into ethanol.  Pre-fermentative cold 

maceration (cold soaking) consists of holding the fruit at a low temperature for several days 

before the must is inoculated (Gil-Munoz et al. 2009, Cheynier et al. 2006).  Conflicting 

results suggest the effect of cold maceration on the extraction concentration of anthocyanin is 

dependent on variety, vintage, temperature and skin contact time (Gil-Munoz et al. 2009, 

Cheynier et al. 2006). 
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Table 9.  Anthocyanin concentration at the end of alcoholic fermentation.  Different 

letters within the same row indicate significant differences (p<0.05). Adapted from 

Gil-Munoz et al. 2009. 
                                                  

                                                                        

Anthocyanin concentration (mg/L) 
 

Varietal   Control   Frozen     Dry      Cold  Enzyme 

      grapes      ice  maceration   
 

 

Cabernet Sauvignon 776.4a  809.1ab  894.2b  1,027.2c 894.7b 
 

Syrah   468.4a  668.4b  905.4c  547.4ab  522.1ab 

 

Anthocyanin concentration in Cabernet Sauvignon significantly increased with treatments of 

dry ice (100 kg dry ice/ 20 kg berries), cold maceration (10C for 10 days), and commercial 

enzymes (Enozyme Vintage, Agrovin, Spain, 5 g/100 kg berries) by 15.2%, 32.2%, and 

15.2%, respectively when compared to the control treatment (Gil-Munoz et al. 2009). 

 Malvidin 3-glucoside was extracted more rapidly as temperature increased from 20C 

to 30C in Vitis vinifera Pinot Noir wine (27.4% increase) during alcoholic fermentation.  At 

the time of bottling, treatment temperatures of 20C and 30C were not statistically 

significant, yet the hot temperature, short time treatment was statistically significant from the 

other two treatments (Gao et al. 1997). 

 

2.4.3 Effects of fermentation temperatures 

During alcoholic fermentation of red wine, must temperatures have the greatest effect 

on seed and skin derived phenolics (Lerno et al. 2015).  Total phenols and tannin are 

extracted by diffusion in alcoholic solutions.  Fermentation temperature directly affects the 

rate at which alcoholic fermentation occurs; changing the fermentation temperature is an 

effective method for influencing extraction of polyphenolic compounds (Gil-Munoz et al. 

2009).  Wines from Vitis vinifera Cabernet Sauvignon and Pinot Noir grapes have 
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significantly higher tannin concentration post fermentation with prefermentative low 

temperature treatments (freezing of grapes) and macerating enzyme addition (Enozyme 

Vintage, Agrovin, Spain, 5 g/100 kg berries), 200% and 54.6% respectively (Gil-Munoz et al. 

2009).   

Higher temperatures generally lead to increased phenolic extraction due to the 

increased permeability of the hypodermal cells and solubility of certain phenolics (Sacchi et 

al. 2005).  Fermenting at higher temperatures favor phenolic extraction but may affect the 

ability of a fermentation to successfully complete if yeast cannot survive in the stressful 

conditions created by hotter temperatures (Zoecklin et al. 1995).  Temperature affects the rate 

of extraction but not the final concentration of skin phenolics (Zoecklin et al. 1995).     

Fermentation temperatures significantly affected volatile acidity, pH, and alcohol 

content post alcoholic fermentation when comparing treatments of 15C to 25C (Sener and 

Yildirim 2013).  Post alcoholic fermentation, hot fermentation temperature treatments (25C) 

resulted in less desirable wines with higher volatile acidity, tartaric acid, and alcohol (Sener 

and Yildirim 2013).  Adequate tannin must be present in the beginning stages of fermentation 

to bind with anthocyanin; if tannin concentration is lacking, less polymeric pigment will be in 

the resultant wine (Sacchi et al. 2005).  The disappearance of monomeric anthocyanins and 

increase of polymeric pigments during wine aging has been confirmed to increase as 

fermentation temperature rose from 20C to 30C (Gao et al. 1997).   

 

2.5 Berry processing  

2.5.1 Destemming berries 

 Destemming berries, also called destalking, is common procedure in red winemaking.  

Stems increase astringent and bitter tannins, contribute to ‘stemmy’ flavors, and may cause 
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significant color loss.  Removing stems before maceration can help mitigate these 

undesirable contributions (Pascual et al. 2016).  The destemming process typically occurs 

before crushing to reduce the chance of stem material passing through the crusher.  Crushing 

and destemming fruit is completed by a crusher/destemmer unit.  Berries, stems, rachis, and 

seeds enter the destemmer (Fig. 10), allowing berries to fall through the exit holes of the 

destemmer, into the crusher hopper (Fig. 11).  The remaining material other than grapes 

(MOG) exits through the back of the destemmer to be disposed of or recycled via a trash 

auger. 

 

Figure 10.  Internal picture of a destemmer.  Copyrighted with permission by J. Lohr 

Vineyards & Wines 2017. 

 

 

Figure 11.  Internal picture of a crusher’s rollers.  Copyrighted with permission by J. 

Lohr Vineyards & Wines 2017. 
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2.5.2 Crushing berries 

 Berries are traditionally crushed to immediately release the pulp and juice from 

within an individual grape to facilitate fermentation and maximize phenolic extraction.  

Benefits of crushing berries include: immediate exposure to oxygen, more homogenous 

protection from microbial contamination by potassium metabisulfite addition, and immediate 

start of phenolic extraction (Ribereau-Gayon et al. 2000).  Two types of crushers exist; roller 

crushers and wall crushers.  Roller crushers are typically coated in plastic, spinning in 

opposite directions (Fig. 11).  Spacing is adjustable to allow for whole crushing of the 

berries, or complete bypass from crushing.  High speed perforated wall crushers eject grapes 

against a perforated wall, and the grapes burst open, thoroughly macerating the berry (Fig. 

12).  Crushing intensity is controlled by an external motor, where higher speeds decrease 

berry intactness.  

 

 

Figure 12.  A high speed perforated wall crusher.  Copyrighted with permission by Pellenc 

USA, 2017. 
 

2.5.3 Comments on extent of research on berry integrity 

 There is a lack of documented production scale experimentation on berry integrity.  

Typical research fermentations are completed on a laboratory scale, these experiments 
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require less volume of wine, so each treatment can be performed in triplicate for statistical 

significance.  These laboratory scale experiments are less costly, but less accurate.  A 

laboratory scale fermentation is generally not applicable to what happens in the cellar; a red 

wine production fermentation allows for continuous contact between fermenting juice and the 

cap to allow for greater phenolic extraction.   

To date, there are no published studies investigating the effect of crushed berries 

versus whole berries on phenolic concentration on a production scale magnitude.  One study 

investigated the effect of whole berry and whole cluster phenolic compound extraction 

compared to a control treatment (500 L ferments, 25C).  It is impossible however to draw 

statistical differences from the results published since no replicate experimentations were 

performed (Pascual et al. 2016) (Table 10).  Preliminary findings suggested whole 

destemmed berries extracted more phenolic compound than did the destemmed crushed 

berries. 

 

Table 10.  Effect of prefermentative cluster treatment on the composition of 

phenolic compounds.  Adapted from Pascual et al. 2016. 

 
 Parameter   Control  Whole  Whole 

        Berry  Cluster 

 ____________________________________________________________ 

  

 Ethanol (v/v %)   16.6  16.5  16.1 

 Volatile acidity (g/L)  0.51  0.49  0.49 

 Total polyphenols (A280) 38.3  45.7  51.1 

 Tannins (mg/L)   300  371  474 

 Total anthocyanins  236  331  297 

 Total flavonols   15  24  22 

 Non-flavonoids   79  119  72 

 ____________________________________________________________ 

 

 

Another study investigated the effect of crushed fruit percentage (25% increments, 5 

replicates) on proanthocyanidin concentration on Vitis vinifera Merlot.  The microscale 

fermentations were maintained at 25C, and the caps were kept submerged throughout 
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alcoholic fermentation.  The highest proanthocyanidin concentration for skin and seed (435 

mg/L and 344 mg/L, respectively) was observed for the 75% crushed berry treatment at 

pressing (17 days). 

Published works on the effect of crushed versus whole berry fermentation focused on 

terpene extraction in white wine.  Pomace maceration and berry maceration during alcoholic 

fermentation negatively affected the aromatic compound composition as determined by a 

trained sensory panel.  Negative impacts by pomace maceration and berry maceration in 

white varieties investigated produced lower contents of esters and less expressed fruitiness 

when fermentations were completed on a 2 L scale (Bavcar et al. 2011). 

 

2.6 Summary  

 A wine’s perceived quality is directly influenced by its color.  It is imperative to 

foster the extraction and retention of phenolic compounds in red winemaking to enhance 

anthocyanin stability.  Accumulation of phenolic compounds starts in the vineyard, and 

several viticultural management practices have shown to affect accumulation; temperature, 

sun exposure, seasonal conditions, row orientation and canopy aspect.  Extraction of 

anthocyanin and tannin from berry skin and seeds begins immediately after harvesting.  

Different extraction techniques affect total phenol, tannin, and anthocyanin concentrations.  

This literature review suggests phenolic composition can be altered by altering berry 

integrity, adding pectinase-rich macerating enzymes, and modifying alcoholic fermentation 

temperatures.   
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 Grapes and experimental design 

Two vintages (2010 and 2011) of Vitis vinifera Cabernet Sauvignon donated by J. 

Lohr Vineyards & Wines (Paso Robles, CA) were used to perform our experiments.  For the 

2010 and 2011 vintage, 73 tons and 129 tons of Vitis vinifera Cabernet Sauvignon grapes 

were donated, respectively.   

 

3.2 Chemicals 

Bovine serum albumin (BSA, Fraction V powder, catalog #A3803), sodium dodecyl 

sulphate (SDS, catalog #L-5750), triethanolamine (TEA, catalog #T-1377), ferric chloride 

hexahydrate (catalog #F-2877), 37% hydrochloric acid (catalog #435570), sodium hydroxide 

pellets (catalog #S8263), sodium chloride (catalog #S98888), maleic acid (catalog #M153), 

and glacial acetic acid (catalog #A6283) were purchased from Sigma Aldrich (St. Louis, 

MO).   
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  The chemical composition of ColorPro® is a proprietary blend.  The following 

ingredients were listed on the Safety Datasheet (Table 11). 

 

Table 11.  Ingredients of ColorPro® and their percentages.  

(http://www.scottlab.com/uploads/documents/technical-

documents/1275/SCOTTZYME%20COLOR%20PRO%20MSDS%202015.pdf) 

 

 

 

3.3 Equipment 

A Genesys® 10 UV spectrophotometer (Thermo Electron Corporation, Madison, WI) 

was used for UV and VIS spectral readings.  A Fisher Scientific Accumet AE150 Orion 

Meter was used for determining pH values (Fisher Scientific, Waltham, MA).  A large 

Thermo Scientific centrifuge, capable of spinning twenty-eight 50 mL samples at 4,000 

rotations per minute (RPM) (Thermo Electron Corporation, Madison, WI) was used for initial 

separation of solids.  A Thermo Scientific micro-centrifuge, capable of spinning twenty-one 

1.5 mL samples at 14,000 RPM (Thermo Electron Corporation, Madison, WI) was used for 

further separation.   

 

3.4 Description of fruit handling 

 Harvesting in 2010 and 2011 was done in a mechanized homogenous manner to 

ensure minimal berry variance in the Estrella District American Viticultural Area (AVA).  

Vitis vinifera Cabernet Sauvignon arrived in the early morning hours to J. Lohr Vineyards & 

http://www.scottlab.com/uploads/documents/technical-documents/1275/SCOTTZYME%20COLOR%20PRO%20MSDS%202015.pdf
http://www.scottlab.com/uploads/documents/technical-documents/1275/SCOTTZYME%20COLOR%20PRO%20MSDS%202015.pdf
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Wines.  A representative juice sample was collected and analyzed for titratable acidity, pH, 

BRIX (soluble solids), and yeast assimilable nitrogen (YAN) upon arrival to the winery.  

Each truckload of fruit received 50 ppm of potassium metabisulfite (KMBS), the production 

facility’s standard addition rate.  Titratable acidity was adjusted by adding a 40% tartaric acid 

solution to achieve a 3.45 pH for alcoholic fermentation. 

The experiments performed in 2010 investigated the effects of pectinase-rich 

macerating enzymes at two different concentrations (60 mL/ton and 100 mL/ton) on phenolic 

compounds extracted from Vitis vinifera Cabernet Sauvignon.  The experiments performed in 

2011 investigated the effects of destemming and crushing fruit, adding pectinase-rich 

macerating enzymes, and alternating fermentation temperatures on phenolic compounds 

extracted from Vitis vinifera Cabernet Sauvignon.   

In vintage 2010, the control received no enzyme treatment.  The low dose treatment 

experiment received 60 mL/ton enzyme (ColorPro®, Scott Labs, Petaluma, California) based 

on the lowest recommended manufacturer’s concentration.  The high dose treatment received 

100 mL/ton enzyme, the highest recommended manufacturer’s concentration.  In vintage 

2011, the high dose treatment (100 mL/ton ColorPro®) was compared to the control (no 

enzyme); there was no low dose treatment as there was in 2010. 

The fruit was destemmed and roller crushed by a Vaslin Bucher® Delta E8, 

capable of 70-80 tons maximum output per hour (Fig. 13).  For the enzyme 

experimentations of the 2010 and 2011 vintages, all berries were destemmed and crushed.  

For the fermentation temperature experiments of the 2011 vintage, all berries were 

destemmed and crushed.   
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Figure 13.  The Vaslin Bucher Delta E8 destemmer / crusher (left), and the rollers as 

viewed from below the destemmer / crusher (right). Copyrighted with permission by J. 

Lohr Vineyards & Wines, 2017. 

 

 

For the experimentation on the effect of crushed versus whole berries, the control 

consisted of destemming and crushing the berries; the treatment consisted of destemming 

the berries and completely bypassing the crusher (Fig. 14). 
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Figure 14.  Berry integrity - crushed and destemmed berries (left) and destemmed only 

berries (right).  Copyrighted with permission by J. Lohr Vineyards & Wines, 2017. 

 

 
3.4.1 Pectinase-rich macerating enzymes addition design 

Experiments of 2010 and 2011 added different concentrations of pectinase-rich 

macerating enzymes (ColorPro®). Dosage rates of 60 mL/ton and 100 mL/ton were based on 

the manufacturers’ recommended low and high doses for red crushed berries to increase 

extraction of anthocyanin, polymeric phenols and tannin concentrations. 

 

3.5 Processing procedures 

Post SO2 and tartaric acid adjustments (Section 3.4), the berries were pumped through 

4-inch hard lines into 24-ton stainless steel fermenting jacketed vessels via a food-grade 

Waukesha pump.  Fermentation temperatures were set (Table 13) according to the treatment 

immediately after fruit entered the tank by digital temperature faceplates located on each 

tank. 
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Table 12.  Fermentation temperatures of the 2010 and 2011 vintages. 

 

Experiment / Treatment Set Point 

Celsius 

2010 Enzyme –  

Control, 60, and 100 mL/ton 

  

29.4C 

2011 Enzyme –  

Control and 100 mL/ton 

  

29.4C 

2011 Alcoholic fermentation  

Cool fermentation 

Hot fermentation 

 

25.0C 

32.2C 

2011 Berry integrity 

Whole berry 

Crushed berry 

  

32.2C 

32.2C 

 

Temperatures were monitored via TankNET®, a remote program that monitors and 

records a temperature data point every 5 minutes.  The fruit was inoculated within 24 hours 

of being received by the winery at a rate of 25 g/hL by Saccharomyces cerevisiae IVC D254 

(Lallemand, Blagnac, Sedex), diluted at a 1:10 ratio as suggested by the manufacturer with 

well water (40C).  IVC D254 optimum fermentation temperature range is 15-30C 

(www.lallemandwine.com). Startup®, a combination of yeast products, minerals and 

vitamins, (BSG, Napa) was added the day after inoculation, at a rate of 25 g/hL to stimulate 

yeast growth.  On day two, nitrogen content was adjusted to 250 ppm in the form of 

powdered diammonium phosphate based on initial YAN content of juice (Scott Labs®, 

Sonoma).   

Pump overs were automatically actuated by TankNET®, the same remote program 

that monitored, recorded, and changed primary fermentation temperatures.   Pump overs were 

scheduled every 4 hours for 6 pump overs each day.  Each tank had a 2” hardline and a 1.5 

horsepower pump (Fig. 15). 
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Figure 15.  A fermenting tank with a designated pump for automated pump overs.  

Copyrighted with permission by J. Lohr Vineyards & Wines, 2017. 
 

3.6 Monitoring  

3.6.1 Alcoholic fermentation  

Production scale wineries inoculate freshly crushed and destemmed juice with 

Saccharomyces cerevisiae yeast.  These yeasts ferment the naturally present sugars found in 

berries (glucose and fructose) into ethanol, heat and CO2 as by-products of their fermentation.  

Alcoholic fermentation is the first of two fermentations.  Alcoholic fermentation lasted 9 and 

14 days (respectively) for the 2010 and 2011 vintages.  Daily BRIX readings and 

temperatures were recorded every morning using a DMA35® (Anton Parr, Ashland, 

Vermont). Once the DMA35® BRIX reading fell below 0.00, we could assume most glucose 

and fructose molecules had been consumed by yeast.   

To confirm a wine was “dry” (< 0.200 g/100mL residual sugars), an enzymatic assay 

confirmed summation of residual sugar concentrations were below 0.200 g/100mL (Randox, 

Kearneysville, West Virginia).  Once a wine was determined to be “dry”, 4 barrels of each 
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treatment were free drained into neutral American oak barrels (neutral barrels are  3-year-

old barrels).  The Adams-Harbertson Assay was performed daily during alcoholic 

fermentation to determine the fermenting wine’s polyphenolic profile (Appendix C) 

(Harbertson et al. 2003).   

 

3.6.2 Malolactic fermentation  

 Secondary fermentation is also known as malolactic fermentation (MLF).  Malolactic 

bacteria convert malic acid into lactic acid and CO2 as biproducts of their fermentation.  Each 

barrel was inoculated with 2.4 grams of CH-16 freeze-dried malolactic bacteria (Chr. 

Hansen, Sonoma, California).  A wine is considered malolactic complete (MLC) when malic 

acid concentration is < 0.200 g/L.  To confirm a wine had completed malolactic fermentation 

MLC), an enzymatic assay confirmed malolactic acid concentration was below 0.200 g/L 

(Randox, Kearneysville, West Virginia).  Once a treatment completed malolactic 

fermentation, each barrel was racked into an empty neutral barrel, leaving the heavy lees 

behind.  Each barrel had 40 ppm potassium metabisulfite added once MLF was complete.   
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Table 13.  Malolactic fermentation of the 2010 and 2011 vintages. 

 

Vintage Tank Treatment # of Neutral 

barrels 

Date 

of Drain 

Days of 

Fermentation 

2010 1 

 

Control – No 

ColorPro® 

4 11/5/2010 

 

9 

2010 2 60ml/ton 

ColorPro® 

4 11/5/2010 9 

2010 3 100ml/ton 

ColorPro® 

4 11/5/2010 9 

2011 1 

 

Control – No 

ColorPro® 

4 11/16/2011 

 

14 

2011 2 100ml/ton 

ColorPro® 

4 11/16/2011 

 

14 

2011 1 90F   

Fermentation 

4 11/16/2011 

 

14 

2011 2 77F  

Fermentation 

4 11/16/2011 

 

14 

2011 1 Destemmed only 

berries 

4 11/16/2011 

 

14 

2011 2 Destemmed and 

Crushed berries 

4 11/16/2011 

 

14 

 

Additional wine parameters were analyzed on a WineScan® (FOSS, Denmark), using 

Fourier transform infrared detection (FTIR) to calculate wine constituents including pH, 

titratable acidity, glucose plus fructose, malic acid, alcohol, volatile acidity, and different 

absorbance wavelengths to determine a tannin index (280A) and color density (420A + 

520A).   

 

3.7 Determination of phenolic compounds 

3.7.1 Adams-Harbertson assay 

The Adams-Harbertson (AH) Assay is based on a tannin precipitation assay 

originally developed by Hagerman and Butler (1978).  The AH assay uses protein 

precipitation with BSA whereby multiple classes of phenolic compounds can be quantified 

and identified: pigmented polymers, tannin (catechin equivalents), non-tannin iron reactive 
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phenolics, and anthocyanin.  Combining precipitation of proteins and bisulfite bleaching, 

monomeric anthocyanin can be differentiated from polymeric pigments.  Of these polymeric 

pigments, small polymeric pigments (SPP’s) cannot precipitate with protein, and large 

polymeric pigments (LPP’s) can.  The sum of LPP’s and SPP’s make up the potassium 

metabisulfite (SO2) resistant pigmented polymers (Australian Wine Research Institute 2015).  

The AH Assay can be performed on a microplate reader or an individual spectrophotometer; 

its range of application throughput makes it adaptable on a small or large scale (Harbertson et 

al. 2003, Mercurio and Smith 2008). 

 

3.7.2 Buffer preparation 

For a complete list of buffer solutions and procedures, refer to Appendix B. 

 

3.7.3 Procedure 

Please refer to the published Adams-Harbertson Assay (Harbertson et al. 2003). 

For the complete Adams-Harbertson assay procedure, refer to Appendix C. 

 

3.7.4 Calculations 

For the complete list of calculations, refer to Appendix D.  

 

3.8 Statistical analysis  

This study could not run any statistical analysis since each treatment was only performed 

once. 
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Figure 16.  Schematic – Effect of berry integrity on phenolic compounds in the 2011 vintage.  LPP’s – long polymeric pigments, 

SPP’s – short polymeric pigments, IRP’s – iron reactive phenolics  

1 2 
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Figure 17.  Schematic – Effect of enzyme application on phenolic compounds in the 2010 vintage.  LPP’s – long polymeric pigments, 

SPP’s – short polymeric pigments, IRP’s – iron reactive phenolics  

1 2 3 
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Figure 18.  Schematic – Effect of enzyme application on phenolic compounds in the 2011 vintage.  LPP’s – long polymeric pigments, 

SPP’s – short polymeric pigments, IRP’s – iron reactive phenolics 

1 2 
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Figure 19.  Schematic – Effect of alcoholic fermentation temperature on phenolic compounds in the 2011 vintage.  LPP’s – long 

polymeric pigments, SPP’s – short polymeric pigments, IRP’s – iron reactive phenolics 

1 2 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

In this work, two vintages (2010 and 2011) were investigated.  Paso Robles Cabernet 

Sauvignon grapes have ample amounts of readily extractable tannin.  The inherent struggle of 

this region is successfully extracting anthocyanin from skins, and having these anthocyanin 

monomers not degrade or precipitate during the aging process.  A typical fermentation begins 

with an abundance of anthocyanin and tannin extraction.  A monomeric anthocyanin can bind 

with tannin, creating a stable color complex.  Pectinase-rich macerating enzymes can break 

down the cellular structure of berry skins, thereby releasing anthocyanin and tannin more 

readily than traditional maceration procedures.  The more anthocyanin and tannin 

concentration present during vinification, the more likely a wine is to develop and retain 

stable color complexes.  The research from vintages 2010 and 2011 aim to understand the 

long-term effects of a pectinase-rich macerating enzyme on Vitis vinifera Cabernet 

Sauvignon fruit from Paso Robles.  To verify our hypothesis (Section 1.2), we began 

experimentation on the impact of enzyme concentration in vintage 2010.  Based on the 

preliminary results, we then began the second stage of our experimental design by repeating a 

segment of vintage 2010’s enzyme treatment.  Furthermore, we explored the effect of 

fermentation temperature and berry maceration on phenolic extraction in the 2011 vintage. 
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4.1 Fruit composition 

 

Table 14.  Receiving fruit analysis – 2010 tank data, day 0.  

 

FOSS Analysis Average Standard 

Deviation 

Brix 24.40 ±0.06 

pH 3.63 ±0.06 

TA (g/L) 4.98 ±0.17 

YAN (mg/L) 176 ±4 

Malic (g/L) 1,594 ±158 

Potassium (g/L) 1,863 ±81 

TA = titratable acidity.  YAN = yeast assimilable nitrogen. 

Table 15.  Receiving fruit analysis – 2011 tank data, day 0. 

 

FOSS Analysis Average Standard 

Deviation 

Brix 24.00 ±0.74 

pH 3.65 ±0.07 

TA (g/L) 5.80 ±0.41 

YAN (mg/L) 110 ±15 

Malic (g/L) 1,419 ±134 

Potassium (g/L) 1,726 ±269 

TA = titratable acidity.  YAN = yeast assimilable nitrogen. 
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4.2 Crushed versus whole berries 

 

Table 16.  Effect of berry integrity on phenolic compound concentrations at the end 

of alcoholic fermentation 2011. 

 

Treatment  Total Phenols 

(mg/L) 

Tannin 

(mg/L) 

Anthocyanin 

(mg/L) 

Crushed Berries 2,147±3 

 

905±202 589±11 

Whole Berries 

 

2,203±13 

+2.6% 

1,116±10 

+23.3% 

598±1 

+1.5% 

 

Table 17.  Effect of berry integrity on mean phenolic compound concentrations 

during barrel aging 2011. 

 

Treatment  Total Phenols 

(mg/L) 

Tannin 

(mg/L) 

Anthocyanin 

(mg/L) 

Crushed Berries 

 

2,137±43 

 

1,163±14 

 

358±49 

 

Whole Berries 

 

2,096±38 

+2.0% 

1,132±16 

+2.7% 

368±51 

+2.7% 

 

 

4.2.1 Total phenol concentration  

 Crushing berries did not greatly increase total phenolic concentration during the first 

two weeks of alcoholic fermentation.  Total phenol concentration was an average of 56 mg/L 

greater in whole berries versus crushed berries (2.6% higher) (Table 16).   On average, wine 

made from crushed berries was higher in total phenolic concentration versus whole berries 

throughout barrel aging.  The mean total phenolic concentration for crushed berries was 2.0% 

greater compared to the whole berry treatment (Table 17).  

 

4.2.2 Tannin concentration  

 Berry integrity did not affect tannin concentration during the first two weeks of 

alcoholic fermentation.  Tannin concentration was an average of 211 mg/L higher (23.3% 
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greater) in whole berries versus crushed berries during alcoholic fermentation (Table 16).  

There was an increase in mean tannin concentration for crushed berries when compared to 

whole berries.  The mean tannin concentration for the crushed berry and whole berry 

treatments during barrel maturation was 1163 mg/L (3% greater) and 1132 mg/L, 

respectively (Table 17). 

 

4.2.3 Anthocyanin concentration  

 Berry integrity did not affect anthocyanin concentration when compared to whole 

berries during the first two weeks of fermentation.  Anthocyanin concentration was an 

average of 43 mg/L greater (7.8% higher) in whole berries compared to crushed berries 

during alcoholic fermentation (Table 16).  There were not great differences in mean 

anthocyanin concentration for crushed berries versus whole berries.  The mean anthocyanin 

concentration for the crushed berry and whole berry treatments during barrel aging were 358 

mg/L and 368 mg/L (3.0% greater), respectively (Table 17). 

 

4.2.4 Discussion – Effect of berry integrity 

The effect of berry integrity on the color of red wine was investigated.  We 

hypothesized (Section 1.2) that crushed berries would have greater anthocyanin extraction 

versus whole berries during alcoholic fermentation, and wine made from crushed berries 

would contain greater anthocyanin concentrations through barrel aging when compared to 

wine made from whole berries.  There is not enough evidence to prove our hypothesis with 

the data collected and analyzed during vintage 2011.  Concentrations of total phenols, tannin 

and anthocyanin did not differ greatly between crushed and whole berries during alcoholic 

fermentation.  Traditional vinification procedures crush berries for immediate extraction of 

anthocyanin content from their skins.  Contrary to published claims, our results did not 
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substantiate an immediate color release during alcoholic fermentation (Ribereau-Gayon et al. 

2000).  Our experiment’s conclusions suggested that berry integrity did not affect 

anthocyanin extraction during the first two weeks of alcoholic fermentation. 

After fifteen months of barrel aging, mean concentrations of total phenols in wines 

made from crushed berries were greater than whole berry wines.  Tannin concentrations 

increased in wines made from crushed berries when compared to wines made from whole 

berries throughout barrel aging.  Anthocyanin concentrations remained unchanged during 

barrel aging.  Crushing berries did not lead to greater color extraction in the vintage of 2011.   

There have been a variety of studies that have investigated the effect of berry 

integrity on total phenols, tannin and anthocyanin concentrations (Cerpa-Calderon and 

Kennedy 2008, Pascual et al. 2016).  However, in our experiment, the effect of berry integrity 

on total phenols, tannin and anthocyanin concentrations have been monitored through aging 

on a commercial scale.   

A highest tannin concentration was observed in 75% crushed fruit on day 17, 

statistically higher than all other treatments in the study of Cerpa-Calderon and Kennedy 

(2008).  The larger structures of proanthocyanidins are tannins; we measured tannin 

concentration (catechin equivalents).  Our experiment produced different results; there was 

no difference in tannin concentrations (mg/L) after 14 days of alcoholic fermentation.  This 

could be due to varietal differences; we experimented on Cabernet Sauvignon, and Cerpa-

Calderon and Kennedy (2008) experimented on Merlot.   In addition, the authors stated the 

Merlot was “...under-ripe from a commercial standpoint”. Physiologically, the experiments 

are very different.  In our experiment, we pressed the grapes once alcoholic fermentation was 

complete (day 14); the experiment by Cerpa-Calderon and Kennedy (2008) left the skins and 

seeds in contact for an additional 4 days after alcoholic fermentation was complete.  This 

extended skin contact could provide insight as to why there was a difference between 
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concentration of berry intactness post alcoholic fermentation; the longer the wine is in 

contact with skins and seeds, the greater the amount of phenolic extraction (Moreno and 

Peinado 2012).   

Other findings suggest whole destemmed berries extracted more phenolic compounds 

than did the destemmed crushed berries and whole cluster fruit (Pascual et al. 2016).  The 

authors suggested whole destemmed berries had more total polyphenolic, anthocyanin, and 

tannin concentration that did the destemmed, crushed berries (control) after 6 months of 

barrel aging, although no statistics were published.  After 15 months of barrel aging our 

Cabernet Sauvignon wines, there was a difference in total phenols and tannin, but not in 

anthocyanin concentration.  The two experiments differed drastically.  The experiment by 

Pascual et al. (2016) fermented 500 L of each treatment at 25C.  Our experiment fermented 

approximately 13,000 L per treatment (whole vs. crushed) at 32.2C.  Our experimentation 

was conducted on Cabernet Sauvignon, and Pascual et al. (2016) experimented on Grenache 

Noir.   

Winemakers sourcing fruit from the Paso Robles AVA are typically looking for 

increased anthocyanin extraction and decreased tannin concentration.  The results of our 

investigation suggest that the act of crushing berries creates wines with greater tannin and 

phenolic structure, without impacting anthocyanin concentration.  The act of crushing berries 

in our experiment did not increase anthocyanin concentration during alcoholic fermentation.  

The act of crushing berries takes an extra step in red wine production that is both time and 

energy consuming.  Bypassing the crusher apparatus on the crusher/destemmer will 

hypothetically allow a greater processing limit for an industrial winery; production speed will 

not be hindered by slower processing times mandated by implementing the crusher rollers.  
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Results from the 2011 vintage hint that wines made from whole berries contain a greater 

anthocyanin content than do wines made from crushed berries.   

It is recommended to repeat this production scale experiment to see if the results 

obtained in 2011 are replicated.  In a commercial production setting, whole berries 

experience a small amount of crushing as they are removed from the jacks.  After the berries 

are destemmed, they fall though a hopper, then are transported to the fermentation vessel via 

4-inch hard lines.  These activities are affected by gravity and pump pressure, and a minimal 

amount of crushing results. Due to the various movements through the cellar, in addition to 

pump overs of berries throughout fermentation, it is fair to assume that “whole berries” lose 

their integrity as soon as they are received at a large-scale production winery.  This would not 

be the case for a smaller, boutique winery processing three tons of fruit at a time.  Minimal 

movement, gravity affect, tank size, and pump overs would greatly affect the level of 

naturally present “whole berries”.   

 In addition, the resultant wines created from whole and crushed berries should be 

tasted by an expert sensory panel. 
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4.3 Enzyme application 

 

Table 18.  Effect of enzyme addition on phenolic concentration at the end of 

alcoholic fermentation in the 2010 and 2011 vintages. 
 

Vintage Concentration of enzyme Total Phenols 

(mg/L) 

 

 

Tannin    

(mg/L) 

Anthocyanin 

(mg/L) 

2010 Control 1,739±10 

 

743±4 885±5 

2010 60 mL/ton enzyme 1,894±1 

+8.9% 

875±10 

+17.8% 

872±3 

-1.5% 

2010 100 mL/ton enzyme 1,939±28 

+11.5% 

945±2 

+27.2% 

902±15 

+1.9% 

2011 Control 1,945±18 988±4 650±6 

2011 100 mL/ton enzyme 2,307±27 

+18.6% 

1,263±6 

+27.8% 

754±26 

+16.0% 

 

4.3.1 Total phenol concentration 

Table 19.  Effect of enzyme addition on mean phenolic concentration during barrel 

aging in the 2010 and 2011 vintages. 
 

Vintage Concentration of enzyme Mean Total Phenolic 

concentration (mg/L) 

2010 Control 992±39 

2010 60 mL/ton enzyme 1,113±52 

+12.2% 

2010 100 mL/ton enzyme 1,201±55 

+21.1% 

2011 Control 1,647±35 

2011 100 mL/ton enzyme 1,791±47                          

+8.7% 

 

Adding a pectinase-rich macerating enzyme increased total phenols during alcoholic 

fermentation in both the 2010 and 2011 vintages during barrel aging.  The treatment of 60 

mL/ton and 100 mL/ton enzyme increased total phenols by 8.9% and 11.5%, respectively, 

with the 2010 vintage at the end of alcoholic fermentation (Table 18).  The treatment of 100 



54 

 

mL/ton enzyme increased total phenols by 18.6% (Table 18) in the vintage of 2011 at the end 

of alcoholic fermentation.   

On average, the treatment of 60 mL/ton and 100 mL/ton enzyme increased total 

phenol concentration by 12.2% (121 mg/L) and 21.1% (209 mg/L) during barrel aging in the 

2010 vintage.  With the 2011 vintage, the treatment of 100 mL/ton increased total phenol 

concentration by 8.7% (144 mg/L) during barrel aging (Table 19).   

 

4.3.2 Tannin concentration 

Table 20.  Effect of enzyme addition on mean tannin concentration during barrel 

aging in the 2010 and 2011 vintages. 
 

Vintage Concentration of enzyme Mean Tannin 

concentration (mg/L) 

2010 Control 377±68 

2010 60 mL/ton enzyme 481±71 

+27.6% 

2010 100 mL/ton enzyme 561±73 

+48.8% 

2011 Control 773±25 

2011 100 mL/ton enzyme 934±22 

+20.8% 

 

 Adding pectinase-rich macerating enzymes affected tannin concentration during 

alcoholic fermentation in both the 2010 and 2011 vintages.  The treatment of 60 mL/ton and 

100 mL/ton enzyme increased tannin concentration by 17.7% and 27.0%, respectively (Table 

18) in the 2010 vintage at the end of alcoholic fermentation.  The treatment of 100 mL/ton 

enzyme increased tannin by 27.8% (Table 18) in the vintage of 2011 at the end of alcoholic 

fermentation. 

Tannin concentration was associated with greater enzyme concentration during barrel 

aging in the 2010 and 2011 vintages.  On average, enzyme treatments of 60 mL/ton and 100 
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mL/ton increased tannin concentration by 27.6% (104 mg/L) and 48.8% (184 mg/L), 

respectively in 2010 (Table 20).  In 2011, the enzyme treatment of 100 mL/ton increased 

average tannin concentration by 20.8% (161 mg/L) (Table 20).  

 

4.3.3 Anthocyanin concentration 

Table 21.  Effect of enzyme addition on mean anthocyanin concentration during 

barrel aging in the 2010 and 2011 vintages. 
 

Vintage Concentration of enzyme Mean Anthocyanin 

concentration (mg/L) 

2010 Control 327±64 

2010 60 mL/ton enzyme 308±67 

-5.8% 

2010 100 mL/ton enzyme 346±63 

+5.8% 

2011 Control 394±43 

2011 100 mL/ton enzyme 456±68 

+15.7% 

 

Different concentrations of pectinase-rich macerating enzymes did not influence 

anthocyanin concentration during alcoholic fermentation in 2010.  The 60 mL/ton enzyme 

addition decreased anthocyanin by 5.8% (19 mg/L), while 100 mL/ton increased anthocyanin 

by 5.8% (18 mg/L) in 2010 (Table 18).  The addition of enzyme during alcoholic 

fermentation of 2011 increased total anthocyanin concentration by 16% (104 mg/L) when 

compared to the control (Table 18). 

There was no apparent correlation between anthocyanin concentration and enzyme 

treatment during barrel aging in 2010 (Table 21).  Greater anthocyanin concentration can be 

explained by enzyme concentration during barrel aging in 2011.  On average, anthocyanin 

concentrations were approximately 16% higher in the resultant wine treated with enzyme 

when compared to no enzyme treatment while maturing in barrel (Table 21). 
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4.3.4 Discussion – Effect of enzyme application 

There has been a variety of studies claiming pectinase-rich macerating enzymes have 

effectively shown to increase anthocyanin content of red wines (Bakker et al. 1999, Kelebek 

et al. 2007, Li et al. 2015).  Typically, these scientific papers involving the use of pectinase-

rich macerating enzymes publish results immediately after alcoholic or malolactic 

fermentation.  However, in our studies, the effect of pectinase-rich macerating enzymes on 

total phenols, tannin and anthocyanin were observed through 15 months of barrel aging on a 

commercial scale.  The scale of our fermentations (20+ tons per fermentation), as well as the 

length of analyses (18 months total), make this experiment unique.  Current research is 

limited by magnitude or timeline (Table 22).    

 

Table 22.  Scale of production and timeline on published papers on the effect of 

polymeric pigments by enzyme application. 
 

Author(s) Weight (kg) of 

Grapes Fermented 
Results Reported 

(timeline) 

 

Bautista et al. 2005 20 8 weeks 

El Darra et al. 2016 50 2 weeks 

Li et al. 2015 11,800 3+ weeks 

Revilla and San Jose 2003 10 104 weeks 

Romero-Cascales et al. 2012 140 2+ weeks 

Wightman et al. 1997 4 26 weeks 

 

In our 2010 experiment, the data collected suggested total phenolic concentration and 

tannin were correlated to concentration of enzyme (60 mL/ton and 100 mL/ton), while 

concentration of anthocyanin was not.  With both vintages, increased amounts of tannin were 

extracted from the berries with the use of pectinase-rich macerating enzymes.  If Paso Robles 

Vvitis vinifera Cabernet Sauvignon berries naturally contain ample amounts of tannin 
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extractable by traditional maceration techniques, it hinders wine quality to extract more 

tannin.  Short monomeric compounds (monomers, dimers and trimers) are bitter; they cannot 

precipitate proteins.  As winemakers, we want to limit any excessive extraction of tannin. 

Based on the composition of Cabernet Sauvignon harvested in Paso Robles, adding 

pectinase-rich macerating enzymes to the berries in 2010 did the opposite of what we were 

aiming to prove (Section 1.2).  In our 2011 experiment, the data collected suggested that all 

three measured phenolic compounds (total phenols, tannin and anthocyanin concentrations) 

greatly increased with the addition of 100 mL/ton enzyme application.  We cannot presume 

to understand every chemical and biological reaction in the 2010 and 2011 vintages; several 

explanations could support our findings for vintage variations.  Original berry chemistry 

(Tables 14 & 15) depicts both vintages’ tank chemistry on day 0.  Appendix E depicts the 

2010 vintage total phenols, tannin and anthocyanin on day 0, and Appendix H depicts the 

2011 vintage day 0 concentrations.  Weather conditions, such as temperature or precipitation 

throughout the growing season, might have impacted the anthocyanin accumulation during 

veraison  (Ortega-Regules et al. 2008). Vineyard management decisions such as pruning, leaf 

removal, dropping fruit, or irrigation practices, could have impacted anthocyanin 

development (Chorti et al. 2016, Guidoni and Hunter 2012).  The fruit chemistry was 

different among the vintages, and this initial difference in phenolic concentrations could 

account for the different results.  

In 2010, enzyme addition did not affect mean anthocyanin concentration, vindicating 

previously published papers that concluded enzyme application was of no statistical 

significance (Kelebek et al. 2007, Romero-Cascales et al. 2012).  In 2011, 100 mL/ton 

enzyme addition greatly increased the mean anthocyanin concentration on average by 16%.  

This increase in anthocyanin concentration corresponds with what other scientific papers 

have concluded (El Darra et al. 2016, Kelebek et al. 2007, Romero-Cascales et al. 2012).   
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Macerating enzymes have shown to increase color intensity by 22% immediately 

after alcoholic fermentation when compared to the control (El Darra et al. 2016).  Color 

intensity is a colorimetric coordination of 3 absorbances; clarity, red/green, and blue/yellow 

color components (L*a*b*).  Our experiment measured pigment release by assaying 

anthocyanin content (monomeric pigments).  The basis by which color was measured and 

reported in the two experiments is different; therefore, it is not possible to compare color 

conclusions.  The authors (El Darra et al. 2016) used a model wine Cabernet Sauvignon 

solution.  The raw grapes were stored for approximately 1 week at 4C before being 

processed.  Our literature review suggests near freezing temperatures of berries 

prefermentation extract greater concentrations of anthocyanin during alcoholic fermentation 

(Table 9) (Busse-Valverde et al. 2011).  These factors, along with magnitude (5 L ferments) 

and lack of pump overs, make the experiments quite different.  Laboratory studies do not 

conduct normal winemaking pump overs, which is how anthocyanin molecules are typically 

extracted from the hyperdermal layer of the skin cell.  Laboratory studies either have the cap 

submerged in the fermenting wine for the duration of alcoholic fermentation (greater 

anthocyanin extraction), or the caps will not be broken by a pump over (less anthocyanin 

extraction). 

When maceration time was looked at, the extraction of tannin and anthocyanin 

concentration was faster when the enzyme was added when compared to the control (Bautista 

et al. 2005, Romero-Cascales et al. 2011).  The application of the enzyme preparation led to 

higher anthocyanin concentrations (6-8%) that remained stable throughout aging when 

compared to the control.  Equivalent results of greater anthocyanin extraction in the 100 

mL/ton enzyme application was observed during our 2011 enzyme experiment when 

compared to the control.  The berries used in our experimentation were Cabernet Sauvignon, 
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(Romero-Cascales et al. 2011) experimented with Vitis vinifera Monastrell berries.  Our 

study did not induce wines that extracted tannin and anthocyanin concentrations faster with 

the use of a pectinase-rich macerating enzyme when compared to a control. 

Cellulases and hemicellulases, both common in commercial enzyme preparations, 

could also assist in degrading the structure of the berry cell wall; these activities could 

increase extractable concentrations of phenols, tannins and anthocyanins (Gump and Haight 

1995).  We did not run chemical analysis on the enzyme used for our experiments 

(ColorPro®) to determine if there was cellulases or hemicellulases present.  This could be a 

factor when trying to compare different macerating enzymes. 

Color macerating enzymes are expensive.  J. Lohr Vineyards & Wines® spends more 

than $25,000 annually on ColorPro®, a mixture of pectinase-rich macerating enzymes.  If 

adding these enzymes to the berries does not extract more pigment that is persistent 

throughout barrel aging, the monetary investment is lost.  Our hypothesis regarding the 

addition of color macerating enzymes (Section 1.2) suggested pigment release would be 

persistent through aging in barrels.  In addition, pigment release would increase accordingly 

to the concentration of the enzyme preparation. 

 No conclusive results on the effect of pectinase-rich macerating enzymes versus 

anthocyanin concentration can be determined.  It is recommended to conduct more 

experimentation comparing the effect of enzyme addition on anthocyanin concentration by 

repeating the experimental design of the 2011 vintage.  The effectiveness of pectinase-rich 

macerating enzymes largely depends on the grape cultivar, the enzyme type, and the enzyme 

addition rate (Li et al. 2015).  Our experiments used two different vineyards, which implies 

different clones, soil aspect, vine integrity, health, nutrients, etc. could have led to potential 

differences in grape chemistry.   
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4.4 Alcoholic fermentation temperature 

 

Table 23.  Effect of alcoholic fermentation temperature on phenolic compound 

concentrations at the end of alcoholic fermentation for the 2011 vintage. 

 

Treatment Total Phenols 

(mg/L) 

 

 

Tannin    

(mg/L) 

Anthocyanin 

(mg/L) 

25.0C 2,013±25 988±4 747±11 

32.2C 2,613±13 

+29.8% 

1,435±1 

+45.2% 

595±15 

-20.3% 

  

Table 24.  Effect of alcoholic fermentation temperature on mean phenolic compound 

concentrations during barrel aging for the 2011 vintage. 

 

Treatment Total Phenols 

(mg/L) 

 

 

Tannin    

(mg/L) 

Anthocyanin 

(mg/L) 

25.0C 1,577±40 759±31 545±54 

32.2C 1,902±56 

+29.8% 

978±46 

+45.2% 

346±37 

-36.5% 

 

4.4.1 Total phenol concentration 

Fermenting berries at 32.2C during alcoholic fermentation was associated with an 

increase in total phenol concentration.  Total phenol concentration was 600 mg/L higher 

(29.8% greater) in fruit fermented at 32.2C than fruit fermented at 25.0C by the end of 

alcoholic fermentation (Table 23).  Wine fermented at 32.2C remained greater in total 

phenol concentration from alcoholic fermentation throughout barrel aging (Table 24).  On 

average, berries fermented at 32.2C had increased total phenolic concentrations when 

compared to berries fermented at 25.0C during barrel aging (Table 24).  The mean total 

phenol concentration for berries fermented at 32.2C and 25.0C was 1,902 mg/L (20.6% 

greater) and 1,577 mg/L, respectively (Table 24).   
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4.4.2 Tannin concentration  

 Alcoholic fermentation carried out at 32.2C resulted in an increased tannin 

concentration.  Total tannin concentration was 447 mg/L higher (45.2% higher) in fruit 

fermented at 32.2C than fruit fermented at 25.0C by the end of alcoholic fermentation 

(Table 23).  Wine fermented at 32.2C continued to have greater tannin concentrations 

throughout barrel aging (Table 24).  There was an increase amongst mean tannin 

concentration in berries fermented at a hot temperature (32.2C) versus berries fermented at a 

cool temperature (25.0C) during barrel aging.  On average, berries fermented at 32.2C had 

increased tannin concentrations when compared to berries fermented at 25.0C throughout 

barrel aging.  The mean tannin concentration for berries fermented at 32.2C and 25.0C was 

978 mg/L (28.9% greater) and 759 mg/L, respectively (Table 24). 

 

4.4.3 Anthocyanin concentration  

 Fermentation temperatures (32.2C and 25.0C) did not affect anthocyanin 

concentrations during the first two weeks of fermentation.  Anthocyanin concentration was 

an average of 152 mg/L greater (25.5% higher) when fermented at 25.0C (Table 23).  There 

was an increase in anthocyanin concentration in berries fermented cool (25.0) versus berries 

fermented hot (32.2C) during barrel maturation.  The mean anthocyanin concentration for 

berries fermented at 32.2C and 25.0C was 346 mg/L and 545 mg/L (57.5% higher), 

respectively (Table 24). 

 

4.4.4 Discussion – Effect of temperature  

There has been in the past a variety of studies that have looked at total phenols, 

tannin and anthocyanin concentrations on the effect of alcoholic fermentation temperature 



62 

 

(Sacchi et al, 2005, Sener and Yildirim 2016, Yamane et al 2006).  However, in our study, 

the effect of alcoholic fermentation temperatures has been followed through barrel aging on a 

commercial magnitude.  The effect of fermentation temperature on the color of red wine was 

investigated in the 2011 vintage.  Our hypothesis (Section 1.2) stated fermenting at cooler 

temperatures (25.0C) will lead to a greater anthocyanin extraction during alcoholic 

fermentation of red grapes when compared to hotter alcoholic fermentation temperatures 

(32.2C).  There was no difference when fermenting at 25.0C when compared to 32.2C on 

anthocyanin concentrations during alcoholic fermentation, whereas total phenol and tannin 

concentrations were greater during the first fourteen days of alcoholic fermentation.  By the 

end of alcoholic fermentation at 32.2C, total phenol and tannin concentrations increased by 

29.8% and 45.2%, respectively, when compared to 25.0C alcoholic fermentation 

temperatures.   

 At the end of barrel aging, increased extraction in total phenol and tannins was still 

evident with 32.2C alcoholic fermentation temperatures.  Total phenol concentrations were 

21% greater and tannin concentrations were 29% greater in wines resulting from hot (32.2C) 

fermentation temperatures.  There was a difference in anthocyanin concentration levels 

between berries fermented at 25.0C versus berries fermented at 32.2C during barrel aging; 

on average, anthocyanin concentration was 36.5% higher in the wine resulting from berries 

fermented cooler versus berries fermented hot.   

Our results corroborate with other published studies where fermentation temperatures 

were altered to increase phenolic extraction (Lerno et al. 2015, Gil-Munoz et al. 2009).  

Fermenting berries at cooler temperatures (25.0C) produced wine with greater anthocyanin 

concentration, and less total phenol and tannin concentrations when compared to hot (32.2C) 

fermentation temperatures.  Extraction of monomeric anthocyanin concentrations were 
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increased with higher fermentation temperatures (Gao et al. 1997).  This could be due to 

varietal differences; our experimentation was on Cabernet Sauvignon, and Gao et al. (1997) 

experimented on Pinot Noir.  Our results support our hypothesis stating fermenting at cooler 

temperatures will create a wine with greater anthocyanin concentrations.   

Temperature affected the rate of extraction, but not the final concentration of 

phenolic extraction (Lerno et al. 2015).  This experiment, like ours, used Cabernet Sauvignon 

grapes.  Lerno et al. (2015) had the fruit hand-picked, minimizing any additional extraction 

of polyphenolics while the fruit was transported from Lodi to Davis, CA.  The fruit used for 

our experimentation was machine picked due to the sheer volume of the experiment.  The 

Lodi fruit went through an extended maceration of four days; ours did not.  When juice is in 

contact with skins, the fermenting juice will continue to extract polyphenolics, specifically 

tannin.   

Changing the temperature during alcoholic fermentation is an effective way to 

influence polyphenolic extraction; temperature affects cell and membrane permeability (Gil-

Munoz et al. 2008).  Using cold maceration techniques, Gil-Munoz et al. (2008) could obtain 

the highest concentrations of anthocyanins using Cabernet Sauvignon grapes.  These results 

were similar to the results obtained with cooler (25.0C) fermentation temperatures.   

 In a production environment, cooler fermentation temperatures are more difficult to 

deliver than hotter fermentation temperatures.  It presents a challenge to keep fermentation 

temperatures cool during harvest when yeast exert heat as a biproduct of their fermentation.  

Tank space is typically maximized, and glycol chilling systems are working on extreme 

overload to keep up with cooling glycol jacket demands.  In an experiment done on a 

production scale such as our study, it was easier for glycol systems to keep temperatures at 

32.2C opposed to cooler 25.0C temperatures.   
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A winery needs to consider how important is it to have less tannin and total phenol 

concentrations, and more anthocyanin concentrations in their wines.  It might make the most 

sense for winemakers to identify highly tannic, low color wines, and adapt cooler 

fermentation temperatures to these specific wines.  If current glycol systems are not able to 

obtain cooler fermentation temperatures, a winery would need to determine if expanding or 

replacing the current glycol system would be worth the financial investment.  Would the 

winery be able to increase profitability to pay for the newly expanded cooling infrastructure? 

Adding or amending a glycol system is extremely costly.  A more cost friendly way to 

mitigate excessive amounts of tannin and total phenols is done with fining agents, either 

during aging or before bottling.   

In our experiment, the tanks received six pump overs per day.  By increasing the 

number of pump overs over traditional winemaking techniques, the cap remained relatively 

cool.  As a result, neither the fermenting juice nor the berries were hot.  Typically, wineries 

manually complete two pump overs or punch downs per day.  The heat released by the 

fermentation is trapped in the cap, increasing the temperature 10-14C higher than the 

fermenting juice below (Schmid et al. 2009).  This large temperature difference between the 

cap and the fermenting juice can create a wine that is ridden with problems; the yeast can 

become stressed and produce off flavors and aromas, or can die from the environment.  In our 

experiment, the tank tops were visually and aromatically inspected three times per day, and 

special attention was paid to ensure there no off aromas.  Fermenting at hotter temperatures 

(32.2C) can impact wine quality.  Make sure to maintain homogenous tank temperatures, 

pump over the fermenting juice frequently, and maintain glycol jacketed tanks so they work 

properly. 
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It is recommended to repeat this production scale experiment to see if the results 

obtained in 2011 can be replicated.  It is also recommended to publish large polymeric 

pigments (LPP’s) and small polymeric pigments (SPP’s) to see if monomeric anthocyanin 

concentrations were shifting into polymeric stable pigment compounds.  The resultant wines 

created from different fermentation temperatures should be tasted by an sensory expert panel. 

 

 

4.5 Conclusion 

Experiments of the 2010 and 2011 vintages analyzed Paso Robles Cabernet 

Sauvignon on an actual production scale (24 tons).  Each fermentation contained a minimum 

of 20 tons of fruit.  The experiments were an accurate representation of a large production 

facility.  In addition, this study investigated total phenol, tannin, and anthocyanin 

concentrations through the various life stages of the wine.  

It is insignificant if berry integrity, adding pectinase-rich macerating enzymes, or 

fermenting at different temperatures helped to extract greater anthocyanin concentrations 

during alcoholic fermentation.  It is only relevant if an anthocyanin molecule binds with a 

(tannin) molecule to form a stable polymeric pigment, and this greater pigmented wine is 

greater than its control.  If the anthocyanin concentration is not significantly different from a 

control treatment when the wine is ready to bottle, all efforts and money towards extracting 

and stabilizing polymeric pigments are wasted.  

The trends of this study were obtained at a large scale on Estrella district Cabernet 

Sauvignon.  Our study’s trends could be different if wine production is performed in different 

conditions, including magnitude and varietal(s).  
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4.6. Future Studies 

 It is recommended to repeat each experiment.  It is strongly advised to use the same 

vineyard used in the 2011 experiments, as well as have duplicate experiments, to conclude 

statistical significance amongst treatments. 

 It is further recommended to experiment with other varietals.  Each varietal has a 

different range of phenolic concentrations.  We only experimented with Vitis vinifera 

Cabernet Sauvignon. 
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APPENDICES 

 

Appendix A.  Red winemaking flowchart 
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Appendix B.  Buffer solution preparation 

 

Buffer A 

 6.0 ml of acetic acid was mixed with 4.97 grams of NaCl into 400 ml deionized water 

in a 500 mL graduated flask.  1N NaOH (4 g/100ml) was used to raise the pH to 4.9.  

Deionized water was added to the graduated flask to reach 500 mL.  Buffer A was 

homogenized thoroughly by inversion.  Buffer A had a shelf life of one month at room 

temperature. 

Buffer B 

 2.5 grams potassium bitartrate (KHT) was added to 300 mL deionized water in a 500 

mL graduated flask.  63 ml of 95% ethanol was added to the flask and mixed.  1N HCl (82 

mL /1,000 ml) was then added (dropper increments) into the KHT solution to reach 3.3 pH.  

The solution was raised to 500 ml with deionized water.  Buffer B was homogenized 

thoroughly.  Buffer B had a shelf life of one month at room temperature. 

Buffer C 

 25.0 grams of SDS was mixed into 400 mL deionized water using a 500 mL 

graduated flask.  25.0 ml of 5% TEA was added to the SDS solution with a magic pipette 

(viscous solution).  1N HCl was added (dropper increments) to the SDS solution to reach 9.4 

pH.  The solution was raised to 500 mL with deionized water, and homogenized thoroughly 

by inverting the graduated flask several times.  Buffer C had a shelf life of one month at 

room temperature. 

Buffer D 

 11.61 grams maleic acid and 4.97 grams NaCl were added to 400 mL deionized water 

using a 500 mL graduated flask.  1N NaOH was added (dropper increments) to the Buffer D 
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solution to reach 1.8 pH.  The solution was raised to 500 mL with deionized water, and 

homogenized thoroughly by inversion.  Buffer D had a shelf life of one month at room 

temperature. 

Ferric Chloride 

 225 ml of 0.01N HCl (8.2 mL /1,000 mL) was transferred into a 250 mL graduated 

flask.  0.676 g (±0.003 grams) of ferric chloride was added to the HCl solution, and mixed 

thoroughly.  The volume of the ferric chloride solution was increased to 250 mL with 0.01N 

HCl.  The ferric chloride solution was homogenized completely by inversion.  Ferric 

Chloride buffer had a shelf life of 1 week at room temperature.   

Bleaching solution 

 3.95±0.05 g potassium metabisulfite (KMBS) was weighed and transfer into a 50 mL 

volumetric flask containing ~ 40 mL deionized water.  The flask was mixed thoroughly to 

completely dissolve the KMBS, and the volume was brought up to 50 mL with deionized 

water.  The solution was kept refrigerated.  The bleaching solution had a shelf life of 1 day. 

Protein solution 

 0.075±0.005 g of BSA was weighed and transferred into a 50 mL volumetric flask 

containing ~ 40 mL Buffer A.  The flask was mixed thoroughly until the BSA was 

completely dissolved, and the volume was brought up to 50 mL with Buffer A.  The solution 

was kept refrigerated.  The protein solution had a shelf life of 1 day. 
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Appendix C.  Adams-Harbertson procedure 

 

Pigments (step 1/2) 

 300 µL Buffer B was pipetted into a 1.5 ml microfuge tube using a Magic Pipette®.  

To the microfuge tube, 200 µL of wine and 1 ml Buffer A was added.  The content of the 

microfuge tube was mixed by inverting it up and down several times.  The tube was 

incubated at room temperature for 10 minutes. The tube was opened, and 1 ml of the mixture 

was pipetted into a clean cuvette.  The spectrophotometer was blanked with Buffer A.  The 

samples were read and recorded at 520 absorbance for Reading A.  The cuvettes were saved 

for pigments step 2/2. 

Bleachable Pigments (step 2/2) 

 150 µL of bleaching solution was added to each cuvette made in step 1/2 (pigments).  

The cuvette was covered with parafilm paper, and inverted 2-3 times to properly 

homogenize.  The cuvette was incubated at room temperature for 10 minutes.  The 

spectrophotometer with blanked with Buffer A.  The samples were read and recorded at 520 

absorbance for Reading B.  The cuvettes were dumped. 

Tannin (step 1/3) 

 30 µL Buffer B was pipetted into a 1.5 ml microfuge tube using a Magic Pipette®.  

To the microfuge tube, 20 µL of wine and 1 ml BSA solution was added.  Using a vortex 

mixer, the microfuge tubes were homogenized.  The microfuge tubes were incubated at room 

temperature for 15 minutes, then centrifuged for 5 minutes at 14,000 RPMs.  1 ml of the 

supernatant (liquid) was pipetted into a clean cuvette.  The centrifuge tubes were kept to the 

side for a later step.  50 µL bleach was added to each cuvette.  The cuvettes were then 

homogenized using a vortex mixer, then incubated for an additional 10 minutes at room 
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temperature.  The spectrophotometer with blanked with BSA solution.  The samples were 

read and recorded at 520 absorbance for Reading C.   

Tannin (step 2/3) 

 From the microfuge tubes, any supernatant (liquid) remaining was disgorged.  1 ml 

Buffer C was added to the microfuge tubes.  The tubes were then incubated for 15 minutes at 

room temperature.  The tannin pellet settled to the bottom of the microfuge tube was 

resuspended with the vortex, and the solution was incubated for another 5 minutes at room 

temperature.  The entire contents from the microfuge tube was dumped into a clean cuvette.  

The spectrophotometer was blanked with Buffer C.  The samples were read and recorded at 

520 absorbance for the Tannin Background reading.  The cuvettes were saved for tannin step 

3 of 3. 

Tannin (step 3/3) 

 150 µL ferric chloride was added to the cuvettes made in step 2.  The cuvettes were 

thoroughly homogenized with the Vortex mixer.  The samples were incubated for 10 minutes 

at room temperature.  The spectrophotometer was blanked with Buffer C.  The samples were 

read and recorded at 520 absorbance for the Tannin Final reading.   

Anthocyanin 

 450 µL Buffer B was pipetted into a 1.5 ml cuvette using a Magic Pipette®.  50 µL 

wine and 1 ml Buffer D was added to the cuvette.  Using the vortex mixer, the cuvette was 

homogenized.  The cuvettes were incubated at room temperature for 10 minutes.  The 

spectrophotometer was blanked with Buffer D.  The samples were read and recorded at 520 

absorbance for Reading D. 

Total Phenolics (1/2) 

 100 µL wine was pipetted into a 1.5 ml cuvette using a Magic Pipette®.  1 ml Buffer 

C was added to the cuvette.  A vortex mixer was used to homogenize the cuvette.  The 
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cuvettes were incubated for 10 minutes at room temperature.  The spectrophotometer was 

blanked with Buffer C.  The samples were read and recorded at 520 absorbance for the Iron 

Reactive Phenolics (IRP) background reading.  The cuvettes were kept for Total Phenolics 

part 2 of 2. 

Total Phenolics (2/2) 

 

 150 µL ferric chloride was added to the IRP background cuvettes step 1.  A vortex 

mixer was used to homogenize the solution after the ferric chloride was added.  The cuvettes 

were incubated for 10 minutes at room temperature.  The spectrophotometer was blanked 

with Buffer C.  The cuvettes were read and recorded at 520 absorbance for the IRP Final 

reading.  
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Appendix D.  Adams-Harbertson calculations 

 

Anthocyanin calculations 

((30 x Reading D) – (7.5 x Reading A) AU) / (0.0153) = mg/L malvidin-3-glucoside  

Where 30 and 7.5 are dilution factors of  

 

Polymeric Pigment calculations 

1.15 x 1.33 x 7.5 x (Reading B – Reading C) = AU520 LPP  

1.15 x 1.43 x 7.5 x (Reading C) = AU520 SPP  

Where 1.15 accounts for the dilution due to sulfur dioxide addition, 1.33 is the empirical 

bleaching correction coefficient for LPP, and 1.43 is the empirical bleaching coefficient 

for SPP. 

 

Tannin calculations 

[5 x ((1.15 x Tannin final) – Tannin background AU))] / 0.0052 mg -1 L AU) = mg/L catechin 

equivalents 

Where the absorbance of Tannin final is multiplied by the dilution factor of 1.15 to account for 

the Ferric Chloride addition. 

 

Total Phenolics calculations 

[11 x ((1.136 x IRF final) – IRP beginning AU)] / (0.0052 L mg -1 L AU) = mg/L catechin 

equivalents. 

Where the absorbance of IRF final is multiplied by the dilution factor of 1.136 to account for 

the Ferric Chloride addition. 
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Appendix E.  Receiving fruit analysis (2010) 

 

Adams-Harbertson Data (Average of duplicates) 

Adams Data PP/T TP Tannin Anthos PP LPP SPP 

10CSP4X1-230 1.94 94 7 22 0.14 -0.02 0.16 

10CSP4X2-231 1.52 99 9 16 .014 -0.03 0.17 

10CSP4X3-232 1.61 89 9 14 0.14 -0.06 0.20 

Averages 1.69 94 8 17 0.098 -0.025 0.18 

PP/T = Polymeric pigments / tannin.  TP = Total phenols.  Anthos = Anthocyanin.  PP = 

Polymeric pigments.  LPP = Large polymeric pigments.  SPP = Small polymeric pigments. 

 

Blend ID Tons 

10CSP4X1-230 23.82 

10CSP4X2-231 26.48 

10CSP4X3-232 22.76 

Averages 24.35 

 

 

 

 

 

 

 

. 
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Appendix F.  Fermentation analysis (2010) 

 

Tank Blend ID Date CD TI Brix Temp 

336 15CSP4X1-

230 

10/31/2010 

 

  24.0 87 

  11/1/2010 

 

5.2 29.3 23.6 81 

  11/2/2010 7.1 34.0 17.3 80 

  11/3/2010 7.4 39.2 11.6 80 

  11/4/2010 8.7 42.8 7.4 80 

CD = Color density (420A + 520A).  TI = Tannin index (280A). 

CD and TI were analyzed on a spectrophotometer (Average of duplicates) 

 

Tank Blend ID Date CD TI Brix Temp 

337 15CSP4X2-

231 

10/31/2010 

 

  24.3 80 

  11/1/2010 

 

5.4 29.3 22.8 80 

  11/2/2010 7.2 35.2 16.0 78 

  11/3/2010 7.8 42.3 10.4 80 

  11/4/2010 8.8 41.7 6.3 81 

CD = Color density (420A + 520A).  TI = Tannin index (280A). 

CD and TI were analyzed on a spectrophotometer (Average of duplicates) 

 

Tank Blend ID Date CD TI Brix Temp 

300 15CSP4X3-

232 

10/31/2010 

 

  24.0 87 

  11/1/2010 

 

4.8 26.8 23.6 81 

  11/2/2010 7.2 35.0 17.3 80 

  11/3/2010 8.6 43.6 11.6 80 

  11/4/2010 8.6 42.0 7.4 80 

CD = Color density (420A + 520A).  TI = Tannin index (280A). 

CD and TI were analyzed on a spectrophotometer (Average of duplicates) 
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Appendix G.  Pressed wine analysis (2010) 

 

Tank  Blend ID CD press TI press CD/TI 

BX661 10CSP4X1-230 

Control  

8.5 42.6 1.99 

BX662 10CSP4X2-231 

60 mL/ton 

8.7 44.7 1.94 

BX660 10CSP4X3-232 

100 mL/ton 

8.2 44.2 1.86 

 
Averages 8.5 43.9 1.93 

CD = Color density (420A + 520A).  TI = Tannin index (280A).   

CD/TI = Color density / tannin index. 

CD and TI were analyzed on a spectrophotometer (Average of duplicates) 
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Appendix H.  Receiving fruit analysis (2011) 

 

Adams-Harbertson Data (Average of duplicates) 

Adams Data PP/T TP Tannin Anthos PP LPP SPP 

11CSP14-3D1 1.54 415 18 271 0.28 -0.01 0.29 

11CSP14-3D2 1.36 534 21 301 0.28 -0.05 0.33 

11CSP14-3D3 1.83 520 19 312 0.36 -0.06 0.42 

11CSP14-3D4 1.45 570 24 342 0.34 -0.06 0.41 

11CSP14-3D5 1.56 499 23 278 0.35 -0.04 0.39 

11CSP14-3D6 1.76 513 26 370 0.46 -0.07 0.53 

Averages 1.58 509 22 312 .35 -0.05 0.40 

PP/T = Polymeric pigments / tannin.  TP = Total phenols.  Anthos = Anthocyanin.  PP = 

Polymeric pigments.  LPP = Large polymeric pigments.  SPP = Small polymeric pigments. 

 

Blend ID Tons 

11CSP14-3D1 22.28 

11CSP14-3D2 21.22 

11CSP14-3D3 21.41 

11CSP14-3D4 

 

21.27 

11CSP14-3D5 22.29 

11CSP14-3D6 20.07 

Averages 21.42 
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Appendix I.  Fermentation analysis (2011) 

 

Tank Blend ID Date CD TI Brix Temp 

295 11CSP14-3D1 11/4/2011 1.8 18.3 25.6 61 

  11/5/2011 2.9 22.3 25.5 61 

  11/7/2011 3.8 27.3 20.3 69 

  11/8/2011 4.8 29.9 16.9 72 

  11/9/2011 5.5 37.6 12.8 83 

  11/10/2011 5.9 38.5 9.5 84 

  11/11/2011 6.5 38.7 8.7 85 

  11/12/2011 6.7 39.6 7.8 92 

  11/14/2011 7.3 44.1 7.2 76 

  11/15/2011 8.5 45.6 6.9 74 

  11/16/2011 7.7 47.3 6.5 73 

CD = Color density (420A + 520A).  TI = Tannin index (280A). 

CD and TI were analyzed on a spectrophotometer (Average of duplicates) 

 

Tank Blend ID Date CD TI Brix Temp 

296 11CSP14-3D2 11/4/2011 1.0 16.4 25.7 69 

  11/5/2011 3.2 20.8 25.0 67 

  11/7/2011 5.5 33.6 16.6 72 

  11/8/2011 7.3 37.1 13.5 73 

  11/9/2011 6.6 38.5 11.2 72 

  11/10/2011 6.5 38.3 9.4 72 

  11/11/2011 6.8 41.9 7.9 72 

  11/12/2011 6.5 40.6 6.7 75 

  11/14/2011 7.4 44.2 4.3 73 

  11/15/2011 8.3 49.0 3.7 72 

  11/16/2011 8.2 47.1 2.9 74 

CD = Color density (420A + 520A).  TI = Tannin index (280A). 

CD and TI were analyzed on a spectrophotometer (Average of duplicates) 
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Tank Blend ID Date CD TI Brix Temp 

297 11CSP14-3D3 11/4/2011 1.1 16.4 26.3 64 

  11/5/2011 3.9 24.5 24.9 69 

  11/7/2011 6.5 38.9 14.6 79 

  11/8/2011 6.3 39.1 11.2 80 

  11/9/2011 7.2 43.2 8.7 84 

  11/10/2011 6.8 41.0 6.9 84 

  11/11/2011 6.6 46.3 5.6 82 

  11/12/2011 6.0 40.1 4.7 85 

  11/14/2011 7.0 49.7 4.2 83 

  11/15/2011 8.0 51.1 4.1 84 

  11/16/2011 8.6 51.9 4.3 81 

CD = Color density (420A + 520A).  TI = Tannin index (280A). 

CD and TI were analyzed on a spectrophotometer (Average of duplicates) 

 

Tank Blend ID Date CD TI Brix Temp 

298 11CSP14-3D4 11/4/2011 1.1 14.5 25.9 71 

  11/5/2011 4.1 24.2 24.3 69 

  11/7/2011 6.5 41.3 13.3 82 

  11/8/2011 6.4 37.5 10.2 83 

  11/9/2011 7.4 44.0 7.9 82 

  11/10/2011 7.2 44.6 6.2 83 

  11/11/2011 7.0 45.6 5.0 83 

  11/12/2011 5.9 43.3 4.2 85 

  11/14/2011 7.2 48.8 4.0 86 

  11/15/2011 8.9 50.1 4.0 84 

  11/16/2011 8.8 51.5 4.0 84 

CD = Color density (420A + 520A).  TI = Tannin index (280A). 

CD and TI were analyzed on a spectrophotometer (Average of duplicates) 
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Tank Blend ID Date CD TI Brix Temp 

299 11CSP14-3D5 11/4/2011 2.2 17.9 26.0 72 

  11/5/2011 4.1 25.3 24.9 71 

  11/7/2011 6.2 36.7 16.4 72 

  11/8/2011 6.5 36.5 13.6 72 

  11/9/2011 6.6 36.5 11.7 72 

  11/10/2011 6.5 38.4 10.2 72 

  11/11/2011 8.1 42.3 8.4 73 

  11/12/2011 6.6 38.4 7.2 74 

  11/14/2011 7.3 45.9 4.8 74 

  11/15/2011 7.9 46.3 4.0 73 

  11/16/2011 7.8 45.7 3.1 73 

CD = Color density (420A + 520A).  TI = Tannin index (280A). 

CD and TI were analyzed on a spectrophotometer (Average of duplicates) 

 

Tank Blend ID Date CD TI Brix Temp 

300 11CSP14-3D6 11/4/2011 3.5 22.2 26.3 71 

  11/5/2011 6.6 33.7 23.8 72 

  11/7/2011 7.3 41.1 14.4 73 

  11/8/2011 7.1 41.4 11.2 81 

  11/9/2011 7.6 42.8 8.7 82 

  11/10/2011 7.4 43.6 6.7 84 

  11/11/2011 8.2 47.1 5.2 84 

  11/12/2011 7.1 41.2 4.2 86 

  11/14/2011 7.8 49.0 3.1 84 

  11/15/2011 8.2 46.2 3.2 84 

  11/16/2011 9.5 48.7 3.0 85 

CD = Color density (420A + 520A).  TI = Tannin index (280A). 

CD and TI were analyzed on a spectrophotometer (Average of duplicates) 
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Appendix J.  Pressed wine analysis (2011) 

 

Tank  Blend ID CD press TI press CD/TI 

329 

 

11CSP14-3D1 9.0 53.2 1.70 

331 11CSP14-3D2 9.1 53.9 1.70 

335 11CSP14-3D3 11.1 68.7 1.61 

291 11CSP14-3D4 11.5 69.9 1.64 

295 11CSP14-3D5 9.6 54.8 1.76 

296 11CSP14-3D6 11.2 64.6 1.74 

 
Averages 10.25 52.85 1.69 

CD = Color density (420A + 520A).  TI = Tannin index (280A).   

CD/TI = Color density / tannin index. 

CD and TI were analyzed on a spectrophotometer (Average of duplicates) 

 

 

 

 

 

 

 

 

 

 

 

 


