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ABSTRACT 

Methodologies for Simplified Lifeline System Risk Assessments 

 

Michael Germeraad 

Natural hazards are a growing risk across the globe.  As regions have urbanized, single 

events impact greater proportions of the population, and the populations within those 

regions have become more dependent on infrastructure systems.  Regional resilience has 

become closely tied to the performance of infrastructure.  For a comprehensive risk 

assessment losses caused by lifeline outage must be considered alongside structural and 

nonstructural risks.  Many well developed techniques quantify structural and 

nonstructural risk; however, there are insufficient procedures to determine the likelihood 

of lifeline outages.  Including lifelines in seismic assessments will provide a 

comprehensive risk, improving a decision maker‟s capacity to efficiently balance 

mitigation against the full spectrum of risks.   

An ideal lifeline risk assessment is infeasible due to the large geographic scale of lifeline 

systems and their system structure; these same characteristics also make them vulnerable 

to disruption in hazard events.  Probabilistic methods provide solutions for their analysis, 

but many of the necessary analysis variables remain unknown.  Continued research and 

increased collection of infrastructure data may improve the ability of advanced 

probabilistic methods to study and forecast performance of lifelines, but many inputs for 

a complete probabilistic model are likely to remain unknown.  This thesis recognizes 

these barriers to assessment and proposes a methodology that uses consequences to 

simplify analysis of lifeline systems. 

Risk is often defined as the product of probability of failure and consequence.  Many 

assessments study the probability of failure and then consider the consequence.  This 

thesis proposes the opposite, studying consequence first.  In a theoretical model where all 

information is available the difference in approach is irrelevant; the results are the same 

regardless of order.  In the real world however, studying consequence first provides an 

opportunity to simplify the system assessment.  The proposed methodology starts with 

stakeholders defining consequences that constitute ruin, and then the lifeline system is 

examined and simplified to components that can produce such consequences.  Previously 

large and expansive systems can be greatly simplified and made more approachable 

systems to study. 

The simplified methodology does not result in a comprehensive risk assessment, rather it 

provides an abbreviated risk profile of catastrophic risk; risk that constitutes ruin.  By 

providing an assessment of only catastrophic lifeline risk, the risk of greatest importance 

is measured, while smaller recoverable risk remains unknown.  This methodology aligns 

itself with the principle of resilience, the ability to withstand shocks and rebound.  

Assessments can be used directly to consider mitigation options that directly address 

stakeholder resilience.  Many of the same probabilistic issues remain, but by simplifying 

the process, abbreviated lifelines assessments are more feasible providing stakeholders 

with information to make decisions in an environment that currently is largely unknown. 

Keywords: Lifelines, Risk Assessment, Resilience, Hazards, Earthquake Engineering 
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1 INTRODUCTION 

“Nature always bats last.” – Paul Ehrlich 

Natural forces occur over millennia as climates cycle, and continents slowly 

divide and collide.  These forces that lift mountains and carve river systems can at times 

release massive amounts of energy in brief moments which can be disastrous when they 

interact with urban environments.  While lessons are often learned from past earthquakes, 

society‟s development continues to present new complexities never experienced 

previously.  Neighborhoods look and function differently today than they did a century 

ago.  During this century of rapid development, only a handful of earthquakes have 

occurred, resulting in a continued earthquake risk despite many past improvements. 

In seismically advanced regions of the world science, engineering, and policy adopted 

by the earthquake community have decreased life loss.  Despite these improvements, 

earthquakes remain disastrous due to their economic and social impact.  Over the past 

century regions have urbanized and in the process become more reliant on infrastructure.  

While life safety will remain a policy priority, neighborhood resilience and business 

interruption have become significant issues to address.    

 “Tremendous efforts concentrated on upgrading seismic safety have realized 

urban regions relatively safer than what they were before.  This has made us 

observe cases in moderate earthquakes where lifeline systems are disrupted and 

greatly affect urban functions even when the safety issue is not thrown into 

catastrophic danger.  This means that improvements in seismic safety have 

increased the importance of seismic reliability issue.  These factors have led to 
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the birth of a new branch of earthquake engineering called lifeline earthquake 

engineering,” (Kameda, 2000) 

Modern urban societies are more dependent on infrastructure systems than they used 

to be.  These infrastructure systems, critical for social and economic functions, have been 

coined lifelines.  Lifelines, illustrated in Figure 1.1, are the systems relied on by the 

majority of developed society.  Lifelines are defined in the literature as:  

 “Several utilities [are] termed lifelines, because of their crucial role in 

sustaining social and economic systems and because of their network 

characteristics, which make them especially vulnerable to disruption from natural 

disasters,” (Rose et al. 1997). 

“Lifeline systems include energy (oil, electric power, natural gas), water and 

wastewater, transportation (air, land, sea modes), and communication networks.  

These are typically but not exclusively geographically distributed.  Lifeline 

systems typically have sources, transmission systems, and distribution systems,” 

(Taylor & VanMarcke, 2002). 
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Figure 1.1: Lifeline Systems. 

Functioning lifelines are necessary for everyday activities.  Annual outages caused by 

winter storms are reminders of personal and business reliance on critical infrastructure.  

In small events systems are disrupted for hours or are isolated to a single system making 

the outage manageable for most.  In large earthquake events outages can last days, weeks, 

and months and occur across multiple lifelines.   

Reliance on lifelines is important in typical conditions but they become vital 

during disaster response.  The consequences of a single event can lead to a complex 

cascade of related incidents, expanding beyond systems or stakeholders directly affected 

by the initial event (Oliveira Roca & Goula, 2006).  Disruptions to communications, 

water, and transportation networks cause initial emergencies to cascade into disasters.  A 
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swift response to fires or hazardous releases limits additional damage following the initial 

event.  Access to lifelines following an event has a significant impact on the ability of a 

region to quickly respond and contain an event.  Lifelines also play a large role in 

recovery. 

The functionality of most homes and businesses following an earthquake is 

governed by either facility damage (structural and nonstructural), or lifeline failure.  For 

the majority of organizations lifeline outage is likely to be the governing cause for 

closure.  In 1993, Midwest floods resulted in both facility and lifeline damage for 

businesses in Des Moines, Iowa.  In a survey “data indicated that actual flooding was a 

comparatively rare source of business disruption in Des Moines, and that the loss of 

critical lifeline services, particularly water, was a much more important cause of business 

closure, affecting a significantly larger number of businesses,” (Tierney & Nigg, 1995).  

While this represents outcomes from a flood, the relationship between facility damage 

versus lifeline outage losses is similar across all hazards.  Often in disasters the hallmark 

images are of structural damage to a home or facility, but for most, lifeline outage is the 

governing recovery variable.  Figure 1.2 outlines a more complete portfolio of 

organizational risk.  The words may change slightly, but the same schematic can also 

outline the probability of a habitable home.   
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Figure 1.2: Causes of Business Interruption. 

There are many well developed techniques to quantify the risk of structural and 

nonstructural damage due to seismic loadings (ASCE-41, FEMA E-74); however, there 

are insufficient procedures to determine the likelihood of lifeline outage.  When the risk 

is unknown lifeline mitigation projects are difficult to advocate for. Without an 

understanding of the existing risk there is no baseline for predicting the benefits of 

mitigation.  A methodology to analyze and quantify the risk will aid decision making for 

both lifeline operators and users. With information infrastructure providers may 

implement mitigation projects, and individuals and institutions may choose to increase 

internal capacity to limit losses in future disasters, together preventing catastrophes 

caused by long lifeline outages.   

 

1.1 Framework for Lifeline Risk Analysis 

An ideal risk assessment is infeasible due to the scale of lifeline systems and a 

number of variables that influence system performance.  This thesis proposes an 

abbreviated assessment that focuses analysis on catastrophic risk.  Stakeholders prioritize 

which lifelines are most important, the relationships between them, and which outage 
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lengths are acceptable for each system.  This organizes the risk probabilistically and 

bounds the assessment on system elements that govern longer restorations that cause 

catastrophic losses. 

For individuals and regions to effectively mitigate risk they first must know what 

the risk is.  Risk is commonly calculated as: 

     [                      ]  [           ]    EQ 1.1 

However, in most cases there are multiple degrees of failure, each resulting in a unique 

consequence.  For lifelines both the length of outage and level of service will dictate the 

consequence.  The equation then becomes: 

              ∑ [                       ]  [           | ] 
     EQ 1.2 

                             

The overall risk is a summation of the product of each outage length and the resulting 

consequence.  In a theoretical environment where both variables are known the risk can 

be plotted as in Figure 1.3. In the figure the blue line represents the probability of a 

certain outage length, and the red line represents the increasing consequence as the 

outage length time increase.  Their product is displayed by purple columns.  Despite the 

high probability for small outages in this theoretical risk profile, it is the high 

consequence, low probability events, which produce the greatest risk.  With this 

information users can then make preparedness decisions based on the risk.  Some 

preparedness measures may reduce consequences across all outage lengths while others 

may lower consequences for a limited time.  Storage of resources (power, water, fuel, 

etc.) lasts for a finite period from the start of the outage until storage runs out.  Other 
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solutions like a mobile workforce with telecommuting capabilities may initially be out for 

the first week while communications systems are repaired but may then become effective 

in the following weeks while transportation networks undergo longer repairs.  With this 

distribution an organization can make educated mitigation or preparedness decisions to 

minimize losses for certain outage events.   

 

Figure 1.3: A Theoretical Risk Profile. 

In practice however, it is difficult to accurately develop the probability of outage.  

Alternatively, this process can work backwards.  Rather than providing users with a 

comprehensive risk profile users may help to simplify the problem by focusing the 

analysis on specific outages.  The problem then changes to become:  

                          ∑ [                       ]  [           | ] 
    EQ 1.3 

                                                                

This methodology simplifies system probability analysis.  Analysis is focused on 

scenarios and system elements that govern long outage scenarios. 
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Only system components that greatly impact the system performance remain as 

variables in system performance.  The larger c is, the fewer variables that exist.  If an 

organization sets c as 3 hours few simplifications can be made; however, if c is set to 3 

days or 3 weeks, the system can be significantly simplified to only include components 

that will govern a longer outage.  Figure 1.4 illustrates the masking of outage lengths less 

than c, leaving an assessment that only focuses on the probability of long outages and 

high consequences. 

 

Figure 1.4: An Abbreviated Risk Profile. 

 

1.2 Introduction Summary 

For a comprehensive risk assessment lifelines must be considered alongside 

structural and nonstructural risks.  Including lifelines in seismic assessments improves 

decision making capacity to balance mitigation against the full spectrum of potential 

consequences.  An ideal risk profile is infeasible due to the scale of lifeline systems and 

the number of variables that influence system performance.  An abbreviated risk profile 
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simplifies analysis by bounding the assessment on system elements that govern longer 

restorations that cause catastrophic losses, providing both infrastructure providers and 

users with a resource to properly mitigate and prepare. 

While admittedly there are a number of assumptions and unworked theories with the 

proposed methodology, it is important to remember that lifelines and hazards pose a 

problem that has no perfect answer.  Solutions are gauged by better and worse rather than 

correct and incorrect. Uncertainty, a lack of data, multiple stakeholders, and system 

probability complexities will continually cloud lifeline risk assessments.  Even with a 

simplified system, these problems persist.  These barriers are explored in the thesis in an 

effort to better understand the relationships of each variable on system performance to 

further simplify the assessment on governing variables.  The methodology offers a 

feasible solution to characterize catastrophic lifeline risk, providing insight into the risk 

that most directly threatens the greater resilience of those that operate and rely on lifeline 

systems. 
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2 LITERATURE REVIEW 

“For wicked problems there is no solution that can be shown to be optimal…because the system is 

constantly subject to unanticipated change, the idea of a best solution is a mirage.” –Judith Innes 

Lifelines are complex systems with multiple factors that influence their overall 

performance.  Addressing the main variables provides a foundation to analyze lifelines 

implicitly at a high level.  This chapter provides an overview of past lifeline seismic 

vulnerabilities and introduces concepts that are necessary for system probability analysis. 

 

2.1 Earthquake Case Histories 

In past earthquakes system characteristics have been exposed when lifelines and 

hazards interact.  While there are valuable lessons in other earthquakes, Loma Prieta 

(1989), Northridge (1994), Kobe (1995), Maule - Chile (2010), and Christchurch (2011) 

will be used to highlight lifeline failures, successes, and their consequences on society.  

These earthquakes were chosen due to similarity in infrastructure stock, and 

design/construction standards.  Other non-earthquake events are included in Appendix A 

in the case histories portion of the State Hazard Mitigation Plan Lifeline Annex 

(http://hazardmitigation.calema.ca.gov/docs/SHMP_2013_Annexes1-6.pdf). Concepts 

introduced by the case studies will be discussed individually in greater detail in section 

2.3.   

 

http://hazardmitigation.calema.ca.gov/docs/SHMP_2013_Annexes1-6.pdf
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2.1.1 Loma Prieta, CA 

In 1989 a M 6.9 earthquake (USGS, 2012a) 60 miles south of San Francisco 

killed 62, injured 3,757, and caused more than $7 billion in losses (EERI, 1990).  The 

Loma Prieta Earthquake was a large event, but was located a far enough distance from 

the San Francisco Bay Area that it caused substantially less damage than if it were a 

“direct hit”.  Nonetheless there were a number of failures from this event that warrant 

careful attention.  Lifeline damage included the Bay Bridge failure, Cypress Viaduct 

collapse, Highway 17 closure, and the failure of San Francisco‟s high pressure auxiliary 

firefighting water system. 

In the Loma Prieta earthquake ground shaking and liquefaction in the Marina 

District of San Francisco caused widespread damage to wood frame residential structures.  

Gas mains into these structure ruptured, which sparked a fire that quickly spread.  Fire 

crews arrived on the scene only to find that the water suppression system had failed and 

no water pressure was available to put out fires.  The City of San Francisco has a 135 

mile “seismically resistant” auxiliary water suppression system (AWSS) consisting of 

distributed large cisterns to provide scattered water sources across the city without 

relying on long stretches of pipeline.  The system is independent of potable water system 

and is used for firefighting. 

In the earthquake a 12 inch main of the AWSS had failed and six fire hydrants 

were damaged by soil deformations in the area south of Market.  It is estimated that this 

drained the 750,000-gallon Jones Street tank in about 20 minutes; the tank that would 

have been used to extinguish the fires in the Marina District (Schiff, 1990).  Air entered 

the nearest pumping station, further preventing water from reaching the fire.  Two 
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fortunate events limited the potential damage due to fire; 1) calm winds, and 2) 

availability of the (soon to be decommission) fire boats.  The fire department was in the 

process of selling off the fire boats because there was full reliance on the “seismically 

resistant” water distribution system.  The redundancy of the fire boats provided the 

independent backup system needed to suppress the fires.  In other portions of the city 

AWSS and the municipal water supply were interrupted by power outages.  Power loss 

prevented remotely controlled isolation valves on the AWSS from operating.  As is 

typical, interdependency between lifelines resulted in the loss of undamaged, operable 

systems.  Other systems that hampered firefighting were overloaded telephone lines 

preventing fires from being promptly reported.  The separate fire department radio 

communications was also encumbered by the high volume of calls. 

It may appear to be bad luck that the AWSS system failed in an area that had fires 

(as the majority of AWSS performed well), but it was not random.  AWSS and the gas 

lines failed due to local ground shaking and deformations.  Assessing the correlation 

between lifeline elements is critical when developing an accurate risk profile.  

Correlation is a variable that quantifies one event‟s influence on another.  Without 

correlation, the broken gas and water pipeline would be independent of each other and 

failure would be unlikely to occur at the same place; however, with correlation the 

likelihood of both systems failing near one another is highly possible. 

The transportation system in the greater Bay Area sustained 1.8 billion dollars in 

damage due to the earthquake (Comerio, 1998).  The most prominent failures were the 

collapse of the Bay Bridge deck, collapse of the Cypress Viaduct in Oakland, and the 

closure of Highway 17.  Before the earthquake, the heavily trafficked Bay Bridge 
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corridor carried 254,400 vehicles daily (Yashinsky, 1998) and was closed to traffic for a 

month to repair the deck damage.  To offset the loss of this bay crossing, alternative 

corridors and alternative means of transportation provided the redundancy needed to 

maintain some functionality.  Bay Area Rapid Transit (BART) initiated 24-hour daily 

service and increased its ridership from 218,000 daily passengers to 357,000 passengers, 

a 64% increase (Schiff, 1990).  Alternate bridges across the bay saw both general and 

freight traffic increase.  The Golden Gate Bridge had its busiest day in history ten days 

after the earthquake. 

Twelve miles of Highway 17, another key corridor connecting Santa Cruz and 

Santa Clara counties, were closed due to earthquake and landslide damage.  The corridor, 

the only multi-lane highway between the two counties, was closed or restricted for 32 

days (Schiff, 1990).  The closure of Highway 17 impacted travel in between Santa Cruz 

and Santa Clara counties but also impacted rail commuters on the peninsula between 

Gilroy and San Francisco.  Caltrain, a three county passenger rail system, had no track 

damage, but had employee disruptions.  Many Caltrain crew members lived in Santa 

Cruz and could not travel to work due to damaged roads (Schiff, 1990).  The Santa 

Cruz/Santa Clara transportation corridor was solely reliant on Highway 17.  In 

comparison, the Bay Bridge closure had dramatic travel impacts, but BART, ferries, and 

alternate bridges provided alternative commute options, demonstrating a redundant 

system. 
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2.1.2 Northridge, CA 

In January 1994 the M 6.7 Northridge earthquake rattled Southern California.  

There were no catastrophic failures in the power, water, wastewater, communication and 

gas transmission systems.  The transportation network did have considerable damage 

which limited hospital access in the epicenter region.  In the Los Angeles region there are 

27 freeways totaling 615 miles of roadway (Leung, Yee & Wesemann, 1995).  Over 

1,200 bridges experienced accelerations greater than 0.25g, seven sustaining severe 

damage, and another 230 experiencing minor damage (Yashinsky, 1995).   Damage at the 

interchange between Interstate 5 and State Route 14 caused closures and considerable 

delays for both corridors.  These routes handle significant amounts of the freight traffic 

and commodities‟ movements north out of Los Angeles.  Shipping companies were quick 

to react, with 30 to 50 percent of all Los Angeles truck trips immediately canceled before 

lengthy detours across other State Routes were in place. Accelerated repair design, 

execution of emergency contracts, cooperation among agencies, and detours quickly 

restored access, limited delays, and accelerated the rebuilding process.  By May, just four 

months after the earthquake, $122 million had been spent on highway repairs and $144 

million on bridges (Yashinsky, 1995).  In November, ten months later, all highways 

impacted by Northridge were open to traffic. 

At the time of the earthquake Los Angeles Department of Water and Power 

(LADWP) serviced 4.1 million people and had 712,000 water service connections.  

Initially 670,000 residents were without water and another 180,000 had reduced pressure.  

Table 2.1 summarizes the damage.  The system was completely operable 12 days after 

the event supplying customers pre-disaster service despite only repairing 8/60 
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transmission line leaks.  LA Water restored functionality 6-9 years after the earthquake 

(Davis, 2013).  Two weeks after the earthquake the water system was operable, but was 

not functioning at its pre-earthquake reliability.  For the purposes of community 

resilience operability is important, for system resilience functionality is necessary (Davis, 

2013).  Recognizing the difference is important for clear communication and when 

prioritizing mitigation prior to the event or prioritizing work during response and 

recovery. 

Table 2.1: Northridge Damage to LA Water System 

 

 

2.1.3 Kobe, Japan 

Exactly one year to the day after the Northridge earthquake, a M 6.9 earthquake 

resulted in 6,300 deaths and caused $200 billion in losses in the Hanshin region of Japan 

(Schiff, 1998).  “In contrast to the 1994 Northridge earthquake, which was a moderate-

sized disaster, the Kobe earthquake represented the industrialized world‟s first experience 

of a catastrophic urban earthquake disaster,” (Chang, 2000).  Kobe, a port city of 1.5 

million people, incurred the majority of the regional damage.  Liquefaction at the port 

resulted in $10 billion dollars of damage.  Despite rapid reconstruction repairs were not 

Table X.X: Northridge Damage to LA Water System

Damaged Component

Raw Water Pipes 14

Transmission Pipes 60

Distribution Pipes 1013

Service Connections 200

Reservoirs 7

Treatment Plant 0.5

Lost Power up to 27 hours -

Davis, 2013

Quantity     
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completed until March 1997, two years after the earthquake.  During the two years of 

reconstruction the Port dropped from its pre-earthquake ranking of 6
th

 to 17
th

 (Chang, 

2000).  During reconstruction the port dropped as low as 24th.  In addition to the losses 

incurred at the port, related port operations represented 17% of the local employment.  

The losses in business and income accounted for over $4 billion in just the 9 months 

following the earthquake.  A study found that soil improvement mitigation would have 

had a high investment return at the Port of Kobe.  The rate of return given the year of the 

earthquake would have resulted in a 22% rate of return had soil improvements been 

included in port construction (Werner, Dickenson & Taylor, 1997).  A sensitivity study 

showed that had the earthquake occurred earlier the return would have been much higher, 

and if the earthquake had occurred later, the return would have been comparable.  A few 

berths at the port of Kobe were seismically designed and performed well and were used 

for emergency relief during the earthquake response (Chang, 2000).   

Ports and airports are included in lifeline studies as they are key nodes in 

transportation networks.   The Kobe Port internally incurred large losses due to the 

earthquake, but the businesses that relied on shipping also shared substantial losses.  The 

Kobe earthquake is not a unique scenario.  Ports in Seattle, Tacoma, Oakland, Los 

Angeles, and Long Beach all are in seismic regions capable of similar or larger 

earthquakes.  These ports not only have direct ties to their regions, but are responsible for 

large portions of their state‟s and the nation‟s goods movement.  Five of the seven largest 

North American container ship ports are in seismically active regions, capable of 

producing catastrophic earthquakes, see 2011 container port rankings in Table 2.2. 
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Table 2.2: North America Port Container Traffic in Seismic Regions. 

 

The severity of the Kobe earthquake resulted in long lifeline outages.  Complete 

restoration took 7 days for electricity, 82 days for water, 85 days for natural gas, 6 

months for major rail lines, and 20 months for highway bridges (Kameda, 2000).  The 

water system alone had 134,000 service and 3,600 distribution mains break in the 

earthquake.  High performance pipelines performed well even in areas of liquefaction and 

large permanent ground deformation, but older more brittle pipes resulted in wide spread 

failures. It took two weeks to return water service to half the customers and 40 days to 

return service to 90 percent of customers.  Figure 2.1 shows the recovery of the Kobe 

earthquake and other urban earthquakes similar in magnitude to the 1994 Kobe 

earthquake.  

2011 Rank Port Containers

1 Los Angeles, CA 7,941,000

2 Long Beach, CA 6,061,000

5 Vancouver, British Columbia 2,507,000

6 Oakland, CA 2,343,000

7 Seattle, WA 2,034,000

11 Tacoma, WA 1,485,617

(AAPA, 2012)

Table X.X: North America Container Traffic
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Figure 2.1: Water Supply Restoration of 1994 Kobe Earthquake. 

 

2.1.4 Maule, Chile 

The 2010 M8.8 Maule Earthquake was an earthquake that affected a vast region 

of Central Chile, with 72% of Chile‟s population experiencing MMI VII or stronger 

intensity shaking (EERI, 2010).  At the time it was the 5
th

 largest earthquake recorded 

since 1900.  Although the epicenter was 210 miles away from Santiago, the ground 

shaking had a large impact on the city.  The electric grid went down throughout most of 

Central Chile including metropolitan Santiago a region of 6.1 million people.  The loss of 

power precipitated the loss of communication in the form of radio, television, telephone, 

cell phone, internet, and others.  The loss of power also brought to a halt the water 

distribution in Santiago that relies on electric pumps.  This lack of services presented an 

inconvenience to some, a risk to other more vulnerable populations, and a hindrance to 
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disaster recovery particularly because Santiago is the seat of power for the country.  The 

interconnectedness of the power, communication, and water is an obvious concept but 

difficult to untangle for ensuring resiliency.   

Closer to the epicenter is the city of Concepcion, population 900,000.  Here not 

only was power and water out, but all communication to the city was severed.  The city 

was isolated and had no means of communicating with the rest of the country or 

receiving word that help was on the way.  The lack of information compounded the lack 

of essential services and resulted in a break in the social fabric of that community.  The 

government was absent and did not communicate with people in Concepcion; “many 

officials believed that looting became more widespread due to a delay in mobilizing the 

army to assist with local law enforcement and security.  When the military began to 

arrive more than 48 hours after the event, the looting quickly subsided,” (American Red 

Cross, 2011).  Once communication was restored the civil unease dissipated and recovery 

and reconstruction began.  The initial power outage was a major cause of the 

communication network interruption, which then aggravated the social unrest in 

Concepcion.   

Water in Concepcion was severely disrupted.  The water treatment facility that 

serviced 300,000 residents came close to losing its only water intake pumps.  The one 

building responsible for the water pumping in the region was a seismically vulnerable 

building that suffered major damage.  Had the pumps been damaged it could have 

required months to have them replaced by an overseas vendor (ESSBIO, 2010).  After the 

main shock temporary steel cages were constructed to protect the pumps in the case of 

further building collapse in future aftershocks (see Figure 2.2).    
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Figure 2.2: Temporary Protection of Water Intake Pumps in Concepcion Chile. 

Even with the intake pumps operational, pipeline breaks limited service to only 

17% of the population a day after the event.  In an August 2010 presentation ESSBIO, the 

water provider, listed 4 main barriers to restoration: 

 No power supply in most of the main water and sewage plants. 

 Although the plants have power generators the lack of oil supply was a major 

problem.  Fuel was also unavailable for contractor vehicles. 

 The collapse of the public telecommunications networks impeded the 

coordination among personnel, with suppliers and contractors. 

 In the first few days looting in supermarkets, oil stations, banks and retail stores 

affected the logistics for a proper response to the emergencies causing a security 

problem for personnel. 

ESSBIO, was initially very slow to begin repairs due to civil unrest and limited 

telecommunications.  ESSBIO requested electrical service priority to key facilities and 

also asked for military security in areas of safety concern.  When these barriers were 

removed restoration was quite rapid.  The water system restoration is shown in Figure 2.3 
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and compared against the water restoration following the 1994 Kobe earthquake. In 

Chile, after slow start, the repair efforts quickly surpassed Kobe‟s restoration.  It took 

five weeks to return service to 90% of residents.  During this time of limited service 

ESSBIO deployed 900 portable water tanks to provide residents with the water needed to 

survive during the water outage (ESSBIO, 2010). 

 

Figure 2.3: Water Restoration in 1994 Kobe and 2010 Chile Earthquakes. 

The main highway that runs North-South in Chile is Routa 5.  Ground shaking 

and/or liquefaction resulted in widespread damage to this transportation artery slowing 

relief efforts, reconstruction, and regular commerce.  The damage occurred generally due 

to two types of failures (GEER, 2010).  The first was foundation soil failure at small 

water crossings.  The major water crossings were engineered with well-designed bridges 

and abutments, but the lesser crossings were not addressed with the same engineering 

rigor and often failed, sometimes catastrophically, taking out large sections of the four 

lane highway.  The second failure mode was small, but ubiquitous deformations of the 
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engineered abutments throughout the affected region (Schanack, Valdebenito & Jorge, 

2012).  In this case a few centimeters of settlement of a bridge abutment in the approach 

to a bridge necessitated a slowing of traffic.  This was observed at over 100 bridges.  The 

failures were not catastrophic but nonetheless the pervasive damage was costly to fix 

because of the large number of bridges needing attention. 

Chile‟s two largest oil refineries (130,000 and 98,000 barrels per day) were shut 

down following the earthquake due to power outages and to assess possible damage and 

check critical elements (TCLEE, 2010).  The smaller of the two located near Santiago 

had minor damage and resumed production ten days after the event.  The larger refinery 

in the Biobío region had equipment displaced and pipeline damage.  One of two crude 

pipelines that feed into the facility was damaged by lateral spreading along the shore. 

Despite being classified as minor damage initial assessments estimated full operation 

would not be restored for three to seven months (TCLEE, 2010). 

 

2.1.5 Christchurch, New Zealand 

In February 2011 Christchurch experienced a M6.3 earthquake directly under the 

city resulting in over $20 billion in damages and 185 casualties.  The region experienced 

a larger M7.1 earthquake less than six months earlier, which had caused $4-5 billion in 

damage (EERI, 2013).  Among many failures, the February 2011 quake resulted in 

extensive damage to distribution infrastructure in neighborhoods severely affected by 

liquefaction.  In some cases whole neighborhoods had homes with minimal damage, but 

they had no water and wastewater services.  In these scenarios residents were encouraged 

to live at home without services rather than seek housing in temporary shelters.  Portable 
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toilets were placed on every block and portable showers were placed at community hubs 

while water and sewage systems were repaired.  The recovery strategy was successful in 

bridging the gap between the earthquake event and the restoration of the infrastructure 

system, allowing individuals to stay in their homes with an acceptable level of service. 

Over time however the portable toilets placed on the street became an 

unsatisfactory service.  The region was subject to numerous large aftershocks resulting in 

frequent damage and setbacks in lifeline restoration.  The portable toilets on the streets 

were undesirable to women and children due to a perceived or real safety concerns.  

Recognizing this, chemical toilets were used in subsequent outages (Johnson, 2013).  The 

chemical toilets could be placed inside homes decreasing the distance to the service, and 

in terms of security, increased the quality of the service. 

 

2.2 Local Disasters & Consequences 

Earthquake case histories provide insight into lifeline system vulnerabilities, 

system interactions and consequences of failures.  Because earthquakes are rare, general 

consequences have to be drawn from events across the globe.  Small local disruptions 

caused by winter storms, large accidents, or even union strikes can provide insight into 

the consequences of failure specific to the region of study.  Local events illuminate 

consequences that account for the local layout of systems, their interaction with other 

systems, and the local populations dependent on them.  These small disturbances can be 

used to extrapolate consequences of a future earthquake.  Appendix B, a Vulnerability 

Assessment of Bay Area Infrastructure, uses local cases to study Bay Area specific 

impacts of recent small failures and closures. 
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2.3 Quantifying the Probability of Damage   

Damage occurs when a load is greater than resistance.  Figure 8 demonstrates the 

relationship between loading and resistance in a graph.  The loading produced by 

earthquakes are best represented by a wide distribution as their forces are uncertain. 

Resistance is also shown as a distribution; while structures are designed for a specific 

load, a number of variables result in stronger or weaker structures.  For individual 

structures quantifying the probability of damage has become a relatively routine process.  

Both the resistance of the structure and the hazard loading are calculated either 

deterministically or probabilistically and can be compared to determine the likelihood of 

damage or failure.  For single sites the hazard is generalized at a single point because the 

distance from known faults is static.  The major difficulty with lifelines is that both the 

loading and resistance change continuously.  Hazard forces are not static across regions.  

Each link of a lifeline system is above a unique soil profile and is a unique distance from 

a seismic source.  Lifelines are spatially distributed infrastructure systems made up of 

many components with different levels of resistance.  Lifeline resistance and hazard 

loadings are not static. 
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Figure 2.4: Load and Resistance Curves. 

For analysis purposes systems are often segmented into links (e.g., pipelines, 

canals, roadways, power lines) and nodes (e.g., pump stations, interchanges, switching 

hubs, bridges) (see Figure 2.5) to organize the problem and assign single hazard levels 

and single resistance levels to discretized segments.  Table 2.3 breaks down each lifeline 

into source nodes, nodes, anchor nodes, and links.  Source nodes and anchor nodes 

describe key nodes either at the beginning or end of the system.  Component is used to 

describe any piece of the system, either link or node.  Depending on the vastness of the 

system and the resources and data available each component could be evaluated 

individually, each with a unique hazard and structural response.   
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Figure 2.5: Conceptualizing and Analyzing Lifelines as Links and Nodes. 

Table 2.3: Lifeline Components 

 

Unfortunately, simply summing the damage states of each lifeline node and link 

together does not result in an accurate system assessment.  A number of other 

probabilistic variables must be considered when multiple elements are responsible for a 

systems performance.  System structure, interdependencies, cascading failure, 

collocation, damage states, spatial effects and correlation are critical for accurate system 

assessment.  While each lifeline system has unique characteristics, generalities can be 

applied to all systems.  As well as being significant variables for accurate analysis, 

effective mitigation strategies are often derivatives of these system characteristics.  In 

Lifeline Source Node Transmission Links Nodes Distribution Links Anchor Node

Transportation
Distributed 

Sources, Ports
Roads Bridge Roads

Distributed 

Sources, Ports

Electric Power Plant Power Line Substation Power Line Distributed Sources

Gas/Fuel
Oil/Gas Fields, 

Refinery

Pipeline, Rail, 

Marine, Road

Pump Station, 

Terminal Station
Pipeline, Road Distributed Sources

Water
Watershed, 

Reservoir
Pipeline

Pump Station, 

Treatment Facility
Pipeline Distributed Sources

Waste Water Distributed Sources Pipeline Pump Station Pipeline Treatment Facility

Cell 

Communications
Distributed Sources - Cell Towers - Distributed Sources

Internet 

Communications Distributed Sources
Line

Root Server, Data 

Center
Line

Distributed Sources
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Chapter 5, the mitigation strategies discussed address one of these characteristics to 

improve the system reliability. 

 

2.3.1 System Structure 

Beyond the behavior of each node and link their organization can have a dramatic 

effect on the overall system performance.  Lifelines are arranged in one of two simplified 

conceptual system structures, series or parallel.  In a series system the failure of a single 

component results in entire system failure, while parallel systems have multiple 

components performing the same function allowing for operation as long as one of the 

parallel components is undamaged.   

Most lifelines are series systems.  If we visualize a lifeline as a chain, then the lifeline 

fails when any single “link” in the chain fails.  This chain analogy is a functional 

definition of a series or non-redundant system.  Figure 2.6 shows a functional series 

system when all nodes and links are performing (left), and a failed series system due to a 

single component failure (right).  Examples of series systems include: 

 A transportation corridor where the failure of any bridge or highway section will 

result in the closure of that corridor. 

 A gas main where a rupture anywhere along its length results in disruption of gas 

delivery. 

 A levee system where a single breach results in flooding on the protected side of 

the levee. 

 An electricity grid that is down because a substation component has failed. 
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 A water canal where a fault has ruptured through the canal section thereby 

ceasing all flow downstream. 

 

 

Figure 2.6: Series System Structure. 

When multiple components or links have the same function, the system has a parallel 

design.  This is also true when multiple modes provide the same service (Taylor & 

VanMarcke, 2002).  To realize failure all components performing the same function must 

fail.  Parallel systems decrease risk by increasing redundancy.  Figure 2.7 shows a 

functional parallel system when all components are working (left), and a still functioning 

system with a single component failure (right). A key in having serviceable and 

functioning lifelines during or after a disaster is to build into the system redundancy, but 

as seen in the case histories ensuring redundancy is often difficult.  In many cases 

lifelines are inherently series systems, or have series segments.  Examples of parallel 

systems are: 

 Two North/South highways with interchanges connecting between them. 

 A North/South highway with a North/South passenger rail line. 

 A water system with two separate source reservoirs that service the same area. 

 A fuel refinery that can import or export fuel via pipeline, rail, truck, or boat.  
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Figure 2.7: Parallel System Structure. 

Systems that have both series and parallel components are called general systems 

(see Figure 2.8).  General systems can be analytically modeled (e.g., Song and Der 

Kiureghian, 2003), but the difficulty in accurately mapping the complexity of general 

systems and more importantly the difficulty in properly accounting for the component 

correlation makes this an often untenable proposition.  It‟s important to note that at larger 

scales most lifelines have the attributes of a general system.  The complexity often 

increases when multiple modes of service exist.  When there are multiple modes it is 

important to recognize geographically which portions are series (serviced by a single 

mode) and which are parallel (serviced by multiple modes).  In the case of firefighting in 

San Francisco a multi-mode parallel system existed along the bay front, serviced by both 

AWSS and fire boats, but not at distances the fire boats could not pump water to.  

 

Figure 2.8: General System Structure. 

When one piece of a parallel system is damaged a strain can be placed on the 

remaining link.  The consequences of a component failure can be influenced by how near 

capacity the system is functioning on a day-to-day basis.  Take for example a network of 
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interconnected roads that provide access from point A to point B, illustrated in Figure 

2.9.   This system can be considered a general system as there may be roads that are 

parallel and there may be interchanges that are in series.  If this system is performing at 

or near capacity prior to some adverse loading situation, even a failure of a redundant 

component can result in system failure such as gridlock (Lewis, Mackin & Darken, 

2011).  However, if this system is running far below capacity, then there is inherent 

resilience in the system to absorb some component failure and continue to function.  This 

relationship of system capacity to consequences adds a layer of complexity to systems 

analysis, making proper assessment of risk and reliability tricky. 

 

Figure 2.9: Capacity as an Element of Parallel System Performance. 

The reliability of systems is greatly dependent upon the system organization.  

Analysis must acknowledging system structure. In non-redundant systems damaged 

components can result in service interruptions far from the point of failure (Taylor & 

VanMarcke, 2002). Designing new parallel systems to complement existing 

infrastructure can improve the performance of the overall system.   
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2.3.2 Interdependency, Cascading Failures, & Collocation 

Interactions between lifelines can have negative cascading effects where the failure of 

one system causes the failure of another, a phenomena common in many urban 

earthquakes (Kameda, 2000).  Lifeline interdependence is the reliance of one system on 

another.  Interdependencies can hinder function, hinder repair, or physically damage the 

system.  Cascading failures can happen both within a system and across systems and is 

used to describe the snowball effect of small initial failures.  Lastly, collocation is when 

systems are located near to one another in space, resulting in simultaneous failure and 

often difficult coordination during repairs.  Examples of these effects are highlighted 

below: 

 A gasoline distribution system that is crimped by loss of electricity or 

transportation corridors. 

 A water distribution system that is down because of loss of electricity. 

 A communication system that is down due to severed land-lines and loss of 

electricity. 

 A water system that is non-operational because a failed levee system has 

compromised the flow of fresh water. 

 A bridge collapse that also severs communication, power, and water services that 

were attached to the bridge deck. 

In Santa Cruz after the Loma Prieta earthquake a 35-hour power outage at a 

wastewater pumping station resulted in an 800,000 gallon raw sewage release (Schiff, 

1990).  The sewage release was not a result of facility earthquake damage, but rather the 

dependence on the failed electric service.  The same interaction occurred in 2011 when a 
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cascading power grid failure caused by maintenance work at a substation outside Yuma, 

Arizona sparked a rapid fire 11-minute sequence of system failures where portions of 

California, Arizona, and Mexico lost power (Lee, 2012).  In San Diego the electrical 

outage caused huge transportation delays and was responsible for more than two million 

gallons of sewage discharge (CBS, 2011). 

In the above power outage cases it is irrelevant if the power failure was caused by 

maintenance error or a large hazard event.  The magnitude of cascading failures has little 

to do with the hazard and more to do with the organization and design of the system.  

Cascading failures can be visualized with a single grain of sand continually dropped onto 

a sand pile until a “slide” occurs.  This slide can be very small or it can bring down a 

majority of the pile.  What causes a slide to be large or small has nothing to do with the 

single grain of sand, rather, “it has to do with the perpetually unstable organization of the 

critical state, which makes it always possible for the grain to trigger a [slide] of any 

size…as the sand pile evolves into a critical state, many grains rest just on the verge of 

tumbling.  And these grains link up into „fingers of instability‟ of all possible lengths,” 

(Mauldin, 2012).  The cascading effect starts with one small failure leading to another; 

very quickly a sand pile or lifeline system can be brought down.  It is the 

interconnectedness of the underlying unstable structure that is the key to the massiveness 

of the final failure.  While the magnitude and epicenter location of a future earthquake 

may be desirable predictions, the instability of the lifeline systems and their 

interconnection is what can lead to large failures.   

“Catastrophic consequences arise when systems operate at or near their critical 

point a state whereby small, otherwise insignificant perturbations lead to 
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unexpectedly large consequences.  Normal accidents have three fundamental 

properties: (1) small failures can lead to large consequences, (2) nearly all large 

failures are the result of cascading small failures, and (3) failure propagation is 

enabled by interactions or the coupling of parts within the system.  These 

attributes are associated with systems in a state of self-organized criticality 

(SOC).  As SOC increases, the system nears a critical point where even the 

smallest perturbation can have disastrous results. Alarmingly many of our critical 

infrastructure sectors have reached self-organized criticality,” (Lewis et al. 

2011).   

There are a few techniques that can limit the degree to which systems are self-

organized-critically, where small failures cascade into large ones.  Designing and 

operating systems below maximum capacity can provide for a surge in the system 

without failure.  In 2010 the San Bruno Pipeline explosion demonstrated both cascading 

failure and surge capacity.  An error in electrical maintenance work 50 miles away 

caused a pressure surge resulting in the failure and explosion of a weak portion of 

pipeline.  The dependence of the gas system on electrical system and the inability of the 

pipeline to handle higher pressures are clear. The failure was caused by each of the three 

qualities of SOC.  A few small failures at an electrical substation led to a large failure and 

consequence of the coupled natural gas line.  Surprisingly, after the explosion natural gas 

was restored to all but a few blocks near the explosion despite a major natural gas 

pipeline being taken off line (NTSB, 2011).  PG&E has three transmission lines that 

service the area downstream of the rupture.  Had the overall system been at capacity prior 

to the explosion natural gas would have been interrupted to a large swath of the peninsula 
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and San Francisco.  Because the system was running below capacity (partially due to the 

season) demand could be met by two other lines so no natural gas outage occurred, 

similar to the example in Figure 2.9.  SOC qualities were responsible for the San Bruno 

incident, but the system design also lessened the number of households that experienced 

natural gas service interruptions. 

Interdependency and cascading failures are often caused by the relationship 

between lifelines, and are independent of space.  In the case of the Southern California 

power outage, the sewage failure occurred hundreds of miles from the electrical failure.  

Collocation is a geographic interaction between lifelines.  Systems are often collocated 

due to the environments physical constraints.  There are many corridors that bunch 

lifelines together; whether it is to pass a geographic feature (mountain or river) or due to 

limited public right of ways through an urban environment. When infrastructure systems 

are collocated a single failure can damage other systems unaffected by the hazard 

loading.  In the San Bruno case, had the PG&E pipeline ruptured along another section 

when it runs adjacent to one of the other natural gas transmission pipelines, the 

collocation of the pipes would have resulted in failure of both pipes, and a natural gas 

outage for the San Francisco Peninsula.  In addition to collocation causing damage across 

systems, it can slow restoration.  Repair crews can be delayed by safety concerns, or by 

multiple crews working in the same area (Schiff, 1990).  Gas leaks, wastewater leaks, can 

slow the restoration of other systems because of the hazardous conditions they create. 

Recognizing interdependencies and collocation will make for more complete 

assessments of damage potential and restoration estimates. In 2008 as part of the 

ShakeOut exercise (a state wide earthquake drill and earthquake table-top exercise) 
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researchers brought together lifeline providers in the Southern California region to 

discuss the impacts of a M7.8 San Andreas earthquake scenario.  Two panel discussions 

were held to determine the expected restoration of utility systems following the 

earthquake.  In the first panel utilities only considered their expected restoration, due to 

earthquake damage only.  At the second panel, utilities were given each other‟s expected 

restoration times and asked to re-evaluate their expected restoration now knowing how 

long they may be without services they depend on (Porter et al., 2011).  Figure 2.10 

illustrates the difference in expected restoration time of the electric system at each of the 

two panels.  With knowledge of other expected system performance, and a desire to 

manage public expectations of system performance, the restoration of the power system 

was drastically impacted.  In the revised estimate 10% of customers in Los Angeles, 

Riverside and San Bernardino Counties would not have service restored for over one year 

after the scenario earthquake. Including these qualities in an assessment not only offers 

an opportunity for infrastructure providers to communicate their expected performance to 

one another, but it also provides an opportunity to coordinate their mitigation work as 

well as their response to future failures. 
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Figure 2.10 Southern California Edison Power Restoration Estimate in a M7.8 San 

Andreas Earthquake. 

 

2.3.3 Hazards 

In high seismic regions comprehensive seismic assessments are difficult.  Systems 

pass over or near a number of faults each capable of a variety of rupture sequences.  

Earthquakes of equal magnitude on the same fault can produce different hazards across a 

region.  Including the full suite of earthquakes and hazards in an assessment is a difficult 

task.  A variety of methods exist to map and quantify hazards.  Understanding what they 

show, and how they were developed is paramount in how they are used in a system 

assessment. 
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Seismic hazard maps are developed both deterministically and probabilistically.  

Deterministic maps are scenario maps for specific single events.  Probabilistic hazard 

maps aggregate the hazard from a full suite of potential earthquakes, resulting in a single 

hazard level.  Engineers use probabilistic hazard maps to assign a single value to assess 

the design level for buildings (single sites) accounting for all potential faults.  These 

maps are less helpful when studying system performance of an actual event.  Take for 

example a piece of infrastructure that crosses two faults in the Bay Area (see Figure 

2.11).  The probabilistic map (right) shows high hazards everywhere, when in a scenario 

event (left) only a portion of the region will have a high hazard while the other will have 

low hazard.  When analyzing a system with probabilistic maps the performance in a 

single event is not studied and the analysis will result in greater damage than will actually 

occur in any one event.   

 

Figure 2.11: Using Scenario and Probabilistic Hazard Maps for Lifeline 

Assessments. 
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 A deterministic approach allows system performance to be studied, but limits the 

number of scenarios analyzed; each scenario requires a new analysis.   Only a single 

scenario or a chosen few can be studied resulting in an incomplete portfolio of 

earthquakes.  For studies in the San Francisco Bay Area fifteen different fault would need 

to be considered.  Each fault could be studied with multiple earthquake magnitudes and 

rupture characteristics. Figure 2.12 is a deeaggregation map produced by the Association 

of Bay Area Governments (ABAG).  The map shows which faults contribute the greatest 

hazard potential for each location in the Bay Area.  Discrete scenario events must be 

prioritized for lifeline studies, from highest to lowest hazard. 
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Figure 2.12: Deaggregation Map of the San Francisco Bay Area (ABAG, 2013a). 

In addition to studying multiple events, there are a suite of hazard forces that must be 

considered; ground shaking, fault rupture, liquefaction, lateral spreading, 
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landslide/rockfall, tsunami/seich, and secondary hazards like fire following earthquake 

are each capable of damaging infrastructure systems and must be considered for a 

comprehensive seismic assessment.   

 Ground shaking is measured in acceleration, often as a percentage of gravity.  

Shaking intensity does not attenuate uniformly outward from an earthquake 

epicenter due to a variety of terrains and soil conditions.  Different soil properties 

amplify or dampen seismic waves as they propagate outward, and fault 

directivity, and topography all influence ground accelerations.  Seismic waves can 

reflect off mountain ranges causing basin effects in regions like Mexico City and 

Los Angeles.  In well mapped regions of the world these characteristic are already 

included in shaking hazard maps. 

 Fault rupture is the hazard with the greatest level of certainty.  The fault location 

is often known, and maximum probable rupture displacements for faults are 

known with some confidence.  The relationship between earthquake magnitude, 

surface fault rupture length, and displacement have correlation coefficients of 

0.84 to 0.95, providing decent predictions to be made on the fault rupture 

expected given the magnitude of the event (Wells & Coppersmith, 1994).  Surface 

fault rupture can over multiple years, with the majority of the displacement 

occurring the day of the event, and the remainder occurring in the following year 

or two; this is the expected case for the Hayward fault in the Bay Area 

(Lienkaemper, Borchardt & Lisowski, 1991).  The post-seismic slip can be 

difficult to manage as infrastructure may need to be continually re-straitened as 

the fault continually creeps.  This is of special concern for systems like rail that 
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cross large faults that could require continual re-straightening of tracks for years 

after an earthquake. 

 Ground failure, liquefaction, lateral spreading, landslide, and rockfalls, have also 

been mapped with varying levels of uncertainty by the USGS.  Liquefaction is the 

transformation of a granular material from a solid state into a liquefied state as a 

consequence of increased pore pressure and decreased effective stress.  

Liquefaction can result in ground settlement, loss of baring capacity (often 

impacting the performance of foundations), and lateral spreading which occurs 

when liquefaction occurs on a slope or near a free face.  Liquefaction is common 

in areas with high water tables, and certain sandy soils (often near existing or 

historic water features).  Similarly, earthquake induced landslides and rockfalls 

occur when the stability of slopes is disturbed by ground shaking.  Severe 

liquefaction or landslides can cause significant damage to lifelines, but even 

embankment settlement of a few inches can cause failures and closures of road 

and rail lines.  When lifelines cross over hundreds of miles of environment, the 

soil profiles and topography are dynamic variables that are important in 

accurately representing the seismic hazard (Kameda, 2000; Song, 2009).  Soil and 

structure interaction has had a drastic effect on performance.  In the 1989 Loma 

Prieta earthquake 100 of 150 total pipeline breaks were in the Marina District, a 

direct result of the local soil failures (Schiff, 1990).  Including ground failure in a 

lifeline assessment is necessary as so many of system links are vulnerable to 

damage due to soil failures, even more so than shaking. 
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 Tsunamis and seiches can be caused by off shore subduction earthquakes, by 

above or under water landslides that displace large amounts of water, or volcanic 

eruptions.  Both the flooding caused by tsunamis and the water flow are 

responsible for damage.  In large events they can cause complete damage across a 

region, but even small tsunami heights can cause damage to key infrastructure 

facilities located near the water (ports, wastewater treatment plants, public right of 

ways along waterfronts, etc.) due to both inundation as well as high currents as 

water flows in and out of bays or marinas. 

 Secondary hazards following earthquakes are common and have been responsible 

for more damage than the shaking. The 1906 San Francisco earthquake shook the 

city, but the resulting fire devastated San Francisco, “The two largest peace-time 

urban conflagrations in history have been fires following earthquakes – 1906 San 

Francisco and 1923 Tokyo, the latter event‟s fires causing the great majority of 

the 140,00 fatalities,” (Scawthorn, 2011).  Fires following earthquakes are 

common and visible directly after an event, but public health is another issue that 

can occur with damaged wastewater systems. 

Understanding how earthquake hazards change with space is an important quality to 

consider.  Because systems span large distances each component will experience different 

forces.  Quantifying and mapping the hazard across a system will influence the expected 

performance of each component and will help highlight which components of existing 

systems are most susceptible to severe hazards. 
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2.3.4 Correlation 

Correlation coefficients are used to account for influence between components.  

When analysis is performed on systems with more than one component correlation must 

be included for accurate assessment.  Ang and Tang describe the correlation coefficient 

(p) as “a statistical measure of the degree of linear interrelationship between two random 

variables,” (Ang & Tang, 2007). The performance of a single component in the system 

drastically alters the likelihood of survival or failure of a neighboring system component.   

Correlation values range from -1.0 to 1.0.  Positive values correspond to 

components likely to respond similarly (i.e. if one is damaged, the other is likely 

damaged), negative values mean components are likely to respond differently (i.e. if one 

is damaged, the other is likely undamaged).  Large correlations, values near -1.0 and 1.0, 

dramatically influence system performance.  Values near zero are weakly correlated and 

don‟t impact system performance; component performances are independent.   

The following common textbook example demonstrates this.  Two widgets 

fabricated at the same plant on the same day and installed identically are likely to respond 

similarly when subject to similar loadings, and would have a correlation value close to 

1.0.  The performance of one widget will influence the predicted performance of the 

second.   

For lifelines each component in theory will be uniquely correlated to all other 

nodes in the system based on its unique characteristics.  Most lifelines are an 

amalgamation of varying construction types, ages, materials, and design codes all of 

which influence the predicted resistance of system components.  The spatial location and 
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soil type will influence the loading relationship between system components and is also 

correlated.   

 

2.3.5 Varying damage states 

In many discussions of probability the focus is on the probability of failure.  This 

is an insufficient analysis when there are multiple damage states.  “Generally, 

components can have different classifications depending on their use and how they are 

defined.  There are single state components, e.g. always working, two state components, 

e.g. failed or safe, and multi-state components, e.g. lightly damaged, moderately damaged 

heavily damaged, collapsed,” (Hollenback, 2014).  Components are often defined as 

either brittle or ductile to describe their variety of potential states.  Brittle systems are two 

state systems that are either failed or working, while ductile systems can have any range 

of function.  With each increase in possible states, the outage time gets more difficult to 

predict as there are more potential outcomes increasing the problem complexity.  Because 

of this, brittle systems are generally simpler to analyze.   

A brittle system either provides zero service or 100 percent service.  Quantifying 

the outage is easy to measure.  Electrical systems are brittle systems; they either provide 

power or do not.  Transportation systems are at the ductile end of the scale.  A variety of 

road damage states result in various levels of service (i.e. one lane open, restrictive 

service, heavy traffic).  Figure 2.13 shows the difference between brittle and ductile 

performance.  Brittle components (right) either resist the load or fail, there are no in-

between damage states.  Ductile components (left) have a range of damage prior to 
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failure. Distributions are used to describe the range of possible loadings and resistances.  

The wider the base is influences the greater range of possible values.  Earthquakes and 

other natural hazards are tricky because loading distributions are often lognormal 

(Petersen, 2007) with long tails for high loading levels.  With some probability of very 

large loading forces it can be difficult to determine an ideal loading to design resistance 

to. 

 

Figure 2.13: Brittle and Ductile Component Performance. 

In addition to analyzing each systems varying damage state, understanding their 

collective impact on a household or business is much trickier than understanding the 

impact of structural or non-structural damage.  If a facility is reliant on all lifelines its 

functionality may change when only a fraction of the systems are restored.  There are a 

number of outage combinations each with a different impact.  Facility damage often 

causes complete interruption (easy to quantify), while lifeline outages often result in a 

range of losses (difficult to quantify).  Depending on the economic sector, or the internal 

preparedness and resilience of an organization or household will determine how critical 

lifeline interruptions are. 
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Accurate assessment requires the measurement and inclusion of probabilistic 

variables and system characteristic; however, as described these methods can be difficult 

to quantify and increase the time required for analysis.  Simply ignoring the variables will 

result in an incomplete inaccurate assessment but including them as theory suggests is 

currently an unrealistic goal.  Section 3.4 will present methods to include these variables 

in unique ways to compliment the simplified methodology. 

 

2.4 Consequences of Damage  

Quantifying the probability of damage and developing restoration curves/maps is 

only half of the risk equation, understanding the consequence of outage is the other half.  

Disasters consequences are measured in losses.  Casualties, property damage, and 

business interruption are all used to measure loss.  A number of sociological impacts are 

also experienced but are difficult to quantify.  While they should be considered at least 

qualitatively in the decision making process, this study will not focus on the sociological 

impacts.  This research will focus solely on direct and indirect economic losses.    

Direct and indirect losses occur due to both site damage and lifeline damage.  

Direct losses include damage to physical objects, while indirect losses are costs 

associated with interruption.  In the case of business, direct losses primarily occur from 

damage caused to the facility and the contents of the facility during the event.  Indirect 

losses could be measured by lost revenue while the business is closed for reconstruction.  

This same business could incur indirect losses if lifelines it relies on to function are 

unavailable.  Both direct and indirect lifeline losses are discussed below. 
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Direct losses are the easiest to quantify.  They consist of the finances required to 

repair physical damage.  This includes demolition, waste disposal, and construction costs, 

all of which come with receipts.  For lifelines, these costs directly impact the utility or 

municipality.  In many cases lifeline vulnerability studies undertaken by the utility 

provider are heavily concerned with direct losses because these are the losses that they 

will incur in a disaster.  When this is the case, a component by component assessment is 

an acceptable method because the system performance is less important.  The provider is 

attempting to limit physical damage at each component of the system.  By prioritizing 

mitigation with this methodology the system performance is simultaneously improving 

(as any mitigation work is beneficial), however the mitigation prioritization does not 

consider system performance nor indirect losses.  With a wider lens for impacts, direct 

lifeline losses can be a fraction of the total losses. 

Indirect losses are driven greatly by loss of lifeline service to homes and 

businesses.  Examples of indirect losses are business closure, increased travel time, and 

disruptions in consumer habits.  Businesses with negligible site damage can be closed 

when without lifelines.  Lifeline outages caused by damage hundreds of miles away can 

close businesses, just as a closed business in one city can impact supply chains globally.  

Businesses have increasingly moved to a just in time production strategy where single 

disruptions and a lack of secondary options can halt production lines inside and outside of 

the disaster zone.  Very few businesses are self-sufficient, and require a host of other 

businesses from coffee shops to software companies to fully function.  “One enlightened 

company executive recently summarized the situation quite poignantly: “In short, 

companies have started to realize that they participate in a greater ecosystem –and that 
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their IT systems are only as resilient as the firms that they rely on to stay in business,”” 

(Rose, Liao & Oladosu, 2007).  Losses can be amplified by the indirect economic 

impacts which, “significantly increase the size of the damage as it ripples throughout the 

economy beyond those businesses whose electricity service is directly curtailed,” (Rose 

et al. 2007).  For businesses reliant on a lifeline the magnitude of the indirect losses is 

often a function of outage length. 

The relationship between outage time and losses was well documented following 

the 1994 Northridge earthquake by Dahlhamer, Webb, and Tierney.  A large sample of 

businesses were surveyed to determine the losses due to telephone, electric and water 

outages.  Figure 2.14 clearly shows relationships you might expect ranging from linear to 

exponential.   

 

Figure 2.14: Impact of Lifeline Outage Lengths on Individual Businesses Following 

the Northridge Earthquake (Dahlhamer et al. 1999). 
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A prior study by Tierney surveyed the cause of business closures following the 

Northridge earthquake.  Along with site damage, electric, transportation, and phone 

outages were the top four sources of business closure, while water and waste water were 

much lower on the list (see Table 2.4) this could be due to the fact that water and 

wastewater were only lost on average for two and three days respectively.  As seen in 

Figure 2.14 (Dahlhamer, 1999) losses due to water take effect after 24 hours.  A similar 

relationship might exist for wastewater.   

Table 2.4: Reasons for Business Closure, Northridge Earthquake 

 

The same study was completed following 1993 floods in Des Moines, see Table 

2.5.  In that event both water and wastewater outages were longer (median of 12 days) 

and represented two of the top three reasons for closure.  Wastewater and water outages 

Reason for Business Closure Percent

Needed to Clean Up Damage 65.20%

Loss of Electricity 58.7

Employees Unable to Get to Work 56.4

Loss of Telephone 49.8

Damage to Owner or Manager's Home 44.4

Few or No Customers 39.9

Building Needed Structural Assessment 31.5

Could Not Deliver Products or Services 24

Loss of Machinery or Office Equipment 23.7

Building Needed Repair 23.4

Loss of Inventory or Stock 21.9

Loss of Water 18.2

Could Not Get Supplies or Materials 14.9

Building Declared Unsafe 10.1

Could Not Afford to Pay Employees 9.5

Loss of Natural Gas 8.7

Loss of Sewer or Waste Water 5.3

Other 15.8

(Tierney, 1995)

*Number of Closed Businesses Surveyed (617)
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likely would have been a larger cause of business closure in Northridge had the outages 

lasted beyond the initial one or two day resilience threshold of most businesses.  

Table 2.5: Reasons for Business Closure, Des Moines Floods 

 

These studies represent a relationship two decades old.  The relationship between 

lifelines and users has changed over the past two decades, but there have been no recent 

studies as comprehensive as those completed 20 years ago.  When considering 

earthquakes in the 21
st
 century, some lifelines may be more or less important.  

Communications and electricity may be more important with more work being stored in 

devices that require electricity or connection to data servers across the globe.  While 

businesses and the public may be more sensitive to electricity or communication lifelines 

they may be less sensitive to transportation interruptions as a result of people 

telecommuting or a trend in people living closer to work. 

Reason for Business Closure Percent

Loss of Water 63.60%

Loss of Electricity 41.7

Loss of Sewer or waste water service 34.8

Few or no customers 34.4

Loss of telephone service 28.3

Employees unable to get to work 26.3

Could not deliver products/services 25.7

Evacuated due to threat of flooding 21.4

Building was flooded 19.9

Could not get supplies or materials 16.3

Loss of machinery/office equipment 15.4

Loss of Inventory 11.9

Building was declared 6.9

Damage to owner or manager's home 6.9

Loss of natural gas 6.9

Could not afford to pay employees 6.7

Other 21.6

(Tierney, 1995)

*Number of Closed Businesses Surveyed (448)
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The consequences of lifeline outage need to be quantified to measure risk.  

Knowing only that damage will occur does not provide decision makers with all the 

required information.  Smaller businesses and institutions may be able to quickly quantify 

probable losses while larger businesses with multiple processes may require more 

intricate analysis.  From a regional perspective development of refined economic loss 

models are popular for determining direct losses, but back of the napkin calculations 

often are in the same order of magnitude.  For the electric sector, disruptions in the 

United States have been quantified by using a ratio of $1.50 to $7.50/kWh (Rose et al. 

2007).  Using these estimates the 1996 blackouts in California “are estimated to have cost 

more than $1 billion in direct losses.  A more recent estimate of outage costs to business 

is as high as $50/kWh for some sectors.  An application of such estimates placed the cost 

of the 2003 northeast blackout at more than $6 billion,” (Rose et al. 2007). The losses of 

outage will vary greatly between the lifeline and the business sector.  Some sectors may 

represent losses $1.00 while others are 50 times greater.  Depending on the audience of 

an assessment the losses can be specific to a business with a detailed list of consequences, 

or broad, highlighting regional economic impacts.  Broad generalizations can be made for 

regional economic impacts to influence government, however to influence individual 

businesses a more detailed list of consequences and losses will be beneficial.   
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3 METHODOLOGY FOR SIMPLIFIED INFRASTRUCTURE ASSESSMENT 

“Questions are often raised from engineers of lifeline sectors that a rational basis should be provided by 

which the post-earthquake performance of lifelines can be evaluated in a way that societal consensus or 

acceptance is realized.  To do this, it is indispensable to incorporate evaluation of lifeline performance in 

an appropriate manner from the users’ side,” –Hiroyuki Kameda. 

By considering the consequences of lifeline failure, system assessments can be 

reduced to focus the analysis on catastrophic risk.  The resulting assessment is 

abbreviated, but provides a feasible methodology to explore risks that are currently 

unstudied.  The limitations of existing methodologies are bulleted below followed by an 

outline of the proposed methodology.  Each section of the chapter then explains every 

step of the methodology in detail, highlighting the issues resolved by the assessment. 

Despite societal reliance on lifelines many users are unaware of the risk.  Without an 

understanding of the existing risk there is no baseline for predicting the benefits of 

mitigation, nor guidance to take calculated action.  Lifeline systems are largely unstudied, 

and when they are, they are often assessed from the perspective of the lifeline operator.  

The following are general barriers that often prevent actionable lifeline risk assessments.   

1) Many systems are considered too complex and disperse to assess, so it simply has 

never been attempted. 

2) There is no data to complete an assessment.  Most utilities know geographically 

where their systems are, but very few have attribute information for each 

component that describes the material, age, condition, soil properties, etc of 

system components. 
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3) When data does exist the assessment is often completed by the utility provider 

who is the stakeholder.  When consequences are examined they are often only 

measured by direct losses to individual components, rarely measuring 

consequences to the system and to users. 

4) When assessments are completed they are often not available/communicated to 

the customers to set an end user expectation. 

Two main issues can be distilled from the lists of barriers.  First, it is often infeasible 

to generate a complete system vulnerability assessment, especially for those without 

direct access to system data.  Second, consequences for the users are often ignored.  The 

typical assessment often focuses on the utilities perspective, studying vulnerability first 

and consequence second.  By studying vulnerability first, many system analyses are 

thought infeasible.  Secondly, by focusing on the consequence to utilities the 

vulnerability assessment may be structured to measure direct losses only, limiting its 

utility as a resource to other stakeholders.  In the simplified methodology presented here 

the process is flipped.  Consequences are measured first and used to simplify the lifeline 

analysis by ignoring negligible outcomes.  Stakeholders approach the problem, 

considering what outages result in catastrophic losses, and then an abbreviated 

assessment is developed based on the bounds generated by stakeholder input.  The 

proposed methodology herein offers a simplified system assessment that addresses the 

barriers above.  The simplified model does not provide a complete assessment of lifeline 

performance, but does provide insight into the catastrophic system risk.  There are four 

steps in the simplified system assessment: 
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(1) Determine the stakeholder for the study.  It could be a region, a single city, or 

even an individual institution. 

(2) The stakeholder then sets acceptable level of service bounds for each lifeline to 

determine what outage would cause severe losses. 

(3) Reduce the system to elements that govern restoration.  Also, set a geographic 

boundary of analysis and a hierarchy to bound relevant system components. 

(4) Explore and apply system probability variables to the simplified system. 

The proposed methodology does not consider the probability of small disturbances 

and focuses analysis on outages that will cause catastrophic losses for the stakeholder.  

The methodology accomplishes three important things.  First, it allows systems to be 

simplified to fewer components, making an assessment more feasible.  Second, it 

prioritizes the study of consequences rather than just the probability of failure; and lastly, 

it focuses study on catastrophic risk, addressing resilience.  Losses are inevitable in 

disasters, but to achieve resilience one must be concerned with preventing catastrophic 

losses.  When attempting to make a family, business, or region resilient, efforts should be 

placed in preventing losses that are too great to recover from.  The next four sections go 

into detail the four steps of the simplified methodology. 

 

3.1 Identify Stakeholders 

The stakeholder(s) influence the degree to which the system can be simplified.  

Currently, the majority of assessments are completed by the lifeline operator.  They have 

access to their own systems data and have the greatest understanding of how their system 

operates.  Through the lens of the utility consequences will largely be measured by direct 
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losses (damage to the system).  In some cases a complete study may also include lost 

sales during interruption.  Lost sales begin to address indirect losses but fail to measure 

the greater economic losses associated with business interruption.  To illustrate the gap in 

indirect losses consider a simple example.  A child‟s lemonade stand sells 1 gallon of 

lemonade on a regular day, for a total profit of $10.00.  Because of a water outage, the 

lemonade stand is forced to close.  In this scenario the lemonade stand loses $10.00, 

while the water provider loses one gallon of water sales, roughly $0.004.  Simply put, if a 

businesses closed because of a water outage their losses can be significantly greater than 

their water bill.  When a user (business, city, or region) is the stakeholder, indirect losses 

become much greater.  Including appropriate stakeholders can expand which 

consequences are considered and can help bound and simplify the analysis.   

Identifying users as the stakeholder focuses on indirect losses caused by outage.  

But users are a broad stakeholder group, making consequences difficult to measure.  

There will be times when the stakeholder is predefined by the client, but when there is the 

freedom to narrow there are unique relationships that may help focus.  Any stakeholder 

can be used within the methodology, but certain groups may be more action-oriented to 

results.  Some stakeholders are impacted more by infrastructure outages and may be more 

likely to act when provided information. 

At a first pass, lifeline outages may be expected to be more critical the closer a 

facility is to a hazard; however, lifeline outages have a greater potential of being the 

governing reason for closure if a facility is removed from severe damage.  Properties 

nearer high intensity shaking or liquefaction zones have a higher probability of 

experiencing facility failures in which case lifelines are potentially not an immediate need 
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and will be repaired before the facility will require them.  Recovery is dependent on 

lifelines when structures do not suffer significant structural and nonstructural damage.  

For these facilities recovery is dependent on how quickly lifelines can regain their 

services. 

Stakeholders who have previously retrofit or designed to a higher standard have a similar 

circumstance.  Lifeline losses are most critical to those who have mitigated their facility 

via retrofit or other methods.  Their structures are likely to experience minimal damage in 

a seismic event, which means lifeline failures will govern the functionality.  This group 

of individuals may help to both frame the problem and may be eager to discuss possible 

lifeline mitigation and preparedness solutions.   

Generally speaking lifeline systems are more fragile than buildings (Figure 3.1).  

The fragility curves below are from a Japanese study in 2005.  JMA is a similar scale to 

MMI; the relationship between JMA and MMI are shown to the right of the fragility 

curve.  The numbers are not of primary interest here.  What is important is that building 

fragility curves are to the right of infrastructure systems.  If the fragility curve of a 

building is to the right of the infrastructure system relied on, then lifelines are more likely 

govern recovery.  This is a potentially powerful relationship when attempting to engage 

stakeholders.  Those that have retrofit in the past have two unique qualities, (1) in the past 

they recognized and mitigated risk, (2) lifelines govern their recovery. 
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Figure 3.1: Relative Fragility Between Lifelines and Low-rise Buildings (Nojima & 

Sugito, 2005). 

Defining the stakeholders for the study is an important first step.  Differences 

between infrastructure operators and users can lead to drastically different assessment 

methodologies.  Selecting users as the stakeholder focuses consequences on indirect 

losses.  When appropriate, the wide spectrum of users can be narrowed to those that have 

a low risk of facility failure, because they are more likely to have lifelines govern their 

restoration, making them a unique stakeholder to consider.  The next section explores in 

detail the relationship between users and lifelines. 

 

3.2 Outage Time and Acceptance Curves 

The relationship between users and infrastructure systems provides insight into 

consequences, and is the driver of the proposed methodology.  This section introduces 

acceptance curves and resilience properties as a means to measure the consequence of 
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infrastructure outage.  Stakeholder processes are then explored to understand the 

relationships between infrastructure systems.  This step aims to accurately measure user 

consequences to outages.  In short, users communicate which lifelines are most important 

and the relationships between them, to determine which outages are acceptable.  This sets 

the stage to simplify the system in Section 3.3, and properly organize probabilistic 

variables in Section 3.4. 

First is the concept of acceptance curves.  Acceptance curves are a user‟s 

acceptance given an outage, most simply measured against time.  What is an acceptable 

outage can be a blurred and difficult question to answer because no losses are good.  As 

outages progress the losses only get larger.  Ideally a critical point can be discerned, 

where an outage results in permanent irrecoverable losses.  The critical point is c as 

described in chapter 1, EQ 1.3.  For a business the critical point might be when projects 

are not just suspended but are lost.  For a region it may be when residents and businesses 

decide to permanently relocate elsewhere.  If restoration of lifelines occurs before the 

critical point is reached there are no continued losses as a result.  Figure 3.2 illustrates 

scenarios where restoration of lifelines occurs after and before the critical point.  When 

restoration occurs after the critical point is reached (top) there are permanent 

irrecoverable losses.  When restoration occurs before the critical point is reached 

(bottom) there are no permanent losses.  The lines are shown as linear functions for 

simplicity.  An actual stakeholder will likely have unique, nonlinear relationships 

between outage times and losses.  Understanding where to set the critical threshold for 

stakeholders then allows for a restoration goal to be set. 
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Figure 3.2: Losses with Restoration After and Before the Critical Point is reached. 

The ability of an organization or community to absorb initial losses and return to 

pre-disaster position is often characterized as resilience.  The resilience triangle, Figure 

3.3, illustrates all types of loses (building loss, lifeline outage, etc.).  The smaller the 

initial dip the more robust the organization is.  The smaller the length, the more 

repairable the damage is.  A resilient community/organization will minimize their triangle 

and return or surpass the baseline trend.  Considering only lifelines, resilience can be 

achieved by either minimizing the duration of lifeline outage, or by preparing to cope for 

an outage without significant social and economic losses.  “One of the major factors in 
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evaluating the economic impacts of utility lifeline outages is resilience, or the ability of 

an individual, organization (e.g., business), or institution (e.g., market) to cushion itself 

against maximum losses,” (Rose et al. 2007).  The further an organization can push out 

their critical point the more resilient they are, and the easier the lifeline assessment 

becomes. 

 

Figure 3.3: Resilience Triangle (Bruneau et al. 2003). 

To prevent catastrophic losses restoration must occur before the critical point.  

Acceptance curves are used to help determine the design level and recovery strategies 

necessary to prevent catastrophic economic and social losses.  “People can stand lifeline 

disruptions for some period immediately following the earthquake. But as a reduced level 

of supply is sustained, their demand will increase and the individual users‟ acceptance 

curve decreases with time,” (Kameda, 2000).  Following the Kobe earthquake, the Kobe 

Municipal Water Supply surveyed samples of the population to gauge the difficulties 

faced without water.  Drinking water was trucked in, but sanitation was a massive 

problem.  Some portable facilities were available, but there were insufficient resources to 

go around (Horwich, 2000).  Those who were without water service for longer than four 

weeks had excessive difficulties due to the water outages.  Researchers tracked customer 

calls over the four week period - emotions changed from inquiry, to complaint, to anger, 
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and then desperation (Kameda, 2000).  In order to match the acceptance curves of their 

customers the Kobe Municipal Water Supply designed their system to provide water 

service to all customers within four weeks following a future earthquake. 

Measuring the outage time alone can be an incomplete metric that only partly 

considers the consequence of failures.  Studying other acceptance scales provides a more 

complete understanding of consequence.  As noted in Section 2.1.5 Christchurch citizens 

remained in undamaged homes for months despite water and wastewater outages.  They 

were able to minimize losses and allow for homes to remain habitable because temporary 

water and wastewater services were distributed at a high enough quality and quantity 

within a reasonable distance.  Lifeline service following a disaster should be measured on 

four interdependent scales (Kameda, 2000):  

(1) Outage Time 

(2) Quantity of Lifeline Service 

(3) Quality of Lifeline Service 

(4) Distance to Service.  

These four scales determine the severity of lifeline loss and are helpful in 

determining the design level of lifeline systems and the recovery strategies necessary to 

prevent catastrophic losses.  The relationship between the four scales can simplify 

analysis hierarchically as well as provide cities with a metric to improve community 

capacity for coping with outages.  In Christchurch the portable water and wastewater 

services were successful in bridging the gap between the first earthquake event and the 

restoration of the lifeline system, allowing individuals to stay in their homes with 

acceptable level of service across all four scales.   After the second large earthquake in 



 

62 

 

Christchurch however, chemical toilets were used in many neighborhoods instead of 

outdoor portable toilets.  This change can be well modeled by acceptance curves.  The 

distance to service and the quality of service (mostly safety) were improved upon.  These 

measures drastically increased the time residents could live without typical water and 

waste water services.  In large events where the main system will require weeks or 

months to repair, there should be methods in place to provide an acceptable quantity and 

quality of service within a reasonable distance.   The relationship between time, quantity, 

quality, and space are important to consider when quantifying consequence and designing 

recovery strategies. 

System assessments can be studied individually with acceptance curves but when 

measuring consequences it is beneficial to also consider lifelines together.  When 

developing an understanding of what causes failure the stakeholder should explain what 

processes are necessary.  For example, having a way for employees to commute to work 

is important for most businesses to function.  In the case of personal vehicle 

transportation this process is directly reliant on both roadways and fuel.  When studying 

this process it is better to consider the vulnerability of these systems together.  When 

regions or institutions are reliant on multiple lifelines and a single lifeline outage can 

cause failure, all systems must perform for losses to be avoided. In the case of a business 

reliant on multiple lifelines the probability of failure (business closure) is the union of 

each lifeline outage. 

                      EQ 3.1 

In 1991 the Japan Society of Civil Engineers outlined issues that the lifeline 

community needed to address.  The committee noted that balanced preparedness among 
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different systems and information sharing between different lifelines would help prevent 

losses (Kameda, 2000). Beyond the reliance of lifelines on one another, organizations 

with failures caused by multiple lifelines require mitigation to be balanced across all 

systems.  In the case above if roads are not impacted by an event but fuel is, commuting 

may not be possible.  In many disasters electricity is restored well ahead of other systems.  

Had Christchurch not distributed water and wastewater facilities it may not have mattered 

if electricity was restored because people may have had to leave without the other 

services. 

Understanding these relationships is important for properly measuring 

consequence as well as for understanding unique mitigation options.  Section 3.4.4 

discusses these issues further and expands on the commuting example. 

 

3.3 Simplifying the System 

Lifeline systems can be reduced to components that govern catastrophic 

disruptions by using the acceptance curves developed in Section 3.2.  By reducing the 

system, previously large complex lifelines may be more easily analyzed.  The reduction 

of the system must be completed in a thoughtful manner.  Removing components that 

strongly influence system performance will result in an inaccurate analysis, but a lack of 

thinning can result in an unnecessarily large or infeasible analysis.  Acceptance curves, 

repair times, hierarchy, and geographic scope are all used to reduce systems.  The 

subsequent analysis of the reduced system will provide a catastrophic risk profile that 

highlights system components that could result in catastrophic consequences for the 

stakeholder(s). 
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The system is bounded first using geographic boundaries and system hierarchy.  

Organizing the system with a geographic scope and system hierarchy is beneficial 

because of the spatial expanse of most systems, the multi-jurisdictional nature, and the 

system design.  Addressing the scope and hierarchy help organize the simplified structure 

and also set up analysis results for targeted use.  How the system is cropped must be 

communicated to ensure clarity of what the analysis represents.  In the case of series 

systems a failure anywhere in a system results in failure.  A failure hundreds of miles 

away or the service connection at the street can result in outages.  Portions outside the 

bounds of the assessments should be recognized and noted that their risk is not included 

in the study.   

Setting a geographic scope can help for systems that cover large areas.  In 

urbanized regions most lifelines draw/import water, power, and fuel from sources 

hundreds of miles away.  Some of those systems are even global and could be impacted 

by events on other continents.  Drawing a line geographically around the study is needed 

for feasibility; this must be communicated clearly when presenting the results.  Some 

systems are easier than others to bound geographically.  When a system has storage built 

into it (reservoirs, tanks) those nodes become ideal places to draw lines around the 

analysis.  Not only do these nodes offer a good place to bound analysis, but they are also 

a beneficial system characteristic.  Islanding risk in a system, often by means of a storage 

facility, prevents the failure of one segment from affecting another (ABAG, 2013b).  

Water systems in California lend themselves nicely to bounding geographically.  Rather 

than studying the entire water system at once, a supply analysis can study vulnerabilities 

from the watershed in the Sierra, to a reservoir in a local jurisdiction.  A secondary 
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assessment can then examine vulnerabilities from the reservoir to a specific location, or 

down to a specific hierarchical level.  This is exactly what the San Francisco Public 

Utilities Commission (SFPUC) did in a system analysis and 4.6 billion dollar water 

system improvement program (SPFUC, 2013).  They studied their system from the Hetch 

Hetchy reservoir in the Sierra to local reservoirs and addressed vulnerability in that 

section of the system in order to provide greater water reliability to customers.  Another 

assessment is planned to address risk between the local reservoirs to user portion of the 

system.  By setting a geographic bound they were able to focus on a feasible portion of 

the system. 

The SFPUC study and subsequent system improvement program was extremely 

beneficial for their wholesale customers.  27 water districts purchase water from SFPUC 

and distribute to their customers (SFPUC, 2011).  Prior to SFPUC‟s study had one of the 

local utilities desired to complete a risk assessment they would have had to undertake a 

study to understand SFPUC‟s regional water system.  Now with the study available, and 

the seismic risk in that portion of the system largely mitigated, a local municipality can 

complete a localized study of their distribution system and understand the risk from 

source to use.  Other jurisdictions are not as fortunate.  In California many are reliant on 

other expansive water projects but few have assessments available, leaving local 

municipalities in the dark unable to measure their comprehensive risk. 

Sometimes the upper and lower bounds of a system are not best drawn by a 

geographic or jurisdictional boundary.  When systems don‟t have storage nodes built in 

(electrical, transportation, communication) system bounds may be based on hierarchy.  A 

hierarchy can be used to organize a system into binned sections.  The hierarchy of 
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lifelines can often be broken down based on transmission levels measured by volume, 

size, or number of users.  This can be used to set bounds around a system, and it can be 

especially helpful when setting a lower bound for system assessment.  For most 

assessments it is unlikely the studies resolution will extend down to service connections 

or the lowest hierarchy of distribution networks.  In addition to using the systems 

hierarchy to set a lower bound, the distance to metric of acceptance curves can help set a 

lower bound and simplify the system further.  This requires the assessment to trace 

lifeline performance such that stakeholders are a unique distance (specified by the 

stakeholder) away from the system. 

When the acceptance of the distance to service is known the lower bound of the 

system assessment can be thoughtfully considered.  If stakeholders admit it acceptable to 

be a few blocks from a resource this can appropriately reduce resolution of the study.  

The greatest benefit of the acceptance curves however is in understanding the relationship 

between the length stakeholders can be without a certain lifeline and the repair times 

associated with each system component.  If system components can be easily repaired 

prior to the critical point being reached, then they are not very significant to the study.  

To do this the expected repair times of system components must be known.  Orders of 

magnitude can go a long way; will the component require 1 hour, 1 day, 1 week, 1 

month, or 1 year to repair.  A number of different resources can help determine these 

values.  Past disasters can provide insight into repair time as can the restoration following 

small interruptions caused by winter storms or contained accidents.  Some systems may 

have protocols that can be used to determine what damage level results in certain repair 

times. With this information system components that do not significantly impact the 
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restoration can be removed from the analysis.  As mentioned in Chapter 1, when the 

stakeholder is very reliant on infrastructure systems and catastrophic losses occur almost 

immediately, the methodology is unhelpful; however if catastrophic loses occur days, 

weeks or even months after an event this can greatly simplify the system.  Figure 3.4 

illustrates this by viewing a hypothetical system through the lens of a stakeholder, 

filtering and simplifying the system.  Systems can be simplified to critical nodes and 

links by understanding what portions of the system govern the recovery times critical to 

stakeholders. 

 

Figure 3.4: Simplifying Lifeline Systems Using a Stakeholder Lens. 

By using the stakeholder bounds and using scope and hierarchy to define 

boundaries, system assessments can be simplified.  Not all millions of miles of road or 

pipeline is going to be mapped or analyzed.  It‟s infeasible and also unimportant.  With 

the system simplified, an analysis can be performed using probabilistic variables 

originally discussed in Section 2.3. 
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3.4 Addressing System Probability Variables 

In Section 2.3 five variables were discussed that impact system performance and 

system analysis: multiple damage states, hazards, correlation, system structure, and 

interdependencies.  In a theoretical world these variables can be inserted into 

probabilistic equations to account for their influence; however, in the real world where 

ideal variables and attributes are often unknown, solutions must reflect the imperfect 

data.  Variables are explored to determine how they influence a simplified assessment 

and how they can be used to either further improve or further simplify the assessment.  

 

3.4.1 Multiple Damage States 

Developing methods of decreasing states makes the problem easier to analyze.  

Analyzing multi-state systems as dual-state systems limits the damage states of interest.  

Electrical systems are already dual state systems, they are on or they are off.  

Transportation systems, especially roads, are a multi-state system.  To reduce the number 

of states, the consequences outlined by stakeholders can change the level of service 

measurement, such that the system is converted into a two state system of working or not 

working.  Using transportation networks as an example, travel time from A to B can 

become the governing variable of the system.  Rather than studying the multiple damage 

states as complete access, limited lanes, etc., the states become commute time less than or 

greater than a defined number of hours.  Travel time doesn‟t have to be the only 

measurement used for roadways.  For a highway corridor near a port that is critical for 

goods movement having a route capable of supporting trucks of a certain weight could 

become the governing factor.  In the Maule, Chile event a number of bridges remained 
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open but were restricted to vehicles less than five tons (Schanack et al. 2012) due to 

minor damage.  For port related access routes this would represent failure regardless of 

the travel time. 

 

3.4.2 Hazards 

Applying hazards to analysis presents difficult methodological choices and offers 

further opportunity to expand or simplify analysis.  As discussed in Section 2.3.3 there 

are both probabilistic hazard maps and deterministic scenario hazard maps.  When 

analyzing a single facility, probabilistic hazard maps are used to aggregate the risk of all 

event scenarios, making them a very attractive resource for analysis.  This does not work 

well for systems when an understanding of the whole system performance for discrete 

events is desired.  If probabilistic hazard maps were used for lifelines it would provide 

insight into the probability of failure of each node and link, but would not provide any 

insight into the overall system performance in an event.  For this reason, when the system 

performance is the desired outcome, using discrete scenarios provides a greater tool for 

analysis.  The downside to analyzing systems with scenarios is in order to consider the 

complete risk, hundreds of different scenarios would have to be applied to the system; 

different faults, ruptures, and sizes, an infeasible option. 

In addition to the thinning of the infrastructure data in Section 3.3, reducing the 

hazard data can be equally important.  In regions with multiple faults, or multiple 

hazards, different events are likely to result in drastically different lifeline performance, 

especially for spatially dispersed systems which cross or come close to a number of 

different faults.  A seismic deaggregation map of the region may help to determine which 
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faults are most significant for the lifeline system.  This can be difficult as different 

portions of the system or different lifeline systems all together may be more or less 

susceptible to different fault events.  Again a hierarchical system can be used to thin 

earthquake scenarios.  Some faults are likely to cause regional damage, while others may 

only cause localized damage.  Small events may have a severe impact on infrastructure 

very near the event, but in these situations all response resources can be allocated to a 

single site.  The „big ones‟ are unique in that damage will be widespread and resources 

will be diffused over wide areas.  There are cases where smaller events should be 

considered; for instance when a hazard interacts with a portion of the system that is non-

redundant, or a portion that is not quickly repairable.  The most basic study will simply 

examine a single scenario, while more complete studies will consider a handful of 

different scenarios. 

In addition to minimizing the number of scenarios used, matching system 

components to relevant hazards can also limit the number of interactions studied. 

Components of some systems are more vulnerable to certain hazards than others.  For 

example, road networks are largely comprised of bridges and roadways.  Damage to 

bridges can be caused by shaking, liquefaction, and fault rupture.  Roadways on the other 

hand are largely damaged by ground failure (liquefaction, lateral spreading, landslide) 

and fault rupture.  Recognizing roadways are not typically damaged by shaking reduces 

the number of relationships to study.  For many systems certain system components are 

not susceptible to damage in certain hazard types.  Distinguishing between relevant and 

irrelevant interactions will simplify system assessment. 
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3.4.3 Correlation 

Correlation is a difficult but important variable to account for.  Correlation 

relationships can be included in a number of different manners.  Correlation influences 

both the magnitude of the hazard across space as well as the expected performance of 

components across a system.  Hazard loading and component resistance are examined 

individually. 

 

3.4.3.1 Hazard Loading 

Well-designed probabilistic system assessments include spatial correlation to 

capture similarities in shaking levels and soil conditions across neighboring locations.  

When using scenarios however, the shaking contours already capture these affects and no 

spatial correlation factor for hazard loading is needed.  Many scenario-earthquake-

shaking-maps produced by the USGS include the influence of topography, soil, and fault 

mechanics.  When using the simplified method, correlation as it relates to the hazard need 

not be included because scenarios are used.  The magnitude of the hazard across space is 

part of the scenario and spatial correlation can be omitted.  Interstate 280 along the 

Peninsula of the Bay Area is used as an example. 

In the Bay Area Interstate 280 and Highway 101 run North South along the 

Peninsula.  The parallel highways are also parallel to the San Andreas Fault.  Interstate 

280 is a quarter to one mile from the San Andreas Fault with 101 just a few miles further 

East.  Because 280 runs parallel with the fault, the scenario shaking in a San Andreas 

event results in most bridges along the corridor experiencing the same MMI shaking 
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intensity (see Figure 3.5).  Considering only shaking intensities no spatial correlation is 

necessary to understand the loading along the corridor.  By using a discrete scenario it is 

addressed already. 

 

Figure 3.5: Highway Network Exposure in a M7.9 San Andreas Scenario. 

 

Unfortunately, this map only explores the shaking intensity hazard, not secondary 

hazards like landslide or liquefaction.  Most jurisdictions only have scenario earthquake 
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hazard maps that show shaking intensity.  There are separate hazard maps for secondary 

hazards like liquefaction and landslide that are not scenario based.  Understanding the 

relationships between hazards is very important for the simplified method, i.e. if severe 

shaking here, then likely liquefaction/landslide there. This need is illustrated again by the 

Interstate 280 example along the Peninsula in the Bay Area, this time including 

liquefaction hazard. 

Over the same stretch of peninsula that 280 runs near the San Andreas Fault, 

Highway 101 simultaneously passes over a very high liquefaction susceptibility zone (see 

Figure 3.6).  Highway 101 along this stretch is often less than a mile from the San 

Francisco Bay, and is equidistant from the San Andreas fault resulting in fairly uniform 

shaking.  It is assumed that the majority of the liquefaction zone is a result of bay soils 

and bay fill with similar properties.  Given that the loading and soil conditions are similar 

it can be expected in a San Andreas event with fault rupture along the Peninsula if 

liquefaction occurs at one location on Highway 101, it is likely to occur along many 

portions of the Highway.   
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Figure 3.6: Highway Network Liquefaction Susceptibility Exposure. 

What is of more importance is the relationship between shaking levels at bridges 

on Interstate 280 and liquefaction susceptibility along corresponding portions of Highway 
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101.  Understanding the correlation between shaking along 280 and liquefaction along 

101 would be a valuable relationship to understand.   

 

More study is needed on the correlation between hazards.  It is unclear what MMI 9 

shaking along the 280 corridor means for liquefaction probability along the 101 corridor.  

One possible method may match shaking intensity levels of a scenario with different 

liquefaction/landslide susceptibility zones.  While this is less than an ideal scenario, at a 

very simplified level one might be able to overlay a liquefaction or landslide 

susceptibility map with scenario shaking levels to create a map more appropriate for an 

individual scenario.  Before using this approach further study is required to determine 

appropriate relationships, i.e. in liquefaction susceptibility zones less than MMI 5 result 

in very low risk of liquefaction, while in MMI 8 and greater there is a significant risk of 

liquefaction.   

Despite current uncertainty in how to address correlation between hazards, this 

risk should still be communicated in some form.  The Interstate 280 and Highway 101 

example illustrates the importance of considering both hazards to examine the 

performance of the transportation network along the Peninsula.   

 

3.4.3.2 Component Resistance 

Most systems are made up of many links and nodes that are designed similarly.  

When studying the relationship between components there are an endless number of 

characteristics that could be correlated.  Determining which component characteristics 
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have significant correlation is key in focusing study on characteristics that will influence 

system performance.   

Many probability textbooks discuss correlation with examples of factory produced 

widgets that are nearly identical replicas and thusly perform similarly.  While real world 

system components may not come from a widget factory, may components are similar 

and serve the same function.  Take for example bridges.  A bridge is designed to get 

people and things from A to B.  There are a range of structural systems (cantilever, truss, 

suspension, etc.), materials (steel, concrete, composite, etc.), sizes (# of spans, # of 

lanes), ages, and other distinguishing factors.  Each characteristic is likely to have some 

value of positive correlation between two like bridges.  In a city or region with hundreds 

or even thousands of bridges there are likely bridges that will perform similarly under 

similar loading.  But with components like bridges, any of the attributes above could be 

correlated.  Narrowing down the list is necessary for a simplified study.  A components 

age stands out as a good correlation characteristic to study. 

Age is an attractive attribute to study because it is a good proxy for the code used, 

as well as the degradation due to use and environmental conditions.  It can also be a good 

indicator of material for systems that underwent changes for one reason or another.  For 

instance, the age of pipe often informs the material used and the fabrication method.  

Examining past earthquakes is critical for the study of correlation across like system 

components.  Drawing correlation relationships of past performances aides in the 

prediction of future events.  Following the Northridge earthquake statistical breakdown of 

bridge damage showed that bridges designed with older standards were more prone to 

damage (Basoz, Kiremidjian, King & Law, 1999).  The more recent 2010 Maule 
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earthquake in Chile reinforced this pattern when 12 piers and 22 spans of the 70 year old 

Bio Bio bridge in Concepcion collapsed (Schanack et al. 2012).  A new bridge parallel to 

the old one experienced nearly identical forces but had minor repairable damage. 

Age as the primary correlation attribute was considered with strictly developed 

nations in mind, where a code is applied to all development, and where there is oversight 

to ensure that what is designed is constructed.  Chile, a country with an enforced code, is 

a good example.  In the 2010 earthquake, minor damage was consistent across all 

bridges, “almost all of the 100 bridges visited during the field investigation in March 

2010 exhibited expansion joint failure and stopper damage, but they remained 

operational,” (Schanack et al. 2012).  Because they all followed the same code most 

bridges had similar damage states.  If changes are made to a future code, the age of 

bridges pre and post Maule earthquake may be likely indicators of this minor damage.  

Age may be an inappropriate measure of correlation for countries with less engineering 

and construction oversight.  In developing nations other characteristics may have stronger 

correlation relationships. 

In an ideal world with reliable data to insert into probabilistic system analyses 

multiple factors could be included in the correlation between components.  In the real 

world both data and resources (time and money) are often insufficient to obtain the data 

for complete detailed analyses.  When variables like age are known studying its utility as 

a proxy for other variables and understanding its correlation significance can offer some 

added insight to improve the analysis performed. 
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The simplified method relies on using scenario hazard data and making the most 

of available system attribute data.  Past earthquakes offer insights into correlation, but 

greater study is needed to account for correlation beyond elementary discussion. 

 

3.4.4 Interdependence 

When using the simplified assessment focused on catastrophic risk some 

interdependencies become less significant while others have greater influence.  Most 

research lumps interdependencies as a single characteristic, but when considering the 

simplified methodology it is important to distinguish minute differences between types of 

interdependencies which I define and provide examples of.  Table 3.1 lists the different 

types of interdependency and their significance when using the simplified methodology. 

Table 3.1: Significance of Different Types of Interdependence 

 

 

3.4.4.1 Cascading Outages & Cascading Failure 

There is a minute difference between these two types of interdependencies.  

Cascading outages occur when one system fails because it is reliant on another system 

that has failed.  The cascade does not cause any physical damage that requires repair, it 

simply requires the other system to be restored, or for backup resources to be applied.  

Cascading failures are different and occur when one system incurs physical damage 

Signficance Interdependency

Less Cascading Outages

Same Cascading Failures

More Influence on Recovery

More Multi-System Processes
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because of the interruption of another system that has failed.  The cascade causes 

physical damage that requires repair.  A system that was damaged by cascading failure, is 

reliant on its own repair and the restoration of the other system. 

These two types of interdependencies have been well documented in Section 2.2 

and Section 2.3.  Cascading outages are less significant because they often represent 

interruptions in service that are not of catastrophic nature.  Directly following any 

significant earthquake every system will experience a number of cascading outages.  

Cascading outages have a very significant effect on lifeline performance hours and days 

into an event, but are infrequently responsible for longer catastrophic outages.  Cascading 

failures remain important as they are needed to fully measure the damage that requires 

repair.  A complete study will recognize interdependencies that cause physical damage to 

one system when another fails.  

 

3.4.4.2 Influence Recovery 

Understanding interdependencies during system restoration is important when 

using a methodology that attempts to understand a components repair time.  Recognizing 

interdependencies during repair will more accurately represent the time required for 

systems to recover, and also introduces new opportunities to mitigate or prepare.  The 

Bay Area Peninsula example used in Section 3.4.3 can be studied further to consider how 

interdependence influences the repair of systems.  Should liquefaction occur along 

Highway 101, access to asphalt will be a governing factor of roadway restoration.  There 

are only a handful of asphalt plants on the peninsula, all of which have portions of their 

facility in liquefiable zones, and all of which rely on natural gas to produce asphalt.  If 
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the roads need asphalt to repair liquefaction damage, there is a chance asphalt plants were 

also damaged by liquefaction, and/or there is damage to the natural gas line which runs 

adjacent to 101 and fuels the asphalt plant.  It‟s important to consider if certain damage 

occurs to one lifeline what other facilities, lifelines, and resources are involved in 

restoration, and if their failure is correlated to the damage experienced by interrupted 

lifeline. 

 

3.4.4.3 Multi System Process 

Most basic processes require multiple lifelines for tasks to be completed.  As 

mentioned at the end of Section 3.2, when considering each lifeline it is important to 

consider the processes that they are accomplishing, and the degree to which their 

probability of failure is reliant on intersected lifelines.  When assessing all systems within 

a region, studying the differences in system performance may reveal unacceptable risks, 

and/or may reveal unique mitigation solutions.  To illustrate this, the relationship between 

the fuel sector and transportation sector described in Section 3.2 is expanded upon to 

consider commuting options for professional sector stakeholders.   

In the professional sector telecommuting may be an acceptable commute option 

for employees.  For stakeholders where this is the case, commuting can occur by 

physically commuting, or by using communications platforms to work from home.  If 

either commuting option is acceptable only one needs to be available for failure to be 

avoided.  When both are unavailable there is a commuting outage.  This can be described 

probabilistically using venn diagrams.  The venn diagrams in Figure 3.7 represent a 

hypothetical scenario but illustrate relationships seen in past earthquakes.  The boxes 
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beneath each venn diagram attempt to illustrate how early on vehicle transportation may 

be a more reliable commute option, but very quickly telecommuting becomes a more 

likely option.  In the boxes, green signifies either option is available, yellow one of the 

two commuting options is available and red means neither.  For a business where either 

commute option is acceptable, limiting the amount of red is the priority, especially when 

the critical point in time is reached. 

 

 

Figure 3.7: Probability of Outage Displayed with Hypothetical Venn Diagrams 1 

Day, 7 Days, and 28 Days After a Major Event. 

It is common in many earthquakes for there to be disruptions immediately 

following an event in electrical and communications systems; however, these two 
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systems are often the most rapid to restore services and their systems are highly 

interdependent both in failure and recovery.  Many communication outages are a result of 

no electricity (cascading outage) or they are both collocated along the same pole, so when 

the restoration of one occurs the other is often restored at the same time or soon after.  

This is reflected in the venn diagram with both electric and communication systems 

having similar probability of failures across time, and large intersections where they are 

both out, or both on.  Transportation and fuel are different.  Unlike electrical and 

communication systems the performance of the transportation system is likely not well 

correlated to the performance of the fuel network, and their restoration is less 

interdependent.  Because their restorations are not linked, the significant failure of one 

system can disrupt physical commutes despite the acceptable performance of the other.  

Transportation is shown in the Venn diagrams as a moderate risk to fail, but if failure 

does occur, the system often requires weeks and months to repair.  Fuel is a system that 

has not been studied comprehensively.  It may be expected initially for there to be no 

outage because people have inherent fuel storage in their vehicles; uniquely, the fuel 

shortage as shown in the graphic may increase a week into an event.  If the transportation 

and fuel systems are damaged, past events have shown these systems require a much 

longer time to restore compared with electrical and communication systems.   

Stepping back and looking at the venn diagrams and their paired boxes reveals 

that while the probability of failure for electrical and communication systems can be 

large, their failures largely intersect.  For the transportation and fuel system the 

intersection is much smaller resulting in a greater overall probability of failure for the 

process of physical commuting.  Understanding these relationships in greater detail will 
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more accurately measure the risk for important stakeholder processes and may result in 

more appropriate and balanced mitigation solutions.  Chapter 5 will explore mitigation 

solutions and issues in greater detail.  For the example above a single organization may 

be unable to mitigate transportation failures, but increasing the robustness of their 

communications system may decrease their telecommunications vulnerability and 

decrease their reliance on transportation and fuel lifelines. 

 

3.5 Summary 

Developing a complete lifeline risk assessment would provide the best resource 

for decision making; however, a complete assessment is infeasible for most systems. 

Rather than solving for all possible lifeline outage scenarios and then discussing the 

impact of various outages on businesses, the process can be reversed to focus on 

consequence first.  Consequences are measured by lifeline users and then used to simplify 

system components that govern restoration.  Using this simplified methodology provides 

an understanding of catastrophic risk which can be used by stakeholders to address 

vulnerabilities that impact their resilience. 
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4 BAY AREA FUEL SYSTEM CASE STUDY 

“Everyone thinks they have a #1 ticket.  You’re going to need another plan.” – Tom Collins 

Following the steps outlined in Chapter 3, the Bay Area fuel system is used to 

demonstrate the proposed methodology.  California Energy Commission reports, fuel 

industry websites, earthquake reconnaissance reports and technical papers were used to 

determine stakeholder reliance on fuel, geographically map the system, understand the 

fuel sector processes, understand the fragility of system components, and then perform a 

system simplification and monte carlo simulation of key system components.  The 

chapter is broken in six sections: 

 Section 4.1 a variety of potential bounding stakeholders are explored.   

 Section 4.2 the greater public is used to set a critical point to simplify analysis, 

using estimated acceptance curves.   

 Section 4.3 describes the Bay Area fuel system as well as its exposure to specific 

events.   

 Section 4.4 explores system component fragilities as well as restoration timelines 

in past events.   

 Section 4.5 uses fault trees to show the simplification of system analysis.  A 

monte carlo simulation is used to calculate the risk to the portions of the system 

that contribute to the Bay Area‟s catastrophic fuel risk.   

 Section 4.6 summarizes the process and how the results of the study can be used 

to inform decision making. 

All the data was gathered from publically available sources.  Portions of this case study 

are included as part of a greater Bay Area infrastructure assessment performed for the 
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Association of Bay Area Governments (Appendix B), which includes assessments of the 

region‟s transportation, water, and energy sectors. 

4.1 Stakeholders  

A study of Bay Area fuel could be performed for a number of stakeholders.  The 

companies that own and operate fuel system processes have an obvious interest in the 

vulnerability of their assets, but so do the customers reliant on fuel.  Utilities, 

government, institutions, and the general public are all reliant on fuel for their day to day 

and post-earthquake operations.  An assessment designed for the fuel industry would 

focus heavily on direct losses.  Exploring the impact of the fuel system on users provides 

a better stakeholder group to apply the theorized methodology and provides information 

to users unaware of the risk. 

There are many stakeholder groups that are users of fuel.  Narrowing the 

stakeholder group down will make the assessment easier.  Utilities are an attractive 

audience because the results could help them address issues of interdependence.  For 

most utilities their day to day operations are no more reliant on fuel than any other sector.  

However in post-earthquake operations fuel can become a critical resource.  In past 

earthquakes like Loma Prieta utilities experienced cascading failures when they lost 

electricity; water pumping stations stopped, communication systems powered down, and 

critical facilities were in the dark.  Since then many have purchased generators to supply 

power in the event electricity goes out again; however, for these generators to run, fuel is 

needed.  In a 2013 workshop with Bay Area utilities nearly all participants (water, 

wastewater, power, and transportation) agreed fuel was their greatest interdependency 

(UASI, 2014).  A 2014 interdependencies study commissioned by the San Francisco 
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Lifelines council echoed these results.  As part of the study each utility that services the 

City and County of San Francisco was interviewed and asked which systems they are 

reliant on.  Figure 4.1, a matrix from the councils Lifelines Interdependencies Study, 

shows that every other utility in the region is significantly dependent on the fuel sector 

(San Francisco Lifelines Council, 2014).  In addition to using fuel to run generators at 

critical facilities, the vehicle fleets used to repair broken systems often only have a few 

days volume of normal operations fuel on hand.  In the utilities workshop many 

acknowledged operations would not be business as usual.  Around the clock work and 

outfitting mutual aid resources would deplete fuel stocks quickly.  For most utilities a 

fuel outage of any length could be deleterious to the system and restoration efforts. 
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Figure 4.1 San Francisco Lifelines Interdependencies Matrix. 

The general public is also reliant on fuel. In the nine counties that touch the San 

Francisco Bay nearly 7 million gallons of fuel is exhausted daily, see Table 4.1.  Personal 

vehicles represent nearly 80% of the work commute transportation mode split, shown in 

Table 4.2.  Another 10% use public transit of which a portion requires fuel.  In order for 

businesses to function and communities to recover from an earthquake, fuel will be an 

important resource without which the Bay Area would come to a standstill. 
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Table 4.1: 2011 Average Daily Fuel Sales in the Nine Bay Area Counties 

(Gallons) 

 

Table 4.2: 2012 Transportation Mode Split for Nine Bay Area Counties 

 

A study for all fuel users would require a very comprehensive study, one that 

explores fuel availability in the days and weeks after the earthquake.  The proposed 

methodology is unhelpful in understanding fuel availability in the days after the event.  

While utilities are an important group to consider, they cannot be included as a 

stakeholder for this study because they in essence require access to fuel without 

interruption.  Their operations should be considered similar to a hospital, and should be 

treated as such during the response to a disaster.  To simplify the problem this study will 

use the impact of fuel interruption on institutions and the general public.  These groups 

County Gasoline Diesel

Alameda 1,501,370              76,712                    

Contra Costa 1,082,192              57,534                    

Marin 282,192                  8,219                      

Napa 128,767                  5,479                      

San Francisco 413,699                  8,219                      

San Mateo 849,315                  27,397                    

Santa Clara 1,893,151              76,712                    

Solano 597,260                  54,795                    

Sonoma 487,671                  52,055                    

Bay Area Total 7,235,616              367,123                  

California Energy Commission, Energy Almanac (2011)

# of Workers % of Total

2,305,119          67%

359,908             10%

369,358             11%

119,375             3%

109,486             3%

193,642             6%

3,456,888          100%
American Community Survey, Selected Economic Characteristics (2012)

Transportation Mode

Walked

Other means

Worked at home

Workers 16 years and over

Drove alone

Carpooled

Public transportation
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are used to frame the study using time, quality, quantity, and distance acceptance 

measures.  The acceptance curve for the Bay Area will be assumed with the basis of 

regional resilience in mind – considering the fuel needs of the masses, not the outliers.  

With that in mind the four scales discussed in Section 3.2 are considered. 

 

4.2 Acceptance Curves 

The fuel system offers a textbook example of the four scales of user acceptance: 

time, quantity, quality, and space.  Fuel as a commodity can be understood by each of 

these dimensions of acceptance, and as one dimension changes it has an impact on the 

others – they are all interrelated.  All four dimensions are used to understand at what 

level of service the system will cause catastrophic losses for the region.  

Time.  The length of an outage will impact each business or individual slightly 

differently.  Fuel is unique in that typically some is stored in vehicle tanks.  In addition to 

individuals having fuel stored within their own vehicle, gas stations store fuel in large 

underground fuel tanks, as do pipeline terminal stations.  Because of the inherent storage 

for most, a fuel outage will not begin directly following the event, there will likely be a 

lag for all stakeholders.  Setting an outage time is tricky because of the lag, the ability to 

store, and the other three acceptance scales all impacting the effect of the outage.  The 

amount of refined fuel stored in the region fluctuates and is not publicly available at the 

regional scale, however, the State of California keeps a record of how much fuel is stored 

each month.  The average reformulated fuel stored in the State of California in 2013 was 

5,600,000 barrels (CEC, 2011).  If you make the assumption that the fuel is stored 

proportionately to population across the state, the Bay Area would have just over one 
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million barrels of stored fuel, which corresponds to one week of average fuel use.  Even 

if Northern California had a disproportionate amount of stored fuel compared to Southern 

California, the storage would likely not exceed two weeks.   

Before a critical point with respect to time can be set, the other acceptance scales 

must be considered.  Other factors like long-term population evacuation, rationing, and 

behavior change will all impact where the critical point is set for the region. 

Quantity.  Adjusting the quantity of fuel available can drastically extend the 

acceptance of a shortage.  There are substantial improvements if people are provided with 

some fuel; enough fuel to make trips to relief distribution points, enough to fuel public 

transit systems, or enough fuel to commute to work a fraction of days.  Fuel rationing is a 

useful policy following disasters to provide a limited amount of fuel to all users.  

Upwards of three weeks after Hurricane Sandy a fuel shortage persisted that hindered 

recovery efforts and contributed to a lingering delay in people resuming daily life 

operations (Sandalow, 2012).  Because of the shortage in many communities fuel 

rationing was instituted.  The acceptable time without regular fuel conditions can be 

extended if rationing protocols are established.  For this analysis we will assume strong 

fuel rationing will take place if a major earthquake impacts the fuel system – resulting in 

a quarter of the demand. 

Quality. There are some unique cases to California that should be considered.  

Fuel in California is a special grade to limit air pollution.  Under normal conditions fuel 

used in other countries and other states cannot be used in California because it does not 

meet the California reformulated gasoline (CARFG) standards.  The fuel grade in 

California has additional blending components that are typically included at the refinery, 
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and also requires additional ethanol to be added at distribution terminals (Schremp, 

2013).  In the event that there was significant damage to the refineries there would be 

regulation hurdles to suspend before imported refined fuel could be used.  In the event of 

a fuel emergency, fuel waivers would enable the use of other fuels.  Both the US 

Environmental Protection Agency (EPA) and California Air Resources Board (CARB) 

would need to be involved (Schremp, 2013) 

In addition to the quality of the fuel, the quality of the service can also be 

considered.  People may be willing to wait 20 minutes in a line to refuel, but likely not 

hours.  Just as rationing alleviates quantity issues it could also improve the service quality 

in terms of wait time. 

Space. Distance to fuel poses another interesting issue.  In the event that fuel was 

distributed at fewer locations than currently exist, it could pose a unique problem in 

which people are using a large percentage of their fuel to refuel.  One pharmaceutical 

supplier in the aftermath of Katrina had to convoy its distribution trucks with a fuel truck 

to get supplies into and out of the region.  Without a fuel truck the pharmaceutical supply 

trucks would have been unable to complete a round trip without coming across a service 

station with fuel (Collins, 2013).  As will be discussed in the next section, portions of the 

fuel system are responsible for pumping fuel across the region and northern half of the 

state.  If this portion of the system fails, space becomes a key quality of concern.  For this 

analysis it is assumed that fuel must reach at a minimum the major fuel terminal facilities, 

described in Section 4.3 and mapped in Figure 4.2. 

With these four dimensions in mind, and for the distinct purposes of testing the 

methodology, a time period of two months when 50% of the refineries are 
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nonoperational, and six months when 33% of refineries are nonoperational. This assumes 

emergency fuel supplies are used for key services, some population temporarily leaves 

the impacted region, severe rationing occurs – greatly altering how the region uses fuel.  

Lastly, it is important to remember this is a value that assumes the brink of irrecoverable 

regional losses and is averaged for the masses.  Unique institutions may be challenged 

more or less severely. In the event of a larger study of the fuel system it is important not 

to skip the step of understand user acceptance curves, but rather to engage key 

stakeholders, community based organizations, institutions, and local governments to 

more accurately define what length of outage represents the limit of what the region can 

withstand. 

4.3 System Layout & Bay Area Hazards 

The Bay Area is unique in that all phases of the fuel system exist within the 

region except for the drilling and extraction of crude oil.  There are four stages of the fuel 

system that could be impacted in a Bay Area earthquake: (1) crude oil import, (2) 

refinement, (3) fuel transmission export, and (4) fuel distribution.  The risk for the Bay 

Area is unique because so many of the processes occur in the region and any interruption 

in the four phases would cause disruption.  A failure in anyone one phase, causes an 

interruption for the end user.  The sequential process to import, refine, transmit, and 

distribute fuel is a general system.  The import, refinement, and distribution stages have 

parallel components, but the transmission of refined fuel for individual locations is best 

categorized as a series system. 

Crude import occurs by pipeline from the east, rail from the north, and marine 

tankers from the west.  38% percent of crude oil is piped to the Bay Area from California 



 

93 

 

oil fields, mainly in Kern County.  Another 12% is imported from Alaska and 50% from 

foreign sources (WSPA, 2013) which arrives mostly on marine tankers.  In a few years 

however a large percentage of the crude oil is likely to be brought in via rail through 

Solano County from the North.  

The San Francisco Bay Area has five refineries located along the San Pablo Bay 

and the Carquinez Strait, which combined processed 235 million barrels of crude oil in 

2012.  California as a state processed 595 million barrels of crude oil, utilizing 87.25% of 

the 682 million barrel capacity.  In Figure 4.2 the locations of the refineries as well as 

their refining capacity are shown.  They produce more than twice the fuel the nine Bay 

Area counties consume, exporting the remainder of the refined fuel across the northern 

half of the state and elsewhere. 
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Figure 4.2: The Bay Area Fuel System (ABAG, 2014). 
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Refined fuel users in Northern California are dependent on the five refineries.  

There are no refined fuel pipelines that connect Northern California to any refineries 

outside of the region. All of Northern California and parts of Nevada are supplied by the 

five Bay Area refineries.  In Figure 4.2 the main terminal facilities that receive refined 

fuel from the Bay Area are mapped.  Nearly all of the fuel refined at the five refineries is 

pumped to Concord, where the Concord Station facility pumps the fuel out to the 

terminals across the Bay Area and Northern California.  At the terminals there is fuel 

storage and truck loading racks to distribute fuel to local gas stations.  Fuel tankers then 

distribute fuel locally using the road network.   

A disruption in a single phase could limit fuel supply in the Bay Area.  

Interruptions in either of the first two stages would result in fuel shortages.  Failures in 

either of the second two would result in difficult distribution.  Both pipelines and 

refineries are examined to determine their respective fragility to earthquakes. 

 

4.4 System Fragility & Repair 

Fuel networks are generally composed of above ground facilities and pipelines.  

Above ground facilities are vulnerable to the same forces as any other structure.  Shaking, 

ground failure, and fault rupture could all cause significant damage to an above ground 

facility.  These facilities often have intricate routing of pipes and equipment that must 

also be designed and anchored properly. 
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“For above-ground components of pipeline systems, such as buildings and 

storage tanks, inertial forces resulting from ground shaking are a major 

concern,” (FEMA, 1992). 

Pipelines are often buried underground for safety from non-earthquake hazards.  In 

earthquakes the shaking intensity rarely damages pipelines, ground failure is the greatest 

concern for underground pipelines. 

“For buried pipelines, inertial forces are of little concern, but faulting, 

landslides, and liquefaction pose major problems…. Large permanent ground 

movements caused by surface faulting, soil liquefaction, and landslides are the 

most troublesome sources of earthquake damage to gas and liquid fuel pipelines,” 

(FEMA, 1992). 

The majority of fuel literature is focused on natural gas and fuel pipeline 

vulnerability, with little discussion of node facilities.  In particular there has been 

remarkably little published on the seismic vulnerability of fuel refineries.  This is likely 

in large part because of the infrequent interaction between refineries and significant 

ground shaking.  A closer look at past California earthquakes show that few earthquakes 

have produced high MMI levels in the areas with refineries, and no earthquake in 

California in the past 60 years has resulted in MMI values greater than 6 at refineries. 

Most refineries in California are clustered in two areas, the Carquinez Strait in the 

San Francisco Bay Area, and the Long Beach area in Southern California.  There are also 

smaller groupings of refineries in Santa Maria and Bakersfield.  The first refinery in 

California was constructed in Rodeo in 1896.  When it first opened, the facility occupied 

only 22 acres and processed 1,600 barrels of crude oil a day (Phillips 66, 2013).  In 1906 
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when the magnitude 7.8 earthquake ruptured along the Northern San Andreas only two 

refineries existed in the Bay Area, the Richmond and Rodeo facilities.  The earthquake 

likely produced MMI values of 7 and 8 at the Rodeo and Richmond facilities.  Reports 

from the Richmond Refinery summarize the damage. 

“The 1906 earthquake damaged the refinery’s 40-foot stacks and other 

equipment, but fortunately took no human toll at the California plant. [The 

refinery] incurred relatively limited damage, which included the collapse of 

several brick chimneys, the shattering of a fire wall, the springing of some tank 

seams, and the snapping of a wharf line,” (Chevron, 2013).   

No reports were found for the Rodeo refinery.  This event provides some insight, but the 

facilities and processes that existed over a century ago are much different than those of 

the present.  Figure 4.3 are pictures from the Richmond Refinery in 1906 and 1907.  The 

refineries that exist today are constructed for different process and scales. 

 

Figure 4.3: Pictures of the Richmond Refinery in 1906 and 1907 (Chevron, 2013). 

The only other earthquakes impacting refineries with MMI intensities above 6 

were the 1933 Long Beach earthquake and the 1952 Kern County earthquake.  The Long 

Beach earthquake occurred when 5 refineries existed in Southern California, and the 
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Kern County earthquake shook Bakersfield when there were two refineries in the region.  

Limited information about refineries was found for the 1933 Long Beach earthquake, but 

the lack of reported damage could imply damage was minimal.  In the Kern County 

earthquake a few reports and newspaper articles describe refinery damage in Bakersfield.  

The front page of the newspaper read: 

“The horizon south-west of here lit up in an eerie glow in the pre-dawn hours 

yesterday when five 2500-barrel natural gas and butane storage tanks in the 

Paloma fields erupted with a powerful roar, blanketing the refinery in flames.  

The initial blast, not unlike an atomic blast, complete with sinister mushroom 

effect, led people to believe a bomb had been dropped.”  (The Bakersfield 

California, 1952) 

There was some structural damage to the refining facility due to earthquake ground 

shaking, however the majority of the damage was due to an explosion a few minutes after 

the earthquake (Bergman & Owen, 1952).  Beside these three events most other large 

California earthquakes have occurred a considerable distance from fuel refineries.  Figure 

4.4 is a timeline of refinery openings (brown circles) broken down by region.  Major 

earthquakes and their estimated MMI shaking intensities at the nearest refinery have also 

been included to show the limited strong shaking near refineries in CA since the 1952 

Kern County earthquake.  It has been over 60 years since a California refinery 

experienced MMI greater than 6. 
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Figure 4.4: Refinery Opening Dates and Major Earthquakes by CA Region. 

As with most problems in the earthquake field, more recent earthquakes in other 

portions of the globe offer the greatest insight into the current level of vulnerability in the 

United States.  Two earthquake events in the past 15 years located near refineries caused 

significant facility damage.  In both cases the refineries were shut down for 3 months 

before resuming a portion of their original refining.   

In 1999, the Kocaeli earthquake caused severe ground shaking in a portion of 

Turkey with a large industrial sector.  Korfez, Turkey‟s largest refinery was 3 miles from 

the fault (RMS, 2000), and experienced MMI values of 9-10 (USGS, 2000).  The Korfez 

refinery, 50 miles east of Istanbul, refines 220,000 barrels daily which represents 1/3 of 
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the nation‟s oil refining.  The refinery was built in 1961 and underwent expansions in the 

70‟s and 80‟s.  It was designed to international standards, similar to most industrial 

facilities (Johnson, 2002).  The Korfez Refinery was damaged in the 1999 Kocaeli 

earthquake.  A fire, mostly centered around the tank farm burnt for three days and was 

not officially contained for five days.  In addition to the fires, there was structural damage 

to the refinery.  Equipment collapsed and damaged neighboring structures and piping. 

The failures at the refinery were unrelated to the poor construction flaws that resulted in 

building collapse elsewhere in the country (Johnson, 2002).  The damage caused the 

refinery to close completely for 3 months.  During a reconnaissance visit 13 months after 

the event, the refinery was back to full operation.  Over time portions of the refinery were 

brought back online (Johnson, 2002). 

In 2010 the Maule, Chile earthquake damaged the Bío Bío refinery in 

Concepcion, placing it out of operation for 3-4 months. When brought back online only 8 

of 20 processing units were refining representing 34% of the facilities pre earthquake 

capacity (WSJ, 2010).  The other large Chilean refinery in Concón/Aconcagua was out 

for 6 weeks (IEA, 2012).  While no reports specifically state how fuel was supplied after 

the earthquake, these interruptions were likely circumvented by foreign imports.  Figure 

4.5 shows Chile‟s typical imports of different refined products.  Because the country 

imports refined products, especially diesel (IEA, 2012), they had systems in place to 

receive refined products.  Because of the Bay Area‟s large refining capacity a similar 

system to receive refined product may not exist. 
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Figure 4.5 Chile’s Domestic vs Imported Refined Fuels Output. 

Both refineries and pipelines are at a serious risk to fail in severe ground shaking 

and/or liquefaction.  The repair for both system components is uniquely challenging 

because of the hazardous material they process/transport.  Underwater pipelines, or those 

near the shoreline may be difficult, requiring long repair times and permitting issues, but 

refinery repairs can take multiple months if not years.  The time required to repair the 

Korfez and Bio Bio refineries is a uniquely long repair time, many magnitudes longer 

than the repair of a typical pipeline.  In 2012 a five foot section of pipe in the Richmond, 

CA Chevron refinery failed causing a hydrocarbon leak and fire.  For eight months 

following the fire the Richmond facility operated at 60% capacity, while repairs and 

checks were made to the facility.  Given this understanding of past fragility and 

restoration and with the critical point set to 2 months, a simplified fuel system risk 

assessment can be performed. 
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4.5 System Simplification & Scenarios 

The bay area fuel system has been described and mapped geographically in 

Section 4.3.  It is common when performing risk assessments to visualize and organize 

the risk in fault trees.   Fault trees examine the full suite of possible failures and assign a 

probability to each event occurring. This is an appropriate method when comprehensive 

assessments are possible.  The reality, as has been outlined in the thesis, is that there are 

not values to assign to each failure, and the fault trees are too large.  This thesis proposes 

that the problem be bounded by consequences first followed by a study of the system.  

This sequence allows for the omission of certain fault tree branches, resulting in a 

simplified system assessment.  By considering the consequences of lifeline failure, the 

system assessments can be reduced to focus the analysis on catastrophic risk. 

The traditional fault tree for the Bay Area fuel system is quite large.  There are a 

number of ways the tree could be organized.  The four primary phases of the fuel system 

as described in Section 4.3 are illustrated (Figure 4.6) in a comprehensive fault tree for a 

single scenario earthquake.  A full analysis requires the consideration of multiple fault 

scenarios, and when a multi-hazard approach is taken the assessment of multiple hazard 

types is also required.  Even this fault tree is slightly simplified.  A more comprehensive 

assessment might expand this tree to consider discretized sections of pipelines too.   
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Figure 4.6 Comprehensive Fault Tree for the Bay Area Fuel System. 

 

The fault tree in Figure 4.6 shows the need to calculate the performance of many 

components of the system.  By simplifying the fault tree based on our critical point 

bound, we can simplify the tree down to two processes, the refining, and transmission of 

fuel.  The tree is reduced to these two processes because these elements can require more  

than 2 months to restore operations if damaged, exceeding the critical point set in section 

4.2.  The fault tree in figure 4.7 ignores the risk from all crude import, pipeline, terminal 

facility, and gas station failures.  This reduction is done by assuming that the neglected 

elements, if damaged, can be repaired within two months of their failure. 

 

Figure 4.7: Simplified Fault Tree for the Bay Area Fuel System. 
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By ignoring the risk of pipeline damage the system instantly drops in complexity 

to the five refineries and the Concord Station.  All that is left to do is determine scenarios 

that are most significant.  Using the USGS deaggregation function for the Richmond and 

Martinez facilities, three events are of primary interest, earthquakes associated with the 

San Andreas, Hayward, and Concord Southern Green Valley faults.  This can be seen in 

the deaggregation map (Figure 2.12 in Section 2.3.3) which shows the Hayward and 

Concord faults as the faults of greatest concern for the San Pablo Bay, Carquinez Strait 

area. 

Figure 4.8 shows the fuel refineries overlaid liquefaction susceptibility and 

shaking scenario maps. In a San Andreas, Hayward or Concord event, portions of the 

Fuel production and distribution in the Bay Area is likely to be severely disrupted (see 

Figure 4.9).  A number of similar impacts could occur in each event. 
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Figure 4.8: Liquefaction Susceptibility at the Five Bay Area Refineries. 
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Figure 4.9 Shaking Intensity in Three Scenarios at the Five Bay Area Refineries. 

Each event will cause significant shaking at all five refineries.  These facilities are 

assumed to be sensitive and if any number of small failures occurs, the restoration of the 

facility could easily be on the order of months, due to the earthquake shaking alone, or 

due to any subsequent fires at the facilities. 

By using scenario earthquakes the spatial correlation of loading is already 

accounted for.  Because all of the refineries are generally located close together if one 

refinery feels strong shaking often the others do as well.  This is especially true of the 

three refineries in the Martinez and Benicia area.  Rodeo and Richmond are slightly 

further apart and thus tend to experience slightly different levels of shaking in all three 

scenario events.  In addition to being in close proximity geographically they also are 

located in similar terrains.  All the facilities are located near the bay in order to receive 
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crude product and subsequently are all in zones with portions of their facilities in zones 

susceptible to liquefaction. 

In addition to their close proximity, the five refineries are all designed similarly.  

Although they are owned and operated by different corporations, they all refine fuel the 

same way and employ the same processes, and are subject to the same oversight and 

standards (NFPA, CPUC, OSFM).  It is unknown if some of the refineries have taken 

steps beyond the minimum level of the regulations, but they are all required to meet 

minimum standards.  Because of this, if the forces experienced in an earthquake are the 

same at two facilities, then there is likely a strong correlation between the performance of 

each.  By considering resistance correlation implicitly when looking at the shaking maps 

in Figure 4.9 we can start to infer what the damage of one refinery means for the damage 

of others.  

4.6 Monte Carlo Simulation of Bay Area Refineries 

 

A Monte Carlo simulation was used to calculate the probability of fuel being disrupted in 

the region for 60 and 180 days.  The simulation was run using Microsoft excel, and 

Appendix C has screenshots of the program.  The simulation was created with the 

following structure which is shown in schematic form in Figure 4.10: 

1. For the three scenarios introduced in Section 4.5, each refinery is assigned an 

MMI value based on their exposure in the scenario.  These values are static. 

2. Each refinery is then assigned a random number variable between 0 and 1.  For 

each round of the Monte Carlo simulation a new random number is generated for 

each of the five refineries. 
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3. This random number is then compared against a 60 day and 180 fragility curve 

shown in Figure 4.11.  This fragility curve was made using the limited refinery 

and shaking interaction seen in Chile and Kocaeli.  Past “sunny-day” failures at 

refineries were also used to assume the fragility of these facilities, as well as the 

time required to restore their operation following damage.  For each scenario the 

program compares the random variable against the point on the fragility curve for 

the MMI intensity experienced at that refinery in that specific event.  For 

example, the Richmond refinery in the Hayward scenario experiences MMI 8.  If 

the random variable is greater than 0.7, then the simulation assigns zero days of 

interruption at the facility.  If it is less than 0.7 then it calls out 90 days of 

interruption.  A separate column does the same interaction for the 180 day curve.  

With the same example, if the value is greater than 0.4 then the value is zero, if it 

is less than 0.4 then there is a 180 day interruption.  This is done simultaneously 

for all five refineries.  Each row of results is a unique run.   

4. The summation of the refining capacity of facility is then produced to show what 

percent of the overall Bay Area refining capacity is impacted by each simulation 

run.   

5. The total interrupted refining capacity for each scenario run is then compared 

against the critical point threshold of 50% and 33% for the 60 and 180 day points.  

This results in a pass or fail value.   

6. At this point the results are broken up into PDF, CDF, and probability of failure 

results. The likelihood of each scenario event is then multiplied  
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Figure 4.10: Monte Carlo Coding Schematic. 
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Figure 4.11: Assumed Refinery Fragility Curve. 

4.7 Results 

 

Over the next 30 years there is a 17% probability that an earthquake on one of 

these faults of similar or greater magnitude interrupt enough of the regional refining 

capacity to cause catastrophic fuel outages for the Bay Area and greater Northern 

California.  Incorporating other fault systems, and smaller magnitude events on these 

three faults would increase the risk of catastrophic fuel outage. 

For each scenario, if it were to occur, there is a greater than 50% chance that 

refinery production will not be sufficient to meet the acceptance curve set.  The Concord 

scenario had the greatest failure rate, with the refineries failing 66% of the time, followed 

by San Andreas, with refineries failing 60%, and in the Hayward scenario, the refineries 

failed in 54% of the simulation runs.  However, the greatest risk for fuel production is 

from the Hayward scenario, because of its much greater likelihood of generating the 

scenario event.  The San Andreas fault, while likely to produce a M6.7 or greater 

earthquake, remains a low likelihood to produce the M7.9 event used in this analysis.  
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Similarly, the Concord scenario has a much lower likelihood of occurring – compared 

with the Hayward fault.  All in all, the refineries exhibit fairly similar results in each 

scenario, all falling between 54% and 66% probability of failure.  Figure 4.12 shows 

PMF‟s for each scenario, and Figure 4.13 shows a CDF for each.  In each chart both 90 

day interruptions and 180 day interruptions are displayed.   
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Figure 4.12: PMF for Bay Area Refinery Output in Three Scenario Earthquake 

Events. 

 

Figure 4.13: CDF for Bay Area Refinery Output in Three Scenario Earthquake 

Events. 
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Despite the unique earthquake scenarios each produces a relatively consistent 

picture of overall refinery performance in earthquakes.  The similar results are due to the 

location of faults relative to the refineries, as well as the bounds set for assessment (50% 

impacted and 33% impacted).  In San Andreas and Hayward events the Richmond and 

Rodeo facilities fail together, representing just over 40% of the regional refining capacity.  

In the Concord event, the Martinez Tesoro, Martinez Shell, and Benicia refineries 

experience similar shaking.   

4.8 Conclusions 

 

Without the simplified methodology there was no way to approach the risk 

assessment without calling on greater resources than exist for such studies.  The 

simplified methodology first explored the relationship of different stakeholders to the fuel 

system, and selected the general public as the bounding stakeholder group to develop a 

critical point.  Next, the Bay Area fuel system was mapped out, and a review of 

component fragility and restoration allowed for the simplification of the system down to 

elements that are likely to require more time to restore than is acceptable to the users of 

the system.  System probability methods were then applied to a simplified, approachable 

system, providing insights that previously were unknown to the users of the system.   

The result of the simplified study may be the investment of a traditional 

assessment with more intricate fragility curves for refineries, with the inclusion of more 

hazard scenarios.  However, without the first initial study there is no information for 

decision makers to weigh investment in further study, mitigation options, or recovery 

strategies.  The simplified methodology provides this opportunity, and opens up lifeline 
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system performance to the public policy world, where users can decide if systems are 

designed to an acceptable level of risk. 

Given this analysis alone, the results could be communicated back to stakeholders 

and users of the system can determine if the risk acceptable.  If the users decide the risk 

must be mitigated any number of mitigation solutions can be designed to reduce the 

impacts of the event.  Chapter 5 explores the principles by which systems can be 

mitigated – all of which can be applied to the Bay Area fuel system. 
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5 DECISION MAKING & MITIGATION 

“The quest for the missing algorithm may be like the quest for the Holy Grail: Unending and 

fruitless…those of us concerned with the decision sciences as they apply to problems with extreme variance 

must continue to develop useful means for measuring downside risk.” –Daniel Alesch, 2002 

Risk assessments allow for calculated, informed decisions.  The previous chapters 

explain the difficulties of measuring risk, but decision making is an equally challenging 

process.  Lifeline mitigation decision making is challenging because: decisions are 

collective, the uncertainty and the variance of risk are often large, and there are 

fundamentally different methods of mitigation.  Sections 5.1 and 5.2 explore the 

difficulties of decision making when mitigation requires collective support, and when the 

risk profile has large variance.  Section 5.3 explains fundamental properties of lifeline 

mitigation solutions and provides examples of past mitigation projects that embody the 

fundamental.  The proposed simplified methodology does not suggest a single decision 

making scale, nor one specific mitigation strategy, rather it recognizes that decision 

making scales and strategies will be unique to the qualities of individual situations. 

 

5.1 Collective Decision Making 

Decisions are more difficult when multiple stakeholders are involved. When 

deciding what level of water reliability is necessary, the more people involved, the more 

difficult the decision becomes.  Lifeline systems are largely collective (both publicly and 

privately owned), with all stakeholders in a geographic region relying on the same 

system.  This creates a conflict between individuals who want to invest in a higher 

standard of infrastructure performance, and those who are content with the current risk 
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and would be burdened by investing further.  As discussed in Section 3.1 some 

organizations may be more reliant on lifelines and may experience greater losses.  While 

the outage length for two entities may be similar, the consequences will be unique and 

different.  The difference between consequences makes decision making difficult.  In 

addition to this difference in consequence, there are other qualifying factors that 

influence individual rational risk decisions: institutional size, customer traits, and reliance 

on local resources. 

Individual decision making will depend greatly on the size and diversity of 

organizational portfolios.  Much like parallel system structure, having operations spread 

across multiple regions whose risk and function is not connected, allows for the failure of 

one region to not cause irrecoverable losses to the organization.  Conversely, a small 

business owner with one facility is unable to take the same approach.  Large corporations 

or even “the federal government should be treated as risk neutral because of [their] high 

degree of risk diversification.  Whereas the federal government can be risk-neutral on 

virtually all of its own projects, the same is not true of other governmental and private 

sector entities….state and local government lifeline entities as well as private sector 

lifeline entities cannot be so sanguine about potential risks,” (Alesch, Nagy & Taylor, 

2002) and should be risk averse to prevent catastrophe.  The difference in consequence as 

well as difference between risk neutral and risk adverse lead to a range in scale of 

mitigation solutions. 

Depending on the ability to reach consensus, lifeline mitigation can occur at three 

levels: micro, meso, and macro scales.  Micro solutions are completed by individuals or 

single organizations.  Meso solutions bring together portions of a population, typically an 
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economic sector or cooperative group.  Macro solutions bring together all individuals and 

markets (Rose et al. 2007).  Figure 5.1 shows these three scales and examples of each.   

 

Figure 5.1: Scales of Mitigation: Micro, Meso, and Macro. 

Stakeholders who desire lifeline performance greater than the public system must 

invest heavily in a private solution (i.e. electrical generator, water storage, waste storage, 

satellite communication) or convince the public to invest in more robust infrastructure 

systems.  In most cases individual solutions are not feasible, except for sensitive 

businesses and institutions such as hospitals, emergency operation centers, or a corporate 

headquarters.  In California hospitals are required by the state to have gas and water 

storage as well as electrical generators to ensure their ability to provide public health 

services following an earthquake (HSSA, 1983).  The International and California 

building codes have reflected this legislation in their respective 2006 and 2007 codes 
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requiring generators, fuel storage, HVAC systems to all be tested on shake tables before 

they are installed in a building (Tobolski, 2011).  Hospitals are not the only facilities that 

require lifelines to remain operational, many businesses require lifelines to maintain 

economic function.  Regardless of the business, all are reliant on infrastructure with the 

majority of businesses unable to function minutes into an outage.  Like hospitals some 

organizations have prepared with micro solutions as well.   

While some organizations have chosen to mitigate and prepare with micro 

solutions, regional economic resilience is dependent on macro mitigation projects; 

“Mitigation and preparedness measures undertaken at the level of the individual business 

must be balanced by the macro-level approaches that focus on maintaining the 

functionality of communities and local economies,” (Tierney & Nigg, 1995).  Micro 

solutions are limited and only support single entities.  If an institution chooses to invest in 

micro solutions that results in the function of their facility, they are often still reliant on 

functioning suppliers, customers, and employees with functional homes to maintain 

business as usual.  Even for the most risk-averse individuals micro solutions simply can‟t 

mitigate their risk because of cost or because some lifeline services simply cannot be 

mitigated by individuals.  Many systems are inherently macro and require communal 

agreement and investment.   

 

5.2 Uncertainty & Variance in Decision Making  

Even in the most well studied regions of the world, the public is often inactive in 

addressing earthquake risk because events are infrequent and the uncertainty is great.  

Probabilistic risk assessments provide valuable information for rational decision makers, 
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but even the most complete assessments can result in limited mitigation action.  With 

limited success in mitigation without a triggering event, it is important to improve the 

communication of both uncertainty and risk in an effort to achieve proactive mitigation 

before earthquakes occur.   

The uncertainty in the likelihood of earthquakes and the uncertainty in the performance 

of a system both before and after mitigation are barriers to investment.  Mitigation can be 

a tough sell with other more concrete demands competing for funding.  Because of 

uncertainty, mitigation occurs more often following an event when the public is witness 

to the hazard, the system deficiencies, and the losses that follow.  In the aftermath of 

events, the consequences are real and specific.  Risk assessments attempt to reveal 

deficiencies prior to an event but uncertainty is an unavoidable reality of predicting 

system performance.  Reactive improvements following earthquakes are beneficial, but 

proactive mitigation is ideal. 

Despite large improvements in the geo-sciences in the past decades, earthquakes 

will remain events with great uncertainty.  The uncertainty can be broken into the where, 

when, and how severe an earthquake will be.  In well studied regions of the world there is 

less uncertainty in the where component; although Christchurch (2011) and Northridge 

(1994) were both on previously unmapped faults.  When an earthquake will occur has the 

greatest uncertainty, and has not been successfully forecast on a human time frame. 

Earthquakes occur over a geologic time frame and while “It would be useful to 

have access to reliable probabilities concerning the frequency, magnitude, and proximity 

of a natural disaster in relation to a specified location or set of locations…we are so far 

unable to provide that information reliable within the time frame relevant to most 
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decision-makers.  That is, it may be possible to make reliable predictions plus or minus 

100 years, but not plus or minus 10 years,” (Alesch et al. 2002).  Others might go further 

and suggest 100 year predictions may be out of reach and really 1,000 or even 10,000 

years are required for an accurate resolution.  The Parkfield earthquake is a good example 

of the level of uncertainty in predicting events.  In an effort to study a number of 

seismological characteristics the earthquake community instrumented a section of the San 

Andreas in Parkfield, CA which over the previous century consistently had M6.0 

earthquakes dating back to 1857, one of which was a precursor to the Ft. Tejon 

earthquake.  All six earthquakes ruptured the same section of fault and were all similar in 

size.  If the pattern in time between ruptures were consistent, the next Parkfield 

earthquake should have occurred before 1993 (USGS, 2012b).  11 years later in 2004 a 

M6.0 Parkfield earthquake occurred.  Presently when earthquakes occur cannot be 

predicted at a human timescale. 

The severity of the earthquake is also highly variable.  While Parkfield was close 

to the expected magnitude, outlier events like the 2011 Tohoku, Japan event occur.  The 

length and type of fault offer bounds for potential magnitudes, and paleo-seismic fault 

trenches can also help determine the size of past events, but even with the most current 

science, some argue that the severities of earthquakes extend beyond any feasible level of 

design.  “All risk from earthquake damage cannot be eliminated.  No matter how much 

money is spent in strengthening structures, some earthquake could occur that would 

damage the structure even to the point of requiring replacement.  Strategies must be 

developed to manage what risk remains in ways acceptable to the owner,” (Wittkop & 
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Jensen, 2002).  It is not simply the uncertainty of seismic events, but also the wide range 

of consequences when they do occur that makes decision making difficult. 

The variety of potential consequences makes decisions difficult, and makes 

insurance an attractive option for most.  In insurance it is common practice to annualize 

earthquake losses for clients and eliminate the bi-modal representation of the probability.  

For stakeholders where insurance is not financially feasible annualization is less 

successful.  For a single business the majority of years will yield zero losses due to 

earthquakes.  However given the earthquake occurs there is the potential for a range of 

damage states and consequences which are capped by catastrophe/bankruptcy/death.  

Uninsured stakeholders must understand that the loss potentials given an earthquake will 

occur at once and not over time.  Decisions may be made more simply when catastrophic 

risk is specifically addressed. 

“Because the events are so rare, and sometimes so devastating, the variance in 

annual costs can be extreme…when the variance is large and when the potential 

for ruin exists, the decision making becomes a lot more difficult…In the case of 

hazard mitigation, the prudent decision-maker will attempt to reduce downside 

risks by defining what constitutes ruin for that firm, reducing variance in possible 

outcomes to be above that level, and why then seeking a mitigation investment 

that achieves the desired level of safety at the lowest possible cost, subject to the 

demands of other competing uses for the resources,” (Alesch et al. 2002).   

For a sustainable business continuity model, understanding the outage length that results 

in ruin is an important variable to know.  This variable is c, the critical point in EQ 1.3.  
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Not all risk needs to be mitigated, only catastrophic risk.  Stakeholders are then left to 

determine appropriate action to prevent ruin, in the process making themselves resilient. 

 

5.3 Fundamentals of Mitigation Strategies 

There are three primary ways to mitigate lifeline systems directly, lifeline 

performance systems can be made more redundant, robust, or repairable.  Each 

fundamental will be more or less appropriate than the others given factors of unique 

situations.  The system, the stakeholders, and the hazard will all influence which 

fundamental strategy may be most successful. 

 

5.3.1 Redundancy 

Redundancy is achieved by parallel system structure and/or multi-modal delivery.  

Parallel structures have multiple components within an individual system performing the 

same task.  Multi-modal delivery has different systems performing the same function.  In 

both, a truly redundant system will have small correlations, or better yet negative 

correlations (if one link fails it is likely the other did not).  For high level transmission 

systems parallel segments can be placed tens of miles apart, decreasing the likelihood 

both experience the same event.  At the local level this is difficult because an entire city 

can simultaneously experience high hazards.  Parallel infrastructure components at the 

local level may have correlated performance because the hazard forces are similar across 

the whole city.  When dealing with infrastructure systems at a local level multi-modal 

systems offer a means to provide redundancy.  In Loma Prieta the Bay Bridge failure 
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highlighted the need to make key transportation corridors multi-modal.  Mitigation 

measures like the replacement of Bay Bridge are needed, but investing in multi-modal 

systems along key transportation corridors is equally important.  A multi-modal system 

can “withstand shocks to parts without catastrophic damage to the whole,” (Schiff, 1990).  

More generally, where single corridors exist having multiple modes (personal vehicles, 

trains, ferries, cycling, pedestrian) can be a method of diversifying series system 

corridors, making them more redundant. 

Using the fundamental of redundancy, the City of Berkeley in 2000 developed an 

innovative aboveground water supply system (BAWSS), improving their firefighting 

water system by means of another mode.  The system has vehicles that lay large diameter 

flexible hose reaching from a water source (the bay, a reservoir, or a working water main) 

to most portions of the city (Orth, 2011), Figure 5.2.  Unlike San Francisco‟s AWSS, 

BAWSS is not directly vulnerable to liquefaction.  AWSS is a parallel network of pipes 

independent of the municipal water system, but it is still reliant on pipes and underground 

infrastructure at risk of liquefaction as was the case in Loma Prieta (Section 2.1.1).  

BAWSS isn‟t without its own weaknesses.  Roads must be passable enough to deploy the 

system from a water source to the fire.  Both AWSS and BAWSS are some of the best 

existing examples of redundancy, AWSS with a robust network of parallel piping and 

cisterns, and BAWSS with a different mode of water supply.  Firefighters in both cities 

are more prepared than most to have water to fight fires following earthquakes.  But fire 

suppression requires more than high pressure water, communication and transportation 

are also necessary.   
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Figure 5.2: Demonstration of BAWSS Deployment (Orth, 2011). 

Most fire departments have invested in their own independent and redundant 

communication system of radios or satellite phones, but transportation networks are a 

challenge.  Fire boats and aircraft would offer an uncorrelated redundant solution to 

trucks reliant on roadways but are largely unrealistic options.  Similarly, a separate 

system of roads for first responders is not feasible.  Some innovative micro solutions may 

drastically improve the ability of first responders to navigate a damaged transportation 

network.  ShakeCast, a Caltrans program, is used to help improve response times (Turner, 

2011).  The program provides first responders with an expected bridge damage inventory 

minutes after an earthquake allowing crews to bypass potentially damaged bridges.  

Continued micro strategies should be developed for first responders, but when redundant 

systems aren‟t feasible, increasing the robustness and reparability of macro lifelines is 

necessary. 
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5.3.2 Robustness 

Robustness is achieved by making elements more resistant to failure.  This can be 

accomplished by increasing a components strength or flexibility.  The advantage of 

making elements more robust is that their probability of failure decreases, which then has 

a direct effect on the risk.  Transbay transportation in the Bay Area has previously been 

described as a redundant system that performed as such in the Loma Prieta earthquake.  

The consequences of the Bay Bridge closure for 30 days were hedged by BART, ferries, 

and other bridges.  Nearly 25 years after the earthquake the region opened a more robust 

Bay Bridge that greatly increased the reliability of vehicular transportation across the bay 

following a future earthquake.  Despite redundancy between the BART, Ferry, and bridge 

systems, the potential for much larger and more centrally located earthquakes in the bay 

area could damage the bridges, tunnels, and ports that were undamaged in Loma Prieta.  

By making the Bay Bridge robust the reliability of transportation across the bay increased 

significantly.  A robust solution was appropriate for the Bay Bridge because other bay 

crossings will likely experience similar earthquake forces in future events, and speedy 

repair of such a large structure may be infeasible.  Other situation may call for a different 

solution. 

 

5.3.3 Repairability 

When consequences are not immediately catastrophic due to interruption in 

lifeline service, a repairable system may be an appropriate mitigation strategy.  Lifeline 

components can be designed to limit outage time by accepting that failure of components 

is likely, and designing them in a way that allows quick repair or replacement.  When the 



 

127 

 

length of lifeline outage is the governing variable, then it may be allowable for there to be 

extensive failures if those failures can be readily replaced following the event.  

Understanding what the critical point of lifeline outage is for stakeholders can provide 

information on repairable solutions that can provide temporary fixes to return systems to 

operational performance.  Water providers have largely embraced this philosophy when 

designing pipe systems that cross over faults.  Designing a pipe to perform with multi-

meter fault rupture may not be cost permissive, and may not provide a design that 

provides a low enough probability of failure.  Instead recognizing locations where fault 

rupture will occur and placing shut off valves and bypass connectors is a solution that 

offers water transmission soon after an event.  

 

5.3.4 Discussion 

Ideally systems could all be redundant, robust, and repairable.  One such system 

incorporates all three fundamentals into a single system, Figure 5.3.  In 1994 more than 

90% of East Bay Municipal Utilities District‟s customers supported a $189 million 

Seismic Improvement Program to strengthen the water system against major earthquakes 

(ABAG, 1998).  The community reliant on EBMUD water experienced brief outages in 

the 1989 Loma Prieta earthquake, and were exposed to the 1991 Oakland Hills Fire that 

killed 29 and burned over 3,000 homes (Eidinger, 2004).  In January of 1994 Northridge 

struck Southern California.  The combination of Loma Prieta, the Oakland Hills Fire, 

Northridge, and an extensive education outreach of the potential impacts of a Hayward 

Fault earthquake, garnered mass support for the EBMUD water system improvements.  

Similarly, San Francisco passed its own bond measures to bolster their water systems.  
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Residents were receptive to rate increases to improve the seismic performance of their 

water systems.   

 

Figure 5.3: EBMUD’s use of Robust, Repairable, and Redundant Lifeline 

Mitigation Fundamentals. 

EBMUD completed two main projects to improve their system reliability.  The 

first improved robustness.  The Claremont Tunnel underwent a seismic strengthening 

where it crosses the Hayward Fault underground.  The construction cost of the project 

was $38 million, but the pipeline is expected to function following a Hayward earthquake 

despite a fault displacement as great as 2.5m.  While this improvement alone greatly 

increased the probability of water supply, EBMUD also constructed a parallel water 

transmission bypass.  The southern loop pipeline was built to add redundancy to the 

water transmission system (EBMUD, 2012).  The additional water transmission line also 

crosses the Hayward fault, but at a different location, where the fault rupture is expected 

to be less.  They would be entirely independent of fault rupture damage in the event that 

only the northern or southern portions of the fault slip.  The additional line and different 

location spatially, greatly improve the likelihood of at least one of the transmission lines 

functioning following a future Hayward rupture.  The southern loop pipeline and other 
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smaller diameter pipes in the EBMUD system that cross the Hayward Fault have 

emergency bypass valves where water can bypass any damage caused by fault rupture 

with large diameter hose (EBMUD, 2005).  EBMUD has invested in measures that 

greatly improve their ability to provide water following an earthquake.  While they 

recognize there will be thousands of failures in the pipeline system they have addressed 

the highest hierarchy of their system along sections that otherwise could require a long 

time to repair. These examples were largely spurred by past lifeline failures.  If risk 

assessments can be completed and communicated properly they may be the tool to 

achieve mitigation without a catalyzing disaster event.   

 

5.4 Summary 

By using the simplified methodology stakeholders are provided with an 

assessment that specifically studies catastrophic risk.  This directly addresses the issue of 

variance, focusing decision making on reducing the catastrophic risk, and focusing the 

stakeholder to consider the risk that results in ruin.  Because the assessment focuses on 

this portion of risk the mitigation solutions that arise as a result will directly improve 

resilience.   

When the risk assessment becomes a resource for decision making the scale and 

fundamentals of mitigation should be communicated.  There is no single mitigation scale 

nor strategy that is best.  The mitigation scale and strategy chosen should be dictated by 

the unique conditions of individual systems and stakeholders.  Lifeline mitigation can be 

undertaken at three different scales, micro, meso, and macro, each requiring a different 

level of consensus.  When mitigation strategies are explored there are three fundamentals 
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that can each provide the desired system operability.  Systems can be made more robust, 

repairable or redundant.  This chapter largely covers mitigation fundamentals completed 

on the macro system but as described in Chapter 3 if the results are communicated to end-

users, it may improve their ability to implement micro strategies which decrease their 

reliance on a fragile system.  The fundamental solutions in this chapter describe how to 

improve the system performance, but when resilience is the end goal, increasing the end-

users acceptable outage before the critical point also improves overall resilience. 
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6 CONCLUSION 

“It’s a dynamic field.  Every time I think I’ve got it I realize I’m just an advanced beginner” – Steven 

Jordan 

Lifelines pose a complex problem for assessment.  The primary goal of this thesis 

is to steer the thinking about lifelines to encompass not just the vulnerability of lifeline 

systems, but the consequence of failure.  From a theoretical perspective understanding the 

entire system is a desirable goal, but often an infeasible one.  By understanding 

consequence first, systems can be simplified to the components that will govern 

catastrophic outages.  The simplified methodology does not result in a comprehensive 

risk assessment, rather it provides an abbreviated risk profile of catastrophic risk; risk that 

constitutes ruin.  By providing an assessment of only catastrophic lifeline risk, the risk of 

greatest importance is measured, while smaller recoverable risk remains unknown.  Many 

of the same probabilistic issues remain, but by simplifying the process, abbreviated 

lifelines assessments are more feasible providing stakeholders with information to make 

decisions about catastrophic risk in an environment that currently is largely unknown.  

For these reasons the proposed simplified assessment provides a good model for a 

variety of stakeholders to study their lifeline risk.  States and regions that invest in lifeline 

assessments can provide a valuable resource for other stakeholders to build from.  If 

findings are communicated to businesses and residents, and the risk is unacceptable they 

can choose to invest in appropriate lifeline mitigation; by investing in a personal micro 

solution, working with partners on a meso solution, or generating the political support 

necessary to fund municipal infrastructure improvements, or oversight to ensure private 

lifeline systems are reliable. 
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6.1 Potential Pitfalls of the Method 

The deeper lifelines are explored the more complex they can become.  Generating 

simplified assessments can provide valuable baseline knowledge for a wide range of 

stakeholders.  Because the methodology simplifies assessment it could be missing 

sources of catastrophic risk. By removing elements from an assessment there is a chance 

a significant component is omitted.  Take for example the fuel study provided.  In the 

study the pipelines were ignored from the assessment with the assumption that pipelines 

can be repaired more rapidly than other key nodes.  If pipelines were more sensitive than 

thought and multiple failures occurred in the series pipeline system it could arguably take 

longer to repair an entire pipeline than restore failed refineries or pumping nodes.  The 

same argument applies to any simplification.  This concern can be addressed by clearly 

communicating results, stating assumptions and adding a disclaimer that the assessment 

is simplified. 

The fuel assessment paints a granular picture of the potential for catastrophic fuel 

disruption.  Because the fuel sector is so critical to the region, building out the study 

could smooth the picture making it a valuable resource for the region to address 

resilience.  While the methodology may not capture the whole risk, it allows stakeholders 

insight into possible magnitudes of risk, which may then produce the will required for 

further study, and for access to greater amounts of data needed for a more complete 

assessment. 
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6.2 Future Research 

In the lifelines field there are still a number of research avenues that would greatly 

improve this methodology.  Any improvements in lifeline data collection or correlation 

relationships would prove very fruitful for both a traditional probabilistic lifeline 

assessments as well as the simplified assessment described in this thesis.  This thesis can 

also be greatly improved by greater study of the consequences and the engagement of 

lifeline operators. 

 

6.2.1 Technical Study  

Understanding the relationship between hazards would be very beneficial in 

understanding the hazard forces comprehensively.  When using scenarios as is suggested 

in this study for lifeline assessments, existing liquefaction susceptibility maps are not 

currently helpful.  While developing liquefaction susceptibility maps at a detailed level 

may require years of research and subsequent testing in the location of interest, 

developing basic red-yellow-green liquefaction scenario maps with existing ground 

shaking and soil liquefaction maps should be feasible.  This information would be 

beneficial for system studies where ground shaking may be a concern along one system 

segment and ground liquefaction may be a concern along a parallel segment (i.e. The 

Highway 101 and 280 corridor described in section 3.4.3.1). 
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6.2.2 Consequences 

If the simplified methodology proves helpful there is a much greater need to 

measure and track consequences following disasters.  The earthquake and hazards field 

has prioritized reconnaissance efforts on documenting failures, and less time on studying 

the consequence of the failure.  In the case studies of the fuel refinery failures in Kocaeli 

and Chile there were multiple reports describing the structural damage, but nearly 

nothing discussing what the impact of the failure was and what measures were taken to 

lessen the impact.  Knowing the fuel demands in the days, weeks and months after the 

earthquake and studying the short term fixes would provide invaluable knowledge into 

what types of impacts might be expected in future events.  This is something that needs a 

longitudinal study.   

In addition to the study of lifeline system recovery, it is important to understand 

the interaction of stakeholders with lifeline services. There has not been an update of the 

mid 90‟s Tierney study of the reliance of business on lifeline sectors.  In the past twenty 

years the internet, businesses models, and other advances have likely drastically changed 

the reliance on lifelines following earthquakes; making some systems more critical and 

others less.  Continually understanding the relationships of regions to their infrastructure 

will provide insight into what types of measures are most necessary.  Additionally, 

studying the impact of various outage intersections, may provide insight into which 

systems should be balanced in their mitigation approach (i.e. study impact of having both 

water and wastewater rather than just one). 

Lastly, the study of consequence and the generation of mitigation strategies must 

expand beyond simply the time of outage and include the quality, quantity, and distance 
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to infrastructure systems.  This more complete understanding of consequence can 

drastically change what portions of systems should be studied and can also be used to 

generate better response and emergency plans that address each of these scales.  This 

adds a layer of complexity but the value achieved could generate unique mitigation and 

recovery strategies. 

 

6.2.3 Policy & Collaboration 

The first two topics of study can be carried out by researchers in the earthquake 

engineering and emergency management fields.  Engaging with lifeline operators is a 

critical step in retrieving data to run assessments, and also having a partner that will be 

open to macro level solutions.  Without willing partners, users of the lifeline systems 

when handed assessment results will be left to mitigate at micro and meso scales, 

sometimes infeasible options.  Groups like the City and County of San Francisco‟s 

Lifelines Council are beginning a long process of bringing lifeline operators together to 

share information with stakeholders (City of San Francisco), and possibly more 

importantly with one another.  This Council while young, could act as a trailblazer for 

regional or state lifeline councils that can tackle problems at a higher level, lending 

themselves to completing simplified assessments of transmission systems. 

The collective effort to mitigate lifelines can be a difficult process of 

collaboration or political intervention.  In the past studied systems in high hazard areas 

have generated political support to fund large improvement efforts.  Water and 

transportation systems in California have completed extensive seismic retrofit and 

seismic reliability programs resulting in more resilient systems.  Private systems have 
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improved their performance through similar programs but it remains to be seen if their 

improvements have been as extensive.  If individual systems continue to fail 

disproportionately to others, decreasing the resilience of all stakeholders within the 

region, policy action may be necessary to improve reliability.  Study of the efficacy of 

past methods for both private and public systems may provide guidance in necessary 

steps following future failures. 

 

6.3 Final Thoughts & This Work in the Real World 

We can‟t get to resilience without considering the risk to our lifeline systems.  

Over time our social and economic drivers have become increasingly dependent on aged 

systems, fragile to natural hazard forces.  The realities of lifeline system management 

have made it difficult or impossible to apply theoretical risk models to understand our 

risk.  The proposed simplified methodology acknowledges these realities and suggests a 

first step that can be taken to understand catastrophic risk for the users of infrastructure 

systems.  The results don‟t provide users with a comprehensive risk profile, but rather a 

granular understanding of the risk that constitutes ruin for the stakeholder. 

For more content on this topic, there are three documents that were written in 

conjunction with this research.   For the first time in 2013, the California State Hazard 

Mitigation Plan included an annex dedicated to lifeline risk assessments (see Appendix 

A) a first step in addressing lifeline risk. It is a short annex and is framed to help local 

jurisdictions address their lifeline risk in Local Hazard Mitigation Planning.  Appendix B 

is an assessment of many Bay Area infrastructure systems.  Elements of the methodology 

were used in the Cascading Failures report, which includes portions of the Bay Area fuel 
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system analysis highlighted in this research.  Lastly, the research was also included in the 

California Adaptation Planning Guide which highlights how communities can build 

adaptation into their planning efforts, one element of which includes the planning of 

existing and future infrastructure systems.  The approach taken in this thesis was bounded 

by earthquake hazards, but the methodology and many of its nuances can be applied to all 

current and future natural hazards.  
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APPENDIX A: CALIFORNIA STATE HAZARD MITIGAITON PLAN - ANNEX 3: 

LIFELINES INFRASTRUCTURE AND HAZARD MITIGATION PLANNING 

http://hazardmitigation.calema.ca.gov/docs/SHMP_2013_Annexes1-6.pdf 
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TRANSPORTATION AND UTILITIES 

http://resilience.abag.ca.gov/wp-

content/documents/Cascading_Failures/InfrastructureReport_2014.pdf 
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