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ABSTRACT 

A Three-Dimensional Anatomically Accurate Finite Element Model for Nerve Fiber 
Activation Simulation Coupling 

Shaina Ann Fischer 

Improved knowledge of human nerve function and recruitment would enable 

innovation in the Biomedical Engineering field. Better understanding holds the potential 

for greater integration between devices and the nervous system as well as the ability to 

develop therapeutic devices to treat conditions affecting the nervous system. 

This work presents a three-dimensional volume conductor model of the human 

arm for coupling with code describing nerve membrane characteristics. The model 

utilizes an inhomogeneous medium composed of bone, muscle, skin, nerve, artery, and 

vein. Dielectric properties of each tissue were collected from the literature and applied to 

corresponding material subdomains. Both a fully anatomical version and a simplified 

version are presented.  

The computational model for this study was developed in COMSOL and 

formatted to be coupled with SPICE netlist code. Limitations to this model due to 

computational power as well as future work are discussed. The final model incorporated 

both anatomically correct geometries and simplified geometries to enhance 

computational power. A stationary study was performed implementing a boundary 

current source through the surface of a conventionally placed electrode. Results from the 

volume conductor study are presented and validated through previous studies.  

 

Keywords: Finite element model, Volume conductor simulation, Myelinated neuron 

model  
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I INTRODUCTION 

The nervous system and associated nerve cells are vital to health and well-being 

of human life. Nerve cells conduct impulses along their processes in order to transmit 

signals throughout the entire body. Signal transmission enables the function of each 

organ system, as well as somatic and autonomic movements and responses [1]. Better 

understanding of nerve cells and their behavior would facilitate innovation within the 

Biomedical Engineering field. Application of this understanding includes enhanced 

prosthetic integration, the ability for brain-machine interfacing, therapeutic devices for 

nervous system disorders, and pain management.  

The aim of this work is to contribute to the understanding of human nerve 

function by creating a computational model of the human arm to be coupled with neural 

recruitment and excitation code. The model presented in this work incorporates precise 

anatomy and representative tissue properties into commercially available Finite Element 

Analysis software. Previous studies successfully created simplified two-dimensional 

models for coupling. This work attempts to prove the significance of a three-dimensional, 

anatomically accurate non-homogenous volume conductor model by comparison of 

analogous study results.  

To support the understanding of the model defined in this work, the following are 

presented: an overview of the anatomy and physiology of the human nervous system and 

nerve cells, relevant conditions and disorders, the significance and implementation of 

computational modelling, and a review of previous work contributing to this study.  
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1.1 The Nervous System 

The nervous system is the target of many research efforts and innovations in the 

biomedical engineering field. Diseases and neuropathies associated with the nervous 

system are difficult to treat and can be detrimental to health and quality of life. Having a 

better understanding of neuron function and targeting capabilities would facilitate 

improved development of devices and therapies. 

1.1.1 Physiology of the Nervous System 

The human nervous system is comprised of two main components: the central 

nervous system (CNS) and the peripheral nervous system (PNS). The CNS consists of the 

brain and spinal cord, while the PNS consists of motor and sensory neurons. The role of 

the CNS is to interpret sensory information and send signals to the PNS. The PNS 

collects sensory information and delivers signals to muscles and glands. The motor 

neurons of the PNS can be further divided into somatic and autonomic components. The 

somatic component of the nervous system is responsible for voluntary movements and 

conducts impulses from the CNS to skeletal muscles, while the autonomic component of 

the nervous system is responsible for involuntary responses and conducts impulses from 

the CNS to cardiac muscle, smooth muscle, and glands. Furthermore, the autonomic 

nervous system is divided into sympathetic and parasympathetic divisions. The 

sympathetic division mobilizes body systems during activity; conversely the 

parasympathetic division conserves energy and promotes digestive functions during rest 

[1]. Figure 1 illustrates the divisions and functions of the nervous system. In essence the 



 

nervous system is responsible for every movement, feeling, and sense that the human 

body experiences. 

Figure 1: Schematic representing the di

1.1.2 Neuron Anatomy 

Neurons are the individual nerve cells 

specialized cells that conduct nerve impulses 

cells in several ways. They have a 

optimally for a lifetime [1]

continuous supply of oxygen and glucose to survive 

There are multiple types of neurons, each class with unique morphology and 

function. These large complex cells consist of a cell body and slender processes. 

illustrates an example of a 

axons. The dendrites are short branches

nervous system is responsible for every movement, feeling, and sense that the human 

: Schematic representing the division of the nervous system in the central 
and peripheral components. 

 

Neurons are the individual nerve cells within the nervous system. 

conduct nerve impulses throughout the body. Neurons are unique 

cells in several ways. They have a distinctly long lifespan; neurons can function 

[1]. They have a very high metabolic rate and require a 

continuous supply of oxygen and glucose to survive [1].  

are multiple types of neurons, each class with unique morphology and 

These large complex cells consist of a cell body and slender processes. 

illustrates an example of a motor neuron. There are two types of processes: dendrites and 

The dendrites are short branches with a large surface area to receive signals and 
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convey them toward the cell body [1]. The axon of each neuron can be long, reaching up 

to a meter in length. The axon conducts impulses away from the cell body, ending at the 

axon terminal where it releases a chemical signal of neurotransmitters to either excite or 

inhibit other neurons [1]. The three main types of neurons are sensory neurons, motor 

neurons, and interneurons. Sensory neurons are responsible for conducting sensory 

information from receptors to the central nervous system [1]. Motor neurons are 

responsible for conducting impulses from the central nervous system to a muscle or 

gland. Interneurons are neurons only found in the central nervous system and link sensory 

neurons with motor neurons [1]. Structurally, neurons can be classified into unipolar, 

bipolar, and multipolar. Unipolar neurons are typically sensory neurons with receptors in 

skin, muscle, or organs. They possess a single process with a long axon terminating in the 

spinal cord. Bipolar neurons possess two processes branching from the cell body [1]. 

Bipolar neurons are typically sensory neurons serving the visual and auditory systems 

and are short in length. Multipolar neurons possess multiple branches leaving the cell 

body to enhance integration. They typically have long axons, capable of reaching distant 

portions of the nervous system [1].  
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Figure 2: Anatomy of a typical motor neuron, representing dendrites, axon, and 
myelin sheath [2]. 

The axons of long nerve fibers are covered by a segmented myelin sheath. The 

myelin sheath is responsible for protecting and electrically insulating fibers as well as 

increasing the speed of transmitting nerve impulses. The myelin sheath in the PNS is 

formed by Schwann cells. Schwann cells wrap around the axon at regular intervals, 

leaving gaps called the nodes of Ranvier. These gaps provide a break in the insulation 

that allows impulses to jump and ultimately speeds transmission.  

1.1.3 Membrane Potential and Impulse Propagation 

 Action potentials form the basis of signal transmission within neurons. Opening 

and closing of voltage-gated ion channels can cause a reversal of a neuron’s resting 

membrane potential and generates an action potential [3]. Action potentials consists of 

five steps (Figure 3). Step one corresponds to resting state, during which no ions move 

through the voltage-gated channels. Step two corresponds to depolarization, where 

sodium ions flow into the cell. In step three, potassium ions flow out of the cell causing 

repolarization. In step four, the membrane is hyperpolarized because potassium ions 
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continue to leave the cell. In this step the membrane is refractory and cannot generate a 

new action potential. Finally in step five, potassium channels close.  

 

Figure 3: The five steps of an action potential: (1) resting state, (2) depolarization, 
(3) repolarization, (4) hyperpolarization, (5) restored to resting membrane potential 

[4]. 

 Neurotransmitters released by axon terminals bind to receptors on another 

neuron’s dendrites. In excitatory synapses, this causes ligand-gated ion channels to open 

and positive ions flow into the neuron and depolarize the membrane. Neurotransmitter 

release at inhibitory synapses causes hyperpolarization of the membrane [5]. 

Depolarization reduces the voltage drop between the inside and outside of the cell. 

Sensory or other stimuli depolarize the neuron to threshold potential (approximately -

55mV). Sodium channels at the beginning of the axon open to begin the action potential 

[3]. When depolarization is complete, the cell’s membrane voltage returns to resting 

potential. The refractory period is initiated by the close of sodium channels. Voltage-

gated potassium channels open and allow potassium to leave the cell, returning 

membrane potential to a negative voltage. As potassium ions continue to diffuse out of 

��

��

��
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the cell, it becomes hyperpolarized and causes the membrane potential to become more 

negative [3]. 

 Conduction velocity of action potentials along the axon of a neuron varies widely. 

In neural pathways, nerve fibers can transmit impulses at a velocity of 100 m/s or more. 

Slower conduction velocities are observed in internal organs such as the gut and blood 

vessels [1]. Impulse propagation is greatly dependent on two factors: axon diameter and 

myelination. Axon diameters vary between neurons; typically larger diameters allows 

faster conduction due to lowered resistance to current flow [1]. As an action potential 

travels down the axon, it is regenerated by voltage gated channels within the Nodes of 

Ranvier. If an axon has no myelination, the uninsulated space spans the entire length and 

ion channels are immediately adjacent to each other. This type of propagation is known 

as continuous conduction and is very slow [1]. Myelin insulates the axon to prevent 

leakage of charge and allows the membrane voltage to change more rapidly [1]. Because 

current can only pass through the membrane at the Nodes of Ranvier, the electrical signal 

jumps from node to node along the axon (Figure 4). This type of conduction is called 

saltatory conduction and is approximately thirty times faster than continuous conduction 

[1]. 

 

Figure 4: Illustration of the Nodes of Ranvier, where the electrical signal is allowed 
to jump from nodes along the axon [3]. 
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1.1.4 Conditions and Innovations 

 There are many diseases associated with the nervous system. Currently, little is 

known or understood about many of these diseases. Understanding the function and 

behavior of neurons and the nervous system will improve scientists’ abilities to develop 

cures and treatments.  

 Multiple sclerosis causes the degeneration of myelin [3]. This slows the 

conduction of action potentials by reducing the efficacy of saltatory conduction. Multiple 

sclerosis is an abnormal immune system response producing inflammation. As it damages 

and destroys myelin, it also causes damage to the nerve fiber. Symptoms of multiple 

sclerosis include cognitive difficulty, loss of balance, numbness, weakness, muscle 

spasms, and speech problems [6]. Treatment for multiple sclerosis is typically limited to 

symptom management. Scientists are currently investigating strategies to stimulate the 

repair and protection of myelin [7]. 

 Another condition that affects the nervous system is peripheral neuropathy, a 

disorder of the peripheral nerves. It results from damage to the nerves causing 

impairment of sensation, movement, and organ function. There are many forms of 

peripheral neuropathy, each with its own characteristics and prognosis. Thirty percent of 

peripheral neuropathies remain idiopathic, however known causes include diabetes, 

autoimmune disease, tumor, toxins, and infection [8]. Some symptoms of peripheral 

neuropathy include numbness, tingling, pain, tremors, cramping, and sensory or motor 

loss [8]. Currently treatment for peripheral neuropathy is mainly symptomatic and lacks 

restorative or preventative therapy options.  



9 
 

 Another category of conditions that affect the nervous system are called 

degenerative nerve diseases. These diseases affect a wide range of body functions 

including balance, movement, speech, and organ function [9]. Causes of these diseases 

are often unknown but can include toxin and chemical exposure, virus, stroke, or genetics 

[9]. Degenerative nerve diseases include Alzheimer’s disease, Huntington’s disease, 

Spinal muscular atrophy, and Friedreich’s Ataxia [9]. All of these diseases are 

debilitating or life-threatening. No cure is currently available, and treatment is only 

symptomatic to prolong and improve quality of life.  

 Currently, neural engineers are conducting studies to enable treatment of these 

conditions and manage associated pain. The conditions described in this work represent 

only a fraction of those affecting the nervous system. Greater knowledge of the nervous 

system and neuronal behavior will enhance the ability to prevent, treat, and manage 

conditions. Computational modeling is a way to study the behavior and characteristics of 

the nervous system.  

 Some neuroscience efforts are attempting to model neural systems to enhance 

understanding, interface, and manipulation of the nervous system [10]. Other efforts 

focus on neural signals and utilize quantitative techniques to measure and analyze the 

nature of neural communication [10]. One example of a significant innovation in the field 

of neural engineering is the bionic arm, an artificial limb for amputees enabling control of 

the device by the nervous system through the spinal cord [10]. The DEKA bionic arm 

was funded by the Defense Advanced Research Projects Agency (DARPA) involving a 

team of over three-hundred scientists and engineers led by Dean Kamen [10]. The DEKA 

bionic arm contains electrodes capable of detecting electrical impulses fired by the brain 
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[10]. Additional functionality is provided by buttons built into the patient’s shoes [10]. 

Other innovations utilizing the understanding of neuron function include pacemakers and 

neurostimulation systems to monitor and inhibit seizures. Potential innovations not yet 

achieved include pain inhibition, highly localized and reversible anesthesia, restoration of 

function to paralysis victims, and an artificial retina [10].  

1.2 Computational Modeling 

 Computational modeling combines mathematics, physics, and computer science 

to study the behaviors and reactions of complex problems in-silico. A computational 

model contains many variables that characterize the system being studied [11]. The 

National Institutes of Health states that “modeling can expedite research by allowing 

scientists to conduct thousands of simulated experiments by computer in order to identify 

the actual physical experiments that are most likely to help the researcher find the 

solution to the problem being solved” [11]. When studying a complex problem, many 

different variables are involved. Computational modeling allows a researcher to change 

one variable and predict the significance and magnitude of its effect on the problem. This 

approach is extremely useful in research because it helps narrow down a problem, isolate 

significant factors, and validate the need for non in-silico tests. Computational modeling 

is also useful in device design because it can predict efficacy, illuminate unexpected 

behavior, validate expected behavior, and serve as an accurate test environment without 

the cost and time of bench and in-vivo testing. Optimal design and research practices 

incorporate computational models with experiments and in-vivo tests. These tests can be 

used to validate in-silico models and can provide evidence to support results determined 

from adjusted and more complex models.  
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To develop a successful computational model, several steps must be considered in 

order to narrow down the scope, goal, and results of the model. Following the six step 

process outlined in Figure 5 will ensure that a model is relevant to the problem or 

situation.  A complete computational model first considers the targeted system 

configuration. This includes the entire structure of the model, the geometries being used, 

and the scope of the situation. It is important to consider what portion of the problem is 

necessary to create a useful model. Second, the governing equations and constitutive laws 

that control the situation must be considered. Third, the system properties should be 

described. This involves any physical, biological, chemical, or other property that affects 

the system. Next, system conditions should be determined; this includes boundary 

conditions, applied conditions such as loadings, and initial conditions. This step is 

followed by system discretization, in which mesh refinement, mesh convergence, 

tolerances, and mathematical error should be considered. Finally, validation methods to 

prove accuracy of the model need to be determined. Validation can include previous 

studies, bench testing, in-vivo test results, and other experimentation.  

 

Figure 5: The six step process for developing a computational model, with 
assumptions and simplifications applied at each step. 



12 
 

For each of step, assumptions and simplifications must be considered. This is an 

important component of model development. A computational model cannot always 

describe an entire system. The human body is a particularly complex system. To model a 

medical device or function of the body, simplifications and assumptions must be made in 

order to not exceed computational capabilities. The researcher must determine what 

degree of simplification will maximize computational cost and time without sacrificing 

accuracy.  

1.2.1 Finite Element Method 

 Computational modelling incorporates the Finite Element Method, also known as 

Finite Element Analysis (FEA). The Finite Element Method is a “sophisticated numerical 

scheme used to approximate the solution to common boundary value problems” [12]. In 

FEA, the user makes informed decisions to set up a problem in order to develop a 

solution. Using FEA makes solving difficult problems possible by transferring facilitating 

computation by computer. To mathematically model a physical system, two different 

approaches can be taken to reach a solution. First, assumptions may be made to develop a 

simple model, and then an exact solution can be solved for. Second, a complex model 

incorporating important details may be developed, and an approximate solution can be 

solved for. This process is illustrated in Figure 6 [12]. The finite element method 

develops an approximate solution for an exact model. In this study, an exact model of the 

human arm was created in order to solve for an approximate solution.  
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Figure 6: The finite element method, derived from a physical problem [12]. 

The Finite Element Process describes how a problem is translated into an FEA 

model, and then solved [12]. In the first step, the problem is defined. This step specifies 

what question you will attempt to answer with your FEA solution. In the second step, the 

model is defined. This step describes the scope, geometry, boundary conditions, loadings, 

and properties that go into the model. The third step is to mesh the model. Fourth, the 

analysis method must be chosen. In the fifth step, the FEA model is solved using 

commercial or custom code. Finally in the sixth step, post processing is performed to 

obtain results. Steps three through six encompass an iterative process, which can be 

followed to ensure that the FEA model achieves optimal results. This process is outlined 

in Figure 7 below.  
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Figure 7: The Finite Element Process [12]. 

FEA uses matrix algebra on a mass scale to solve complex systems of equations at 

many points. These points are known as nodes within a mesh. A mesh is a system of 

geometric entities that covers the surface or volume of a model. Mesh elements come in 

different shapes, including triangles and rectangles. Various element types are used for 

different computations.  

1.2.2 Significance of FEA in the Biomedical Field  

The use of computational modeling and FEA in the biomedical engineering field 

has been growing in popularity as a tool to aid design, testing, and validation. In January 

of 2014, the Food and Drug Administration (FDA) Center for Devices and Radiologic 

Health (CDRH) issued a Guidance Document titled, “Reporting of Computational 

Modeling Studies in Medical Device Submissions” [13]. The purpose of this document is 

to provide instruction on proper use of computational modeling for device regulation. 

This document describes good practices in model development, as previously discussed 
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and outlined in Figure 5. The FDA states: “computational modeling and simulation 

studies, together with bench, non-clinical in vivo, and clinical studies are tools that can be 

used to evaluate the safety and effectiveness of medical devices” [13]. With this 

Guidance Document, the FDA acknowledges the importance and impact of 

computational modelling in the biomedical industry. 

1.2.3 COMSOL 

 Many commercially available programs exist today incorporating FEA and 

computational modeling with a graphical user-interface. One such available software 

platform is COMSOL. Founded in Stockholm, Sweden, the first multiphysics edition was 

released in 1998 [14]. The current software has capabilities in structural mechanics, 

electromagnetics, fluid flow, heat transfer, chemical reactions, acoustics, electric 

currents, and more [14]. Developing a model using this software allows the user to add 

various physics modules and couple them into a single simulation. The integrated work 

environment and user-interface allows for unified modeling workflow [14]. COMSOL 

features tools  to draw geometries or import a CAD model, apply material properties, 

implement boundary conditions, incorporate user-defined variables and functions, 

generate a mesh, run stationary or time dependent simulations, and post-process. More 

advanced capabilities include linking multiple physics into one simulation, customizing 

studies by adding multiple steps to target results within specific time frames, generating 

adaptive meshes to adjust refinement as a study progresses, and Live-Link to other 

programs such as SolidWorks, MATLAB, and Excel to optimize cross-platform studies.   
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1.3 Previous Work 

Nerve fiber activation has been a major area of study for decades. In 1959 George 

Bishop published an article in the Journal of Nervous and Mental Disease titled “The 

Relation Between Nerve Fiber Size and Sensory Modality” [15]. Bishop proposed a 

relation between afferent nerve fiber size and physiology of sensory systems. Related 

work has since been aimed at understanding how stimuli levels vary depending upon 

characteristics of the nerve fiber. Better understanding of the stimulation of nerve fibers 

will provide insight to aid in the diagnosis and treatment of neuropathies. 

 In a study by Robert Szlavik and Hubert de Bruin titled “The effect of stimulus 

current pulse width on nerve fiber size recruitment patterns,” a simulation was performed 

to study recruitment patterns within motor nerve fibers [16]. This simulation utilized 

accurate fiber diameters with skeletal tissue properties but did not include realistic 

inhomogeneous tissue layers [16]. Implementing a time varying field simulation coupled 

with nerve fiber excitation simulations, it was found that only a marginal selectivity is 

achievable [16]. Additionally Szlavik concluded that selectivity increases with increased 

electrode distance [16].  

 Studies like that performed by Bishop and Szlavik form the basis of nerve fiber 

activation simulation studies. Additional works relevant to the field and forming the basis 

for this study will now be discussed in further detail.  

1.3.1 Similar Work 

 One previous study relevant to the investigation of nerve fiber activation was 

conducted by Nathan Soto under the direction of Dr. Robert Szlavik [17]. Published in 
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2011 and titled “Characterizing Nerve Fiber Activation by Varying Fiber Diameter and 

Depth Within a Conductive Medium: A Finite Element Approach,” Soto coupled 

MATLAB and COMSOL to develop a simulation to determine what stimuli were 

necessary to activate fibers of varying diameter and depth. COMSOL was used to 

describe the voltage profile present within a conductive medium environment of the 

human forearm after a stimulus is applied [17]. MATLAB was used to analyze COMSOL 

output and determine the activation status of a nerve fiber. Soto developed two separate 

but similar models in COMSOL; one using homogenous isoptropic material to represent 

the human forearm and the other inhomogeneous material [17]. Both models utilized a 

two-dimensional basic geometry with an applied constant DC source [17]. Below is the 

plot of the first isotropic, homogenous model (Figure 8). This volume plot demonstrates a 

maximum electric potential of 0.00227 V. The second COMSOL model incorporated the 

nerve fiber as well as its dielectric properties. Several iterations of this study were 

performed to analyze various fiber characteristics. A profile plot from the second non-

homogeneous isotropic model can be found in Figure 9 below. This model demonstrates 

a maximum potential of 0.00202 V. 
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Figure 8: Homogenous isotropic model developed in COMSOL by Soto [17]. 

 

    

Figure 9: Non-homogenous isotropic model developed in COMSOL by Soto [17]. 



19 
 

To vary fiber depth, Soto manually adjusted the position of the fiber geometry 

before performing analysis. It was found that changing the diameter of the fiber had a 

greater effect on the current stimulus than the fiber depth [17]. Soto’s work concluded 

that “even the smallest change in the model can result in significant changes in current 

density required for nerve activation. This was shown by including the material 

properties of the fibers themselves to the model” [17].  

 Additional work currently being developed by Frank Sugden under the direction 

of Dr. Robert Szlavik is aimed at developing a model of neural membrane electrical 

characteristics coupled into a COMSOL model. This model is being developed using the 

Simulation Program with Integrated Circuit Emphasis (SPICE) platform. Spice is a 

general purpose simulation program for circuits, commonly used in electrical engineering 

[19]. To describe human nervous membrane potential characteristics, this model utilizes a 

Hodgkin-Huxley (HH) circuit. The model incorporates both linear and non-linear circuit 

elements to describe the ion channel behavior of neurons. The myelinated neuron model 

created in SPICE is coupled with COMSOL to run a simulation. The COMSOL model 

consists of a two-dimension representation of the cross section of a human arm with 

stratified layers of skin, nerve, muscle, and bone. Figure 10 shows the basic geometry 

representation that this study utilizes. A strong approximate model was successfully 

developed, and validated with reference to the literature. Sugden’s work will demonstrate 

that correct usage of neuron models within a two dimensional conductive space allows 

for approximate modeling of human neural electrical characteristics. Figure 11 shows an 

example of the human nerve membrane potential profiles that are used for validation.  
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Figure 10: Two-dimensional geometry developed in COMSOL representing the 
human arm by Sugden. 

 

Figure 11: Human nerve membrane potential profile developed by Sugden. 

 These works illuminate the need for an anatomically correct three-dimensional 

model that can be incorporated into a simulation. Such a model can improve results and 
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the understanding provided by nerve conduction studies. This formed the basis of the 

work defined in this thesis.  
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II METHODS 

The goal of this work is to develop a geometrically accurate electric current 

volume conductor model for use with a SPICE model representing electrical behavior of 

nerve fiber membranes for characterizing nerve fiber activation. The complete model 

defined in this work is meant to support the SPICE netlist code. This work incorporates 

anatomical geometries and accurate tissue properties into a single model to serve as a test 

environment for current and future neural membrane models.  

2.1 Data Acquisition 

Data for the three-dimensional anatomically correct geometries was obtained 

from “BodyParts3D: 3D structure database for anatomical concepts” [20]. This open-

access project was funded by The Integrated Database Project and the Ministry of 

Education, Culture, Sports, Science and Technology of Japan. The goal of the project was 

to create “a dictionary-type database for anatomy in which anatomical concepts are 

represented by 3D structure data that specify corresponding segments of a 3D whole-

body model for an adult human male” [20]. The database contains concepts for mapping 

materials with the purpose of computational manipulation, research, and experiments. 

Geometries for the database were constructed from a voxel human model for 

electromagnetic dosimetry, generated from a whole-body set of MRI images taken at 

2mm intervals [20]. The project culminated in an online database providing native 3D 

models of rendered body parts for download under a Creative Commons license. The 

online database is represented in a user-friendly graphical interface that allows body parts 

to be searched by location, depth, and size (Figure 12). The files are available for 
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download in Wavefront OBJ format. The files opened in raw form are represented as a 

set of coordinates in a three-dimensional space. Figure 13 shows the right humerus bone 

in original Wavefront OBJ format.  

 

Figure 12: A screenshot of the BodyParts3D online database, which allows the user 
to select individual objects or organize by systems [20]. 



 

Figure 13: Raw file of the right humerus bone obtained from BodyParts3D in 

The original files obtained from BodyParts3D were opened 

Meshlab (available from meshlab.org) 

extensible system for the processing and editing of unstructured 3D triangular meshes” 

[21]. This program was designed to aid the processing of large, unstructured models 

obtained from 3D scanning 

meshes [21]. 

 Once files obtained from BodyParts3D were opened in Meshlab, 

triangles was generated. The initial 

in Figure 14. The initial meshes that were 

BodyParts3D contained errors such as holes, border edges, and invalid orientations. To 

repair the mesh, fill holes, and clean irregular triangles, the mesh generated in Meshlab 

was exported in the Stereo Lithography (STL)

 

: Raw file of the right humerus bone obtained from BodyParts3D in 
Wavefront OBJ format. 

The original files obtained from BodyParts3D were opened using a

Meshlab (available from meshlab.org) [21]. Meshlab is “an open source, portable, and 

extensible system for the processing and editing of unstructured 3D triangular meshes” 

. This program was designed to aid the processing of large, unstructured models 

obtained from 3D scanning and provides tools for editing, inspecting, and converting 

Once files obtained from BodyParts3D were opened in Meshlab, 

triangles was generated. The initial generated mesh of the right humerus bone can be seen 

. The initial meshes that were imported from raw data provided by 

BodyParts3D contained errors such as holes, border edges, and invalid orientations. To 

repair the mesh, fill holes, and clean irregular triangles, the mesh generated in Meshlab 

was exported in the Stereo Lithography (STL) file format.  
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: Raw file of the right humerus bone obtained from BodyParts3D in 

using a program titled 

is “an open source, portable, and 

extensible system for the processing and editing of unstructured 3D triangular meshes” 

. This program was designed to aid the processing of large, unstructured models 

diting, inspecting, and converting 

Once files obtained from BodyParts3D were opened in Meshlab, a mesh of 3D 

rus bone can be seen 

imported from raw data provided by 

BodyParts3D contained errors such as holes, border edges, and invalid orientations. To 

repair the mesh, fill holes, and clean irregular triangles, the mesh generated in Meshlab 



 

Figure 14: Initial mesh generated on the right humerus bone in Meshlab.

Each STL file was t

is a free program available for mesh edit, repair, and analysis originally created for 

Additive Manufacturing (also known as 3D Printing). Once in netfabb Basic, each mesh 

was automatically repaired. 

during editing. Next, the mesh was visibly inspected for spikes, holes, and areas of 

excessive complexity and corrected by hand. 

then ready for import into COMSOL.

: Initial mesh generated on the right humerus bone in Meshlab.

Each STL file was then opened in a program called netfabb Basic. This program 

is a free program available for mesh edit, repair, and analysis originally created for 

Additive Manufacturing (also known as 3D Printing). Once in netfabb Basic, each mesh 

was automatically repaired. Figure 15 shows the right humerus bone in netfabb Basic 

Next, the mesh was visibly inspected for spikes, holes, and areas of 

excessive complexity and corrected by hand. Each file was saved as a final STL

then ready for import into COMSOL. 
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: Initial mesh generated on the right humerus bone in Meshlab. 

Basic. This program 

is a free program available for mesh edit, repair, and analysis originally created for 

Additive Manufacturing (also known as 3D Printing). Once in netfabb Basic, each mesh 

one in netfabb Basic 

Next, the mesh was visibly inspected for spikes, holes, and areas of 

h file was saved as a final STL and was 
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Figure 15: The right humerus bone in netfabb Basic during mesh editing. 

2.2 Model Development 

This model was developed following the computational modelling process 

previously outlined in Figure 5 and defined by the FDA Guidance Document [13]. A 

summary of the steps specific to this model are outlined in Figure 16.  
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Figure 16: The six steps to developing a computational model, as in this work. 

2.2.1 System Configuration 

The goal of this system is to create an accurate model of the human arm. The 

scope of this model is limited to the right arm, cut mid-bicep. All major materials found 

in the arm are represented including bone, muscle, skin, artery and vein. Nerve is 

represented as a system of small anatomically positioned spheres. Materials for fat and 

cartilage were excluded from this model in order to optimize model tractability. The 

bones represented in this model include the following: humerus, radius, ulna, scaphoid 

carpal, lunate carpal, triquetrum carpal, pisiform carpal, trapezoid carpal, capitate carpal, 

hamate carpal, the five metacarpals, distal phalanges, middle phalanges, and proximal 

phalanges. A complete assembly of the bones used for import into COMSOL in the 

model can be found in Figure 17. 



 

Figure 17: Complete assembly of the bones of the human arm, ready for import into 

The muscles represented in this model include

biceps brachii, brachialis, b

palmaris longus, flexor carpi ulnaris

flexor digitorum superficialis

thumb, extensor carpi radialis longus

extensor carpi ulnaris, abductor pollicis longus

longus, extensor indicis, a

pollicis brevis, extensor indicis

complete assembly of the 

in Figure 18. 

: Complete assembly of the bones of the human arm, ready for import into 
COMSOL. 

The muscles represented in this model include the following: triceps brachii

, brachioradialis, anconeus, pronator teres, flexor carpi radialis

lexor carpi ulnaris, flexor pollicis longus, pronator quadratus

lexor digitorum superficialis, flexor digitorum profundus, lumbricals, thenar muscles of 

xtensor carpi radialis longus, extensor carpi radialis brevis, extensor digitorum

bductor pollicis longus, extensor pollicis brevis, e

, abductor pollicis longus, extensor pollicis longus

xtensor indicis, opponens pollicis, and opponens digiti minimi

complete assembly of the muscles used for import into COMSOL in the model 
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: Complete assembly of the bones of the human arm, ready for import into 

riceps brachii, 

lexor carpi radialis, 

ronator quadratus, supinator, 

henar muscles of 

xtensor digitorum, 

, extensor pollicis brevis, extensor pollicis 

xtensor pollicis longus, extensor 

pponens digiti minimi. A 

used for import into COMSOL in the model are shown 



 

Figure 18: Complete assembly of the muscles of the human arm ready for import 

Arteries and veins

brachial artery, radial artery

digital arteries, cephalic vein

radial vein, digital veins. 

into COMSOL in the model can be seen in Figure 

was represented by a single file. The skin representation was sliced using netfabb Basic at 

mid bicep level. The final skin geometry used for this model can be seen in Figure 20. 

: Complete assembly of the muscles of the human arm ready for import 
into COMSOL. 

s represented in this model include the following

adial artery, ulnar artery, deep palmar arch, superficial palmar arch

ephalic vein, brachial vein, basillic vein, median cubital vein

. A complete assembly of the arteries and veins used for import 

into COMSOL in the model can be seen in Figure 19. Data for skin from

was represented by a single file. The skin representation was sliced using netfabb Basic at 

mid bicep level. The final skin geometry used for this model can be seen in Figure 20. 
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: Complete assembly of the muscles of the human arm ready for import 

the following: axillary artery, 

uperficial palmar arch, 

edian cubital vein, ulnar vein, 

used for import 

om BodyParts3D 

was represented by a single file. The skin representation was sliced using netfabb Basic at 

mid bicep level. The final skin geometry used for this model can be seen in Figure 20.  



 

Figure 19: Complete assembly of the 

Figure 20: Final skin geometry, ready for import into COMSOL.

: Complete assembly of the artery and vein of the human arm ready for 
import into COMSOL. 

: Final skin geometry, ready for import into COMSOL.

30 

 

artery and vein of the human arm ready for 

 

: Final skin geometry, ready for import into COMSOL. 
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Each of the STL files containing the assembly for each tissue type was uploaded 

into COMSOL using the import module. The geometries are highly complex, containing 

many faces, making importing a difficult process. The CAD Import Module kernel with a 

relative repair tolerance of 1e-10 was selected because of its ability to read files created 

in other programs. For individual file import, only surfaces were selected as objects to 

import. The “knit surfaces” option was selected so that solid surfaces could be formed. 

An absolute import tolerance of 1e-10 was chosen for each import. The final geometry 

composition containing bones, muscles, skin, arteries and veins can be seen in Figure 21. 

The final geometry composition with skin hidden from view to display the other 

anatomical structures can be seen in Figure 22.  

 

Figure 21: Final geometry composition including bone, muscle, skin, artery, and 
vein with transparency enabled to enhance viewing. 
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Figure 22: Final geometry composition including bone, muscle, artery, and vein with 
skin hidden from view to enhance viewing. 

 Finally, twenty-two small spheres were drawn into the model in COMSOL to 

represent the presence of nerve. Nerve was represented by two chains of eleven spheres. 

These spheres utilized the assumption that nerve tissue in this model is homogenous in 

the lateral position. This means that each sphere couple occupies the same Y and Z 

coordinates, and was only varied in the X. Within a sphere couple, one was placed close 

to the membrane where nerve would be present, and the second was placed close to the 

first but within the muscle subdomain. The nerve tissue was drawn in this way for two 

reasons. First, the absence of nerve in BodyParts3D files created a need for the presence 

of nerve fiber geometries where material properties could be applied. Second, this 

specific structure of nerve represented by eleven sphere couples allows for easy 

integration with the SPICE netlist code developed to model neural membrane electrical 

characteristics. 
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2.2.2 Governing Equations & Constitutive Laws 

 This model utilizes the Electric Currents physics module available in COMSOL. 

The Electric Currents module adds corresponding equations, boundary conditions, and 

current sources for modeling electric currents in conductive media [14]. Each boundary 

condition and node applied to this module adds or adjusts the governing equations 

affecting the simulation. The Electric Currents module in COMSOL utilizes two basic 

governing equations:  

 � � � � � �   (1) 

where �  is current density in amperes per meter squared, and � �  is the initial current 

source in amperes per meters cubed.   

 � � �� 	 � 
   (2)

where �  is electrical conductivity in siemens per meter, �  is the electric field in volts per 

meter  � 
  is externally generated current density in amperes per meter squared. These 

basic equations are applied to the entire model, except where boundary conditions or 

nodes are applied. 

 Adding a current conservation node to the model adds the continuity equation for 

the electrical potential [14]. Electrical conductivity and relative permittivity are used in 

this node for the displacement current. The equations applied to this node are: 

 � � � � � �   (1)

 � � �� 	 � 
   (2)

 � � ��
   (3)

 

where 
  is the electric potential in volts.  
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Adding the electrical insulation boundary condition means that no electric current 

flows into the boundary. The equation applied at this boundary is: 

 � � � � �   (4)

Adding a boundary current source boundary condition adds a current source on 

interior boundaries which can represent a source or sink of current. The equation applied 

at this boundary is: 

 � � � �� � � � � � � �  (5)

 

where � �  is the current source in amperes per meters cubed. 

The ground node boundary condition applies a boundary as ground. At ground, 

there is a zero potential condition. The equation applied at this boundary is: 

 
 � �   (7) 

These equations are applied at thousands of points throughout the model. This results in a 

large system of equations, which COMSOL solves after forming matrices.  

2.2.3 System Properties 

To create an accurate volume conductor model, realistic tissue properties must be 

used. However, material property characterization of biological tissues can be difficult. 

Many studies have been conducted both in-vitro and in-vivo in an attempt to correlate 

functions or values to describe material properties. In this study, each geometric 

subdomain representing a single tissue was assigned a relative permittivity and electrical 

conductivity to apply dielectric properties.  
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Several assumptions were made when determining what values to use for 

characterizing the dielectric properties of materials for this model. First, the notion of 

dependent functions to represent a dielectric property was disregarded, and independent 

values were used instead. Dependent functions used to describe material properties are 

not scalar values, but instead vary with other factors in the model such as temperature, 

frequency, or time. How to accurately characterize the dielectric properties of biologic 

tissues is still widely unknown and is the focus of many studies [22, 23]. For this model, 

dependent functions would greatly add to computation time and simulation complexity. 

Arteries and veins were assumed to be homogenously comprised of blood, and the 

properties of vascular walls were disregarded. Skin was assumed to be a homogenous 

material, disregarding the stratum layers of the skin. Muscles was assumed to be entirely 

longitudinal and transverse components were disregarded. Bone was assumed to be a 

homogeneous material, and the dielectric properties for cortical bone were used. A 

summary of the properties used in this study can be found in Table 1. For materials that 

display a highly frequency-dependent nature, the frequency of 433 MHz was assumed. 

This is a standardized frequency used in Industrial Scientific Medical applications.  
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Tissue Relative Permittivity 

�  

Electrical Conductivity 

�  [S/m] 

Reference 

Muscle  64.21 0.333 [24, 25] 

Artery & Vein 57.3 0.667 [24, 25] 

Skin 42.48 0.5 [24, 25] 

Bone 13.77 0.1032 [24] 

Nerve 35.7 0.500 [24] 

Table 1: Summary of the dielectric properties applied for each tissue in COMSOL 
including sources for each property.  

A new material node was created for each tissue incorporated into the model. A 

total of five material nodes were included; skin, muscle, bone, nerve, and vein. The 

corresponding relative permittivity and electrical conductivity for each tissue was applied 

to each material node. Applying material properties using this method ensures that the 

correct dielectric properties are applied to each tissue consistently throughout the model. 

2.2.4 System Conditions 

Nodes and boundary conditions form the basis of how equations and conditions 

are applied to each model. Biological principals and behavior of the system dictate how 

and where boundary conditions and module nodes are applied.  

 Current conservation was applied to each separate tissue subdomain. A total of 

five current conservation nodes were used. Individual current conservation nodes for each 

tissue utilized the corresponding tissue properties of that subdomain. Electric insulation 

was applied to every external boundary excluding the cross-section of the arm where the 

bicep was sectioned (Figure 23). This boundary condition mimics the presence of 
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external skin. Due to the complexity of geometries, over a thousand individual 

boundaries received the electric insulation condition. Ground was applied to the cross-

section of the arm where the bicep was sectioned (Figure 24) [20, 26]. This is the only 

external boundary on the model that represents an internal cross-section of the arm. This 

boundary includes sections of skin, muscle, bone, and vein. The Boundary Current 

Source condition was applied to the internal boundary on the electrode that intersects skin 

(Figure 25). The skin-electrode interface is where the source is realistically introduced 

into the system. Only one boundary received this condition.  

 

Figure 23: Electric insulation boundary condition applied at all external surfaces of 
the arm, represented in purple. 
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Figure 24: Ground boundary condition applied at the cross-section of the human 
arm (mid-bicep), represented in purple. 
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Figure 25: Current source boundary condition applied at the contact between skin 
and electrode, represented in purple. 

2.2.5 System Discretization 

 COMSOL provides many different solvers and study options to customize how 

your system will be discretized. Study steps including stationary, time dependent, 

parametric sweep, and many more can be added to a study and customize how the 

simulation is solved. The user also has the ability to select the solver used to compute 

results. These solvers include but are not limited to: stationary, time-dependent, 

parametric sweep, and time discrete.   

 Due to computational limitations discussed later in Section 2.3, a stationary study 

was preformed instead of the originally intended time-dependent study. The Stationary 

Solver was selected with a relative tolerance of 0.001. A Direct node with the 
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Multifrontal Massively Parallel sparse direct Solver (MUMPS) and a memory allocation 

factor of 1.2 was used to handle settings for the direct linear system solver. 

2.2.6 Mesh Development 

 A critical component of an optimized computational model lies in the mesh 

development. This model was particularly challenging to mesh due to the abnormal 

geometries representing biologic materials. Sizes ranged from small blood vessels to the 

large skin component, and many geometries intersected, touched, or presented miniscule 

spaces between them. Originally, the entire model was meshed in Meshlab, where 

individual elements could be easily controlled. Meshlab has the capability to mesh many 

complex geometries fairly quickly and has more computational power than COMSOL’s 

built-in mesh tool. Meshes for the entire model were successfully imported into 

COMSOL (Figure 26). However, it was discovered that once a mesh is imported into 

COMSOL, there is no ability to add boundary conditions and physics to the geometry. 

The final mesh for this model was developed using the COMSOL mesh tool. 
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Figure 26: Complete assembly of the human arm, pre-meshed in Meshlab and 
imported into COMSOL. 

Mesh elements must be small enough to provide an accurate result, yet not so fine 

that computational power is wasted. To determine at what element size the simulation 

would run most optimally, a mesh convergence study was performed. To develop a mesh 

convergence, mesh element numbers were varied, and corresponding electric potential of 

a single point was recorded. Using COMSOL’s basic mesh tool, mesh element size can 

be set to a predefined size by selecting a setting ranging from “extremely fine” to 

“extremely coarse.” These basic settings in combination with manual mesh refinements 

were used to generate the appropriate range of element numbers to determine 

convergence.  

2.3 Model Simplification 



42 
 

 The complexity of the geometries of this model posed a great difficulty in 

developing a mesh and computing the solution. As discussed earlier, challenges were 

encountered in the geometry import, system discretization, and mesh development. The 

biological systems of the bone, blood vessel, skin, and particularly muscle are inherently 

complex in nature. Muscle is not a simple object, but is instead composed of many fibers 

(Figure 27). The organization of muscle follows a complex fibrous organization. The 

fiber-like nature of muscle was visible in the geometric entities obtained from 

BodyParts3D. This challenge was initially overcome by manually repairing the STL files. 

However, once imported into COMSOL these detailed and complex files became a 

burden to the functionality of the software.  

 

Figure 27: Organization of muscle into complex fibrous groupings [27]. 

As mentioned earlier, it was found that importing a mesh was not possible, so the built-in 

COMSOL mesh tool was used to mesh the native STL files. This process in itself was 

extremely difficult, and resulted in the COMSOL software crashing on numerous 

occasions. When a mesh was successfully created, it became apparent that the current 

computer system used to run COMSOL lacked the computational power to run the 

simulation. 
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This challenge made it obvious that model simplification was necessary beyond 

what was originally anticipated. Since meshing and handling of the geometries by 

COMSOL was a burden to available computational capabilities, some internal geometries 

were simplified. The following geometry replacements were made due to mesh 

difficulties. Instead of accurate curving and branching tubes, the vasculature was 

simplified to a series of straight cylinders placed in the same locations and angles as the 

original geometries. Muscles were simplified to be represented by oblong spheres, placed 

in the same location as original muscle geometries and encompassing the same diameters 

and lengths. Bone was left in its original form, however the bones of the wrist were 

excluded due to their small size and compact configuration. Skin was left in its original 

form.  

 This simplified model was attempted as a time-dependent simulation, and it was 

found that the computational time required to successfully run the study would be 

approximately two months. However, computing the solution as a stationary study 

produced results within hours. An example of simplified muscle structures can be seen 

below in Figure 28. 
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Figure 28: Enlarged view of simplified muscle structures, sectioned from bone to 
compose the simplified model. 

2.4 Model Validation  

 This model was validated by comparison with similar volume field conductor 

simulations. The primary focus of validation for this study was based the work being 

developed by Sugden, as described earlier. To determine whether this work resulted in a 

relevant volume field conductor simulation, material properties were altered to match 

Sugden’s. These properties can be found in Table 2. The properties of materials not 

present in Sugden’s work were adapted from those used in this thesis. Using equivalent 

material properties, the three dimensional volume conductor field profile developed in 

this work displayed a similar voltage distribution as the two dimensional volume 

conductor field profile developed by Sugden. 
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Tissue Relative Permittivity, �  Electrical Conductivity, �  [S/m] 

Muscle  64.21 0.9695 

Skin 42.28 0.5495 

Bone 13.77 0.1032 

Nerve 35.70 0.500 

Table 2: Dielectric properties for each tissue used in the validation study and 
applied in COMSOL. 

These two plots can be seen in Figure 29 and Figure 30 for comparison. The profile 

developed by Soto as discussed earlier was not used for validation due to the absence of 

material layers. Sugden’s volume conductor plot reaches a maximum electric potential of 

0.0668V at the surface. The equivalency study performed in this work reached a 

maximum electric potential of 0.13V in the volume. This resulted in a 64% percent 

difference between maximum voltages. It was noted in Soto’s work that even a small 

change to the model will greatly affect results. In addition, the incorporation of 

inhomogeneity into the model increases accuracy of results [17]. Based on these two 

principles, when adjusting from a simplified two-dimensional model to a complex three-

dimensional model, a large difference in electric potential can be expected.  
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Figure 29: Two-dimensional volume field conductor profile developed by Sugden. 
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Figure 30: Three-dimensional volume conductor profile developed in this study 
using equivalent properties for comparison with Figure 29. 

�  
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III RESULTS 

 The study performed in this work yielded significant results. A mesh was 

successfully developed and converged and volume conductor plots were generated. The 

following results are presented in this work: mesh convergence, final mesh development, 

and a volume conductor model representing electric potential in several views performed 

in a stationary study.  

3.1 Mesh Results and Convergence 

 An optimal mesh for the simplified model was found to converge at 390,000 

degrees of freedom. Mesh convergence was performed with twelve different meshes, 

ranging from 90,000 elements to 600,000 elements. Microsoft Excel was used to develop 

the convergence plot (Figure 31). From this convergence study, a final mesh was settled 

on consisting of 281,186 elements (Figure 32).  

A total of 992 inverted mesh elements were avoided by using linear geometry 

shape order in the solving process. This feature enables COMSOL to locally fit linear 

shape functions where higher order shape functions cannot be fitted to the mesh [18]. 

Resolution is lost locally in these regions; however due to the element size of these 

inverted elements relative to the entire geometry, it was decided that loss of resolution 

was an acceptable outcome. The mesh was left with a single inverted mesh element 

warning at coordinates (-0.280422, -0.148502, 0.707779). This inverted mesh element 

was disregarded due to its location within the geometry.  



 

Figure 32: Final mesh used to perform analysis in COMSOL.

Figure 31: Mesh convergence plot. 

Final mesh used to perform analysis in COMSOL.
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Final mesh used to perform analysis in COMSOL. 
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3.2 Simulation Results 
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The final study utilized a simplified model subjected to a stationary current 

source. This simulation solved for 389,534 degrees of freedom using a mesh consisting of 

281,186 tetrahedral elements. Greater electric potential was observed in the volume 

conductor simulation using correct biologic tissue properties than in the validation study. 

An electric potential surface plot of the entire model with transparent slices for enhanced 

viewing can be seen in Figure 33. An enlarged view of the electrode interface region can 

be seen in the upper left corner. The final simulation achieved a maximum electric 

potential of 0.1645V. This potential is 26.2% greater than the maximum voltage achieved 

in the validation model.

 

Figure 33: Electric potential plot of the final volume field conductor simplified 
model. 
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 For internal, cross-sectional views, cut planes were created to intersect these 

models. The first cut plane (Figure 34) was used to plot the electric potential trough the 

forearm, proximal to the electrode and extending to the back of the arm. Figure 35 shows 

the surface plot of electric potential from this cut plane. Proximal to the electrode, voltage 

in the tissues reaches up to 0.0955V. In the distal region of the slice, voltage in the tissues 

drops to 0.0425V. The second cut plane (Figure 36) was used to plot the electric potential 

through a longitudinal cross-section extending on a diagonal through the arm intersecting 

the electrode. The corresponding surface plot for this plane can be found below in Figure 

37. The area surrounding and including the electrode in this slice demonstrates potentials 

up to 0.1646V. However, toward the bicep section and where ground was applied, the 

potential drops to 0V.The third cut plane (Figure 38) was used to plot the cross-section of 

the forearm, intersecting the electrode. Figure 39 shows the corresponding surface plot of 

electric potential in this cross-section. 
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Figure 34: The first cut plane, corresponding to the surface plot of Figure 35. 

 

Figure 35: Electric potential surface plot of a slice taken from the volume conductor 
model. 
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Figure 36: The second cut plane, corresponding to the surface plot of Figure 37. 
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Figure 37: Electric potential surface plot of a slice taken from the volume conductor 
model. 
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Figure 38: The third cut plane, corresponding to the surface plot of Figure 39. 
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Figure 39: Electric potential surface plot of a slice taken from the volume conductor 
model. 

To determine the effect of material properties on the final solution, two different 

simulations using the final model were conducted. The first simulation utilized the 

material properties defined in Table 2. The second simulation utilized the material 

properties defined in Table 1. The material property differences between the two models 

included relative permittivity of skin and nerve and electrical conductivity of muscle and 

skin. All other material properties were equivalent between the two simulations. The 

resulting maximum electric potential generated by each simulation was compared.  

3.3 Simulation SPICE Coupling  

Both the final simplified model as well as the complete anatomical model were 

developed with SPICE simulation coupling in mind. In order to properly import the 
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SPICE netlist code into COMSOL, special boundary conditions were included. Each 

sphere from the assembly of nerve sphere pairs was assigned a “Terminal” boundary 

condition around its entire surface. The terminal condition provides a connection to the 

external circuit defined in SPICE. Within the physic module menu, COMSOL contains a 

SPICE netlist circuitry import option. Once the netlist code is imported into the software, 

COMSOL converts the circuitry into a series of equivalent terminals and equations. The 

circuit does not always import successfully, therefore original code must be inspected to 

ensure that all elements were successfully translated. Missing components must be 

manually added.   
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IV DISCUSSION 

 Previous work in the field of nerve excitation attempted to produce accurate 

models to describe action potential initiation and human neural recruitment. While these 

studies were successful in developing models to simulate nerve excitation, they utilized 

simplified geometrical representations of human tissue. The goal of this work was to 

develop an anatomically correct, three-dimensional model of the human arm for coupling 

with SPICE simulations in order to study human neural recruitment and excitation. In this 

work, a volume conductor field simulation of the human arm was successfully developed. 

This model incorporated anatomically accurate geometries as well as representative tissue 

properties.  

The anatomical model proved too complex for SPICE coupling in COMSOL at 

this time and generated the need for a simplified model. The simplified model utilized 

anatomical structures as well as basic geometries representing structures too complex for 

meshing. Boundary conditions and nodes applicable to the Electric Currents module were 

applied. A current source was applied to the skin interface of the electrode. This model 

was used to successfully generate a volume conductor field simulation. 

It was observed in previous studies that a change in material composition of the 

model can yield large changes in computed potentials. This study provided further 

evidence that the properties used to represent tissue have a great impact on the 

simulation. Within this study, two sets of material properties were used: one for 

validation and another for the final simulation.  Adjusting only the dielectric properties 

described in the material comparison studies resulted in higher electric potentials. 
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With the creation of anatomical and simplified three-dimensional structures in this 

work, overall electric potentials demonstrated significantly greater voltages. Under the 

assumption that the addition of inhomogeneous material geometries matching anatomical 

structures improves accuracy, it can be concluded that implementing the full anatomical 

model defined in this work would produce highly accurate neural recruitment results. 

This cannot be done until either COMSOL’s mesh import capabilities are enhanced or 

computers with greater computational power become available.  

 The final simulation conducted in this study utilized stationary solving 

techniques. Originally the intent of this study was to utilize a time-dependent current 

source. Due to the limitations of available computational power of the platform used to 

run COMSOL, a time-dependent simulation was not performed. The advantage of using a 

time-dependent source is the incorporation of the pulsatile input that mimics the realistic 

behavior of an electrode. Because this source pulse inputs either 10A/m2 or 0A/m2, 

running the stationary model at 10A/m2 allowed the volume conductor simulation to be 

studied as if it were at the peak of an electrode pulse. This approach provides justification 

for simplifying the study from time-dependent to stationary.  

4.1 Applications 

The final simulation defined in this work can be used with SPICE netlist code to 

perform nerve fiber activation simulations, and would yield more accurate results than 

previous studies. Applying simulations to study neuropathies could provide greater 

understanding into the physiologic causes and effects as well as provide insights into the 

diagnostics and treatment of those neuropathies.  
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This model can also be used in other Biomedical Engineering applications. Other 

simulations requiring a three-dimensional anatomically accurate model of the arm can 

utilize the model created in this study and alter the governing module, applicable material 

properties, and boundary conditions. Examples of such applications include testing of 

drug delivery devices in-silico and chemical transport through biological tissues. 

4.2 Model Limitations 

 Due to limited available computational power, many simplifications had to be 

made to the fully anatomical model. The original anatomically accurate geometries were 

replaced with simplified shapes. Fat and cartilage geometries and material properties 

were excluded from the simulation. Each individual biologic material was assumed to be 

homogeneous, and intricacies such as the various types of bone and the layers of skin 

were disregarded. In this study only the partially anatomical model was used to run a 

simulation due to limited computational power, reducing the accuracy of results. Due to 

simulation sensitivity to material composition and properties, a relevant difference 

between the fully anatomical model and the final model in this work would likely be 

observed.  

4.3 Future Work 

This study illuminated several areas of potential future work. Material properties 

that are used to represent biologic tissues in a simulation have a significant impact on 

results. When the material properties in this study were adjusted from the validation 

simulation to the final simulation, a 23.4% difference in maximum electrical potential 

was observed in the results. Previous works have also noted that a small change in the 
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properties of material used in simulations will cause a large change in results [17]. With 

proof that material properties are an integral component for computational models, the 

need for highly accurate biologic material properties is clear. Future work focusing on 

this aspect would be a vital contribution to computational modeling in the Biomedical 

Engineering field. Well controlled in-vivo or in-vitro studies compiled into a database 

could help accomplish this goal.  

Several levels of model simplifications were necessary in this study to perform a 

simulation with the available computational power. Implementation of the fully 

anatomical model coupled with SPICE netlist code to model neural membrane electrical 

characteristics could yield highly accurate neural recruitment results. Soto noted that 

incorporating inhomogeneous material geometries improves accuracy of results [17]. 

Based on this statement it can be assumed that implementation of a fully-anatomical 

model will provide a higher level of accuracy than has previously been achieved. 

Utilization of a time-dependent study could also improve accuracy of neural recruitment 

results. A time-dependent current source would implement a pulsed current. The 

combined effects from multiple pulses could alter the volume conductor profile with 

time.  
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