
Examining Ambiguities in the Automatic Packet Reporting System

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Kenneth W. Finnegan

December 2014

© 2014

Kenneth W. Finnegan

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Examining Ambiguities in the Automatic
Packet Reporting System

AUTHOR: Kenneth W. Finnegan

DATE SUBMITTED: December 2014

REVISION: 1.2

COMMITTEE CHAIR: Bridget Benson, Ph.D.
Assistant Professor, Electrical Engineering

COMMITTEE MEMBER: John Bellardo, Ph.D.
Associate Professor, Computer Science

COMMITTEE MEMBER: Dennis Derickson, Ph.D.
Department Chair, Electrical Engineering

iii

ABSTRACT

Examining Ambiguities in the Automatic Packet Reporting System

Kenneth W. Finnegan

The Automatic Packet Reporting System (APRS) is an amateur radio packet network

that has evolved over the last several decades in tandem with, and then arguably beyond,

the lifetime of other VHF/UHF amateur packet networks, to the point where it is one of

very few packet networks left on the amateur VHF/UHF bands. This is proving to be

problematic due to the loss of institutional knowledge as older amateur radio operators

who designed and built APRS and other AX.25-based packet networks abandon the hobby

or pass away. The purpose of this document is to collect and curate a sufficient body of

knowledge to ensure the continued usefulness of the APRS network, and re-examining the

engineering decisions made during the network’s evolution to look for possible improvements

and identify deficiencies in documentation of the existing network.

iv

TABLE OF CONTENTS

List of Figures vii

1 Preface 1

2 Introduction 3
2.1 History of APRS . 4
2.2 Physical Topology and Hardware . 5

2.2.1 Station Block Diagrams . 6
2.3 Document Overview . 8

I OSI Layer 1 — Physical 10

3 Amateur Bell 202 11
3.1 Bell 202 in Amateur Radio . 12
3.2 Amateur Bell 202 Transmission Format . 13

3.2.1 Excluding HDLC from Layer 2 AX.25 15
3.2.2 Calculating the Frame Check Sum 16

3.3 FM Deviation and Emphasis . 18
3.4 Carrier Sense Multiple Access . 20
3.5 Conclusion . 22

4 KISS 24
4.1 Isolating Modulation from Network . 25
4.2 Shortcomings of KISS . 25
4.3 Conclusion . 27

II OSI Layer 2 — Data Link 28

5 AX.25 29
5.1 Header Format for APRS . 29

5.1.1 TNC Description / Destination Address 30
5.1.2 Source Address . 30
5.1.3 Routing Path . 31
5.1.4 Control Flags . 31
5.1.5 Protocol IDentifier . 31
5.1.6 Information Field . 32

5.2 FCC Identification Requirements . 32

v

6 Digital Repeater Routing Behavior 34
6.1 Routing Aliases . 35
6.2 Examples . 36
6.3 Deduplication Behavior . 38
6.4 Deprecation of RELAY . 39
6.5 Minimum WIDEn-N Behavior . 41
6.6 Variations on Digipeater Behavior . 42

III OSI Layer 3 — Network 44

7 Node Beaconing Behavior 45
7.1 Beaconing Algorithms . 45

7.1.1 Fixed Interval Beaconing . 46
7.1.2 Time Slot Interval Beaconing . 46
7.1.3 Nice Interval Beaconing . 48
7.1.4 Dithered Interval Beaconing . 48
7.1.5 SmartBeaconing . 49

7.2 Path Recommendations . 51
7.2.1 Vehicles and Mobile Stations . 54
7.2.2 Fixed Stations . 54
7.2.3 Airborne Stations . 55
7.2.4 Proportional Pathing . 55

7.3 Conclusion . 57

8 APRS RF Channel Capacity 58
8.1 Network Capacity Objectives . 59
8.2 Poisson Channel . 59
8.3 Deficiencies of the Poisson Model . 62

9 Conclusion 65

Bibliography 67

Appendices

A Reference CRC-16-CCITT Implementation 70

B SLottime Justification 73

vi

LIST OF FIGURES

2.1 Example packet path from a handheld APRS tracker 6
2.2 Block diagram for typical APRS tracker . 6
2.3 Block diagram for typical APRS Digipeater 7
2.4 Block diagram for typical APRS Internet Gateway 7
2.5 The OSI network model as applied to APRS in this paper 8

3.1 This paper refers to the entirety of OSI Layer 1 as “Amateur Bell 202” . . . 12
3.2 Amateur Bell 202 signal representing the ASCII letter A (0x41) 13
3.3 Amateur Bell 202/HDLC frame format . 13
3.4 Modified AX.25 packet format excluding HDLC fields. 16
3.5 Algorithm to calculate CRC-16-CCITT in reverse-bit order. 16
3.6 Pathway of frame payload to final bit stream using only a LSb-first modulator 17
3.7 Allowable skew in a basic 3002 telephone channel 20

5.1 AX.25 UI Packet Format . 30

6.1 APRS network used for path routing examples 36

7.1 Beacon interval dithering algorithm . 48
7.2 Original HamHUD SmartBeaconing documentation using C-like syntax . . 52
7.3 Novel presentation of SmartBeaconing algorithm by the author 53

8.1 Poisson channel traffic and throughput . 61

vii

1 Preface

Like any major research endeavor, this thesis certainly didn’t start anywhere near where

it ended. Most of the credit for the genesis for this thesis needs to be given to Sivan

Toledo, 4X6IZ, from Tel-Aviv University. In 2012 he wrote an article in the amateur radio

QEX technical journal where he explored improving the soundcard digital signal processing

modem used for amateur packet radio by passing the original signals through a series of

band-pass filters [31]. His improvements were commendable, and his article was very well

written, but what bothered me was that more than three decades after the inception of

amateur packet radio, we are still seeing measurable improvement in the modems we use

for the original modulation techniques.

This thesis started with me wanting to tear apart the current state of the various Bell 202

modems used in amateur radio, build a quantitative model of the kinds of interference and

distortion that each modem handled well, and hopefully design a new signal processing

algorithm that showed immunity to the most common forms of interference on real-world

channels. Sevan’s work in JAVA showed promise, but while his library is useful on desktop

computers and Android devices, it left out in the cold the many different 8, 16, and 32 bit

fixed-point microcontrollers that are often used for embedded modems in amateur radio

projects.

As I started to examine the specifications for the various network layers used in the amateur

Automatic Packet Reporting System (namely Bell 202, AX.25, and APRS), I grew increas-

ingly shocked and confused when I kept finding that the documentation I was looking for

was poorly written or simply didn’t exist. Protocol specifications would identify variables

critical for network performance, and then never give guidance on what the actual value

should be. Many of the documents on the expected behavior for network nodes consist

solely of console commands to be run on specific pieces of discontinued hardware instead

1

CHAPTER 1. PREFACE 2

of actual protocol behavior. Most articles discussing aspects of the network disagreed with

other documentation on specific details, and was often internally inconsistent as well.

The final turning point was an interview in March, 2014 with Scott Miller, the designer for

Open Trackers, which are one of the more popular lines of contemporary modems used in

the APRS network. I brought a laundry list of inconsistencies from the network specs and

he explained how much effort he had put into reverse engineering the existing hardware. It

was an eye-opening conversation that drove home how much the amateur packet network

has grown haphazardly over the past three decades into a jumble of band-aids applied upon

band-aids.

I realized that the most important academic research on the topic of APRS isn’t how to

squeeze out another incremental improvement in one of the modem DSP algorithms, but

an over-arching prolegomenon on the entire network stack as it actually exists today. The

existing documentation clearly falls short, and much of the institutional knowledge that

I’ve been able to draw on during my research is coming from the “old guard” of the hobby,

which leaves us exposed to the labor intensive requirement of newcomers to the network to

reverse engineer the existing network before they can participate.

Ideally, this document would be able to stand by itself as a complete “implementer’s guide

to APRS” from the physical layer all the way up to high level aggregate network behavior,

but the scope of reverse engineering that much behavior, documenting it, and then verifying

the documentation quickly becomes monumental. It is my hope that this document does at

least identify the most glaring short-falls in the current documentation and network design,

and gives answers to the questions that can be answered while staying within the scope of

this survey.

For every identified problem which is answered in this paper, there are twice as many

unanswered questions which each warrant being considered as a thesis of their own.

2 Introduction

The Automatic Packet Reporting System (APRS) is an amateur radio packet network

designed to provide each participating node a local view of the tactical environment based

on each node beaconing its current status and advertising any other local resources known

to exist.

Exactly what types of resources should be advertised on a local APRS network is left to the

discretion of the local network coordinators, but a typical APRS network would advertise

information such as:

• The location of amateur radio operators and what frequencies they are using for voice

communications.

• The location, frequency, and access information for voice repeaters.

• The location and status of APRS digital repeater nodes.

• The location and access information for other packet networks such as BBSes, Winlink

nodes, or open Internet access points.

• The location and status of useful facilities such as rest stops or resupply points for

food and water.

• Telemetry from sensors such as weather stations or remote site monitoring equipment.

• Short real-time messages and announcements directed at other amateur radio opera-

tors.

Despite these flexible capabilities, and much to the chagrin of many of the original designers

of APRS, the vast majority of user traffic on the APRS network consists solely of real-

3

CHAPTER 2. INTRODUCTION 4

time Automatic Vehicle Location (AVL). Fittingly, it follows that one of the hotbeds for

APRS network congestion is the Los Angeles basin, due to its bowl-shaped geography and

unusually high population density. [10] When discussing specifics of the APRS network,

such as how often to send traffic or how many hops to route it over, LA invariably comes

up as a counter-example that under-cuts any specific guidance on what to expect from the

network.

The author is more interested in being able to make concise statements about APRS in

general than construct an entirely exhaustive analysis, so the reader need only appreciate

that places like LA are the exception to the rules. Any readers operating in the LA basin

have the author’s heart-felt condolences, but need look elsewhere for definitive guidance on

operating in such a unique part of the APRS network.

2.1 History of APRS

APRS was created as an evolution of the AX.25 packet networks built throughout the

amateur community during the 1980s and 1990s and the Connectionless Emergency Traffic

System (CETS) built by Bob Bruninga during the early 1980s to map Navy position reports.

Near-ubiquitous access to the Internet caused the decline in local BBS systems and AX.25

TCP/IP networks during the 1990s, but APRS has continued to enjoy a growing user-

base due to it filling a unique application of amateur packet radio to local short-lived

communication. The 1200 baud Bell 202 modems used for AX.25 are often bemoaned for

having such a low data rate, but proves to be plenty of bandwidth for the short periodic

text messages involved in APRS.

APRS supports basic communication between stations via node to node text messages and

comment field status updates, but should not be considered a communications network to

an end, but a way to be made aware of the other assets in the local area made available to

support amateur radio operations.

Since APRS is built upon the relatively slow 1200bps AX.25 VHF packet network and the

channel sharing concepts developed for the ALOHAnet at the University of Hawaii, the

amount of traffic and the number of stations that it is possible to successfully support on a

CHAPTER 2. INTRODUCTION 5

single regional network is severely limited. A typical APRS network is considered successful

if a single node can use it to discover the 60 closest other assets on the network in a 10-30

minute time frame. Trying to advertise information beyond this “ALOHA circle” consist-

ing of the 60 closest stations exceeds the operational objective of the APRS network and

usually proves to only be detrimental to the network and other users as network through-

put is consumed by advertisements for resources beyond the radius of interest for the local

operator.

2.2 Physical Topology and Hardware

A typical APRS network consists of three types of stations:

• Trackers - Mobile radios, often installed in vehicles with a GPS receiver, that periodi-

cally advertise their physical location along with any additional information including

what other frequencies the operator is listening on.1

• Digipeaters (digis) - Half-duplex digital repeaters that build the backbone of an APRS

network, allowing stations to interact with other stations beyond their immediate radio

range. This is done by immediately repeating any received packets which request being

repeated from the digipeater’s higher location.

• Internet gateways (I-gates) - Stations usually installed in homes that act as bridges

between the local APRS network on RF and the world-wide APRS-IS (Internet Sys-

tem) network, which uses the Internet to aggregate and route all of the APRS traffic

generated in each local network to one unified network.

As each tracker beacons its information for the local network, it is repeated by the digi-

peaters for consumption by other local stations, and gatewayed to the Internet by any

I-gates that receive the packet along the way. Figure 2.1 shows the typical path of a packet

from a low-powered handheld tracker as it moves throughout the local APRS network. It’s

not unusual for battery-powered trackers to only output one to five watts of RF power,

which limits their range to any stations immediately around them. Since digipeaters often

1The term tracker will be used in this paper to encompass all APRS nodes which move throughout the
network, not limited to those without receivers as the term is often used.

CHAPTER 2. INTRODUCTION 6

Figure 2.1. Example packet path from a handheld APRS tracker

Figure 2.2. Block diagram for typical APRS tracker

have higher power transmitters with high-quality antennas, they can repeat packets from

these low-power trackers and greatly increase their range and usefulness.

2.2.1 Station Block Diagrams

Like most aspects of the APRS network, there are many options when assembling an APRS

node. This section presents block diagrams for the three most common ways to assemble

trackers, digipeaters, and I-gates, but additional permutations of these and entirely different

topologies are possible.

Blocks presented as dotted lines are optional. The “Transceiver” blocks refer to VHF FM

amateur radios. “Terminal Node Controllers” (TNC) are the modems and radio interfaces

with minimal embedded intelligence. These blocks and the labeled protocols between blocks

will be expanded upon in later chapters.

CHAPTER 2. INTRODUCTION 7

Figure 2.3. Block diagram for typical APRS Digipeater

Figure 2.4. Block diagram for typical APRS Internet Gateway

Figure 2.2 shows the block diagram for an APRS tracker, which is built around a Terminal

Node Controller which parses NEMA positions provided by a GPS receiver and converts

them into APRS position reports that are then frequency shift modulated and sent to a

VHF FM voice transceiver using an interface cable that includes transmit and receive audio,

as well as a line to key the “push to talk” button on the radio to start transmitting.

Figure 2.3 shows the block diagram for a digital repeater, which is similar to a tracker

except that the GPS receiver is often omitted. Since the digipeater is always installed in

a fixed location, its GPS coordinates can be hard-coded into non-volatile memory in the

TNC.

Figure 2.4 shows the block diagram for an Internet Gateway (I-gate), which like the digi-

peater doesn’t require a GPS receiver. Unlike the digipeater, instead of sending received

packets back out through the VHF transceiver, I-gates send received packets to the APRS-IS

Internet System via a local connection to the Internet.

CHAPTER 2. INTRODUCTION 8

Figure 2.5. The OSI network model as applied to APRS in this paper

2.3 Document Overview

The rest of this document is going to start at the bottom of the APRS protocol stack and

work its way up, touching on each layer with an introduction and some basic analysis.

Ideally, this document would answer all of the ambiguities existing in the APRS network

protocols, but many of the issues that will be touched upon deserve an entire masters thesis

of their own, and therefore will often be noted as simply deficient before moving on.

The rest of this document will be divided into three parts based on the bottom three layers

of the Open Systems Interconnection (OSI) model, to separately discuss issues found on

each of these layers of the APRS network stack. Figure 2.5 shows how the most popular

protocols used on APRS will be mapped to the OSI model, including the APRS messaging

system which will not be further mentioned due to it being a relatively unimportant part

of APRS.

Part I will cover the Bell 202 modem used to encode APRS on the VHF packet channels

and the KISS protocol used to connect modems to host devices such as computers. Chapter

3 will go into an unusual amount of detail since a specification document for Amateur Bell

202 was never written and therefore will likely prove to be one of the more significant

contributions of this paper to the field.

Part II will touch on what could be called the data link layer of APRS. It will start with

an introduction to the concept of a terminal node controller, move into how the AX.25

CHAPTER 2. INTRODUCTION 9

protocol has been modified for APRS, and finally discuss the digipeater behavior needed to

flood packets from their originating stations throughout the network.

Finally, part III will discuss the popular algorithms used to determine how and when an

individual node should send packets to the network, and introduce some simple models for

the expected capacity of a typical APRS network.

This paper will not consider the higher ISO layers of APRS, such as the guaranteed delivery

mechanism provided by APRS Messaging, for the sake of maintaining focus on the most

pressing deficiencies in the current documentation of the network. It needs to be stressed

that this document will be far from complete, and should not be mistaken as a comprehen-

sive treatise on any of the subjects it considers. It’s a strong start, but there is still plenty

of work to be done.

OSI Layer 1 — Physical

10

3 Amateur Bell 202

This chapter considers the most popular modulation used for APRS on RF, Amateur Bell

202. One of the major features of APRS is that large areas have standardized on single

VHF packet frequencies using this very-popular Amateur Bell 202 modulation. This is

what enables APRS tracker to move throughout the United States while beaconing on

144.390MHz and always be able to participate in the local APRS network. Surprisingly,

despite its age, this modulation still suffers from much confusion in its documentation, so

the primary points made in this chapter will be:

• Pointing out that what amateur radio operators call “Bell 202” implicitly extends

well beyond the original Bell 202 specification. Therefore, the new term “Amateur

Bell 202” is proposed to differentiate between the entire modem and the underlying

modulation.

• Drawing a new line between AX.25 and Amateur Bell 202 to make it clear that error

detection is a concern for the modem and not the data link protocol.

• Presenting a reference implementation of the checksum used to detect transmission

errors in Amateur Bell 202 frames.

• Discussing how the baseband modem signal should be modulated using VHF voice

radios and some challenges this presents to modem performance.

Despite Amateur Bell 202 as it is used in APRS often being decried for its age and vastly

outliving its usefulness, it can’t be denied that it is still an integral part of the amateur radio

digital communications landscape. While its deficiencies dictate that Amateur Bell 202 will

rarely be the best choice for new packet radio networks, its simplicity causes Amateur Bell

202 to be an appealing gateway into APRS and the digital communications hobby.

11

CHAPTER 3. AMATEUR BELL 202 12

3.1 Bell 202 in Amateur Radio

Bell 202 is an audio frequency shift keyed (AFSK) modulation that encodes data by shifting

a 1700Hz carrier down and up 500Hz (which produces 1200Hz and 2200Hz tones). These

tones represent a binary one and zero respectively and transitions occur at a rate of 1200

symbols per second. Originally developed by AT&T for use on the telephone network [4],

Bell 202 became popular among amateur radio operators due to the abundance of Bell 202

modem chipsets available in 1981 when the FCC authorized amateur packet operations in

the United States [17].

There isn’t a particularly clean mapping of packet radio protocols to the seven layers of

the OSI Network Model, but one can be formed to help clarify references to the different

layers in this paper. Figure 3.1 shows the ISO model which will be used in the rest of this

paper. Due to Amateur radio operators using Bell 202 as the modem below AX.25, which

is a derivative of the X.25 network protocol [6, §1.1], the physical layer implicitly includes

the High-Level Data Link Control (HDLC) protocol for framing and bit stuffing [22]. Since

using HDLC with Bell 202 modems is so implicit in amateur radio systems, the Layer 1

packet protocol should be called “Amateur Bell 202,” to distinguish it from the original

Bell 202 developed by AT&T.

One implication of using HDLC is that frames are not encoded using the 1200Hz mark

and 2200Hz space symbols of traditional Bell 202. Instead it uses an inverted non-return

Figure 3.1. This paper refers to the entirety of OSI Layer 1 as “Amateur Bell 202”

CHAPTER 3. AMATEUR BELL 202 13

1 2 3 4 5 6 7 8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Symbol Period

S
ig

n
a

l
M

a
g

n
it
u

d
e

Figure 3.2. Amateur Bell 202 signal representing the ASCII letter A (0x41)

Figure 3.3. Amateur Bell 202/HDLC frame format

to zero (NRZI) encoding, which calls for zeros in the original bit stream to be encoded

as a continuous-phase frequency transition between consecutive symbols, while ones are

encoded as the lack of a frequency change between two symbols [30]. Figure 3.2 shows a

typical Amateur Bell 202 signal representing the ASCII letter “A,” starting with the least

significant bit.

3.2 Amateur Bell 202 Transmission Format

Figure 3.3 shows the format of a typical single-frame Amateur Bell 202 transmission, as it

is based on HDLC. There are a number of important facets to note:

• The leading 0x00 octets are mentioned in very few documents discussing Amateur

CHAPTER 3. AMATEUR BELL 202 14

Bell 202, yet they reportedly improve modem throughput [21][29]. 0x00 encoded in

NRZI causes a symbol transition every clock cycle and thus provides a more effective

clock synchronization target than the originally specified 0x7E octets. 0x7E is actually

the longest allowable string of 1s in the frame and therefore has the lowest amount of

energy at the clocking frequency, which causes it to be the worst octet for asynchronous

clock recovery.

• The octet 0x7E is used to indicate the beginning and end of HDLC frames. There is

little guidance on the number of flag octets needed before or after frames in Amateur

Bell 202 (represented by N2 and N3 in Figure 3.3) beyond stating that there must be

at least one of each.

• The sum of N1 and N2 is variable in most modems via the “TXDelay” parameter,

which specifies how long the preamble should be, in 10ms increments.

• It is permissible to encode multiple frames per transmission, yet there is no guidance

as to how many octets of 0x7E should be included between them; most modems in-

sert several 0x7E octets between frames.1 Tests indicate that many demodulators are

sensitive to the number of flags before, between, and after frames as mentioned in

the last three points. Finding definitive minimums would require testing a represen-

tative sample of the popular Amateur Bell 202 modems, which is beyond the author’s

resources.

• The frame payload and frame checksum must be modified such that no string of more

than five 1’s happen to appear in a row. This is done by “bit-stuffing” the transmitted

bitstream by appending a zero after any string of five ones at the transmitter, and

subsequently dropping this zero following five ones at the receiver.2

• Every octet is encoded and transmitted least-significant bit first, except for the CRC-

16-CCITT frame checksum, which is transmitted big-endian and most-significant bit

first. [6, §3.8], [16, §8.1.1-2], [22]. See Section 3.2.2 for further discussion.

1For a specific example, the Argent Data OT3m TNC with firmware r56474 inserts 3 flags before a frame,
7 flags between two frames, and 5 flags after the final frame.

2Six ones in a row represent a 0x7E flag indicating the end of a frame or an idle carrier. Seven or more
ones in a row indicate an invalid channel state that shouldn’t happen, but regularly does, so modems must
be able to handle arbitrary strings of ones gracefully.

CHAPTER 3. AMATEUR BELL 202 15

• The minimum and maximum payload sizes indicated in Figure 3.3 aren’t enforced

by any properties of Bell 202 or HDLC, but from the Maximum Transmission Unit

(MTU) specified in the Layer 2 AX.25 network protocol. Larger frames are possible

and were often used in specialized AX.25 and IPv4 packet networks [24]. A practical

upper limit on frame size is enforced by the need for successful frames to be completely

error-free.

3.2.1 Excluding HDLC from Layer 2 AX.25

It is important to note that the presentation of the HDLC framing and checksum in Figure

3.3 as part of the Layer 1 modulation instead of as part of the Layer 2 AX.25 frame is novel

to this work and hasn’t been seen in any of the existing literature. This classification isn’t

consistent with the traditional OSI model, but the author’s main objective is to decouple

HDLC from AX.25. This change is suggested because including the frame checksum and

flags in the Layer 2 documentation confuses the separation between Amateur Bell 202 and

AX.25, which should be independent protocols.

This is particularly important when AX.25 packets are transported across other Layer 1

links which use their own framing protocols. The Keep It Simple Stupid (KISS) serial

link between a host system and modem is the most notable transport where the HDLC

fields are not included in outgoing frames, and are instead post-facto generated by the

modem during transmission3 [12]. M. Chepponis and P. Karn made the technically correct

decision of excluding HDLC framing from the AX.25 payload when developing KISS, but

this causes an unfortunate situation where KISS is transporting an entirely undocumented

fragment of the AX.25 packet. Figure 3.4 presents the AX.25 Layer 2 protocol as it should

be documented without the Layer 1 HDLC framing.

Removing HDLC from AX.25 also permits any researchers developing new amateur radio

packet modems to select a different framing protocol with more desirable properties, such

as forward error correction.

3The opposite is also true; incoming frames with correct checksums have them stripped, and incorrect
checksums cause the frame to be dropped and never transported over the KISS link.

CHAPTER 3. AMATEUR BELL 202 16

Figure 3.4. Modified AX.25 packet format excluding HDLC fields.

1: function calculate crc(frame[], frame length)

2: crc← 0xFFFF

3: for all byte← frame0, frameframe length−1 do

4: for all bit← byteLSb, byteMSb do

5: if crcLSb 6= bit then

6: crc← (crc� 1) XOR 0x8408

7: else

8: crc← crc� 1

9: end if

10: end for

11: end for

12: crc← crc XOR 0xFFFF

13: return crc

14: end function

Figure 3.5. Algorithm to calculate CRC-16-CCITT in reverse-bit order.

3.2.2 Calculating the Frame Check Sum

The Frame Check Sum (FCS) used for error detection in Amateur Bell 202 is the well-known

CRC-16-CCITT, which enjoys a wide deployment in network protocols and systems.4 Un-

fortunately, the language used in §4.2.5 of the ISO specification for HDLC [30] is particularly

awkward, and does not lend itself well to implementation. For the sake of clarity, Figure

3.5 presents one possible algorithm to calculate the FCS of a complete frame, which is im-

plemented in ANSI C in Appendix A. The constant 0x8408 comes from a bit reversal of

the 0x1021 generator polynomial since the presented algorithm calculates the CRC in bit

4Example systems using CRC-16-CCITT include HDLC, Bluetooth, the XMODEM file transfer protocol,
and SD cards.

CHAPTER 3. AMATEUR BELL 202 17

Figure 3.6. Pathway of frame payload to final bit stream using only a LSb-first modulator

CHAPTER 3. AMATEUR BELL 202 18

reversed order.

The order of the two octets and bit order of the checksum as transmitted over the air is

particularly muddled in the existing amateur radio literature. Many sources call for sending

the checksum little-endian, while ITU V.42 §8.1.2.3 clearly specifies big-endian, as is the

convention for most network protocols. The original specifications also call for transmitting

the checksum most significant bit (MSb) first, which is the opposite of the payload octets.

This exception is noted in §3.8 of the AX.25 specification as well.

This creates plenty of confusion on the part of implementers, which is likely caused by the

fact that available reference implementations of the CCITT checksum don’t make it clear

that they already integrate the needed bit reversal after the Cyclic Redundancy Check

(CRC) division and one’s complement. The algorithm presented in Figure 3.5 does not

calculate the true CCITT CRC, but follows the convention of calculating it in reverse-bit

order, such that the final bit-reversal step may be omitted during modulation of the bit

stream while using the least significant bit (LSb) first modulation subroutines already used

for the payload data. Therefore, the checksum as presented should be sent lower octet first,

using the same modulator as for payload octets that modulates the LSb-first. This ensures

that the resulting checksum as transmitted will have the correct sequence, starting with the

MSb and finishing with the LSb, and is why many implementations appear to completely

ignore the need to send the FCS MSb. Figure 3.6 demonstrates how calculating the FCS in

reverse bit order and then feeding it through the same LSb-first modulator as the payload

octets is equivalent to calculating the FCS in canonical bit order and using a separate MSb-

first modulator. This is desirable because it prevents the need for this second subroutine to

send bits MSb-first to ever be written or maintained.

3.3 FM Deviation and Emphasis

Once the Amateur Bell 202 frame is generated, encoded using NRZI, and converted into a

baseband AFSK signal, it still needs to be converted into a VHF FM signal and transmitted

to other stations. Since Bell 202 was originally designed for telephone data service, the

existing specifications give no guidance on the unique aspects of the amateur VHF FM

physical layer. One such issue is what value of FM deviation to target when setting modem

CHAPTER 3. AMATEUR BELL 202 19

audio levels.

While quantitatively justifying this value is beyond the ability of the author, a proposed

specification for FM deviation is 3.5kHz for both the 1200Hz and 2200Hz tones, or for the

wider of the two tones if equal deviation is not possible [21].

This proposal is complicated by two major issues:

• The lack of availability of the necessary test equipment to measure FM deviation.

• The inconsistency in pre-emphasis and de-emphasis filters used by individual network

nodes.

The VHF deviation meter needed to properly set modem deviation is prohibitively expensive

for the typical packet radio operator, so presenting a figure such as 3.5kHz deviation to most

users does little good. Qualitative and home-brew solutions have been developed for setting

deviation levels [2], and these techniques should be better promoted until deviation meters

become a more standard part of a packet operator’s toolkit.

Pre-emphasis and de-emphasis is a concept in FM voice communications where higher

baseband frequencies are modulated with larger deviation than lower frequencies to provide

a consistent signal-to-noise ratio across the channel. Unfortunately, the advantages of these

audio filters to packet operation are debatable, and they are not applied consistently. A

single packet station is likely to have any permutation of pre-emphasized or flat transmit

audio and de-emphasized or flat receive audio. This means that even when one station

deliberately uses flat audio, there is no guarantee that it won’t suffer from receiving another

station’s pre-emphasized signal or be received by another station using de-emphasis.

Different types of Bell 202 modems vary in how sensitive they are to this high/low pass

filtering effect More importantly, there is no specification established for what level of pre-

/de-emphasis a modem should tolerate. One suitable source for such a benchmark would be

to go back to the telephone networks where Bell 202 was originally used. Figure 3.7 shows

the allowable audio skew of a basic type 3002 channel as used in the telephone network;

any level of skew that falls inside the shaded region relative to a test tone at 1004 Hz is

considered acceptable [3].

For application to Amateur Bell 202, normalizing the skew thresholds to 1004Hz is less

CHAPTER 3. AMATEUR BELL 202 20

300 500 1004 1200 2200 2500 3000

-12

-8

0

2

3

Audio Frequency [Hertz]

A
llo

w
a

b
le

 R
e

la
ti
v
e

 M
a

g
n

it
u
d

e
 [

d
B

,
1

0
0
4

H
z
]

Figure 3.7. Allowable skew in a basic 3002 telephone channel

important than simply noting that the allowable skew between the two tones of interest

(1200Hz and 2200Hz) is 10dB in either direction. An insightful measurement for Bell

202 modem designers would be testing how quickly their modem’s performance falls off

as a packet signal approaches the ±10dB limits. Creating a test suite which could yield

quantitative measures of a modem’s sensitivity to the pre-emphasis/de-emphasis issue would

be a valuable contribution beyond the scope of this paper.

3.4 Carrier Sense Multiple Access

Since Amateur Bell 202 is a half duplex modulation using re-purposed FM voice transceivers,

one of the challenges to packet radio is avoiding multiple stations transmitting on the same

channel at once. This is done using Carrier Sense Multiple Access (CSMA), where each

station listens before transmitting to see if the channel is clear. Unlike other CSMA imple-

mentations, such as IEEE 802.3 Ethernet, Amateur Bell 202 doesn’t enjoy the advantage

that transmitters can at least sense when a collision has taken place and use that informa-

tion to abort the transmission of the rest of the frame early. When a collision takes place

on an Amateur Bell 202 channel, both colliding frames are transmitted in their entirety,

CHAPTER 3. AMATEUR BELL 202 21

but both are lost and the channel time wasted.

Besides the degenerate case of ignoring the current channel status completely when deciding

to transmit a pending frame,5 there are two popular algorithms used for channel access in

North America; DWait and P-persistent.

DWait is a deterministic algorithm where each station is assigned a fixed “quiet time” after

the end of any other transmission before they will begin a locally pending transmission.

This lends itself well to designed networks where the relative priority of each station is

known and a corresponding DWait time is set for each station where a shorter DWait will

always gain the channel over a longer one. Conversely, this doesn’t lend itself well to ad-hoc

networks, since two stations that happen to both operate near one another with similar

DWait parameters will tend to collide and reduce throughput.

P-persistent is a stochastic algorithm that attempts to randomly spread stations apart when

the channel becomes clear. This is configured with two variables: the slot time (SLottime),

and the probability that a station should choose to transmit during a given slot (PErsist).

The SLottime should be set to as short of a time interval as possible during which a station

can reliably identify another station as transmitting before beginning its own transmission.

The PErsist value should be tuned based on how likely another station is to transmit during

the same time slot considering the number of other stations with pending traffic attempting

to gain the channel.

A typical modem supporting the P-persistent algorithm will need three values adjusted

based on the specific network hardware in use; PErsist, SLottime, and the transmitter

preamble time TXDelay mentioned earlier in this paper.

• PErsist: Measured in units of 1/256, the suggested default is 63, which translates

into a 0.25 chance of selecting a specific available slot [12]. A typical implementation

selects a random number in the range [0,255] and tests if it is equal or less than the

PErsist value. Therefore, a setting of 0 would result in a 0.004 chance of selecting a

slot and a setting of 255 would result in always selecting an open slot. The optimal

value for a specific network is highly dependent on the local channel occupancy, so

5This is a surprisingly common channel access method, used primarily by what are called “dumb” or
“deaf” APRS trackers, which are transmit-only and lack an FM receiver altogether.

CHAPTER 3. AMATEUR BELL 202 22

the suggested default shouldn’t be considered definitive.

• SLottime: Measured in units of 10ms increments, the traditional default from sources

such as the KISS specification and Kantronics hardware is a value of 10 (100ms)

[12][18], but performance measurements of contemporary VHF radios indicate a need

for a longer slot time. The new suggested value is 30 (300ms), which is discussed

further in Appendix B.

• TXDelay: Measured in units of 10ms increments, the suggested default is a value of

50, which translates into a 500ms synchronization preamble from when a transmitter

is keyed up until when a payload frame is transmitted [12]. This value is very con-

servative and can usually be reduced when receiving stations are properly configured

with well aligned clock recovery mechanisms.

There are additional channel access methods beyond the two mentioned above that are

applied in amateur radio packet networks. Examples include Demand Assigned Multiple

Access (DAMA), which is primarily used in European packet networks, and Time Slotting,

which is used in carefully designed high-throughput networks. Since these alternatives see

less application in American packet networks, they are excluded from this discussion and

the reader need only appreciate that this is not a comprehensive survey of channel access

methods.

3.5 Conclusion

By most measures, Amateur Bell 202 is a very poor performing modulation to be used by

amateurs for packet operations. One-bit symbols cause Bell 202 to suffer from poor spectral

efficiency, HDLC lacks any error correcting codes so single-bit errors cause entire frames to

be dropped, and 1200 bits per second is a remarkably low data rate when even consumer

radio systems are operating at hundreds of millions of bits per second throughput.

One aspect of Amateur Bell 202 that is appealing, other than the huge legacy systems still

using it, is its relative simplicity. The fact that amateurs are able to implement Amateur

Bell 202 modems on systems as minimalistic as 8 bit microcontrollers, and that modems

can interface with unmodified voice radios, make it possible for amateur radio operators to

CHAPTER 3. AMATEUR BELL 202 23

build their own APRS nodes with relatively little difficulty.

Faster data rates and more sophisticated modems aren’t being discouraged, but the value

of being able to learn about amateur digital communications via the simplicity of Bell

202 shouldn’t be discounted. The public APRS networking is deeply entrenched in using

Amateur Bell 202, so exploring future enhancements to the Amateur Bell 202 modem is a

topic that begs for further examination.

4 KISS

During the early 1980’s when amateur Terminal Node Controllers were developed, the

expectation was that the TNC would be handling the entire packet protocol stack up to the

final presentation to the user. This would have been done using a dumb terminal, such as

a VT100, or line printer and a keyboard. As personal computers became affordable in the

late 1980’s, the expectation that the entire application stack would run on the embedded

TNC became severely limiting and KISS (“Keep It Simple, Stupid”) emerged as the solution

to expose the modem inside TNCs via an eight bit clean interface and bypass the TNC’s

internal network stack.

KISS was originally presented by Mike Chepponis, K3MC and Phil Karn, KA9Q at the 6th

ARRL Computer Networking Conference in Redondo Beach, CA [12]. KISS was designed

as an extension to the Serial Line Internet Protocol (SLIP) allowing for in-band signaling

from the host to the TNC to enable setting modem configuration parameters such as the

preamble length and CSMA parameters.

This meant that the existing TNCs with their radio interfaces could be upgraded once

with new ROMs that supported KISS and any new network behavior or protocol could

be implemented on a separate host PC. This was particularly valuable since personal PCs

were much more productive development environments than the 256kb EPROMs and 8 bit

Z80 microprocessors of the popular Tucson Amateur Packet Radio TNC 2 product and its

clones [32].

24

CHAPTER 4. KISS 25

4.1 Isolating Modulation from Network

The advantage of KISS is that it has become the standard packet interchange protocol

between TNC modems and host network controllers, enabling each side to experiment with

new protocols. This means that as the APRS protocol has evolved, stations that used the

KISS protocol are able to continue using the same ROM-based modems and only need to

upgrade the software running on their host system. This abstraction holds up even further

in that it allows operators to use different data link protocols than AX.25, yet there have

been few examples of this since the collapse of the IPv4 amateur radio networks with the

wide-spread deployment of the Internet.

As discussed in the prior chapter, as Bell 202 and HDLC begin to show their age, the

field is ripe for a new modulation to replace them on VHF/UHF packet networks. Should a

researcher wish to deploy a new modulation to use under APRS, all that needs to be done is

build new KISS modems, which will seamlessly interface with most existing APRS software.

Replacing Amateur Bell 202 modems has always been a popular subject of discussion on

the APRS mailing lists, and is an area ripe for future quantitative study.

4.2 Shortcomings of KISS

While originally presented as an interim solution until a better protocol was developed, KISS

has enjoyed a lasting popularity among its users. One concern about KISS that has spawned

several derivative protocols is the lack of a checksum used in each KISS frame. Should any

bit errors happen between the host system and the modem, they may go undetected and

cause corruption in the transported payload as it continues through the network. One of the

most popular of these derivatives of KISS is SMACK (Stuttgart Modified Amateurradio-

CRC-KISS), which is a backwards compatible extension to KISS which includes a frame

checksum to protect against frame corruption [28].

Traditionally, KISS links between the host PC and KISS modems have been deployed over

relatively short RS-232 serial links (three to six feet). An increasing number of contemporary

modems are moving to a pure USB implementation. What the author has been unable to

find is any evidence that, when correctly deployed, these types of short serial links have

CHAPTER 4. KISS 26

any risk of corruption which is avoided by using the SMACK extension. Further study is

needed to examine typical APRS KISS deployments to justify the additional effort required

to implement and deploy SMACK above KISS to protect against any possible corruption

risks.

A second shortcoming of KISS which has not evoked anywhere near the level of discussion

that the corruption issue has is KISS’ lack of any way for modems to pass out-of-band

(OOB) information back to the host PC. KISS defines numbered command codes for the

host to pass information to the modem, including channel access settings and hardware

specific settings beyond the type ‘0’ data frame that should be transmitted on the channel.

In the opposite direction, from modem to host, the KISS specification explicitly limits frame

types to only data frames. This disallows hosts from being able to interrogate modems as

to their current configuration settings or any information about the RF channel beyond

packets as they are received.

The author suggests that a revision to the KISS specification be considered that would

allow modems to pass non-zero payloads back to the host PC. Legacy applications would

need to properly discard these non-zero frames as OOB data that they are not interested in,

while enabling new applications such as interactive configuration programs and give more

meaningful metrics as to current channel utilization.

• An interactive configuration program would allow a user to request a dump of the

current configuration, edit it, and re-upload it to one or several KISS modems. A

canonical example of this type of application is the OTWINCFG tool provided by

Argent Data for their trackers [5, §17.6].

• Channel utilization information could include how much time is consumed on the chan-

nel by AFSK data that does not decode as valid packets. Some APRS applications

attempt to estimate channel utilization based on received packets, which will con-

sistently under-estimate the actual figure due to frame preambles and frames which

fail their checksums never being reported. The worst case of continuous collisions

would result in the application misinterpreting no received packets as an entirely idle

channel, where the opposite is the actual case.

CHAPTER 4. KISS 27

4.3 Conclusion

KISS have proven itself tremendously useful as it has decoupled the modem hardware from

the network protocol used above it. The decreasing price and size of single-board computers

such as the Texas Instrument’s BeagleBone have cemented the popularity of network nodes

built using a full-fledged computer that uses a KISS modem as a radio interface. It should

be appreciated that KISS enables the development of new modulation schemes without the

need to modify existing APRS software to run over new higher-quality links. Future work

involving KISS should include studying the quantitative risks of not using checksums on

the serial link between the host and the modem and the feasibility of extending KISS to

allow OOB information to be passed from modem to host.

OSI Layer 2 — Data Link

28

5 AX.25

AX.25 is the amateur radio derivative of CCITT X.25 that was designed during the early

1980’s as the primary data link protocol used by amateur packet networks. The AX.25 spec-

ification has been maintained by the Tucson Amateur Packet Radio (TAPR) organization

until its latest release, Version 2.2 in July of 1998.

The most significant difference between AX.25 and the original X.25 protocol lies in the

hardware addresses used by AX.25, which are based on the expectation of each station using

their FCC-issued callsign. Each node is addressed by their callsign plus an additional 4 bit

secondary station identifier (SSID), which allows each licensee to maintain and operate up

to 16 stations in each packet namespace.

AX.25 is one of the best-documented protocols used in amateur radio packet networks, so

it could be argued that a chapter in this thesis considering AX.25 could be omitted. The

AX.25 specification goes into tremendous detail as to the expected behavior of each node

and how the system should transition between states. Where documentation does fall short

is in how APRS abuses a small subset of the AX.25 protocol for the specific needs of the

APRS network. The rest of the chapter will walk through each field of the AX.25 packet

and note how it is used by APRS, followed by a discussion of the implications of the FCC

requirement to identify an active transmitter by its FCC-issued license every ten minutes.

5.1 Header Format for APRS

A very limited subset of the complete AX.25 protocol is used by APRS due to APRS

deliberately avoiding the use of any of the connected or control modes of AX.25. This means

that any AX.25 protocol stack used for APRS need only support Unnumbered Information

29

CHAPTER 5. AX.25 30

Figure 5.1. AX.25 UI Packet Format

(UI) frames, and many APRS protocol stacks cannot handle any other forms of AX.25

traffic. Figure 5.1 presents the modified form of the AX.25 frame that is used by APRS.

5.1.1 TNC Description / Destination Address

Traditional AX.25 traffic is usually directed at a single station, which would be indicated

by a packet’s destination address. Since APRS is strictly a one-to-many network protocol

at Layer 3, this field was deemed not needed for APRS and several alternative uses for the

field have been proposed.

The most popular application for this field is to be used as a tracker identifier, where a six

character identifier is allocated from the APRS Working Group to identify a specific APRS

TNC and firmware version. This provides valuable information to the rest of the APRS

network. APRS TNCs often “misbehave” and it is helpful to be able to immediately identify

the original developer for a remote APRS node. Experimental trackers which have not yet

received a tracker ID may use the APZ prefix with three additional arbitrary alphanumeric

characters as their TNC identifier.

5.1.2 Source Address

The source address is either the FCC-issued or a “tactical” callsign used by the beaconing

APRS station, with an additional SSID appended to the station, which may range from

zero to 15. Source addresses must be at least three characters long, and may not be any

longer than six. Stations using AX.25 over RF are limited to the SSID’s of 0 to 15 due to

AX.25’s binary format, while APRS imposes a looser standard such that the SSID is only

limited to two alphanumeric characters when not transported over AX.25 links..

CHAPTER 5. AX.25 31

5.1.3 Routing Path

The AX.25 routing path is an optional variable-length field consisting of an ordered list of

digipeaters which should process and re-transmit the considered packet. Should a station

not require the use of this field, it can be completely omitted and the end-of-path bit should

be set on the source address field. The path must consist of an integer number of seven

octets.

The original AX.25 version 2.0 spec allowed for anywhere from zero to eight digipeaters to

be included in an AX.25 frame. Unfortunately, due to the unreliable nature of amateur

packet radio, packets with a routing path requesting as many as eight hops would rarely

be successfully delivered to the end station. The version 2.2 specification for AX.25 was

rewritten limiting the number of requested digipeaters to two with the argument that pack-

ets traveling beyond two hops should be handled by a higher layer protocol than AX.25.

Because AX.25 doesn’t guarantee delivery from a digipeater to another station, packets

passing through a digipeater that are lost need to be resent from their origin. Higher

layer protocols can recover from a lost packet locally without needing to twice consume the

bandwidth used to get the packet to the digipeater.

This concept of higher-layer retries and a limit of two digipeaters introduced in AX.25 v2.2

is ignored by APRS. More than two digipeaters are often seen on APRS traffic, and users

are only strongly discouraged from using a large number of hops.

5.1.4 Control Flags

The Control Flag octet indicates different modes for the AX.25 frame. Since APRS strictly

uses only Unnumbered Information (UI) frames, this field must contain the value 0x03.

5.1.5 Protocol IDentifier

The Protocol IDentifier (PID) field is normally used to identify the Layer 3 protocol being

transported by AX.25. TAPR has reportedly stopped processing requests for new PID

values to be issued to new Layer 3 applications of AX.25 [20], which is a possible explanation

CHAPTER 5. AX.25 32

for why APRS doesn’t have a unique PID. It instead uses the value of 0xF0, incorrectly

indicating that no Layer 3 protocol is in use.

5.1.6 Information Field

The rest of the AX.25 frame contains the APRS payload in what is called the Information

Field. The end of the Information Field is indicated by the Layer 1 modulation, which is

traditionally the Amateur Bell 202 FCS and 0x7E flag.

The maximum transmission unit for the Information Field is 256 octets, and APRS imposes

a minimum of one octet identifying the type of APRS packet being carried [33].

5.2 FCC Identification Requirements

One of the conditions of operating a radio under FCC Title 47 CFR Part 97 is that amateur

radio operators are required to transmit their callsign at least once every ten minutes during

an exchange. An ongoing source of controversy in the APRS community is what this means

for operating an APRS node, and particularly digipeaters.

The source of argument is what constitutes properly identifying the transmitting station;

only a station’s FCC callsign in the source address field, or simply including the callsign

somewhere in the complete frame. Considering only the source address field as a valid

way to identify a station is a very conservative interpretation of §97.119, but establishes

the requirement that every digipeater active in the APRS network needs to originate a

new packet every ten minutes. Alternatively, accepting the digipeater’s callsign injected

anywhere in an outgoing packet lends itself to the digipeater staying more “quiet” since

appending its callsign to the end of the routing path of incoming packets could be considered

identification enough.

The considered disadvantage of the more conservative interpretation is that the additional

beacons being generated by every active digipeater every ten minutes is an excessive burden

on the APRS network. Digipeaters rarely have information of value to the rest of the

APRS network, so their beacons are seen as little more than noise. This interpretation also

prohibits the use of “tactical” callsigns, which are selected to convey more useful information

CHAPTER 5. AX.25 33

that the control operator’s callsign. One common example is digipeaters on major mountain

peaks; a digipeater on Tassajara peak beaconing as “TASS” has a more meaningful name

than beaconing as its owner’s FCC callsign. The FCC callsign is then placed somewhere in

the comment section of the APRS beacon.

The issue with identifying via appending callsigns to other station’s packets and using

tactical callsigns is that it isn’t always clear what a station’s callsign is.

• Many digipeaters fail to correctly append their callsign to routing paths when they

process packets, so the last callsign in the path isn’t necessarily the station transmit-

ting it.

• There is no standard secondary place for a station’s “real” callsign when using a

tactical call. Operators often program digipeaters with comments that fail to make it

clear what their callsign actually is.

In the end, the question of how each station needs to identify to meet part 97 is a strictly

legal one. Arguments have been made for interpreting §97.119 several places between these

two extremes, and the final decision on how to interpret the legal requirements are left up

to the individual amateur radio operators and the federal government’s lawyers.

6 Digital Repeater Routing Behavior

When the AX.25 networks were originally built in the 1980s, one of the fundamental design

assumptions was that every node was physically static in the network. Digipeaters were

installed on top of high buildings or mountain tops, and client nodes were modems connected

to bulky video terminals or desktop PCs. When two stations wanted to exchange packets,

the operators had to manually construct an explicit list of digipeaters to use to deliver

packets to the other station. Should a station move to a new area, the operator would need

to discover new near-by digipeaters and manually construct routing paths using them.

One of the design goals of APRS has been to support mobile nodes, so this requirement to

pre-facto be aware of the local infrastructure is unacceptable. The solution was to categorize

digipeaters into a small number of “aliases” such that a digipeater would respond to both its

specific callsign and to any of its aliases. A mobile station expecting to move throughout the

APRS network could then construct its routing paths purely out of digipeater aliases and

use the network infrastructure despite not knowing each digipeater’s callsign or location.

As APRS has grown from an experimental network to one that covers much of the country,

it has adopted and discarded multiple sets of digipeater aliases. As the expectations as to

each node’s behavior regarding those aliases have changed, the APRS community has failed

to make it clear that the previous behavior has been deprecated. The rest of this chapter

will walk through the history of the basic set of routing aliases, followed by an overview of

possible digipeater behaviors.

More than anything else, this chapter is going to highlight how ambiguous the APRS

specification is in regards to digipeater behavior. Most of the aliases discussed in the

original APRS protocol specification have been subsequently deprecated, without the APRS

specification being amended to indicate as such. The APRS specification also failed to have

34

CHAPTER 6. DIGITAL REPEATER ROUTING BEHAVIOR 35

a detailed discussion on digipeater behavior, so many different interpretations and ideas have

been developed, which has created several divergent schools of thought on what behavior

is best. Writing a definitive analysis on digipeater behavior is a large undertaking that

warrants further consideration beyond what is possible in this work.

6.1 Routing Aliases

The original definition of APRS included several aliases, the most notable of which were

RELAY and WIDE. Digipeaters were divided into two categories depending on if they were

high-level (on the top of large towers, mountain tops, etc.) or low-level (typically residential

sites). Low-level sites would only digipeat packets which used the RELAY alias or the

digipeater’s literal callsign, where high-level digipeaters would respond to both RELAY and

WIDE in addition to their callsign. This enabled a user to selectively include or exclude

the numerous low-level digipeaters depending on if the station had sufficient power to reach

the high-level WIDE digipeaters or needed the low-level receivers to assist with being heard

on the network.

A station would construct their desired routing path as an ordered list of callsigns and

aliases. For example, a station requesting three high-level hops out from their position

would use the routing path “WIDE,WIDE,WIDE” when beaconing in a new area where

the local digipeater callsigns were unknown. Since these strings of several WIDE aliases

proved to be common, the APRS community developed the concept of WIDEn-N, where

multiple WIDE aliases are summarized as a single routing alias to reduce the average packet

length on the network.

A WIDEn-N alias represents multiple WIDE aliases by using two numbers, represented by

n and N. The first n represents the originally requested number of WIDE hops, where the

trailing N represents the remaining number of hops that have not yet been consumed.

Therefore, the alias “WIDE3-2” represents an original request for three hops that has

already been processed by one digipeater. Once a WIDEn-N alias gets decremented to

WIDEn-0, it is considered entirely consumed, having been processed by n digipeaters.

Low-level “fill-in” digipeaters are needed to assist low-power moving trackers in reaching the

primary high-level digipeater network before it is possible to be received by other stations.

CHAPTER 6. DIGITAL REPEATER ROUTING BEHAVIOR 36

Figure 6.1. APRS network used for path routing examples

Without these fill-in digipeaters, low power beacons would be lost in the noise and never

reach the network at large. This allows the network to have a very high density of these low-

level digipeaters without all of them generating network traffic by repeating every packet

moving through the network requesting WIDE digipeater service.

6.2 Examples

As an example, consider a small APRS network with one tracker and three digipeaters as

shown in figure 6.1: TRACKR, LOWDIG, HIGHA, and HIGHB. TRACKR is an APRS

tracker originating all of the packets in these examples. LOWDIG is a low level digipeater

that only responds to the RELAY alias, where HIGHA and HIGHB are both high-level

digis and thus respond to both RELAY and WIDE. Consider the routing path sequence in

table 6.1.

Path Transmitted by

WIDE1-1 TRACKR

HIGHA* HIGHA

— HIGHB

Table 6.1. TRACKR requesting a single WIDE hop

Note the use of the asterisk to represent “consumed” digipeater hops. This is originally

represented in the binary AX.25 frame by setting the “H” bit in the repeater address field.

CHAPTER 6. DIGITAL REPEATER ROUTING BEHAVIOR 37

This notation for the H bit comes from the monitor mode of the TAPR TNC2, which

has become the de-facto standard way to represent APRS packets textually, such as in log

files, documentation, and the TCP/IP based APRS Internet System backbone. The TAPR

TNC2 also defined the convention to drop the -0 SSID so TRACKR-0 is written as simply

TRACKR.

When HIGHA digipeats this example packet, it appends its callsign to the list of consumed

hops, and should drop the finished ”WIDE1*” alias, which is not consistently implemented

in APRS digipeaters.

The “—” is used in Table 6.1 to represent that WIDEB does not repeat this beacon. It

receives the repeated packet from WIDEA, but there are no un-consumed hops remaining

in the path, so the packet is dropped and no one on the other side of WIDEB would hear

this packet.

To reach further out in the network, the user would use a WIDE statement requesting more

than one hop:

Path Transmitted by

WIDE2-2 TRACKR

HIGHA*,WIDE2-1 HIGHA

HIGHA*,HIGHB* HIGHB

Table 6.2. TRACKR requesting two WIDE hops

If the tracker doesn’t happen to reach any of the high-level digis, but does reach a low-level

one, a WIDE path would do them no good:

Path Transmitted by

WIDE2-2 TRACKR

— LOWDIG

Table 6.3. TRACKR requesting WIDE hops but only reaching a relay digi

Table 6.3 shows that LOWDIG drops the packet since TRACKR only requests hops from

WIDE digipeaters. Therefore, stations that expect to often be depending on low-level

digipeaters should begin their path with a RELAY alias as shown in table 6.4.

Table 6.5 is an instance when it’s important that high-level digipeaters also respond to

CHAPTER 6. DIGITAL REPEATER ROUTING BEHAVIOR 38

Path Transmitted by

RELAY,WIDE1-1 TRACKR

LOWDIG*,WIDE1-1 LOWDIG

LOWDIG*,HIGHA* HIGHA

Table 6.4. TRACKR using LOWDIG to reach HIGHA

the RELAY alias, since digipeaters traditionally only process the first unconsumed alias.

Should TRACKR happen to be able to reach HIGHA but be out of range of LOWDIG, it’s

desirable for HIGHA to still repeat it.

Path Transmitted by

RELAY,WIDE1-1 TRACKR

HIGHA*,WIDE1-1 HIGHA

HIGHA*,HIGHB* HIGHB

Table 6.5. HIGHA also responding to the RELAY alias

6.3 Deduplication Behavior

As the APRS network grew and the density of digipeaters and stations increased in the late

1990s and early 2000s, it became increasingly important that digipeaters don’t “ping-pong”

packets between themselves. Since APRS’ routing is a hop-limited flooding protocol, there

was no mechanism preventing a digipeater from repeating a packet multiple time.

Path Transmitted by

WIDE3-3 TRACKR

HIGHA*,WIDE3-2 HIGHA

HIGHA*,HIGHB*,WIDE3-1 HIGHB

HIGHA*,HIGHB*,HIGHA* HIGHA

Table 6.6. A packet “ping-ponging” between HIGHA and HIGHB

Table 6.6 shows how HIGHA could hear an echo from HIGHB and transmit the same packet

twice, needlessly using additional network bandwidth. To prevent this, a new behavior was

implemented in digipeaters where an “aging hash table” was used to store a hash of each

packet for a limited length of time (this period is never formally specified, so the author

suggests 30 seconds be used as it is a popular choice). When a new packet with hops

CHAPTER 6. DIGITAL REPEATER ROUTING BEHAVIOR 39

remaining in the path are received, a hash of the source callsign and Information Field are

compared against the hash table to check if the same packet had been recently transmitted.

If so, the packet is dropped, but if there is no match in the hash table the packet is digipeated

and its hash added to the hash table. This hash is then dropped from the hash table 30

seconds later to allow the digipeater to repeat the same packet the next time the original

station beacons it.

Path Transmitted by

WIDE3-3 TRACKR

HIGHA*,WIDE3-2 HIGHA

HIGHA*,HIGHB*,WIDE3-1 HIGHB

— HIGHA

Table 6.7. HIGHA drops the echo heard from HIGHB

This behavior, as shown in Table 6.7, proved to be tremendously helpful in improving the

performance of the APRS network by removing loops in each packet’s flooding behavior.

No quantitative analysis has been found on the subject, but many areas suffering from

congestive collapse reportedly became usable again.

6.4 Deprecation of RELAY

Since APRS was becoming popular among amateur radio operators, equipment manufac-

turers such as Kantronics, MFJ, and Kenwood started adding APRS-specific features into

their off-the-shelf TNC products. One of the most popular TNCs used for digipeater sites

was the Kantronics KPC-3+, which turned out to have a fatal anomaly in its version 9.0

firmware ROM regarding the deduplication behavior just presented [19].

The KPC-3+ correctly deduplicated packets routed via the WIDEn-N system, but failed to

correctly add to or consult the dedup hash table for single-hop aliases such as RELAY. This

meant that popular routing paths such as “RELAY,WIDE2-2” would still result in routing

loops on the network:

Kantronics did release a patched ROM v9.1 in 2007, but to insufficient effect. Getting

access to digipeaters at remote radio sites is burdensome, and physically replacing the 32

CHAPTER 6. DIGITAL REPEATER ROUTING BEHAVIOR 40

Path Transmitted by

RELAY,WIDE2-2 TRACKR

RELAY*,WIDE2-2 HIGHA

RELAY*,HIGHB*,WIDE2-1 HIGHB

RELAY*,HIGHB*,HIGHA* HIGHA

Table 6.8. HIGHA failing to dedup its prior RELAY

pin ROM chip inside the KPC-3+ with a $40 replacement1 proved to be a sufficient barrier

that many APRS digipeaters still suffer from this defect today.2

Due to this growing population of digipeaters suffering from the Kantronics or other mis-

interpretations of the RELAY,WIDE alias system, it was proposed that APRS switch to

a purely WIDEn-N routing method. Instead of low-level digipeaters responding to RE-

LAY, they should now only process the alias WIDE1-1. This means that a path such

as “RELAY,WIDE2-2” should now be rewritten as “WIDE1-1,WIDE2-2.” To digipeaters

aware of this new interpretation, “WIDE1-1,WIDE2-2” signifies requesting one low-level

and two high-level hops. To older digipeaters like the KPC-3+, it appears to be an odd way

to request three WIDE hops compared to “WIDE3-3,” yet the deduplication is still done

correctly.

The issue with this replacement of RELAY with WIDE1-1 is that there is now no way to

correctly request a single high-level hop. The solution was to allow trackers to use the alias

of WIDE2-1 for single high level hops. This works, but now breaks the original meaning

of the first number, which stood for the originally requested number of hops. When a

digipeater receives a packet with a “WIDE2-1” path, there is no way to definitively tell if

that alias represents a two hop request that has gone through one hop, or a single high-level

hop request that hasn’t been processed yet.

Surprisingly, this single overload of WIDE2-1 for WIDE1-1 has rendered the original mean-

ing of the first digit almost meaningless. Allowing this one exception to the originating

station setting the two WIDEn-N numbers the same, while not providing sufficient docu-

mentation to make it abundantly clear that this is the only allowable exception, has muddied

1Kantronics did offer free v9.1 ROM exchanges to any customers who had purchased their TNCs new in
the previous two years

2It has been jokingly said that once a digipeater goes on the air, none of its settings will be changed until
either the digipeater or its owner dies

CHAPTER 6. DIGITAL REPEATER ROUTING BEHAVIOR 41

the waters as to the actual meaning of the first number. Based on a sample of 21 million

packets on the APRS-IS world-wide APRS backbone on May 8th, 2014, it was found that

0.7% of APRS packets requested routing paths such as WIDE1-2 or WIDE2-3, which should

not ever exist before or after the WIDE2-1 exception was made.. A station beaconing with

a path of WIDE2-3 indicates that they are requesting two hops, and three of those hops

are remaining, which is nonsense.3 This demonstrates that users are clearly confused and

that a major institutional failure has occurred in how the meaning of the WIDEn-N alias

has been presented.

6.5 Minimum WIDEn-N Behavior

APRS digipeaters are divided into two classes: high-level digipeaters and low-level digi-

peaters, which dictates variations in their behavior. High-level digipeaters form the ma-

jor backbone of the APRS digipeater network and are generally installed on the tops of

mountains, tall office buildings, and large towers. Low-level digipeaters usually have their

antennas less than 50 feet above ground level, and cover a small subset of the wider coverage

provided by the nearest high-level digipeater.

Since each low-level digipeater’s coverage area is a subset of the nearest high-level digi-

peater’s coverage, a low-level digi isn’t needed to repeat packets coming in from the high-

level digipeater. Low-level digipeaters are designed to solely act as “boosters” to help local

low-power trackers be able to reach the nearest high-level digi. Therefore, low-level digi-

peaters should only digipeat packets which have “WIDE1-1” as their first routing hop, since

that indicates that the user doesn’t believe they can reach high-level digipeaters directly.

High-level digipeaters form the actual blanket coverage of APRS, and should respond to any

valid WIDEn-N alias which still contains unconsumed hops, including WIDE1-1. This is

because many digipeaters will only consume the first unused alias in the path, so a low-power

tracker that gets “lucky” and manages to reach a high-level digipeater while using a path

such as “WIDE1-1,WIDE2-2” depends on high-level digipeaters responding to WIDE1-1.

Digipeater behavior includes several more caveats which don’t involve the APRS WIDEn-N

3The proper way to request three hops would be to use WIDE3-3.

CHAPTER 6. DIGITAL REPEATER ROUTING BEHAVIOR 42

routing alias,4 so this section can’t be considered a complete definition of a digipeater’s

behavior.

6.6 Variations on Digipeater Behavior

As previously mentioned, the failure of the APRS specification to provide a comprehensive

extension of digipeater behavior for APRS has caused implementers to get creative with

the details and extensions of the basic behavior defined in the AX.25 specification. Some

of these variations include:

• How should the last hop of multi-hop aliases be handled?5

• Preemptive digipeating, where digipeaters consider all unused aliases, instead of only

the first, and possibly consumes multiple hop requests if an alias match is found later

in the path.

• Long path traps, where abusive WIDE paths such as WIDE7-7 are trapped and all

or many requested hops are consumed by the first digipeater, to prevent flooding

extremely large areas.

• Direct-only digipeaters, where low-level digipeaters don’t only respond to WIDE1-1,

but only digipeat packets when they appear to have not been already digipeated by

another digipeater.

• Viscous delay digipeaters, where packets are held for a number of seconds to see if

they are otherwise re-transmitted by other digipeaters. If an echo of a packet is heard,

it gets dropped instead of digipeated.

• Token bucket digipeaters, which refuse to digipeat stations which exceed a specified

volume of network traffic.

While the implications of any single item on this list are seemingly small, the countless

permutations and inconsistencies seen deployed in the world-wide APRS network causes

4Examples include the expectation of digipeaters to substitute their callsigns into routing paths as they
consume aliases, and that they still must respond to their callsign as a routing hop in addition to the
WIDEn-N alias.

5i.e. should “WIDE3-1” become “DIGIA*” or “DIGIA*,WIDE3*”?

CHAPTER 6. DIGITAL REPEATER ROUTING BEHAVIOR 43

the network to behave unpredictably and give disappointing levels of service to its end-

users. Further work is needed to specify how much of a digipeater’s behavior is required

versus optional, and how much latitude should be given to individual digipeater operators

for any of the optional features implemented.

OSI Layer 3 — Network

44

7 Node Beaconing Behavior

Since APRS is a source-routed protocol, most of the decisions as to how often a station

should send traffic and how far that traffic should travel are allowed to be made by the

originating station. The existing specification for the protocol hardly touches on this issue,

while a great deal of time and energy is spent on the development forums bemoaning specific

examples of misbehaving members of the network. The two major parameters under the

source node’s control that are considered here are the frequency of beaconing and the routing

path used for each beacon.

Being a source-routed protocol does fundamentally introduce a moral hazard in the network.

For each node in the network to enjoy the most benefit from the network, they would want

to beacon as often as possible with the longest path allowed by the network. It is only

by mutual trust, respect, and education that this logic isn’t universally followed and the

network is not grossly oversubscribed in the self-interest of every individual network node.

Unfortunately, the most popular documentation on APRS fails to stress the importance of

correctly configuring nodes in the best interest for the network at large, and rarely gives

any concrete guidance on what values should typically be used when configuring various

types of network nodes.

7.1 Beaconing Algorithms

For each APRS node with information available for the network, a local decision needs

to be made as to when that information will best serve the local network and should be

transmitted. This is rarely a trivial decision, and one that could warrant much more creative

and application or data specific solutions than the ones presented here, which should be

considered the typical minimum of most popular APRS trackers. The only datum considered

45

CHAPTER 7. NODE BEACONING BEHAVIOR 46

in this work is that of a mobile node’s position, but these algorithms would likely extend

to most other user applications of APRS.

7.1.1 Fixed Interval Beaconing

The simplest beaconing algorithm consists of waiting a single fixed interval between beacons,

and only requires a single parameter that is the beacon interval. When a tracker is turned

on, it acquires a GPS lock and immediately sends out a beacon and starts a timer. Once

that timer exceeds the beacon interval value, a new position is acquired from the GPS

receiver and the new location is beaconed. While simple, this algorithm does suffer from a

number of inadequacies:

• The decision to beacon is made solely based on how long it has been since the previous

beacon, without considering any other information available to the tracker. Examples

of additional information would include whether the tracker has moved, how fast the

tracker is moving, or any packets received from the APRS network since the last

beacon.

• A single fixed interval limits the amount of entropy introduced into the network with

regards to inter-packet arrival at other nodes. Since APRS is a CSMA shared channel

network, it’s tempting to use Poisson distribution models for network capacity, which

is likely invalid when the only source of entropy per tracker is the time when it was

last turned on or gained GPS lock. This is discussed further in the next chapter.

There are of course several possible extensions to the fixed interval beaconing algorithm

which each fix various deficiencies at the expense of simplicity.

7.1.2 Time Slot Interval Beaconing

Arguably a more restrictive form of fixed interval beaconing, time slotting is based on the

idea of preventing channel collisions by allocating each tracker a fixed time slot in each

interval for when they are allowed to transmit. An unfeasible solution for the national

APRS network due to its scale and lack of coordination, time slotting is often applied

CHAPTER 7. NODE BEACONING BEHAVIOR 47

where unusually high levels of coordination do exist, such as special events and insular

networks.

Time slotting introduces a new parameter called the slot time, and depends on every tracker

using it having synchronized real time clocks, which is reasonable since most GPS receivers

provide real time to within typically 200ms of UTC as part of their position reports.1

The slot time determines how many seconds after the beginning of each interval a tracker

should beacon. The beginning of each interval is defined by the top of the UTC hour,2 and

intervals run successively for the remainder of the hour. For example, a tracker configured

to time slot with an interval of 550 seconds and a time slot of 12 would beacon at the

following times:

Time Calculated by

00:00:12 0*550 + 12

00:09:22 1*550 + 12

00:18:32 2*550 + 12

00:27:42 3*550 + 12

00:36:52 4*550 + 12

00:46:02 5*550 + 12

00:55:12 6*550 + 12

01:00:12 0*550 + 12

This deterministic beaconing algorithm allows carefully designed networks to over-subscribe

network throughput well beyond the levels expected from the national APRS channel with

its stochastic access methods. On an insular network separate from the national network, it

would be possible to set an aggressively short beacon interval and carefully space trackers

such that no two beacons collide with each other. This would make it possible to accomplish

service levels such as every-minute position updates from several dozen tracked vehicles, at

the expense that there is no allowance for any additional traffic on the RF channel, and

the network would depend on manual assurance that every tracker is configured to use its

proper time slot.

1The 200ms uncertainty is a typical value due to the delivery of time over an asynchronous 4800 baud
serial port. Internally, GPS receivers must maintain their real time clocks to several orders of magnitude
higher precision than this to be even remotely useful, but this precision isn’t needed for APRS time slotting.

2Specifying to use UTC time is remarkably important, since UTC and GPS time have currently diverged
by 16 seconds due to only UTC including leap seconds. Most, but not all, GPS receivers correctly compensate
for this variable offset and report correct UTC time in their GPRMC sentences.

CHAPTER 7. NODE BEACONING BEHAVIOR 48

while beaconing do

interval delay ← random() · beacon interval/8
sleep(beacon interval + interval delay)

send beacon()

end while

Figure 7.1. Beacon interval dithering algorithm

7.1.3 Nice Interval Beaconing

Nice beaconing is a behavioral extension to fixed interval beaconing where trackers consider

whether a “echo” of a position beacon is heard back from any near-by digital repeaters.

Since digipeaters tend to have much higher power transmitters and better quality antennas

than mobile trackers, once a packet is successfully received by any digipeater, that packet

is much more likely to be received by a much larger fraction of the target audience than

directly from the low-power tracker. Most implementations introduce a new parameter

called nice [5, p. 38], which is the number of subsequent beacons to skip when a digipeater

echo is heard.

7.1.4 Dithered Interval Beaconing

One of the popular traffic models used for ALOHA-based networks assumes that traffic

enters the network as a Poisson process. This assumption has a number of implications

for the total channel capacity, as will be discussed in chapter 8, but an important note for

tracker behavior is the fact that fixed interval beaconing introduces no new entropy once a

tracker is activated and beaconing.

Since APRS channel access is often a stochastic process, it is possible that introducing

more sources of entropy into how often trackers beacon will improve network performance

overall. Deliberately introducing a small amount of noise into the interval between beacons

is called dithering, and has been known to improve system performance in other fields such

as computer graphics [27].

Developing analytic justifications for dithering or selecting specific distributions are beyond

CHAPTER 7. NODE BEACONING BEHAVIOR 49

the scope of this work, but it’s theorized that introducing any kind of entropy with approx-

imately 1% variance could improve network traffic distribution. Figure 7.1 shows a possible

implementation, where RANDOM() is a function that returns a normalized distribution

such as a uniform distribution in the range [0,1] or a Gaussian distribution with µ = 0 and

σ = 1. The dividing factor of 8 was selected to scale the uniform distribution [0,1] to yield

a variance of 1%, but that value was selected arbitrarily.

7.1.5 SmartBeaconing

SmartBeaconing™is an adaptive beaconing algorithm developed by Tony Arnerich and Steve

Bragg for the HamHUD tracker kits [7]. It allows trackers to make intelligent decisions as

to how often to beacon based on how “interesting” the tracker’s new position is. Vehicles

moving in straight lines will tend to beacon at very long intervals, but will beacon more often

when making turns or traveling faster. The algorithm is owned by HamHUD Nichetronix,

LLC, and licensed freely for non-commercial amateur radio applications.

This algorithm is particularly useful for APRS due to the fact that APRS position reports

support dead-reckoning, where they include a direction and velocity. As long as trackers

don’t deviate from this advertised heading, there is less reason to repeatedly beacon the

tracker’s new position.

The SmartBeaconing algorithm accepts up to seven parameters from the user[23], which are

relatively more opaque than the one or two parameters required for all the other popular

interval algorithms. While there are suggested default values for each of these parameters,

SmartBeaconing still proves to be controversial due to its users tending to beacon much

more often than trackers using other beaconing algorithms[8]. As discussed in chapter 8,

calculating the actual channel capacity in an area and the appropriate beaconing interval

for any of these algorithms are not at all straight forward.

The original HamHUD algorithm is documented online as a snippet of C-like pseudo-code

as shown in figure 7.2. In addition to the seven algorithm parameters, the pseudo-code

requires the current speed and heading of the tracker, which are both typically available

from the $GPRMC NMEA sentence [13] provided by the tracker’s GPS receiver, and the

number of seconds since the last transmitted beacon. Unfortunately, there are a number of

CHAPTER 7. NODE BEACONING BEHAVIOR 50

Parameter Name Value Description

low speed 5 mph This is the speed below which the tracker
switches to the slow beacon interval and no
longer performs corner pegging.

slow beacon interval 1800 seconds This is how often a tracker should beacon when
it is moving slower than low speed, which indi-
cates that it is essentially stopped.

high speed 60 mph High speed is the value that slower speed beacon
intervals are interpolated from. Speeds faster
than high speed are valid but simply beacon at
fast beacon interval.

fast beacon interval 180 seconds This is how often a tracker should beacon when
traveling at high speed and the scalar used to
calculate beacon intervals at lower speeds as a
fraction of high speed.

turn minimum 30° The absolute minimum heading change needed
to trigger a “corner peg” where the tracker bea-
cons sooner than its speed warrants.

turn slope 255°miles / hr A scalar to convert between how fast a tracker is
going and how tight of a turn they need to per-
form to trigger a corner peg. The original doc-
umentation notes this value as unitless, which
isn’t entirely invalid since degree miles per hour
isn’t a particularly helpful dimension.

turn beacon interval 15 seconds The minimum time between beacons when a
tracker is changing heading often.

Table 7.1. Suggested defaults for SmartBeaconing parameters

CHAPTER 7. NODE BEACONING BEHAVIOR 51

issues with the provided code that have possibly harmed deployment of the SmartBeaconing

algorithm on other trackers:

• Variable names change. Both “speed” and “mph” are used to indicate the current

speed of the tracker.

• Variable names are inconsistent. slow rate is used for the beacon interval when the

vehicle is stopped, fast beacon rate for when the vehicle is moving, and turn time for

when it is turning. A better set of variable names could be * beacon interval.

• The corner pegging algorithm suffers from an off-by-one error due to the final if

statement being a > comparison instead of a ≥ comparison. As documented, turning

a corner would never cause an early beacon.

• The corner pegging section changes the value of secs since beacon instead of bea-

con rate, where secs since beacon is a system invariant that could possibly be imple-

mented as a macro or function call.

• The SmartBeaconing documentation specifies that the velocities used are in units of

miles per hour, where velocities expressed in the APRS protocol are in knots.3

Due to these issues, it seemed appropriate to rewrite the algorithm to correct these issues

and to re-typeset the pseudo-code in a more contemporary style, which can be seen in

figure 7.3.

7.2 Path Recommendations

In addition to the task of deciding when to beacon, each user needs to make a judgment as

to how far they want to flood their traffic throughout the APRS network. This is another

subject that evokes controversy due to the problem that recommendations that are valid in

most of the network will often be invalid for small parts of it. This causes every discussion

on the subject to be muddied with arguments about small edge-cases and the specifications

make no concrete recommendations on the subject all together.

3APRS uses knots for velocity due to most GPS receivers outputting location data as NMEA 0183
sentences, which were originally designed for maritime applications.

CHAPTER 7. NODE BEACONING BEHAVIOR 52

IF (speed < low speed) {
beacon rate = s l o w r a t e ;

}
ELSE {

// Adjust beacon ra t e accord ing to speed

IF (speed > high speed) {
beacon rate = f a s t b e a c o n r a t e ;

}
ELSE {

beacon rate = f a s t b e a c o n r a t e ∗ high speed / speed ;

}
// Corner pegging − ALWAYS occurs i f not ” stopped ”

// Note turn t h r e s h o l d i s speed−dependent

t u r n t h r e s h o l d = turn min + t u r n s l o p e / mph;

IF (head ing change s ince beacon > t u r n t h r e s h o l d) AND

(s e c s s i n c e b e a c o n> turn t ime) {
s e c s s i n c e b e a c o n = beacon rate ;

}
}

IF (s e c s s i n c e b e a c o n> beacon rate)

// . . . send beacon

Figure 7.2. Original HamHUD SmartBeaconing documentation using C-like syntax

CHAPTER 7. NODE BEACONING BEHAVIOR 53

1: if speed < low speed then

2: beacon interval← slow beacon interval

3: else

4: if speed > high speed then

5: beacon interval← fast beacon interval

6: else

7: beacon interval← fast beacon interval · high speed/speed
8: end if

9: turn threshold← turn minimum+ turn slope/speed

10: if heading change since beacon > turn threshold then

11: beacon interval← turn beacon interval

12: end if

13: end if

14: if secs since beacon ≥ beacon interval then
15: send beacon()

16: end if

Figure 7.3. Novel presentation of SmartBeaconing algorithm by the author

CHAPTER 7. NODE BEACONING BEHAVIOR 54

This means that the following guidance is guaranteed to be “flawed” when applied some-

where in the APRS network, but the hope is that this will be generally correct when consid-

ering most of the network. The local administrators in regions which require different path

selections than the following should be expected to either maintain and publish a set of

their own recommendations or re-design their network to support the standard suggestions.

7.2.1 Vehicles and Mobile Stations

In the most general case, vehicles should use a path of “WIDE1-1,WIDE2-1,” which requests

two total hops, including allowing low-level digis to assist them reaching the high-level

digipeater network on their first hop. Vehicles which stay in highly populated areas should

consider using the shorter “WIDE1-1” path, while vehicles which do the opposite and spend

a significant amount of their time in areas with unusually sparse APRS coverage may use

“WIDE1-1,WIDE2-2.” [14]

7.2.2 Fixed Stations

Many APRS stations aren’t expected to ever move, such as home stations acting as Internet

gateways, digipeaters that are part of the infrastructure, or remote weather stations. Since

these stations should have the transmitter power and high-quality antennas needed to reach

high-level digipeaters, they should not begin their path with WIDE1-1 but select between

the following options depending on how many hops are needed:

• WIDE2-1 - A single hop for unimportant traffic or stations near a particularly large

coverage digipeater.

• WIDE2-2 - The most standard path that stations should only deviate from after

careful consideration.

• WIDE3-3 - Should only be used in mountainous or sparse areas for traffic important

to a large number of stations. Very few stations should ever use this path.

Unlike mobile trackers, fixed stations enjoy the advantage that they do not need to handle

a constantly changing APRS infrastructure. Instead of using the APRS WIDE aliases,

CHAPTER 7. NODE BEACONING BEHAVIOR 55

fixed stations should seriously consider using literal paths consisting of specific digipeater

callsigns. For example, a fixed station desiring a single hop through the near-by HIGHA

digipeater should beacon with a path of “HIGHA” instead of “WIDE2-1.” This causes only

the HIGHA digipeater to repeat the packet and not involve any further away or lower-level

digipeaters which happen to also decode the initial transmission. Literal paths requesting

the help of specific digipeaters is rarely seen in APRS traffic, but should be encouraged.

Fixed stations should also consider using “proportional pathing,” which warrants its own

section below.

7.2.3 Airborne Stations

APRS is often used as a safety or recovery system for airplanes or weather balloons, and

these stations MUST NOT use any digipeaters in their path while significantly above

ground-level. [15] It is critical that airborne stations use an empty path because their

altitude ensures that they already cover more area than any of the digipeaters they would

enlist to repeat their traffic. It is common for balloons to be launched with paths such as

“WIDE1-1,WIDE2-1” which cause havoc as packets are received by every digipeater within

hundreds of miles and needlessly repeated to other stations which have already received the

original transmission.

It may be desirable for airborne trackers to support the feature of switching from an empty

path to something else when on the ground. A good example would be a weather balloon

payload switching from an empty path to a “WIDE1-1” path when the balloon bursts to

aid in recovery of the payload once it reaches the ground.

7.2.4 Proportional Pathing

Proportional pathing is the tracker behavior where every beacon does not use the same

routing path, which is the norm for APRS trackers. It is not a part of the APRS spec, but

has been documented as an errata on the aprs.org website. [11] Since information passed

through the APRS network is usually more important for stations near the originating

station than those further away, it follows that it would be preferable for near-by stations

CHAPTER 7. NODE BEACONING BEHAVIOR 56

to hear these beacons more often. This can be accomplished by modulating the number of

requested hops per beacon, such that not every packet takes multiple hops, but some do.

A common example of where proportional pathing should be applied is low level digipeaters.

A typical low-level digipeater beacons its location every ten minutes with a path of “WIDE2-

1.” This means that every station within range of this digipeater, and every station within

range of adjacent high-level digipeaters, see the same location beacon for the unmoving

digipeater every ten minutes. It is useful to be able to see where low-level digipeaters are,

and the beacons may be required every ten minutes to meet FCC part 97 identification

requirements, but it’s unlikely that every station needs to be reassured that the digipeater

is still online every ten minutes.

Proportional pathing suggests that instead of transmitting every packet with a path of

WIDE2-1, a low-level digipeater could produce less traffic on the APRS network by alter-

nating between paths as follows:

Time Path

0:00 “ ”

0:10 “ ”

0:20 “WIDE2-1”

0:30 “ ”

0:40 “ ”

0:50 “WIDE2-2”

Table 7.2. Example of Proportional Pathing

At the top of the hour, 10 minutes after, 30 after, and 40 after, this low-level digipeater

beacons with an empty path, meaning that no other digipeaters will repeat the packet.

Once an hour the beacon is sent requesting a single hop, and a second time in the hour the

beacon is sent with an even longer two-hop path. This enables the digipeater to beacon

every ten minutes locally, but stations further away only have to handle its traffic once or

twice an hour while still being able to see it periodically. The digipeater is therefore still

highly visible locally, but generates much less traffic on the high-level backbone digipeaters

and further away from its longer-range advertisements.4

4It’s important to note that although the example shows every beacon at the beginning of every ten
minutes, an actual deployment should select a random offset or dither their beacon interval to prevent local
traffic spikes from happening once every ten minutes when every digi simultaneously beacons.

CHAPTER 7. NODE BEACONING BEHAVIOR 57

This example considered the most common form of proportional pathing, where the tracker

maintains a finite state machine to switch between a limited and predefined list of paths,

but a possible area for future work would be to develop more sophisticated proportional

pathing algorithms. Much like the SmartBeaconing algorithm considered earlier, heuristics

could be developed to categorize how important the next beacon will be, based on variables

such as the local traffic level, how many new stations have been recently heard, or time of

day, and used to adaptively change the routing path used.

7.3 Conclusion

This chapter has presented a list of the most popular algorithms used to determine when a

tracker should beacon, and provided some general guidance on what routing paths should be

used by different types of trackers. The source-routed nature of APRS is often considered

a double-edge sword, since any operator may tailor how the network handles the local

station’s traffic to meet their own need. The downside to source-routing is that malicious

or ignorant stations are empowered to cause a tremendous amount of harm to the network’s

performance. There are inevitable exceptions to the guidance given in this chapter, so

modifications to any defaults should be done with careful consideration and user education.

The guidance given has been as general as possible, without documenting the numerous edge

cases and exceptions in individual areas. This is a common flaw with APRS documentation,

where writers refuse to give any concrete advice since it is inevitably wrong somewhere in the

world-wide APRS network. Stations planning to operate in unusually high or low density

areas should carefully consider their beaconing behavior and consult local APRS interest

groups.5

5http://info.aprs.net is a particularly useful website documenting local exceptions to these general
rules.

8 APRS RF Channel Capacity

One of the largest limitations of the APRS network is the fact that it primarily operates

on a single regional 1200 bits per second data channel. Individual nodes share the 1200bps

channel using CSMA, as discussed in section 3.4, but the relationship between these channel

access methods and how often a station should beacon isn’t straight forward.

The APRS specification avoids giving concrete guidance on what beacon interval should be

used beyond stating that every station should beacon at the net’s cycle rate, which it lists as

10 minutes locally and 30 minutes network wide[33, p. 9].1 For fixed nodes such as weather

stations and network infrastructure, these intervals are appropriate since their information

for the network is unlikely to dramatically change in the 10 to 30 minute time scale. Mobile

users are a different story, since they often have new information for the network such as

a direction change or a new text message. Fixed 10 minute beacon intervals are therefore

often unsatisfactory for mobile users, who would like to see new information passed to the

rest of the network more quickly. The popularity of SmartBeaconing is a testament to

this desire to beacon more often, but the question now becomes how much more often can

stations beacon while staying within the limitations of the APRS network?

This chapter will give an introduction to the original ALOHAnet research that networks

like APRS are based on, and point out how these models fall short of the actual APRS

network. A comprehensive study of the specifics as applied to APRS are beyond the scope

and resources of this work, so no concrete recommendations will be made in this chapter.

1see proportional pathing in the previous section

58

CHAPTER 8. APRS RF CHANNEL CAPACITY 59

8.1 Network Capacity Objectives

The stated objective of APRS is to pass real-time tactical information among a station’s

60 nearest peers. This value was apparently selected arbitrarily based on the feeling that it

is unlikely that a station would need to interact with anyone beyond their 60 closest peers,

but will nevertheless be used for the analysis in this chapter. This does complicate analysis

of the APRS network since each station’s set of their 60 nearest peers, which is referred

to as their “Aloha Circle,” is a different subset of all the stations in the network. Every

station has a different concept as to who is in their Aloha Circle and who is not. Analysis

is further complicated by the fact that few APRS stations are actually within radio range

of 60 other stations, so often a significant portion of an Aloha Circle is beyond the local

horizon and relayed through a limited number of digipeaters. This effects a phenomenon

called the “hidden node problem,” which impacts Layer 1 CSMA access, which is ignored

in the limited scope of this chapter.

An appropriate starting point for analyzing APRS channel capacity would be the original

methods developed for the ALOHA System at the University of Hawaii[1]. The ALOHAnet

was a 9600bps UHF packet radio system that was the first application of wireless computer

networking. This system developed several of the shared channel access methods that would

subsequently be used in other protocols such as Ethernet, GSM, and APRS.

8.2 Poisson Channel

The most basic analysis of a channel’s Aloha Circle capacity can be based on the assumption

that each packet is the same length, that traffic enters the network as a Poisson process, and

that any collision between two packets causes both of them to fail to be delivered. Defining

the rate of packets entering the network as λ packets per second and the length of each

packet as τ seconds, the normalized channel traffic G can be calculated as

G = λτ (8.1)

This normalized channel traffic metric is expressed using the dimensionless unit Erlang

named after the engineer who originally developed the field of queuing theory as applied to

the telephone network. Erlangs express the fraction of a channel that would be needed for

CHAPTER 8. APRS RF CHANNEL CAPACITY 60

all of the traffic entering the network. For example, a value G = 1.0 would indicate that a

single station would need to transmit packets continuously, where G = 0.5 indicates that

the channel is idle half of the time. Erlang values above 1.0 are valid, and simply represent

that more than one channel would be required to handle all of the traffic.

When channel access is stochastic, as it is in APRS, there is no guarantee that two stations

won’t transmit at the same time, regardless of how much traffic there is on the network.

Any packet transmission starting less than τ seconds before or after another would cause

a collision and simple models dictate that both packets would be lost. This indicates that

the rate of successfully received packets exiting the network is often less than λ, and is

traditionally notated as λ′. Since λ′ ≤ λ, we define the normalized channel throughput S as

S = λ′τ (8.2)

This implies that the fraction of the channel capacity used for successfully delivered packets

must follow the same relationship as λ and λ′, namely that S ≤ G.

Making the assumption that channel access is Poisson in nature, the probability that a

packet will collide with another can be derived to be e−2λτ , as originally derived by Abram-

son [1]. This yields the relationship between S and G of

S = Ge−2G (8.3)

This indicates a moderately surprising result that for Poisson channel access, the throughput

is completely independent of the number of stations on the channel, but only dependent

upon the total channel loading.

Graphing the channel throughput versus the channel’s traffic yields figure 8.1, which in-

dicates that as you increase channel traffic, throughput increases to an inflection point

when there is no unused channel capacity and packet collisions finally start to dominate the

channel and harm throughput. This inflection point happens to be at an incoming traffic

G = 0.5 which yields an expectation that 36% of the packets will be successfully received

(S = 0.18).

While assuming that APRS traffic is based on a Poisson process is highly suspect, this

simple model of channel capacity does yield some insightful values. Collecting several days

of APRS traffic on 144.390MHz in San Luis Obispo, California shows an average packet

CHAPTER 8. APRS RF CHANNEL CAPACITY 61

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

G, channel traffic [Erlang]

S
,
c
h
a

n
n
e
l
th

ro
u

g
h
p

u
t
[E

rl
a
n

g
]

Figure 8.1. Poisson channel traffic and throughput

CHAPTER 8. APRS RF CHANNEL CAPACITY 62

size of 119 octets. With a typical 300ms preamble, the assumption that every packet is the

mean length, and a data rate of 1200bps, this yields τ = 1.09 seconds.

λAPRS =
GMAX

τ
= 0.457 (8.4)

Equation 8.4 indicates that a single APRS channel can support 0.457 transmitted packets

per second, or 27 packets per minute, which need to be shared between all of the partic-

ipating network nodes. Assuming the typical target LAN size of 60 stations, this implies

an average packet interval per station of 2 minutes 13 seconds.2 The less satisfying result

is the fact that only 10 of these packets every minute will be successfully received, which

indicates that two thirds of the transmitted power is wasted.

The next section will go into how this Poisson model is deficient to the point that this 2

minute 13 seconds value is nearly meaningless. Any station that beaconed that fast on an

actual APRS network could very quickly be identified as abusive to the rest of the network,

so further work is needed before an analytic interval suggestion can be made. What this

calculation does demonstrate is that the general concept of 60 stations sharing a single

ALOHA channel in the way APRS intends is within the realm of possibilities. Had this

value come out an order of magnitude larger, the claim that APRS could allow a user to

discover 60 other stations would be much more suspect.

8.3 Deficiencies of the Poisson Model

There were several assumptions made to simplify the just-presented model for an ALOHA

channel that are not valid when applied to a typical APRS network. While most of these

assumptions indicate that the result of equation 8.4 is overly optimistic and stations should

beacon less often, there are enough conflicting mechanisms at play in both directions that

the true traffic versus throughput relationship does not appear to be easily found and

requires further work beyond this paper. Some of the issues ignored in this chapter include:

• Differences in packet length – Actual APRS traffic varies in length, which has an effect

on throughput rates by changing τ . Abramson presented a closed solution for the case

2For the reader skimming this chapter, DO NOT use this beacon interval for APRS; this Poisson model
is too simplified to give meaningful results. A suggested default is 600 second intervals when beaconing.

CHAPTER 8. APRS RF CHANNEL CAPACITY 63

of two discrete packet lengths [1], but his methods don’t lend themselves well to the

broad distribution of packet lengths found in APRS. His solution does imply that

users should attempt to make packets as short as possible to improve throughput.

• Digipeaters and channel access methods – The presented model assumes that every

packet is added to the channel as an entirely blind shot in the dark, but many APRS

stations use CSMA to avoid transmitting on already busy channels. This reduces

the window for destructive collisions and thus reduces the ratio between the channel

traffic G and the usable throughput S.

• FM capture effect – This model assumed that any overlap between packets is fatal

for both packets, but experience shows that packets from closer stations often “beat

out” overlapping packets from stations much further away. This effect has not been

quantified as it pertains to APRS.

• Sources of entropy in the network – Starting with a Poisson stochastic model implies

a strong assumption that every packet starts at a random time independent of every

other packet. Many APRS stations beacon on a fixed interval, such as 600 seconds,

which makes that station’s traffic very self-similar. Digipeaters also strongly break this

assumption by their action of immediately repeating packets after they’re originally

transmitted. These digipeater echos aren’t random at all. Papers have been written

on the misuse of Poisson traffic models with regards to TCP/IP networks [26], and

those arguments often apply equally well to the APRS network.

• The heterogeneous nature of APRS equipment – Any closed-form analysis of APRS

depends on each network node behaving in one of a small set of possible behaviors. The

home-brewed and come-as-you-are nature of APRS makes the cumulative behavior of

the network at large much harder to model. Useful models would need to depend on

careful measurement of the behavior of existing nodes, and likely use Monte Carlo

methods to make meaningful statements about the system at large.

In the end, building a meaningful model for APRS network traffic will likely prove to be

surprisingly challenging. Much of this derives from the unusual amount of latitude given

to APRS implementations by the lack of detailed specifications that causes the aggregate

network to behave so unpredictably. For further work modeling APRS to deliver meaningful

CHAPTER 8. APRS RF CHANNEL CAPACITY 64

results, it’s likely that it will need to begin by making a decision on which existing nodes

in the APRS network are “misbehaving” by some developed metric and exclude them from

any further analysis.

The community has been extremely reluctant to outright classify APRS hardware as mis-

behaving in the past, due to the embedded nature of APRS nodes that usually precludes

any major modifications in behavior of existing nodes. Classifying a node as misbehav-

ing often meant that the operator would need to spend a significant amount of time and

money outright replacing the deficient hardware. As more APRS nodes move to open-source

and/or reprogrammable implementations, it’s conceivable that updates to APRS behavior

as resulting from future research may become merely difficult, instead of utterly impossible.3

3For example, the open source aprx package is one of the most popular pieces of i-gate software on the
network [25], and modern trackers like those from Argent Data often enjoy firmware updates which are
relatively easy to install.

9 Conclusion

This paper has considered several of the different aspects of the APRS network, ranging from

the low-level modem and channel access methods up to how nodes should make beaconing

and routing decisions. During this survey, particular attention has been paid to pointing

out deficiencies in the existing documentation while forming an unusually large collection

of information on the topic of APRS. Some of these deficiencies have been followed by im-

provements and suggestions, while many of the larger shortfalls have been merely identified

for future work. Due to many limited resources, this paper cannot stand as the definitive

reexamination of the topic of APRS, but should be seen as a fastidious call to action to

step back and try to re-examine the APRS network in the modern context.

Some of the major contributions of this paper include:

• Explicitly reclassifying HDLC framing as part of the modem and not the Layer 2

AX.25 stack, particularly with regards to the KISS modem interface protocol.

• Novel documentation of the CCITT CRC checksum as shown in figure 3.5 and Ap-

pendix A.

• Summarizing the AX.25 format as it is used for APRS.

• Explicitly deprecating the original meaning of the first number in the WIDEn-N rout-

ing alias.

• Presenting a comprehensive list of beacon interval algorithms, including a major re-

formatting of the existing SmartBeaconing documentation as presented in figure 7.3.

• Providing guidance on what the default paths should be for various categories of

APRS stations.

65

CHAPTER 9. CONCLUSION 66

• Applying a simple Poisson traffic model to the APRS network as a sanity check that

the range goals of APRS are viable.

While these will likely prove useful to any readers looking to learn about the internal

mechanics of APRS in the interest of building their own nodes for the network, it is the

author’s hope that the lasting value of this paper eventually proves to be its call to action

for others to critically reexamine the APRS ecosystem. APRS has received little of the

analytic mind-share that other large computer networks have received over the past few

decades. As the APRS network has grown, many of the original design decisions made

when it was a very small network have begun to break down as APRS grows into the tens

of thousands of active stations.

A re-enumeration of all the possible avenues for further work derived from this paper would

invariably be incomplete. The interested reader need not look too deeply to find possible

subjects for further research, as evidenced by the author’s painful overuse of phrases like

“beyond the scope of this work.”

While currently used primarily as a vehicle tracking system, the APRS network offers a

tantalizing amount of flexibility to lend itself useful to countless other applications. Should

enough effort be expended to tame the ambiguities left in the specification of APRS, it

would be positioned to be a tremendously useful asset to the amateur radio community.

BIBLIOGRAPHY

[1] N. Abramson, “The Throughput of Packet Broadcasting Channels,” in IEEE Transac-

tions on Communications, Vol. COM-25, no. 1, Jan. 1977, pp. 117-128.

[2] J. Ackermann, “Setting Your TNC’s Audio Drive Level.” http://www.febo.com/

packet/layer-one/transmit.html

[3] V. F. Alisouskas, W. Tomasi, Digital and Data Communications. Englewood Cliffs,

New Jersey: Prentice-Hall, Inc, 1985.

[4] American Telephone and Telegraph Company, Data Sets 202S and 202T Interface

Specification, AT&T Publication 41212, July, 1976.

[5] Argent Data Systems, Tracker3 Family User’s Manual. Santa Maria, California, Re-

vised 1-3-2014. http://www.argentdata.com/support/tracker3_manual.pdf.

[6] W. Beech, et al., AX.25 Link Access Protocol for Amateur Packet Radio Version 2.2.

Tucson, Arizona: Tucson Amateur Packet Radio Corp, 1998. http://www.tapr.

org/pdf/AX25.2.2.pdf

[7] S. Bragg, “SmartBeaconing™,” 4 Aug. 2007. http://www.hamhud.net/hh2/

smartbeacon.html

[8] S. Bragg, “Question on SmartBeacon Algorithm for Thesis.” Private email. 3 May

2014.

[9] R. Bruninga, “Beacon rate feedback.” Online posting. 24 Nov. 2008. APRSsig. http:

//www.tapr.org/pipermail/aprssig/2008-November/027595.html.

67

BIBLIOGRAPHY 68

[10] R. Bruninga, “FIXING Los Angeles APRS.” ca. 2005. http://www.aprs.org/

fixingLA.html

[11] R. Bruninga, “Proportional Pathing and Decayed Beaconing.” 10 Nov. 2008. http:

//www.aprs.org/newN/ProportionalPathing.txt

[12] M. Chepponis, P. Karn, “The KISS TNC: A simple Host-to-TNC communications pro-

tocol,” in ARRL 6th Computer Networking Conference, 1987, pp. 38-43. Translated

to HTML Jan. 1997 by P. Karn, http://ax25.net/kiss.aspx

[13] D. DePriest, “NMEA data.” http://www.gpsinformation.org/dale/nmea.htm#RMC

[14] S. Dimse, “Paths - APRSWiki.” http://info.aprs.net/index.php?title=Paths

[15] J. Dugas, “Here we go again...sigh.” Online posting. 11 Jul. 2014. APRSsig. http:

//www.tapr.org/pipermail/aprssig/2014-July/043517.html.

[16] Error-correcting procedures for DCEs using asynchronous-to-synchronous conversion,

ITU-T standard V.42, 2002.

[17] S. Horzepa, Your Gateway to Packet Radio, Newington, Connecticut: American Radio

Relay League, 1989.

[18] Kantronics, KAM Plus Reference Manual, Lawrence, Kansas: Kantronics, 1994.

[19] Kantronics, “KPC-3+ / KPC-9612+ Service Bulletin” http://www.kantronics.com/

support/kpcbulletin.html

[20] S. Miller, “AX25 Protocol Group.” Online posting. 2 Jun. 2008. APRSsig. http://

www.tapr.org/pipermail/aprssig/2008-June/025220.html.

[21] S. Miller. Personal interview. 25 Mar. 2014.

[22] S. Miller, “1200 Baud Packet Radio Details.” http://n1vg.net/packet/index.php

[23] C. Mills, J. Ewen, “SmartBeaconing,” 5 Jan. 2012. http://info.aprs.net/index.

php?title=SmartBeaconing

[24] R. Patterson. Personal interview. 31 Mar. 2014.

BIBLIOGRAPHY 69

[25] A. Pavlin, “are write-only APRS-IS clients valid?” Online posting. 2 Dec. 2013.

APRSsig. http://www.tapr.org/pipermail/aprssig/2013-December/042604.

html.

[26] V. Paxson, S. Floyd, “Wide-Area Traffic: The Failure of Poisson Modeling,” in IEEE

Transactions on Networking, 3(3), Jun. 1995, pp. 226-244.

[27] L. G. Roberts, Picture Coding Using Pseudo-Random Noise. http://www.packet.cc/

files/pic-code-noise.html

[28] J. Schiefer, D. Deyke, “KISS and SMACK Protocol.” http://www.symek.com/g/

smack.html

[29] B. Simmons, “APRS Unveiled,” in QEX, pp. 19-23, Nov./Dec. 2012.

[30] Telecommunications and information exchange between systems — High-level data link

control (HDLC) procedures, ISO Standard 13239, 2002.

[31] S. Toledo, “A High-Performance Sound-Card AX.25 Modem,” in QEX, pp. 19-25,

Jul./Aug. 2012.

[32] Tucson Amateur Packet Radio Corporation, Terminal Node Controller TNC2 Assembly

Manual. Tucson, Arizona, June 1991.

[33] I. Wade, Ed, Automatic Position Reporting System — APRS Protocol Reference Proto-

col Version 1.0. Approved Version 1.0.1. Tucson, Arizona: Tucson Amateur Packet

Radio Corp, 2000. http://www.aprs.org/doc/APRS101.PDF

A Reference CRC-16-CCITT Implementation

// CRC -16-CCITT Reference Implementation in C

// Kenneth Finnegan , 2014

// This is a skeleton program that takes a static AX.25 frame ,

// calculates the Frame Check Sum , and prints every octet as hex.

#include <stdio.h>

#include <stdint.h>

uint16_t calc_crc(uint8_t frame[], size_t frame_len);

void send_octet(uint8_t byte);

int main(void) {

uint16_t crc;

int i;

// Sample APRS frame payload - FCS = {0x76 , 0x4A}

uint8_t testvector [] =

{ 0x82 , 0xA0 , 0xB4 , 0x60 , 0x60 , 0x60 , 0xE0 , // "APZ___"

0x9C , 0x60 , 0x86 , 0x82 , 0x98 , 0x98 , 0xE3 , // "N0CALL -1"

0x03 , 0xF0 , 0x2C , 0x41}; // Control PID ",A"

size_t testlength = sizeof(testvector);

// Calculate the FCS

crc = calc_crc(testvector , testlength);

70

APPENDIX A. REFERENCE CRC-16-CCITT IMPLEMENTATION 71

// "Transmit" the complete frame

printf ("7E\n");

for (i=0; i<testlength; i++) {

send_octet(testvector[i]);

}

send_octet(crc & 0xFF); // Send FCS bits 8-15

send_octet ((crc >> 8) & 0xFF); // Send FCS bits 0-7

printf ("7E........\n");

return 0;

}

// Calculate the CRC -16- CCITT of a given array of a given length

// NOTE: Operates completely in reverse -bit order

uint16_t calc_crc(uint8_t frame[], size_t frame_len) {

int i, j;

// Preload the CRC register with ones

uint16_t crc = 0xffff;

// Iterate over every octet in the frame

for (i=0; i<frame_len; i++) {

// Iterate over every bit , LSb first

for (j=0; j<8; j++) {

int bit = (frame[i] >> j) & 0x01;

// Divide by a bit -reversed 0x1021

if ((crc & 0x0001) != (bit)) {

crc = (crc >> 1) ^ 0x8408;

} else {

crc = crc >> 1;

}

}

APPENDIX A. REFERENCE CRC-16-CCITT IMPLEMENTATION 72

}

// Take the one ’s compliment of the calculated CRC

crc = crc ^ 0xffff;

return crc;

}

// A dummy modulator that only prints each octet to the screen

// NOTE: The actual modulator should send the argument byte

// least significant bit first , and handle bit -stuffing

// the entire frame

void send_octet(uint8_t byte) {

static int octetsperline = 0;

printf ("%02X ", byte);

if ((++ octetsperline) > 7) {

octetsperline = 0;

printf ("\n");

}

return;

}

// END CRC -16-CCITT Reference Implementation

B SLottime Justification

The SLottime parameter of modems is dependent upon the total time it takes for one

station to begin transmitting and for receiving stations to subsequently identify the channel

as occupied. This sequence can be broken into the following stages:

• Transmitter key-up from standby (RX-TX turnaround time)

• RF propagation from transmitter to receiver (negligible)

• Receiver opening squelch and delivering AFSK signal to modem (While not usually

measured, a representative measurement is the TX-RX turnaround time [24])

• Modem Data Carrier Detect (DCD) of the received signal

Radio Model RX-TX Time TX-RX Time QST Issue

Yaesu FT-2600M 55ms 60ms Dec 1999

Icom IC-910H 32ms 70ms May 2001

Kenwood TM-271A 72ms 88ms Mar 2004

Yaesu FT-7800R 190ms 98ms Apr 2004

Yaesu FT-8800R 120ms 190ms May 2005

Icom ID-800H 55ms 173ms Nov 2005

Kenwood TM-V708A 56ms 86ms Apr 2006

Yaesu FT-1802M 77ms 130ms Jun 2006

Kenwood TM-V71A 75ms 102ms Nov 2007

Icom IC-2820H 43ms 110ms Nov 2007

Kenwood TM-D710A 75ms 106ms Feb 2008

Yaesu FT-1900R 74ms 150ms May 2010

Yaesu FTM-350R 134ms 70ms Jan 2011

Since most Amateur Bell 202 packet activity is done using amateur VHF mobile radios,

a survey was performed of ARRL QST magazine hardware reviews published on VHF-

capable mobile radios since 1999. These reviews included RX-TX and TX-RX turnaround

times which indicate that a significantly longer SLottime is needed than the traditionally

73

APPENDIX B. SLOTTIME JUSTIFICATION 74

suggested 100ms. This is due to none of the evaluated radios being fast enough to key up,

a second radio to open squelch, and then allow any time for modem DCD before the end

of a slot.

The author suggests that a new default of 300ms SLottime be considered. This value allows

many more radios to be able to detect a transmission in progress before the expiration of

the slot time, based on the values collected above.

