Callaway Measurement Device

Final Design Review

Presented By
Cal Poly Measurement Team
Andre Fisher
afishe17@calpoly.edu
Roman Hays
rhays01@calpoly.edu
Grant Gabrielson
gmgabrie@calpoly.edu
Blake Sousa
bmsousa@calpoly.edu

California Polytechnic State University
Mechanical Engineering Department
San Luis Obispo, CA
December 5, 2022

Prepared For Sponsors:
Richard Ward
Matthew Hannen
Callaway Golf Company, Carlsbad, CA
Statement of Disclaimer

Since this project is a result of a class assignment, it has been graded and accepted as fulfillment of the course requirements. Acceptance does not imply technical accuracy or reliability. Any use of information in this report is done at the risk of the user. These risks may include catastrophic failure of the device or infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the project.
Abstract

The purpose of this document is to illustrate the Callaway Measurement Device senior project from start to finish. The challenge given to the team was to update and improve a gauge used by Callaway employees to measure the loft, lie, and face angle of their full spectrum of golf clubs. Once the team understood how the pre-existing gauge operates, the team conducted background research into other technologies that could improve the gauge. The team decided to digitalize the device amongst other tweaks to reduce error. Because the CAD files were not available for the pre-existing device, the team began reverse engineering the device. The team iterated through design choices for each subsystem of the device and decided to alter the clamping and lie system for ease of manufacturability and effectiveness, while mimicking the loft and face angle subsystems. Based on these design choices in early prototyping, the team created a CAD design. Once the CAD was polished and material was selected, the team and sponsors decided to switch to 3D printed parts to save on material and manufacturing costs. This altered the design into more of a concept prototype. During manufacturing, the team iterated through many design tweaks by reprinting 3D parts, altering the code and encoder types of the digital assembly, machining some metal parts, and assembling various components and subsystems. During testing, the team found that as expected, the device did not reach the accuracy goal. However, this is believed to be a result of the flexibility and non-uniformity of the 3D printed parts. Because the resolution and precision of the device surpassed the goals, the team believes that if their device was made from sturdier material such as metal in a future iteration it would improve upon the pre-existing device and surpass the goals given to the team by Callaway Golf.
Contents

Abstract ... ii

PART I: SCOPE OF WORK (SOW) .. 1

Abstract ... 2

1. Introduction ... 3

2. Background .. 4

2.1 Stakeholders and Needs ... 6

2.1.1 The Sponsor .. 6

2.1.2 Manufacturing and Quality .. 7

2.1.3 GEQ .. 7

2.2 Existing Solutions .. 7

2.2.1 “Green Gauge” ... 7

2.2.2 Digital Gauge ... 8

2.2.3 CMM .. 8

2.3 Relevant Technologies ... 9

3. Project Scope .. 11

3.1 Boundary Sketch .. 11

3.2 Stakeholders’ Wants and Needs ... 12

3.3 What Our Design Should Be Able to Do ... 12

3.4 End Goal Deliverables ... 13

4. Objectives .. 14

4.1 Needs and Wants .. 14

4.2 QFD House of Quality ... 14

4.3 Engineering Specifications Table .. 14

5. Project Management ... 17

6. Conclusion .. 18

7. References ... 19

PART II: PRELIMINARY DESIGN REPORT (PDR) .. 21

Abstract .. 22

1. Introduction ... 23

2. Concept Development ... 24

3. Concept Design .. 34

-iii-
4.2.1 Microcontroller .. 62
4.2.2 Digital Interface .. 62
4.2.3 Interface Base... 62
4.2.4 Interface Base Bolts ... 62
4.2.5 Interface Height Tube .. 63
4.2.6 Interface Mount Plate ... 63
4.2.7 Interface Mount Bolts ... 63
4.2.10 Interface Buttons/Manual Controller ... 63
4.2.11 Encoder Connecting Cables .. 63
4.3 Lie Subassembly .. 63
4.3.1 Lie Base Subassembly .. 63
4.3.2 Lie Arm Subassembly .. 64
4.3.3 Ball Screw Subassembly ... 65
4.3.4 Assembly of Lie Subassembly ... 65
4.4 Shaft Clamping Subassembly ... 65
4.4.1 Mounting Subassembly .. 65
4.4.2 Clamp Housing Subassembly ... 66
4.5 Loft and Face Angle Subassembly ... 68
4.5.1 Loft/Face Base .. 68
4.5.2 Loft Angle Measurement Subassembly ... 68
4.5.3 Face Angle Measurement Subassembly ... 69
4.6 Zero Slider Subassembly .. 70
4.6.1 Slide Plate ... 70
4.6.2 Loft Face Zero Plate ... 70
4.6.3 Connecting Bolts ... 70
4.6.4 Assembly of Zero Slider ... 70
4.7 Keel Point Zeroing ... 70
4.7.1 Keel Slider Plate ... 70
4.7.2 Linear Encoder (Tentative) .. 70
4.8 F1 Subassembly ... 70
4.8.1 F1 Slider .. 70
4.8.2 Linear Encoder (Tentative) .. 71
4.9 Laser Subassembly .. 71
 4.9.1 Leveling Laser ... 71
 4.9.2 Sliding Plate .. 71
 4.9.3 Securing Bolts .. 71
5. Design Verification Plan ... 71
6. Conclusion ... 74
PART IV: FINAL DESIGN REVIEW (FDR) ... 75
 Table of Contents ... 75
1. Design Updates ... 78
 1.1 From metal to 3-D Prints ... 78
 1.2 Digital Assembly .. 78
 1.3 Base Assembly .. 78
 1.4 Clamping Assembly .. 78
2. Manufacturing ... 79
 2.1 Changes from Manufacturing Plan ... 79
 2.2 Base Subassembly ... 80
 2.2.1 Base Plate ... 80
 2.2.2 Slider Plate .. 80
 2.2.3 Base Assembly Instructions .. 80
 2.3 Lie Subassembly ... 81
 2.3.1 Lie Base Subassembly ... 81
 2.3.2 Lie Arm Subassembly ... 81
 2.3.3 Ball Screw Part ... 83
 2.3.4 Lie Bolts A .. 84
 2.3.5 Lie Bolts B .. 84
 2.3.6 Lie Bolts C .. 84
 2.3.7 Lie Bolts D .. 84
 2.3.8 Lie Assembly Instructions ... 84
 2.4 Shaft Clamping Subassembly ... 84
 2.4.1 C Clamp Base ... 84
 2.4.2 C Clamp ... 85
 2.4.3 Vertical Slide Base ... 85
2.4.4 Lie to Clamp Adaptors ... 85
2.4.5 ½ Aluminum Rod .. 85
2.4.6 Connecting Bolts M6 x 1.00 x 10mm 85
2.4.7 ½" Double Sided Bolt ... 85
2.4.8 Two Arm Knob ¾"-20x1/2" Long ... 85
2.4.9 Shaft Clamping Assembly Instructions 85
2.5 Zero Slider Subassembly .. 86
2.5.1 Slide Plate ... 86
2.6 Loft and Face Angle Subassembly .. 86
2.6.1 Loft/Face Slider ... 86
2.6.2 Vertical Adjustment Base ... 86
2.6.3 Slide Shafts .. 86
2.6.4 Slide Shaft to Slider Plate Bolts .. 86
2.6.5 Slide Shaft to Height Cap Bolts ... 86
2.6.6 Height Cap ... 86
2.6.7 Height Knob .. 86
2.6.8 Flat Iron Contact .. 86
2.6.9 Wood Contact Piece .. 86
2.6.10 Driver Contact Piece .. 86
2.6.11 Loft Encoder Shaft ... 86
2.6.12 Loft Arm to Cylinder Bolts .. 86
2.6.13 Snap Rings for Loft and Face .. 86
2.6.14 Washers for Loft and Face .. 87
2.6.15 Face Angle Arm ... 87
2.6.16 Face Encoder Shaft .. 87
2.6.17 Loft and Face Angle Assembly Instructions 87
2.7 Digital Subassembly ... 87
2.7.1 Encoders ... 88
2.7.2 Display Screen .. 88
2.7.3 Raspberry Pi 4 .. 88
2.7.4 Female-to-Female Wiring connections 88
2.7.5 Digital Subassembly Instructions ... 88
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix F: Design Hazard Checklist</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>Appendix G: Experimental Results and Details</td>
<td></td>
<td>115</td>
</tr>
<tr>
<td>Appendix H: Functional Decomposition</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>CDR Appendices</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>Appendix A: Drawing and Specification Package</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>Appendix B: Project Budget</td>
<td></td>
<td>177</td>
</tr>
<tr>
<td>Appendix C: Structural Prototypes</td>
<td></td>
<td>179</td>
</tr>
<tr>
<td>Appendix D: Failure Modes and Analysis</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>Appendix E: Design Hazards Checklist</td>
<td></td>
<td>181</td>
</tr>
<tr>
<td>Appendix F: Design Verification Plan</td>
<td></td>
<td>183</td>
</tr>
<tr>
<td>Appendix G: Gantt Chart</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>Appendix H: Wiring Diagrams</td>
<td></td>
<td>188</td>
</tr>
<tr>
<td>FDR APPENDICIES</td>
<td></td>
<td>190</td>
</tr>
<tr>
<td>Appendix A: Commented Code</td>
<td></td>
<td>191</td>
</tr>
<tr>
<td>Appendix B: Final Wiring Diagram</td>
<td></td>
<td>194</td>
</tr>
<tr>
<td>Appendix C: Final Project Budget</td>
<td></td>
<td>195</td>
</tr>
<tr>
<td>Appendix D: User Manual</td>
<td></td>
<td>196</td>
</tr>
<tr>
<td>Appendix E: DVP&R</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Appendix F: Test Procedures</td>
<td></td>
<td>202</td>
</tr>
<tr>
<td>Appendix G: Drawing Package</td>
<td></td>
<td>212</td>
</tr>
</tbody>
</table>
PART I: SCOPE OF WORK (SOW)
Abstract

This Scope of Work document will cover the senior design project of four mechanical engineering students currently attending California Polytechnic State University, San Luis Obispo. The main goal of this report is to give the reader a solid understanding of the project by describing the problem we are facing and the plan to execute it. The Background section shows what we have learned through design research on the topic up to this point and some similar existing products. The Project Scope section covers the deliverables requested by our sponsor and what we plan to achieve by the end of the project. The Objectives section defines the goals and constraints for our design specifications. The Project Management section will show an overview of our current plan to take on this project through description of our milestones and the corresponding completion dates.
1. Introduction

When golf clubs are manufactured it is important that multiple dimensions and attributes of the head component are measured and meet the necessary tolerance. These attributes include the loft, lie, face angle, keel point, bounce angle, F1, and hosel length. One method of measurement uses a Coordinate Measuring Machine “CMM” which is a very high-tech and expensive device. While these machines are extremely accurate, they are slow to operate. Another device is called the “Green Gauge” which is a term used by Callaway for their most common gauge. The “Green Gauge” is a cheaper and quicker method; however, it lacks accuracy and consistency. The goal is to design a device that is inexpensive and fast like the “Green Gauge” but improves the accuracy and consistency of measurement across different operators.

This project will be taken on by Blake Sousa, Grant Gabrielson, Roman Hays, and Andre Fisher. We are all fourth-year mechanical engineers attending California Polytechnic University, San Luis Obispo. This document will outline our three-quarter plan to finish this project and deliver a complete product to our sponsor contacts Richard Ward and Matthew Hannen at Callaway Golf.
2. Background

The measurements our team will be focusing on are defined below:
loft, lie, face angle, and F1.

1. Loft Angle

Figure 1: Visual depiction of the loft angle measurement (5).

The loft angle of the golf club is the angle of the clubface as positioned to the shaft which is relative to the vertical plane of the club rather than the ground.

2. Lie angle

Figure 2: Visual depiction of the lie angle measurement (Kelley).

The lie angle of the golf club is defined by the angle created between the center of the shaft and the ground when the clubhead is resting flush against the ground.
3. Face angle

![Club Face Angle at Impact](image)

Figure 3: Visual depiction of the face angle measurement (4).

The face angle is the direction that the club face is pointed, which can typically be referred to as an open or closed club face.

4. F1 measurement

![F1 Measurement](image)

Figure 3: Visual depiction of the F1 measurement.

The F1 measurement takes place when the lie angle is set to 60 degrees and measures the length from the tip of the hosel to the first point of contact between the clubhead and the set, 60 degree plane.

Before beginning the ideation process, we conducted comprehensive background research to fully understand the possibilities for our design. We primarily focused on learning about existing solutions, the technologies that drive them, the users that will be impacted by our design, and any relevant technology that can be applied to our new solution. We have decided to split our background research into the following categories:

- Stakeholders and Needs
- Existing Solutions
- Technical Challenges

This research has been conducted through numerous methods, which will be discussed in each section.
2.1 Stakeholders and Needs
The primary stakeholders for this design include those who will directly interact with the product and those who are directly impacted by the project’s outcome. We have categorized the stakeholders into the following three groups:

1. The sponsor
2. Manufacturing and Quality
3. GEQ (Engineering Department)

2.1.1 The Sponsor
The sponsor represents our direct contacts in the company along with any management who are directly impacted by the success of our device. The primary interaction between our device and their needs is that if our device is successful, it will save Callaway money directly and indirectly. We will save them money directly by making the gauge cheaper than their existing products. We will save them money indirectly by increasing the efficiency of the total manufacturing process which will increase the output of their products.

We conducted our sponsor research through a direct meeting with Ricky Ward, who provided us with a device to reference for our design process along with the following information:

1. We need to improve measurement time and resolution
2. The created device should be cheaper than the reference device
3. Loft, lie, face angle and F1 length are the most crucial measurements for this device
4. Transportability is not a major concern
5. It is crucial that there is no risk of damage to the products being tested
6. The device can be manufactured either in house or through outside sources but preferably manufactured in house
7. Reliability and repeatability are a primary concern

This information has been categorized into wants and needs, which are presented in the following table:

<table>
<thead>
<tr>
<th>Wants</th>
<th>Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportability</td>
<td>Improved resolution</td>
</tr>
<tr>
<td>Fully manufacturable in house</td>
<td>Improved measurement consistency</td>
</tr>
<tr>
<td>Improved measurement time</td>
<td>Cheaper than the reference device</td>
</tr>
<tr>
<td>Measurement of other design</td>
<td>Measurement of loft, lie, F1 length, and face angle</td>
</tr>
<tr>
<td>parameters</td>
<td>Will cause no damage to products</td>
</tr>
</tbody>
</table>

For more information regarding the specifications that were provided by the sponsor, please refer to the project scope section of this document (Section 3.2).
1.2 Manufacturing and Quality
Manufacturing represents those who will interact with the device on the most consistent and frequent basis. They are the ones who will test numerous golf clubs daily and will benefit the most from a streamlined measurement device. Those in manufacturing are the stakeholders that can provide us with the most information as to design specifics that will assist us going forward in ideation, so their feedback is crucial.

We are conducting our manufacturing research through a survey that we sent to be spread among the members of the company. We have yet to integrate the results and will update this document accordingly when sufficient answers have been received. This survey asks a series of questions that inquire of users’ experience with the device, including asking about the average measurement time per club and the users’ personal grievances with said device.

2.1.3 GEQ
This represents Callaway's engineering department, which will play a vital role in the development of our product. The device will help with ensuring that a club head meets the needed specs after being designed and developed by the engineering team. Without the device their best option would be to use a CMM machine which will be explained later to obtain good and accurate results on the club head design.

2.2 Existing Solutions
The existing solutions that we are the most concerned about have already been presented to us by our sponsor. The three existing solutions we are focusing on are as follows:

A. “Green Gauge” [24]
B. Digital Gauge [25]
C. CMM [27]

2.2.1 “Green Gauge”
The “Green Gauge”, seen in Figure 1, is the most basic solution for our problem and is currently in use by Callaway; it is the baseline from which we are trying to improve. The resolution is not ideal, with a typical tolerance of approximately 0.8 degrees for each angle measurement. The measurements can also be inconsistent due to a high potential for user error due to the inherently tick-based mechanical readings and high variability in setup between different users. This gauge, however, is cheap and easy to manufacture which makes it easy to use on a large scale. Because it is so easily manufactured and is an industry standard, it is produced by a large range of manufacturers and is not considered a single design rather a baseline that individual manufacturers improve upon.
2.2.2 Digital Gauge
The digital gauge, seen in Figure 2, is like the design of the “Green Gauge” on a mechanical level. This device is sold by a company called Golf Mechanix [25]. The major differences in the digital gauge are that it has a higher precision, an easily read digital interface, and is far more expensive than the green gauge. This gauge can measure with a resolution of 0.1 degrees but costs $2600 dollars. This gauge’s greatest shortcoming is that its high price does not justify the small improvement in precision over the “Green Gauge”. If we wanted to make something like this gauge, we would need to find a way to make it far cheaper and speed up the measurement process.

2.2.3 CMM
The CMM, seen in Figure 3, is more than adequate for measurement tolerance purposes. The photographed device was found in a Cal Poly classroom, but the CMM that we conducted research on is manufactured by a company called Mitutoyo [27]. It uses probing technology to measure the geometries of a club head to a high resolution. The drawback is that it is an expensive machine and takes a long time for each measurement. We are unlikely to adopt any of the design principles from this existing solution.
2.3 Relevant Technologies
The final portion of our research was based upon investigation into technology that can be used for our solution. The first technology we researched was the potential use of a microcontroller to digitize measurements. This can be accomplished by attaching an encoder to each rotating axis that will take measurements for angular rotations and translate them to a user interface [7]. While this will require a very intensive calibration process, we believe that this may be able to obtain an excellent resolution for our device.

Another technological sector we investigated was light-based measurement. Certain articles we investigated covered the implications of using light and sensors to create a fully accurate 3-D rendering of the desired subject. This is overkill however, so it is not a strong consideration currently.

We have conducted research on ten relevant patents and have summarized the primary takeaways below in Table 1. To view the full list of patents, see Attachment A.
Table 1: Significant Patents Researched.

<table>
<thead>
<tr>
<th>Patent Name</th>
<th>Patent Number</th>
<th>Main Takeaway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loft and Lie Gauge for Golf Clubs [11]</td>
<td>US6430829B1</td>
<td>The use of a hollow cylindrical unit to hold the shaft in place axially can be useful, albeit difficult to implement for fast measurement.</td>
</tr>
<tr>
<td>Loft Lie Tester for Golf Clubs [13]</td>
<td>US4858332A</td>
<td>This design uses an interesting mechanism that latches the club at multiple different points, which may be highly beneficial for increased security and consistency when taking measurements.</td>
</tr>
<tr>
<td>Golf Club Measuring Device [19]</td>
<td>US4875293A</td>
<td>This measuring apparatus keeps the club head entirely still during measurement, which is a strategy that may be effective with the proper execution.</td>
</tr>
<tr>
<td>Golf Club Fixture [20]</td>
<td>US4094072A</td>
<td>The clamping mechanism at the bottom of this apparatus is a potential solution that we can use to stabilize the club.</td>
</tr>
</tbody>
</table>

Our research is far from concluded at this point. We want to gain more insight from stakeholders and want to look further into potential light-based measurement devices. Additionally, we want to make sure that we can execute these ideas. Therefore, it is necessary to have a thorough understanding of the relevant technology rather than the more rudimentary knowledge base we currently have.
3. Project Scope

3.1 Boundary Sketch
In Figure 4, we represent the scope of our design by drawing a rudimentary sketch of a hypothetical measurement device. This sketch indicates what lies in the focus of our design, and what does not.

Figure 4: Boundary sketch of an example measurement device we will be designing, excluding the actual golf club as we will not be responsible for designing the clubs being measured by our device.
3.2 Stakeholders’ Wants and Needs
Product analysts at Callaway need a way to reduce the tolerances in measuring the loft, lie, and face angle of all their golf clubs. They need the time to take these measurements for each club to stay under the current time of their “Green Gauge”. They need the device to be manufactured at a cost of less than $2500 per device. Each measurement must be repeatable.

3.3 What Our Design Should Be Able to Do
Our device should reduce total error of measurements to a maximum of +/-0.5 degrees from their current green gauge error of +/-0.8 degrees for measurements of loft, lie, and face angle. At the very least, our device should measure loft, lie, and face angle, but is not limited to these and can also include bounce and keel point measurements.

The time it takes to set up the device for each golf club should take less than one minute. The time to complete all the measurements for each club should take less than two minutes.

The device should be made of durable materials to last for up to 10,000 measurements. It should be designed in a way so that it does not damage the clubs when taking measurements.

The device should be intuitive to operate to reduce user error, requiring little to no training.

The following functional decomposition helps to visualize the basic functions that this design needs to serve. The main functions that we included include taking each individual measurement and making sure the measurements are as accurate and consistent as possible. These are what we consider the most essential considerations for this design.

![Functional decomposition](image)

Figure 5: Functional decomposition that breaks down the most basic functionalities of the design.
3.4 End Goal Deliverables

At the end of the project, we plan to have a working prototype of our measurement device. In addition, we will have test data that shows the average precision for each measurement and the average total time to both set up the device for any given club and to take all the measurements for the corresponding club. We will give our sponsor this prototype and test data, as well as all computer-aided design (CAD), files necessary to manufacture our final product.
4. Objectives

4.1 Needs and Wants
The quality analysis team at Callaway Golf need a way to consistently and with user friendly ease measure loft, lie, and face angle of the full spectrum of their golf clubs while reducing time and measurement uncertainty with a reproducible device, improving on their current “Green Gauge”.

4.2 QFD House of Quality
In creating our Quality Function Deployment “QFD”, seen in Attachment B, we began by identifying the “Who”, “What”, and “Now”. We defined our stakeholders as our sponsor, R&D, and Quality Assurance Department (Manufacturing). Our sponsor needs certain benchmarks met for our product, like those of Quality Assurance analysists at Callaway, and R&D using the device for other reasons. We decided that the “wants” and “needs” of our stakeholders include maintaining low cost, maximizing resolution, limiting size, manufacturability, ease of operation, speed of measurement, weight, durability, transportability, assembly, and repeatability of measurements. We then rated how important each want/need is to each stakeholder on a ten-point scale. We looked at three existing products we are familiar with and rated them on a scale from one to five for each want/need.

Next, we defined the “How”. To do this, we listed potential specifications as tests. We compared the “How” to the “What” by introducing a symbol representing a strong, moderate, or weak correlation.

We benchmarked to see how each current product meets the “What”, rating each want/need on a five-point scale.

Then, we further defined our specifications, as “How Much”. We chose numerical target values for each specification by comparing our benchmarking results from the existing products as well as the relative weight of each specification.

After this, we chose a direction of improvement for each specification indicating which direction would yield a better product.

Finally, in the pyramid or roof, we compared how each specification is related to one another with a correlation symbol based on the direction of improvement.

This process allowed us to determine the target value for each specification, see how well current products meet each target value, and the relative importance of each target.

4.3 Engineering Specifications Table
As can be seen in Table 2, we indicated the target, tolerance, risk, and compliance of each specification we will be evaluating as we design our measurement device.
Table 2: Measurement device specifications table

<table>
<thead>
<tr>
<th>Specification</th>
<th>Target</th>
<th>Tolerance</th>
<th>Risk *</th>
<th>Compliance **</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Time to measure a club</td>
<td>< 2 minutes</td>
<td>+ 8 minutes</td>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>2 Amount of measurement types</td>
<td>3 minimum</td>
<td>+ 3</td>
<td>L</td>
<td>I</td>
</tr>
<tr>
<td>3 Is it intuitive?</td>
<td>zero training required</td>
<td>10 minute demonstration</td>
<td>H</td>
<td>T,A</td>
</tr>
<tr>
<td>4 Set up time</td>
<td>< 1 minute</td>
<td>+3 minutes</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>5 Amount of components</td>
<td>one component</td>
<td>+2 components</td>
<td>L</td>
<td>A,I</td>
</tr>
<tr>
<td>6 Battery/Plug Required?</td>
<td>not required</td>
<td>1 battery/plug</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>7 Angle tolerance of measurement</td>
<td>+/-0.1 degrees</td>
<td>up to +/-0.5 degrees</td>
<td>H</td>
<td>T,A,I</td>
</tr>
<tr>
<td>8 Total Cost</td>
<td><$2600</td>
<td>0$ < cost<$2600</td>
<td>M</td>
<td>A</td>
</tr>
<tr>
<td>9 Damage caused to club</td>
<td>zero</td>
<td>none</td>
<td>M</td>
<td>A,I</td>
</tr>
<tr>
<td>10 Lifetime</td>
<td>10,000 measurements</td>
<td>- 5,000 measurements</td>
<td>M</td>
<td>A</td>
</tr>
</tbody>
</table>

* Risk of meeting specification: (H) High, (M) Medium, (L) Low

** Compliance Methods: (A) Analysis, (I) Inspection, (S) Similar to Existing, (T) Test

1. The time to take all measurements for one club is deemed high risk because this is one of the main design focuses given by our sponsor and will be measured through testing of our final project.

2. The minimum number of measurements taken by the device is three, including loft, lie and face angle. Keel point, bounce angle, and hosel length may also be included but are not required. This is deemed low risk because we are not required to include additional measurements.

3. The device must be easy to use. One of the main issues with the existing “Green Gauge” is user error, so we deemed this high risk and will be reviewed through testing and analysis.

4. The time to calibrate the device for different clubs is deemed medium risk because it contributes to the total time but is not as consuming as taking actual measurement. This will be reviewed through testing.
5. Ideally, the device would consist of a single interconnected mechanical system. This would contribute to ease of use. However, separate devices such as protractors may be included with a maximum of 3 different components to measure loft, lie, and face angle so is deemed low risk.

6. If the device can be created to be purely mechanical it would be beneficial because it would not require a power source. However, if it is more user friendly and assists with increasing precision to have digital measurements, this may be a necessary trade-off, so is deemed low risk.

7. The tolerance of each angle measurement should be at largest, +/-0.5 degrees, with a goal of +/-0.1 degrees. This is deemed high risk as it is the pinnacle of our design goals given by our sponsor. We will demonstrate our device’s precision with analysis, testing, and inspection.

8. The total cost to manufacture the device should be under $2600, but we will aim to keep costs as low as possible while meeting the other parameters. This is considered low risk because keeping the device under $2600 should not be very difficult if we are using a mostly mechanical system.

9. The device must cause zero damage to the clubs being measured. This is deemed medium risk because it should not be very hard to execute, however it is very important.

10. The device should last between 5,000 to 10,000 measurements. It is deemed medium risk because it is important that the device is long-lasting and durable but should not be too difficult if we utilize strong materials that resist corrosion.
5. Project Management

Our plan for this project consists of various parts that will come together and build off each other to complete our project. Getting to know our team was the first step in our process; this assists in making everything more efficient and enjoyable. Next, conducting research and background research to get a better idea of the project helped to create our problem statement as well as this scope of work which will be presented to our sponsor for review. Once approved, our group will move into the ideation portion, using techniques such as brainstorming and models to produce a concept. To help with this we will visit the Callaway Headquarters in Carlsbad, CA on February 22, 2022. This concept will be refined and analyzed using CAD and handmade models. From here we will develop a concept prototype for our preliminary design review (PDR) presentation which will be our next major milestone. From here we will move to our next milestones, sequentially including the Interim Design Review, the Critical Design Review, building, testing, signoffs, and finally the EXPO and Final Design Review.

The scope of this project includes no small number of significant challenges. The main challenge we face is finding a method to make the measurement process more consistent without increasing the time for each measurement or the cost of the device itself. Another issue that we face is finding cheap but reliable electronic components if we choose to implement a digital solution. Finally, we are located at a significant distance from our sponsor’s office so any face-to-face meeting will require a significant amount of time and money.

Table 3 outlines deadlines for the main milestones of our project. For a more detailed outline of milestone due dates and time periods, see Appendix C: Gantt Chart.

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Description</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of Work</td>
<td>Outline of the Project</td>
<td>2/2/22</td>
</tr>
<tr>
<td>Preliminary Design Review (PDR)</td>
<td>Review of our initial design solutions for problem</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Critical design review (CDR)</td>
<td>Document of complete idea and process</td>
<td>5/3/22</td>
</tr>
<tr>
<td>EXPO</td>
<td>Show off the final prototype</td>
<td>11/18/22</td>
</tr>
<tr>
<td>Final Design Review (FDR)</td>
<td>Final Design Report, Senior Project showcase with final prototype</td>
<td>12/2/22</td>
</tr>
</tbody>
</table>
6. Conclusion

The goal of our senior design project is to create a measurement device for Callaway that improves upon the current “Green Gauge” Callaway uses to test the tolerances of their newly manufactured clubs. This Scope of Work outlines what our team has already conducted in the design process as well as what we plan to do. We identified who the stakeholders are and what is most important to them. We conducted background research on existing products, where they meet our design criteria, and where they are lacking. We investigated relevant technologies that we may want to implement into our design. We dove into the scope of our project by creating a boundary sketch and defining the basic goals of our design. We analyzed the objectives on a more detailed scale by creating a QFD (see Appendix B) which led to detailed specification goals and the corresponding tolerances. These specifications and tolerances were organized into a table (see Table 2) where we analyzed the difficulty and importance of executing each specification goal and how they will be reviewed on our prototype. Finally, we outlined the major milestone deadlines we plan to reach which can be seen in Table 3 and Appendix C.

Once our sponsor gives us feedback and approval on this Scope of Work, we will be conducting our preliminary design phase. The PDR will be completed and ready for review by our sponsor on March 1, 2022.
7. References

PART II: PRELIMINARY DESIGN REPORT (PDR)
Abstract

This Preliminary Design Review outlines the design selection process for the Callaway Golf measuring device that was executed by four mechanical engineering students attending California Polytechnic State University, San Luis Obispo. The main goal of this report is to give the reader an understanding of the ideation process as well as an understanding of why the final design was chosen. The Concept development section dives into the ideation process to compare different design ideas to come up with what will complete the job the best. The Concept Design section will explain why the concept design was chosen as well as provide a computer-aided design “CAD” model and a picture of a concept prototype. The concept justification portion will go into detail through hand calculations and engineering judgement on why the concept design is believed to be the best idea that was thought of. Lastly, the Project Management section will show an overview of the plan to take on the rest of this project through a description of milestones and the corresponding completion date.
1. Introduction

When golf clubs are manufactured it is important that multiple dimensions and attributes of the head component are measured and meet the necessary tolerance. These attributes include the loft, lie, face angle, keel point, and F1 length. One method of measurement uses a Coordinate Measuring Machine “CMM” which is a very high-tech and expensive device. While these machines are extremely accurate, they are slow to operate. Another device is called the “Green Gauge” which is a term used by Callaway for their most common gauge. The “Green Gauge” is a cheaper and quicker method to measure loft, lie, and face angle; however, it lacks accuracy and consistency.

The goal is to design a device that is inexpensive and fast like the “Green Gauge” but improves the accuracy and consistency of measurement across different operators, while also incorporating the measurement of the F1 length to save time in the overall process. Since the Scope of Work, the main change to this project is incorporating a way to set the datum in a more reliable and consistent fashion as well as measure the F1 length of the club head. The additional requirements to the Scope of Work led to extra ideation and adjustments to the final concept. Currently, the Datum on the “Green Gauge” can be inconsistent and prone to user error because the club head is not locked in place during measurements. Also, the F1 length is currently measured on a separate device which leads to an overall longer measurement time. Adding another measurement requirement, F1 length, to the device does not change the boundary diagram because the F1 measurement will be attached to the portion of the device locking the mandrel or shaft to the device.

Since the Scope of Work, the functional diagram, found in Appendix H, has been updated to include measuring the F1 length and changes to the subfunctions, making them more specific. On the other hand, the house of quality and engineering specification table did not undergo changes since the completion of the Scope of Work.

This project will be taken on by Blake Sousa, Grant Gabrielson, Roman Hays, and Andre Fisher. They are all fourth-year mechanical engineers attending California Polytechnic University, San Luis Obispo. This document will outline their design selection process.
2. Concept Development

To develop a more efficient and precise measurement process of golf clubs, the overall measurement was outlined under five main functions:

- Setting a consistent and reliable datum.
- Measuring the face angle.
- Measuring the loft angle.
- Measuring the lie angle.
- Measuring the F1 length.

Setting a consistent and reliable datum is the most important step in a measurement process. Measuring with an inconsistent datum increases the tolerance of every measurement. In effect, the measurements are less consistent and precise than desired. Setting a datum of measurement for a golf club requires orienting the club consistently and using a reference measurement before taking additional measurements.

Setting the datum for a golf club is dependent on the keel point. The keel point is where the club face makes its first point of contact with ground as can be seen in Figure 1. The keel point for each specific club can be obtained from the manufacturer’s specifications sheet. To obtain accurate measurements, the club head must be rotated so that its first point of contact with ground is at the manufacturer’s keel point distance from the centerline of the gage (see Figures 2 and 3). By setting a consistent datum about the keel point, all other measurements can be properly obtained.

![Figure 1: Keel Point of a Golf Club](image)
The face angle, seen in Figure 4, is the direction that the club face is pointed, which can typically be referred to as an open or closed club face. The face angle is measured using the club’s design lie measurement. The design lie measurement is the angle the club is designed to have that was made by the team designing the club.

![Club Face Angle at Impact](image)

Figure 4: Visual Depiction of the Face Angle Measurement [1].
The loft angle of the golf club, seen in Figure 5, is the angle of the clubface as positioned to the shaft which is relative to the vertical plane of the club rather than the ground. The loft angle is measured using the club’s design lie measurement.

![Figure 5: Visual Depiction of the Loft Angle Measurement](image)

The lie angle of the golf club, seen in Figure 6, is defined by the angle created between the center of the shaft and the ground when the clubhead is resting flush against the ground.

![Figure 6: Visual Depiction of the Lie Angle Measurement](image)

The F1 measurement, seen in Figure 4, may be measured by Callaway Golf standards or by United States Golf Association “USGA” standards. The USGA measurement takes place when the lie angle is set to 60 degrees and measures the length from the tip of the hosel to the first point of contact between the clubhead and the set, 60-degree plane. The Callaway Golf standard measures the F1 measurement after the lie measurement is made. Using the lie measurement as its reference measurement, the F1 length is defined along a plane parallel to the shaft, measuring from the tip of the hosel to the base plate.
Before concept ideation, ideation was performed per function, based on criteria addressing the sponsor’s wants and needs. The criteria are stated in the list below:

1. Low cost
2. Resolution
3. Size
4. Manufacturability
5. Ease of use
6. Measurement speed
7. Weight
8. Durability
9. Transportability
10. Assembly
11. Consistency

Throughout the function ideation process, the first focus was to increase the resolution, therefore increasing the precision, of each measurement. One of the largest flaws in the current device, the “Green Gauge,” is the increase in tolerance due to human error. To minimize the effects of human error, different methods of digital measurements were brainstormed to replace the current, mechanical measurements. Digital measurements use higher precision technology and a user interface is more intuitive than mechanical interfaces. As a result, digital measurements increase the measurement’s precision while minimizing human error.

Throughout the brainstorming process, different ideas were proposed. For example, LiDAR, laser measurements, photo measurements, and encoders. Based on the technology currently available to the public, encoders were decided to be the best method of measurement because they are capable of outputting high precision and are relatively inexpensive when compared to high precision lasers and LiDAR options.
Furthermore, ideation was completed per function, resulting in five different sketches per function along with an analysis of each idea’s effectiveness in accomplishing the criteria stated above. The ideation process per function is summarized in Pugh Matrices, which can be found in Appendix C. Please visit Appendix C to see the proposed solutions to accomplish each function along with their analysis of accomplishing the previously stated criteria.

Figure 8 shows an ideation model that allows us to be successful in the function of maintaining our datum with different measurements. The track system modeled taught us that we can allow the clubhead to be secured without having to be moved for different measurements.

![Track System](image)

Figure 8: Track System that slides to contact the secured club face.

In the ideation model shown in Figure 9, we explored using one component to measure both loft and face angle. After creating this model, we realized this may not be feasible because the claw would have to be different sizes for varying club heads, such as irons and driver. Irons are much smaller so a smaller claw would be required.
For the function of measuring the lie angle, we created an ideation model, found in Figure 10, that allows the shaft to rotate when measuring the lie angle at the clamping mechanism where it is secured.

The ideation models were compared for each function in Pugh Matrices, which can be found in Appendix C. In each Pugh Matrix for the corresponding function, each model was compared by how they performed in the desired subfunction, such as cost and resolution. Whichever model for each function performed the best overall for all the subfunctions was brought to the next phase.

After creating the Pugh Matrices, a Morphological Matrix, found in Appendix D, was created to summarize each possible solution of the functions in one figure. Using the Morphological Matrix, five concept models were created combining the most effective solutions of each function. The
five concept models are found in figures five, six, seven, eight, and nine. An analysis of how each concept design coincides with the criteria may be found in the Decision Matrix in Appendix E.

As seen in Figure 11, this design is purely mechanical. A tightening, metal clamp is used to fix the club shaft to the mechanism. The clamp lies on a flat plane that can be adjusted angularly using a worm-gear and is measured using a protractor. The loft and face angle of the clubhead is measured using one rotating component with two points of contact that contacts the clubhead at point, adjusting the other point until it meets the opposite side of the clubhead. The function of this measurement technology is like that of the micrometer. The F1 length is measured using a drop-down ruler that contacts the bottom of the hosel and the base plate, measured at the design lie angle. The benefit to this design is the simplicity of having fewer components as there is only one component to measure both the face and loft angle; the drawback is that the points of contact for these two measurements must be adjusted for different club types. Additionally, there are pre-existing attachments for loft that could not be implemented with this system.

Figure 11: Concept Design 1.

Figure 12 also shows a purely mechanical device. The club head attaches to a mandril, and elastic straps are used to secure the shaft to the rotating datum that is used for the lie measurement. A worm gear is used to adjust the datum and a mechanical protractor is used to measure the loft. The face angle is measured with a turn dial on an apparatus that can interface with the club. This will ensure a high resolution with a low potential for wear-and-tear. The F1 length is measured using a drop-down ruler that contacts the hosel, providing the measurement from the hosel to the flat plate. The drawback to this design is having to convert a distance reading to an angle measurement, which increases complexity. Also, the elastic straps may wear out over time, having to be replaced, and the loft angle does not have interchangeable parts for all types of clubs.
The design in Figure 13 implements laser technology with mechanical components. The club head attaches to a mandril that is clamped to the measurement datum. A LiDAR is used to measure the plane of the club face to generate a profile that can evaluate the loft and lie with a single measurement. The F1 length is measured using a drop-down ruler that contacts the hosel, providing the measurement from the hosel to the flat plate. This design has quite a bit of potential, however further research into LiDAR indicates that it would be expensive to implement and could require quite a bit of complexity in generating measurements from the outputted plane.

Figure 13: Concept Design 3.
The design in Figure 14 shows a design that implements a laser centering component as well as more datum securing mechanisms. The club head attaches to a mandril which then is clamped to a worm gear measuring the lie angle. The lie angle is set and changed by adjusting the worm gear with the output connected to an encoder. A mold of the club sets the face angle to its "zero" orientation. A cross laser is used to center the head on the flat plate. Securing the head in its "zero" orientation, the head is locked in place using set screws and three points of contact. Face and loft angles are measured using similar devices to the “Green Gauge” connected to encoders. The F1 length is measured using a drop-down ruler that contacts the hosel, providing the measurement from the hosel to the flat plate. This design has many components that are advantageous such as the laser-setting datum, a locking mechanism adding more security throughout the measurement process, and simplicity by implementing pre-existing components.

![Figure 14: Concept Design 4.](image)

Figure 15 depicts a universal measuring mechanism for loft. A mandril is placed inside a club head which is then clamped to a measuring datum. A worm gear will be used to adjust the lie angle which can make for easy adjustability and a high resolution if done correctly. The loft will be measured using two points of contact which can be implemented for all the clubs. This eliminates the need to switch to a different method for drivers. Face angle will be measured using a set point on the clubhead, and then a micrometer will read how far off the other point is. This method creates a measurement for the face angle. The F1 length is measured using a drop-down ruler that contacts the hosel, providing the measurement from the hosel to the flat plate. This design does not allow for the use of pre-existing components.
Design 4 ranked the highest in the Decision Matrix, found in Appendix E. This design uses encoders and microcontrollers to output high tolerance measurements to an easily understand interface, decreasing human error, therefore decreasing the tolerance of the measurements. Design 4 must be plugged in to the wall or connected to batteries. The main factors helping this design rank the highest is the method of setting the datum. By using a mold of the clubhead’s face and a cross laser, the clubhead will be centered precisely and set in its “zeroed” position with ease. Once set to its “zero” position, the head will be locked into place using three points of contact via set screws. This minimizes the possibility of altering the club’s position during the measurement processes. Additionally, the face and loft angles will be measured using fixtures like those used currently with the addition of encoders to minimize the tolerance of the measurement while increasing the intuitiveness of the measurement device. The implementation of encoders will fulfill two important stakeholder needs: mitigation of human error and minimization of tolerance. Human error will be reduced because the digital display is easier to read from when compared to a mechanical device. Encoders will help to lower the measurement tolerance because the encoders are capable of a very high resolution, as discussed in section 4.1.1. This is the best design possible when taking budget and knowledge into account. The design will be modified as necessary during the prototyping and testing stages.
3. Concept Design

The selected design will be the most efficient and consistent in taking all the measurements necessary. Starting with the lie angle, a threaded bolt on a plate will be utilized. Using a threaded handle, the plate will be pushed up and down, adjusting the lie angle. For a visual aid of this system, refer to the compass in Appendix A that served as the inspiration for this component. This should allow for a tight tolerance of measurement as a protractor will be attached to the end of the plate to read measurements manually as well as a microcontroller and encoder to take the measurement electronically.

One of the most key features of the design is setting the datum of the club. To do this the club will be set to the design lie for the club and then approached by a mold on a slider to ensure that the face angle is set well and not at an angle that will mess up the measurement of the club. After this is done a clamping slider is set over the club and then the club is secured with clamping screws at three points to ensure the club face does not pivot during measurements of the club.

The loft and face angle will incorporate microcontrollers and encoders as well. For the loft angle, an arm will extend off a shaft attached to the controller. At the end of the shaft there will be an arm with a female fixture. This fixture allows the attachment of interchangeable, male components that extend to the clubface, measuring the loft angle. Different attachments, already used by Callaway, can be connected to this fixture by means of a set screw. By selecting the correct attachment, the loft angle, measuring device can measure all types of clubs. The different attachments are important because different clubs have different faces, such that one attachment is unable to measure more than one type of club. The loft measurement will be taken only electronically and displayed on a screen which will help with user error and time of measurement.

Additionally, the face angle will be measured in a similar fashion. A two-pronged piece will slide towards the club to contact the club face. As it adjusts so that both prongs are hitting, the end of the device, a straight piece of metal, will pivot about a single point, moving slightly. This movement will be captured by the encoder and microcontroller, outputting the measurement to a digital display. The digital display will decrease measurement time and user error compared to reading a mechanical gauge’s output.

To measure the F1 length, a pointed ruler will be used that drops down parallel to the club’s shaft. The ruler will pivot with the lie angle so the F1 distance can be measured at any angle. This angle may be the design lie angle or the USGA standard angle of 60 degrees. The ruler will have a set screw allowing it to secure at an upwards position or drop down to take a given measurement. There will be a small mechanism that drops with the ruler that can be adjusted to interface with the top of the hosel to get a more accurate measurement on the ruler. An alternative method of measuring the F1 length is to alter the configuration of digital calipers such that the moving component of the caliper will align with the hosel to record the measurement.

The procedure for measuring a golf club will be done in nine steps.

Step 1: Zero the measurement device.
Figure 16: Shown above is how the current device interface is set to 0, a flat plate is pushed against the face and loft measuring devices and then the lie angle is set to 90 degrees. After the zero button is hit on the controller so that all angle measurements will be correct. Our design will be done in a similar fashion to this set-up as it is an efficient way to ensure the controllers read the measurements correctly.

Step 2: Set the lie angle to the design specifications.

Step 3: Attach and clamp the club and shaft to the fixture measuring the lie angle.

Step 4: Align the club head to its zero position.

By sliding the mold towards the club until contact is made. This sets the face angle to its zero position. Use the cross laser to ensure the center of the club is aligned with the center of the plate.

Step 5: Fix the clubhead in place.

Clamp down the clubhead from the back and top of the club by using three set screws. This ensures there is no movement of the clubhead during the measurement process.

Step 6: Measure the face angle.

Slide the loft and face angle apparatus towards the clubhead. Using the two points of contact from the face angle measuring device, the measurement will be output to the digital display.

Step 7: Measure the loft angle.

Using the same apparatus and choosing the proper attachment for the clubhead type being measured, contact the clubhead. The measurement will be output to the digital display.
Step 8: Measure the lie angle.

Align the horizontal cross laser with the horizontal grooves on the club face by adjusting the lie angle. Once aligned, the measurement will be output to the digital display.

Step 9: Measure the F1 length.

Release a ruler off the mounting plate so that it drops down and contacts the base plate. From here a measurement device on the ruler can be adjusted so that it aligns with the top of the hosel and the measurement can be taken manually off the ruler.

The main material used in the design will be stainless steel and possibly aluminum for some of the special parts. This was chosen because it is a strong material and because this device will be used in a shop setting and it needs to be anticorrosive. It will be made of steel plates, bars, and sheets. The main processes to build this product will be milling and plasma cutting. With these two processes all the components should be possible to make plus there is access to both machining methods at Cal Poly and at Callaway. Thus, this method works compared to a different process such as casting. A total of about 40 of these products will be made by Callaway so it makes more sense to go with these machining processes for such a low quantity.

Figures 17, 18, 19, and 20 depict the basic mechanical components of the top design gauge working together in a solid-model prototype that does not yet include the digital readout components, gears, laser-level, and some fasteners.

Figure 17: Top View of Solidworks Prototype Gauge.
Figure 18: Side View of Solidworks Prototype Gauge.

Figure 19: Front View of Solidworks Prototype Gauge.
Figure 20: Isometric View of Concept Prototype.
4. Concept Justification

The following section explains how concept justification was executed for this project and what is needed for further validation during testing and manufacturing. Section 4.1 explains the methods that were already used to justify the model. Section 4.2 discusses some safety concerns that will be addressed in all stages of the process. Finally, Section 4.3 discusses any further problems and concerns that the team anticipates will become relevant going forward.

4.1 Justification Methodology

The design that was created has been verified to be both feasible and effective to the best of the group’s collective engineering knowledge. The design was evaluated using the following methods:

- Preliminary hand calculations
- Experimental trials
- Prototyping/engineering judgment
- Callaway factory visit

4.1.1 Preliminary Hand Calculations

The hand calculations that have been executed for the design justification involve justifying the use of encoders to achieve the resolution that the stakeholders desire. For this design 4000 PPR encoders will be used, meaning that the encoders can take 4000 unique measurements for each full rotation. The angular tolerance is required is +/- 0.1 degrees. In addition, angular measurements will be taken over a maximum of a 90-degree span. Because of this, the following equations were derived to determine the resolution that is possible for these encoders:

\[
\frac{90 \text{ deg}}{360 \text{ deg}} \cdot \frac{1 \text{ rotation}}{1 \text{ rotation}} \cdot \frac{4000 \text{ ticks}}{1 \text{ rotation}} = 1000 \text{ measurements}
\]

\[
\frac{90 \text{ deg}}{1000 \text{ measurements}} = 0.09 \frac{\text{deg}}{\text{measurement}}
\]

This means that the resolution that can be achieved with the desired encoders is 0.09 degrees, with a tolerance of +/- 0.045 degrees. This should be more than acceptable for the scope of this design.

4.1.2 Experimental Trials

Like the hand calculations, the experimental trials have primarily involved the implementation of encoders for the design solution. For these trials a simple microcontroller unit called a Nucleo was used to interface with firmware that was designed to execute the function of angular measurement. This was accomplished using a Python file that converts the tick value that is read from the encoder to an angular measurement value and repeatedly presents it to the user via the simple user interface.
Appendix G displays some sample code from the Python file that will be used to collect data from the encoders and translate them to the digital display. This is executed using object-oriented programming with cooperative multitasking between two tasks: Task User and Task Encoder. Task User is what interacts directly with the digital display, while Task Encoder records encoder measurements to the microcontroller for translation and processing. Please note that the printed strings “stopping” and “end of data collection” as well as the time array are used for testing but will not be included in the final code.

While this trial has proven the group’s capability of implementing this technology, further testing is required using different microcontrollers and encoders to decide upon the final model for use. Table 1 shows questions about the technology used alongside methods to obtain answers and justification needed in the future.
Table 1: Justification Table.

<table>
<thead>
<tr>
<th>Question</th>
<th>Method of Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the encoder work for angular measurements when the rotating axis has a significant length?</td>
<td>First, securely attach a long piece of material to the axis of the encoder that will serve as a datum. An angular measurement device will then be placed on top of the datum and rotate the system to ensure that the two measurements are consistent.</td>
</tr>
<tr>
<td>What material will be used for each individual component?</td>
<td>Justification will be executed using a multi-step process:</td>
</tr>
<tr>
<td></td>
<td>• Execute preliminary hand calculations to narrow down the materials list to five potential candidates.</td>
</tr>
<tr>
<td></td>
<td>• Run Finite Element Analysis (FEA) for the SolidWorks model using a variety of different materials</td>
</tr>
<tr>
<td></td>
<td>• For the materials that perform sufficiently, research aspects of the material such as density, price, and elastic modulus and create a table of attributes</td>
</tr>
<tr>
<td></td>
<td>• Create a weighted decision matrix for the materials to find one that best suits the needed functionality</td>
</tr>
<tr>
<td>How will Callaway manufacture the different components of the design?</td>
<td>For the components that are intended for in-house manufacturing, execute the manufacturing process in the shop to evaluate the time and effort required to manufacture the design. This will likely be executed with the help of shop techs.</td>
</tr>
</tbody>
</table>

4.1.3 Prototyping and Engineering Judgment
A primary outcome of the prototyping process was to justify the design idea in more of a “real world” context. The prototype that was generated led to the following conclusions:

1. The device will not carry much of a load outside of the threaded components, meaning that they will be the primary point of concern for FEA and material decision making.
2. Many effective components were like those on the current green gauge, further validating the strategy of optimizing the current design instead of starting completely from scratch.
3. There is a wide array of possibilities for datum setting if the system utilized holds the back of the club head perfectly stationary.

4.1.4 Callaway Factory Visit
During the Callaway factory visit, the group gained invaluable hands-on experience with the green gauge. Conversations with Juan, Ricky, and Graham provided insight as to whether the design ideas were feasible from the outset. This sort of “filtering” process allowed the disposal of certain ideas from the outset like the light-based measurement system.
The group was able to get some important validation for datum setting ideas particularly. By getting hands on experience using the current design’s methods, the group was able to formulate ideas to improve upon the process (further discussed in Section 3) while obtaining immediate feedback on the constraints and feasibility for each new idea. The mold idea garnered the most positive feedback from the Callaway representatives, so it was selected as the most promising avenue going forward. After a fully functional prototype is manufactured, a mold will be 3D printed to execute a final working justification based on a given club’s design schematics.

4.2 Hazard Analysis
The design hazard analysis was conducted to identify potential safety concerns and find ways that they can be prevented. The primary safety concerns include the following:

1. Electrical components that can introduce a shocking hazard.
2. Pinch points on pivoting components.
3. Sharp edges on the device.
4. The weight of the device, especially while being transported.

For more information on the potential safety concerns and an outline of the prevention methods, please refer to Appendix F.

4.3 Further Challenges
There is a wide array of further challenges beyond what has already been discussed throughout this section of the PDR. First, there will be trouble during the prototyping process due to the size and number of components for the design. This means that 3D printing, or machining, will be a lengthy process and will be very material intensive.

Another significant problem is that datum setting will be different for each of the different club types, and each type may require a unique solution. Because of this, there is a chance that a new datum setting device must be created for each design specification which may be material and time intensive. This is another reason why the mold idea is very appealing to sponsors and group members alike, but as mentioned before more testing is required going forward.

Finally, a significant issue is that San Luis Obispo is located far from the Callaway factory so in-person visits are both time and resource intensive. The first visit provided invaluable information and hands-on experience that could not have been acquired otherwise. The visit required a 12-hour round trip for driving, however, so subsequent visits will only be made if they are entirely necessary.
5. Project Management

The plan for this project consists of various parts that will build off each other to fulfill the scope. Getting to know the team was the first step in the process; this assists in making everything more efficient and enjoyable. Next, conducting research and background research to get a better idea of the project helped to create a problem statement as well as the scope of work which was presented to the sponsor for review. Once approved, the group moved into the ideation portion, using techniques such as brainstorming and models to produce a concept. To help with this the group visited the Callaway Headquarters in Carlsbad, CA on February 22, 2022. This concept was refined and analyzed using CAD and handmade models. From here a concept prototype was developed for this preliminary design review (PDR) presentation which is one of the primary milestones. From here, the next milestones will include the Interim Design Review, the Critical Design Review, building, testing, signoffs, and finally the EXPO and Final Design Review.

The next step for this process is preparing for the Critical Design Review which will involve research into the best materials to use for this build as well as purchasing for the prototype as well as what encoders will work the best for the design. This will involve comparing different machining processes as well as material costs to keep the overall build of this project at a relatively low cost. The current consensus is that stainless steel will be the best material being that it is noncorrosive and handles tooling processes well. Stainless is also a common material making it easier to get in certain sizes and can be on the cheaper side in comparison to a material such as aluminum. Once this is done the materials can be ordered and the machining and assembly portion for the prototyping process will begin, which will take a lot of shop time. The reason for the long shop time will be because the measurements must be taken at a tight tolerance so the parts will need to be machined to a tight tolerance as well. Once all the machining is complete assembly and testing will begin.

Table 2 outlines deadlines for the main milestones of the project. For a more detailed outline of milestone due dates and time periods, see Appendix B: Gantt Chart.

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>Description</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of Work</td>
<td>Outline of the Project</td>
<td>2/2/22</td>
</tr>
<tr>
<td>Preliminary Design Review (PDR)</td>
<td>Review of the initial design solutions for the problem</td>
<td>3/1/22</td>
</tr>
<tr>
<td>Critical design review (CDR)</td>
<td>Document of complete idea and process</td>
<td>5/3/22</td>
</tr>
<tr>
<td>EXPO</td>
<td>Show off the final prototype</td>
<td>11/18/22</td>
</tr>
<tr>
<td>Final Design Review (FDR)</td>
<td>Final Design Report, Senior Project showcase with final prototype</td>
<td>12/2/22</td>
</tr>
</tbody>
</table>
6. Conclusion

The goal of the senior design project is to create a measurement device for Callaway that improves upon the current “Green Gauge” Callaway uses to test the tolerances of their newly manufactured clubs. This Preliminary Design Review went into detail on the ideation process that took place as well as how the group came to the consensus of the final design decision. All the matrices to go through the design as well as the Gantt chart to show the plan going forward can be found in Appendix B. This also includes an explanation of the design that was selected by going into each function and explain why each design will be the most efficient followed by a section to justify the design through hand calculations and engineering judgements. The last portion of this document was the Project Management portion which explained the plan moving forward involving purchasing and testing.

After reading through this the group would like to ask permission to move forward with this design as well as request any insight that may be of use.
7. References

PART III: CRITICAL DESIGN REVIEW (CDR)

Abstract

This document outlines the final design alongside the design verification and justification for the Callaway Measurement Device senior project. The purpose of this design is to measure the loft, lie, face angle, keel point, and F1 length of Callaway’s full spectrum of golf clubs using a single integrated measurement gauge. This document covers a detailed outline of the chosen design alongside justifications for each subsystem based on analyses, similar designs, and prototype testing. Next the document provides a plan for design testing and verification. Finally, an indented bill of materials, drawing package, and other analyses are provided in the appendices.
1. Introduction

The Callaway Measurement Team has made progress on their design and manufacturing plan since the Preliminary Design Review. The design progress involves a firmer, more precise system for setting the lie angle, a shaft clamping system with increased degrees of freedom allowing additional measurements, a damage-resistant club head clamping system, testing justification for the encoder, and precision setting of the keel point. The new system for setting the lie angle involves a jacking bolt and nut, allowing the user to adjust the angle of the clubhead with more precision and makes the manufacturing of the system more feasible. The shaft clamping system was redesigned to gain an accurate datum to measure the F1 length. The clamping system is more complicated than the clamping method used by other devices but remains intuitive and is a consistent centering system for the shaft of the golf club. Testing the encoder provides justification of the precision generated using this measurement device.

In addition to the team’s design progress, a manufacturing plan has been created and includes the sourcing and modification of materials and assembly instructions. The progress made by the Callaway Measurement Team provides justification for the precision and manufacturability of the team’s project and proves the team is ready to purchase the materials and manufacture the prototype.

2. System Design

The golf club measurement device was designed to measure the lie angle, face angle, loft angle, and F1 length of a golf club. To create this device, it was necessary to develop a more efficient and precise measurement system. Therefore, the overall measurement was outlined under five main functions:

- Setting a consistent and reliable datum.
- Measuring the face angle.
- Measuring the loft angle.
- Measuring the lie angle.
- Measuring the F1 length.

Setting a consistent and reliable datum is the most important step in a measurement process. Measuring with an inconsistent datum increases the tolerance of every measurement. In effect, the measurements are less consistent and precise than desired. Setting a datum of measurement for a golf club requires orienting the club consistently and using a reference measurement before taking additional measurements.
Setting the datum for a golf club is dependent on the keel point. The keel point is where the club face makes its first point of contact with ground as can be seen in Figure 2.1. The keel point for each specific club can be obtained from the manufacturer’s specifications sheet. To obtain accurate measurements, the club head must be rotated so that its first point of contact with ground is at the manufacturer’s keel point distance from the centerline of the gage (see Figures 2.2 and 2.3). By setting a consistent datum about the keel point, all other measurements can be properly obtained.

Figure 2.1: Keel Point of a Golf Club

Figure 2.2: Manufacturer’s Keel Point Distance from Centerline of Gage

Figure 2.3: Rotating Club to Make First Point of Contact with Manufacturer’s Keel Point Distance
The face angle, seen in Figure 2.4, is the direction that the club face is pointed, which can typically be referred to as an open or closed club face. The face angle is measured using the club’s design lie measurement. The design lie measurement is the angle the club is designed to have that was made by the team designing the club.

![Club Face Angle at Impact](image)

Figure 2.4: Visual Depiction of the Face Angle Measurement [1].

The loft angle of the golf club, seen in Figure 2.5, is the angle of the clubface as positioned to the shaft which is relative to the vertical plane of the club rather than the ground. The loft angle is measured using the club’s design lie measurement.

![Loft Angle](image)

Figure 2.5: Visual Depiction of the Loft Angle Measurement [2].

The lie angle of the golf club, seen in Figure 2.6, is defined by the angle created between the center of the shaft and the ground when the clubhead is resting flush against the ground.
The F1 measurement, seen in Figure 4, may be measured by Callaway Golf standards or by United States Golf Association “USGA” standards. The USGA measurement takes place when the lie angle is set to 60 degrees and measures the length from the tip of the hosel to the first point of contact between the clubhead and the set, 60-degree plane. The Callaway Golf standard measures the F1 measurement after the lie measurement is made. Using the lie measurement as its reference measurement, the F1 length is defined along a plane parallel to the shaft, measuring from the tip of the hosel to the base plate.

The keel point slider will be used to simplify the keel point location process for the device. The keel point is a design specification that is used to “zero” the club in order to take measurements. Currently, the keel point is set by simply “eyeballing” based on marks that are set on the base plate. This is a problem because the keel point’s location is covered by the club which makes it hard to locate via vision alone. The new keel point slider will allow for better keel point location by using contact rather than sight. This is visualized in Figure 2.8.
Figure 2.8: Visual Depiction of the Keel Point Slider from the SolidWorks Model. The loft and face angle apparatuses are very similar to those that are in use for the current green gauge. The key difference in implementation will be the encoders, which are not a part of the SolidWorks model. These are shown in Figure 2.9.
Figure 2.9A: Visual Depiction of the Loft Angle Arm from the SolidWorks Model
The F1 slider was a difficult consideration to implement since it needs to be aligned with the back of the club shaft. The slider is designed to drop down from the lie plane in order to measure the F1 length at any angle that is desired. Measurements will be taken from this slider using simple ticks like a ruler, although the implementation of linear encoders to digitize the process is being investigated. A small fixture can slide down the rod in order to interface with the mandrel for more accurate readings, as seen in Figure 2.10.
The loft measurement apparatus was changed significantly to incorporate a crank for more accurate measurement. As the crank turns, the threaded shaft moves the base along the length of the shaft to pivot the lie apparatus upwards and downwards. This leads to only small changes in angle for large turns from the crank. This is useful both for ease of operation and for resolution for the total measurement.
3. Design Justification

The design justification process is discussed throughout this section. This section will primarily outline the solutions that were developed for the following design specifications:

- Measurement tolerance (loft, lie, and face angle)
- Set up time (keel point)
- Amount of unique measurement types (keel point and F1 length)
- Damage to club (FMEA and safety)

A complete list of design specifications can be referenced in Table 1 of Section 5. Primary justification modes include 3D modeling and dimensioning, physical prototyping, and FMEA (Failure Modes and Analysis). Each of these justification modes will be discussed further in the coming subsections.
3.1 Lie Angle
The lie angle needs to be read down to 0.5 degrees from an angle range of 55 to 90 degrees from horizontal. Our design which implements a ball screw lift mechanism, pictured in Figure 3.1A and Figure 3.1B, allows two arms to be moved. We optimized these arms in SolidWorks to obtain an angle range just below 55 degrees to just past 90 degrees.

Figure 3.1A: Lie Arm positioned at one extreme.

Figure 3.1B: Lie Arm positioned at other extreme.
Figure 3.1A and Figure 3.1B show that our design can be adjusted from 47.4 degrees to 91.4 degrees, which encompasses the desired range.

To meet the specification of getting changes of precision within 0.5 degrees, we ordered the ball screw that we will be using in our final prototype. Using wood, we connected arms and built a preliminary prototype to test how minor of adjustments could be made with the ball screw (see Figure 3.1C).

![Figure 3.1C: Prototype for testing ball screw adjustment.](image)

After creating this prototype, we saw that large rotations of the Allen wrench resulted in small linear movement of the mounting block, and therefore very small changes in angle. When tested, we could obtain changes in lie angle of less than 0.25 degrees. Therefore, this part we purchased will be sufficient for obtaining changes in lie angle less than 0.5 degrees.

3.2 Loft Angle and Face Angle

The current measuring device Callaway uses is produced by Golf works which is shown below in Figures 3.1A and 3.1B. The pictures show the measuring components used to obtain the loft and face angles of the clubs which are extremely accurate and can be consistent if used right so for our design we decided to go with the same concept utilizing encoders and contact points to measure the angles. Our design upgrades the loft arm by allowing it to measure all clubs and not just irons by having a groove where different devices can slip on that are specific to drivers and woods. Currently these clubs are measured using a protractor so this should increase the accuracy of measurement as well as the time it takes to measure these clubs.
Figure 3.2A: Isometric View of Current Measuring Device for Callaway

Figure 3.2B: Side View of Current Measuring Device for Callaway.
3.3 Keel Point (Datum Setting)
The keel point slider zeros along the center of the long axis of the shaft or mandrel that is clamped, regardless of the thickness. The slider will either be adjusted along a printed out scale and locked into place with a spring set screw, or if possible will be connected to an encoder. The thickness of the slider will be the same as the plate that Callaway golf currently tapes down after the keel point measurement is marked with a digital caliper.

Figure 3.3A: Keel Point Slider zeros at shaft/mandrel centerline.

3.4 F1 Length
The most challenging constraint when implementing F1 Length into the design is maintaining the long axis of the F1 Measurement coincident with the center plane of the shaft. As a result, we designed a clamping mechanism that maintains the same center plane of the shaft or mandrel regardless of the thickness (see Figure 3.4A).
Because the F1 maintains coincidence with the center plane of any size shaft measured, our design allows for the implementation of quick F1 measurement without having to reposition the club into a separate measuring device, as in other designs.

To this point, we have not been able to implement a digital encoder for this measurement. At the very least, we will have a similar measurement readout scale for the F1 length as the Callaway’s existing F1 measuring device, however ours will have the advantage of being implemented in one cohesive device.

3.5 Safety Maintenance and Repair

Overall this product is built to last and contains little safety and maintenance problems. One problem we can foresee for safety is the possibility of pinching fingers when adjusting certain angles but that is about the extent of how one could hurt themselves while operating this product. Maintenance will consist of changing bearings and any parts that may become worn overtime, we do not expect this to happen very often and the product should last many years before having to undergo maintenance if built correctly.

3.6 FMEA

As a part of design justification, the group completed FMEA to discern the possible modes of failure for the system. To view the full FMEA table, please refer to Appendix D. The group does not anticipate any mechanical failings, as the FEA that was conducted did not show any significant loads throughout the system as anticipated. The primary failure concern is on the electrical side. This is because the digital components will rely on a multitude of connections in order to function so they are prone to a broken connection that can lead to failure. To visualize this concern, the group created the wiring diagram in Appendix H. After consideration and discussion with peers who have extensive electronics experience, a few solutions to this problem are set for implementation:
• Use heat shrink to wrap wire ports for proper and complete insulation
• Create electrical housing so that wiring is not tugged unnecessarily
• Use a single microcontroller for all encoders instead of one for each
 o This will require an MCU with many pins
 o SPI encoders make this easy to implement

3.7 Unresolved Issues
The main unresolved issue with this design currently is getting our code to perform properly with the encoders so that we can finish the design. The encoders have been selected, but the new SPI data type is leading to complications as far as pins are concerned. As a result, the group is investigating new options for larger controllers. This is expected to be resolved soon and once completed the design can move into production and testing.

4. Manufacturing Plan

This section outlines the manufacturing plan that was developed for the device. Because the device requires a lot of manufactured components, the manufacturing plan is divided into subassemblies which are then divided into individual parts and components. The section will discuss the following subassemblies, as well as their individual components:

1. Base subassembly
2. Electrical system
3. Lie subassembly
4. Shaft clamping subassembly
5. Loft and face angle subassembly
6. Zero slider subassembly
7. Keel point zeroing subassembly
8. F1 subassembly
9. Laser subassembly

This section will also outline assembly instructions that will be used once the components have been manufactured. Between this section and the drawing package in Appendix A, a reader should have everything that they need to recreate the design.
4.1 Base Subassembly

The following section will describe the manufacturing plans for each component in the base assembly and then end with a description on how to assemble this sub assembly.

4.1.1 Base Plate

The Base Plate raw material is bought from MetalsDepot.com. 1st it is cut to size using a water jet and then two slots will be milled into it to hold the key stock that will be used as sliders. 4 holes will be tapped to connect the two slides.

4.1.2 Slider Plate

The Slider Plate Raw material is bought from Metals Depot.com. 1st it is cut to size using a water jet and then it is milled down to create the slide grooves on both sides.

4.1.3 Slide Plate Stoppers (Optional)

4.1.4 Stopper Connecting Bolts (Optional)

Purchased from McMaster

4.1.5 Base Plate Slides

Raw material is bought from MetalsDepot.com then cut to size using a band saw. Two holes will be tapped to connect to the base plate.

4.1.5 Base Assembly Instructions

To assemble first attach the base slides to the base plate by bolting down each slide using countersunk bolts. Then attach the Slide Plate stoppers to the Slider Plate using the connecting bolts. Place the slider plate onto the base plate and it then this sub assembly is complete.

4.2 Electrical System

The following section will describe the manufacturing plans for each part in the Electrical System and then end with a description on how to assemble this sub assembly.

4.2.1 Microcontroller

This part will be bought from pi-plates.com

4.2.2 Digital Interface

This part will be bought from digikey.com

4.2.3 Interface Base

The interface base raw material will be bought from MetalsDepot.com and then cut to size using a water jet. From here two holes will be tapped to connect it to the main base

4.2.4 Interface Base Bolts

Purchased from McMaster
4.2.5 Interface Height Tube
The height tube raw material will be ordered from MetalsDepot.com and then cut to size using a band saw. From here a hole will be tapped on both ends to connect it to the mount plate as well as the Interface Base.

4.2.6 Interface Mount Plate
Raw Material will be bought from MetalsDepot.com. The plate will then be cut to size using a water jet as well as have 4 mounting holes put in using the water jet.

4.2.7 Interface Mount Bolts
Purchased from McMaster

4.2.10 Interface Buttons/Manual Controller
This part will be bought from digikey.com

4.2.11 Encoder Connecting Cables
This part will be bought from Coast Electronics

4.3 Lie Subassembly
The following section will describe the manufacturing plans for each part in the lie assembly and then end with a description on how to assemble this sub assembly.

4.3.1 Lie Base Subassembly
4.3.1.1 Lie Base
The interface base raw material will be bought from MetalsDepot.com and then cut to size using a water jet. From here two holes will be tapped to connect it to the main base.

4.3.1.2 Lie Base to Base Bolts
Purchased from McMaster

4.3.1.3 Lie Stand 1
Raw Material purchased from metalsdepot.com and then cut to length using a band saw. From here two holes will be drilled and tapped to allow connection to Lie Base and Bolting end plate 1.

4.3.1.4 Lie Stand 2
Raw Material purchased from metalsdepot.com and then cut to length using a band saw. From here two holes will be drilled and tapped to allow connection to Lie Base and Bolting end plate 1.

4.3.1.5 Bolting End Plate 1
Raw Material purchased from metalsdepot.com and then laser cut to size and then drill and tap holes to allow connection to Lie Stand 1.

4.3.1.6 Bolting End Plate 2
Raw Material purchased from metalsdepot.com and then laser cut to size and then drill and tap holes to allow connection to Lie Stand 1.

4.3.2 Lie Arm Subassembly

4.3.2.1 Main Arm
Raw material purchased from metalsdepot.com and then cut to size using water jet. After drill holes to allow shaft connections

4.3.2.2 Small Arm
Raw Material purchased from metalsdepot.com. Cut to size using a band saw, use a drill to make holes for shaft connections. Lastly mill the groove to allow clearance for the bearing.

4.3.2.3 Main Arm Shaft
Raw Material purchased from metalsdepot.com and then lathed to proper diameter. After cut to size using a band saw.

4.3.2.4 Small to Main Shaft
Raw Material purchased from metalsdepot.com and then lathed to proper diameter and cut to size using a band saw.

4.3.2.5 Small Arm Shaft
Raw Material purchased from metalsdepot.com and then lathed to proper diameter and cut to size using a band saw.

4.3.2.6 Bearing Plate 1
Raw Material purchased from metalsdepot.com. Cut to size using a water jet and then drill holes for mounting.

4.3.2.7 Bearing Plate 2
Raw Material purchased from metalsdepot.com. Cut to size using a water jet and then drill holes for mounting.

4.3.2.8 Bearing Plate 3
Raw Material purchased from metalsdepot.com. Cut to size using a water jet and then drill holes for mounting and bearing insert.

4.3.2.9 Flange 1
Raw Material purchased from metalsdepot.com. Cut to size using a bandsaw and then drill holes to use for mounting.

4.3.2.10 Flange 2
Raw Material purchased from metalsdepot.com. Cut to size using a bandsaw and then drill holes to use for mounting.

4.3.2.11 Flange 3
Raw Material purchased from metalsdepot.com. Cut to size using a bandsaw and then drill holes to use for mounting.

4.3.2.12 Small to Main Arm Spacer
Raw materials purchased metalsdepot.com and then cut to size using a band saw.

4.3.2.13 Main Arm Spacer
- Raw materials purchased metalsdepot.com and then cut to size using a band saw.

4.3.2.14 Small Arm Spacer
- Raw materials purchased metalsdepot.com and then cut to size using a band saw.

4.3.2.15 Lie Arm Ball Bearing
- Purchased from mcmaster.com

4.3.2.16 Lie Plastic Washers
- Purchased from mcmaster.com

4.3.2.17 Lie Shaft Collars
- Purchased from mcmaster.com

4.3.3 Ball Screw Subassembly
- Purchased from amazon.com

4.3.4 Assembly of Lie Subassembly
- This system contains three separate sub-subassemblies and all of these will be connected together through bolts and shaft collars.

4.4 Shaft Clamping Subassembly
- The following section will describe the manufacturing plans for each part in the Clamping assembly and then end with a description on how to assemble this sub assembly.

4.4.1 Mounting Subassembly

4.4.1.1 Sliding Shaft End
- Raw materials purchased from metalsdepot.com and then cut to size use a water jet. Holes drilled and tapped using hand or CNC mill.

4.4.1.2 Sliding Shaft
- Raw materials purchased from mcmaster.com and then cut to size using a band saw. Part will be turned on a lathe, drilling and tapping the holes.

4.4.1.3 Sliding Shaft to Shaft End Bolts
- Bolts will be purchased from a local hardware supplier or off mcmastercar.com

4.4.1.4 Linear Bearing Subassembly

4.4.1.4.1 Bearing Housing Bottom
- Raw materials purchased from metalsdepot.com and then cut to size use a water jet. Holes drilled and tapped using hand or CNC mill.

4.4.1.4.2 Bearing Housing Top
Raw materials purchased from metalsdepot.com and then cut to size use a water jet. Holes drilled and tapped using hand or CNC mill.

4.4.1.3 Linear Ball Bearing
Purchased from mcmastercar.com

4.4.1.4 Bottom to Top Housing Bolts
Bolts will be purchased from a local hardware supplier or off mcmastercar.com

4.4.1.5 Linear Bearing Subassembly to Clamp Housing Bolts
Bolts will be purchased from a local hardware supplier or off mcmastercar.com

4.4.2 Clamp Housing Subassembly

4.4.2.1 C-Clamp Housing Subassembly

4.4.2.1.1 Slider Base Plate
Raw materials purchased from metalsdepot.com and then cut to size use a water jet. Holes drilled and tapped using hand or CNC mill.

4.4.2.1.2 C-Clamp Shaft
Raw materials purchased from mcmaster.com and then cut to size using a band saw. Part will be turned on a lathe, drilling and tapping the holes.

4.4.2.1.3 Housing Slider-Backing
Raw materials purchased from metalsdepot.com and then cut to size use a water jet. Holes drilled and tapped using hand or CNC mill.

4.4.2.1.4 Shaft End
Raw materials purchased from metalsdepot.com and then cut to size use a water jet. Holes drilled and tapped using hand or CNC mill.

4.4.2.1.5 Bolts
Bolts will be purchased from a local hardware supplier or off mcmastercar.com

4.4.2.2 Symmetrical Separator Subassembly

4.4.2.2.1 Symmetric Separator
Raw materials purchased from metalsdepot.com and then cut to size use a water jet. Holes drilled and tapped using hand or CNC mill.

4.4.2.2.2 Symmetric Screw
Raw materials purchased from mcmaster.com and then cut to size using a band saw. Part will be turned on a lathe, drilling and tapping the holes.

4.4.2.2.3 Ball Bearing
Purchased of mcmastercar.com or off local supplier
4.4.2.2.4 Retaining Ring
 Purchased of mcmastercar.com or off local supplier
4.4.2.2.5 Plastic Washer
 Purchased of mcmastercar.com or off local supplier
4.4.2.2.6 Knob
 Purchased of mcmastercar.com or off local supplier
4.4.2.2.7 Symmetric Screw Housing
 Raw materials purchased from metalsdepot.com and then cut to size use a water jet. Holes drilled and tapped using hand or CNC mill.
4.4.2.2.8 Bolts
 Bolts will be purchased from a local hardware supplier or off mcmastercar.com

4.4.2.3 C-Clamp Subassembly
4.4.2.3.1 C-Clamp Top
 Raw materials purchased from metalsdepot.com and then cut to size use a water jet. Holes drilled and tapped using hand or CNC mill.
4.4.2.3.2 C-Clamp Bottom
 Raw materials purchased from metalsdepot.com and then cut to size use a water jet. Holes drilled and tapped using hand or CNC mill.
4.4.2.3.3 Linear Ball Bearing
 Purchased of mcmastercar.com or off local supplier
4.4.2.3.4 Retaining Ring
 Purchased of mcmastercar.com or off local supplier
4.4.2.3.5 Top to Bottom Bolts
 Purchased of mcmastercar.com or off local supplier
4.5 Loft and Face Angle Subassembly

The following section will describe the manufacturing plans for each part in the loft and face angle assembly and then end with a description on how to assemble this subassembly.

4.5.1 Loft/Face Base

4.5.1.1 Loft/Face Slide Plate

Raw Material will be bought from MetalsDepot.com and then it will be cut to length using a bandsaw. From here it will be milled down to create its slide grooves and then two holes will be drilled on the bottom.

4.5.1.2 Vertical Adjustment Base

Raw Material will be bought from MetalsDepot.com and then the piece will be milled down to meet specifications. Two holes will be drilled to allow it to adjust vertically. One hole will be tapped to allow the knob to adjust its height.

4.5.1.3 Slide Shafts

Raw Material will be bought from MetalsDepot.com. The material will then be cut to size using a band saw and then holes will be tapped on the top and bottom of the tube to allow it to connect to the slide plate and the height cap.

4.5.1.4 Height Cap

Raw material will be bought from MetalsDepot.com. The material will then be cut to size with three holes using a water jet.

4.5.1.5 Slide Shaft Connecting Bolts

Purchased from McMasters

4.5.1.6 Height Knob

Purchased from McMasters

4.5.1.7 Slide Handle Bolts (Optional)

Purchased from McMasters

4.5.1.8 Loft/Face Base Assembly

This assembly starts by attaching the two slide shafts to the Slide plate using the connecting bolts. From here the Adjustment base can slide onto the tubes. Next the height cap is attached to the tubes using bolts and the height knob is screwed into the adjustment base.

4.5.2 Loft Angle Measurement Subassembly

4.5.2.1 Encoder

Purchased from P3 America

4.5.2.2 Encoder Female Housing
Raw material will be bought from MetalsDepot.com. The material will then be cut with a CNC mill.

4.5.2.3 Encoder Connecting Bolts
Purchased from McMasters

4.5.2.4 Loft Shaft
Raw Material bought from MetalsDepot.com. The part will then be cut to size using a band saw. From here a hole will be tapped on the end to allow connection to the loft contact piece

4.5.2.5 Loft Contact Piece
Raw Material bought from MetalsDepot.com. The piece will then be cut to size using a water jet with a hole to allow a bolt to the Loft Shaft

4.5.2.6 Club adjustment Slides
Part will be provided to us by Callaway Golf to allow for interchangeability between clubs.

4.5.2.7 Loft Contact to Loft Shaft Bolts
Purchased from McMasters

4.5.2.8 Shaft Snap ring
Purchased from McMasters

4.5.2.9 Snap ring Washer
Purchased from McMasters

4.5.2.10 Assembly for Loft Subassembly
This assembly starts by attaching the snap ring onto the shaft, then slide the shaft into the base. From here the contact piece can be attached with a bolt. Last is bolting the encoder housing and then the encoder.

4.5.3 Face Angle Measurement Subassembly

4.5.3.1 Encoder
Purchased from P3 America

4.5.3.2 Encoder Female Housing
Raw material will be bought from MetalsDepot.com. The material will then be cut with a CNC mill.

4.5.3.3 Encoder Connecting Bolts
Purchased from McMasters

4.5.3.4 Face Angle Arm
Raw Material bought from MetalsDepot.com. The piece will then be cut to size using a water jet with a hole to allow a bolt to the Face Encoder Shaft.

4.5.3.5 Face Encoder Shaft
Purchased from P3 America

4.5.3.6 Face Arm to Cylinder Bolts
Purchased from McMasters

4.5.3.7 **Snap ring**

Purchased from McMasters

4.5.4.8 **Snap ring Washer**

Purchased from McMasters

4.5.4.9 **Assembly of Face Subassembly**

This assembly involves attaching the encoder to the angle arm through bolting the female encoder housing to base.

4.6 **Zero Slider Subassembly**

The following section will describe the manufacturing plans for each part in the zero-slider assembly and then end with a description on how to assemble this sub assembly.

4.6.1 **Slide Plate**

Raw Material will be bought from MetalsDepot.com and then it will be cut to length using a bandsaw. From here it will be milled down to create its slide grooves.

4.6.2 **Loft Face Zero Plate**

Raw Material will be bought from MetalsDepot.com and then it will be cut to size using a water jet.

4.6.3 **Connecting Bolts**

Purchased from McMasters

4.6.4 **Assembly of Zero Slider**

To assemble connect the slide plate to the zero-plate using the two connecting bolts.

4.7 **Keel Point Zeroing**

The following section will describe the manufacturing plans for each part in the keel point assembly and then end with a description on how to assemble this sub assembly.

4.7.1 **Keel Slider Plate**

Raw Material will be bought from MetalsDepot.com and then it will be cut to size using a water jet.

4.7.2 **Linear Encoder (Tentative)**

Purchased from P3 America

4.8 **F1 Subassembly**

The following section will describe the manufacturing plans for each part in the F1 assembly and then end with a description on how to assemble this sub assembly.

4.8.1 **F1 Slider**
4.8.1.1 Slider Housing
Raw Material will be bought from MetalsDepot.com and then it will be cut to size using a water jet.

4.8.1.2 Sliding Plate
Raw Material will be bought from MetalsDepot.com and then it will be cut to size using a water jet. High precision tick marks will be machined using CNC. Hole for set screw will be drilled on metal drill press.

4.8.1.3 Set Screw
Purchased from McMaster

4.8.1.4 Set Screw Bolt
Purchased from McMaster

4.8.2 Linear Encoder (Tentative)
Purchased from P3 America

4.9 Laser Subassembly
The following section will describe the manufacturing plans for each part in the laser assembly and then end with a description on how to assemble this sub assembly.

4.9.1 Leveling Laser
Purchased from quarton.com

4.9.2 Sliding Plate
Raw Material will be bought from MetalsDepot.com and then it will be cut to length using a bandsaw. From here it will be milled down to create its slide grooves.

4.9.3 Securing Bolts
Purchased from McMasters

5. Design Verification Plan
To execute design verification, the team intends to test each specification with the newly created gauge and compare the values to those from the provided design values and those collected from the digital gauge. Table 1 outlines the specifications that will be tested during design verification:
Table 1: Measurement device specifications table

<table>
<thead>
<tr>
<th>Specification</th>
<th>Target</th>
<th>Tolerance</th>
<th>Risk</th>
<th>Compliance **</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Time to measure a club</td>
<td>< 2 minutes</td>
<td>+/- 3 min</td>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>2 Amount of measurement types</td>
<td>3 minimum</td>
<td>+/- 3</td>
<td>L</td>
<td>I</td>
</tr>
<tr>
<td>3 Is it intuitive?</td>
<td>zero training required</td>
<td>10 minute demonstration</td>
<td>H</td>
<td>T,A</td>
</tr>
<tr>
<td>4 Set up time</td>
<td>< 1 minute</td>
<td>+/- 3 min</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>5 Amount of components</td>
<td>one component</td>
<td>+/- 2 components</td>
<td>L</td>
<td>A,I</td>
</tr>
<tr>
<td>6 Battery/Plug Required?</td>
<td>not required</td>
<td>1 battery/plug</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>7 Angle tolerance of measurement</td>
<td>+/-0.1 degrees</td>
<td>up to +/-0.5 degrees</td>
<td>H</td>
<td>T,A,I</td>
</tr>
<tr>
<td>8 Total Cost</td>
<td>< $2600</td>
<td>0$ < cost < $2600</td>
<td>M</td>
<td>A</td>
</tr>
<tr>
<td>9 Damage caused to club</td>
<td>zero</td>
<td>none</td>
<td>M</td>
<td>A,I</td>
</tr>
<tr>
<td>10 Lifetime</td>
<td>10,000 measurements</td>
<td>< 5,000 measurements maximum</td>
<td>M</td>
<td>A</td>
</tr>
</tbody>
</table>

* Risk of meeting specification: (H) High, (M) Medium, (L) Low

** Compliance Methods: (A) Analysis, (I) Inspection, (S) Similar to Existing, (T) Test

The following sections will discuss specifications that require further testing along with the testing methodology, equipment needed, and results processing for the corresponding specification. To reference the complete design verification plan, please refer to Appendix F. The following specifications will be discussed in depth:

- Measurement time (Section 5.1)
- Intuitiveness (Section 5.2)
- Setup time (Section 5.3)
- Angular tolerance (Section 5.4)

To reference the complete design verification plan, please refer to Appendix F.
5.1 Measurement Time

Measurement time is characterized as the amount of time that it takes to take all measurements after the club is properly set up in the clamp. The target measurement time is less than 2 minutes, and the tolerance includes an additional 8 minutes. The wide tolerance results from the fact that measurement time is far from the most important specification and is eclipsed by specifications such as tolerance and cost.

5.1.1 Measurement Time - Testing Methodology

Before testing measurement time, one of the provided clubs will be attached to the measurement device with the clamp. For the first part of the test, lie will be measured. To begin lie measurement, the club face will be levelled using the laser and keel point will be set. A stopwatch will begin counting as soon as the user begins levelling the club. The lie portion of this test will finish as soon as the user is able to call out a value that is accurate with respect to the specifications. The threshold for accuracy will be discussed further in the angle tolerance portion of this report (Section 5.7). After the first portion is complete, the user will then proceed to take the measurements for loft and face angle. As soon as loft and face angle are measured, the stopwatch will be stopped and the time will be recorded.

5.1.2 Measurement Time - Equipment Needed

The following equipment will be required to test for this specification:

- 1 existing club with available measurement specs
- 1 [phone] stopwatch

5.2 Intuitiveness

Intuitiveness is the measure of how quickly someone can learn to use the device. The initial target of having no training required is far from realistic for a complete layman, so the tolerance specification of a short demonstration will be employed for this testing.

5.2.1 Intuitiveness - Testing Methodology

To execute testing for intuitiveness, the group will provide a short demonstration to Coach Rossman and then ask her to attempt to take a series of measurements using the device. Coach Rossman was selected as the subject because she signed the NDA and has a level of familiarity but has never personally used the device. As a result, she can act as a stand-in for the Callaway employees who will use the new device. To execute the test, she will be asked to measure loft, lie, and face angle while using the newly created device.

5.2.2 Intuitiveness - Equipment Needed

The following equipment will be required to test for this specification:

- 1 existing club with available measurement specs
5.3 Setup Time

Setup time is the measurement of how long it takes to change one club out for another once measurements have been completed.

5.3.1 Setup Time - Testing Methodology

To test setup time, the group will begin after a club has been measured for another test. One member will begin the stopwatch while another member proceeds to remove the initial club from the clamp and replace it with another. The timing will be complete when the second club is firmly secured by the clamp and ready to be measured.

5.3.2 Setup Time - Equipment Needed

The following equipment will be required to test for this specification:

- 1 existing club with available measurement specs
- 1 [phone] stopwatch

5.4 Angular Tolerance

Angular tolerance is the tolerance for angular measurements that is found after uncertainty analysis is conducted. This is perhaps the most important design specification and requires a value of +/- 0.1° for each angular measurement.

5.4.1 Angular Tolerance - Testing Methodology

To test angular tolerance, the group will obtain a digital angular measurement level with a tolerance of +/- 0.05° from Digi-key Electronics. The digital level will be placed on top of the lie measurement apparatus in line with the rotating plane. Readings will be taken both using the digital level and the measurement device’s digital display. Ten measurements will be taken in a range between 55 and 85° and recorded into a table.

5.4.2 Angular Tolerance - Equipment Needed

The following equipment will be required to test for this specification:

- 1 existing club with available measurement specs
- 1 Digi-key angular measurement device

Project Management

6. Conclusion

This document reviewed the key design steps and decisions that have been made since the PDR. The main milestones that were reached were the completion of drawings, the development of a DVP, and the completion of the bill of materials. These are significant steps because they allow the group to order components needed to begin manufacturing the device. Going forward, the group will begin manufacturing the prototype for testing. In addition, electrical components will be completed and assembled entering the fall quarter of 2022. Directly following, the group will carry out the design verification plan. Do you agree with the purchasing, testing, and building plans?
PART IV: FINAL DESIGN REVIEW (FDR)

Table of Contents

1. Design Updates
 1.1. From Metal to 3-D Prints
 1.2. Digital Assembly
 1.3. Base Assembly
 1.4. Clamping Assembly

2. Manufacturing
 2.1. Changes from Manufacturing Plan
 2.2. Base Assembly
 2.2.1. Base Plate
 2.2.1.1. T-Slotted Framing
 2.2.1.2. Diagonal Brace
 2.2.1.3. Silver Corner Bracket
 2.2.1.4. Silver Corner Surface Bracket
 2.2.1.5. End-Freed Nut
 2.2.2. Slider Plate
 2.2.3. Base Assembly Instructions
 2.3. Lie Subassembly
 2.3.1. Lie Base Subassembly
 2.3.1.1. Lie Base
 2.3.1.2. Lie Base to Stand Bolts
 2.3.1.3. Bolting End Plate 1
 2.3.1.4. Bolting End Plate 2
 2.3.1.5. Bolting End Plate Bolts
 2.3.2. Lie Arm Subassembly
 2.3.2.1. Main Arm
 2.3.2.2. Small Arm
 2.3.2.3. Main Arm Shaft
 2.3.2.4. Small to Main Shaft
 2.3.2.5. Small Arm Shaft
 2.3.2.6. Bearing Plate 1
 2.3.2.7. Bearing Plate 2
 2.3.2.8. Flange 1
 2.3.2.9. Flange 2
 2.3.2.10. Flange 3
 2.3.2.11. Lie Arm Ball Bearing
 2.3.2.12. M6 x 1.00 x 20mm
 2.3.2.13. Lie Shaft Collar
 2.3.2.14. Aluminum Spacer
 2.3.3. Ball Screw Part
 2.3.4. Lie Bolts A
 2.3.5. Lie Bolts B
2.3.6. Lie Bolts C
2.3.7. Lie Bolts D
2.3.8. Lie Assembly Instructions
2.4. Shaft Clamping Subassembly
 2.4.1. C Clamp Base
 2.4.2. C Clamp
 2.4.3. Vertical Slide Base
 2.4.4. Lie to Clamp Adaptors
 2.4.5. ½ Aluminum Rod
 2.4.6. Connecting Bolts M6 x 1.00 x 10mm
 2.4.7. ½” Double Sided Bolt
 2.4.8. Two Arm Knob ¼”-20 x ½” Long
 2.4.9. Shaft Clamping Assembly Instructions
2.5. Zero Slider Subassembly
 2.5.1. Slide Plate
2.6. Loft and Face Angle Subassembly
 2.6.1. Loft/Face Slider
 2.6.2. Vertical Adjustment Base
 2.6.3. Slide Shafts
 2.6.4. Slide Shaft to Slider Plate Bolts
 2.6.5. Slide Shaft to Height Cap Bolts
 2.6.6. Height Cap
 2.6.7. Height Knob
 2.6.8. Flat Iron Contact
 2.6.9. Wood Contact Piece
 2.6.10. Driver Contact Piece
 2.6.11. Loft Encoder Shaft
 2.6.12. Loft Arm to Cylinder Bolts
 2.6.13. Snap Rings for Loft and Face
 2.6.14. Washers for Loft and Face
 2.6.15. Face Angle Arm
 2.6.16. Face Encoder Shaft
 2.6.17. Loft and Face Angle Assembly Instructions
2.7. Digital Subassembly
 2.7.1. Encoders
 2.7.2. Display Screen
 2.7.3. Raspberry Pi 4
 2.7.4. Female-to-Female Wiring Connections
 2.7.5. Digital Subassembly Instructions
2.8. Laser Subassembly
 2.8.1. Leveling Laser
 2.8.2. Leveling Laser Bracket
 2.8.3. Sliding Plate
2.8.4. Securing Bolts
2.8.5. Power Supply
 2.8.5.1. Universal Regulated AC-DC Power Supply
 2.8.5.2. 2.5mm Solderless DC Plug
2.8.6. Laser Subassembly Instructions
2.9. Challenges
3. Design Verification
 3.1. Time to Measure a Club
 3.2. Number of Measurement Types
 3.3. Is it Intuitive?
 3.4. Set Up Time
 3.5. Amount of Components
 3.6. Battery/Plug Required?
 3.7. Angle Tolerance of Measurement
 3.8. Total Cost
 3.9. Damage Caused to Club
 3.10. Lifetime
 3.11. Ball Screw Analysis
4. Discussion and Recommendations
5. Conclusion
1. Design Updates
Since the CDR, the design changed drastically. Upon completion of the CDR, the team met with their sponsor, Callaway. Prior to the meeting, the team believed they would be designing a gauge for production and therefore, designed the prototype out of metal to be machined by a mill or lathe. The design, drawing package, and manufacturing plan in the CDR section was based on this concept. During the meeting, miscommunication was identified, and due to costs and ease of manufacturability, the team pivoted their design goal to create a proof-of-concept prototype.

1.1 From metal to 3-D Prints
In the initial design, the team aimed to minimize material costs by using fasteners to connect many smaller machined metal parts, rather than wasting large amounts of material using material removal processes on large chunks of metal. Since transitioning to 3-D prints, this restriction was no longer the case. Instead, many parts and subassemblies were combined into single parts to be 3-D printed. This began a new iterative design process, where through trial and error, the team could settle on the best design without worrying about cost. The transition from the production designs to the proof-of-concept designs may be compared between the CDR Appendices: Appendix A and the prototype’s drawing package. In summary, the final prototype simplified the design drastically, combining and deleting components for ease of manufacturability and assembly purposes.

1.2 Digital Assembly
Due to many issues with the digital script, encoders, and redefining the goal of the project, the team transitioned into using a Raspberry Pie. Though more expensive, the digital aspect of the concept prototype is one of the highest priorities because it enables the final prototype to measure golf clubs to a resolution of 0.07. The Raspberry Pie is more user friendly and allowed the team to successfully interface the encoders. Once the digital interface was integrated and completed, the team designed housings for the digital components and display. These were designed to be 3-D printed and mounted to the base assembly.

1.3 Base Assembly
One of the most expensive material costs in the CDR model was the base assembly. This assembly required large chunks of metal to be stable and support subassemblies without movement. The team reduced this cost by changing the base to be made from aluminum extrude. Though not as strong nor stiff as a metal plate, aluminum extrude is more durable and reliable than 3D printed components.

1.4 Clamping Assembly
The original clamping assembly was overly complicated, with many components requiring extensive machining and assembling. The clamping assembly was originally designed to maintain a centerline datum along the shaft of the golf club to allow integration of an F1 gauge measuring along this datum. To simplify the design, springs with equivalent spring constants replaced the complicated symmetrical separator in the CDR’s design.
2. Manufacturing

This section outlines the manufacturing process for the device that was created. Because the device requires a lot of manufactured components, the manufacturing process is divided into subassemblies. The section will discuss the following subassemblies, as well as their individual components:

1. Changes from Manufacturing Plan
2. Base subassembly
3. Lie subassembly
4. Shaft clamping subassembly
5. Zero slider subassembly
6. Loft and face angle subassembly
7. Digital subassembly
8. Laser subassembly

This section also outlines how the components were procured, manufactured, and assembled. In addition, the group included challenges and recommendations for future manufacturing.

2.1 Changes from Manufacturing Plan

A key difference between the manufacturing plan and the final manufacturing process is the materials used. For the manufacturing plan, the group intended to build and machine the device using aluminum. Callaway informed the group that proof of concept was acceptable instead of a device that was ready for mass-production, so the group pivoted to using 3D printed parts instead. Because the group gets free 3D printing as Cal Poly students, this change saved a lot of time and money for everyone involved.

![Figure 2.1: 3D Printer with Test Loft and Face Angle Arms](image-url)
Another key budgetary change was the use of quadrature encoders rather than SPI, and the use of a Raspberry Pi 4 rather than an Arduino board. This was chosen because it allowed for the use of Python, which the group is more familiar with than C++. In addition, the additional cost of the Raspberry Pi was mitigated by the reduced cost of the 3 new encoders. The total cost falls within the budget of $1000 with a total of $764.02. For a more detailed breakdown of the budget, please refer to the bill of materials in Appendix C.

2.2 Base Subassembly
The following section will describe the manufacturing plans for each component in the base assembly and then end with a description on how to assemble this sub assembly.

2.2.1 Base Plate

2.2.1.1 T-Slotted Framing
This was purchased from McMaster and cut with a band saw.

2.2.1.2 Diagonal Brace
This was purchased from McMaster and cut with a band saw.

2.2.1.3 Silver Corner Bracket
This was purchased from McMaster.

2.2.1.4 Silver Corner Surface Bracket
This was purchased from McMaster.

2.2.1.5 End-Feed Nut
A pack of four was purchased from McMaster

2.2.2 Slider Plate
This was 3D printed at Mustang 60.

2.2.3 Base Assembly Instructions

Figure 2.2: Base Subassembly
Cut the T-Slotted framing into 7 different pieces. 4 pieces will be used as the base, below the slider point and will be joined together through brackets and bolts coming from McMaster. Then, the slider base plate will be bolted into the slots while being able to shift around.

2.3 Lie Subassembly
The following section will describe the manufacturing plans for each part in the lie assembly and then end with a description on how to assemble this sub assembly.

2.3.1 Lie Base Subassembly
2.3.1.1 Lie Base
This was 3D printed at Mustang 60.

2.3.1.2 Lie Base to Stand Bolts
This was purchased from McMaster.

2.3.1.3 Bolting End Plate 1
This was 3D printed at Mustang 60.

2.3.1.4 Bolting End Plate 2
This was 3D printed at Mustang 60.

2.3.1.5 Bolting End Plate Bolts
This was purchased from McMaster.

2.3.2 Lie Arm Subassembly
2.3.2.1 Main Arm
This was 3D printed at Mustang 60.

2.3.2.2 Small Arm
This was 3D printed at Mustang 60.

2.3.2.3 Main Arm Shaft
This was purchased from McMaster and cut to size using a band saw.
2.3.2.4 Small to Main Shaft
This was cut from same material used for the main arm shaft using a band saw.

2.3.2.5 Small Arm Shaft
This was cut from same material used for the main arm shaft using a band saw.

2.3.2.6 Bearing Plate 1
This was 3D printed at Mustang 60. M6x1.00 holes were tapped as shown on drawings.

2.3.2.7 Bearing Plate 2
This was 3D printed at Mustang 60. M6x1.00 holes were tapped as shown on drawings.

2.3.2.8 Flange 1
This was 3D printed at Mustang 60. M6x1.00 holes were tapped as shown on drawings.
2.3.2.9 Flange 2
This was 3D printed at Mustang 60. M6x1.00 holes were tapped as shown on drawings.

2.3.2.10 Flange 3
This was 3D printed at Mustang 60. M6x1.00 holes were tapped as shown on drawings.

2.3.2.11 Lie Arm Ball Bearing
This was purchased from McMaster.

2.3.2.12 M6 x 1.00 x 20mm
A set of 25 was purchased from McMaster.

2.3.2.13 Lie Shaft Collar
This was purchased from McMaster.

2.3.2.14 Aluminum Spacer
This was purchased from McMaster.

2.3.3 Ball Screw Part
This was purchased from amazon.com
2.3.4 Lie Bolts A
This was purchased from McMaster.

2.3.5 Lie Bolts B
This was purchased from McMaster.

2.3.6 Lie Bolts C
This was purchased from McMaster.

2.3.7 Lie Bolts D
This was purchased from McMaster.

2.3.8 Lie Assembly Instructions
The lie base assembly must be put together as seen in figure 2. After securing the assembly with the proper joints and bolts, the ball screw may be attached to the device. The ball screw sits on 3D printed material. Next, the lie arm may be added to the device by heating the 3D printed part to be attached to allow for the ball bearing to insert into the interference fit. Using the same heating process, heat the 3D printed lie arm to allow for the bearing to be installed into the interference fit. Connect the lie arm to the ball bearing, via the 3D printed small arm to main shaft, and install the shaft through both ball bearings.

2.4 Shaft Clamping Subassembly
The following section will describe the manufacturing plans for each part in the Clamping assembly and then end with a description on how to assemble this sub assembly.

2.4.1 C Clamp Base
This was 3D printed at Mustang 60. M6x1.00 holes were tapped as shown on drawings.
2.4.2 C Clamp
This was 3D printed at Mustang 60. M6x1.00 holes were tapped as shown on drawings.

2.4.3 Vertical Slide Base
This was 3D printed at Mustang 60. M6x1.00 holes were tapped as shown on drawings.

2.4.4 Lie to Clamp Adaptors
This was 3D printed at Mustang 60. M6x1.00 holes were tapped as shown on drawings.

2.4.5 ½ Aluminum Rod
This was purchased from McMaster and cut to size using a band saw. This was then predrilled and tapped on a lathe for a M6x1.00 thread.

2.4.6 Connecting Bolts M6 x 1.00 x 10mm
A pack of 100 was purchased from McMaster.

2.4.7 ½" Double Sided Bolt
This was purchased from McMaster.

2.4.8 Two Arm Knob ¼"-20x1/2” Long
This was purchased from McMaster.

2.4.9 Shaft Clamping Assembly Instructions

First, slide the shafts through the vertical slide base before bolting the lie to clamp adaptors in place with M6 bolts. Then, bolt the vertical slide base to the C-Clamp Base. Install the double-sided screw and sliding shafts into the C-Clamps. Install all at once into the C-Clamp Base and bolt them down. Finally, coat with Loctite and screw the knob into the double-sided screw.
2.5 Zero Slider Subassembly
The following section will describe the manufacturing for the slide plate. Assembly instructions are not included because it is only a single part.

2.5.1 Slide Plate
This was 3D printed at Mustang 60.

2.6 Loft and Face Angle Subassembly
The following section will describe the manufacturing plans for each part in the loft and face angle assembly and then end with a description on how to assemble this sub assembly.

2.6.1 Loft/Face Slider
This was 3D printed at Mustang 60. M6x1.00 holes were tapped as shown on drawings.

2.6.2 Vertical Adjustment Base
This was 3D printed at Mustang 60.

2.6.3 Slide Shafts
The raw material was purchased from McMaster and cut to size using a band saw. It was then predrilled and tapped on a lathe for a M6x1.00 thread.

2.6.4 Slide Shaft to Slider Plate Bolts
The same bolts from the zero-slider subassembly were used.

2.6.5 Slide Shaft to Height Cap Bolts
This was purchased from McMaster.

2.6.6 Height Cap
This was 3D printed at Mustang 60.

2.6.7 Height Knob
This was purchased from McMaster.

2.6.8 Flat Iron Contact
The raw material was purchased from McMaster and machined using water cutting.

2.6.9 Wood Contact Piece
This was provided by Callaway.

2.6.10 Driver Contact Piece
This was provided by Callaway.

2.6.11 Loft Encoder Shaft
The ¼” shaft from the lie subassembly was used and cut to size using a band saw.

2.6.12 Loft Arm to Cylinder Bolts
A set of 25 was purchased from McMaster.

2.6.13 Snap Rings for Loft and Face
A set of 10 was purchased from McMaster.
2.6.14 Washers for Loft and Face
A set of 25 was purchased from McMaster.

2.6.15 Face Angle Arm
The raw material was purchased from McMaster and cut using water cutting in the machine shop.

2.6.16 Face Encoder Shaft
The ¼” shaft from the lie subassembly was used and cut to size using a band saw.

2.6.17 Loft and Face Angle Assembly Instructions

Figure 2.8: Loft and Face Angle Subassembly

First, bolt the shafts into the base plate. Next, slide the vertically adjustable slider onto the shafts. Bolt the top face onto the shafts and insert the knob, screwing it into the vertically adjustable slider. Once complete, join the contact plate to the ¼” shaft by heating them up to account for the interference fit. Then, set onto the face angle side and install encoder by bolting it to the plate. Finally, slide the loft angle shaft through the slot and set up the encoder on the outside of the part by bolting it in.

2.7 Digital Subassembly
The following section will describe the procurement and assembly instructions for the digital systems.
2.7.1 Encoders
A set of 3 was purchased from CUI Devices.

2.7.2 Display Screen
This was purchased from Amazon.com.

2.7.3 Raspberry Pi 4
This was purchased from Amazon.com.

2.7.4 Female-to-Female Wiring connections
This was purchased from Coast Electronics.

2.7.5 Digital Subassembly Instructions
Detach a 5-wire strip of female-to-female wiring connections for the lie encoder and attach each connector to the five pins on the bottom of the encoder under the case. For the lie encoder, attach the power to PIN 1, GND to PIN 9, A to PIN 3, B to PIN 5, and Index to PIN 7.

Figure 2.9: Wiring Setup
For the loft and face angle encoders, obtain 10 strands of 48” female to female wiring. Group five wires for each encoder and run them all through tubing similar to that in Figure 6.8. For the loft encoder, attach the power to PIN 17, GND to PIN 25, A to PIN 19, B to PIN 21, and Index to PIN 723. For the face angle encoder, attach the power to PIN 4, GND to PIN 6, A to PIN 12, B to PIN 16, and Index to PIN 18. Finally, attach the display screen to the Raspberry Pi using the HDMI terminal. Plug the Raspberry Pi to any 5V compatible source with a USB-C cable. For a complete wiring diagram, please refer to FDR Appendix B.

2.8 Laser Subassembly
The following section will describe the manufacturing plans for each part in the laser assembly and then end with a description on how to assemble this sub assembly.

2.8.1 Leveling Laser
This was purchased from amazon.com.

2.8.2 Leveling Laser Bracket
This was purchased from amazon.com.

2.8.3 Sliding Plate
This was 3D printed at Mustang 60.

2.8.4 Securing Bolts
This was purchased from McMaster.

2.8.5 Power Supply

2.8.5.1 Universal Regulated AC-DC Power Adaptor
This was purchased from Coast Electronics.

2.8.5.2 2.5 mm Solderless DC Plug
This was purchased from Coast Electronics.

2.8.6 Laser Subassembly Instructions
Insert the laser into the bracket using the securing screws that come with the bracket. Next, use the securing bolts to attach the bracket to the sliding plate. Attach the positive and negative ends of the laser’s wiring to the positive and negative terminals in the solderless DC plug and secure them with a screwdriver. Finally, insert the plug into the appropriate site at the end of the power adapter. Plug the power adaptor into a wall to power the laser and unplug it to turn the laser off.

2.9 Challenges
For the electronics, a major challenge was that the Raspberry Pi did not have enough voltage supply ports to power the laser subassembly, so the group was forced to use a second power adapter.
A challenge that the group ran into was the ball screw jamming and stopping it from rotating. The ball screw did not have a constraint other than the small arm connecting the top of the ball screw to the large, lie arm, allowing it to rotate radially about 10 degrees per direction. Because the shaft clamping system has weight, it caused a moment about the ball screw, making the shaft clamping subassembly sit at an angle. To combat this, we printed out rails to hold the ball screw in place and made the shaft clamping assembly sit straighter.

3. Design Verification
This section covers the design verification procedure the group used to test the prototype against the specifications. By following the test procedures designed by the team, they were able to evaluate the success of the project. Table 3.1 displays the specifications.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Target</th>
<th>Tolerance</th>
<th>Risk *</th>
<th>Compliance **</th>
<th>Pass/Fail?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Time to measure a club</td>
<td>< 2 minutes</td>
<td>+ 8 minutes</td>
<td>H</td>
<td>T</td>
<td>Pass</td>
</tr>
<tr>
<td>2 Number of measurement types</td>
<td>3 minimum</td>
<td>+ 3</td>
<td>L</td>
<td>I</td>
<td>Pass</td>
</tr>
<tr>
<td>3 Is it intuitive?</td>
<td>zero training required</td>
<td>≤ 5 demonstrations</td>
<td>H</td>
<td>T, A</td>
<td>Pass</td>
</tr>
<tr>
<td>4 Set up time</td>
<td>< 1 minute</td>
<td>+3 minutes</td>
<td>M</td>
<td>T</td>
<td>Pass</td>
</tr>
<tr>
<td>5 Amount of components</td>
<td>1 component</td>
<td>+4 components</td>
<td>L</td>
<td>A, I</td>
<td>Fail</td>
</tr>
<tr>
<td>6 Battery/Plug Required?</td>
<td>N/A</td>
<td>1 battery/plug</td>
<td>M</td>
<td>I</td>
<td>Pass</td>
</tr>
<tr>
<td>7 Angle tolerance of measurement</td>
<td>+/-0.1 degrees</td>
<td>up to +/-0.5 degrees</td>
<td>H</td>
<td>T, A, I</td>
<td>Pass</td>
</tr>
<tr>
<td>8 Total Cost</td>
<td><$2600</td>
<td>0$ ≤ cost<$2600</td>
<td>M</td>
<td>A</td>
<td>Pass</td>
</tr>
<tr>
<td>9 Damage caused to club</td>
<td>zero</td>
<td>none</td>
<td>M</td>
<td>A, I</td>
<td>Pass</td>
</tr>
<tr>
<td>10 Lifetime</td>
<td>10,000 measurements</td>
<td>5,000 measurements maximum</td>
<td>M</td>
<td>A</td>
<td>Fail</td>
</tr>
</tbody>
</table>

* Risk of meeting specification: (H) High, (M) Medium, (L) Low
** Compliance Methods: (A) Analysis, (I) Inspection, (S) Similar to Existing, (T) Test

The team evaluated the project’s completion of the specifications through observation, testing, and statistical analysis. The following sections will introduce each observation/test conducted, explain each procedure, discuss, and explain the results. For more information on the tests, see Appendix E and F for complete descriptions of the test procedures and their results.
3.1 Time to Measure a Club
The team created a test to determine how long it takes to measure a golf club by calculating the average amount of time it took to measure the lie, loft, and face angle across the 3 club types: woods, drivers, and irons. Each club was tested 3 times for a total of 9 samples.

The samples began with the club set up in the measurement device, with each encoder “zeroed” and ready for measuring. Starting the clock, Roman followed the user manual to take measurements of each club. Table 3.2 includes a summary of the team's data.

Table 3.2: Data summary of the measurement time test.

<table>
<thead>
<tr>
<th>Data Specification</th>
<th>Time [min:sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2:18</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0:32</td>
</tr>
<tr>
<td>Maximum Time</td>
<td>3:15</td>
</tr>
<tr>
<td>Minimum Time</td>
<td>1:24</td>
</tr>
</tbody>
</table>

The team targeted a time of 2 minutes to measure a club but found it acceptable if a club takes less than 8 minutes to measure. Therefore, the prototype passed this specification. Roman, the person manually conducting this test, found it difficult to measure the woods and drivers because of the flexibility of the 3D printed keel point slider. By improving the rigidity with higher percentage infill or making it out of stiffer materials, it will take less time to measure the woods and drivers.

3.2 Number of Measurement Types
The final prototype was able to measure 3 different angles, lie, loft, and face angle. At the beginning of the project, the team planned to measure the F1 length and install a system to easily set the keel point but did not have enough time to accomplish this task. As a result, the final prototype can measure 3 key angles of a golf club, and therefore, passes the specification.

3.3 Is it Intuitive?
To determine the intuitiveness of the final prototype, the team approached 5 random people to participate in the test. Once a volunteer was selected, Roman explained the project and showed the volunteer how to zero the device and measure a golf club in accordance with the user manual. Once shown, each participant tried to operate the device unaided. If aid were required, Roman and Grant answered their questions and then repeated the demonstration. The intuitiveness of the prototype was judged on the number of additional demonstrations the participant required before measuring a golf club unaided. Table 3.3 contains a summary of the data gathered.

Table 3.3: Data summary of intuitive test.

<table>
<thead>
<tr>
<th>Data Specification</th>
<th>Number of Additional Demonstrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>3.4</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.89</td>
</tr>
<tr>
<td>Maximum Time</td>
<td>4</td>
</tr>
<tr>
<td>Minimum Time</td>
<td>2</td>
</tr>
</tbody>
</table>
The volunteers required an average of 3.4 additional demonstrations to successfully measure a golf club unaided. With a maximum of 4 additional demonstrations, the prototype passed this specification because it took less than 5 demonstrations.

3.4 Set Up Time

The team created a test to determine how long it takes to set up a golf club to be measured by calculating the average amount of time it took to set up woods, drivers, and irons. Each club was tested 3 times for a total of 9 samples.

The samples began with the prototype plugged in and the golf club separated from the machine. Starting the clock, Roman attached the golf club to the machine and followed the user manual to set up the club properly. Table 3.4 includes a summary of the team’s data.

Table 3.4: Data summary of the set-up time test.

<table>
<thead>
<tr>
<th>Data Specification</th>
<th>Time [min:sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2:01</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0:49</td>
</tr>
<tr>
<td>Maximum Time</td>
<td>2:51</td>
</tr>
<tr>
<td>Minimum Time</td>
<td>0:49</td>
</tr>
</tbody>
</table>

The team targeted a time of 1 minute to set up a club but found it acceptable if a club takes less than 3 minutes to set up. Therefore, the prototype passed this specification. Roman, the person manually conducting this test, found it difficult to open and close the shaft clamping system, increasing the time it takes to set up the club. By using springs with lower spring constants and using snap ring pliers, or a similar tool, the amount of time required to set up the club will decrease.

3.5 Amount of Components

The number of components was targeted to be 1 machine/assembly to measure the required angles of the club. This was not possible in the design of the team’s prototype because subassemblies were needed to support the club and the encoders needed to measure the different angles. The prototype has 7 subassemblies and therefore, fails the specification. Though the number of components does not align with the specifications the team created at the beginning of the project, the number of components may be simplified in future design iterations and does not affect the functionality of the measurement device.

3.6 Battery/Plug Required?

The prototype requires 1 plug into the wall and therefore, passes the specification. A wall outlet powers 3 encoders, a raspberry pi, and the user interface display. No plug in required would be the preferred method of powering the prototype but isn’t required.

3.7 Angle Tolerance of Measurement

The team created multiple tests to determine the angle tolerance the prototype can measure too. To analyze the effectiveness of the prototype, the tests focus on accuracy and precision. To determine the accuracy of the device, measurements must be compared to a known measurement. For the lie and loft angles, Callaway provided golf clubs with known angles. For the face angle, a known 5° angled plate was used. To determine the precision of the device, the measurements were compared to each by analyzing the standard deviations of the samples.
To test the device, the team designed 3 tests, 1 test per angle. An iron with known measurements was selected for the lie and loft angle tests. In all 3 tests, a sample size of 32 was chosen to gain the best understanding of the deviation within the system without taking multiple hours to complete each test. Each test began with the golf club fixed in the clamping system and “zeroed” encoders. Then following the user manual, the lie, loft, or face angle was measured. In between measurements, the system was “zeroed” between measurements. Tables 3.5 - 3.6 include a summary of the lie, loft, and face angle data.

Table 3.5: Accuracy analysis of the samples.

<table>
<thead>
<tr>
<th>Angle</th>
<th>Mean</th>
<th>Target</th>
<th>Pass/Fail?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lie Angle</td>
<td>62.73°</td>
<td>61.00° ± 0.50°</td>
<td>Fail</td>
</tr>
<tr>
<td>Loft Angle</td>
<td>26.75°</td>
<td>23.50° ± 0.50°</td>
<td>Fail</td>
</tr>
<tr>
<td>Face Angle</td>
<td>5.01°</td>
<td>5.00° ± 0.50°</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Table 3.6: Precision analysis of the samples.

<table>
<thead>
<tr>
<th>Angle</th>
<th>Standard Deviation</th>
<th>Target</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lie Angle</td>
<td>0.30°</td>
<td>< 0.60°</td>
<td>Pass</td>
</tr>
<tr>
<td>Loft Angle</td>
<td>0.84°</td>
<td>< 0.60°</td>
<td>Fail</td>
</tr>
<tr>
<td>Face Angle</td>
<td>0.33°</td>
<td>< 0.60°</td>
<td>Pass</td>
</tr>
</tbody>
</table>

To pass the angle tolerance specification, the prototype must pass in both accuracy and precision for all test angles. The prototype’s accuracy generally fails due to the imperfections in 3D printed materials. It is close to impossible to control GD&T and tolerances to high precision tolerances resulting in misalignment between mating parts in the system. Furthermore, the 3D printed components in the prototype have 15% infill rates, making them less stiff. The team selected this infill density to minimize overall weight and lower print times, allowing the team to use an iterative design process. As a result, most components in the design are subject to bending. Manufacturing the prototype with stiffer materials, such as aluminum or any metal, and using CNC machining or hand milling would fix this problem immediately and should make the machine accurate to the specifications required.

On the other hand, the prototype’s precision generally passes the specifications, being more precise than necessary. Having a high precision means the device is repeatable and requires further design iterations and calibration to become more accurate. The loft angle failed the accuracy and precision test and therefore requires the most attention. The loft angle deviates substantially from the target mean and standard deviation because the most imperfections occur along the axis the loft angle is measured at. Figure 3.1 displays the deviation of the device along the loft angle.
The red circles in figure 3.1 mark the points of the design subject to the most rotational bending. The shaft clamping assembly branches out from these points, resulting in a large deviation in the clockwise direction when viewed from the orientation in figure 3.1. This deviation translates to the face of the club, rotating it in the same direction. To understand how large the deviation was, Andre conducted another test as seen in figure 3.2.
In figure 3.2, a clamp minimizes the deviation between the shaft clamping system and the lie arm. This allows the team to measure the deviation of the loft angle due to the imperfections of the manufacturing process and material. The tests began by zeroing the lie and loft angle according to the user manual. Then, the loft angle was measured in 2 cases when the golf club reaches the design lie angle for measurements. In the first case, the shaft clamping system was rotated in the clockwise direction until it stopped rotating and then recorded the loft angle. In the second case, the shaft clamping system was rotated in the counterclockwise direction until it stopped rotating and then recorded the loft angle again. Once both values were recorded, the difference was calculated to explain the amount of deviation present along the same axis as the loft angle. With 19 samples, table 3.7 summarizes the data.

<table>
<thead>
<tr>
<th>Data Specification</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>6.13°</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.60°</td>
</tr>
<tr>
<td>Maximum Angle</td>
<td>7.31°</td>
</tr>
<tr>
<td>Minimum Angle</td>
<td>4.99°</td>
</tr>
</tbody>
</table>

Table 3.7 displays a large variation along the loft angle axis. As a result of manufacturing choices, this deviation may be minimized by machining the prototype’s components with a CNC machine and using higher stiffness materials. This will minimize the prototype’s deviation along the loft angle axis and result in higher accuracy and precision for the design.

3.8 Total Cost
The total cost specification establishes a target of less than $2,600. Founded off the retail value of similar products, the prototype’s final cost was $1,107.77, passing the specification. A future iteration of the team’s prototype will be made from metal and have a higher total cost.

3.9 Damage Caused to Club
The team found no signs of damage to the club. Using 3D printed material to manufacture the product drives the success of this specification because the metal and titanium clubs used in the tests is stronger and harder than 3D printed material. In future, metallic iterations of the team’s prototype, the machine will not damage the club because of the lack of moving parts. To damage the clubs, the operator must consciously attempt to damage the club because the prototype does not have the capability to damage a golf club on its own.

3.10 Lifetime
The prototype failed the lifetime specification because of the design and design for manufacturing decisions the team made. The team used 3D printing to quickly make the prototype and allowed for quick and cheap design iterations. This method has a defect because 3D printed material is not durable enough to withstand 10,000 measurements. Though the prototype failed in this specification, altering the manufacturing process to include metal in place of 3D material will fix this issue.
3.11 Ball Screw Analysis
The team conducted two more tests to analyze the ball screws effect on the lie angle. The first test
the team conducted analyzed the ball screws rotation impact on the change in lie angle. To do this,
the lie angle started at 90°, vertical, and after rotating the ball screw 1 revolution, the angle
displacement was recorded. This test was then repeated for 5, 10, and 15 revolutions. The second
test conducted measured the maximum and minimum angles the lie angle may achieve. Table 3.8
summarizes the data from these two tests.

<table>
<thead>
<tr>
<th>Data Specification</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.82°/revolution</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.10°/revolution</td>
</tr>
<tr>
<td>Maximum Angle</td>
<td>89.50°</td>
</tr>
<tr>
<td>Minimum Angle</td>
<td>30.23°</td>
</tr>
</tbody>
</table>

The tests pass the specifications outlined in the DVPR and test plans found in Appendix E and F.
The prototype’s maximum and minimum lie angles enables the machine to measure any golf club
because all golf clubs fall within these bounds. Furthermore, the low change in degree per
revolution provides the operator sufficient precision to achieve whatever lie angle they desire. This
positively impacts the prototype because it takes less time to achieve the desired angle.

4. Discussion and Recommendations
This design challenge was difficult for the team because they had too large of a scope to design a
clear path to success. One of the biggest lessons the team faced was solving the question, “How
do you measure an object without a consistent datum?” Humans post process each golf club,
making every club slightly different than the last. In addition, the team found the best path to
designing a solution, short of creating a new scanning method was to seek mechanical and
electromechanical alternatives. Additionally, the team found it easier to create a repeatable and
reproducible measuring device by isolate movement along as many axes as possible.

After deliberation, the group has assembled the following list of recommendations for
improvements on the device going forward:

- Manufacture the device using aluminum or steel.
- Use linear and rotational bearings to allow the design to operate more fluidly and resist
 friction forces.
- Use springs with lower spring constants in the shaft clamping assembly to make
 unclamping and clamping a golf club easier.
- Redesign the link connecting the ball screw to the lie angle to minimize rotation around
 the ball screw.
- Redesign the user interface housing to double as a brace against the shaft clamping
 assembly. Operating as a brace would restrict the shaft clamping system from leaning from
 side-to-side.
• Consider absolute encoders, they may be more expensive, but they are less likely to drift compared to incremental encoders.
• Support the shafts on both sides of the encoders to further reduce the chance of shaft deflection.
• Implement a split power supply for the leveling laser and Raspberry Pi so that only one outlet is required.
• Purchase a high-quality crosshair laser with a thin beam for leveling.
• Design a spring-loaded clamp to hold the golf club in place while taking measurements.
• Attach a more ergonomic knob to operate the ball screw.
• Implement an additional encoder to mount to the base plate to track the location of the keel point slider. This would make setting up the machine to measure woods and drivers significantly quicker and more precise.
• Tighten component tolerances to allow for more precise fits.
• Design loft adapters used to measure woods and drivers to be attached via a nut and threaded shaft to the loft and face angle housing.
• Design an adapter to add to the shaft clamping assembly to measure the F1 length. This addition to the system would add another encoder to the system.

After the group gives the project to Callaway, there are a few next steps that they must take to implement the device for their factories. First, a final prototype needs to be machined using aluminum or steel components with some minor testing to ensure all components are up to standard. The provided drawing packages are sufficient to help the machinists complete all required processes. Callaway can use the same Raspberry Pi and encoders for the final device, but if they desire to try other encoders and microcontrollers, the group recommends implementing a script using C++ rather than Python if their engineers have experience with the software.

The Raspberry Pi is convenient because it removes the necessity for a computer connection, but if this is not an issue a cheaper microcontroller such as an ESP32 can be used. The Raspberry Pi is also convenient if Callaway wants to implement the same script that the group provided due to the use of internal Raspberry Pi libraries and Thonny for the implementation. If the Raspberry Pi is used, a UI can be developed for the device so the script is not directly pulled up. This would be helpful because it would disallow the user from accidentally changing values in the script when operating the device. This is far from necessary, however, and does not change any of the base functionality for the system.

5. Conclusion

This document reviewed the final design for the Callaway measurement device senior project. This document went over the changes in design that developed since the CDR and provided explanations to the major developments that were made. In addition, the effectiveness of the device and full manufacturing process were reviewed.
Looking back along the timeline of the project, the team is proud of what they accomplished. The team ran into their biggest difficulties because of miscommunication. If the correct questions were asked from the beginning, the team would have saved time designing their prototype and would be able to spend more time manufacturing and testing.

After completing the project testing, the group reached many conclusions for the effectiveness and shortcomings of the final design. The device passed the criteria for all requested measurement times and passed all intuitiveness trials with desirable values. Precision testing was successful for the lie and face angles, and the face angle passed the accuracy tests. The group was also proud about how the use of the digital system allowed for quicker and easier measurements while keeping the prototype’s price below competitor’s pricing.

The only tested specifications the device fell short of were the precision testing for loft and the accuracy testing for loft and lie. These criteria were not met because of certain mechanical failings due to the use of 3D printing rather than aluminum manufactured parts. The 3D printed material was prone to significant flexing which would allow the encoder shafts to deflect substantially. This deflection would cause drift over time for encoder measurements that would mess up the calibration and skew some results. This is because the encoders are only designed to account for rotational motion and are unable to properly process linear translation. This was only an issue for accuracy and one of the precision tests because the imperfections of the prototype mainly stacked up along one axis, the same axis the loft angle is measured in.

If the group were to do the project over again, they would have made a few major changes. They would have decided to 3D print all parts far earlier into the process to better optimize the device for PLA’s material properties, taking more advantage of the iterative design process. In addition, they would have used quadrature encoders with a Raspberry Pi earlier into the process. This was because the group was only familiar with Python at the time and the prospect of needing to learn C++ alongside implement SPI encoders simultaneously introduced far too many variables to execute the solution in a prompt manner. Had the group committed to the Raspberry Pi sooner, the digital system would have been ready months earlier. This may have allowed the group more time to develop a UI for the device and find a way to implement a linear encoder for F1 measurements.

In addition to saving money, switching to the raspberry pi would enable the team to begin prototype testing earlier.
SOW Appendices

A. Relevant Patent List
B. QFD House of Quality
C. Gantt Chart
Appendix A: Relevant Patent List

Appendix B: QFD House of Quality
Appendix C: Gantt Chart

<table>
<thead>
<tr>
<th>W22 Golf Club Measurement</th>
<th>9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of Work (SOW)</td>
<td></td>
</tr>
<tr>
<td>Create Initial Research Plan</td>
<td>100%</td>
</tr>
<tr>
<td>Customer/Need Research</td>
<td>5%</td>
</tr>
<tr>
<td>Write Problem Statement</td>
<td>100%</td>
</tr>
<tr>
<td>Create Engineering Specification Tab...</td>
<td>100%</td>
</tr>
<tr>
<td>Perform QFD</td>
<td>100%</td>
</tr>
<tr>
<td>Complete Gantt Chart</td>
<td>100%</td>
</tr>
<tr>
<td>SOW Rough Draft</td>
<td>0%</td>
</tr>
<tr>
<td>Title Page</td>
<td>0%</td>
</tr>
<tr>
<td>Abstract</td>
<td>0%</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>0%</td>
</tr>
<tr>
<td>Introduction</td>
<td>0%</td>
</tr>
<tr>
<td>Background</td>
<td>0%</td>
</tr>
<tr>
<td>Project Scope</td>
<td>0%</td>
</tr>
<tr>
<td>Objectives</td>
<td>0%</td>
</tr>
<tr>
<td>Project Management</td>
<td>0%</td>
</tr>
<tr>
<td>Conclusion</td>
<td>0%</td>
</tr>
<tr>
<td>References</td>
<td>0%</td>
</tr>
<tr>
<td>Appendices</td>
<td>0%</td>
</tr>
<tr>
<td>QFD (House of Quality)</td>
<td>0%</td>
</tr>
<tr>
<td>Gantt Chart</td>
<td>0%</td>
</tr>
<tr>
<td>Preliminary Design Analysis (opt...)</td>
<td>0%</td>
</tr>
<tr>
<td>Functional Decomposition</td>
<td>0%</td>
</tr>
<tr>
<td>QFD Peer Review</td>
<td>0%</td>
</tr>
<tr>
<td>SOW Peer Review</td>
<td>0%</td>
</tr>
<tr>
<td>SOW Final Draft</td>
<td>0%</td>
</tr>
<tr>
<td>Preliminary Design Review (PDR)</td>
<td>0%</td>
</tr>
<tr>
<td>SOLO: Ideation (concept) Models</td>
<td>0%</td>
</tr>
<tr>
<td>SOLO: Pugh matrix and design descr...</td>
<td>0%</td>
</tr>
<tr>
<td>Weighted Decision Matrix & Concept...</td>
<td>0%</td>
</tr>
<tr>
<td>Concept Prototype Plan</td>
<td>0%</td>
</tr>
<tr>
<td>SOW updates</td>
<td>0%</td>
</tr>
<tr>
<td>Build Concept Prototype</td>
<td>0%</td>
</tr>
<tr>
<td>PDR Rough Draft</td>
<td>0%</td>
</tr>
<tr>
<td>PDR peer review</td>
<td>0%</td>
</tr>
<tr>
<td>Concept Prototype</td>
<td>0%</td>
</tr>
<tr>
<td>PDR Presentation to class</td>
<td>0%</td>
</tr>
<tr>
<td>PDR Presentation to Sponsor</td>
<td>0%</td>
</tr>
<tr>
<td>PDR Final draft</td>
<td>0%</td>
</tr>
<tr>
<td>Critical Design Review (CDR) Report</td>
<td>0%</td>
</tr>
<tr>
<td>FMEA</td>
<td>0%</td>
</tr>
<tr>
<td>Interim Design Review</td>
<td>0%</td>
</tr>
<tr>
<td>CDR Presentation</td>
<td>0%</td>
</tr>
<tr>
<td>CDR Final</td>
<td>0%</td>
</tr>
<tr>
<td>Final Design Review (FDR) Report</td>
<td>0%</td>
</tr>
<tr>
<td>VP Sign-Off</td>
<td>0%</td>
</tr>
<tr>
<td>DVPR Sign-Off</td>
<td>0%</td>
</tr>
<tr>
<td>Expo</td>
<td>0%</td>
</tr>
<tr>
<td>FDR Final</td>
<td>0%</td>
</tr>
</tbody>
</table>
PDR Appendices

A. Ideation
B. Gantt Chart
C. Pugh Matrices
D. Morphological Matrix
E. Weighted Decision Matrix
F. Design Hazard Checklist
G. Experimental Results and Details
H. Functional Decomposition
Appendix A: Ideation

Figure 1: Worm gear technology to be implemented in adjusting the lie angle.

Figure 2: Sliding clamps to secure club head for purpose of central datum. Not seen is the shaft connected to the clubhead to secure it from a third location.
Figure 3: Setting the clubhead down on a flat datum and measuring the loft angle by putting a grid behind the clubhead and taking a picture. The grid is made up of squares and when photo is taken, the computer will calculate the slope made by the club and convert it to an angle from the Zenith. We think it is a good idea, but we think it may take a lot of research to figure out the correct way to make this solution feasible.

Figure 4: 4-point laser contact to establish distances for angle conversions of loft and face angle. The red dashed lines signify distances calculated using laser-distance technology. By measure from the reference plane on the left-hand side, the four measurements from the laser-distance scanner will define the measurements of the plane. From here, software can be used to calculate the face angle and loft of the clubhead. We really like this idea because this kind of measurement technology is versatile and can be used for every club. Furthermore, this technology already exists, so we would just need to figure out a way to extract the data and run calculations from it.
Figure 5: Clamping mechanism that tightens down with screws (represented with toothpicks) to securely hold mandrel or shaft in place. Loosen screws to change shaft or mandrel out or to adjust position of club.

Figure 6: Mechanical system with constant vertical height contact with mandrel or shaft. The horizontal second contact point with the bottom of the shaft or mandrel is adjustable. With trigonometry, will yield lie angle based on constant height and adjusted horizontal distance contact to mandrel or shaft.
Appendix B: Gantt Chart

<table>
<thead>
<tr>
<th>W22 Golf Club Measurement</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of Work (SWO)</td>
<td>100%</td>
</tr>
<tr>
<td>Preliminary Design Review (PDR)</td>
<td>100%</td>
</tr>
<tr>
<td>SOLO: Location (concept) Models</td>
<td>100%</td>
</tr>
<tr>
<td>SOLO: Pugh matrix and design desc...</td>
<td>100%</td>
</tr>
<tr>
<td>Weighted Decision Matrix & Concept...</td>
<td>100%</td>
</tr>
<tr>
<td>Concept Prototype Plan</td>
<td>100%</td>
</tr>
<tr>
<td>SW updates</td>
<td>100%</td>
</tr>
<tr>
<td>Build Concept Prototype</td>
<td>100%</td>
</tr>
<tr>
<td>Updated Gant Chart</td>
<td>100%</td>
</tr>
<tr>
<td>POR Rough Draft</td>
<td>100%</td>
</tr>
<tr>
<td>Design Hazard Checklist</td>
<td>100%</td>
</tr>
<tr>
<td>Concept CAD Model and isometric fl...</td>
<td>100%</td>
</tr>
<tr>
<td>Schedule POR sponsor presentation</td>
<td>100%</td>
</tr>
<tr>
<td>Concept Prototype</td>
<td>100%</td>
</tr>
<tr>
<td>POR Presentation to Sponsor</td>
<td>100%</td>
</tr>
<tr>
<td>POR Final draft</td>
<td>100%</td>
</tr>
</tbody>
</table>

Critical Design Review (CDR) Report 9%
- FMEA 100%
- Peer Review: Manufacturing Plan 9%
- POR updates 9%

Interim Design Review Presentation 9%
- CAD: Function and operations 9%

Status of Major Subsystems 0%
- Changes since POR 0%
- Anticipated Manufacturing Proc... 0%
- Analysis/Tests Completed 0%
- Remaining Analysis/Tests 0%
- Plans for structural Prototyp... 0%
- Current Concerns 0%
- Structural Prototype Plans 0%
- Logistic Self Assessment 0%

IBOM 0%
- DatumBase 0%
- Lie Angle 0%
- Loft Angle 0%
- Face Angle 0%
- F1 Length 0%

Manufacturing Plan 0%
- Table of Subassembly Demands 0%
- Manufacturing Order of Operations 0%
- Assembly Order of Operations 0%
- Design Verification Plan 0%

CDR Rough Draft 0%
- Title Page 0%
- Abstract 0%
- Table of Contents 0%
- Introduction 0%
- System Design 0%
- Design justification 0%
- Manufacturing Plan 0%
- Design Verification Plan 0%

Final Design Review (FDR) Report 0%
- Install Design/Safe Software 0%
- Risk Assessment 0%

Safety Review 0%
- Hazard Checklist 0%
- Risk Assessment 0%
- FMEA 0%

W22 Golf Club Measurement

<table>
<thead>
<tr>
<th>Activity</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Design Review (PDR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLO: Location (concept) Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLO: Pugh matrix and design desc...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted Decision Matrix & Concept...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept Prototype Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW updates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build Concept Prototype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Updated Gant Chart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POR Rough Draft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Hazard Checklist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept CAD Model and isometric fl...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule POR sponsor presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept Prototype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POR Presentation to Sponsor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POR Final draft</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Assembly Drawings 0%
<table>
<thead>
<tr>
<th>Activity</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Design Planning Form</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLO: What if Scenario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDR Report Updates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLO: Logbook Self-Assess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Experiment Test Procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLO: Write a Test Procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing and Test Update</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLO: Team Feedback</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethical Debate Outline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFI Sign Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVRI Sign Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDR Final</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C: Pugh Matrices

<table>
<thead>
<tr>
<th>Function/idea</th>
<th>Face Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Datum</td>
</tr>
<tr>
<td>Sketch</td>
<td>Protractor with mechanical measurement</td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Criteria</td>
<td>Low Cost</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
</tr>
<tr>
<td></td>
<td>Size</td>
</tr>
<tr>
<td></td>
<td>Manufacturability</td>
</tr>
<tr>
<td></td>
<td>Ease of Use</td>
</tr>
<tr>
<td></td>
<td>Measurement Speed</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td>Durability</td>
</tr>
<tr>
<td></td>
<td>Transportability</td>
</tr>
<tr>
<td></td>
<td>Assembly</td>
</tr>
<tr>
<td></td>
<td>Consistency</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function/idea</th>
<th>Setting the Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Datum</td>
</tr>
<tr>
<td>Sketch</td>
<td>Mark keel measurement with tape</td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Criteria</td>
<td>Low Cost</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
</tr>
<tr>
<td></td>
<td>Size</td>
</tr>
<tr>
<td></td>
<td>Manufacturability</td>
</tr>
<tr>
<td></td>
<td>Ease of Use</td>
</tr>
<tr>
<td></td>
<td>Measurement Speed</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td>Durability</td>
</tr>
<tr>
<td></td>
<td>Transportability</td>
</tr>
<tr>
<td></td>
<td>Assembly</td>
</tr>
<tr>
<td></td>
<td>Consistency</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Lie Angle

<table>
<thead>
<tr>
<th>Function</th>
<th>Datum/idea</th>
<th>Datum</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sketch</td>
<td>Adjustable gear rack with protractor</td>
<td>Adjustable worm gear with protractor</td>
<td>Separate Protractor</td>
<td>Angle backstop, catches picture and calc. angle</td>
<td>Set a vert. dist. and changing horiz. Distance</td>
<td>Worm gear with encoder</td>
<td></td>
</tr>
</tbody>
</table>

Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Cost</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Resolution</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>S</td>
<td>+</td>
</tr>
<tr>
<td>Size</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>S</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Measurement Speed</td>
<td>S</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Weight</td>
<td>+</td>
<td>+</td>
<td>S</td>
<td>S</td>
<td>+</td>
</tr>
<tr>
<td>Durability</td>
<td>-</td>
<td>+</td>
<td>S</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Transportability</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Assembly</td>
<td>S</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>S</td>
</tr>
<tr>
<td>Consistency</td>
<td>S</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Total 4 0 1 -2 8

Loft Angle

<table>
<thead>
<tr>
<th>Function</th>
<th>Datum/idea</th>
<th>Datum</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sketch</td>
<td>Protractor with interchangeable bits per club</td>
<td>Encoder with interchangeable bits per club</td>
<td>Angle measuring level</td>
<td>4 points of contact to measure loft and face angle</td>
<td>Narrow rods attached to displacement</td>
<td>Laser measurement zeroed on vert.</td>
<td></td>
</tr>
</tbody>
</table>

Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1</th>
<th>5</th>
<th>-1</th>
<th>-2</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Cost</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Resolution</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>S</td>
<td>+</td>
</tr>
<tr>
<td>Size</td>
<td>-</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Measurement Speed</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Weight</td>
<td>-</td>
<td>+</td>
<td>S</td>
<td>S</td>
<td>+</td>
</tr>
<tr>
<td>Durability</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Transportability</td>
<td>S</td>
<td>+</td>
<td>S</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Assembly</td>
<td>+</td>
<td>+</td>
<td>S</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Consistency</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Total 1 5 -1 -2 6
<table>
<thead>
<tr>
<th>Function</th>
<th>F1 Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum/idea</td>
<td>Datum</td>
</tr>
<tr>
<td>Sketch</td>
<td>+</td>
</tr>
<tr>
<td>Description</td>
<td>Fixture clamping head to a 60° plane</td>
</tr>
<tr>
<td>Criteria</td>
<td></td>
</tr>
<tr>
<td>Low Cost</td>
<td>+</td>
</tr>
<tr>
<td>Resolution</td>
<td>-</td>
</tr>
<tr>
<td>Size</td>
<td>+</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>+</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>+</td>
</tr>
<tr>
<td>Measurement Speed</td>
<td>S</td>
</tr>
<tr>
<td>Weight</td>
<td>+</td>
</tr>
<tr>
<td>Durability</td>
<td>-</td>
</tr>
<tr>
<td>Transportability</td>
<td>S</td>
</tr>
<tr>
<td>Assembly</td>
<td>S</td>
</tr>
<tr>
<td>Consistency</td>
<td>+</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
</tr>
</tbody>
</table>
Appendix D: Morphological Matrix

<table>
<thead>
<tr>
<th>Function</th>
<th>Function Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting the Datum</td>
<td></td>
</tr>
<tr>
<td>Loft Angle</td>
<td></td>
</tr>
<tr>
<td>Lie Angle</td>
<td></td>
</tr>
<tr>
<td>Face Angle</td>
<td></td>
</tr>
<tr>
<td>F1 Length</td>
<td></td>
</tr>
</tbody>
</table>
Appendix E: Decision Matrix

<table>
<thead>
<tr>
<th>Specification</th>
<th>Weight</th>
<th>Design 1</th>
<th>Design 2</th>
<th>Design 3</th>
<th>Design 4</th>
<th>Design 5</th>
<th>Total</th>
<th>Score</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to measure a clubhead</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is it Intuitive</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set up time</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amount of components</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>15</td>
<td>2</td>
<td>6</td>
<td>16</td>
<td>3</td>
<td>13</td>
<td>5</td>
<td>20</td>
<td>4</td>
<td>25</td>
<td>4</td>
<td>25</td>
<td>4</td>
<td>25</td>
<td>4</td>
<td>25</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery/Plug in required</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance of measurement</td>
<td>5</td>
<td>4</td>
<td>20</td>
<td>10</td>
<td>4</td>
<td>15</td>
<td>5</td>
<td>20</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damage inflicted on clubhead</td>
<td>5</td>
<td>4</td>
<td>20</td>
<td>10</td>
<td>4</td>
<td>20</td>
<td>5</td>
<td>25</td>
<td>4</td>
<td>20</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifespan</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>14</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>3</td>
<td>16</td>
<td>3</td>
<td>15</td>
<td>3</td>
<td>16</td>
<td>3</td>
<td>15</td>
<td>3</td>
<td>16</td>
<td>3</td>
<td>15</td>
<td>3</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexibility</td>
<td>4</td>
<td>3</td>
<td>13</td>
<td>13</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>3</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-112-
Appendix F: Design Hazard Checklist

PDR Design Hazard Checklist

<table>
<thead>
<tr>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

1. Will any part of the design create hazardous revolving, reciprocating, running, shearing, punching, pressing, squeezing, drawing, cutting, rolling, mixing or similar action, including pinch points and sheer points?

2. Can any part of the design undergo high accelerations/decelerations?

3. Will the system have any large moving masses or large forces?

4. Will the system produce a projectile?

5. Would it be possible for the system to fall under gravity creating injury?

6. Will a user be exposed to overhanging weights as part of the design?

7. Will the system have any sharp edges?

8. Will any part of the electrical systems not be grounded?

9. Will there be any large batteries or electrical voltage in the system above 40 V?

10. Will there be any stored energy in the system such as batteries, flywheels, hanging weights or pressurized fluids?

11. Will there be any explosive or flammable liquids, gases, or dust fuel as part of the system?

12. Will the user of the design be required to exert any abnormal effort or physical posture during the use of the design?

13. Will there be any materials known to be hazardous to humans involved in either the design or the manufacturing of the design?

14. Can the system generate high levels of noise?

15. Will the device/system be exposed to extreme environmental conditions such as fog, humidity, cold, high temperatures, etc?

16. Is it possible for the system to be used in an unsafe manner?

17. Will there be any other potential hazards not listed above? If yes, please explain on reverse.

For any “Y” responses, on the reverse side add:

(1) a complete description of the hazard,

(2) the corrective action(s) you plan to take to protect the user, and

(3) a date by which the planned actions will be completed.
<table>
<thead>
<tr>
<th>Description of Hazard</th>
<th>Planned Corrective Action</th>
<th>Planned Date</th>
<th>Actual Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a battery and electrical components that have potential to induce electrical</td>
<td>Ground electrical components</td>
<td>4-3-22</td>
<td></td>
</tr>
<tr>
<td>shocks</td>
<td>Create a housing for electronics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insulate any remaining wiring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are components that can pinch a user’s fingers</td>
<td>Put a sign on the device that warns of a pinching hazard</td>
<td>4-3-22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implement a plate that blocks off the pivot point of the device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are sharp edges that may cut the user</td>
<td>Put a rubber covering on any sharp external components</td>
<td>4-3-22</td>
<td></td>
</tr>
<tr>
<td>The device can be dropped and crush a user’s foot</td>
<td>Reduce the weight of the device as much as possible during the materials selection process</td>
<td>3-28-22</td>
<td></td>
</tr>
</tbody>
</table>
Appendix G: Experimental Results and Details

This is an excerpt of the main file that constantly synthesizes data from both tasks using a series of shared variables.

```python
if __name__ == '__main__':
    tasklist = [taskUser.taskUserFunction('Task User', 10_000, zflag, position, delta),
                taskEncoder.taskEncoderFunction('Task Encoder', 10_000, zflag, position, delta)]

    while True:
        try:
            for task in tasklist:
                next(task)
        except KeyboardInterrupt:
            break

    print('stopping')
```

This is a part of task encoder that records the value based on readings generated by the hardware. The rest of this file includes the function definitions that we use to run these lines of code.

```python

    while True:
        try:
            encoder_1.update()
            encoder_1.get_position()
            time.sleep(1)
        except KeyboardInterrupt:
            break

    print('stopping')
```

This code is the section of Task User that prints the encoder position values that are sent over from Task User.

```python
    elif state == 56_PRINT:
        if numPrinted == idx:
            print(f'{timeArray[numPrinted]:.2f}, {posArray[numPrinted]}
        state = 51_CMD
        print('End of Data Collection')
        _printHelp()
        yield None

    else:
        print(f'{timeArray[numPrinted]:.2f}, {posArray[numPrinted]}')
        numPrinted += 1
        yield None
```

This is a part of task encoder that records the value based on readings generated by the hardware.
Appendix H: Functional Decomposition
CDR Appendices

A. Drawing and Specification Package
B. Project Budget
C. Structural Prototypes
D. Failure Modes and Analysis
E. Design Hazard Checklist
F. Design Verification Plan
G. Gantt Chart
H. Wiring Diagrams
Appendix A: Drawing and Specification Package

100000 – Main Assembly
 100000E – Top Level Assembly Exploded

110000 – Base Subassembly
 110000E – Base Subassembly Exploded
 111000 – Base Plate Drawing
 112000 – Slider Plate Drawing

120000 – Lie Subassembly
 120000E – Lie Subassembly Exploded

121000 – Lie Base Subassembly
 121100 – Lie Base Drawing
 121200 – Lie Base to Stand Bolts*
 121300 – Lie Stand 1
 121400 – Lie Stand 2
 121500 – Bolting End Plate 1
 121600 – Bolting End Plate 2
 121700 – Bolting End Plate Bolts*

122000 – Lie Arm Subassembly
 122000E – Lie Arm Subassembly Exploded
 122-1-00 – Main Arm Drawing
 122-2-00 – Small Arm Drawing
 122-3-00 – Main Arm Shaft Drawing
 122-4-00 – Small to Main Shaft
 122-5-00 – Small Arm Shaft
 122-6-00 – Bearing Plate 1
 122-7-00 – Bearing Plate 2
 122-8-00 – Flange 1
 122-9-00 – Flange 2
 122-10-00 – Flange 3
 122-11-00 – Small to Main Arm Spacer*
122-12-00 – Main Arm Spacer*
122-13-00 – Small Arm Spacer*
122-14-00 – Lie Arm Ball Bearing*
122-15-00 – Lie Plastic Washer*
122-16-00 – Lie Shaft Collar*
123000 – Ball Screw Part*
124000 – Lie Bolts A*
125000 – Lie Bolts B*
126000 – Lie Bolts C*
127000 – Lie Bolts D*
130000 – Shaft Clamping Assembly
 131000 – Mounting Subassembly
 131100 – Sliding Shaft End
 131200 – Sliding Shaft
 131300* – Sliding Shaft to Shaft End Bolts
 131400 – Linear Bearing Subassembly
 131410 – Bearing Housing Bottom
 131420 – Bearing Housing Top
 131430* – Linear Ball Bearing
 131440* – External Retaining Ring
 131450* – Bottom to Top Housing Bolt
 131500* – Linear Bearing Subassembly to Clamp Housing Bolts
 132000 – Clamp Housing Subassembly
 132100 – C-Clamp Housing Subassembly
 132110 – Slider Base Plate
 132120 – C-Clamp Shaft
 132130 – Housing Slider Backing
 132140 – Shaft End
 132150* – Bolts
 132200 – Symmetrical Separator Subassembly
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>132210</td>
<td>Symmetric Separator</td>
</tr>
<tr>
<td>132220*</td>
<td>Symmetric Screw</td>
</tr>
<tr>
<td>132230*</td>
<td>Ball Bearing</td>
</tr>
<tr>
<td>132240*</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>132250*</td>
<td>Plastic Washer</td>
</tr>
<tr>
<td>132260</td>
<td>Knob*</td>
</tr>
<tr>
<td>132270</td>
<td>Symmetric Screw Housing</td>
</tr>
<tr>
<td>132280*</td>
<td>Bolts</td>
</tr>
<tr>
<td>132300</td>
<td>C-Clamp Subassembly</td>
</tr>
<tr>
<td>132310</td>
<td>C-Clamp Top</td>
</tr>
<tr>
<td>132320</td>
<td>C-Clamp Bottom</td>
</tr>
<tr>
<td>132330*</td>
<td>Linear Ball Bearing</td>
</tr>
<tr>
<td>132340*</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>132350*</td>
<td>Top to Bottom Bolts</td>
</tr>
</tbody>
</table>

140000 – Zero Slider Subassembly
140000E – Zero Slider Subassembly Exploded
141000 – Slide Plate Drawing
142000 – Loft Face Zero Plate Drawing

150000 – Loft & Face Angle Subassembly
150000E – Loft & Face Subassembly Exploded
15-01-000 – Loft/Face Slider
15-02-000 – Vertical Adjustment Base
15-03-000 – Slide Shafts
15-04-000 – Slide Shaft to Slider Plate Bolts*
15-05-000 – Slide Shaft to Height Cap Bolts*
15-06-000 – Height Cap*
15-07-000 – Height Knob
15-08-000 – Height Knob Set Screw*
15-09-000 – Height Bolt*
15-10-000 – Slide Handle*
15-11-000 – Slide Handle Bolts*
15-12-000 – Encoder
15-13-000 – Female Housing to Encoder
15-14-000 – Housing to Loft Face Base Bolts
15-15-000 – Flat, Iron Contact
15-16-000 – Wood Contact Piece
15-17-000 – Driver Contact Piece
15-18-000 – Loft Encoder Shaft Drawing
15-19-000 – Loft Arm to Cylinder Bolts*
15-20-000 – Snap Ring for Loft and Face*
15-21-000 – Washer for Loft and Face*
15-22-000 – Face Angle Arm
15-23-000 – Face Encoder Shaft

160000 – Digital Subassembly
160000E – Digital Subassembly Exploded
161000 – Microcontroller Unit*
162000 – Encoder Connecting Cables*
163000 – I2C Digital Interface*

170000 – Keel Point “Zeroing” Subassembly
171000 – Keel Slider Plate Drawing

180000 – F1 Subassembly
180000E – F1 Subassembly Exploded
181000 – F1 Base Contact Slider Drawing
182000 – F1 Mandrel Contact Drawing
183000 – F1 Mounts Drawing
184000 – F1 Bolts*

190000 – Laser Subassembly
190000E- Laser Subassembly Exploded
191000 – Leveling Laser*
192000 – Sliding Plate Drawing*
193000 – Bolts*

*Note: no drawing included
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>121000</td>
<td>Lie Base Subassembly</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>122000</td>
<td>Lie Arm Subassembly</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>123000</td>
<td>Lie Ball Screw Part</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>124000</td>
<td>Lie Bolts A</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>125000</td>
<td>Lie Bolts B</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>126000</td>
<td>Lie Bolts C</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>127000</td>
<td>Lie Bolts D</td>
<td>2</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>PART NUMBER</td>
<td>DESCRIPTION</td>
<td>QTY.</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>121400</td>
<td>Lie Stand 2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>121100</td>
<td>Lie Base</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>121300</td>
<td>Lie Stand 1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>121500</td>
<td>Bolting End Plate 1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>121600</td>
<td>Bolting End Plate 2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>125000</td>
<td>Lie Bolts B</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>121200</td>
<td>Lie Base to Lie Stand Ball-91290A235</td>
<td>2</td>
</tr>
</tbody>
</table>
Calloway Golf
Lie Stand 1

2x Ø 4.20 Y 15.24
M5X0.8 - 6H Y 10.16

Ø 10.20 Y 76.20
M12X1.75 - 6H Y 22.86
Ø 12.05 X 90°, NEAR SIDE

0.75

0.319
0.50

0.132

0.75

0.132

Proprietary and Confidential

Interpret Geometrically

Scale: 1:2

Sheet 6 of 23

-130-
Callaway Golf
Lie Stand 2

Material: 6061 - Aluminum

Scale: 1:2
Weight:
Sheet 7 of 23
Callaway Golf

Bolting End Plate 2

Material: Alumina

Finishes: See material specifications
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>122-9-00</td>
<td>Flange 2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>122-10-00</td>
<td>Flange 3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>122-3-00</td>
<td>Main Arm Shaft</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>122-16-00</td>
<td>Lie Shaft Collar- 941476</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>122-15-00</td>
<td>Lie Plastic Washer- 956064A421</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>122-14-00</td>
<td>Lie Arm Ball Bearing- 2342K164</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>122-12-00</td>
<td>Main Arm Spacer- 92510A760</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>122-6-00</td>
<td>Bearing Plate 1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>122-1-00</td>
<td>Main Arm</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>122-4-00</td>
<td>Small To Main Arm Shaft</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>122-11-00</td>
<td>Small to Main Arm Spacer- 92511A057</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>122-2-00</td>
<td>Small Arm</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>122-7-00</td>
<td>Bearing Plate 2</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>122-13-00</td>
<td>Small Arm Spacer- 92510A398</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>122-5-00</td>
<td>Small Arm Shaft</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>122-8-00</td>
<td>Flange 1</td>
<td>1</td>
</tr>
</tbody>
</table>
Callaway Golf
Main Arm Shaft

Dimensions are in inches.

Material: 316 Stainless Steel

Scale: 2:1
Weight:
Sheet 15 of 23
Callaway Golf
Small to Main Arm Shaft

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF CALLAWAY GOLF. ANY REPRODUCTION OR USE AS A WHOLE WITHOUT WRITTEN PERMISSION OF CALLAWAY GOLF IS PROHIBITED.

PRINTED SCALE: 1:1

DO NOT SCALE DRAWING

314 Stainless Steel

SCALE: 1:1
WEIGHT:
SHEET 16 OF 23

-140-
Callaway Golf

Flange 2

DIMENSIONS ARE IN INCHES
TOLERANCES:
AS-MADE
FINISH 1:
1/2 THRU
IMREPLACEMENT DECAL.

MATERIAL: 6061 Aluminum

SCALE: 2:1
WEIGHT:
SHEET 21 OF 23
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>131000</td>
<td>MOUNTING SUBASSEMBLY</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>132000</td>
<td>CLAMP HOUSING SUBASSEMBLY</td>
<td>1</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>PART NUMBER</td>
<td>DESCRIPTION</td>
<td>QTY.</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>131100</td>
<td>SLIDING SHAFT END</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>131200</td>
<td>SLIDING SHAFT</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>131300</td>
<td>SLIDING SHAFT TO SHAFT END BOLTS 9129A110</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>131400</td>
<td>LINEAR BEARING SUBASSEMBLY</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>131500</td>
<td>LINEAR BEARING SUBASSEMBLY TO CLAMP HOUSING BOLTS 9129A110</td>
<td>4</td>
</tr>
</tbody>
</table>
Callaway Golf

SLIDING SHAFT

SCALE: 3:1

2X ØM3 X 0.5 T .25

Ø .25

4.50

6061 ALUMINUM

SCALE 1:1 WEIGHT: SHEET 4 OF 20
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>124141</td>
<td>BEARING HOUSING BOTTOM</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>124142</td>
<td>BEARING HOUSING TOP</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>124143</td>
<td>LINEAR BALL BEARING 6095K11</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>124144</td>
<td>EXTERNAL RETAINING RING 9968K22</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>124145</td>
<td>BOTTOM TO TOP HOUSING BOLT 91292A112</td>
<td>1</td>
</tr>
</tbody>
</table>

Callaway Golf

TITLE
LINEAR BEARING SUBASSEMBLY

DRAWING NO.
A 131400 1

SCALE
1:1

WEIGHT

SHEET
5 OF 20

-152-
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132100</td>
<td>C-CLAMP HOUSING SUBASSEMBLY</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>132200</td>
<td>SYMMETRICAL SEPARATOR SUBASSEMBLY</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>132300</td>
<td>C-CLAMP SUBASSEMBLY</td>
<td>2</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>PART NUMBER</td>
<td>DESCRIPTION</td>
<td>QTY.</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>132210</td>
<td>SYMMETRIC SEPARATOR</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>132220</td>
<td>SYMMETRIC SCREW 98861A040</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>132230</td>
<td>BALL BEARING 60355K851</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>132240</td>
<td>RETAINING RING 98410A111</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>132250</td>
<td>PLASTIC WASHER 96649A120</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>132260</td>
<td>KNOB 6076SK12</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>132270</td>
<td>SYMMETRIC SCREW HOUSING</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>132280</td>
<td>BOLTS 9129A110</td>
<td>4</td>
</tr>
</tbody>
</table>
Callaway Golf

SYMMETRIC SCREW

PROPERTY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS DRAWING IS THE INTELLECTUAL PROPERTY OF CALLAWAY GOLF AND IS PROTECTED BY COPYRIGHT LAW. REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF CALLAWAY GOLF IS PROHIBITED.

Material: NA

Scale: 1:1

Weight: SHEET 16 OF 20

DRAWN: ANDRE F. 5/13/02
CHECKED:

-163-
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>132310</td>
<td>C-CLAMP TOP</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>132320</td>
<td>C-CLAMP BOTTOM</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>132330</td>
<td>LINEAR BALL BEARING 60595K11</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>132340</td>
<td>RETAINING RING 9968K22</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>132350</td>
<td>TOP TO BOTTOM BOLT 9129A125</td>
<td>2</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>PART NUMBER</td>
<td>DESCRIPTION</td>
<td>QTY.</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>15-01-000</td>
<td>Measuring Slide Plate</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15-03-000</td>
<td>Loft Face Vertical adjt</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>15-02-000</td>
<td>Loft Face Base</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>15-18-000</td>
<td>Loft Shaft</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>15-22-000</td>
<td>Face Angle Arm</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>15-15-000</td>
<td>Iron Contact</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>15-06-000</td>
<td>Height Cap</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>15-04-000</td>
<td>93395A360</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>15-07-000</td>
<td>7762K103</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>15-21-000</td>
<td>90940A015</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>15-20-000</td>
<td>91590A115</td>
<td>1</td>
</tr>
</tbody>
</table>
Appendix B: Project Budget

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Part Name</th>
<th>Qty</th>
<th>Price/EA</th>
<th>Price/Qty</th>
<th>Total Cost</th>
<th>Reserve</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>151000</td>
<td>Golf Shaft</td>
<td>14-177</td>
<td>1</td>
<td>$10.00</td>
<td>$10.00</td>
<td>10.00</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>151100</td>
<td>Golf Head</td>
<td>14-177</td>
<td>1</td>
<td>$15.00</td>
<td>$15.00</td>
<td>15.00</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>151200</td>
<td>Golf Driver</td>
<td>14-177</td>
<td>1</td>
<td>$12.00</td>
<td>$12.00</td>
<td>12.00</td>
<td>12.00</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Golf Shaft:
 - 14-177:
 - Qty: 1
 - Price/EA: $10.00
 - Price/Qty: $10.00
 - Total Cost: 10.00
- Golf Head:
 - 14-177:
 - Qty: 1
 - Price/EA: $15.00
 - Price/Qty: $15.00
 - Total Cost: 15.00
- Golf Driver:
 - 14-177:
 - Qty: 1
 - Price/EA: $12.00
 - Price/Qty: $12.00
 - Total Cost: 12.00
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Material</th>
<th>Color</th>
<th>Quantity</th>
<th>Code</th>
<th>Brand</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shell Plate</td>
<td>Steel</td>
<td>Black</td>
<td>2</td>
<td>M12</td>
<td>www.shell.com</td>
<td>$20.00</td>
<td>Shell plate assembly</td>
</tr>
<tr>
<td>2</td>
<td>Handrail</td>
<td>Plastic</td>
<td>White</td>
<td>10</td>
<td>H12</td>
<td>www.handrail.com</td>
<td>$80.00</td>
<td>Handrail kit 10 pack</td>
</tr>
<tr>
<td>3</td>
<td>Door Stop</td>
<td>Rubber</td>
<td>Brown</td>
<td>5</td>
<td>D12</td>
<td>www.doorstop.com</td>
<td>$25.00</td>
<td>Door stop kit 5 pack</td>
</tr>
<tr>
<td>4</td>
<td>Closet Rod</td>
<td>Aluminum</td>
<td>Silver</td>
<td>1</td>
<td>R12</td>
<td>www.closetrod.com</td>
<td>$100.00</td>
<td>Closet rod 1 pack</td>
</tr>
<tr>
<td>5</td>
<td>Cabinet Hinges</td>
<td>Brass</td>
<td>Antique Brass</td>
<td>20</td>
<td>Hinges.com</td>
<td>$500.00</td>
<td>Cabinet hinges 20 pack</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mirror Frame</td>
<td>Wood</td>
<td>Oak</td>
<td>3</td>
<td>Frame.com</td>
<td>$150.00</td>
<td>Mirror frame kit 3 pack</td>
<td></td>
</tr>
</tbody>
</table>

Total Price: $1,205.00
Appendix C: Structural Prototypes
Appendix D: Failure Modes and Analysis

FMEA W22 Callaway Golf Head Measuring Device

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lie Measurement</td>
<td>Strip Threads</td>
<td>Inoperable/ Not Precise</td>
<td>1</td>
<td>Improper Use/Wear over time</td>
<td>Proper Strength Bolt</td>
<td>5</td>
<td>Visual</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Loft Measurement</td>
<td>Can deform or break over time</td>
<td>Inoperable</td>
<td>1</td>
<td>Improper Use/Wear over time</td>
<td>Proper strength Plate</td>
<td>6</td>
<td>Visual</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Face Angle Measurement</td>
<td>Can deform or break over time</td>
<td>Inoperable</td>
<td>1</td>
<td>Improper Use/Wear over time</td>
<td>Proper strength Plate</td>
<td>7</td>
<td>Visual</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>L1 Length</td>
<td>Measurement tool is extended before setting lie</td>
<td>Inoperable</td>
<td>1</td>
<td>Improper Use</td>
<td>Clear Procedure</td>
<td>8</td>
<td>Visual</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Datum Set</td>
<td>Wear on molds</td>
<td>Certain Clubs cannot be measured</td>
<td>2</td>
<td>Wear over time</td>
<td>Strength of Mold</td>
<td>4</td>
<td>Visual</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Electrical interface</td>
<td>Functioning Lifetime & Peeling & Scratching wires Scratched Screen</td>
<td>Inoperable/Difficulty Reading</td>
<td>2</td>
<td>Wear over time</td>
<td>Proper selection of components Wrapping the wires</td>
<td>3</td>
<td>Visual</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Laser</td>
<td>Functioning Lifetime</td>
<td>Inoperable</td>
<td>2</td>
<td>Wear over time</td>
<td>Proper Section of Laser</td>
<td>2</td>
<td>Visual</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Encoders</td>
<td>Adjusted too fast Too much torque applied Not as precise</td>
<td>Improper Use/Dropping</td>
<td>3</td>
<td>Wear over time</td>
<td>Clear Procedure on how to operate</td>
<td>1</td>
<td>Visual</td>
<td>2</td>
<td>18</td>
</tr>
</tbody>
</table>

Measure Manufactured Heads

- Measure Loft
 - Measure vertical angle of club face.
 - Measure from zenith at bottom to top of club face.
 - Measure positive angles only.

- Measure Lie
 - Measure angle of the shaft from the zenith.
 - Measure positive angles only.

- Measure Face Angle
 - Measure horizontal angle of club face.
 - Measure from zero on horizontal axis to 90 degrees from zenith.
 - Measure displaced angle from stated horizontal axis.
 - Measure positive and negative angle.

- Measure L1
 - Measure length from hosel to contact point of club head and base plate.

- Recycle Club Head Using Same Shaft
 - Detach club head keeping shaft aligned

- Measure Club Head from Constant Datum
 - Rest club head on flat surface.
 - Measure from constant reference measurement.
Appendix E: Design Hazards Checklist

PDR Design Hazard Checklist

<table>
<thead>
<tr>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>1. Will any part of the design create hazardous revolving, reciprocating, running, shearing, punching, pressing, squeezing, drawing, cutting, rolling, mixing or similar action, including pinch points and shear points?</td>
</tr>
<tr>
<td>×</td>
<td>2. Can any part of the design undergo high accelerations/decelerations?</td>
</tr>
<tr>
<td>×</td>
<td>3. Will the system have any large moving masses or large forces?</td>
</tr>
<tr>
<td>×</td>
<td>4. Will the system produce a projectile?</td>
</tr>
<tr>
<td>×</td>
<td>5. Would it be possible for the system to fall under gravity creating injury?</td>
</tr>
<tr>
<td>×</td>
<td>6. Will a user be exposed to overhanging weights as part of the design?</td>
</tr>
<tr>
<td>×</td>
<td>7. Will the system have any sharp edges?</td>
</tr>
<tr>
<td>×</td>
<td>8. Will any part of the electrical systems not be grounded?</td>
</tr>
<tr>
<td>×</td>
<td>9. Will there be any large batteries or electrical voltage in the system above 40 V?</td>
</tr>
<tr>
<td>×</td>
<td>10. Will there be any stored energy in the system such as batteries, flywheels, hanging weights or pressurized fluids?</td>
</tr>
<tr>
<td>×</td>
<td>11. Will there be any explosive or flammable liquids, gases, or dust fuel as part of the system?</td>
</tr>
<tr>
<td>×</td>
<td>12. Will the user of the design be required to exert any abnormal effort or physical posture during the use of the design?</td>
</tr>
<tr>
<td>×</td>
<td>13. Will there be any materials known to be hazardous to humans involved in either the design or the manufacturing of the design?</td>
</tr>
<tr>
<td>×</td>
<td>14. Can the system generate high levels of noise?</td>
</tr>
<tr>
<td>×</td>
<td>15. Will the device/system be exposed to extreme environmental conditions such as fog, humidity, cold, high temperatures, etc?</td>
</tr>
<tr>
<td>×</td>
<td>16. Is it possible for the system to be used in an unsafe manner?</td>
</tr>
<tr>
<td>m</td>
<td>17. Will there be any other potential hazards not listed above? If yes, please explain on reverse.</td>
</tr>
</tbody>
</table>

For any “Y” responses, on the reverse side add:

1. a complete description of the hazard,
2. the corrective action(s) you plan to take to protect the user, and
3. a date by which the planned actions will be completed.
<table>
<thead>
<tr>
<th>Description of Hazard</th>
<th>Planned Corrective Action</th>
<th>Planned Date</th>
<th>Actual Date</th>
</tr>
</thead>
</table>
| There is a battery and electrical components that have potential to induce electrical shocks | • Ground electrical components
• Create a housing for electronics
• Insulate any remaining wiring | 4-3-22 | |
| There are components that can pinch a user’s fingers | • Put a sign on the device that warns of a pinching hazard
• Implement a plate that blocks off the pivot point of the device | 4-3-22 | |
| There are sharp edges that may cut the user | • Put a rubber covering on any sharp external components | 4-3-22 | |
| The device can be dropped and crush a user’s foot | • Reduce the weight of the device as much as possible during the materials selection process | 3-28-22 | |
Appendix F: Design Verification Plan

DVP&R - Design Verification Plan (& Report)

<table>
<thead>
<tr>
<th>Test</th>
<th>Specification</th>
<th>Test Description</th>
<th>Measurements</th>
<th>Acceptance Criteria</th>
<th>Required Facilities/Equipment</th>
<th>Parts Needed</th>
<th>Responsibility</th>
<th>Start date</th>
<th>Finish date</th>
<th>Numerical Results</th>
<th>Notes on Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time to measure a club</td>
<td>Once the club is set in the fixture: 1. Start time. 2. Take measurements of all dimensions. 3. Stop time. 4. Repeat for a total of 5 trials. 5. Average times.</td>
<td>Time it takes to measure each club.</td>
<td>~8 minutes</td>
<td>Complete prototype and timer</td>
<td>Complete prototypes and timer.</td>
<td>Andrew Fisher</td>
<td>5/20/2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Amount of measurement types</td>
<td>Analyze number of measurements needed to create the desired aspects of the clubhead once the design is finalized in the CADD.</td>
<td>Sum the number of measurement types per process.</td>
<td>~3</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Roman Hays</td>
<td>5/15/2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Height</td>
<td>Demonstrate how to measure a golf club to a person with zero knowledge. Time the amount of time it takes for a person to gather said measurements. Repeat for a total of 5 trials. Average the results.</td>
<td>Measure the time it takes for a new person to operate the device. 10 minute demonstration.</td>
<td>Complete prototype and timer.</td>
<td>Complete prototypes and timer.</td>
<td>Blake Sautte</td>
<td>5/20/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DVP&R - Design Verification Plan (& Report)

<table>
<thead>
<tr>
<th>Test</th>
<th>Specification</th>
<th>Test Description</th>
<th>Measurements</th>
<th>Acceptance Criteria</th>
<th>Required Facilities/Equipment</th>
<th>Parts Needed</th>
<th>Responsibility</th>
<th>Start date</th>
<th>Finish date</th>
<th>Numerical Results</th>
<th>Notes on Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Set up time</td>
<td>1. Start a stopwatch. 2. Set up the golf club in the fixture. Zeroing out all measurement devices. 3. Stop time. 4. Repeat process for a total of 5 trials with different people every time. 5. Average measurements.</td>
<td>Measure the time it takes to set up a new golf club in the fixture. Instrument.</td>
<td>~3 minutes</td>
<td>Le angle subassembly, ball, club, shaft, club, head, test point measurements.</td>
<td>Le angle subassembly, ball, club, shaft, club, head, test point measurements.</td>
<td>Grant Gabonston</td>
<td>5/25/2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Number of components</td>
<td>Counting the number of all subassemblies required to make the club and noting if there are any loose or missing parts.</td>
<td>Count the number of subassemblies.</td>
<td>~4</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Andrew Fisher</td>
<td>5/15/2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Battery required?</td>
<td>Will the measurement device have any sort of electricity necessary, or is it full mechanical?</td>
<td>Note if these are electronics.</td>
<td>1 battery powered</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Roman Hays</td>
<td>5/28/2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Angle tolerance of measurement</td>
<td>Using golf clubs sent from Callaway with already measured elements of the clubhead, take measurements of the clubhead. Take 5 separate measurements and average the results.</td>
<td>Tolerance limits of stocks, backspin in yards, and tolerances of stockers.</td>
<td>Up to ±0.5 degrees</td>
<td>Encoder and control. Encoder and controller.</td>
<td>Encoder and controller.</td>
<td>Grant Gabonston</td>
<td>5/28/2022</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DVP&R - Design Verification Plan (& Report)

<table>
<thead>
<tr>
<th>Test</th>
<th>Specification</th>
<th>Test Description</th>
<th>Measurements</th>
<th>Acceptance Criteria</th>
<th>Required Facilities/Equipment</th>
<th>Parts Needed</th>
<th>Responsibility</th>
<th>Start date</th>
<th>Finish date</th>
<th>Numerical Results</th>
<th>Notes on Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Total cost</td>
<td>Sum amount of money required to purchase the new materials and manufacture.</td>
<td>Sum the cost: 34,000</td>
<td>Complete prototypes.</td>
<td>Complete prototypes.</td>
<td>Blake Sautte</td>
<td>5/20/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Damage caused to club</td>
<td>During testing, take notes of breaking, shifting, or residual damage caused from dropping the club. Record damage to club.</td>
<td>None</td>
<td>Complete prototype.</td>
<td>Complete prototype.</td>
<td>Andre Fisher</td>
<td>5/20/2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Lifetime</td>
<td>Analyze the health of the machine after all testing is complete. There should be no wear or tear to the device at the end.</td>
<td>Record damage to measuring instrument.</td>
<td>5,000 measurement limit</td>
<td>Complete prototype.</td>
<td>Complete prototype.</td>
<td>Roman Hays</td>
<td>5/20/2022</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix G: Gantt Chart

<table>
<thead>
<tr>
<th>W22 Golf Club Measurement</th>
<th>start</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Design Review (PDR) Report</td>
<td>01/11/22</td>
<td>02/01/22</td>
</tr>
<tr>
<td>Critical Design Review (CDR) Report</td>
<td>03/15/22</td>
<td>04/08/22</td>
</tr>
<tr>
<td>Scope of Work (SOW)</td>
<td>03/13</td>
<td>03/17</td>
</tr>
<tr>
<td>Peer Review; Manufacturing Plan Summary</td>
<td>02/28</td>
<td>04/01</td>
</tr>
<tr>
<td>PDR updates</td>
<td>03/29</td>
<td>04/04</td>
</tr>
<tr>
<td>Interim Design Review Presentation</td>
<td>04/01/22</td>
<td>04/06/22</td>
</tr>
<tr>
<td>CAD: function and operations</td>
<td>04/05</td>
<td>04/06</td>
</tr>
<tr>
<td>Status of Major Subsystems</td>
<td>04/03/22</td>
<td>04/06/22</td>
</tr>
<tr>
<td>Changes since PDR</td>
<td>04/05</td>
<td>04/06</td>
</tr>
<tr>
<td>Anticipated Manufacturing Processes</td>
<td>04/05</td>
<td>04/06</td>
</tr>
<tr>
<td>Analytical Tests Completed</td>
<td>04/05</td>
<td>04/06</td>
</tr>
<tr>
<td>Design for Manufacturing Plans</td>
<td>04/03</td>
<td>04/06</td>
</tr>
<tr>
<td>Plans for Structural Prototype</td>
<td>04/03</td>
<td>04/06</td>
</tr>
<tr>
<td>Wear Test</td>
<td>04/03</td>
<td>04/06</td>
</tr>
<tr>
<td>Structural Prototype Plans</td>
<td>04/02</td>
<td>04/06</td>
</tr>
<tr>
<td>Logbook Self Assessment</td>
<td>04/21</td>
<td>04/25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IBON</th>
<th>start</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum/Base</td>
<td>04/15</td>
<td>04/22</td>
</tr>
<tr>
<td>Lie Angle</td>
<td>04/15</td>
<td>04/22</td>
</tr>
<tr>
<td>Lift Angle</td>
<td>04/15</td>
<td>04/22</td>
</tr>
<tr>
<td>Face Angle</td>
<td>04/13</td>
<td>04/22</td>
</tr>
<tr>
<td>F1 Length</td>
<td>04/13</td>
<td>04/22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturing Plan</th>
<th>start</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Subassemblies</td>
<td>04/22</td>
<td>04/27</td>
</tr>
<tr>
<td>Manufacturing Order of Operations</td>
<td>04/23</td>
<td>04/27</td>
</tr>
<tr>
<td>Assembly Order of Operations</td>
<td>04/23</td>
<td>04/27</td>
</tr>
<tr>
<td>Assembly Drawings, Part Layout</td>
<td>04/23</td>
<td>04/27</td>
</tr>
<tr>
<td>Design Verification Plan</td>
<td>04/27</td>
<td>04/29</td>
</tr>
<tr>
<td>CDR Rough Draft</td>
<td>04/27/22</td>
<td>05/01/22</td>
</tr>
<tr>
<td>Title Page</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Abstract</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Introduction</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>System Design</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Design Justification</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Manufacturing Plan</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Design Verification Plan</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Conclusions</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>References</td>
<td>04/27</td>
<td>05/05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendices</th>
<th>start</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawing & Spec Package</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>IBON</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Analyses, Simulations etc.</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>FMEA</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Design Hazard Checklist</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Design Verification Plan</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Gantt Chart</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Rowchart/Test Matrix</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Wiring Diagrams</td>
<td>04/27</td>
<td>05/05</td>
</tr>
<tr>
<td>Structural Prototype</td>
<td>05/13</td>
<td>05/10</td>
</tr>
<tr>
<td>CDR Presentation</td>
<td>05/13</td>
<td>05/10</td>
</tr>
<tr>
<td>CDR Final</td>
<td>05/13</td>
<td>05/10</td>
</tr>
<tr>
<td>Drawing and Spec Package</td>
<td>05/13</td>
<td>05/10</td>
</tr>
<tr>
<td>Install DesignSafe Software</td>
<td>05/13</td>
<td>05/10</td>
</tr>
<tr>
<td>Safety Review</td>
<td>05/11/22</td>
<td>05/11/22</td>
</tr>
<tr>
<td>Hazard Checklist</td>
<td>05/11</td>
<td>05/11</td>
</tr>
<tr>
<td>Risk Assessment</td>
<td>05/11</td>
<td>05/11</td>
</tr>
<tr>
<td>FMEA</td>
<td>05/11</td>
<td>05/11</td>
</tr>
<tr>
<td>System Assembly Drawings</td>
<td>05/11</td>
<td>05/11</td>
</tr>
<tr>
<td>Rowchart/Test Matrix</td>
<td>05/11</td>
<td>05/11</td>
</tr>
<tr>
<td>Experimental Design Planning Form</td>
<td>05/19</td>
<td>05/19</td>
</tr>
<tr>
<td>SOLQ: Logbook Self-Assessment</td>
<td>06/21</td>
<td>06/23</td>
</tr>
<tr>
<td>SOLQ: What if Scenario</td>
<td>05/25</td>
<td>05/25</td>
</tr>
<tr>
<td>Preliminary Experiment Test Procedure</td>
<td>05/24</td>
<td>05/25</td>
</tr>
<tr>
<td>SOLQ: Write & Test Procedure</td>
<td>05/30</td>
<td>05/30</td>
</tr>
<tr>
<td>SOLQ: Team Feedback</td>
<td>06/01</td>
<td>06/01</td>
</tr>
<tr>
<td>Task</td>
<td>Start Date</td>
<td>End Date</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>CDR Report Updates</td>
<td>05/21</td>
<td>06/08</td>
</tr>
<tr>
<td>Manufacturing and Test Update</td>
<td>05/29</td>
<td>06/08</td>
</tr>
<tr>
<td>Ethical Debate Outline</td>
<td>05/27</td>
<td>06/07</td>
</tr>
<tr>
<td>Final Design Review (FDR) Report</td>
<td>06/29/22</td>
<td>12/02/22</td>
</tr>
<tr>
<td>Purchasing and Acquiring Materials</td>
<td>06/29/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Base Subassembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Pre-Machined Base Plate</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Pre-Machined Slider Plate</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Lie Subassembly</td>
<td>04/28/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Lie Base Subassembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Pre-Machined Lie Base</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Lie base to Lie Stand Bolts</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Bolt end plate bolts</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Raw Material for Lie Stands</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Lie Arm Subassembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Pre-Machined Small Arm</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Raw Materials to be machined</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Shafts</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Spacers</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Ball bearings</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Plastic Washers</td>
<td>06/25</td>
<td>07/17</td>
</tr>
<tr>
<td>Shaft Collars</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Ball Screw</td>
<td>04/29</td>
<td>05/01</td>
</tr>
<tr>
<td>Bolts</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Shaft Clamping Subassembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Mounting Subassembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Shafts</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Bolts</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Linear Bearing Subassembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Raw Materials for Manufacturing</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Pre-Manufactured Bearing Housing bott...</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Pre-Manufactured bearing tap</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Linear Bearings</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Retaining Rings</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Bolts</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Clamp Housing Subassembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>C-Clamp Housing Subassembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Raw materials to be manufactured</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>shaft</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>bolts</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Symmetrical Separator Subassembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>All-Thread for symmetric screw</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Ball Bearing</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Retaining Ring</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Plastic Washer</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Knob</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>C-Clamp Assembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Raw materials to be manufactured</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>linear ball bearings</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Retaining Rings</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>bolts</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Zero Slider Subassembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Pre-Manufactured Slide Plate</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Raw materials to be machined</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>bolts</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Loft & Face angle Assembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Pre-Manufactured loftface slider</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Raw Materials to be manufactured</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Shafts</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Knob</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Bolts</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Encoder</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Encoder Housing</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Springs</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Washer</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Digital Subassembly</td>
<td>06/23/22</td>
<td>07/17/22</td>
</tr>
<tr>
<td>Microcontroller Unit</td>
<td>06/23</td>
<td>07/17</td>
</tr>
<tr>
<td>Encoder Connecting Cables</td>
<td>06/23</td>
<td>07/17</td>
</tr>
</tbody>
</table>
QC Digital Interface 06/23 07/17
KeeP Point "Zeroing" Subassembly 06/23 07/17
Raw Materials to be manufactured 06/23 07/17
F1 Subassembly 06/23 07/17
Raw materials to be manufactured 06/23 07/17
Bolts 06/23 07/17
Laser Subassembly 06/23 07/17
Levelling Laser 06/23 07/17
Raw materials to be manufactured 06/23 07/17
Bolts 06/23 07/17
Manufacturing and Assembly 09/19 10/15
Manufacture the Following: 09/19 10/15
Lie Base Subassembly 09/19 10/15
Lie Stand 1 09/19 09/23
Lie Stand 2 09/19 09/23
Bolting End Plate 1 09/19 09/23
Bolting End Plate 2 09/19 09/23
Lie Arm Subassembly 09/19 10/15
Main Arm 09/21 09/23
Main Arm Shaft 09/21 09/23
Small to Main Shaft 09/21 09/23
Bearing Plate 1 09/21 09/23
Bearing Plate 2 09/21 09/23
Flange 1 09/21 09/23
Flange 2 09/21 09/23
Flange 3 09/21 09/23
Shaft Clamping Subassembly 09/25 10/01
Mounting Subassembly 09/25 10/01
2 Sliding shafts 09/25 09/25
Symmetrical Separator Subassembly 05/28 10/01
Symmetrical Separator 09/28 10/01
Symmetric Screw 09/28 10/01
2 Symmetric Screw Housing 09/28 10/01
C-Clamp Subassembly 10/01 10/03
C-Clamp Trip 10/01 10/03
Zero Slider Subassembly 10/04 10/05
Lift/loc swirling plate 10/04 10/05
Lift and Face Angle Subassembly 10/06 10/05
Vertical Adjustment Base 10/06 10/06
2 side shafts 10/06 10/06
Housing to encoder 10/06 10/06
Iron Contact 10/06 10/06
Loft-encoder stand 10/06 10/06
Face encoder arm 10/06 10/06
Face encoder shaft 10/06 10/06
F1 Subassembly 10/08 10/05
Base Contact Slider 10/08 10/08
Mount Range Contact 10/08 10/08
Mounts 10/08 10/08
Laser Subassembly 10/10 10/11
Sliding Plate 10/10 10/11
Assemble the Following: 09/19 10/15
Digital Assembly 09/19 09/19
Base Subassembly 09/19 09/19
Laser Subassembly 09/19 10/24
Base Subassembly 09/19 10/24
Lie Arm Subassembly 09/19 10/24
Ball Screw Port 09/19 10/24
Shaft Clamping Subassembly 05/26 10/04
Mounting Subassembly 09/26 09/29
Linear Bearing Assembly 09/27 09/29
C-Clamp Housing Subassembly 09/29 10/01
<table>
<thead>
<tr>
<th>Description</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetrical Separator Subassembly</td>
<td>10/02</td>
<td>10/04</td>
</tr>
<tr>
<td>C-Clamp Subassembly</td>
<td>10/04</td>
<td>10/06</td>
</tr>
<tr>
<td>Zero Slider Assembly</td>
<td>10/06</td>
<td>10/07</td>
</tr>
<tr>
<td>Left and Face Angle Assembly</td>
<td>10/09</td>
<td>10/10</td>
</tr>
<tr>
<td>Keel Point Subassembly</td>
<td>10/12</td>
<td>10/13</td>
</tr>
<tr>
<td>F1 Subassembly</td>
<td>10/13</td>
<td>10/15</td>
</tr>
<tr>
<td>Laser Subassembly</td>
<td>10/15</td>
<td>10/15</td>
</tr>
<tr>
<td>Testing</td>
<td>09/21</td>
<td>10/31</td>
</tr>
<tr>
<td>Encoder and Digital Assembly</td>
<td>09/21</td>
<td>10/17</td>
</tr>
<tr>
<td>Ball Screw and Lio Assembly</td>
<td>09/27</td>
<td>10/01</td>
</tr>
<tr>
<td>Lie accuracy with encoder</td>
<td>10/02</td>
<td>10/06</td>
</tr>
<tr>
<td>Alignment Accuracy of Shaft Clamping</td>
<td>10/07</td>
<td>10/11</td>
</tr>
<tr>
<td>Left and Face angle accuracy with encoder</td>
<td>10/10</td>
<td>10/16</td>
</tr>
<tr>
<td>Effectiveness of Keel Point Subassembly</td>
<td>10/17</td>
<td>10/21</td>
</tr>
<tr>
<td>F1 Accuracy</td>
<td>10/22</td>
<td>10/26</td>
</tr>
<tr>
<td>Effectiveness of Laser Subassembly</td>
<td>10/27</td>
<td>10/31</td>
</tr>
<tr>
<td>VP Sign-Off</td>
<td>10/18</td>
<td>10/15</td>
</tr>
<tr>
<td>DVPK Sign-Off</td>
<td>11/08</td>
<td>11/08</td>
</tr>
<tr>
<td>Rapid</td>
<td>11/18</td>
<td>11/18</td>
</tr>
<tr>
<td>FDR Final</td>
<td>12/02</td>
<td>12/02</td>
</tr>
</tbody>
</table>
Appendix H: Wiring Diagrams
FDR APPENDICIES

A. Commented Code
B. Final Wiring Diagram
C. Final Project Budget
D. User Manual
E. DVP&R
F. Test Procedures
G. Prototype Drawing Package
Appendix A: Commented Code

 """
 @author: grantgabrielson
 """

 #importing relevant libraries
 import time
 import numpy as np
 from gpiozero import RotaryEncoder

 # ppr value from encoder datasheet
 ppr = 5120
 # stop time, in seconds
 tstop = 600
 # sample time, in seconds
 tsample = 0.0001
 # display time, in seconds (for printing values)
 tdisp = 0.5

 # pin configurations
 # Lie pins
 pinA_li = "BOARD3"
 pinB_li = "BOARD4"
 # Face angle pins
 pinA_fa = "BOARD19"
 pinB_fa = "BOARD21"
 # Loft pins
 pinA_lo = "BOARD12"
 pinB_lo = "BOARD16"

 # create encoder objects for each encoder
 # RotaryEncoder class is imported from gpiozero library
 # native to Raspberry Pi
 # lie
 encoder_li = RotaryEncoder(pinA_li, pinB_li, max_steps = 0)
 # loft
 encoder_lo = RotaryEncoder(pinA_lo, pinB_lo, max_steps = 0)
 # face angle
encoderFa = RotaryEncoder(pinA_fa, pinB_fa, max_steps = 0)

introduces variables for encoder readings
lie
anglecurr_li = 0
loft
anglecurr_lo = 0
face angle
anglecurr_fa = 0

introduces time variables
previous time
tprev = 0
current time
tcurr = 0
start time
tstart = 0
sets start time to current counter value
tstart = time.perf_counter()

tells user is is now measuring
print('Starting now')

runs this loop until the counter hits the stop time
while tcurr <= tstop:
 # waits for the selected sample time between readings
time.sleep(tsample)

 # sets current time with respect to start time
tcurr = time.perf_counter() - tstart
 # sets current lie angle (zeros at 89.5 deg)
anglecurr_li = -360 / ppr * encoder_li.steps + 89.5
 # sets current loft angle (zeros at 0 deg)
anglecurr_lo = abs(360 / ppr * encoder_lo.steps)
 # sets current face angle (zeros at 0 deg)
anglecurr_fa = abs(360 / ppr * encoder_fa.steps)

 # checks if the current time has passed the next
display time but the previous time has not, to
make sure each reading is displayed at the
#proper interval
if (np.floor(tcurr/tdisp) - np.floor(tprev/tdisp)) == 1:
 # prints blank space between readings so UI only
 # shows most recent readings
 print(" ")
 print(" ")
 print(" ")
 print(" ")
 print(" ")
 # prints all three angle values continuously
 print("+-------------------+")
 print("|Lie Angle: " f'{anglecurr_li:.2f}'"|")
 print("|Lof Angle: " f'{anglecurr_lo:.2f}'"|")
 print("|Face Angle: " f'{anglecurr_fa:.2f}'"|")
 print("+-------------------+")

 # sets the time for the start of next computation as
 # the end time for this computation
 tprev = tcurr

 # tells the user it is done reading
 print('done')
 # closes all three encoder objects
 encoder_li.close()
 encoder_lo.close()
 encoder_fa.close()
Appendix B: Final Wiring Diagram
Appendix C: Final Project Budget

<table>
<thead>
<tr>
<th>Component Description</th>
<th>QTY</th>
<th>Vendor</th>
<th>Buyer</th>
<th>Cost</th>
<th>Reimbursed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Springs for clamping system</td>
<td>1</td>
<td>mcmaster</td>
<td>Andre</td>
<td>$22.97</td>
<td>No</td>
</tr>
<tr>
<td>Mcmaster - Materials, Shafts, and Bolts</td>
<td>1</td>
<td>mcmaster</td>
<td>Blake</td>
<td>$445.92</td>
<td>Yes</td>
</tr>
<tr>
<td>Raspberry Pi</td>
<td>1</td>
<td>Amazon</td>
<td>Grant</td>
<td>$170.74</td>
<td>No</td>
</tr>
<tr>
<td>Final Digital Display</td>
<td>1</td>
<td>Amazon</td>
<td>Grant</td>
<td>$65.98</td>
<td>No</td>
</tr>
<tr>
<td>Laser + Bracket</td>
<td>1</td>
<td>Amazon</td>
<td>Grant</td>
<td>$62.13</td>
<td>No</td>
</tr>
<tr>
<td>Arduinos + I2C Disp.</td>
<td>1</td>
<td>Amazon</td>
<td>Grant</td>
<td>$58.45</td>
<td>No</td>
</tr>
<tr>
<td>Final encoder (1st)</td>
<td>1</td>
<td>Digikey</td>
<td>Grant</td>
<td>$32.94</td>
<td>No</td>
</tr>
<tr>
<td>Final encoder (2nd and 3rd)</td>
<td>1</td>
<td>Digikey</td>
<td>Grant</td>
<td>$58.89</td>
<td>No</td>
</tr>
<tr>
<td>3 Test encoders</td>
<td>3</td>
<td>P3 America</td>
<td>Grant</td>
<td>$189.75</td>
<td>No</td>
</tr>
</tbody>
</table>

Total $1,107.77
Clubometer – Loft, Lie, and Face Angle Measurement for Golf Clubs

Section A
PURPOSE AND SCOPE

The purpose of this document is to detail how to measure the loft, lie, and face angle as they apply to irons, woods, and drivers’ heads.

This applies to the Incoming Quality Control process.

Section B
SAFETY

1. Be cautious of moving parts and pinching points.
2. Be cautious with electrical components and any liquids.
3. Ensure object is securely placed on a stable surface to avoid falling.

Section C
EQUIPMENT SET-UP

1. Place device on flat table with enough room to operate.
2. Plug in the device.
3. Plug in the laser.
4. Inspect device for any wear that may affect measurement.
5. Inspect wires for any misconnections.

Section D
INSTRUCTIONS

1.0 Mark Face Center

1.1. Use centering cup or face template to mark face center (Fig. 1).

1.2. Verify the correct mandrel is used for face cups and club heads (Fig. 2).

Fig. 1
Fig. 2
.0 Loft/Face Angle Measurement

2.1. Measure and mark the keel point for the face cup or club head on the Clubometer base plate.

2.1.1. Obtain keel point reading from the inspection plan or product specification.

2.1.2. Measure keel point distance from the Clubometer base plate center line using a digital caliper.

NOTE: The center line is the longest line etched into the Clubometer base plate.

2.2 Zero encoders for measurement.

2.2.1. Use the zero plate to adjust the loft and face angle measurement arms to their zero position (Fig. 3).

2.2.2. Use the crank to adjust the lie angle to its upright (90 degree) position (Fig. 4).

2.2.3. Run the measurement script to set this as the zero point for the encoders.

2.3. Set the Design Lie Angle of the face cup or club head being measured.

2.3.1. Obtain the Design Lie Angle from the inspection plan or product specification.

2.3.2. Turn the crank on the Lie Angle Measurement scale until the digital lie angle reading matches the Design Lie Angle (Fig. 3).

2.4. Place the club or club head with mandrel into the Clubometer by separating the clamp and adjust the club head so that its sole is just touching the Clubometer base plate.

2.5. Adjust the position of the club head so that the sole lines up with the keel point marked on the Clubometer base plate (Fig. 5).

2.6. Release the sides of the clamp so that it secures the club in place (Fig. 6).
2.7. Center the face of the club head.

 2.7.1. Place crosshair laser attachment on base plate to get the center mark of Clubometer base plate.

 2.7.2. Adjust the Clubometer base plate (forward or backward) so that center of the face cup or club head aligns to the center line on the Clubometer base plate.

2.7. Verify the keel point on the face cup or club head has not moved from the keel point marked on the Clubometer base plate.

2.8. Measure Face/Loft Angle.

 2.8.1. Place Face/Loft Angle Gauge on the Clubometer base plate (Fig. 7).

 2.8.2. Adjust the Face/Loft Angle Gauge height using the knob to line up the Face/Loft Angle Gauge with the marked center on the face cup or club head (Fig. 7).

 2.8.3. Slide the Face/Loft Angle Gauge slowly up to the face cup or club head until the two points on the Face Angle Gauge contact the face evenly (Fig. 8).

 2.8.4. Record the Face Angle as displayed on digital readout.
2.8.5. Verify Face Angle reading with the Face Angle in the inspection plan or product specification.

2.8.6. If measuring a Driver or Wood connect the proper loft angle measurement attachment.

2.8.7 Lower Loft angle arm and slide the Face/Loft Angle Gauge slowly up to the face cup or club head until the piece hits the club face.

2.8.8. Record the Loft Angle as displayed on digital readout.

2.8.9. Verify Loft Angle reading with the Loft Angle in the inspection plan or product specification.

2.8.10. Remove Face/Loft Slider Attachment.

3.0 Lie Angle Measurement

3.1. Ensure encoders are properly zeroed (refer to Section 2.2) and club is properly clamped (Section 2.4-2.6).

3.2. Place Laser Slider onto Clubometer Baseplate (Fig. 9).

3.3. Measure Lie Angle.

3.3.1 With the zeroing laser directed at the club face, decrease the lie angle by turning the hex key until the zeroing laser is horizontal with the grooves of the club face (Fig. 10).

3.3.2. Record the Lie Angle as displayed on digital readout.

3.3.3. Verify Lie Angle reading with the Loft Angle in the inspection plan or product specification.

Fig. 9

Fig. 10
Appendix E: DVP&R

DVP&R - Design Verification Plan & Report

<table>
<thead>
<tr>
<th>Test #</th>
<th>Specification</th>
<th>Test Description</th>
<th>Measurements</th>
<th>Acceptance Criteria</th>
<th>Required Facilities/Equipment</th>
<th>Parts Needed</th>
<th>Responsibility</th>
<th>TAMG</th>
<th>Start Date</th>
<th>Finish Date</th>
<th>Notes on Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time to measure a club</td>
<td>Analyze the amount of time required to measure a club head in the lab.</td>
<td>< 0 minutes</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Roman Hays, Grant Gagnon</td>
<td>5/29/2022</td>
<td>11/13/2022</td>
<td>Yes</td>
<td>3.5</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>Amount of measurement types</td>
<td>Analyze the number of measurements taken to measure a club head and determine the number of additional subassemblies required to measure the club.</td>
<td>< 3</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Jodie Fisher</td>
<td>5/16/2022</td>
<td>10/22/2022</td>
<td>3</td>
<td>Three measurement points of the head and face angle. extinct measurements can be taken from the head. For instance, the angle of the club head is measured.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Initial test</td>
<td>Individually, test random people to use the prototypes to measure a club head and determine the number of attempts it would take for them to use a club.</td>
<td>< 6</td>
<td>Complete prototype</td>
<td>Complete prototype</td>
<td>Roman Hays, Grant Gagnon</td>
<td>5/29/2022</td>
<td>11/13/2022</td>
<td>3.4</td>
<td>Everyone was able to operate the machine on their own after a maximum of 4 attempts.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Setup time</td>
<td>Measure the time it takes to set up a club and ensure the device is working properly.</td>
<td>< 3 minutes</td>
<td>Lie angle subassembly, clamping mechanism, head, ball position measurement</td>
<td>Lie angle subassembly, clamping mechanism, head, ball position measurement</td>
<td>Roman Hays, Grant Gagnon</td>
<td>5/29/2022</td>
<td>11/13/2022</td>
<td>2.5</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Number of components</td>
<td>Counting the number of subassemblies required to measure a club head.</td>
<td>< 4 subassemblies</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Blake Sasse</td>
<td>1/14/2020</td>
<td>11/10/2020</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DVP&R - Design Verification Plan & Report

<table>
<thead>
<tr>
<th>Test #</th>
<th>Specification</th>
<th>Test Description</th>
<th>Measurements</th>
<th>Acceptance Criteria</th>
<th>Required Facilities/Equipment</th>
<th>Parts Needed</th>
<th>Responsibility</th>
<th>TAMG</th>
<th>Start Date</th>
<th>Finish Date</th>
<th>Notes on Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Compilation of test data</td>
<td>Analyze the number of additional subassemblies required to measure the club.</td>
<td>< 4</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Jodie Fisher</td>
<td>5/16/2022</td>
<td>10/22/2022</td>
<td>3</td>
<td>Three measurements points of the head and face angle. extinct measurements can be taken from the head. For instance, the angle of the club head is measured.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Accuracy of lie measurement</td>
<td>Using a Callaway golf club, with a lie angle, determine the angle close the prototype can get to the target angle.</td>
<td>Lie angle</td>
<td>Up to ± 0.5 degrees of 60°</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Jodie Fisher</td>
<td>5/15/2022</td>
<td>11/16/2022</td>
<td>6.7°</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Precision of lie measurement</td>
<td>Using a Callaway golf club, with a lie angle, determine how close the prototype can get to the target angle.</td>
<td>Lie angle</td>
<td>Standard deviation up to ± 0.3°</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Jodie Fisher</td>
<td>5/15/2022</td>
<td>11/16/2022</td>
<td>0.3°</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Accuracy of loft measurement</td>
<td>Using a Callaway golf club, with a loft angle, determine how close the prototype can get to the target angle.</td>
<td>Loft angle</td>
<td>Up to ± 0.5 degrees of 20°</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Jodie Fisher</td>
<td>5/15/2022</td>
<td>11/16/2022</td>
<td>20°</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Precision of loft measurement</td>
<td>Using a Callaway golf club, with a loft angle, determine how close the prototype can get to the target angle.</td>
<td>Loft angle</td>
<td>Standard deviation up to ± 0.3°</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Jodie Fisher</td>
<td>5/15/2022</td>
<td>11/16/2022</td>
<td>0.3°</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Calculation of loft angle deviation</td>
<td>The target angle is a standard deviation of ± 1.5°. If the measurement is within this range, the target angle is considered to be acceptable.</td>
<td>Loft angle</td>
<td>Up to ± 0.5° due to manufacturing tolerances</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Jodie Fisher</td>
<td>5/15/2022</td>
<td>11/16/2022</td>
<td>0.5°</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Accuracy of loft angle measurement</td>
<td>Using a Callaway golf club, with a loft angle, determine how close the prototype can get to the target angle.</td>
<td>Angle of loft face</td>
<td>Up to ± 0.5° with point measurement</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Jodie Fisher</td>
<td>5/15/2022</td>
<td>11/16/2022</td>
<td>0.5°</td>
<td></td>
</tr>
<tr>
<td>Test #</td>
<td>Specification</td>
<td>Test Description</td>
<td>Measurements</td>
<td>Acceptance Criteria</td>
<td>Resolved</td>
<td>Failed</td>
<td>Responsible</td>
<td>Start date</td>
<td>Finish date</td>
<td>Numerical Results</td>
<td>Notes or Testing</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>13</td>
<td>Precision of face measurement</td>
<td>Using a slide at a known angle to determine how close the measured angles are to each other</td>
<td>Angle of a known face</td>
<td>Standard deviation up to +/- 0.5°</td>
<td>Finalized design</td>
<td>Finalized design</td>
<td>Andre Fischer</td>
<td>11/13/2022</td>
<td>11/16/2022</td>
<td>0.4°</td>
<td>The standard deviation within the acceptable bounds but has a standard deviation close to 0.5 degrees the referenced surface is not extremely flat and a small amount of weight may disturb the reading.</td>
</tr>
<tr>
<td>14</td>
<td>Tool cost</td>
<td>Sum amount of money required to purchase the necessary raw materials and manufacture</td>
<td>Sum the costs</td>
<td>$6 = Cost $3000</td>
<td>Complete prototype</td>
<td>Complete prototype</td>
<td>Blake Sousa</td>
<td>6/26/2022</td>
<td>11/16/2022</td>
<td>$1,300</td>
<td>The tool cost was over budget by approximately $300.</td>
</tr>
<tr>
<td>15</td>
<td>Damage caused to club</td>
<td>During testing, take notes of scratching, scratch, or residual damage caused from dropping the club</td>
<td>Record damage to club</td>
<td>None</td>
<td>Complete prototype</td>
<td>Complete prototype</td>
<td>Andre Fischer</td>
<td>5/29/2022</td>
<td>11/16/2022</td>
<td>None</td>
<td>No damage to club.</td>
</tr>
<tr>
<td>16</td>
<td>Lifetime</td>
<td>Analyze the health of the machine after all testing to complete; there should be zero error or error to the device at the end</td>
<td>Record damage to measuring instrument</td>
<td>2 broken components</td>
<td>Complete prototype</td>
<td>Complete prototype</td>
<td>Blake Sousa</td>
<td>5/29/2022</td>
<td>11/16/2022</td>
<td>None</td>
<td>No damage to machine.</td>
</tr>
<tr>
<td>17</td>
<td>Rotational precision of ball screw</td>
<td>Analyze the number of degrees changed per one revolution of the ball screw</td>
<td>Degree variation of this to angle per revolution on the ball screw</td>
<td><= 2 degrees/revolution</td>
<td>Complete prototype</td>
<td>Complete prototype</td>
<td>Blake Sousa</td>
<td>5/29/2022</td>
<td>11/13/2022</td>
<td>1.8°</td>
<td>The ball screw connected to the digital output makes it very easy to adjust the lo angle to the correct measurement.</td>
</tr>
</tbody>
</table>
Appendix F: Test Procedures

Time to measure a club

Purpose: Calculate how long it takes to measure a golf club once the club is set up.

Scope: Measurement time.

Equipment:
- Timer
- Golf clubs
 - Iron
 - Wood
 - Driver
- The measurement device

Hazards: None

PPE Requirements: None

Facility: Cal Poly, Building 197: Engineering Projects Center

Pass criteria: Average measurement time < 8 minutes

Procedures:
1. Set up golf club in fixture.
2. Start time.
3. Follow measurement procedures, measuring lie, loft, and face angles when appropriate.
4. Stop time.
5. Record time.
6. Repeat 3 times per club.

Results:

<table>
<thead>
<tr>
<th>Pass Criteria</th>
<th>Fail Criteria</th>
<th>Number of Samples to Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 8 minutes</td>
<td>> 8 minutes</td>
<td>3</td>
</tr>
</tbody>
</table>

Test Dates:
- November 13, 2022
- November 17, 2022

Test Results:

Maximum time = 3:15
Minimum time = 1:24

Performed By: Roman Hays
Time to set up a club

Purpose: Determine the amount of time it takes to set up a golf club.

Scope: Set up time.

Equipment:
- Timer
- Golf clubs
 - Iron
 - Wood
 - Driver
- The measurement device

Location: Cal Poly, Building 197: Engineering Projects Center

Hazards: None

PPE Requirements: None

Procedures:
1. Select golf club to test.
2. Start time.
3. Follow set up procedures defined in the User Manual.
4. Set up golf club in fixture.
5. Stop time.
6. Record time.
7. Repeat 3 times per club.

Results:

<table>
<thead>
<tr>
<th>Pass Criteria</th>
<th>Fail Criteria</th>
<th>Number of Samples to Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3 minutes</td>
<td>< 3 minutes</td>
<td>3</td>
</tr>
</tbody>
</table>

Test Dates:
- November 13, 2022
- November 17, 2022

Test Results:

Maximum time = 2:51
Minimum time = 0:49

Performed By: Roman Hays
Intuitiveness of Device

Purpose: Evaluate the intuitiveness of the measuring device.

Scope: Ease of use.

Equipment:
- 5 test subjects
- Golf clubs
 - Iron
 - Wood
 - Driver
- The measurement device

Hazards: None

PPE Requirements: None

Facility: Cal Poly, Building 197: Engineering Projects Center

Procedure:
1. Randomly select subject for test.
2. Pick club type from trial using random number generator.
3. Set up club in device.
4. Demonstrate measurement procedure to subject.
5. Reset device.
6. Subject attempts to measure club without assistance.
7. If a subject requires assistance, repeat steps 4-6.
8. Allow 5 attempts per subject.
9. After successful measurement or 5 attempts, choose a new subject for the test and repeat steps 1-8.

Results:

<table>
<thead>
<tr>
<th>Pass Criteria</th>
<th>Fail Criteria</th>
<th>Number of Samples to Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5 Addition Demonstrations</td>
<td>> 5 Addition Demonstrations</td>
<td>5</td>
</tr>
</tbody>
</table>

Test Dates: November 13, 2022

Test Results:

<table>
<thead>
<tr>
<th>Subject</th>
<th># Times Additional Help is Required</th>
<th>Pass/Fail?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>Pass</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Pass</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Pass</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Pass</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Performed By: Roman Hays, Grant Gabrielson
Lie Angle Metrology

Purpose: Measure the accuracy of the lie angle measurement about a club with a known lie angle.

Scope: Accuracy of lie angle.

Equipment:
- Golf club with known lie angle value.
- The measurement device

Hazards: None

PPE Requirements: None

Facility: Cal Poly, Building 197: Engineering Projects Center

Procedure:
1. Set up golf club in fixture.
2. Zero the lie angle encoder.
3. Measure the lie angle of the club in accordance with measurement User Manual instructions.
4. Record measurement.

Results:

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Pass Criteria</th>
<th>Fail Criteria</th>
<th>Number of Samples to Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean value within 61° ± 0.5°</td>
<td>Mean value outside 61° ± 0.5°</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precision</th>
<th>Pass Criteria</th>
<th>Fail Criteria</th>
<th>Number of Samples to Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard deviation < 0.6°</td>
<td>Standard deviation > 0.6°</td>
<td>32</td>
</tr>
</tbody>
</table>

Test Dates: November 14, 2022

Test Results:

- Mean: 62.73°
- Standard Deviation: 0.30°
- 95% Confidence Interval: (62.62°, 62.84°)

Performed By: Andre Fisher
Face Angle Metrology

Purpose: Measure the accuracy of the face angle measurement about a club with a known face angle.

Scope: Face angle effectiveness

Equipment:
- Surface set to a known 5° angle
- Measurement device

Hazards: None

PPE Requirements: None

Facility: Cal Poly, Building 197: Engineering Projects Center

Procedure:
1. Set up golf club in fixture.
2. Zero the face angle encoder.
3. Measure the face angle of the club.
4. Record measurement.

Results:

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass Criteria</td>
<td>Mean value within 5° ± 0.5</td>
<td>Standard deviation < 0.6°</td>
</tr>
<tr>
<td>Fail Criteria</td>
<td>Mean value outside 5° ± 0.5</td>
<td>Standard deviation > 0.6°</td>
</tr>
<tr>
<td>Number of Samples to Test</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

Test Dates: November 14, 2022

Test Results:

Mean	5.01°
Standard Deviation | 0.33°
95% Confidence Interval | (4.89°, 5.13°)

Performed By: Andre Fisher
Loft Angle Metrology

Purpose: Measure the accuracy of the loft angle measurement about a club with a known loft angle.

Scope: Loft angle effectiveness.

Equipment:
- Golf club with known loft angle value.
- The measurement device

Hazards: None

PPE Requirements: None

Facility: Cal Poly, Building 197: Engineering Projects Center

Procedure:
1. Set up golf club in fixture.
2. Zero the loft angle encoder.
3. Measure the loft angle of the club.
4. Record measurement.

Results:

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Pass Criteria</th>
<th>Fail Criteria</th>
<th>Number of Samples to Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean value within 23.5° ± 0.5</td>
<td>Mean value within 23.5° ± 0.5</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precision</th>
<th>Pass Criteria</th>
<th>Fail Criteria</th>
<th>Number of Samples to Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard deviation < 0.6°</td>
<td>Standard deviation < 0.6°</td>
<td>32</td>
</tr>
</tbody>
</table>

Test Dates: November 14, 2022

Test Results:

![Graph showing test results]

<table>
<thead>
<tr>
<th>Mean</th>
<th>26.75°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation</td>
<td>0.84°</td>
</tr>
<tr>
<td>95% Confidence Interval</td>
<td>(26.45°, 27.06°)</td>
</tr>
</tbody>
</table>

Performed By: Andre Fisher
Loft Angle Deviation

Purpose: Determine the cause of a large standard deviation.

Scope: Loft angle effectiveness.

Equipment:
- Golf club
- Clamp
- The measurement device

Hazards: None

PPE Requirements: None

Facility: Cal Poly, Building 197: Engineering Projects Center

Procedure:
1. Set up golf club in fixture.
2. Set the club with known dimensions to its designed lie angle.
3. Make sure the club is horizontal with 3D printed datum set.
4. Measure the loft angle.
5. Apply torque to clamping fixture in one direction, make sure lie angle stays the same.
7. Record measurement.
Results:

<table>
<thead>
<tr>
<th>Pass Criteria</th>
<th>Fail Criteria</th>
<th>Number of Samples to Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean < 0.7°</td>
<td>Mean > 0.7°</td>
<td>19</td>
</tr>
</tbody>
</table>

Test Dates: November 14, 2022

Test Results:

<table>
<thead>
<tr>
<th>Mean</th>
<th>6.13°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation</td>
<td>0.60°</td>
</tr>
<tr>
<td>95% Confidence Interval</td>
<td>(5.84°, 6.42°)</td>
</tr>
</tbody>
</table>

Performed By: Andre Fisher
Ball Screw Range of Motion

Purpose: Determine the maximum and minimum lie angles achieved due to ball screw.

Scope: Total range of motion of the lie angle.

Equipment:
- The measurement device

Hazards: None

PPE Requirements: None

Facility: Cal Poly, Building 197: Engineering Projects Center

Procedure:
1. Zero the lie angle encoder.
2. Rotate ball screw to maximum lie angle.
3. Record the maximum lie angle measurement.
4. Rotate ball screw to minimum lie angle.
5. Record the minimum lie angle measurement.

Results:

<table>
<thead>
<tr>
<th>Pass Criteria</th>
<th>Fail Criteria</th>
<th>Number of Samples to Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum angle ≥ 85°</td>
<td>Maximum angle ≤ 85°</td>
<td>2</td>
</tr>
<tr>
<td>Minimum angle ≤ 50°</td>
<td>Minimum angle ≥ 50°</td>
<td></td>
</tr>
</tbody>
</table>

Test Dates: November 12, 2022

Test Results:

<table>
<thead>
<tr>
<th>Minimum Angle</th>
<th>Maximum Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.23°</td>
<td>89.5°</td>
</tr>
</tbody>
</table>

Performed By: Roman Hays & Grant Gabrielson
Ball Screw Angular Displacement

Purpose: Quantitatively determine the number of lie angle degrees changed per rotation of the ball screw.

Scope: Determine how easy it will be to get specific lie angles by hand.

Equipment:
- The measurement device

Hazards: None

PPE Requirements: None

Facility: Cal Poly, Building 197: Engineering Projects Center

Procedure:
1. Zero the lie angle encoder.
2. Record initial angle.
3. Rotate ball screw 1 revolution
4. Record final angle.
5. Repeat steps 2-4 for 5, 10, 15 revolutions

Results:

<table>
<thead>
<tr>
<th>Pass Criteria</th>
<th>Fail Criteria</th>
<th>Number of Samples to Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta(°)/\text{rotation} \leq 5°/\text{rotation}$</td>
<td>$\Delta(°)/\text{rotation} > 5°/\text{rotation}$</td>
<td>2</td>
</tr>
</tbody>
</table>

Test Dates: November 12, 2022

Test Results:

![Graph showing statistical data]

<table>
<thead>
<tr>
<th>Quantile</th>
<th>Summary Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0% maximum</td>
<td>Mean 1.8165</td>
</tr>
<tr>
<td>99.5%</td>
<td>Max 1.97</td>
</tr>
<tr>
<td>97.5%</td>
<td>Percentile 1.97</td>
</tr>
<tr>
<td>90.0%</td>
<td>Percentile 1.97</td>
</tr>
<tr>
<td>75.0%</td>
<td>Quartile 1.91975</td>
</tr>
<tr>
<td>50.0%</td>
<td>Median 1.807</td>
</tr>
<tr>
<td>25.0%</td>
<td>Quartile 1.71825</td>
</tr>
<tr>
<td>10.0%</td>
<td>1.69</td>
</tr>
<tr>
<td>2.5%</td>
<td>1.69</td>
</tr>
<tr>
<td>0.5%</td>
<td>1.69</td>
</tr>
<tr>
<td>0.0%</td>
<td>Minimum 1.69</td>
</tr>
</tbody>
</table>

Mean	1.82°
Standard Deviation	0.10°
95% Confidence Interval	(1.73°, 1.90°)

Performed By: Roman Hays & Grant Gabrielson
Appendix G: Drawing Package
ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
1 | 1111 | T-Slotted Framing - 47065T411 | 2
2 | 1111 | T-Slotted Framing - 47065T411 | 2
3 | 1113 | Silver Corner Bracket | 4
4 | 1113 | T-Slotted Framing | 8
5 | 1120 | Slider Plate | 1
6 | 1111 | T-Slotted Framing-47065T411 | 1
7 | 1111 | T-Slotted Framing 47065T411 | 2
8 | 1114 | T-Slotted Framing 47065T267 | 2
9 | 1112 | Daignol Brace - 47065T188 | 1
COMMENTS: EXTRUDED ALUMINUM IS CONNECTED USING CORNER AND SURFACE BRACKETS PURCHASED.

THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF TOP GOLF CALLAWAY BRANDS. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF TOP GOLF CALLAWAY BRANDS IS PROHIBITED.

Purchased

T-Slotted Framing - 47065T411
T-Slotted Framing - 47065T411
Silver Corner Bracket
Silver Corner Bracket Bolts
T-Slotted Framing - 47065T411
T-Slotted Framing - 47065T411
Surface Brackets - 47065T267
Daignol Brace - 47065T188

ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
1 | 1111 | T-Slotted Framing - 47065T411 | 2
2 | 1111 | T-Slotted Framing - 47065T411 | 2
3 | 1113 | Silver Corner Bracket | 4
4 | 1113 | Silver Corner Bracket Bolts | 8
5 | 1111 | T-Slotted Framing - 47065T411 | 1
6 | 1111 | T-Slotted Framing - 47065T411 | 2
7 | 1114 | Surface Brackets - 47065T267 | 2
8 | 1112 | Daignol Brace - 47065T188 | 1
Item No. | Part Number | Description | QTY.
--- | --- | --- | ---
5 | 1120 | Slider Plate | 1

The information contained in this drawing is the sole property of Top Golf Callaway Brands. Any reproduction in part or as a whole without the written permission of Top Golf Callaway Brands is prohibited.
Lie Arm Subassembly

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1221</td>
<td>Small Arm</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1222</td>
<td>Main Arm Shaft</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1223</td>
<td>Small To Main Arm Shaft</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1224</td>
<td>Small Arm Shaft</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1225</td>
<td>Bearing Plate 1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1226</td>
<td>Bearing Plate 2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1229</td>
<td>Lie Shaft Collar- 9414T6</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>1227</td>
<td>Lie Arm Ball Bearing- 2342K164</td>
<td>3</td>
</tr>
</tbody>
</table>

Dimensions:

- Tolerances:
 - Fractional
 - Angular: Mach
 - Bend: Two Place Decimal
 - Three Place Decimal

Notes:

- The information contained in this drawing is the sole property of Top Golf Callaway Brands. Any reproduction in part or as a whole without the written permission of Top Golf Callaway Brands is prohibited.

Scale: 1:2

Size: DWG. NO. 1220

Rev: 1

Sheet: 8 of 22
SHAFT CLAMPING SUBASSEMBLY

TOP GOLF CALLAWAY BRANDS

DRAWING

DO NOT SCALE DRAWING

DIMENSIONS ARE IN INCHES

SUBASSEMBLY

SHEET 11 OF 22

11/28/22

B. Sousa

SCALE: 1:2

UNLESS OTHERWISE SPECIFIED:

- **WEIGHT:**
- **REV DWG. NO. 1300**

FINISH

MATERIAL

SHAFT CLAMPING

TOLERANCES:

FRACTIONAL
ANGULAR MACH
BEND TOLERANCES

THREE PLACE DECIMAL

FRACTIONAL TOLERANCES:

THREE PLACE DECIMAL

TWO PLACE DECIMAL

ITEM NO.	**PART NUMBER**	**DESCRIPTION**	**QTY.**
1 | 1310 | Main Arm | 1
2 | 1320 | Housing Slider | 1
3 | 1330 | C Clamp | 2
4 | 1340 | Sliding Shaft - 1/2" Rod | 2
5 | 1340 | C Clamp Shaft - 1/2" Rod | 2
6 | 1350 | Alloy Steel Socket Head Screw | 8

PART TABLE:

1310
1320
1330
1340
1350

NAME

DATE

CHECKED:

ENG APPR:

MFG APPR:

Q.A:

COMMENTS:

TITLE:

SOLIDWORKS Educational Product. For Instructional Use Only.
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1320</td>
<td>Housing Slider</td>
<td>1</td>
</tr>
</tbody>
</table>
ITEM NO. PART NUMBER DESCRIPTION QTY.
1 1510 Loft/Face Slider 1
2 1520 Vertical Adjustment Base 1
3 1530 Slide Shafts 2
4 1540 316 Stainless Steel Hex Drive Flat Head Screw 93395A360 4
5 1550 Height Cap 1
6 1560 Aluminum Knurled Palm-Grip Knob 7762K103 1
7 1570 Loft Flat Iron Contact 1
8 15-10-0 Loft Encoder Shaft 1
9 15-11-0 Blue-Dyed Zinc-Plated Alloy Steel Socket Head Screw 91502A143 1
10 15-12-0 Face Angle Arm 1
11 15-13-0 316 Stainless Steel Dowel Pin 93600A618 1
12 1610 Encoders 2
13 1620 Zinc-Plated Alloy Steel Button Head Torx Screws 92832A178 5

SOLIDWORKS Educational Product. For Instructional Use Only.
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1510</td>
<td>Loft/Face Slider</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1530</td>
<td>Slide Shafts</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>15-10-0</td>
<td>Loft Encoder Shaft</td>
<td>1</td>
</tr>
</tbody>
</table>
ITEM NO. | PART NUMBER | DESCRIPTION | QTY. |
----------|--------------|-----------------------|------|
5 | 1550 | Height Cap | 1 |

Item NO.	PART NUMBER	DESCRIPTION	QTY.
7 | 1570 | Loft Flat Iron Contact | 1 |

2X \(<MOD-DIAM>\) .24 \(<HOLE-DEPTH>\) .79 \(<HOLE-SINK><MOD-DIAM>\) .47 \(90^\circ\)

DIA .38 THRU
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15-12-0</td>
<td>Face Angle Arm</td>
<td>1</td>
</tr>
</tbody>
</table>

M2.5x0.45 Tapped Hole THRU

.25
ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
1 | 1620 | Zinc-Plated Alloy Steel Button Head Torx Screws 92832A178 | 8
2 | 1631 | Raspberry PI 4Model B | 1
3 | 1632 | Raspberry PI Housing | 1
4 | 1633 | Raspberry PI Cover | 1

MATERIAL TOLERANCES:

DIMENSIONS ARE IN INCHES

SCALE: 1:2

WEIGHT:

REV

DWG NO. 1630

NAME DATE

CHECKED

ENG APPR.

TOP GOLF CALLAWAY BRANDS

THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF TOP GOLF CALLAWAY BRANDS. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF TOP GOLF CALLAWAY BRANDS IS PROHIBITED.