Oceanside Angler’s Club David Pine Memorial Weight Board

Tanner Pine
California Polytechnic State University
San Luis Obispo, CA

The David Pine Memorial Weight Board was constructed for the Oceanside Angler’s Club. I was contacted by this organization, to create a weigh board in founding member David Pine’s memory. The club had a previous weight board that was destroyed due to the harsh conditions of the coast. The process of building this board incorporated many of the facets taught in the Cal Poly curriculum. I had to work with the owners in order to create a suitable design, materials had to be acquired using alternative methods, subcontractors were worked with to create components of the board, and a schedule had to be met. The board was design, constructed, and installed in the Oceanside Harbor where the Angler Club hosts its fishing tournaments, water safety awareness, and beach clean ups. The purpose of the weight board is to post of weights of fish caught by the different boats during the tournaments hosted by the club. The final product was a fully functioning and weather resistant weigh board that not only fulfills its desired function but commemorates one of the clubs’ founding members. Continuing not only his legacy but the legacy of the club.

Key Words: Alternative, Milling, Safety, Memorial, Construction

Project Background

The Oceanside Angler’s Club was formed in 1994 and certified as a non-profit in 2011. The club organizes beach clean-ups, teaches water safety sessions, provides equipment for harbor purification, and gives back in many other ways. During COVID the club was forced to stop hosting these events and many others. One such event was their fishing tournament, which is held to fundraise money to support their other community service events. During the lockdowns their previous weight board was destroyed and thus they needed a replacement. Around that time, one of their founding members David Pine passed away. David Pine was not only responsible for founding the club but was crucial in their progression into a non-profit. Due to his influence in not only the club but in the community, they wanted to memorialize him with the new weight board.

Upon his passing I was contacted by Jo Ann Pine, his wife and current board member of the Oceanside Angler’s Club, to build a weight board in his honor. The club was aware of me because as a child I actively participated in beach clean-ups held by the club; because of this I developed a
relationship with the club. As I grew up, I would help Jo Ann and David improve their house to be more handicap assessable, as David was paralyzed from the waist down. Towards the end of his life, I spend many days at the house helping them.

Project Process & Lessons Learned

Members of the Oceanside Angler’s Club were surveyed and their desires for the weight board were recorded, the requirements were then compiled. Using that data, a rough design was produced. The design was deemed adequate, and a more finalized plan was created. Upon final approval of the weight board by the Oceanside Angler’s Club construction of the weight board commenced.

The weight board is made from pine. The wood used in the construction of the board was made from trees grown in David Pine’s backyard. This was done for multiple reasons. First being that the board had a very tight budget, but high-quality materials were still desired. Secondly, this was a memorial to David Pine and thus the club wanted to memorialize his impact with more than his name. The tree with the least number of branches was selected and felled. Using the tree with the most minimal number of branches was necessary in order to reduce the number of knots in the final product. This will increase the visual appeal of the final product while also providing increased structural stability. The correct tree was selected, felled, and milled. The tree was milled into two 4x4 posts, four 2x6 boards, and other strip sizes. The trees were milled at raw edge design, a local wood working factory based near the harbor. After rough milling the pieces were then run through a joiner to ensure that they were perfectly straight and did not have any bows. The other strip sizes were then ripped, using a table saw, into twelve ½ x 7/8th strips. The wood was then run through a planer to achieve the exact board sizes.

The four 2x6 boards were then notched using a table saw. The notch would be to install marine grade plywood to the frame. The bottom 2x6 was then cut at a bevel to allow water to drain off of the lip. Once the pieces were notched and beveled, they were cut to the appropriate length. They were cut at the end to ensure that if any blowouts or errors occurred the best side would still be able to be selected. The boards were cut at a 45-degree angle. The boards were then joined using a small finish gun. Once the frame was roughly constructed it was squared. The joints were then glued using Titebond II premium wood glue. Once the corners were glued, they were securely fasted using 6 GRK Fasteners #8x2-1/2in RT Composite Trim-Head Finish Screws per corner. GRK trim head screws were selected due to their low profile and exterior durability. The composite screws were chosen due to their higher resistance to separation. Wood near the ocean tends to separate due to the ocean air, thus screws that would prevent this were needed.

The twelve small strips were then measured and cut to the appropriate size. These strips were butt cut rather than being cut at a 45. The three top strips were installed first. The strips were glued and fasted using the above screws, but the 1 ½” length screws were used. The three side strips were then installed on either side, using the same attachment process. Installing these second would allow for the top strip to be supported by the wood, even if the screws failed. The three bottom pieces were installed. These strips would create a track for the glass to slide back and forth in. The end product produced three rows of wooden squares lining the inside of the larger 2x6 frame. The outer square from was not glued at this stage in the building process as it would need to be removed to install the glass at a later date. The marine grade plywood was then installed into the recessed slot at the back of the 2x6 frame. Weep holes were then drilled into the bottom of the frame to allow water to drain out. When drilling the weep holes a scrap piece of wood was placed below where the drill head would be
coming out. This would prevent the drill head from blowing out the wood. The entire frame was then sanded.

In the harbor 2 16x16 inch wide holes were dug 18 inches deep. The bottom of the posts were primed to prevent any water absorption, this would increase the longevity of the display board. The posts were then installed into the ground where they were plumed. Concrete was then mixed in a wheelbarrow and dumped into the holes. The top of the concrete was rounded to allow water to drain away from the posts. The posts were then left to cure overnight. The next day, once the concrete had dried, the top of the posts were cut to the correct height. The posts were cut at a 10-degree angle in order to prevent water from settling at the tops and rotting them. The bracing holding the posts plum was removed. The frame was then attached to the posts using Grabber #8x2” Philips Modified Truss-Head Wood Screws. The marine grade plywood back was screwed into the posts. The screws were chosen due to their large head which would prevent the screws from sinking through the plywood. Small strips were then cut to be placed around the back of the board to give it a more finished look. In order to attach these strips a small finish gun was used. In the location where the board was installed there were no outlets close by. In order to provide power a small generator was used. Clear silicon was then placed around the connection between the concrete and the posts.

While the construction of the board was taking place, Oceanside Glass was contacted and given the measurements that would be required. The glass was cut to size and beveled. Beveling the glass would allow for less points of contact between the glass and the wood and would allow for the glass to slide easier. There was a hole drilled into each pane to allow for them to be opened and closed easier. A small screw was then placed in the bottom track to act as a stop for the glass.

Working with Fast Signs and the Oceanside Angler’s Club a desired design for the white board was created. The white board is branded with the Oceanside Anglers Club name and a subtext that says, “In loving memory of David Pine, Gametime.” There is also a marlin on the right side of the board.

Curriculum Connection

This project was a very hands-on experience. The construction of this weight board involved many facets of the construction industry. In order to construct the board, there was the need to work in conjunction with the owners in order to create a design was the functional yet visually appealing. The design and materials were not conventional seeing as the board was going to be placed in the harbor next to the water. This would require the design to take that into consideration. This is very true in terms of construction projects. Project are not cookie cutter and thus need to be treated as unique entities. While there may be overlapping similarities there are also a lot of challenges. It had to be within their very tight budget. Thus, alternative methods of material acquirement had to be used. This made the process very challenging. Much like in construction, there are times where conventional methods are not suitable and thus alternative practices must be used. There was also the need to work with subcontractors to contract out the cutting of the glass and the creation of the white board. The Angler Club was hosting a fishing tournament a few weeks following them asking me to create this board. Thus, there was a schedule that needed to be met, in order for them to be able to use the board during the tournament.