Memory in a Contact Line

Charity Lizardo, Esmeralda Orozco, Audrey Profeta, Nathan Keim, Physics Department, Cal Poly

Experiment Overview
- Can the shape of a water drop hold memory?
- Syringe pump infuses and withdraws same volume of water repeatedly, changing contact line shape
- Pictures taken once per cycle and analyzed

Apparatus
- DSLR camera positioned above
- Two pieces of acrylic or glass
- LEDs wrap around

Contact Line
- Interface between water and air in the channel is the contact line.

Steady State
- After many cycles, contact line reaches steady state where changes in shape are minimal.

Hydrophobicity and Contact Angle
- Acrylic is relatively hydrophobic, while glass is hydrophilic.
- This difference is roughly measured by the contact angle θ and might explain the materials' different contact line dynamics.

Diagnosing Return Point Memory
- Return Point Memory (RPM): Returning to a previous input restores the state of the system, unless a larger input is applied.
 1. "Train" contact line by repeating same volume amplitude for 200 cycles; system eventually reaches steady state
 2. Introduce smaller amplitude
 3. Repeat initial amplitude \rightarrow expect steady state intact
 4. Introduce larger amplitude
 5. Repeat initial amplitude \rightarrow expect steady state lost

Results
- On acrylic channel, contact line reaches nonzero steady state at high volume cycles.
- On glass channel, contact line only reaches zero steady state, even at higher volumes. This surprise prompted the search for other behaviors exhibited by glass.

Conclusions
- Behavior of contact line depends on channel material
- Contact line can store trained volume as info that can be retrieved later
- Contact line on glass may exhibit RPM, but need more rigorous tests

Contact Line

Contact line

Air

Water

5 mm

Steady State
- Smaller amplitude
- Zero steady state
- Larger amplitude
- Nonzero steady state

References:

Funding: NSF 1708870, RSCA.

Acknowledgments: Kevin Thompson, Andrew Cantino, Joey Paulsen, Brian Kroger, Jeanette Smit, Aidan McCuickin, Dani Medina.

The 2019 STEM Teacher and Researcher Program and this project have been made possible through support from Chevron (http://www.chevron.com), the National Science Foundation through the Robert Noyce Program under Grant #1836335 and #1340110, the California State University Office of the Chancellor, and California Polytechnic State University in partnership with the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funders.