The search of ancient life through the use of geologic samples
Amber Paturzo | STAR Program

Background
Astrobiogeochemistry Laboratory is interested in exploring molecular and mineralogical biosignatures in ancient and recent Earth samples to provide evidence of early signs of life. Through a lipid biomarker extraction and analysis, scientists are able to remove organic material in preparation for the Mars 2020 Mission.

Method
1. Measure crushed sample into large Teflon tube
2. Use dichloromethane as solvent
3. Transfer DCM and sample into small Teflon tube
4. Centrifuge Teflon tubes for 14 minutes at 3000rpm
5. Extract supernatant and place into labeled glass tubes
6. Add DCM to Teflon tubes
7. Sonicate Teflon tubes for 3 minutes
8. Shake Teflon tubes to separate lipids from sediment
9. Centrifuge Teflon tubes for 14 minutes at 3000rpm
10. Extract supernatant and place into labeled glass tubes
11. Repeat steps 6-10
12. Evaporate liquid from glass tubes
13. Suspend organic material in glass tubes using DCM
14. Transfer to gas chromatography vial and dry down sample
15. Resuspend in hexane and dry down again
16. Use GC/MS for chromatogram

Data

<table>
<thead>
<tr>
<th>C15</th>
<th>C17</th>
<th>C19</th>
<th>C27</th>
<th>C29</th>
<th>C31</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.719</td>
<td>6.884</td>
<td>0.096</td>
<td>0.061</td>
<td>0.049</td>
<td>0.035</td>
</tr>
<tr>
<td>22.951</td>
<td>8.778</td>
<td>0.056</td>
<td>0.045</td>
<td>0.039</td>
<td>0.033</td>
</tr>
<tr>
<td>28.131</td>
<td>4.153</td>
<td>0.050</td>
<td>0.040</td>
<td>0.031</td>
<td>0.026</td>
</tr>
<tr>
<td>49.300</td>
<td>1.020</td>
<td>0.069</td>
<td>0.055</td>
<td>0.052</td>
<td>0.049</td>
</tr>
<tr>
<td>83.889</td>
<td>1.073</td>
<td>0.134</td>
<td>0.150</td>
<td>0.147</td>
<td>0.130</td>
</tr>
<tr>
<td>58.189</td>
<td>1.205</td>
<td>0.125</td>
<td>0.122</td>
<td>0.117</td>
<td>0.111</td>
</tr>
<tr>
<td>17.3</td>
<td>4.91</td>
<td>0.126</td>
<td>0.124</td>
<td>0.122</td>
<td>0.117</td>
</tr>
<tr>
<td>6.36</td>
<td>1.20</td>
<td>0.122</td>
<td>0.122</td>
<td>0.121</td>
<td>0.119</td>
</tr>
</tbody>
</table>

Terrestrial Aquatic Ratio
(C15 + C17 + C19) / (C27 + C29 + C31)
• High number more aquatic
• Lower number more terrestrial

Future Plans

Acknowledgements
This work is based upon work supported by the National Science Foundation through the Robert Noyce Teacher Scholarship Program. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Science Foundation. The research was also made possible by the California State University STEM Teacher and Researcher Program, in partnership with NASA. Special thanks to my mentor Michael Tuite and the STAR Teacher Researcher Program.