
ACTIVE PEN INPUT AND THE ANDROID INPUT FRAMEWORK

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Andrew Hughes

June 2011

c© 2011

Andrew Hughes

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Active Pen Input and the Android Input
Framework

AUTHOR: Andrew Hughes

DATE SUBMITTED: June 2011

COMMITTEE CHAIR: Chris Lupo, Ph.D.

COMMITTEE MEMBER: Hugh Smith, Ph.D.

COMMITTEE MEMBER: John Seng, Ph.D.

iii

Abstract

Active Pen Input and the Android Input Framework

Andrew Hughes

User input has taken many forms since the conception of computers. In the

past ten years, Tablet PCs have provided a natural writing experience for users

with the advent of active pen input. Unfortunately, pen based input has yet to

be adopted as an input method by any modern mobile operating system. This

thesis investigates the addition of active pen based input to the Android mobile

operating system.

The Android input framework was evaluated and modified to allow for active

pen input events. Since active pens allow for their position to be detected without

making contact with the screen, an on-screen pointer was implemented to provide

a digital representation of the pen’s position. Extensions to the Android Soft-

ware Development Kit (SDK) were made to expose the additional functionality

provided by active pen input to developers. Pen capable hardware was used to

test the Android framework and SDK additions and show that active pen input

is a viable input method for Android powered devices.

Android was chosen because it is open source and therefore available to modify

and test on physical hardware. Gingerbread (Android 2.3) was used as the code

base for this thesis. All modifications to the Android framework that are detailed

in this thesis will be made available online. The goal of this thesis is to explore

methods of integrating and exposing active pen input in Android and encourage

the implementation and adoption of active pen input by Google as a standard

input method in Android.

iv

Acknowledgements

I would like to thank Jeff Brown at Google for his communication, insights,

and discussion of the Android framework and active pen input. His thoughts

have been invaluable in exploring and adding to the Android framework.

I would like to thank James Carrington at N-trig for his discussions of active

pen input as well as his help in acquiring an N-trig/Nvidia prototype tablet.

I would like to thank my thesis advisor, Dr. Chris Lupo, for his feedback and

support on this thesis.

I would like to thank my fiance, Alicen Ramin, for her emotional support of

my research and execution of this thesis.

I would like to thank my roommate, Kyle Husmann, for his amazing friend-

ship, encouraging and challenging me over the past five years.

I would like to thank my parents for their love and support. I could not have

gotten this far without you.

Most importantly, I would like to thank God for giving me the gifts and

passions He has built in me and for guiding me in life.

v

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Previous Work 4

3 Background 7

3.1 Android . 7

3.2 Active Pen Input . 9

4 Initial Evaluation 11

5 Android Input Framework 13

5.1 Overview . 13

5.2 Startup . 14

5.3 Event Processing Core . 16

5.3.1 InputManager . 16

5.3.2 InputReader . 16

5.3.3 InputDispatcher . 17

5.3.4 InputReaderPolicy and InputDispatcherPolicy 19

5.3.5 EventHub . 20

6 Input Framework Changes 22

6.1 New Input Device Class . 22

6.2 ActiveStylusInputMapper . 23

6.2.1 Actions . 24

vi

6.2.2 Side Buttons . 25

6.2.3 Tool Type . 26

6.3 Adding Tool Type Support . 27

6.4 InputDispatcher Changes . 29

6.5 GetMaxEventsPerSecond . 30

6.6 PointerManagerService . 31

6.6.1 Pointer Modification Using the Side Button 33

6.7 WindowManager Additions . 33

7 Developer API Additions 35

7.1 MotionEvent . 35

7.1.1 Actions . 35

7.1.2 Meta State . 36

7.1.3 Tool Type . 37

7.2 PointerManager . 38

7.2.1 Pointer . 38

8 Validation 39

8.1 Test Hardware . 39

8.1.1 Hardware Setup . 41

8.1.2 Features . 42

8.2 Testing . 43

9 Limitations 44

9.1 Changing the Pointer . 44

9.2 MotionEvent Actions . 45

9.3 Mulitple Pointer Devices . 45

10 Update to Official SDK 47

11 Future Work 49

12 Conclusion 51

References 53

vii

List of Tables

5.1 Available InputMapper Classes 17

5.2 Available InputDevice Source Classes 17

5.3 Available InputDevice Sources . 18

5.4 Available Input Device Classes . 20

6.1 Active Stylus input.h Values . 24

6.2 New Native Motion Event Actions 25

6.3 New Native Meta States . 26

6.4 New Native Keycodes . 26

6.5 New Native Motion Event Tool Types 27

6.6 Classes Updated to Support Tool Type Field 28

6.7 Methods Updated to Support Tool Type Parameter 29

6.8 List of Modified Files in frameworks/base/ 34

6.9 List of New Files in frameworks/base/ 34

7.1 Additional MotionEvent Actions 36

7.2 MotionEvent Tool Types . 37

7.3 New MotionEvent Methods . 37

7.4 Pointer Manager Methods . 38

8.1 Wacom SU-025-C02 Pin-outs . 42

viii

List of Figures

3.1 Android System Architecture . 8

3.2 Wacom and N-trig Digitizer Technologies 10

5.1 Input Framework Startup . 15

5.2 Event Propagation To an Activity 21

8.1 Test Hardware Setup . 40

8.2 Test Software Setup . 41

ix

Chapter 1

Introduction

The goal of user input has always been to make interacting with devices as

natural as possible. Input methods like the mouse have provided great intuitive

functionality to users by providing them with a digital representation of some-

thing they are moving in real life and allowing them to interact with objects on

the screen. A challenge for the mobile industry has been to reproduce this intu-

itive functionality in a transparent and seamless way. To do this, mobile devices

must have input methods that are built into the design of the device. They must

also implore methods that users are used to in their everyday lives.

Touchscreens have played a major role in mobile devices by allowing users to

directly interact with digital objects using their fingers. With the introduction of

multi-touch touchscreens, users have been able to interact with content in more

dimensions than ever before. These input methods, however, are still limited to

the use of our fingers, or objects, such as passive styli, that mimic fingers. As

humans, we have developed other analog tools to augment our everyday lives.

Most notably, pen and paper have been invaluable to us as productivity tools.

In an attempt to use these tools as an input method for computers, Tablet PCs

1

were created. Active pen input, the technology behind Tablet PCs, is an input

method that can be integrated into devices and uses a pen-like device, or stylus,

that the user uses to interact with objects on the screen. The main benefit of

active pen input is the fact that writing is a well established human activity.

Microsoft saw the potential in these devices and developed an operating system

with active pen input in mind called Windows XP Tablet PC Edition. Active

pen input has continued to be a part of the available input methods in Microsoft

operating systems, as well as many Linux distributions.

Active pen input, however, has not yet been adopted by any modern mobile

operating system as a viable input method. The difference between mobile and

non-mobile operating systems, is that mobile operating systems were designed

from the ground up to be navigated and used on the go. They do not expect

a user to be sitting down at a table or desk using a mouse. They are generally

focused on one full screen task at a time and provide a “touch friendly” interface

to the user. Devices that run modern mobile operating systems are designed to

be instant on, lightweight, and generally get all day battery life. Adding active

pen input as an input method for these devices will open up an opportunity for

enhanced productivity, capability, and applications to take advantage of the new

functionality.

This paper presents the first open implementation of active pen input in

any mobile operating system. The Android mobile operating system was chosen

because it is open source and because there is hackable hardware readily available.

This thesis investigates additions to the Android framework that take advantage

of and expose the special functionality provided by active pen input. The goal

of this thesis is to present an implementation of active pen input in Android

and encourage Google to include active pen input as a standard input method in

2

future releases of Android. In doing so, this research hopes to further the mobile

computing industry.

This paper is broken down into the following chapters: Chapter 2 discusses

previous work in the field of active pen input. Chapter 3 provides background

information on Android and active pen input. Chapter 4 details an initial eval-

uation of active pen input in Android. Chapter 5 looks at the current state of

the Android input framework in Gingerbread (Android 2.3). Chapter 6 explores

the changes and additions made to the Android input framework to allow for

active pen input. Chapter 7 looks at the additions to the Android Software De-

velopment Kit (SDK) that give developers access to the additional functionality

provided by active pen input. Chapter 8 describes how the framework and SDK

additions were validated using physical test hardware. Chapter 9 outlines various

limitations in the research implementation. Chapter 10 discusses recent updates

to the official Android SDK by Google. Chapter 11 speculates on how this work

can be beneficial to Google and the mobile industry and what more can be done.

Chapter 12 summarizes the findings in this paper and provides final thoughts.

3

Chapter 2

Previous Work

Pen based computing has been attempted many times in the past, however

each time it has generated more traction than the last. In November 2000,

Microsoft began marketing a new type of device they called the Tablet PC [10].

This device included both active pen input as well as a special release of Windows

XP called Windows XP Tablet PC Edition. This Windows version included

special input methods designed to take advantage of the pen and make it more

useful. Not only could the active pen interact with applications, but the operating

system could perform handwriting recognition as a text input method. Since the

introduction of Tablet PCs, many studies and papers have been published about

the importance and potential of pen input in areas such as education and medical

fields.

Education is an especially important sector for pen computing. It not only

provides new productivity applications for students such as digital note-taking

in class, but also for teachers to use pen input to annotate lectures. In a study

performed at Seton Hall University in 2003, students were asked “Overall which

of the following best describes your feeling regarding the use of tablet computing

4

by your professor in this course in terms of teaching and learning effectiveness?”

Student responses ranged from 48% “very positive” and 33.7% “positive” to 3.1%

“negative” and 5.1% “don’t know/no opinion” [4].

Another study was performed in a software engineering course at the Uni-

versity of Alaska Anchorage in 2004 [11]. In this classroom, the instructor used

a Tablet PC to write notes on PowerPoint lectures which contained code, UML

diagrams, and standard bulleted slides. The instructor used the pen to highlight

items on the slides, write notes, and coordinate exercises. In addition, the lectures

were recorded (both audio from the classroom and video of the annotated slides)

and made available to the students to watch again later. When presented with

the statement “I prefer the computer “whiteboard” to a traditional blackboard

(i.e. chalk) for use in the classroom”, 47.6% of students responded “strongly

agree”, 19% responded “somewhat agree”, 9.5% responded “neither agree nor

disagree”, and no student disagreed (23.8% did not respond).

Medical professionals have benefited from Tablet PCs as well. In The Case

for the Tablet PC in Health Care, Hewlett-Packard states “being forced to work

with paper can result in manual data entry, lost patient information, and an

increase in medical errors” [5]. The white paper goes on to state, “The Tablet

PC, with its versatile form that supports pen navigation, and the capability to

write directly on the screen and convert to printed text, offers todays mobile

health care workers the ability to revolutionize the ways they work by making

it easy to capture, access, and use information wherever the job takes them.”

Specially designed Tablet PCs have been made for medical professionals, such as

Motion Computing’s Motion C5v Tablet PC which it calls “the industry’s first

Mobile Clinical Assistant (MCA)” [12].

Apart from the Microsoft Tablet PC platform, there has been only one other

5

recent device that takes advantage of active pen input technology. In May 2011,

HTC released the Flyer tablet and Scribe pen [8] [6]. The HTC Flyer/Scribe

combination uses N-trig’s DuoSense digitizer technology [7], which combines both

active pen input and capacitive multitouch into a single digitizer [14]. Together,

the devices allow for active pen input in Android 2.3 using custom additions to

the Android framework. These additions have not been made public and it is

still unclear whether HTC intends to allow access to the active pen’s functional-

ity through a third party Android SDK add-on. The importance of developing a

standard active pen input implementation in Android is to establish a common

framework and feature set for applications to build off of. This will ensure maxi-

mum compatibility for applications across devices running Android and providing

active pen input capability. In addition, device manufacturers will be more likely

to create devices with active pen input if it is already officially supported in An-

droid. Without a standard implementation made available by Google, active pen

input will not fully penetrate the mobile computing industry.

6

Chapter 3

Background

This chapter provides background information about Google’s Android oper-

ating system and active pen input.

3.1 Android

Android is an open source Linux based operating system developed by Google

for mobile devices. The Android platform is made up of five main components

as seen in Figure 3.1: the Linux kernel, Android runtime, system libraries, appli-

cation framework, and applications [18].

Android uses a Linux 2.6 based kernel and includes various additions to

support features such as power management, inter-process communication, and

framebuffers used by system libraries and the application framework. At this

point in time, the Andriod kernel is a fork of the mainline Linux kernel due to

disagreements between the Linux kernel maintainers and Google.

The Android runtime includes a Java virtual machine created by Google,

7

Figure 3.1: Android System Architecture.

called the Dalvik virtual machine, as well as a set of core libraries that provide

most of the functionality available in the core libraries of the Java programming

language. The Dalvik VM runs executables in the Dalvik Executable (.dex)

format, which are classes compiled by a Java language compiler that have been

transformed into the .dex format by the “dx” tool. The Dalvik VM is optimized

for minimal memory footprint and good performance in resource constrained

environments (such as mobile devices). The Dalvik VM is register-based and

relies on the Linux kernel for underlying functionality such as threading and

low-level memory management.

The Android system libraries are a collection of C/C++ libraries used and

exposed to developers by the Android application framework. This includes li-

braries such as the standard C system library, media libraries, SQLite database

8

library, WebKit engine, surface manager, SGL, and 3D libraries.

The Android application framework is a set of services and APIs that provide

management of applications and components for building and running applica-

tions. The available developer APIs are exposed through the Android SDK [16].

Android applications are programs built by Google and third-party developers

in Java (and C/C++ if using the Android Native Development Kit, or NDK [15]).

3.2 Active Pen Input

Active pen input provides many features not available with capacitive touch-

screens. Some of these feature are dependent on the manufacturer of the active

pen digitizer, but the basic functionality is: ability to detect the pen position

(x,y) above the display, ability to detect position of contact with display (x,y),

and report the pressure when in contact with the display. In both cases, the

precision of the x,y coordinates are high, with sub-pixel accuracy. In addition,

many pens contain side button(s) and/or a pressure sensitive “eraser” that can

provide additional functionality to an application.

The primary manufacturers of active pen input technology are Wacom and N-

trig. The former produces a digitizer panel that goes behind a display, while the

latter makes a transparent digitizer that performs both pen and touch input and

is positioned above a display. Wacom also has a touchscreen solution that goes

above the display and integrates with a single pen and touch controller, but it is

a physically separate component from their pen digitizer panel. A comparison of

Wacom and N-trig’s pen technologies can be seen in Figure 3.2 [17] [13].

9

(a) Wacom (digitizer below display) (b) N-trig (digitizer above display)

Figure 3.2: Wacom and N-trig Digitizer Technologies.

10

Chapter 4

Initial Evaluation

The use of active pen input in Android was initially evaluated using a Lenovo

x61 Tablet PC and Android 1.6 (Donut). The x61 Tablet PC has a Wacom

active pen digitizer integrated behind the display. The open source Android-x86

[1] project was used to get Android compiled and running for the x61 Tablet PC.

In its early days, the Android-x86 project had limited support for mice with their

own additions to the Android input framework. In function, an active pen is very

similar to a mouse. They both support showing the position of a “pointer” on the

screen and provide buttons (whether the tip or side of the pen) for interacting

with objects on the screen. The main difference is that a mouse is a relative

positioning device, while an active pen is an absolute positioning device.

The Android-x86 mouse patch [2] was used to determine the additions re-

quired to integrate an additional pointing device into Android. Using this as a

guideline, a new “Stylus” input class was defined and assigned to the digitizer

input device in order to track active pen events. When these events reached the

WindowManager they were used to set the mouse cursor location.

11

Since the active pen digitizer in the x61 Tablet PC is a serial device, it will

not communicate directly with the Android input system without the proper

driver. Since the support for serial Wacom devices in Linux is limited to the

X Window System (which Android does not use), an appropriate driver needed

to be written. Since Android uses the input event system (input devices regis-

tered in /dev/input), a simple input event driver was written. This input event

driver reads values from a sysfs node and creates input events appropriately. The

utility “wacdump”, included with the Linux Wacom Project source code [9] and

originally designed to detect and report all active pen digitizer functions to an

interactive terminal screen, was modified to write each action detected by the

active pen digitizer to the sysfs node created by the input event driver. More

details regarding the software stack used to test the hardware can be seen in

Section 8.1.

12

Chapter 5

Android Input Framework

The Android input framework is made up of a series of C++ and Java classes

that detect, filter, categorize, and inject input events into the currently running

Activity or system component (such as the notification bar). The input frame-

work has changed significantly over the last few releases of Android. This section

will discuss the state of the input framework as it is in Gingerbread (Android 2.3).

The Android source code can be acquired from the Android Open Source Project

(AOSP) git repository [3]. All references to code and comments throughout the

rest of this paper can be found in the AOSP git repository.

5.1 Overview

Input events are detected and read in by the EventHub. The InputReader

continually acquires new events from the EventHub and performs initial filtering

and categorization on input events based on the device an event is from. This

essentially turns “raw” input events into “cooked” events (from InputReader.h).

These “cooked” events are then added to the InputDispatcher queue. The Input-

13

Dispatcher continually publishes queued events to all valid input targets. There

can be multiple valid input targets listening for input events. These input targets

can range from the currently focused application or system component to system

services that are monitoring input events. Each valid input target at the time of

event publishing is notified through an InputQueue that it has received an input

event. The InputQueue then dispatches the input event to the InputHandler

that has been registered with it. If the target is an application, the InputHandler

then dispatches the input event to the corresponding View. Application View

and Activity components are notified of input events via their event dispatchers

and input event handlers.

5.2 Startup

When Android first starts, the SystemServer is created. The SystemServer

is designed to launch all the major framework services. The SystemServer and

all the framework components it creates are written in Java. Each component

that must communicate with native C/C++ code either uses JNI (Java Native

Interface) or Android’s Binder IPC mechanism. To start the input framework,

the SystemServer starts the WindowManagerService which in turn creates the

InputManager. The InputManager uses JNI to create a native class called the

NativeInputManager and provides callbacks to communicate with the Java Input-

Manager. The NativeInputManager is designed to be the connection between the

Java InputManager and the rest of the native input framework. The NativeInput-

Manager also implements the InputReaderPolicy and InputDispatcherPolicy (see

Section 5.3.4). When instantiated, the NativeInputManager creates the Even-

tHub along with the aptly named InputManager. The (native) InputManager

14

creates two threads, one for the InputReader and one for the InputDispatcher.

As briefly described in Section 5.1, the InputReader thread reads and prepro-

cesses raw input events, applies policy, and posts messages to a queue managed

by the InputDispatcher, while the InputDispatcher thread waits for new events

on the queue and asynchronously dispatches them to applications.

Figure 5.1: Input Framework Startup.

15

5.3 Event Processing Core

The native InputManager (and related classes) make up the core of the An-

droid input framework. This section describes these components in more detail.

5.3.1 InputManager

The InputManager is a simple class that creates the InputReader, Input-

Dispatcher, InputReaderThread, and InputDispatcherThread. The InputRead-

erThread simply calls the InputReader’s loopOnce() method forever. Similarly,

the InputDispatcherThread calls the InputDispatcher’s dispatchOnce() method

forever.

5.3.2 InputReader

The Android documentation describes the role of the InputReader as “pro-

cesses raw input events and sends cooked event data to an input dispatcher”

(from InputReader.h). The InputReader continuously retrieves a raw event from

the EventHub (see Section 5.3.5) and processes it. It keeps track of a list of

devices that are currently connected along with their capabilities. Each device

(defined as an InputDevice) has an associated InputMapper that helps map each

raw input event from an input device to a “cooked” event state that can be sent

to the InputDispatcher (see Section 5.3.3).

When an InputDevice is created (after a new device is detected by the Even-

tHub), it is assigned an InputMapper based on the input device class reported

by the EventHub. When that input device produces input events, the events are

given to the InputMapper for processing before they are dispatched. A list of

16

available InputMappers can be seen in Table 5.1. After processing the raw input

event, each InputMapper notifies the InputDispatcher of its input event.

SwitchInputMapper Maps switches such as the “lid switch”
KeyboardInputMapper Maps physical keyboards and buttons to key

events
TrackballInputMapper Maps trackballs to motion events

SingleTouchInputMapper Maps single pointer touchscreens to motion
events (based on TouchInputMapper)

MultiTouchInputMapper Maps multi pointer touchscreens to motion
events (based on TouchInputMapper)

Table 5.1: Available InputMapper Classes.

In addition to processing input events, each InputMapper is responsible for

reporting the source class and source of an input event. Each of these constants

are defined in both the native code and in the Java code (in the InputDevice class).

The Java source class and source constants can be seen in Tables 5.2 and 5.3. The

only difference between the native and Java constants is the native constants are

prefixed with “AINPUT ”. The native constants are used by the InputReader

and InputDispatcher.

SOURCE CLASS BUTTON The input source has buttons or keys.
SOURCE CLASS POINTER The input source is a pointing device as-

sociated with a display.
SOURCE CLASS POSITION The input source is an absolute position-

ing device not associated with a display
(unlike SOURCE CLASS POINTER).

SOURCE CLASS TRACKBALL The input source is a trackball navigation
device.

Table 5.2: Available InputDevice Source Classes.

5.3.3 InputDispatcher

The InputDispatcher can be broken down into two main parts: one part

continually reads from the internal queue of “EventEntry” objects (run by the

17

SOURCE UNKNOWN The input source is unknown.
SOURCE KEYBOARD The input source is a keyboard.
SOURCE DPAD The input source is a DPad.
SOURCE TOUCHSCREEN The input source is a touch screen point-

ing device.
SOURCE MOUSE The input source is a mouse pointing de-

vice.
SOURCE TRACKBALL The input source is a trackball.
SOURCE TOUCHPAD The input source is a touch pad

or digitizer tablet that is not associ-
ated with a display (unlike SOURCE
TOUCHSCREEN).

SOURCE ANY A special input source constant that is
used when filtering input devices to match
devices that provide any type of input
source.

Table 5.3: Available InputDevice Sources.

InputDispatcherThread described in Section 5.3.1), the other part adds entries

to the internal queue from the notify calls made by the InputReader. Each time

an event is removed from the internal queue, the current valid input targets are

determined. This includes the currently focused application, along with other

viewable windows or system components, and any system services monitoring

input events. If the event is a motion event, it is determined whether or not the

event is within the bounds of the focused window area, obscured area outside the

focused application, or in the case of multiple pointers (or touches) whether or

not the motion event can be “split” across multiple windows.

Once the InputDispatcher determines how to handle the event, it dispatches

the event to each of the valid input targets. To do this, a “dispatch cycle” is

prepared for each input target. This sets up a Connection object with the input

target and enqueues the event on the connection’s outbound queue. When the

dispatch cycle is started, the event is published to the connection’s InputPub-

lisher object. After the event has been published, a “dispatch signal” is sent

18

using the InputPublisher. This notifies the InputConsumer on the other side of

the connection that there is an event ready to be consumed. Once the event is

consumed, the InputConsumer sends a “finished signal” which is received by the

InputPublisher. This tells the InputDispatcher that this event was successfully

consumed. The connection’s outbound queue is checked for any additional events

and the dispatch cycle is repeated. When there are no more events on the con-

nection’s outbound queue, the connection is closed. This allows for events to be

continually added to a connection’s outbound queue as long as it is still sending

them without the Connection needing to be re-established (this is referred to as

event streaming).

5.3.4 InputReaderPolicy and InputDispatcherPolicy

The InputReaderPolicy and InputDispatcherPolicy are used by the Inpu-

tReader and InputDispatcher respectively to call into Java code via JNI and

communicate with the WindowManagerService and other system components.

Both the InputReaderPolicy and InputDispatcherPolicy are implemented by the

NativeInputManager. These policy callbacks perform various tasks from checking

input injection permission to notifying the WindowManagerService of an ANR

(Application Not Responding) to determining filtering parameters. Some of these

callbacks access system properties or build configurations that represent the in-

put configuration of a specific Android device. This allows the behaviour of some

elements of the input framework to be modified simply by changing these system

properties and rebooting.

19

5.3.5 EventHub

Android detects input events from devices that have an input event driver

which registers a device under /dev/input. When a new input event is created

in /dev/input, the EventHub determines if it is a device that is supported by

Android by checking its capabilities. If the device is supported, one or more

input device classes are assigned to the input device. A list of available input

device classes can be seen in Table 5.4 (the first cell in the table is a prefix for

each of the input device classes). The EventHub generates synthetic add/remove

events whenever a device has been connected or disconnected. A stream of events

is detected and returned via the EventHub::getEvent() function. This is called

by the InputReader (see Section 5.3.2) and is guaranteed to be called by a single

caller (so there is no need for locking). All input events are added to an input

buffer which is read by getEvent(). This allows for events to be retrieved from

the devices that generated them in the order they occurred. When there are

no more events in the input buffer, getEvent() calls poll on the input device file

descriptors and waits for more input.

INPUT DEVICE CLASS
KEYBOARD The input device is a keyboard.
ALPHAKEY The input device is an alpha-numeric keyboard

(not just a dial pad).
TOUCHSCREEN The input device is a touchscreen (either single-

touch or multi-touch).
TRACKBALL The input device is a trackball.
TOUCHSCREEN MT The input device is a multi-touch touchscreen.
DPAD The input device is a directional pad (implies key-

board, has DPAD keys).
GAMEPAD The input device is a gamepad (implies keyboard,

has BUTTON keys).
SWITCH The input device has switches.

Table 5.4: Available Input Device Classes.

20

Figure 5.2: Event Propagation To an Activity.

21

Chapter 6

Input Framework Changes

In order for active pen input to be detected and propagate all the way to

an application, various additions and changes were made to the Android input

framework. This chapter describes those changes.

6.1 New Input Device Class

In order to detect a new type of device for interpretation, a new input device

class had to be made. An addition was made to the existing input device classes

shown in Table 5.4 called the INPUT DEVICE CLASS ACTIVE DIGITIZER.

This new input device class defines the input device as an active pen digitizer. An

input device is assigned this class in the EventHub if it is an absolute positioning

device and it tests positive for BTN TOOL PEN. This shows that the input

device has at least a pen tool type.

22

6.2 ActiveStylusInputMapper

A new input mapper was added to the InputReader for active pen input,

called the ActiveStylusInputMapper. The TouchInputMapper was used as a ba-

sis for the ActiveStylusInputMapper because of the underlying similarities in the

devices. Both device types support down, move, and up events, however an

active pen supports additional actions such as “hover” and “proximity.” A Sin-

gleActiveStylusInputMapper (extending ActiveStylusInputMapper) was created

to further refine the ActiveStylusInputMapper for a digitizer that only supports

a single active pen. Since most currently available active pen digitizers are sin-

gle input (unless used by more than one person at a time, there’s no need for

more than one active pen), the focus is on the SingleActiveStylusInputMapper,

however room is still left for a MultiActiveStylusInputMapper.

The SingleActiveStylusInputMapper is assigned to input devices with the new

INPUT DEVICE CLASS ACTIVE DIGITIZER. When active pen input events

are generated, the process() method gets called by the InputReaderThread. This

method was modified to support the various input event values reported by the

active pen input event driver. These values (defined in input.h) are listed in

Table 6.1. Not all the values are valid for every active pen digitizer and additional

values may be needed to completely represent all possible functions of an active

pen digitizer. For example, not all active pens have a pen tool on one end

(BTN TOOL PEN) and an eraser (or “rubber”) tool on the other end (BTN

TOOL RUBBER). Also, not all active pens have two (or any) side buttons (BTN

STYLUS and BTN STYLUS2).

Once event values have “accumulated” and a SYN REPORT is received, the

sync() method is called and the event state is determined. Whether the pen is

23

BTN TOUCH The stylus is in the “touched” or “down”
position.

BTN TOOL PEN The pen tool is being used.
BTN TOOL RUBBER The “rubber” or eraser tool is being used.
BTN STYLUS The primary stylus side button is pressed.
BTN STYLUS2 The secondary stylus side button is

pressed.
ABS X The absolute x position of the stylus.
ABS Y The absolute y position of the stylus.
ABS PRESSURE The absolute pressure of the stylus tip.
ABS TOOL WIDTH The absolute tool width of the stylus.
SYN REPORT Synchronization command stating that all

values have been reported for a single
event.

Table 6.1: Active Stylus input.h Events.

in the proximity of the digitizer is determined by the value of BTN TOOL PEN

and BTN TOOL RUBBER. If neither value is reported, then the pen has just

left the proximity of the digitizer. If either value is reported, then the pen is in

proximity. To determine if the pen has just entered proximity, the current and

previous state of the stylus must be compared.

6.2.1 Actions

Once the current state of the stylus is saved, the state is analyzed and com-

pared to the previous state to determine which type(s) of MotionEvents to send

to the InputDispatcher. Actions that have been added to MotionEvent can be

seen in Table 7.1 and are described in Section 7.1.1. If the pointer count has

changed, then the active pen has either entered or exited the proximity of the

digitizer. If the previous state had a pointer, then the active pen has exited

proximity and an AMOTION EVENT ACTION EXIT PROXIMITY (the na-

tive version of MotionEvent.ACTION EXIT PROXIMITY) event is sent to the

24

InputDispatcher. If the pointer count has changed and the current state has a

pointer, then an enter proximity event is sent to the InputDispatcher. The rest of

the MotionEvent actions are dependent on if the active pen is in proximity of the

digitizer (up, down, move, and hover events can only happen while the active pen

is in range). These events are sent to the InputDispatcher in between proximity

enter and exit events. An AMOTION EVENT ACTION HOVER event is sent if

the stylus is not currently “down”, otherwise an AMOTION EVENT ACTION

MOVE event is sent. Finally, up and down events are sent based on the current

and previous state of the pointer.

AMOTION EVENT HOVER The input device is hovering
above but not touching the sur-
face.

AMOTION EVENT ENTER PROXIMITY The input device has entered de-
tection range.

AMOTION EVENT EXIT PROXIMITY The input device has exited de-
tection range.

Table 6.2: New Native Motion Event Actions.

6.2.2 Side Buttons

In all cases, the state of the active stylus side button(s) are saved in the meta

state shared across all input devices. The meta state is used for keys that mod-

ify the behavior of something. In this case, the side buttons on an active pen

generally modify the behavior of the pen in some way. The actual behavioral

modification is up to the application using the pen. The fact the the button was

pressed or depressed is not as critical as knowing if the button is being pressed

when a MotionEvent occurs. In order to keep track of the side buttons, two new

meta states and keycodes were added to KeyEvent: META BTN STYLUS ON,

25

META BTN STYLUS2 ON, KEYCODE BUTTON STYLUS, and KEYCODE

BUTTON STYLUS2. Each corresponding meta state and keycode represent the

pressed state of the stylus side button. KEYCODE BUTTON STYLUS repre-

sents the primary side button while KEYCODE BUTTON STYLUS2 represents

the secondary side button. The native code representations of these meta states

and keycodes can be seen in Tables 6.3 and 6.4.

AMETA BTN STYLUS ON A meta state mask used to check if the primary
stylus side button is being pressed.

AMETA BTN STYLUS2 ON A meta state mask used to check if the secondary
stylus side button is being pressed.

Table 6.3: New Native Meta States.

AKEYCODE BUTTON STYLUS A keycode for the primary stylus side but-
ton.

AKEYCODE BUTTON STYLUS2 A keycode for the secondary stylus side
button.

Table 6.4: New Native Keycodes.

6.2.3 Tool Type

The last piece of information an active pen digitizer might provide is a tool

type. Some digitizers, such as those made by Wacom, provide both a pen tool

and an eraser (or “rubber”) tool on a single active stylus. New “TOOL TYPE”

constants were added to the MotionEvent class to provide this information (see

Section 7.1.3). Since these tool type constants add an entirely new field to Mo-

tionEvent, a lot of internal communication mechanisms and objects needed to be

modified to support tool types. An in-depth discussion of these changes can be

seen in Section 6.3.

26

By default a TOOL TYPE PEN is assigned to MotionEvents generated by

the ActiveStylusInputMapper. This is useful for active pens that do not report

a tool type. If an active pen does report a tool type, the appropriate tool type is

assigned to an event when reporting to the InputDispatcher. In the InputReader,

these tool type constants are referred to as AMOTION EVENT TOOL TYPE

PEN and AMOTION EVENT TOOL TYPE RUBBER as seen in Table 6.5. In

the event that hardware becomes available that supports new tool types, support

for these tool types could be easily added.

AMOTION EVENT TOOL TYPE NONE The input device does not sup-
port tool types.

AMOTION EVENT TOOL TYPE PEN The motion event is being per-
formed by the pen tool.

AMOTION EVENT TOOL TYPE RUBBER The motion event is being per-
formed by the “rubber” or
eraser tool.

Table 6.5: New Native Motion Event Tool Types.

6.3 Adding Tool Type Support

Unlike the new actions, meta states, and keycodes discussed in Section 6.2,

which simply expand on previously defined fields and communication methods,

“tool type” is a completely new MotionEvent field. Support for this new field,

including storage, setters and getters, and constructor parameters needed to be

added throughout the input framework. In native code, a tool type member

was added to the MotionEntry object, which is used for motion event commu-

nication within the InputDispatcher. A tool type parameter was added to the

obtainMotionEntry() method to support creating the new MotionEntry object.

27

The notifyMotion() method used by vaious InputMappers in the InputReader to

inform the InputDispatcher of a new motion event was modified to support a

tool type parameter. The InputPublisher and InputConsumer classes, internal

to the InputTransport class, were modified to support tool type along with the

InputMessage object used to pass messages between the publisher and consumer

using shared memory. Tool type was added to both the native and Java versions

of MotionEvent along with corresponding updates to the JNI “glue” in android

view MotionEvent.cpp. Finally, all instances of the modified method calls or ob-

ject constructor calls needed to be changed to support the new parameter lists,

including all input framework test classes, along with the transfer of tool type

data within appropriate functions. A list of classes whose fields, constructors,

and accessors were modified can be seen in Table 6.6, while a list of methods

whose parameters were modified can be seen in Table 6.7.

Class File Description
MotionEvent MotionEvent.java Java MotionEvent received by an

application.
MotionEvent Input.cpp/h Natvie MotionEvent used through-

out input framework.
InputPublisher InputTransport.cpp/h Publishes events to be consumed by

an InputConsumer.
InputConsumer InputTransport.cpp/h Consumes events published by an

InputPublisher.
InputMessage InputTransport.cpp/h Private intermediate representation

of input events as messages writ-
ten to an anonymous shared memory
buffer.

Table 6.6: Classes Updated to Support Tool Type Field.

28

Method File Description
obtainMotionEntry InputDispatcher.cpp/h Allocates a new MotionEntery

event for use within the InputDis-
patcher.

notifyMotion InputDispatcher.cpp/h Called by InputMappers in the
InputReader to notify the Input-
Dispatcher of new motion events.

initialize Input.cpp/h Native MotionEvent initializer
method.

publishMotionEvent InputTransport.cpp/h Publishes a MotionEvent to the
InputChannel for an InputCon-
sumer to consume.

populateMotionEvent InputTransport.cpp/h Populates a MotionEvent object
with values from the InputMes-
sage shared memory object cre-
ated by the InputPublisher.

Table 6.7: Methods Updated to Support Tool Type Parameter.

6.4 InputDispatcher Changes

A few changes were made to the InputDispatcher logic to allow the new Mo-

tionEvent actions to be dispatched appropriately. To dispatch a motion event,

the input targets must first be determined. This includes either the currently

focused or touched window, along with any monitoring targets (such as the

PointerManagerService described in Section 6.6). Depending on certain event

criteria, either findTouchedWindowTargetsLocked() or findFocusedWindowTar-

getsLocked() is called. Originally, if the motion event was a “pointer event”

(has the source class AINPUT SOURCE CLASS POINTER) the touched win-

dow targets were found, otherwise the focused window targets were found. This

worked fine when the only two types of motion events were either touchscreen

or trackball events. Touchscreen events would always determine touched window

targets while trackball events would look for focused window targets.

When determining touched window targets, the InputDispatcher simply ig-

29

nores an event if it receives something other than a down event and the pointer

is not already down. This prevents spurious move or up events from occuring

when a pointer is not already in the down state, keeping an application from

receiving any unexpected event sequences. However, this means the new hover

and proximity events would be dropped since these events occur while a pointer is

up. To solve this, the criteria was changed for which touched or focused windows

targets were found. Instead of always finding touched window targets when a

motion event is a “pointer event”, it was determined whether a motion event is

a “non-touch event”. When a motion event is a non-touch event, focused win-

dow targets are found, otherwise touched window targets are found. A motion

event is a non-touch event if either it is not a pointer event or it is any of the

three new motion event actions (hover, enter proximity, or exit proximity). Since

these three actions should never occur while a window target is being touched,

this check can be done without also requiring the event source to be AINPUT

SOURCE ACTIVE STYLUS, allowing other new input sources to use these new

actions as well (and have the events dispatched to focused window targets).

6.5 GetMaxEventsPerSecond

An input framework property that was experimented with was getMaxEventsPer-

Second(). This function checks for a value stored in the system property “win-

dowsmgr.max events per sec” and returns a value of 60 if no value was set. The

sample rate of current active pen digitizers ranges from 100Hz to 200Hz, depend-

ing on the digitizer hardware. Setting this system property to 200 allows the

input framework (specifically the InputDispatcher) to throttle input events more

appropriately. Due to the fact that it is only a system property (which is read

30

directly from a system property text file), this value can be easily changed by

device manufacturers depending on the hardware that is used in a specific device.

6.6 PointerManagerService

A new system service was added to manage on screen pointers. This service is

started by the SystemServer and manages the position, appearance, and visibility

of pointers in Android. At the moment this service only supports a single pointer,

but it could be easily expanded to support multiple pointers if an appropriate use

case is determined. The term “pointer” is used, rather than “cursor,” to cover

a wider range of devices that could be represented. A cursor has generally been

associated with the use of a mouse, while a pointer could represent the on screen

position of an active stylus, mouse, or other “pointing” device.

To inform the user which pointing device is being represented by a pointer,

a different icon could be used. For example, traditionally an arrow is used to

represent a mouse, while a circular dot is used to represent an active stylus. The

service is designed to use an image from the Android framework to represent each

type of pointing device supported by Android. A setting could even be added

to let a user choose from a list of available icons which they would prefer as

the default icon for each type of pointing device. Additionally, an application

developer can temporarily change the look of the pointer through the SDK by

providing an image resource through the PointerManager (see Section 7.2).

The PointerManagerService functions by registering with the WindowMan-

ager for input events. An InputHandler callback is provided in which Motion-

Events are checked to see if the device that generated the events are of SOURCE

CLASS POINTER. If they are, then they are dispatched for further parsing, oth-

31

erwise they are ignored. Although there is a SOURCE MOUSE in Android 2.3,

there is no way for this input source to be assigned to an input event. Any input

device that is both a relative controller and has a mouse button is classified as

a SOURCE TRACKBALL. Since trackballs are not pointing devices that should

be represented by an on screen pointer, the active stylus is the only pointing

device that needs to be handled.

The visibility of a pointer is tied to ACTION ENTER PROXIMITY and

ACTION EXIT PROXIMITY. A pointer is only visible as long as the active pen

is in range (disappearing when the user pulls the pen away from the device).

This could easily be adjusted to allow the pointer to fade out after a few seconds

rather than disappear immediately. Additionally, the visibility of a pointer can

be controlled by each application.

The PointerManagerService uses a Surface object to draw the pointer on

the screen. Each time a valid MotionEvent is received and the pointer should be

displayed, an openTransaction() is performed on the Surface and the position and

layer are set. The position of the Surface is set according to the x,y position of the

MotionEvent, while the layer is set to be one layer higher than the top animation

layer on the screen (see Section 6.7). Afterward, Surface.closeTransation() is

called to complete the changes to the Surface.

Whenever a pointer’s visibility or look is changed by an application, the

pointer Surface must be modified to reflect those changes. Changing the visibil-

ity simply sets the Surface’s show() or hide() method appropriately. This must

again be surrounded by a Surface open/closeTransaction() block. To change the

image used by a pointer, a Drawable object is retrieved from the provided re-

source id associated with the application requesting the pointer change. The size

of the Drawable is determined and the Surface size is set accordingly. The set-

32

Size() Surface call must also be surrounded by a Surface open/closeTransaction()

block. Next, a Canvas object is locked and retrieved from the Surface, filled with

transparency, and the Drawable is drawn on the Canvas. Finally the Canvas is

unlocked and posted to the pointer Surface.

6.6.1 Pointer Modification Using the Side Button

To illustrate how the side button(s) could be used to modify the pointer, the

pointer is changed to a different image while the side button is being pressed.

This is only done while there is no application modifying the look or visibility

of the pointer to keep from unintentionally changing the pointer when it should

not be changed. If a change in the primary side button is detected, the pointer

is set to the look defined for the new state. For example, a ring could appear

around the pointer while the primary side button is being pressed. This would

be useful in order to notify the user that they have modified the behavior of the

stylus while holding down the side button. Applications could change the pointer

image to something that represents the new pointer behavior, and change it back

once the button has been released.

6.7 WindowManager Additions

An intra-framework call was added to the WindowManager: getTopAnim-

Layer(). This call simply returns the integer value representing the top animation

layer on the screen. This is used by the PointerManagerService to correctly draw

the pointer directly above the current highest layer.

33

Android.mk
core/java/android/app/ContextImpl.java
core/java/android/content/Context.java
core/java/android/view/IWindowManager.aidl
core/java/android/view/InputDevice.java
core/java/android/view/KeyEvent.java
core/java/android/view/MotionEvent.java
core/jni/android view MotionEvent.cpp
core/res/res/values/attrs.xml
include/ui/EventHub.h
include/ui/Input.h
include/ui/InputDispatcher.h
include/ui/InputReader.h
include/ui/InputTransport.h
include/ui/KeycodeLabels.h
libs/ui/EventHub.cpp
libs/ui/Input.cpp
libs/ui/InputDispatcher.cpp
libs/ui/InputReader.cpp
libs/ui/InputTransport.cpp
libs/ui/tests/InputDispatcher test.cpp
libs/ui/tests/InputPublisherAndConsumer test.cpp
libs/ui/tests/InputReader test.cpp
native/android/input.cpp
native/include/android/input.h
native/include/android/keycodes.h
services/java/com/android/server/InputManager.java
services/java/com/android/server/SystemServer.java
services/java/com/android/server/WindowManagerService.java

Table 6.8: List of Modified Files in frameworks/base/.

core/java/android/app/IPointerManager.aidl
core/java/android/app/Pointer.aidl
core/java/android/app/Pointer.java
core/java/android/app/PointerManager.java
core/res/res/drawable/pointer.png
core/res/res/drawable/pointer side button pressed.png
services/java/com/android/server/PointerManagerService.java

Table 6.9: List of New Files in frameworks/base/.

34

Chapter 7

Developer API Additions

A few additions were made to the Android SDK that allow application devel-

opers to access the additional functionality provided by active pen digitizers.

7.1 MotionEvent

7.1.1 Actions

Three new actions were added to MotionEvent to support functionality pro-

vided by active pen input: ACTION HOVER, ACTION ENTER PROXIMITY,

and ACTION EXIT PROXIMITY (see Table 7.1). An ACTION HOVER event

is produced whenever an active pen is hovering above but not touching the sur-

face of the display. It is similar to an ACTION MOVE event in that it is a

constant stream of pointer coordinates as the input device moves around. As

soon as the active pen touches the display, the standard ACTION DOWN and

ACTION MOVE events are produced until the pen leaves the surface, which cre-

ates an ACTION UP event. Immediately following the ACTION UP are more

35

ACTION HOVER events until the pen leaves the detection range of the display

or touches down again. When the pen leaves the detection range, an ACTION

EXIT PROXIMITY event is produced to inform the application that the pen

is no longer in range. Similarly, when the pen enters the detection range, an

ACTION ENTER PROXIMITY event is immediately produced before any AC-

TION HOVER or subsequent MotionEvents.

ACTION HOVER The input device is hovering above but not
touching the surface.

ACTION ENTER PROXIMITY The input device has entered detection
range.

ACTION EXIT PROXIMITY The input device has exited detection
range.

Table 7.1: Additional MotionEvent Actions.

7.1.2 Meta State

Two new meta states were created: META BTN STYLUS ON and META

BTN STYLUS2 ON. These meta states represent the pressed state of the “stylus”

(primary) and “stylus2” (secondary) buttons on the side of an active pen. Since

meta states are shared across all input devices, MotionEvent.getMetaState()

simply calls KeyEvent.getMetaState(). The new meta states, along with KEY-

CODE BUTTON STYLUS and KEYCODE BUTTON STYLUS2 (representing

the two stylus buttons), were added to KeyEvent. On any MotionEvent, the

getMetaState() method can be called and tested against the meta state masks in

order to determine if either side button is being pressed.

36

7.1.3 Tool Type

In order to represent the active pen tool currently being used, a new set of Mo-

tionEvent constants were created. This new category was called “TOOL TYPE”

and consists of TOOL TYPE NONE, TOOL TYPE PEN, and TOOL TYPE

RUBBER as seen in Table 7.2. TOOL TYPE NONE is assigned by default to

all MotionEvents that are not generated by an active pen. Among active pens,

TOOL TYPE PEN is assigned by default in the case that the active pen does not

support multiple tool types. In the event that the active stylus does support mul-

tiple tool types, the tool type of each MotionEvent can be determined through

the getToolType() method. This method will return one of the TOOL TYPE

constants. The tool types available in MotionEvent could easily be expanded if

hardware becomes available that supports additional tool types. The use of tool

types could also be expanded to other input device types that use MotionEvents

(such as touchscreens, trackballs, and other future input methods).

TOOL TYPE NONE The input device does support tool types.
TOOL TYPE PEN The MotionEvent is being performed by

the pen tool.
TOOL TYPE RUBBER The MotionEvent is being performed by

the “rubber” or eraser tool.

Table 7.2: MotionEvent Tool Types.

getToolType() Returns the tool being used for this event.
setToolType(int toolType) Sets the event’s tool type.

Table 7.3: New MotionEvent Methods.

37

7.2 PointerManager

The PointerManager is an object that allows an application to communicate

with the PointerManagerService (see Section 6.6). The PointerManager allows

for a pointer’s image and visibility to be changed. A PointerManager object

is obtained through the Context.getSystemService() method by passing in the

POINTER SERVICE string constant. The methods provided by the Pointer-

Manager are outlined in Table 7.4.

setPointer(Pointer pointer) Change the current image used for the pointer.
resetPointer() Reset the pointer to its default state.
setVisible(boolean visible) Set whether the current pointer is visible or not.

Table 7.4: Pointer Manager Methods.

7.2.1 Pointer

A Pointer object was defined to represent a single pointer and to be an ob-

ject of communication between an application (though the PointerManager) and

the PointerManagerService. For this reason, a Pointer implements the Parce-

lable class, which is required for an object to be used by Android’s Binder IPC.

The constructor for a Pointer takes three parameters: an image resource id, a

horizontal offset, and a vertical offset. The image resource id should point to

an image in the applications resources that will be used for the pointer. The

horizontal and vertical offset values are used to describe where in the image the

“point” is. These offset values are used by the PointerManagerService to deter-

mine where to display the pointer image relative to the x,y coordinates reported

by a MotionEvent.

38

Chapter 8

Validation

In order to determine whether the changes made to the Android input frame-

work and SDK to support active pen input were valid, a build of Android was

created with the changes and was run on test hardware.

8.1 Test Hardware

The input framework changes and SDK additions were validated using a

Wacom active pen digitizer connected to a Viewsonic Gtablet running a cus-

tomized build of Android. Just like the active pen digitizer in the x61 Tablet

PC mentioned in Chapter 4, the Wacom digitizer used for testing was a se-

rial device. The serial Wacom digitizer was connected to the Gtablet via an

FT232RL serial to USB chip, which creates a serial node at /dev/ttyUSB0. The

same modified “wacdump” utility (renamed “wacandroid”) and input event driver

were used as with the x61 Tablet PC. Wacandroid reads and parses data writ-

ten to /dev/ttyUSB0 by the Wacom digitizer and writes values to a sysfs node

at “/sys/devices/platform/wac android/input”. The “wac android” input event

39

driver registers a new input device in /dev/input, reads values from the sysfs

node, and creates corresponding input events for the Android input framework

to receive. An outline of the test hardware and software stack can be seen in

Figures 8.1 and 8.2.

Figure 8.1: Test Hardware Setup.

40

Figure 8.2: Test Software Setup.

8.1.1 Hardware Setup

The Wacom digitizer was not simply “plug and play.” The pin-outs of the

serial digitizer had to be determined. No official documentation was available

outlining the connectivity of any Wacom digitizers, and requests for such in-

formation were denied. The pin-outs of the SU-025-C02 Wacom digitizer that

were determined in testing can be seen in Table 8.1. Though the connector used

by the Wacom digitizer contained fourteen pins, only seven of those pins were

used by the serial communication (along with VCC), and the rest were not con-

nected (represented by “NC” in Table 8.1). Once these pins were connected to

the FT232RL serial to USB chip, a USB cable was connected to the Viewsonic

Gtablet. This generated the /dev/ttyUSB0 serial device node and the Wacom

digitizer could be communicated with.

41

Pin Connection
1 GND
2-6 NC
7 DTR
8 RTS
9 RxD
10 TxD
11-12 NC
13 VCC 3.3V
14 GND

Table 8.1: Wacom SU-025-C02 Pin-outs.

Many hours of research were spent trying to determine the appropriate dig-

itizer to use for testing, and many digitizers were acquired before determining

the pin-outs for the digitizer used in testing. Attempts to acquire a development

device with documentation were denied by Wacom, however N-trig and Nvidia

provided a complete development tablet. Unfortunately, the framework changes

were not able to be tested on the N-trig/Nvidia device because the necessary build

files and proprietary binaries were not provided. In terms of communication and

feedback, however, N-trig was willing to discuss ideas and was open to outside

help and research in pushing for integration of active pen input in Android.

8.1.2 Features

The active pen stylus used with the Wacom digitizer provided the follow-

ing features: pressure sensitive pen tip (pen tool), pressure sensitive eraser nub

(eraser or “rubber” tool), and a single side button. The 12” digitizer provided

a resolution of 24,780 by 18,630 (while the 10” screen resolution of the Gtablet

was only 1024 by 600). This effectively allows the Wacom digitizer to provide

approximately 587 samples per screen pixel.

42

8.2 Testing

To verify the Android framework changes, a build of Android was compiled

and flashed to the test hardware. The use of active pen input was observed and

behavior was tested throughout the system. An SDK build was created to test

the new features provided in the SDK. A simple application was built to test all

the additions to the SDK and verify their functionality.

43

Chapter 9

Limitations

9.1 Changing the Pointer

A current limitation of the PointerManagerService is that once an application

changes the pointer through the PointerManager, the pointer will not change

again until another application (or the same application) changes or resets the

pointer. This could be easily remedied by having the PointerManagerService

check which application is currently on the top of the Activity stack and compare

it to the package that set the current pointer look or visibility. If the application

package is not the same, then the pointer should be reset to the system default.

This, unfortunately, is not an acceptable solution because this would require the

application stack to be checked every time a new MotionEvent is received. Since

an active pen digitizer generally produces input events at over 100Hz, a lot of

unnecessary calls would be made and would generate unacceptable overhead.

Instead, the PointerManagerService should be able to register with the Android

framework (most likely the ActivityManagerService or WindowManagerService)

to simply be notified every time a new application package is in focus. A study

44

of the ActivityManagerService and WindowManagerService could be performed

to determine if this callback functionality is, or could be made, possible.

9.2 MotionEvent Actions

There is an inherent limitation in how the new MotionEvent hover, enter

proximity, and exit proximity actions are dispatched to applications. Currently,

dispatchTouchEvent() is used for all touchscreen and active stylus events, de-

spite the fact that not all active stylus events “touch” the display. This can

create issues in applications that rely on receiving an ACTION DOWN event

after an ACTION UP event without any other events in between. A solution to

this is now in place in the latest update to the official Android SDK where all

non-touch events are dispatched to applications using the new dispatchGeneric-

MotionEvent() method (see Chapter 10).

9.3 Mulitple Pointer Devices

An issue with having multiple pointer devices (such as a touchscreen and

an active pen digitizer) is that the first “touch” on each device produces a Mo-

tionEvent with the same pointer index value (0). This can create problems for

applications that do not make sure all events received in onTouchEvent() or dis-

patchTouchEvent() are from the same input source. In fact, even the Android

framework does not usually perform this check. In the event that an application

does not separate MotionEvents by source, and a finger and stylus are both put

down and moved, the application will perceive that a single pointer is jumping

back and forth between the finger and the stylus. An easy solution, though not

45

very robust, would simply be for applications to check the source of MotionEvents

before determining what to do with them. Another solution could be to disable

all touchscreen events while the active stylus is in range. This would have the

added benefit of ignoring a hand resting on the display while the active pen is

being used, however this would also prevent the touchscreen from working until

the stylus is pulled away from the digitizer. Finally, though still not ideal, a

common pointer index could be used between the various pointer class devices.

This would keep the pointer indexes of different devices from ever being the same

and causing unexpected behavior in applications.

46

Chapter 10

Update to Official SDK

On May 10, 2011 Google released an update to the official Android SDK for

Android 3.1 (API level 12), however Google has yet to release the source code for

anything later than Android 2.3. The latest version of the SDK adds many new

interesting features, such as an ACTION HOVER MOVE action to MotionEvent,

dispatchGenericMotionEvent() dipatcher, and an onGenericMotionEvent() event

handler. Since a “hover” event is not a “touch” event, it is not dispatched

using dipatchTouchEvent(), but rather dispatchGenericMotionEvent() instead.

This provides a way for developers to handle hover events such as mouse or

stylus movements without breaking older applications or applications that rely

on always receiving an ACTION DOWN after an ACTION UP with nothing in

between. Although the new hover action was designed for use by the mouse,

which is now natively supported in Android, it could easily be used to support

the hover feature of an active pen as well.

Since the Android SDK does not yet support active pen input, many features

are still missing that are needed to support stylus functionality. This includes

pen proximity detection, tool type, and side button state.

47

Though not visible to the developer, Android 3.1 also adds an on-screen mouse

pointer. This was added directly to the InputDispatcher rather than as a separate

input monitoring service as discussed in Section 6.6. Android 3.1 does not add

anything to the official SDK to allow applications to interact in any way with the

pointer, such as changing its look or visibility.

48

Chapter 11

Future Work

There are certainly more areas to be explored in the field of active pen input

and mobile devices. Chiefly, how will active pen input be used in such envi-

ronments? Understanding this can go a long way towards improving how active

pen input is implemented and how features are made available to developers.

There is a host of applications that would benefit from active pen input, includ-

ing but certainly not limited to note taking, annotating and document review,

textbook markup, drawing, photo editing, graphic design, CAD, and handwriting

and drawing recognition.

An important step toward the adoption of active pen input is for a common

framework to be laid for application developers. For Android, this would include

providing support for active pen input in the Android framework and exposing

functionality through the Android SDK. Although Android is open source, a re-

view process is in place in which a patch submission must be approved by the

Android team. Additionally, since the source has yet to be released for the lat-

est version of Android (version 3.1), which is designed for tablets, the necessary

changes to add active pen input support can only be made by the Android team.

49

The overall goal of this thesis is to help encourage Google to implement a stan-

dard for active pen input in Android. Collaboration with the Android team will

continue while the necessary framework additions are developed.

50

Chapter 12

Conclusion

As the mobile computing industry moves forward, it is important for input

methods to evolve as well. Active pen input allows for new yet intuitive and

familiar ways to interact with devices. This thesis provided a playing ground for

research and implementation of methods to handle active pen input in Android.

The Android input framework was analyzed and event communication methods

were expanded upon to provide support for active pen input. Additions were

made to the Android SDK to allow developers access to the new functionality

provided by active pen input. A system wide pointer was implemented to provide

a visual representation of the location of an active stylus while hovering above

or touching a display. Additionally, the pointer service was designed to be easily

expanded to support the use of other input devices that make use of an on-screen

pointer, such as a mouse.

It was found that most of the additional functionality could be made with few

changes to the Android framework by utilizing and expanding upon pre-existing

constructs in event communication. Completely new data that did not fit into

existing constructs, such as tool type, could be added throughout the framework

51

with little difficulty. The Android framework and SDK additions were validated

using physical hardware to ensure the viability of active pen input in Android.

For the advancement of the mobile computing industry, consumer electronics,

and consumer applications, it is essential that active pen input be integrated into

the core of mobile operating systems such as Android.

52

References

[1] Android-x86 - Porting Android to x86. http://www.android-x86.org.

[2] Android-x86 Mouse Patch. http://code.google.com/p/

patch-hosting-for-android-x86-support/downloads/detail?name=

0001-fixed-different-build-breaks-added-mouse-cursor-sup.

patch.

[3] Android Open Source Project Git Repository. http://android.git.

kernel.org.

[4] R. Cicchino and D. Mirliss. Tablet pcs: A powerful teaching tool. In

World Conference on E-Learning in Corporate, Government, Healthcare,

and Higher Education 2004, pages 543–548. AACE: Chesapeake, VA, 2004.

[5] Hewlett-Packard. The Case for the Tablet PC in Health Care. http://www.

hp.com/sbso/solutions/healthcare/hp_tablet_whitepaper.

[6] HTC Flyer Product Overview. http://www.htc.com/www/product/flyer/

overviewa.html.

[7] Video: HTC Flyers Deep Pen Integration Makes This Android Slate Stand

Out. http://blog.laptopmag.com/htc-flyer-hands-on.

53

http://www.android-x86.org
http://code.google.com/p/patch-hosting-for-android-x86-support/downloads/detail?name=0001-fixed-different-build-breaks-added-mouse-cursor-sup.patch
http://code.google.com/p/patch-hosting-for-android-x86-support/downloads/detail?name=0001-fixed-different-build-breaks-added-mouse-cursor-sup.patch
http://code.google.com/p/patch-hosting-for-android-x86-support/downloads/detail?name=0001-fixed-different-build-breaks-added-mouse-cursor-sup.patch
http://code.google.com/p/patch-hosting-for-android-x86-support/downloads/detail?name=0001-fixed-different-build-breaks-added-mouse-cursor-sup.patch
http://android.git.kernel.org
http://android.git.kernel.org
http://www.hp.com/sbso/solutions/healthcare/hp_tablet_whitepaper
http://www.hp.com/sbso/solutions/healthcare/hp_tablet_whitepaper
http://www.htc.com/www/product/flyer/overviewa.html
http://www.htc.com/www/product/flyer/overviewa.html
http://blog.laptopmag.com/htc-flyer-hands-on

[8] HTC Unveils HTC Flyer, the First Tablet with

HTC Sense. http://www.htc.com/us/press/

htc-unveils-htc-flyertrade-the-first-tablet-with-htc-sensetrade/

31.

[9] Linux Wacom Project. http://linuxwacom.sourceforge.net.

[10] Microsoft Demonstrates Tablet PC Technology For Enterprise Comput-

ing Applications. http://www.microsoft.com/presspass/press/2000/

Nov00/TabletPCPR.mspx.

[11] K. Mock. Teaching with Tablet PC’s. J. Comput. Small Coll., 20:17–27,

December 2004.

[12] Motion Computing’s Motion C5v. http://www.motioncomputing.com/

products/tablet_pc_c5.asp.

[13] N-trig Elevates the Slate, Netbook, and Tablet Experience through its

DuoSense Digital Pencil Further Enhancing Creativity and Productivity.

http://www.cellulartec.com/?p=2068.

[14] DuoSense Overview. http://www.ntrig.com/Content.aspx?Page=

DualModeTechnology.

[15] Android Native Development Kit. http://developer.android.com/sdk/

ndk/index.html.

[16] Android Software Development Kit. http://developer.android.com/

sdk/index.html.

[17] Wacom Components: EMR (Electro-Magnetic Resonance) Technology.

http://www.wacom-components.com/english/technology/emr.html.

54

http://www.htc.com/us/press/htc-unveils-htc-flyertrade-the-first-tablet-with-htc-sensetrade/31
http://www.htc.com/us/press/htc-unveils-htc-flyertrade-the-first-tablet-with-htc-sensetrade/31
http://www.htc.com/us/press/htc-unveils-htc-flyertrade-the-first-tablet-with-htc-sensetrade/31
http://linuxwacom.sourceforge.net
http://www.microsoft.com/presspass/press/2000/Nov00/TabletPCPR.mspx
http://www.microsoft.com/presspass/press/2000/Nov00/TabletPCPR.mspx
http://www.motioncomputing.com/products/tablet_pc_c5.asp
http://www.motioncomputing.com/products/tablet_pc_c5.asp
http://www.cellulartec.com/?p=2068
http://www.ntrig.com/Content.aspx?Page=DualModeTechnology
http://www.ntrig.com/Content.aspx?Page=DualModeTechnology
http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://www.wacom-components.com/english/technology/emr.html

[18] What is Android? http://developer.android.com/guide/basics/

what-is-android.html.

55

http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html

	List of Tables
	List of Figures
	Introduction
	Previous Work
	Background
	Android
	Active Pen Input

	Initial Evaluation
	Android Input Framework
	Overview
	Startup
	Event Processing Core
	InputManager
	InputReader
	InputDispatcher
	InputReaderPolicy and InputDispatcherPolicy
	EventHub

	Input Framework Changes
	New Input Device Class
	ActiveStylusInputMapper
	Actions
	Side Buttons
	Tool Type

	Adding Tool Type Support
	InputDispatcher Changes
	GetMaxEventsPerSecond
	PointerManagerService
	Pointer Modification Using the Side Button

	WindowManager Additions

	Developer API Additions
	MotionEvent
	Actions
	Meta State
	Tool Type

	PointerManager
	Pointer

	Validation
	Test Hardware
	Hardware Setup
	Features

	Testing

	Limitations
	Changing the Pointer
	MotionEvent Actions
	Mulitple Pointer Devices

	Update to Official SDK
	Future Work
	Conclusion
	References

