Motivation and Objectives

Motivation: Myc dimerizes with Max to promote the transcription of genes associated with cellular proliferation, differentiation, and survival. Deregulation of Myc expression initiates and maintains approximately 30% of human cancers, making Myc an excellent target in oncology.

Objective: Develop potent inhibitors of Myc-Max dimerization that are suitable as an in vivo therapy.

Challenge: Myc-Max dimerization is difficult to inhibit due to the relatively large interface over which Myc-Max interactions occur. As a result, Myc has been considered “undruggable.”

Hypothesis

We hypothesize that epitope-targeted peptide ligands that adsorb at the Myc-Max interface will disrupt the interprotein interactions and prevent dimerization.

Introduction

- Myc-Max dimers recognize DNA and promote transcription
- Deregulation of Myc initiates and maintains nearly 30% of human cancers
- Large inter-protein interface makes Myc-Max dimerization difficult to inhibit

Crystal Structure of Myc-Max Dimer

PDB ID: 1NK5

Epitope 1

Epitope 2

Epitope 3

Approach: Epitope-targeted Capture Agents

- Typically yields ligands with high affinity (Kd of 100 pm – 10 uM) to target epitope
- Rapid sub-month development time
- Judiciously target three epitopes on Myc dimer interface

In situ click screen to identify high-affinity ligands to the Myc dimer interface

Anti Screen: Improve Binding Selectivity

Scrambled Epitope 1

Scrambled Epitope 2

Scrambled Epitope 3

1. Streptavidin Alkaline Phosphatase

2. BCIP/NBT

Product Screen: Screen for ligands that bind to Myc Epitopes

Synthetic Epitope 1

Synthetic Epitope 2

Synthetic Epitope 3

Identify hit sequences by mass spectrometry

Example mass spectrometry analysis to sequence a peptide

- Linear: 20%
- Cyclic: 80%

Optical Images of Enzymatically-Developed Beads

- Counterstain procedures yield different colored beads for anti-screen and product screens
- Some beads exhibit yellow color, which likely interferes with pre-clear
- Red and blue beads have unique fluorescence

Faster Screening with Counterstaining Strategy

Motivation: Eliminate need to manually remove beads from anti-screen (1 day to 2 weeks)

Example Enzymatic Development Scheme

Counterstaining Approach

Optical Images

- Yields different colored beads for anti-screen and product screens
- Red and blue beads have unique fluorescence

Summary

- Discovered 2 strong and ~20 medium peptide binders to Myc-Max dimer interface
- Counterstaining is a promising approach to accelerate screening for epitope-targeted peptides

On-Going Work

- Optimize counterstaining procedures
- Identify Myc ligand hits, with Bert Lai at Indi Molecular
- Synthesize ligands and test their efficacies to inhibit Myc-Max dimerization

Conclusion

Acknowledgements

I would like to thank Matthew Idso and Professor James Heath for their guidance and collaborative efforts throughout this process.

Funding:

Collaborators:

- Indi Molecular
- Mercy College
- Cal Poly
- CSU Systems Biology
- Institute for Systems Biology
- ImmPact
- Polyquick Fund
- USA National Institute of General Medical Sciences