Electrical Engineering Department
California Polytechnic State University

Senior Project Report

Industry Automation and Controls Lab
June 14th 2019

Nadir Khan
Michael Campos
Samantha Bituen

Professor Taufik
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Abstract</td>
<td>3</td>
</tr>
<tr>
<td>II. Chapter 1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>III. Chapter 2. Background</td>
<td>7</td>
</tr>
<tr>
<td>IV. Chapter 3. Design Requirements</td>
<td>11</td>
</tr>
<tr>
<td>V. Chapter 4. Design Process</td>
<td>14</td>
</tr>
<tr>
<td>VI. Chapter 5. Hardware Test and Results</td>
<td>17</td>
</tr>
<tr>
<td>VII. Chapter 6. Conclusion</td>
<td>26</td>
</tr>
<tr>
<td>VIII. Appendix A. ABET Senior Project Analysis</td>
<td>28</td>
</tr>
<tr>
<td>IX. Appendix B. Industry Automation and Controls Lab Manual</td>
<td>35</td>
</tr>
<tr>
<td>X. Appendix C. Bill of Materials</td>
<td>45</td>
</tr>
<tr>
<td>XI. Appendix D. Scheduling</td>
<td>46</td>
</tr>
<tr>
<td>XII. References</td>
<td>47</td>
</tr>
</tbody>
</table>

LISTS OF TABLES AND FIGURES

Table

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Summary of Design Requirements</td>
</tr>
<tr>
<td>A-1</td>
<td>Cost Evaluation</td>
</tr>
<tr>
<td>C-1</td>
<td>Bill of Materials</td>
</tr>
</tbody>
</table>

Figure

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Dick Morley and Associates with the Modicon 084</td>
</tr>
<tr>
<td>1-2</td>
<td>Modicon M580 ePAC</td>
</tr>
<tr>
<td>1-3</td>
<td>The Four Operational States of a PLC</td>
</tr>
<tr>
<td>1-4</td>
<td>Ladder Diagram (LD) Ladder Logic</td>
</tr>
<tr>
<td>1-5</td>
<td>Functional Block Diagram PLC Programming Language</td>
</tr>
<tr>
<td>1-6</td>
<td>Sequential Function Chart Programming</td>
</tr>
<tr>
<td>3-1</td>
<td>Level 0 Block Diagram</td>
</tr>
<tr>
<td>3-2</td>
<td>Level 1 Block Diagram</td>
</tr>
<tr>
<td>4-1</td>
<td>Final Hardware Setup Including all Component Wiring</td>
</tr>
<tr>
<td>5-1</td>
<td>Final Hardware Layout for PLC Lab Benches</td>
</tr>
<tr>
<td>5-2</td>
<td>Mounting Styles: Directly Mounted on Metal and DIN Rail on Metal</td>
</tr>
<tr>
<td>5-3</td>
<td>DIN Rail Mounting</td>
</tr>
<tr>
<td>5-4</td>
<td>Jaime Carmo Sanding a DIN Rail</td>
</tr>
<tr>
<td>5-5</td>
<td>Din rail holes for mounting on the bench</td>
</tr>
<tr>
<td>5-6</td>
<td>Schneider Electric instruction sheet for mounting the HMI</td>
</tr>
<tr>
<td>5-7</td>
<td>Tryone Gooseneck Tablet Stand sold on Amazon</td>
</tr>
<tr>
<td>5-8</td>
<td>HMI mounting method with the Tryone Gooseneck Arm</td>
</tr>
</tbody>
</table>
5-9 Side view of the clamp used and arm bent into shape
B-1 Ladder Logic Rung
B-2 LD Variables Table
B-3 Labeling Relays and Relay Coil
B-4 Simulating the LD LED Program
B-5 Setting Different Values to Relays
B-6 New Project Hardware Selection Screen
B-7 PLC Configuration Layout Example
B-8 Elementary Variables for the Simulation
B-9 Creating a New Section Screen
B-10 Simulation FBD Layout
B-11 Example of Animation Table Results (by Forcing Voltage 1 & 2 Values)
B-12 DFB I/O Variable List
B-13 FBD Layout after Transferring the Old Schematic into the New Schematic
B-14 FBD Schematic with New DFB I/O Variables
B-15 FFB Input Assistant Generation for Project
B-16 FBD Schematic with New DFB Placed
B-17 Placing the DFB into a Custom Library Saves the Circuit for Future Use
D-1 Fall Quarter 2018 Gantt Chart
D-2 Winter Quarter 2019 Gantt Chart
D-3 Spring Quarter 2019 Gantt Chart
Abstract:

This work details our efforts to build a new industrial automation lab for the Cal Poly San Luis Obispo Electrical Engineering department from the ground up. Thanks to a donation of Modicon M580 programmable logic controllers (PLCs) from Schneider Electric, we built a lab hardware layout to support a learning environment for students. The Electrical Engineering department currently doesn’t offer any courses for students to learn about automation in topics more closely following the topics learned in their curriculum. It will be beneficial for the school and the students to have graduates in the major with some knowledge of controls in the field of industrial automation. Many large corporations including Rockwell Automation, Schneider Electric, Siemens, Yokogawa, and Mitsubishi Electric all have substantial jobs in the workplace. For the lab, research led to multiple different designs of how to layout the DIN rail and other equipment. Our final layout placed a strong emphasis on reducing cost, including removing a metal backplane and using a flexible mounting system for the touchscreen. The results shown in the the work illustrate the flexibility of the lab bench setup moving forward, as future students will need room for growth as they continue to develop the lab. Additional time was spent developing lab instructions for the first lab of the course, a simple introduction into programming with ladder logic and function block diagram.
1. Introduction

In 1968 a man named Dick Morley built the first programmable logic controller called the Modicon 084 [4]. Prior to this invention, industrial automation processes were controlled by hard-wired relay systems which were complicated and expensive to modify. The device made the time, effort, and cost to change a process significantly reduced while also simplifying the communication between process devices. In 1996 Schneider Electric released a high-performance Modicon Premium for large applications that pioneered a whole new class of PLC, the programmable automation controller (PAC). In 2003, they added embedded web server capabilities which marked a turning point for making network communications easier and more reliable. In 2007, the Modicon M340 simplified configuration and operation by using functions like a native USB port, SD card slot, ethernet, modbus and a battery-less design which removed the need to swap batteries periodically in remote locations. This all led to the Modicon M580 in 2013; a controller designed with transparency, flexibility, and sustainability.

Figure 1-1: Dick Morley and associates with the Modicon 084 [17]

The Modicon M580 donated to Cal Poly SLO as shown in Figure 2 holds the title as the world's first ePAC controller. The product is designed with an ethernet backbone to optimize
connectivity and communications. The M580 fully supports FDT Technology, an international standard for asset integration and data delivery with broad acceptance in the automation industry [13].

Figure 1-2: Modicon M580 ePAC [18]

There are four basic states of operation for PLCs: input scan, program scan, output scan and housekeeping [27]. These four states are continuously run in a loop to ensure that the device is constantly processing data as seen in Figure 1-3. Input scan detects the states of all input devices connected to the PLC. Program scan executes the user created logic built in software. Output scan energizes or de-energizes all output devices that are connected to the PLC. Housekeeping includes communications with programming terminals and internal diagnostics. Housekeeping tasks can also be created by the user.

Figure 1-3: The four operational states of a PLC [27]
While Ladder Logic is the most used programming language for PLCs, it’s not the only one; Ladder Diagram (LD) in Figure 1-4, Functional Block Diagram (FBD) in Figure 1-5, Structured Text (ST), Instruction List (IL), and Sequential Function Chart (SFC) in Figure 1-6 are all languages used by PLCs. Becoming proficient with ladder logic will be a core aspect of a lab course that will be developed in this project.
2. Background

Industrial power controls and automation play important roles in the power industry. Many power equipment ranging from motors used in HVAC (Heating Ventilating Air Conditioning) system and manufacturing plants, Line Tap Changing transformers, relays, lighting system, make use of industrial power controls typically implemented by PLCs (Programmable Logic Controllers). Despite their importance in power industry, the electrical engineering department at Cal Poly State University currently does not offer any course related to the subject. This has been a gap in the power program specifically especially realizing that some other California State Universities (CSU) have been offering courses in industrial controls and automation or courses that provide some coverage on PLCs. Some CSUs such as Fullerton, Chico, Fresno, and San Bernardino appear to have lab courses offered which use PLCs [10,12,14,20]. However, it is not clear whether these courses include actual hands-on exercises with PLCs and power equipment. At Cal Poly, the control system courses are more focused on the theoretical aspects with no coverage of any topics related to PLCs. It is therefore important for the electrical engineering department in general and the power program in particular to include at least one course where students get to learn and practice the PLCs for power controls and automations. This will further strengthen the learn-by-doing philosophy of Cal Poly and will better prepare their graduates in the power industry.

In this project, a laboratory course on Industrial Power Controls and Automation will be developed using PLCs recently donated by Schneider Electric. The lab course will be designed with a close partnership with Schneider Electric to ensure that the course will be effective in preparing students with some skills in PLCs. As part of the plan, the lab course will have experiments which will expose students to real world challenges and issues in the world of
automation and controls. In doing, the lab course should not overlap with any existing PLC courses at Cal Poly, but rather it should complement them. Lastly, since we are not the first to develop such a course, any existing lab courses outside of Cal Poly that have similar learning outcomes will be used as references so as not to reinvent the wheel. Many of these schools are community colleges and trade schools in California wherein they offer a program which heavily involves PLCs and can be completed in two years or less.

Outside of the U.S., there is the Annasaheb Dange College of Engineering & Technology in India which outlines some useful course outcomes on teaching a state-of-the-art PLC lab for education [19]. The course contains demonstration based learning instead of lecture sessions and testing on memorization. Students have the opportunity to apply what they learn about a relay logic system by seeing it hardwired with a PLC rather than just learning the theories in classroom. In addition, students also learn about the nature of PLCs which provide the connection between different engineering fields and may incorporate topics such as electric motors, frequency controllers, and Supervisory Control and Data Acquisition (SCADA) systems. For the proposed lab course, the goal is to replicate as much as possible an industrial environment with knowledge applicable to a full time career.

Another example of a PLC course outside of the U.S. is found at a university in Thailand. The university developed a lab course that teaches engineering students about the basic principles of PLCs. In doing so, the university focuses on the many benefits of using PLCs over outdated relay control logic such as: higher efficiency, more flexibility, faster response time, and easier troubleshooting. The university believes that teaching to get student’s understanding of the principles and operation of PLCs is important, especially for students who want to enter the industrial controls and automation industry. However, the university also noted some drawbacks
when it comes to developing a PLC lab course. One main issue is stated as “However, problems and obstacles in the study and experiment on PLC is the rapid pace of PLC technological development, with new models and innovations continually being introduced by manufacturers” [4]. Due to the growing demand of PLC applications, the PLC manufacturers are constantly in pursuit of newest and most advanced PLC for industry consumers. A PLC lab cannot become stagnant in terms of technical concepts because the information will be useless if it's not up to industry standards.

Another issue with learning PLCs is that just merely using a PLC does not necessarily enable or enforce students to understand how they work. With more complex modern systems, often it is difficult to understand the role of PLCs in the big picture. Students can delve right into the PLC programming without getting the full understanding of why the PLCs are utilized. To address these problems there is a need to develop GUI to help students visualize the overall look at the PLC system while providing students with adaptive interactive practice. The GUI could be designed to allow students to visualize the PLC concepts. That is, they were intended to represent not the physical appearances of PLC, but rather their theory of operation. GUI allows students to manipulate components of the animation to see what would happen if a certain condition occurs in the system or what if tests. For the proposed project, the touch screen human machine interface (HMI) donated by Schneider Electric will be incorporated into the lab experiments to help create GUIs for each lab.

In summary, the goal of this project is to develop a PLC lab that will instruct Cal Poly students on how to use a PLC and understand all the different applications and devices it can interface with. The main objectives of the PLC course in undergraduate engineering program are [1]:
1. Need of PLC based automation and selection criteria.
2. Understand the PLC specifications sheet and PLC architecture (Inputs/Outputs, CPU, Power supply & Communication Ports).
3. Demonstrate and explain PLC with respect to application.
4. Basic level commissioning of PLC.
5. Use basic PLC relay instructions to write, debug and troubleshoot ladder logic programs.
7. Develop and demonstrate programs showing how the timer and counter functions are integrated to a PLC.
8. Demonstrate PLC project creation, troubleshooting and interfacing, monitoring of a running project.
9. Prepare students for challenging industrial jobs in the engineering technology areas.

3. Design Requirements

The PLC used in the proposed lab course is a fully built-in rack and modular controller. Therefore, all of the modular items such as the analog I/Os, digital I/Os, and processor are predesigned to comply with the PLC input power rating, communication protocols and physical connection/attachment.
Figure 3-1 displays the level 0 block diagram and Figure 3-2 displays the level 1 block diagram of the PLC system of the proposed lab course. The 120V input is supplied from the lab room’s outlet and connects to the PLC circuit breaker. The PLC circuit breaker is an Allen Bradley circuit breaker rated at 1.6 Amp, 1 pole, 48 VDC, 277 VAC. The circuit breaker is rated at 1.6 A to protect the PLC power supply, which has a typical current rating of ~1.1A. The PLC digital inputs have a voltage rating of 24 VDC at 3.5 mA. The digital voltage output is 0-24 VDC. The analog inputs/outputs have a voltage rating of -10 to +10 V and a current rating of -20 to +20 mA.
There is a second power supply which powers the touchscreen (HMI) and the Ethernet switch. This second power supply also has its own circuit breaker, which is also an Allen Bradley breaker rated at 3 Amp, single pole, 48 VDC, 277 VAC. The 3 Amp circuit breaker will protect the second power supply, which is rated at 2.8 Amp input. The 3 Amp circuit breaker is also connected to the lab room’s outlet of 120 VAC. The second power supply which powers the HMI and Ethernet switch outputs 24 VDC and a maximum output current of 5 Amps.

Table 3-1 lists and summarizes the engineering design specifications for the PLC setup of the proposed lab course.
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Engineering Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab bench PLC mounting</td>
<td>● 35mm x 7.5mm x 2m symmetrical DIN rail for mounting components</td>
</tr>
<tr>
<td></td>
<td>● DIN rail length for lab bench - Machine cut to 6 feet</td>
</tr>
<tr>
<td></td>
<td>● 16 AWG stranded wire</td>
</tr>
<tr>
<td>Modicon X80 I/O Platform</td>
<td>IP degree of protection: IP20</td>
</tr>
<tr>
<td></td>
<td>Product Compatibility:</td>
</tr>
<tr>
<td></td>
<td>● BMXCPS power supply</td>
</tr>
<tr>
<td></td>
<td>BMXP34 processor</td>
</tr>
<tr>
<td></td>
<td>I/O Channels:</td>
</tr>
<tr>
<td></td>
<td>● Discrete I/O 4096</td>
</tr>
<tr>
<td></td>
<td>● Analog I/O 1024</td>
</tr>
<tr>
<td></td>
<td>● Expert 144</td>
</tr>
<tr>
<td>8-slot Ethernet + X-bus rack</td>
<td>Power consumption: 2W</td>
</tr>
<tr>
<td></td>
<td>Fixing Mode:</td>
</tr>
<tr>
<td></td>
<td>● By 4 M6 screws plate</td>
</tr>
<tr>
<td></td>
<td>● By clips 35mm symmetrical DIN rail</td>
</tr>
<tr>
<td></td>
<td>● By 4 screws 4.32...6.35 mm panel</td>
</tr>
<tr>
<td>Circuit Breaker (BMXCPS3500)</td>
<td>Typical PSU input current:</td>
</tr>
<tr>
<td></td>
<td>● 1.104Arms @115Vrms</td>
</tr>
<tr>
<td></td>
<td>It (for rating external breaker)</td>
</tr>
<tr>
<td></td>
<td>● 0.1As @115Vrms</td>
</tr>
<tr>
<td></td>
<td>● 0.15As @230Vrms</td>
</tr>
<tr>
<td></td>
<td>Breaker rating: 1P, 1.6A, ~277V, 50/60Hz</td>
</tr>
<tr>
<td>Circuit Breaker (ABL8REM24950)</td>
<td>● Mounting support: 35 x 7.5 mm symmetrical DIN rail</td>
</tr>
<tr>
<td></td>
<td>● Max input current: 2.8A</td>
</tr>
<tr>
<td></td>
<td>● Breaker: 1P, 3A, ~277V, 50/60Hz</td>
</tr>
</tbody>
</table>
Touch Panel HMI (HMISTU855)

- Display resolution: 320 x 240 pixels QVGA
- Power consumption - 6.8 W
- Integrated connection USB 2.0 type A
- Supply voltage limits 20.4...28.8 V

Unity Pro

Programming methods:
- Structured Text (ST)
- Function Block Diagram (FBD)
- Ladder Logic (LL)

4. Design Process

The design process for this project focuses on obtaining the correct dimensions for the PLC system setup. The lab contains six lab desks that are 6 feet in length each. The quickest and most efficient method of mounting the PLC and other hardware to the desk was to attach a steel DIN rail across the back of the desk to span from edge to edge. Incorporating steel DIN rails in PLC mounting is a standard primarily used in industry. DIN rails standard measurements are usually in meters. The DIN rails ordered for this lab were 35mm x 7.5mm x 2 m each which exceeds the length of the lab desks; therefore, the din rails were cut and grinded in order to perfectly fit the lab desks. Also, a ⅝ inch diameter hole was punched into the DIN rail to allow a steel bolt insertion. Once the DIN rail was complete, the rest of the setup process was relatively straightforward.

The mounting items used in all of the lab desks were: ½ inch diameter steel nut (2 inches in length), and ½ inch diameter washers. There are two sets of lab desks in the lab room (3 lab desks in each set), therefore, the mounting for the different sets was slightly different. One set of desks required a 1-inch square washer and a spring attached to a metal bracket that connects to a steel bolt. The other set of desks did not require these two extra items. At the end of the DIN rail
mounting, a total of: twelve steel bolts (2 for each lab desk), twelve \(\frac{1}{2} \) inch washers (2 for each lab desk), six 1-inch square washers (two washers per desk on 3 of the lab desks), and six spring-metal brackets (two per desk on 3 of the desks) were used.

Next, all of the hardware was mounted (clipped onto) the DIN rail. Most PLC hardware components are DIN rail compatible, meaning that they can be clipped onto a DIN rail. The PLC rack (which physically holds up the PLC processor and the digital/analog I/O cartridges) has a slot in the back with tiny springs to allow the insertion of a 35mm x 7.5mm din rail. The circuit breakers, power supply, terminal blocks and ethernet switch all have slots in the back to clip onto a DIN rail.

Lastly, the wiring. PLC hardware (including digital/analog I/O cartridges) is compatible with 14-22 AWG wire. The wire used in this lab is 16 AWG. The wiring begins with the circuit breakers. There are two power cables per lab desk, one power cable per circuit breaker. The power cables were cut and stripped. The positive cable (live wire) connected to the circuit breaker, the neutral wire connected to a terminal block, and the ground wire connected to a grounding terminal block. From there, the live wire, neutral wire and ground wire are connected to the PLC power supply appropriately. The same process was repeated for the circuit breaker connecting to the 24V power supply that connects to the Touchscreen (HMI) and ethernet switch. Finally, the positive/ground/neutral terminals from the 24V power supply were connected to the appropriate terminals on the Touchscreen and ethernet switch. The wiring diagram can be seen in Figure 4-1.
Figure 4-1: Final hardware setup including all wiring to components
5. Hardware Test and Results

This chapter will elaborate on the execution of the design process from the previous chapter and show a few different methods to mount a PLC in an educational environment. We went through multiple iterations of designs for mounting the PLC on two different types of lab benches as well as the considerations for what parts to buy to mount the PLC’s human machine interface (HMI).

The first major obstacle in the hardware setup of this lab was deciding the mounting style. The methods of standard PLC mounting include: a PLC backplane, a din rail, or a backplane with din rails.
A PLC backplane is convenient for big, vertical stations. Having a backplane could allow easy installation for various hardware machines such as a PLC or power supplies. The left picture of Figure 5-2 displays a PLC backplane [25]. A PLC backplane provides many benefits such as easy installation, secure mounting, visibility (since everything is installed in the same station) and the robustness to hold many different machines. The cons of having a backplane were the deciding factors for not installing it in this lab. Since a backplane is usually setup within its own standing station, all of the metals can be drilled and fit together nicely. The metal backplane would not work well with the desks in this lab. The desks don’t allow much vertical space for mounting and buying sheets of metal to span across the back of the desk would be very time consuming since the sheets of metal would have to be drilled and cut every time a new piece of equipment is added to the mounting setup. Wood can also be used as a backplane but the same problem arises in terms of time consumption; a hole would have to be cut every time a new piece of equipment was added.

The other mounting method is a backplane with din rails. The right picture of Figure 5-2 displays a backplane with din rails [26]. This method provides many of the benefits of the standard backplane. Having the din rails on the backplane would allow for easier installation since the PLC rack, power supplies and terminal blocks are din rail compatible (they can easily be clipped onto a din rail). However, this method does not work for this lab for the same reasons stated before which consist of the desk not having much vertical space for mounting and large time consumption.
The third style of standard PLC mounting is using a din rail. This method was chosen for this lab because it is the easiest of all three. A din rail is very convenient for horizontal mounting and it allows for easy installation of the hardware since all of the parts can be clipped onto the din rail. This was the most cost effective style since no metal or wood backplanes are needed. This method worked best since the desks are 6 feet wide (standard din rail lengths are two meters, slightly over 6 feet) and have space for lots of horizontal mounting. Figure 5-3 displays the din rail mounting used in this lab.
The next obstacle in the mounting process was to install the din rail onto the legs of the desk. Chapter 4 discusses the different sets of desks as well as the tools needed for each desk in this lab. Students without permission to use the machine shop at school aren’t able to cut and grind the din rail on their own. Therefore, assistance was provided to install the din rails. Figure 5-4 displays Jaime Carmo, a greatly respected technical assistant in the EE Department at Cal Poly SLO, belt sanding the din rails to fit onto the lab desks.
The edges of the din rail were also sanded to smoothen the sharp corners. Figure 5-5 displays the holes that Jaime cut into the din rails that allowed a bolt/screw to go through for mounting.

![Din rail holes for mounting on the bench](image1.jpg)

Figure 5-5: Din rail holes for mounting on the bench

Another issue that arose once all of the hardware was mounted was the weight distribution on the din rail. Even though the steel din rails are robust, the weight of the PLC, circuit breakers, power supplies, digital I/O, and all of the other equipment created a small sag in the middle of the din rail. Having all of the equipment mounted towards the middle of the din rail compromised the elastic and compressive strength integrity as well as its stiffness and stability. In order to avoid compromising the din rail material properties, all of the equipment was moved to the edge of the din rail where most support was provided by the desk leg. Figure 5-3 displays the PLC equipment on the left side of the din rail. This greatly reduced the sag in the middle of the din rail.

Mounting the touchscreen (HMI) with a sturdy grip was rather difficult at this point in the labs development, due to the changing nature of the bench layout. To begin the process of choosing the mounting mechanism we had some considerations to keep in mind. Since the lab is still early in development, we do not know what future equipment may fill the rest of the lab
bench space. We also wanted something that was not very expensive, in case the mounted method wanted to be altered/changed in the future of the course. The main goal was just to free up the main lab bench space below the PLC so that students have room to work with the PLC wires as well as make measurements. Due to these constraints we had to ignore the recommended mounting method seen in Figure 5-6.

Figure 5-6: Schneider Electric instruction sheet for mounting the HMI.

Figure 5-6 shows the method of mounting the touchscreen to a flat surface such as metal or wood. The automation industry tends to use metal due to the already designed custom metal boxes often holding the PLC with various other components. Since we had already avoided the use of metal mounting sheet for the back of the lab bench and PLC, we once again had to think of a different method for mounting the touchscreen. The instructions from Schneider Electric involve a maximum 0.236 in. flat sheet (2) to be wedged between the two portions of the HMI.
Depending on the force holding the HMI pieces (1 & 3) together, the screen may rotate clockwise or counter clockwise if not secured properly. This is why the tee (5) in the diagram exists, to prevent the HMI from rotating from its default horizontal position. Our method had to include the compression for both pieces while also making sure the HMI would not rotate out of position anytime when touched or due to gravity.

We spent a lot of time brainstorming different ideas, including taking TV stand legs and retrofitting a metal sheet onto two legs to be used as a stand. This created a number of issues, mainly being that the TV stand legs would waste a lot of space and are relatively expensive for a simple design. That whole concept of a TV type stand would require engineering the entire stand from scratch just for the purpose of mounting the touchscreen. The idea was to have the stand for touchscreen disconnected from the whole lab setup so that it could be easily moved or readjusted when necessary. We began to realize that buying any legs to mount a metal sheet onto was too complicated due to the different and often large sizes of legs and how most of them were not made to have a metal sheet mounted onto them. On top of these issues, we did not want the touchscreen to be recessed far back on the top portion of the lab bench, as when students are seated, they would not be able to read information from the screen without standing up. A simple stand would also be relatively unstable when the device is being touched by users, it would require drilling into the table to make sure it wouldn’t recess back every time it was being used. We even considered VESA mounts commonly used for PC monitors that would clamp onto a table and suspend the HMI in the air with a metal arm. Most of these mounts were too expensive, but the main issue with VESA mounts is that the supporting arm covers the connection of the display module to the panel adapter; both of these components are centered and would be interrupted by a VESA arm. The idea of clamping to the side of the table was good though
because it solved all our concerns with wasting lab bench space. After looking into different solutions we landed on the Tryone Gooseneck Tablet Stand seen in Figure 5-7.

![Tryone Gooseneck Tablet Stand](image)

Figure 5-7: Tryone Gooseneck Tablet Stand sold on Amazon.

Our new solution seen above benefits from being the most flexible off all designs we considered. The aluminium-magnesium alloy arm is bendable to different shapes and is extremely stable. The benefit of this arm is that it allows different heights to be used, which allows the students to change the positioning of it in the future. Our positioning chosen in Figure 5-8 allows the screen to be easily seen (since it’s not recessed behind the shelf) but also allows the bench shelf to act as additional support for the weight of the touchscreen.
Since the clamp is meant to hold up tablets, its clamping force pushing inwards from both sides into the touchscreen insures a very stable grip. The wedge in between the display module and the panel adapter sits below the centered connection also ensures HMI won’t fall since it is being suspended off the table. With this final solution for the touchscreen, it can be easily moved and height adjusted without drilling into the table or created a new stand from scratch. Although we are using the arm for a slightly different purpose than it was intended for, it allows the HMI to be conveniently placed and accommodate for different equipment entering into the lab in the future. Figure 5-9 helps illustrate the minimal amount of space used by the mounting method for the touchscreen.
Figure 5-9: Side view of the clamp used and arm bent into shape.

6. Conclusion

This project entails the initial setup and development of an Industrial Power and Controls lab located in building 20 room 150. Developing a lab hardware layout from scratch presented a much more complex problem than expected. Due to the lack of experience with the Electrical Engineering department with PLC’s, we invested a large portion of time simply to learn everything about the Industrial Automation industry and how to go about mounting the PLCs in a much different environment used in industry. We also spent some time debating how Electrical Engineering students should learn their first lab and be introduced to programming PLCs.

Most of the choices made for mounting the PLCs were due to cost being the most important factor for an educational environment. Choosing to simply mount the DIN rail directly onto the lab bench and avoid mounting a large metal sheet on the back of the bench was directly
a decision to save money. The PLC still benefits from facing the user directly, but we avoided buying, retrofitting, and sanding the metal to meet the sizes of each bench. Another issue with mounting a metal sheet early into the process is due to the dynamic environment of lab development. We had no blueprints or a set list of equipment of what had to be included for the lab course. Buying and cutting metal to specific sizes would mean there would be very little room for shifting equipment around and even swapping out equipment for others late into the future. As future students help develop the PLC labs, they will help determine what equipment is necessary to build out and make use of the open spaces on both the DIN rail and the shelf of the lab benches above the PLC. Since a large portion of open space exists on the rail, future students may choose to relocate certain items and place them effectively close to each other to reduce the length of wires and simplify the visual appearance of the lab. We also recommend to add some sort of middle support for the DIN rail, as the addition of future devices may cause the rail to sag. If and only if a final layout of future equipment gets developed, we also believe that mounting a metal sheet may be beneficial to take use of space above and below the PLC’s current location.

In addition to the lab hardware layout, the task of learning how to navigate through the software to communicate with PLCs, Unity Pro, posed an equally difficult challenge when developing the simulations and procedures of experiments. Due to Schneider Electrics Unity Pro software having limited examples and learning tutorials online, we relied heavily on a representative from Schneider Electric, Derrick Baker, to help teach us the basics for programming the Modicon M580. In the future, we recommend new students developing the lab to request to take some of the paid onsite training sessions to help develop more advanced skills specific to the Modicon M580. Derrick Baker deserves a large amount of credit for helping teach
us the couple of times he came to Cal Poly; any future training sessions taught by him at our
school would also alleviate scheduling issues of students having to visit Schneider Electric in
person. Additional training related to the PLC in our lab would mean that future students
developing the course may exploit the equipment for as many of the features as it offers.
Selecting Ladder Logic (LL) and Function Block Diagram (FBD) programming languages for
this course allows students to see visual representations of their circuits, which is easier to detect
incorrect wiring or variable placement compared to structured text or instruction list
programming. While the simulation schematics for Unity Pro may have a similar layout to other
circuit simulation software, setting up the function block and relay I/O has a different process
that students would not be as familiar with. Instructions for this setup are written in great detail
to prevent error or harm to the hardware.

Appendix A. ABET Senior Project Analysis

Project Title: Industry Automation and Controls Lab

Students: Michael Campos, Nadir Khan, Samantha Bituen

Advisor: Taufik

1. **Summary Of Functional Requirements:**

 a. This lab is being developed in order to expose and prepare students who want to
 enter the industrial controls and automation industry. The lab is centered around
 the use of PLC’s and will focus on electrical engineering concepts such as
 controlling electrical power, current, or voltage.

2. **Primary Constraints**
a. There are a couple of constraints that will make this project difficult for us to complete. First of all, we don’t have the same size desks for all of the lab. Three of the lab benches are a different type of desk than the other three. This means that we will have to improvise and possibly drill the back plane for the mounting of the PLC setup directly into the stands of each desk. This also limits the amount of vertical space we will have between the desk and the top shelf of the desk. The next constraint is to figure out exactly what materials we need and where to buy them from. For this constraint we can consult with our Schneider Electric contact person, but have to ensure we can still find relative cheap prices online in case they try to upsell us. Another constraint is to make sure that the hardware setup of the lab is completed in time for us to begin developing the first few experiments of the lab.

3. Economics

a. What will impact the result?

i. Human Capital: This lab will teach students how to use PLC’s and prepare for jobs using PLC software and hardware.

ii. Financial Capital: PLCs growth and implementation is expected to increase by 34% just in the United States, therefore, preparing students with this lab will create better engineers for companies to benefit from.

iii. Natural Capital: This lab will consume a lot of electrical power since there will be 6 lab stations each powering a PLC power supply and a touch screen power supply. There are also computers that will need power.
iv. Costs: The components for the lab accumulate to nearly $67k since there are 6 lab stations. Each lab station will comprise of the same components listed in Table 5. The amount of time it will take to develop this lab will be around 20 weeks (winter and spring quarter). Table 6 shown below displays the component cost and labor cost for the development of the lab. There is only 2 of us developing this lab and we plan to work at least 4 hours a week on this lab. The labor cost will be $11.00/hr (minimum wage).

<table>
<thead>
<tr>
<th>Purchase</th>
<th>Cost</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modicon M580 Processor (6)</td>
<td>$60,000</td>
<td>Estimated Component Parts</td>
</tr>
<tr>
<td>Touch Screen Monitor (6)</td>
<td>$2400</td>
<td></td>
</tr>
<tr>
<td>Circuit Breakers (12)</td>
<td>$1800</td>
<td></td>
</tr>
<tr>
<td>Touch Screen Power Supplies (6)</td>
<td>$1500</td>
<td></td>
</tr>
<tr>
<td>Metal Backplanes (6)</td>
<td>$450</td>
<td></td>
</tr>
<tr>
<td>Din Rails (6)</td>
<td>$150</td>
<td></td>
</tr>
<tr>
<td>Terminal Blocks (12)</td>
<td>$300</td>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td>80 Hrs ($11/hr)</td>
<td>Minimum Wage Labor Cost</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$67,480</td>
<td></td>
</tr>
</tbody>
</table>

4. If manufactured on a commercial basis
 a. For this lab we are not going to be manufacturing any products, we are only create a custom lab for the lab benches exclusive to our EE department. There are currently no plans to sell or manufacture any portion of the lab.

5. Environmental
a. The environmental impacts of our project are mainly due to the electricity usage of the lab itself. Electricity does not always come from clean (renewable) sources; this means that we must ensure that the development of the lab and usage of the universities money is not put to waste on an ineffective learning experience.

There are additional costs for the parts we purchase. The metal backplane, circuit breakers, terminal blocks, and DIN rail can all be recycled since they are made of metal and plastic.

6. Manufacturability

a. Manufacturing of this project will not be conducted. Everything built in the lab will be proprietary and not used in other settings.

7. Sustainability

a. Describe any issues or challenges associated with maintaining the completed device.

i. One issue with maintaining the device is the circuit breakers and the fuses protecting the PLC and touchscreen. We have to make sure the fuses are sized properly so that any power surges will not harm the expensive components. The mounting method for the touchscreen may break over time. If the clamp screw is over tightened it may break.

b. Describe how the product impacts the sustainable use of resources

i. Since the components we are using are built to last, we are ensuring that additional purchasing of hardware due to poor craftsmanship will not affect the environmental footprint of the lab. Additional warnings and
safety labels can be added to ensure that the equipment is treated with care from future students using the lab.

c. Describe any upgrades that would improve the design of the project
 i. Currently we are not expert metal workers and don’t have much experience with construction. If we had an experienced construction worker to assist building the hardware of the lab, we could account for any design issues we might miss due to lack of experience with long term durability of materials. This could allow the projects hardware layout to be designed for both a greater convenience of use and device stability when mounted to the lab benches.

d. Describe any issues or challenges associated with upgrading the design
 i. We don’t have the funds to hire an experienced machinist for the project, so we may have to ask for a donation of their time and energy.

8. Ethical
 a. The lab course must be designed in order to challenge the enrolled students. Making the lab “too easy” wouldn’t really teach the students or engage their interests in PLCs. The lab must also “feel” like a 400-level 2 unit lab course. We also can’t make the lab “too challenging” because this is an intro lab course to PLCs.

9. Health and Safety
 a. There are several safety factors that will be considered in the development in this lab. The PLC and touch screen power supplies will be powered from 120Vrms AC voltage. In the case of an electrical surge, there will be 2 circuit breakers in
each lab station that will protect the power supplies. Also, there are 24V DC I/O pins on the PLC. The students will be warned of this, careful circuit wiring and precaution will be heavily stressed at the beginning of the lab.

10. Social and Political

a. This lab course prepares and teaches students how to use PLC software and hardware. Students taking this lab course will be better prepared to enter the Industrial Controls & Automation industry, thus, giving these students an advantage over students not enrolled in the lab course.

b. This lab uses Schneider Electrics Modicon M580 PLC. Even though the programming for PLCs (ladder logic or functional block diagrams) is typically universal, enrolled students may favor the Schneider’s Modicon over competing PLCs. This can create a financial or economic advantage for Schneider Electric over its competitors.

11. Development

a. In order to be able to write an instructional manual for this course, the senior project team participated in workshops with a representative from Schneider Electric to learn to operate and communicate with the PLCs. The team researched several articles and written works (see References) to get a better sense of how to lead an introductory course for PLCs, ensuring the most basic but essential concepts are covered and mastered over the 10-week course. Topics covered in workshops held by the group’s Schneider Electric contact, Darrick Baker, including a brief history of PLCs and automation, digital/analog module configuration, testing and linking to project programming, Function Block
programming of variables and a gain calculation with threshold alarming, Structures & Arrays, data type conversions, creating a custom Derived Function Block (DFB) to perform the previous code, real-time Ethernet communication using explicit messaging and Device Type Manager (DTM) technology to devices (PLCs, meters, IEDs).

b. Annasaheb Dange College of Engineering & Technology’s course features demonstration-based learning instead of lecturing to the class and then testing on memorization. Students have the opportunity to apply what they learn about a relay logic system seeing it hardwired with a PLC rather than only learning it theoretically in a classroom. The nature of PLCs provide connections between different engineering fields and may cover topics such as electric motors, frequency controllers, and Supervisory Control and Data Acquisition (SCADA) systems. This replicates an industrial environment with knowledge that will be applied to a full time career.

Appendix B. Industry Automation and Controls Lab Manual

Lab 1A: Ladder Logic LED Control

Objective: Become familiar programming a PLC using Ladder Logic.

These instructions will walk you through a simulation of a lighting LED program using ladder logic.

Ladder logic was the first programming method used for PLCs. This walkthrough will demonstrate the use of relays and relay coils used to represent the inputs and outputs of a system (such as voltage inputs and voltage outputs).

Go to:

1. File → New
2. Under the Modicon M580 options, choose BME P58 4040 and click OK
3. Under Project Browser that pops up on the left-hand side: click on Program → Tasks → MAST → right click on Sections
4. Under the New window, name the program “LED” and under Language choose LD (for Ladder Logic) → click OK (a blank white background should appear where you will build your project)
5. The icons on the top left that look like: -|- -/| -{ }- represent the relays and relay coils (inputs and outputs)
6. Hover over the icon -|- to see “Normally open contact (F3)”. This icon represents a normally open contact (such as an open switch) to be used as an input. Click on the icon (or click on F3) and place the icon under the 1-1 area in the white background. (Feel free to look at all of the icons and figure out their function)
7. Create the following “rung” below. (A rung is the connection of inputs and outputs from left to right. A series of rungs looks similar to a ladder.)

![Figure B-1: Ladder Logic Rung](image)

8. Under the Project Browser: click on Variables & FB instances → double click on Elementary Variables (the Data Editor window should pop up and this is where you will create your variables and variable types for the program)
9. Under Name, type in “FiveVoltInput” and under Type, choose EBOOL from the scroll down menu
10. Create the following Variables table shown below

![Figure B-2: LD Variables Table](image)
11. Go back to the rung created earlier and right click on the Normally closed icon → Properties and click on the more options grey box next to the scroll down arrow and choose the “OpenSwitch” variable → click OK → click OK
12. Match the icons with their appropriate variable names as shown below

![Figure B-3: Naming Relays and Relay Coil](image)

13. Now to start simulation mode on the PLC, go to PLC on the top right menu → Simulation Mode
14. Next, go to Build on the top right menu → Rebuild All Project (ignore if you’ve generated a warning)
15. Go to PLC on the top right menu → Connect (You are now connected to the PLC simulator)
16. Go to PLC on the top right menu → Transfer Project to PLC. Once the Transfer Project to PLC window opens, click on Transfer.
17. Go to PLC on the top right menu → Run → OK (The program is now being executed in RUN mode on the PLC simulator.)

The screen should look something similar to the screenshot below:

![Figure B-4: Simulating the LD LED Program](image)

Make changes to the relay values by right-clicking on a relay and going to Set Value.
Setting a normally open relay to a ‘1’ will close the relay, and setting a normally closed relay to a ‘1’ will open the relay.

You have now created a simulation of a lighting LED program using ladder logic!

Lab 1B: Voltage Controlled Alarms

Objective: Become familiar programming a PLC using function block diagram (FBD).

In this experiment you will learn how reading and comparing different voltages can allow an alarm system to alert two different importance levels of alarms.

1. Connect (CRTL+K) and then Disconnect PLC
2. PLC > File > New> Expand Modicon M580 option, select BMR P58 4040 as device (rack should be BME XBP 0800 > OK
 a. NOTE: You cannot create a new project if you are still connected to the PLC
3. In the Project Browser, under the “Project” folder, double click the “Configuration” folder and a diagram of the PLC should pop up. Right-click each module of the PLC and replace/add modules seen on the rack.
4. Create the variables listed below by clicking on **Elementary Variables** under the “Variables + FB Instances” folder in the Project Browser. After entering all the variables build the project changes.

5. Under the Program folder in the project browser - > Tasks - > MAST - > Sections - > Right Click sections - > New Section

6. Name the section (dB_Gain_Circuit) and select FBD as language - > OK
7. Click Tools -> Click Types Library Browser editor
8. Change library name to <Libset V13.0>
9. To search for certain section/characters type in FRONT of *
10. Add the correct function blocks by dragging them into the FBD grid, add Links (wires) to connect I/O

Figure B-10: Simulation FBD Layout
11. To add variables on a function block’s I/O double click the pin name then click the [...]
12. To add comments click on the [A...] on the upper toolbar
13. Build -> Build Changes (Note: You must be offline to build changes)
14. Select all Function Blocks with cursor -> Right click -> Initialize New Animation Table

![Figure B-11: Example of Animation table results by forcing Voltage 1 & 2 values.](image)

Making One Large Function Block

1. Going back to the Variables and FB Instances folder in the Project Browser, re-click on Elementary Variables and switch to the DFB Types tab
2. Create a new DFB Type and name it GAIN_VdB_ALARM. Hitting Enter, the Type should automatically fill in as <DFB> and expanding GAIN_VdB_ALARM should provide you with additional folders.
3. Fill in the <inputs>, <outputs>, and <private> variables as seen in table below.
 a. NOTE: When creating Gain_Calc variable under <sections>, there will be a pop-up window with <FBD> set as language. Confirm by clicking OK
4. Under <sections> of DFB Types, double click on Gain_Calc. This will open up a new blank FBD schematic. Go back to Function Block Diagram of dB_Gain_Circuit, select entire circuit, and copy and paste into the new blank schematic.

5. Replace the (old) underlined variable names with the new I/O.

Figure B-13: FBD layout after copy and pasting the old schematic into the new blank schematic. Notice some variables are underlined because they are invalid.
Figure B-14: FBD schematic with new DFB I/O variables defined in Figure 1-12

6. Go back to original FBD circuit and right click on schematic -> FFB Input Assistant
7. For Input Name, select GAIN_dB_ALARM -> OK

Figure B-15: FFB input assistant generation for project.
8. Place GAIN_dB_ALARM function block on original schematic -> Build -> Build changes

Figure B-16: FBD schematic with new DFB placed. Note: you may place it anywhere, the block demonstrates the ability to compress the circuit into a larger block.

9. Under the “Derived FB Types” in the Project Browser, right-click GAIN_dB_ALARM and select “Put in Library” -> select Custom Lib -> click Custom FAMILY -> OK -> OK

Figure B-17: Placing the DFB into a custom library saves the circuit for future use in other projects.
Table C-1: Bill of Materials

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Description</th>
<th>Supplier</th>
<th>Cost Per Unit ($)</th>
<th>Quantity</th>
<th>Total ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS84040</td>
<td>Modicon M580 PS84040</td>
<td>Schneider Electric</td>
<td>0.00</td>
<td>6</td>
<td>0.00</td>
</tr>
<tr>
<td>CPS3500</td>
<td>CPU PSU</td>
<td>Schneider Electric</td>
<td>0.00</td>
<td>6</td>
<td>0.00</td>
</tr>
<tr>
<td>Phaseo ABL8REM24050</td>
<td>HMI PSU</td>
<td>Schneider Electric</td>
<td>0.00</td>
<td>6</td>
<td>0.00</td>
</tr>
<tr>
<td>DDI1602</td>
<td>Dig 16l 24 Vdc Sink</td>
<td>Schneider Electric</td>
<td>0.00</td>
<td>6</td>
<td>0.00</td>
</tr>
<tr>
<td>DRA805</td>
<td>Dig 8Q Isolated Relays</td>
<td>Schneider Electric</td>
<td>0.00</td>
<td>6</td>
<td>0.00</td>
</tr>
<tr>
<td>AMI0410</td>
<td>Ana 4 Ul Inputs Isol High Speed</td>
<td>Schneider Electric</td>
<td>0.00</td>
<td>6</td>
<td>0.00</td>
</tr>
<tr>
<td>AMO0410</td>
<td>Ana 4 Ul Out Isolated</td>
<td>Schneider Electric</td>
<td>0.00</td>
<td>6</td>
<td>0.00</td>
</tr>
<tr>
<td>HMIS85/HMIS5T</td>
<td>Touchscreen Monitor</td>
<td>Schneider Electric</td>
<td>0.00</td>
<td>6</td>
<td>0.00</td>
</tr>
<tr>
<td>TCSESU053FN0</td>
<td>Ethernet Switch</td>
<td>Schneider Electric</td>
<td>0.00</td>
<td>6</td>
<td>0.00</td>
</tr>
<tr>
<td>B01AUG33LG</td>
<td>Tyrone Gooseneck Tablet Stand</td>
<td>Amazon</td>
<td>20.99</td>
<td>6</td>
<td>125.94</td>
</tr>
<tr>
<td>AB 1489-M1C030</td>
<td>1P 3A Circuit Breaker</td>
<td>Royal Industrial Solutions</td>
<td>55.84</td>
<td>6</td>
<td>335.04</td>
</tr>
<tr>
<td>AB 1489-M1C016</td>
<td>1P 1.6A Circuit Breaker</td>
<td>Royal Industrial Solutions</td>
<td>55.84</td>
<td>6</td>
<td>335.04</td>
</tr>
<tr>
<td>4008190046019</td>
<td>DIN rail Weidmüller 35X7.5/LL 2M</td>
<td>Automation 24</td>
<td>15.21</td>
<td>7</td>
<td>106.47</td>
</tr>
<tr>
<td>AB 1492-J3</td>
<td>Terminal Block</td>
<td>Royal Industrial Solutions</td>
<td>0.78</td>
<td>140</td>
<td>109.20</td>
</tr>
<tr>
<td>AB 1492-EBJ3</td>
<td>Terminal Block End Barrier</td>
<td>Royal Industrial Solutions</td>
<td>0.56</td>
<td>14</td>
<td>7.84</td>
</tr>
<tr>
<td>AB 1492-EAJ5</td>
<td>Terminal Block End Anchor</td>
<td>Royal Industrial Solutions</td>
<td>1.50</td>
<td>14</td>
<td>21.00</td>
</tr>
<tr>
<td>AB 1492-JG3</td>
<td>Gnd Terminal Block</td>
<td>Royal Industrial Solutions</td>
<td>3.92</td>
<td>12</td>
<td>47.04</td>
</tr>
<tr>
<td>FRT FREIGHT IN AB</td>
<td>Shipping and Handling</td>
<td>Royal Industrial Solutions</td>
<td>8.95</td>
<td>1</td>
<td>8.95</td>
</tr>
</tbody>
</table>

Note: Donated parts not included in final cost

Grand Total: $1,096.52
Appendix D. Scheduling

Figure D-1: Fall Quarter 2018 Gantt Chart

Figure D-2: Winter Quarter 2019 Gantt Chart

Figure D-3: Spring Quarter 2019 Gantt Chart
References:

Description: Ways to teach a PLC course

Description: Company page describing who they are and what they do

Description: Company page describing what they do and who they are

Description: Company page describing who they are and what they do

Description: Company page describing who they are and what they do

Description: Product page

Description: Product page

Description: Product page

Description: Product page

Description: Description of PLC related course at Chico State

Description: Overview of how PLCs work

Description: Course description for PLC courses at San Bernardino State

Description: International standard used by Automation industries

Description: Course description for PLC topics are Fresno State

Description: Product page

Description: Product page

Description: Picture of creator of the first PLC

Description: Product page for PLC donated to Cal Poly

Description: PLC course description/requirements

Description: Description of PLC course at Fullerton State

Description: Product page

Description: PLC Hardware Vendor

Description: Product page

Description: HMI stand

Description: The five major market leaders in PLC analysis

Description: General overview of PLCs and how they work

Description: Analysis of how PLCs work and operation

Description: Overview of how PLCs work