Using Fscans to detect combs in LIGO Detector Characterization Channels

Joe Milliano¹ & Gregory Mendell²
¹Truman State University, ²LIGO

Gravitational Waves: The Basics

Gravitational Waves are ripples in spacetime due to the accelerated motion of a matter and energy.

Sources of Gravitational Waves include:
- the inspiral of a binary black hole merger
- rotating asymmetric neutron stars
- bursts from unexpected sources (e.g. supernova)

How does LIGO detect Gravitational Waves?

An example of a basic interferometer is shown below. Laser light is sent through a beam splitter, and exits down two perpendicular vacuum tubes. The light hits a mirror at the end of the tube and returns to a detector.

As a gravitational wave passes through the detector, one arm will be stretched and the other compressed. The detector detects the difference in how long it takes the light to travel down each arm.

The graph on the below shows the signal of the first detection as seen by both the Hanford, WA and Livingston, LA Observatories.

Fscans produce spectrograms and time-averaged Power Spectra

Some uses of Fscans include:
- aiding in continuous gravitational wave searches
- identifying coincidence lines between environmental sensors and the gravitational wave channel

Spectrograms plot a time evolution of the power spectrum of different frequency bins

[Graph]

\[ASD = \sqrt{\frac{1}{T} \sum (|\tilde{S}|^2) \Delta f} \]

- \(\tilde{S} \) is FFT of the signal
- \(\Delta f \) is the time between samples
- \(T \) is the time duration

Time-averaged Power Spectra plot the normalized average power over a 24 hour period of each frequency bin

[Graph]

Searching for combs to identify noise sources

A comb is a sequence of strong frequencies repeated at regular frequency intervals \(\Delta f \), such as shown in the cartoon figure below.

Combs identify noise lines, such as those from an electronic clock turning on and off.

For example, the time-averaged Power Spectrum in the previous column has several combs with a spacing of 0.5 Hz

Implementing a Comb Finding algorithm

The Comb Finding algorithm scans through frequencies \(f_0 \), \(f_1 \), and \(f_2 \), computing \(\Delta f_A = f_1 - f_0 \) and \(\Delta f_B = f_2 - f_1 \). If \(\Delta f_A = \Delta f_B \) within a tolerance of \(\epsilon = 0.01 \) Hz, then \(f_0 \), \(f_1 \) and \(f_2 \) make up the teeth to a comb.

A running median is used to whiten the data, allowing weak noise lines to stand out above the background.

[Flowchart]

Cal Poly, San Luis Obispo
CSU
National Marine Sanctuary Foundation
Chevron

This material is based upon work supported by the National Science Foundation through the Robert Noyce Teacher Scholarship Program under Grant #1418852. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The research was also made possible by the California State University STIM Teacher and Researcher Program, in partnership with Chevron (www.chevron.com), the National Marine Sanctuary Foundation (www.marinensanctuary.org), and the LIGO Hanford Observatory.

[2] LIGO Scientific Collaboration, "LIGO Open Science Center release of 56", 2015, DOI 10.7935/KXBN9SSD (https://lsc-osc.org). This research has made use of data, software and/or web tools obtained from the LIGO Open Science Center (https://lsc-osc.org), a service of LIGO Laboratory and the LIGO Scientific Collaboration. LIGO is funded by the U.S. National Science Foundation. The computing for this project was done using the LIGO Data Grid (https://www.ligo.org/lsogrid) and code from the The LSC Algorithm Library Suite (https://wiki.ligo.org/DAWG/LASuite).