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Abstract 
This senior project report addresses the consumer’s need for accurate and easily accessible 
information when making a solar panel purchasing decision. Thus, the project analyzes and 
compares the costs and benefits of organic and inorganic photovoltaic systems during their life 
cycle. The cost comparison includes analysis of the environmental and economic costs of 
materials, production, installation, and disposal. The benefit comparison includes analysis of the 
economic, environmental, and social benefits accrued during the system’s lifetime. With the 
project’s data, consumers can make more informed decisions to fit their specific needs. 
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I. Introduction 
Photovoltaic systems dominate a large share of the renewables market due to their 

versatility and dropping prices. By 2030, the IEA expects renewable energy capacity to pass 
coal capacity and become the largest global power supply [1]. In 2017, total photovoltaic 
capacity reached 400GW, a 100GW increase from 2016 [2]. Figure 1 compares the growth of 
solar PV to the growth of wind, hydropower, and other renewable energy resources. While wind 
and hydropower capacity growth stagnates, solar photovoltaic capacity growth will continue to 
increase in the years 2017-2022. 

 

 
Figure 1: Renewable energy capacity growth. The IEA expects solar PV to grow the fastest of all renewable 
energy systems during 2017-2022. Image © OECD/IEA, 2017 Renewables 2017, IEA Publishing. Licence: 
www.iea.org/t&c [3]. 

We can divide solar photovoltaic systems into categories depending on material such as 
inorganic, using elements such as silicon and gallium, and organic, using organic molecules and 
polymers. Another organization method includes grouping cells by generation or relative 
discovery date. First generation, or traditional, solar include mono and multi-crystalline silicon 
cells, while second generation solar panels include thin film such as amorphous silicon or CdTe. 
The third generation includes new material solar cells such as organic and tandem solar cells. 

Currently, silicon solar modules make up almost 90% of the photovoltaic industry, with 
CdTe as the next largest share [4]. Of the commercial solar panels, inorganic photovoltaic 
systems greatly outnumber organic due to greater power conversion efficiencies, longer 
lifetimes, and more developed and cheaper manufacturing. In Figure 2, we can see the longer 
development and higher efficiencies of crystalline silicon (blue) compared to organic (solid red). 
Other solar cell technologies, such as multijunction cells (purple) have high efficiencies, but low 
mass manufacturability. Other new solar cell technologies emerge from better understanding of 
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quantum mechanics, such as the quantum dot solar cell. Commercial inorganic system prices, 
primarily crystalline silicon, have decreased by 50% in five years [1]. In 1977, crystalline silicon 
panels cost around $76/W, while in 2015, panels cost lower than $0.5/W [1]. 

 

 
Figure 2: Best efficiencies of different photovoltaic cell designs. In 2018, a monocrystalline silicon cell 
reached a peak efficiency of 26.6%, a multicrystalline silicon cell reached a peak efficiency of 22.3%, a CdTe 
cell reached 22.1%, and an organic cell reached 12.6% in the lab. While these efficiencies do not reflect 
current solar panels in the market, they do show the possible efficiencies manufactured solar panels may 
reach. This plot is courtesy of the National Renewable Energy Laboratory, Golden, CO [5]. 

Exploring developing photovoltaic technologies requires a more in depth understanding 
of the current designs. This photovoltaic systems comparison seeks to provide consumers with 
an analysis on the similarities and differences of different solar photovoltaic cell designs, 
specifically organic, inorganic, and hybrid solar. Current comparisons focus on each system’s 
design and performance. This project investigates both monetary and ecological costs of each 
photovoltaic system’s manufacturing, use, and disposal to present a full life cycle comparison. 

 
  In a good portion of this report, life cycle analyses provide ways to understand the 
different systems’ impacts on the economy and the environment. Figure 3 outlines the basic 
components included in a life cycle analysis. By analyzing all parts of a photovoltaic system’s 
life cycle, consumers can account for all waste and energy usage. Before addressing the 
manufacturing and use impacts, the next section sets down background information on solar 
photovoltaic systems and the technologies this report discusses. 
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Figure 3: Product Life Cycle. Yellow describes the life cycle, while blue contains the factors considered in a 

life cycle analysis [6] Here, primary energy includes all the energy input into the system, usually measured in 
kWh, though the energy could enter the system through electricity, thermal heat, or human work. 
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II. Background 
This section explores the basic differences between the systems and defines some 

terms used in future sections. Both inorganic and organic photovoltaic systems include the 
modules and the BoS (balance of system) components, which include inverters, cables, and 
mechanical support, to produce useful energy. The mechanical support differs due to different 
weight and size modules and install location, but the modules and the cells contribute the 
largest differences in function. 

 Photovoltaic module quality measures include efficiency and lifetime. A panel’s lifetime 
describes how fast it deteriorates. Under the sunlight, a panel slowly degrades in efficiency. 
Manufacturers define a panel’s lifetime as how long a panel stays above at least 80% of its 
maximum power conversion efficiency [7]. Commercial solar panels usually last longer than 
their rated lifetime or manufacturer’s warranty but produce energy less efficiently than when 
new.  

A module or cell’s efficiency describes the fraction of sun’s energy that the module or 
cell converts into electrical energy. Different irradiances (amount of power from the sun in 𝑊/
𝑚!) and different panel sizes affect the overall energy output of a module. For example, a high 
efficiency module in a low irradiance location can produce similar amounts of electrical energy 
as a low efficiency module in a high irradiance location or a larger sized low efficiency module. 
Figure 4 shows areas of the United States with high irradiance equating to higher amounts of 
electrical energy. A solar panel’s performance ratio describes the amount of energy actually 
generated versus the energy it would theoretically generate. Factors such as weather, 
accidents, or outages can reduce the actual energy generated by solar panels. Usual 
calculations of photovoltaic system energy output assume a performance ratio of 0.75 for 
rooftop and 0.8 for ground mount systems, though a performance ratio of 0.9 can accurately 
describe some systems today [8].  
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Figure 4: The average solar resource, shown in kWh per square meter per day, shown for different areas of 
the United States. Many sites in Nevada, Arizona, and New Mexico house large solar energy plants for the 
large amounts of solar energy available. This map is courtesy of the National Renewable Energy Laboratory, 
Golden, CO [9]. 

Solar panel datasheets usually include information such as the open circuit voltage, short circuit 
current, characteristic IV (current-voltage) curves, temperature coefficients, and maximum 
power output. The characteristic curve describes the change in the current of the solar cell or 
module from zero to the open circuit voltage. Figure 5 gives example characteristic IV curves 
from a solar panel datasheet. Temperature coefficients describe how the module’s open circuit 
voltage, short circuit current, and maximum power changes with temperature. Generally, with 
temperature, a panel’s current increases, and voltage and power decrease. Unfortunately, the 
locations with the highest irradiance, and therefore panels achieve the highest power output, are 
often places with the highest ambient temperature. STC, standard test conditions, or NOCT, 
nominal operating cell temperature, dictate the conditions the manufacturer tests panels under. 
STC includes a 25℃ cell temperature and 1000 𝑊/𝑚!irradiance. NOCT includes a 45℃ cell 
temperature, 1 m/s wind speed, and 800 𝑊/𝑚! irradiance. STC measurements overestimate 
panel performance, while NOCT measurements usually underestimate panel performance. The 
STC cell temperature does not realistically portray its operating temperature, since a panel’s 
temperature rises beyond the ambient air temperature. NOCT conditions often underestimate 
irradiance, depending on the location, and underestimate the effect of wind cooling. 
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Figure 5: Example IV curves and numerical data from a SunPower monocrystalline silicon solar panel. © 
SunPower Corporation [10] Along the IV curve there’s a point of peak power. Inverters use maximum power 
point tracking (MPPT) to maximize power output no matter the tilt of the panel or irradiance from the sun. 

Around 60 to 128 cells encapsulated together usually make up a module, which connect 
in either series or parallel to produce the systems total voltage and current. Usually designs wire 
panel cells in series to generate higher voltage and lower current so less power loss occurs in 
the wires. The module array contains strings of photovoltaic panels. The mechanical support, or 
balance of system (BOS), depends on the location of system installation. The BOS usually 
includes the racks used to mount the panels, whether on a roof or on the ground.  

The materials used to create the BoS, which includes inverters, mounting structures, 
cables, and connectors, also use energy to produce. Solar photovoltaic power plants have a 
high BOS cost because of the concrete, space, and utility vehicles and buildings needed to set 
up and maintain a large capacity plant. For example, for the Springerville Generating System, 
concrete makes up 46.6% of its balance of system [6]. 

The size of a photovoltaic system can vary greatly from a small one home system to a 
large utility scale system spanning several acres. The system size determines the classification. 
Residential systems, or small-scale rooftop, usually measure around 3-10kW. Industrial scale 
systems, or large-scale rooftop, usually measure between 10kW and 2MW. Utility scale, or large 
ground mounted solar power plants, usually size larger than 2MW [11]. These sizes often affect 
the price per watt of a solar system due to different installation costs and permit cost to watts 
installed ratios. 

 
Despite the systems’ similarities in operation and use, their histories and physical 

properties generate many differences in characteristics.  

1. Inorganic Photovoltaic Systems 
Owners can install inorganic photovoltaic systems residentially on roofs, or on the 

ground in utility scale power plants, as seen in figure 4 below. The most popular inorganic 
modules include mono and multi-crystalline silicon, GaAs (gallium arsenide) and CdTe 
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(cadmium telluride) modules. Figure 3 displays an example of a ground mounted mono-
crystalline silicon array. Traditional silicon photovoltaic panels provide energy with their 
relatively high power efficiencies, about 17%, a 25 to 30 year long lifetime, and dropping 
manufacturing costs. Thin films, such as CdTe, have lower manufacturing costs, but have lower 
efficiencies and require sturdier glass to sustain a long lifetime. 

 

 
Figure 6 Mono-crystalline silicon photovoltaic array. Image released under CC0 (Creative Commons Zero). In 
areas clear of shading, large multiple acres of solar panels can generate several hundred megawatts to a 
couple gigawatts of power. 

2. Organic Photovoltaic Systems 
Organic photovoltaic (OPV) systems contain organic molecules or polymers adjusted to 

absorb different wavelengths of light. They are usually thin, lightweight, and flexible (depending 
on the substrate), but have low efficiencies (around 5%) and short lifetimes (around 5 years). 
Because of their lightness, organic photovoltaic systems, such as Heliatek’s installation on a 
school in La Rochelle, France, can be installed easily with a sticky back panel [12]. Some 
manufacturers create semi-transparent OPV panels, with a slight loss in efficiency, to apply on 
windows or other parts of a building where light needs to pass through. Though they currently 
cost more to manufacture, as production capacity increases past kW scale, prices are expected 
to fall below inorganic photovoltaic panels. infinityPV produces organic photovoltaic cells in 
small amounts and sizes, such as in Figure 7 below.  
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Figure 7 Organic Photovoltaic Cell. © infinityPV[13]. Due to their versatility, installers and designers suggest 

using them in building integrated photovoltaic systems (BIPV), installing them while building in roofs or 
windows, reducing installation costs. 

 Though organic cells have shorter lifetimes and lower efficiencies than inorganic cells, 
they have advantages in their flexibility and possibility of lower manufacturing and installation 
costs. These differences occur because of their different material makeup and structure. While 
brittle silicon wafers consitute most current solar panels, organic photovoltaic cells use polymers 
and other flexible molecules. The next section will focus on how these different materials affect 
solar cell performance.  
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III. Material Properties and Structure 
Though both system types produce electricity using the photoelectric effect, where low 

enough wavelength light can excite electrons to higher energy states, the different materials and 
structures used to create this effect create different properties. A material’s band gap energy 
describes the energy needed in a photon to excite its electrons. This photon energy 
corresponds to the wavelength of light hitting the cell. Figure 8 describes the energy in each 
wavelength of light from the sun. From this graph, we can find from the wavelengths of light with 
peak irradiance the best bandgap energies for a photovoltaic cell: 1.0eV to 2.5eV [14]. The cell 
material must efficiently absorb light to produce electron-hole pairs, while ensuring the electrons 
separate from the holes and do not recombine. 

 

 
Figure 8: Global Spectral Irradiance showing the power per area per wavelength of light. Matching the band 
gap energies of the photoactive material in a solar panel to the wavelength of light with the maximum energy 
concentration aids in increasing the efficiency of the panel. This data is courtesy of the National Renewable 
Energy Laboratory, Golden, CO generated using the SMARTS2 (version 2.9.2) model. [15]. 

In his work Inorganic Photovoltaics: Silicon and Beyond, Meng Tao defines ten 
requirements for materials used in solar cells [4]. Some of these requirements include 
abundance, low-cost, non-toxic, high mobility, and suitable band gap. Though no material used 
in currently produced solar panels fit all requirements, some meet enough requirements. For 
example, though abundant, silicon costs a higher amount of money and energy to produce than 
CdTe or organic solar cells. 

While inorganic photovoltaic cells utilize crystalline elements as a light absorber, organic 
photovoltaic cells utilize molecules or polymers to convert sunlight into electricity. Due to this 
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difference, inorganic and organic cells behave differently mechanically and require different 
structures to support electricity generation. 

1. Inorganic Photovoltaic Cells 
Inorganic photovoltaic cells utilize semiconducting elements to absorb light [4]. P-type 

(with spaces for electrons) and n-type (with extra electrons) semiconductors compose donor 
and acceptor layers in a p-n junction. Through the photoelectric effect, photons knock off 
electrons and allow them to flow freely across the p-n junction, creating a flow of electricity. 
Figure 5 displays the cell structure that allows this process to occur. 

 
Figure 9 Basic silicon solar cell structure demonstrating electron hole pair creation. The jagged texturing 

ensures good contact, more surface area for absorbing light, and reduced reflection. Image under Creative 
Commons Attribution 3.0, © Cyferz[16] 

         While silicon itself is abundant, refining the silicon into usable crystals requires a 
substantial amount of energy. Despite this cost, refining silicon allows manufacturers to control 
the impuities in siicon solar cells and dope silicon with specific quantities of elements such as 
boron or phosphorus which have one fewer or one more electron than silicon atoms. Specific 
densities of boron and phosphorus in silicon crystals determine the mobility of the electrons and 
holes across a PN junction, correlating directly to the performance of the solar cell. This PN 
junction consists of p-type silicon, or silicon doped with an element with one fewer valence 
electron, next to n-type silicon, or silicon doped with an element with one more valence electron 
than silicon. The PN junction enters equilibrium when electrons from the n-type side fill the 
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empty spaces in the p-type side. The electric field generated by the junction separates electrons 
and holes and allows them to drift in opposite directions as an electric current. 
 
 To reduce reflection and increase light absorption, manufacturers add a textured surface 
and an antireflectant coating as seen above in Figure 8. The cell’s cathode and anodes consist 
of an aluminum backsheet and a grid of silver bus bars running over the light absorbing side of 
the cell. Copper electrically connects the cells to form panels.  
 Crystalline silicon solar cells have band gaps around 1.1eV, which lies within the 1.0eV 
to 2.5eV ideal range of band gaps defined above. Unfortunately, silicon has an indirect band 
gap, which means valence band electrons must also absorb enough momentum as well as 
energy from photons to ascend to the conduction band [14]. Since absorbing momentum and 
energy simultaneously is unlikely, silicon solar cells often absorb photons of higher energy. This 
requires crystalline silicon solar cells to have much thicker light absorbing layers than GaAs, 
CdTe, and organic solar cells, which have direct band gaps. 
 Thanks to their high light absorption due to their direct band gaps, thin films can absorb 
light just as efficiently as silicon cells with thinner semiconducting layers. The most popular thin 
film, CdTe, consists of encapsulation, a transparent conductor, a CdS (cadmium sulfide) layer, 
the CdTe layer, a conducting back contact. Current CdTe layers only measure about 3 microns, 
in comparison to a silicon wafer’s width of about 150 microns [17, 18]. Due to this difference in 
material, a standard 60 cell silicon panel often weighs about 18 kg, while a CdTe panel weighs 
about 12kg. 

Because silicon forms crystalline sheets, without ample protection, the cell remains 
brittle and easily breakable. The most commonly produced cell structure, aluminum back-
surface field, includes an aluminum frame, anti-reflective glass, EVA sheets to prevent 
breakage, and a TPT backsheet. 

Inorganic solar panels, such as crystalline silicon and CdTe, require a large amount of 
glass to provide protection to the solar cells. Due to absorption from iron impurities and 
reflections from surface imperfections, commercial glass only transmits 83.7% of the sun’s 
energy [19]. Solar grade glass, with low iron content and low reflection, transmit greater than 
89% of the sun’s energy [19]. The low iron content reduces reflections in the glass and allows 
more light to reach the light absorbing layer.  

 
We usually use the PN junction and band gap model to understand inorganic 

photovoltaic cell operation. Due to the different material structure, we use the HOMO/LUMO 
(highest occupied and lowest unoccupied molecular orbitals) model to understand how 
electrons flow in organic photovoltaic cells. 

2. Organic Photovoltaic Cells 
Organic photovoltaic cells usually include a bulk heterojunction made up of a solution 

mix of an electron donor, an n-conjugated polymer semiconductor such as P3HT (poly3-
hexylthiophene), and an electron acceptor, a fullerene such as PCBM (a more soluble fullerene) 
in a photoactive layer [20]. Unlike in a silicon photovoltaic cell, layers of the material do not allow 
for electron transport; because of the bound electrons and holes, the electrons and holes can 
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only travel a few hundred nanometers before recombining with each other. To remedy this, 
extremely thin layers would allow electrons to separate from holes, though this would cause 
difficulties in manufacturing. Figure 6 demonstrates the differences between the possible layer 
structures. 
 

 
 

 
Figure 10 Different electron acceptor and donor junctions. a) the typical bilayer used in silicon photovoltaic 
cells, b) the bulk heterojunction used for organic photovoltaic cells, c) an idealized comb nanostructure [21] 

Image released under CCO © ConditionalKO 

The bulk heterojunction provides a random mix of acceptor and donor molecules 
allowing short distances for electrons and holes to diffuse, providing another solution to the 
reduced mobility of electrons and holes in organic molecules. The bulk heterojunction structure 
leads to organic photovoltaic systems having a better absorption of light at different angles and 
diffuse light. Oftentimes, another layer, such as a PEDOT layer, can aid in increasing the 
mobility of holes. Using different molecules in the bulk heterojunction results in different 
efficiencies, open circuit voltages, and physical properties for the organic solar cell.  

Scientists can design polymer solar cells to display a wide variety of mechanical 
properties, shapes, and efficiencies. This design flexibility could allow consumers to use OPV 
cells in a wide variety of applications where a heavier, more rigid inorganic cell would not fit. 
Depending on the mechanical properties of the molecules used in an OPV cell’s creation, 
organic photovoltaic cells can bend and flex without breaking, unlike crystalline silicon cells. 
This flexibility allows solar cells to be placed on curved surfaces, such as curved roofs or 
clothing, seen in Figure 11 below. 
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Figure 11: OPVIUS curved ceiling application[22]. Organic photovoltaic cells, due to their flexibility and easy 
to change design, can fit many different applications where inflexible (both mechanically and in design) 
inorganic photovoltaic panels will not. Image from © OPVIUS. 

Organic solar cells require a small, compared to inorganic cells, amount of material. The 
photoactive layer only measures 0.2 microns thick, almost 1000 times thinner than silicon 
wafers [23]. Some cells contain more than one photoactive layer, with each layer optimized to 
absorb a different wavelength of light, allowing the cell to have a greater power conversion 
efficiency. 

To aid in generating electricity, OPV cells often have extra layers besides the 
photoactive layer to help with light absorption or hole mobility. Some of these layers help guide 
light to the light absorbing layer, while others help keep holes and electrons moving and prevent 
them from recombining. Some processes added to OPV production also help manage light. Sol 
gel coatings and UV curing alter or add microstructures that help guide light so that the 
photoactive layer can absorb its energy more efficiently. 

Water, air, and light degrade organic solar cells, reducing their lifetimes. Protecting the 
semiconducting layers requires several layers of encapsulation. The encapsulation layer is often 
the thickest layer in an OPV cell, measuring around 65µm [24]. Some layers can include a UV 
light absorber to protect the substrate from yellowing, and inorganic and organic layers to resist 
water and oxygen entrance into the cell. Building OPV cells into buildings, specifically the glass 
windows, can increase the panel’s lifetime. The glass serves as a barrier to particles that 
degrade the cell. Depending on the cell design, these encapsulation layers may change to 
better protect the cell by increasing the reduction of water, oxygen, and UV light that enters and 
degrades the cell. 

Three types of organic solar cells include small molecule (SM), polymer, and dye-
sensitized organic solar cells, a hybrid of an inorganic titanium oxide acceptor with organic 
molecule absorber dyes [20]. Manufacturing processes differ between these three types. SM 



 15 

solar cells require vapor deposition, while polymer solar cells require spin coating or roll-to-roll 
manufacture. 

3. Hybrid 
         Hybrid photovoltaic cells contain both inorganic and organic materials. Some hybrid 
materials include dye-sensitized cells and certain perovskite structured materials. Tandem 
photovoltaic cells include layers of multiple photovoltaic cell types. Tandem cells often include a 
perovskite or organic layer along with a silicon back layer. In this way, the tandem cell gains 
both the silicon’s durability and the extra efficiency from the organic or perovskite layer.  
  A tandem cell developed by Oxford PV includes silicon and perovskite layers. 
Perovskites are defined as a molecule with a perovskite structure. This structure allows them to 
be good absorbers of photons and easy to manufacture, but also reduces their lifetime when 
exposed to moisture. This tandem cell benefits from the silicon’s long lifetime and steady market 
and the extra efficiency from the perovskite. While the best silicon PV cells obtain a 22-23% 
efficiency, this tandem cell reaches 25% [25]. 
 
 The different material properties and structures lead to different manufacturing 
processes. Purifying and doping silicon into the silicon wafers necessary for silicon solar panels 
and creating and applying polymer solution to substrate require different amounts of energy, 
tools, and time. The next section adds some impacts the different manufacturing processes 
have on a solar panel’s environmental and cost impact.   
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IV. Manufacturing 
         The differences in materials and structures discussed in the previous section lead to 
different steps to acquire materials, refine those materials, and manufacture a single 
photovoltaic cell or panel. Any improvements in manufacturing processes can reduce a 
system’s price and environmental impact. 

For inorganic modules such as silicon and CdTe, the largest energy usage comes from 
the mining and refining the materials for the module. For organic photovoltaic (OPV) systems, 
the encapsulation used to protect the cell requires the most material and energy usage, almost 
20% of the cumulative energy demand (CED) [24]. 

1. Crystalline Silicon Photovoltaic Panel Manufacturing 
         To manufacture a crystalline silicon panel, the materials need to be mined and purified 
for use. For a crystalline silicon panel, quartz sand, silver, copper, aluminum, and glass 
contribute to some of the panel’s parts. The flowcharts in Figure 12 show the basic process 
used to create silicon and CdTe photovoltaic systems. For more detail on solar panel 
manufacturing, see Appendix C. 

The manufacturing processes to create crystalline silicon photovoltaic cells and modules 
use more time and energy than thin film or organic. Some steps, such as growing the silicon into 
single crystal ingots, take from one week to a whole month [26]. Many steps also include 
multiple furnaces, using thousands of MJ of energy to heat and purify the silicon. Though the 
steps in Figure 12 seem fairly simple, creating solar photovoltaic systems require more time and 
energy than the flowcharts might convey. In 2015, manufacturing a 1 𝑚!multi-crystalline silicon 
module took 2544-3482 MJ of energy, while a similarly sized CdTe module used only 898-1625 
MJ of energy [24]. 

Another source of loss, besides time and energy, include material, and therefore 
monetary, losses. After the ingot or boule finishes growing, a diamond saw blade cuts the boule 
into wafers. The saw’s width causes a loss of about 50% of the silicon and restricts the width of 
the wafers [18]. A monocrystalline circular wafer also needs to have parts sawn off to become 
squarer to reduce the area needed on the panel. This, along with the saw width loss, add up to 
significant material loss. Multicrystalline panel production creates less material loss due to the 
already square shaped silicon, which only requires the removal of the edges of the whole ingot. 

Manufacturing not only includes significant energy usage, but also possible hazardous 
conditions or materials. Mining silicon 𝑆𝑖𝑂!, found in quartz, is the first step for manufacturing a 
silicon solar panel. Mining, of course, includes dangerous conditions for workers and possible 
impacts to surrounding areas. To produce silicon wafers used in solar panels and cells, 
manufacturers heat the unprocessed silicon to purify it to metallurgical grade silicon, then solar 
grade silicon (a purity of 99.999999%)[14]. The production of solar grade silicon produces many 
byproducts such as HCl and silane, which can harm workers. The carbon dioxide emissions 
reduced by using solar panels instead of fossil fuels overshadows the emissions released from 
these steps, making this process, while not ideal, still environmentally preferred over burning 
coal or oil. Another source of dangerous material is the etchant solutions, used to smooth the 
surface of the saw-cut wafers and create texture to prevent light from reflecting. 
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Figure 12 Overview of silicon and CdTe PV system production [6]. 

 
Thin film production includes multiple purification and distillation steps to obtain 

semiconductor grade powders of elements such as Cd and Te. Depositions of layers of these 
materials on glass or stainless steel combined with encapsulation procedures creates the total 
thin film panel. This deposition process uses fewer materials and requires less energy than 
crystalline silicon manufacturing. 

Manufacturing solar panels require chemicals for use in cleaning, etching, and doping 
that can have hazardous effects on both humans and the environment. For example, producing 
enough silicon for one square meter of solar panel requires 3.5 kg of hydrochloric acid during 
the manufacturing process [27]. 
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Figure 13: Energy consumed per square meter of manufactured solar panel with a range of values depending 

on manufacturing process [1, 6, 24, 28]. 

2. Organic Photovoltaic Panel Manufacturing 
Organic photovoltaic cell manufacturers use roll-to-roll manufacturing, greatly reducing 

the difficulty, total duration, and energy cost of manufacturing. The low temperature 
manufacturing allows flexible substrates, appropriate for roll-to-roll manufacturing. Since the 
active layer polymers easily print onto substrates in solution form, other printing methods can 
also create OPVs and require less time and energy than inorganic photovoltaic cells and 
modules. For example, the Technical University of Denmark achieved a printing speed of one 
14 layer organic solar cell per second[29]. In comparison, growing a silicon boule takes from a 
week to a month depending on the size and quality of the boule.  

Producing an organic solar cell begins with a substrate, usually a plastic like PET or 
glass. Then depositing or etching an electrode, usually a clear tin oxide to allow light to pass 
through. Roll to roll manufacturing or other printing methods deposit the layers of polymer. 
Finally, vaccuum deposition allows the cathode (calcium, aluminum, or silver) to be placed on 
the cell in a specific pattern and with few defects[30]. Due to the many different designs of 
organic photovoltaic cells, this manufacturing process only contains the basic elements of 
producing an OPV cell. 

The low heat processes of creating an organic solar panel allow plastic, flexible 
substrates and reduce the required amount of energy. Manufacturing a 1𝑚!OPV panel only 
requires 108-112 MJ of energy [31]. Figure 13 shows that producing an OPV panel consumes 
50-100 times less energy than crystalline silicon and around 20 times less energy than CdTe 
solar panels. This high reduction in energy cost makes OPV panels attractive for future use and 
development. 

Due to the ease of manufacturing, researchers and manufacturers can add more layers 
to increase the efficiency of the organic solar cell by taking energy from multiple photon energy 
levels. Since the thin layers require a low amount of materials and a small amount of time to 
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manufacture, optimized manufacturing processes and designs can easily scale up to match 
demand. 
 

These manufacturing and performance differences result in differences in cost. 
Equipment cost and energy requirements add to the cost of solar panels. The energy, worker, 
and equipment intensive processes of silicon photovoltaic manufacturing lead to high costs, 
though due to improvements in manufacturing and subsidies, the cost has dropped to allow 
energy from silicon to compete with the cost to produce energy from oil or natural gas. Despite 
the greater ease of manufacturing, the current cost of organic solar panels exceeds silicon solar 
panel costs. The next section explores reasons for this difference and possible future pricing. 
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V. Cost 
 Before discussing cost, some terms should be defined before using them to compare 
organic and inorganic photovoltaic systems. The Levelized Cost of Electricity (LCOE) metric 
allows consumers to compare the cost of electricity produced by different sources. LCOE 
represents the cost per kWh using the total price of the system over the lifetime energy 
generation. It also considers the time value of money and inflation affects energy costs. If the 
levelized cost of electricity produced by photovoltaic systems decreases to lower than the 
commercial cost of electricity, the consumer could install photovoltaic panels to their own 
economic gain.  

In the U.S., consumers pay around 12.55 cents per kWh, but the cost can vary to as low 
as 9.34 cents in Louisiana to as high as 27.47 cents in Hawaii, depending on the state’s 
electricity mix. Between 1990 and 2015, the average price of electricity has risen from 7.83 
cents to 12.65 cents per kWh [32]. These rising costs combined with the lowering cost of 
photovoltaic modules result in solar power becoming more cost effective. 

Demand for utility scale photovoltaic systems depends highly on cost. Cost per watt for 
large systems dictates whether the system’s owner profits or not. Slight changes in the price 
can shift the profit from low, close to break even, to worth the trouble of installing [33]. Tariffs on 
solar panels added sufficient cost that companies canceled many planned solar projects [34]. 
Despite these cost barriers, the cost of photovoltaic systems becomes more affordable, 
especially with the rising cost of nonrenewable energy sources. 

1. Breakdown 
         The cost of photovoltaic systems comes from the modules, the BoS, installation, 
maintenance, and permits to install photovoltaic panels. The price per watt metric allows 
comparison between different systems as seen in Figure 14 below. The cost differs between 
each system chiefly because of the differences in panel cost. Depending on the system’s size, 
the cost per watt can differ greatly. For example, while a utility system costs around $1.34/𝑊!", 
residential systems can rise to $3.22/𝑊!" to install [11]. The cost per watt difference occurs 
because of a difference in system size, so while the cost per watt of panels remains the same, 
the cost per watt for permits and inspections become cheaper as they apply to a larger power 
system. Cost for the consumer also depends on factors like competition and local electricity 
rates, which dictate how much profit adds to the consumer cost.   
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Figure 14 NREL Cost Benchmark for the year 2017 displaying the cost breakdowns to install differently sized 
systems ©NREL [11] 

2. Financial Comparison 
The cost differences between organic and inorganic systems come from the differences 

in panel, BoS, installation, and maintenance costs. Other cost factors such as inverter and 
permits do not apply to differences between systems since both systems require identical 
inverters and permits, but do not share identical efficiencies, required mechanical support 
structures, or ease of maintenance and installation. Another cause of current cost differences 
includes a difference in production numbers. Crystalline silicon’s longer history cumulates in 
more refined production processes than organic photovoltaic panels and larger production 
numbers, which allows for a lower pricing on the market.  
  

Due to reducing module, inverter, and installation costs, the total cost of a silicon 
photovoltaic system dropped 56% from 2009 to 2015[1]. For multi-crystalline Si solar panels, the 
price in 2017 dropped to $0.73/W for U.S. manufactured panels, while imported panels, due to 
subsidies and higher production number fell under $0.50/W. These prices include supply chain 
costs such as shipping and handling, historical inventory, and tax. Historical inventory increases 
price because of a price lag between the cost of the panels in the installer’s inventory and the 
price of currently manufactured panels. 

Figure 15 shows a comparison of cost per watt for silicon and organic photovoltaic 
panels. Once manufacturing volume increases into the MW scale, Chatzisideris predicts the 
cost of organic photovoltaic systems will compete with the cost of silicon solar panels. 
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Figure 15: The cost per watt for silicon and organic photovoltaic systems. The large scale OPV shows what 

happens to the price of OPV panels when manufacturing volume increases. The current kW scale 
manufacturing, due to small product outputs and large equipment inputs, result in a higher cost per watt for 

currently produced organic photovoltaic systems[11, 35, 36]. 

Organic photovoltaic manufacturers currently produce organic photovoltaic modules in 
relatively small amounts. As production numbers rise, the manufacturing cost reduces with 
increased productivity, increased manufacturing efficiency, and more experienced 
manufacturers. While current OPV producers create 5% efficient panels with a 5 year lifetime at 
a cost of around $49-139 per sq. meter, representing around $0.49-0.85/kWh, C.J. Mulligan et 
al. predicts manufacturing costs could drop to $0.13/kWh [37]. Chatzisideris et al. suggests 
module costs drop from 33.74 euros/m^2 to 6.52 euros/m^2 as production increases from kW to 
MW scale, translating to the system price dropping from 13.42 euros/Wp to 2.72 euros/Wp [35]. 
We can see these price drops in both Figure 15 and Figure 16. 
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Figure 16: Levelized cost of electricity for silicon PV, OPV and nonrenewable energy sources such as coal. 
Current OPV designs result in a wide range of costs per kWh based on their manufacturing cost, efficiency, 

and lifetime. Also shown in Figure 14, increasing the scale of manufacturing lowers the cost to produce, 
lowering an organic photovoltaic system’s levelized cost of electricity[24, 36, 37]. 

Though currently, organic PV systems cannot compete with other electricity generators 
in price, they have a high potential for lower costs, reduced environmental impact, lower 
production time, and a wider variety of uses. The lower cost potential stems from lower 
installation difficulty and time, which results in lower installation costs for a system, and from low 
energy and material usage. Compared to silicon and other inorganic photovoltaic systems, OPV 
systems require much less energy to produce. The following section looks more closely at the 
differences in energy costs between these photovoltaic systems.  

3. Energy Comparison 
 The total energy used to produce, transport, and maintain a photovoltaic system also 
measures a cost. To offset costs and produce profit, the system must generate more energy 
than it consumes during its lifetime. Metrics for comparing the energy consumed and the energy 
generated include the energy payback time (EPBT) and the energy return on energy invested 
(EROI). 

EPBT measures the time, usually in months or years, to generate the same amount of 
energy as the amount of energy consumed. For a crystalline silicon photovoltaic, the EPBT 
ranged from 1.5 to 2 years in 2006 [6]. For OPV systems, an EPBT ranging from 3 to 4 months 
[24]. To be economically viable, the EPBT should measure lower than the device’s lifetime. 
Since both the organic and inorganic systems’ EPBTs measure below their lifetimes of 5 and 20 
years, as seen in Figure 17, we need another measurement to compare the two more 
quantitatively.  
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Figure 17: Energy payback times for different photovoltaic systems. These times depend on the rate these 
systems produce energy, and, therefore, depend on the insolation of the sun reaching the system. These 
times include the energy consumed by the balance of system components, including the inverters [1, 6, 8, 

24, 28]. 

The EROI, another measurement of lifetime energy, measures the ratio of energy 
generated throughout the system’s lifetime over the energy consumed throughout the system’s 
lifetime. To be economically viable, a power generator should have an EROI of at least 3 to 
create profit [38] and at least 5 for sustainability [27].  

Depending on one area’s total insolation, the EROI and EPBT vary since the total 
energy generated by a photovoltaic system depends on the sunlight’s total energy. Ferroni and 
Hopkirk describe total energy losses that occur by using silicon solar panels in low insolation 
areas. By looking at countries such as Switzerland and Germany with low insolation levels, they 
calculated an extended EROI of lower than 1, revealing energy losses [27]. In their extended 
EROI analysis, they consider not only the CED, or cumulative energy demand, of the system, 
but also the labor and losses due to faulty equipment. Unlike Ferroni and Hopkirk, the IEA’s 
methods result in EROIs between 5 and 6, a difference primarily accounted for in the difference 
in irradiance and usage of ideal values[11, 17].  

The EROI of organic photovoltaic systems can range from 10 to 30 depending on the 
insolation, the lifetime of the system, and the efficiency of the panels [24]. The EROI can act as 
an efficiency measuring the ratio of energy output to human-generated energy input. While the 
sun is a free source of energy, the energy input into creating and maintaining a solar 
photovoltaic system does cost both money and materials (for power plant structures and fuel). 
The EROI represents the return rate of the energy initially invested. Here, we see that organic 
systems have a higher rate of return than silicon photovoltaic systems, despite organic cells 
having a lower power conversion efficiency. 

 
Though both systems have financial and energy costs and benefits, they also impact the 

the human and natural environments both positively and negatively. Thankfully, the reduction in 
fossil fuel emissions outweighs the waste from manufacturing and end of life, but unless we 
plan, waste from old solar panels could create health and environmental hazards.  
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VI. Environmental 
The main environmental impacts of photovoltaic systems stem from the materials and 

processes used to manufacture them. Materials used in modules or to produce modules include 
silane, lead, arsenic, and different acids including hydrochloric acid and hydrofluoric acid, which 
could harm workers in production or release into the environment if not properly contained or 
disposed. Indirectly, the manufacturing of photovoltaic systems releases particles into the air 
during the generation of energy used to power the production. Depending on where the 
manufacturing occurs, the primary sources of electricity generation could include coal or oil. 

1. Greenhouse Gas Emissions 
         Despite their classification as a renewable energy generator, solar panels still emit waste 
during their production through both their direct manufacturing needs and through the electricity 
generators used to power production. The grams of carbon dioxide equivalent per kWh 
measurement can quantify the greenhouse gas emissions during a system’s life cycle. This 
metric considers the effects of air pollutants, such as nitrous oxide and sulfur dioxide, in 
comparison to carbon dioxide in the atmosphere over a hundred-year period. 

The greenhouse gases emitted by the photovoltaic system manufacturing processes can 
differ depending on the country or area of manufacture. The manufacturing location affects 
manufacturing processes, the regulations that apply, and the makeup of the energy supply that 
powers the manufacture or transport. For example, in 2003, German panel manufacturers 
caused 180 gCO2-eq/kWh, while Australian manufacturers released 100 gCO2-eq/kWh [6]. The 
US power supply releases about 40% more greenhouse gas emissions than the European 
supply [6]. 

 
Figure 18: Greenhouse gas emissions in grams of carbon dioxide equivalent per kWh of energy produced. 
As seen in the graph, coal and natural gas generate 100s of times more greenhouse gas impa.ct than any 

photovoltaic system [6, 24, 28, 39, 40]. 
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In 2005, greenhouse gas emissions dropped to an average of 24 gCO2-eq/kWh for 
CdTe panels and 37 gCO2-eq/kWh for multi-crystalline silicon panels, comparable to nuclear 
power plants and drastically beneath natural gas and coal emissions (Figure 18) [6]. In the 
future, with higher lifetimes and efficiencies, OPV will emit around 2.5-4 g CO2-eq/kWh, a high 
difference from inorganic panels[24]. 

 

 
Figure 19: Comparison of greenhouse gas emissions for different solar panel systems. The large range of 
greenhouse gas emissions occurs because of different manufacturing methods, different power mixes, and 
different levels of irradiance in different locations [6, 24, 28, 39, 40]. 

The reduction of greenhouse gas emissions by using power generated from solar panels 
rather than from fossil fuels or power from the grid overshadows these manufacturing 
emissions. The offset emissions often scale proportionally to the system’s energy return on 
invested (EROI) due to their parallel ratios: non GHG producing energy (or energy returned) to 
GHG producing energy (or energy invested). In 2016, the U.S. electricity mix produces around 
470 gCO2 per kWh generated. By switching to solar panels, we can prevent between 320 and 
450 grams of greenhouse gases from entering the atmosphere[41, 42]. 

Nonrenewable energy sources also release harmful heavy metals into the air, such as 
from burning coal, which can contain elements such as sulfur, lead, and cadmium. Due to the 
energy used in manufacturing and transporting solar photovoltaic systems, these renewable 
energy sources can indirectly release heavy metals and other hazardous materials into the air 
and water. 

3. Heavy Metal Emissions 
From the coal or natural gas power plants used to power the production of photovoltaic 

panels, metals such as nickel, mercury, lead, and arsenic escape into the environment. This 
adds value to reducing energy used in solar panel production and adds value to increasing the 
number of currently used solar systems to reduce the impact of using electricity on the 
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environment. Some other dangerous metals show up during solar panel production, such as for 
CdTe and GaAs. 

During manufacture or disposal, heavy metals found in panels or in the production of 
panels can be released into the environment. CdTe panels contain cadmium, which can be 
released in a fire, though only in small amounts of 0.4-0.6% as revealed by Brookhaven 
National Laboratory. Damaged CdTe solar panels can result in Cd leaking out in the rain. 
Despite this danger, often the harm from any fire that causes the panels to break outweighs any 
harm from touching the Cd in the solar panel [14]. Burning oil and coal releases 10 to 100 times 
more cadmium into the air per GWh of energy produced than cadmium released during CdTe 
production and use [6]. While we should have caution when dealing with the manufacturing and 
disposal of these solar panels, it does not pose as much of a risk as oil or coal. 

Beyond these risks, the solar panels entering the waste stream in around 30 years can 
cause the same problems as other electronic waste. Before this happens, we must find a way to 
recycle or reuse old solar panels.  

4. Recycling and Reuse 
At the end of a panel’s lifetime, owners can dispose of them in a dump, recycle them, or 

reuse them. If left in a dump, the chance of broken panels releasing more emissions increases. 
Though the current amount of decommissioned photovoltaic panels weighs only around tons. In 
2017, the total installed PV capacity in the world reached at least 96 GW. SEIA, IEA, and 
IRENA expect this number to grow, resulting in 78 million metric tons of waste in the year 2050 
[43]. The WEEE directive prevents the waste of electronics, including PV panels, in Europe. By 
increasing the availability of recycling, a lower amount of e-waste will enter landfills. 

Recycling can lower the total amount of waste, redirect more materials back into the 
market, and create profits and jobs. IRENA estimates a total value of $450 million of material 
extracted from all the recycled solar panels in 2030 can create around 60 million new solar 
panels or about 18GW of power [17]. 

 
Some challenges to recycling inorganic photovoltaic modules include the poor quality of 

silicon recovered from used panels and the presence of heavy metals that prevent clean 
extraction of other elements. The low-quality silicon, while not of use in more panels, can 
contribute to aluminum or steel alloys used in construction or other manufacturing. Some 
companies operate a return program for used panels such as First Solar, who recycles their 
CdTe panels that customers return. For more companies to invest and focus on PV recycling, 
recycling must be profitable. Currently, research progresses into methods for extracting the 
most amount of resources with the least amount of energy. 

Some challenges in increasing recycling profit include safety and transportation. 
Ensuring proper extraction of harmful components often raises costs. The alternative of just 
recycling the most profitable portions of a solar panel could result in chemicals leaching, 
especially for countries without regulations on environmental impact. Transporting heavy 
inorganic solar panels to a recycling plant also raises the cost of recycling and reduces its 
profitability. Some Chinese officials, for example, consider reuse more viable option [44].  
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Recycling parts or materials used during manufacturing can also reduce energy 
consumption. For example, recycling the slurry used in sawing wafers reduced the energy 
payback time of solar panels by 10% [6]. 

The FRELP, Full Recovery End of Life Photovoltaic, project aims to recycle solar panels 
in Europe. Research includes a process that can recover 93% of materials in a module, though 
this process also releases some nitrous oxides and other components [45]. Meng Tao designed 
another process, called electrowinning, extracting $13 worth of materials, which could allow 
recycling companies to profit from operations [45]. The low production of organic photovoltaic 
systems results in less research and interest in recycling them, though some research aims to 
design an easily recyclable OPV design by using cellulose instead of plastic[46]. 

 
Since most end of life silicon panels still work, just below their rated power, reuse can 

extract the remaining potential for power generation from the old panels. With increasing panel 
efficiencies, an end of lifetime panel at an efficiency good for 30 years ago might not produce 
sufficient energy to match the cost to reinstall or keep installed. Selling old solar panels can 
result in some profit for the seller and cheap solar panels for the buyer. While the used solar 
panels operate at a lower efficiency than new panels, they can still offer the buyer reasonably 
good energy output for a lower priced panel. 

The organic photovoltaic degradation at their end of life reduces the likelihood of this 
option in organic photovoltaic waste stream possibilities.  

 
The cost to recycle or properly dispose of solar panels must go somewhere and policy 

makers remain undecided on whom the cost should go to. Since many photovoltaic panel 
companies go bankrupt, the cost to recycle solar panels could put a greater burden on them and 
reduce their ability to profit and grow. On the other hand, since OPV panels weigh much less, 
they have a lower impact  in the total amount of waste. Since OPV panels recently entered the 
market, they have a substaintial amount of room to re-design for a lower impact on the 
environment or a lower cost to recycle. 

 
The largest number of solar panels entering the waste streams come from gigawatt 

scale utility solar power plants. The biggest contain more than 2 million solar panels and often 
cover more than 2,000 acres[47]. Compared to nuclear or natural gas, solar power requires a 
higher amount of land to produce the same amount of energy. This can have both financial 
costs (for land) and the cost of taking the ability to use that land for another use. 

5. Land Use 
         When installing utility scale solar power plants in previously un-built land, the power 
plant instruction impacts the land and wildlife living in the area by reducing habit and degrading 
land. While crystalline silicon and CdTe ground mount solar plants exist, organic photovoltaic 
power plants do not and are unlikely to exist in the future due to their low durability and low 
weight optimizing them for building usage. 
         Solar panel power systems require more land than most to produce power. A silicon 
crystalline power plant requires around 8 acres of area per MW of energy [48]. They require 
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more space than other energy sources, such as nuclear and wind[49]. This land requirement 
has a larger impact in countries with high population densities and lower amounts of land area.  
 Though inorganic solar power plants do require a significant amount of land (especially 
for countries with a low area per capita), many installers find ways to increase the productivity of 
the land by overlapping solar power generation with another use. For example, the Solarwise 
Garden in Minnesota overlaps a solar farm with 15 beehives and small bee-friendly plants to 
produce energy and honey as well as supporting the bee population [50]. Other solar farms, 
such as the GoldTree Farm at Cal Poly, San Luis Obispo, rotate grazing animals onto the land 
to reduce grass height and add productivity to the land area[51]. 
 Another classic way to overlap land use with solar panels is installing the panels on a 
building. A lower efficiency panel such as organic photovoltaic cells would need to use more 
space per MW of energy, but since they primarily reside on buildings, installers do not need to 
use the land solely for solar panels. The ability to match the architecture allows greater use for 
OPVs on buildings than inorganic panels which consumers often do not use because of their 
lack of aesthetically pleasing designs.  
 
 Finding productive uses for land so people in the future can grow food, build houses, 
and generate energy is a component of sustainability. Sustainable photovoltaic system 
production and use should continue without affecting the way people live. This includes minding 
the health of both the human population, the environments, and the economy. 
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VII. Sustainability 
 In earlier sections, we considered some aspects of the sustainability of these 
photovoltaic systems, including their return on energy, recycling and reuse, greenhouse gas 
emissions, and cost. Both organic and inorganic photovoltaic systems, due to their similar 
reduction of greenhouse gases and energy generation methods, aid in improving human health 
and social wellbeing. 

1. Pollution 
All solar photovoltaic systems reduce pollution due to reducing fuel use. This reduction 

in greenhouse gases, heavy metals, and other harmful chemicals, aids in reducing 
environmental factors detrimental to the health of humans and the environment. Pollution 
causes many diseases such as asthma, lung diseases, and heart diseases, as well as 
cancer[52]. Many air pollutants are also greenhouse gases, which cause global warming. 

Global warming affects local weather, animal and plant life, and global temperatures. In 
some places, higher temperatures due to climate change increase pollen and mold levels, which 
can affect people with allergies and asthma[52]. Natural disasters such as hurricanes and 
wildfires also show a link to global warming. Another effect of global warming includes rising sea 
levels, which will reduce land area and destroy many coastal communities. These effects of 
greenhouse gases cost the U.S. about $360 billion between 2007 and 2017[53]. By reducing 
greenhouse gases and pollution through organic and inorganic photovoltaic systems, we can 
reduce the economic burden placed on governments and improve the health of the population. 

2. Job Creation 
The photovoltaic industry improves the lives of people in another way by adding jobs and 

careers. Since the solar photovoltaic industry grows faster than either coal or natural gas, 
careers in solar energy also grow. Solar energy careers include not only manufacturing or 
installation, but also policy-making, education, and research. Compared to natural gas, coal, or 
even hydroelectric, solar photovoltaic energy systems are a recent addition to commercial use.  

The installation, maintenance, and decommissioning of a silicon photovoltaic system 
creates 7 times more jobs than the construction, operation, maintenance, and decommissioning 
of a nuclear power plant per MW [27]. Since organic solar systems require fewer installation 
hours and require more decommissioning due to their lower lifetimes, their labor requirements in 
comparison to silicon photovoltaic systems contain some uncertainty, especially since they are 
still under research. 

Despite the good both photovoltaic systems generate in economic and human health, 
some externalities such as the effects of waste and rare material use need work in their 
prevention. 
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3. Waste 
 Though solar panels create positive externalities such as reduced pollution and healthier 
people, the waste they create can negatively impact the people and the environment. Many 
countries have not yet decided how to handle solar panel waste. As with other electronic waste, 
poorer countries often face the risk of dumping. This dumping could release toxic substances in 
the soil and air, reducing the health of both the people and the environment. 
 In 2014, the total added e-waste weighed 41.8 million metric tonnes. IRENA and the IEA 
predict that by 2050, consumers will add about 4 million metric tons of PV panels to the e-waste 
total annually [17]. This number does not include the waste due to inverters, mounting systems, 
or wires, the other components in a photovoltaic system. This greatly increases the total waste 
number especially since inverters have a relatively short lifespan and often fail earlier than 
expected. Due to the low material use of OPV, they will most likely makeup a low percentage of 
the total photovoltaic waste. If a larger portion of the installed solar panels consist of OPV 
panels, this could reduce the total amount of waste. 
 We can reduce waste by recycling the photovoltaic systems or reducing the material 
usage in the first place. Rarer materials such as indium need recycling or reducing to preserve 
their supply in the future. 

4. Material Use 
 To ensure manufacturers can continue to produce solar panels in the future, the 
materials they use need to replenish at a rate faster than the manufacturers use them. Higher 
lifetimes, higher efficiencies, and lower material usage can reduce the number of solar panels 
needed to power daily life. Reusing or recycling solar panels can increase the rate the materials 
replenish.  
 The overall material flow only measures the total materials used and does not account 
for rarity, difficulty to obtain, or recycling of materials. The American Physical Society (APS) and 
the Materials Research Society (MRS) account for rarity, either natural or through monopoly, in 
their definition of energy critical elements. Energy critical elements (ECEs) include elements 
needed in large quantities in large scale energy technologies such as wind or solar [54]. Some 
energy critical elements used in solar panels include tellurium (in CdTe), Gallium (in GaAs), and 
silver (as a conductor). To reduce vulnerability to material scarcity, solar panels should require 
as few energy critical elements as possible. ECEs do not include other elements used in large 
quantities in solar panels, such as aluminum, since they have stable markets. 
 Extracting an element more efficiently or recycling an old product must produce an 
economic advantage, otherwise the likelihood a company undertakes sourcing or recycling 
without government subsidy lowers. For example, current production of tellurium occurs as a by-
product of copper, but the tellurium available in the copper cannot support more than half a 
gigawatt of CdTe solar panels per year [54]. Production of CdTe solar cells cannot increase 
without higher production of Cd and Te refinement. The lowering silicon cost, while good for 
manufacturing and encouraging companies to find more efficient ways of extracting the silicon, 
reduces the profitability of recycling.  
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VIII. Safety 
Although a photovoltaic system’s life cycle has lower risks than those of other fuel 

sources using the probabilistic safety assessment (PSA), these risks still remain [55]. Safety 
concerns during the life cycle of photovoltaic systems occur during the systems’ manufacturing, 
installation, operation, and end of life. Some chemicals associated with the production of 
photovoltaic systems include lead, arsenic, silane, cadmium, and strong acids. While no large 
accidents have occurred (no explosions or large numbers of fatalities), risk of chronic health 
problems due to exposure to chemicals or non-ergonomic work conditions exists. 

 1. Manufacturing 
Due to the high material demand of inorganic photovoltaic panels (in comparison to 

organic PV), manufacturers keep higher amounts of any hazardous materials, including those 
not in the final product and by-products. For example, the production of a single 125mm x 
125mm polysilicon module includes 22.6kg of trichlorosilane, a flammable substance [6]. The 
mining of silicon can also produce hazards. Silica dust (𝑆𝑖𝑂!) puts workers at risk for silicosis, 
which causes lung damage and weight loss, and lung cancer[56].  

Other possibly hazardous materials include acids such as HF and HCl used for etching 
processes in both panels. In comparison to use in silicon wafer manufacturing, HF in petroleum 
refineries exist in higher concentrations and has caused 108 out of 165 accidents caused by HF 
acid between 1994 and 2004 [6]. EDOT, a precursor to PEDOT (often used in organic solar 
cells), can cause skin and eye irritation[57]. 

By-products such as silicon tetrachloride can affect both people and the environment if 
not properly disposed of or stored. China manufactures most silicon solar panels, but does not 
regulate waste disposal. This can lead to by-products affecting the surroundings if the 
companies do not regulate themselves. 

  2. Installation and Operation 
Installation safety hazards include falling related accidents for roof-top installed systems, 

and muscle strain and electrical danger for both rooftop and ground mounted systems. Other 
hazards could arise from the installation building or area, such as asbestos in buildings for roof-
top installations. Organic photovoltaic system installation could provide fewer hazards than 
inorganic due to ease of installation. The sticker like modules could easily be installed with 
minimal roof adjustments or muscle strains. 
  

Operation concerns include safety during natural disasters or module breakage. Natural 
disasters, such as fires, hurricanes, earthquakes, or hail storms, could cause breaks in panels, 
resulting in leakage of potentially hazardous materials depending on the panel type. For 
example, in 2015 a tornado broke 200,000 CdTe solar panels in the solar farm Desert Sunlight 
[43]. A fire can release the cadmium in a CdTe module, but only in small amounts (0.4-0.6%) 
[6]. The risk of fire due to arcing or an overloaded circuit due from damaged wires should also 
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be considered. Rooftop modules could present a hazard to firefighters when impeding putting 
out a fire. 

For safety during operation, some states in the US require rapid-shutdown codes, such 
as NEC 2014, which set limits for the voltage and current running through conductors after grid 
shutdown to prevent grid workers from harm from current still running through PV systems [1]. 
Other standards include UL 1741 and IEEE 1547 which include testing and specifications for 
grid-connected photovoltaic systems to protect grid workers and firefighters during the event of 
a fire[58, 59]. These safety standards apply to both organic and inorganic systems. 

  3. Decommissioning and Recycling 
End of life concerns include safely disposing of photovoltaic system components, 

especially modules, where most of the rare metals and harmful elements reside. In landfills, like 
other electronics, breakage and degradation could cause harmful components to release into 
the environment. The current total OPV cell waste remains low, but due to their short lifetime, 
they enter the waste streams more quickly than inorganic photovoltaic modules. 

Recycling solar panels using currently researched methods will not produce the profit to 
make it economically advantageous, according to an IRENA study [43]. Government regulation 
must ensure the panels go to the proper waste or reuse streams, though whether solar 
companies or consumers bear the cost has not been determined. If companies pay for the 
recycling, this could fail to reach the panels of companies that have gone bankrupt, or cause 
bankruptcy or lower growth for other companies. On the other hand, recycling can divert 
processing or mining of certain raw materials to using materials extracted during the recycling 
process. 

The main problem with waste from solar panels includes the different waste 
classifications, preventing certain parts from re-use due to their classification as a hazardous 
material. Improving designs can prevent contamination of certain materials in a solar panel, 
allowing them to remain non-hazardous and be reused.  
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IX. Future Changes 
As research progresses, solar photovoltaic system manufacturing processes, materials, 

and design will change, affecting system price, performance, environmental impact, and safety. 
For both module types, as the installed capacity of renewable energies increases, the 
environmental impact of manufacturing both system types decreases, as the primary electricity 
used for manufacture has a reduction in emissions. As production of these solar panels 
increases in quality, their efficiencies will increase to match the efficiencies achieved in 
laboratories. 
  For both systems, increases in reliability and durability of the balance of system, 
especially the inverter, will reduce the total cost paid for the system by reducing the number of 
inverters bought to replace old or broken inverters. This will reduce both the cost but also the 
material usage and environmental impact of the system. 

1. Possible Inorganic Photovoltaic System Changes 
Some proposed changes in either structure or manufacturing processes of silicon cells 

or panels will increase efficiency and cost. A shift to an ion-implanted interdigitated back contact 
design would increase cell efficiency, decrease cell width, increase the cost per watt by 11%, 
increase total energy generated by 2%, and lower the levelized cost of electricity by 11-13% due 
to lower BOS costs and higher energy yield[60]. Another change includes a shift to a 
heterojunction structure for silicon solar panels which would increase the panel’s efficiency by 
reducing shadow from bus bars.  

Reducing the material usage in solar panels or increasing the efficiency of a solar cell 
aids in increasing the productivity (in g/W) of a material to produce power. A shift to thinner 
wafers using improved manufacturing methods could reduce silicon use and waste by 20% [17]. 
Increasing the ability to screen print silver and increasing the efficiency of the cell can decrease 
the grams of silver used per watt by almost 50% by 2020 [17]. 

For thin film panels, such as CdTe, the main driver of changes in material use include a 
reduction of glass usage, and thinner semiconducting layers. Better manufacturing and design 
can reduce the glass needed to protect the thin films and reduce the thickness of 
semiconducting layer needed to produce the same amount of power. 

2. Possible Organic Photovoltaic System Changes 
If organic photovoltaic system demand increases and drives a manufacturing capacity 

increase, the manufacturing cost could drop by more than 50% from finding more efficient 
manufacturing processes[60]. If manufacturing increases with planning, researchers could 
design OPV panels with the highest power outputs for the least amount of materials and cost. 
Since polymers can be created to have many different mechanical and electrical properties, 
these properties can fit many different needs, including designs made to increase efficiency, 
increase lifetime or durability, reduce cost, and reduce material usage. 
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X. Summary/Conclusion 
  Despite possible accidents and pollution from manufacturing these solar panels, the 
benefits they provide through their clean energy generation and health benefits from reduced 
pollution far outweigh the costs. Thought both organic and inorganic systems have their 
downsides (organic’s low efficiency and lifetime and inorganic’s complicated manufacturing), 
both have strengths in locations they work best in. Organic photovoltaic systems, with their 
flexibility and design customization, have a future in building integrated photovoltaic systems 
(BIPV). Silicon and other inorganic solar panels have their place in solar power plants and 
rooftops. In the future, the reduction in the costs of materials, energy, and money to produce 
these photovoltaic systems will allow solar panel use to continue into the far future. With 
research and testing, efficiencies of different types of solar cells increase, providing more power 
and more benefits. 
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Appendix A: Acronyms and Abbreviations 
Acronym Phrase 
450S	 450	Scenario	
AC	 alternating	current	
Al-BSF	 Aluminum	Back-Surface	Field	

AM	

Air	Mass.	Describes	a	location	in	Earth’s	atmosphere.	AM0	refers	
to	the	outer	layer	of	Earth’s	atmosphere,	while	AM1	refers	to	
Earth’s	surface,	and	AM1.5	refers	to	Earth’s	surface	with	the	sun	
at	an	angle	of	48.2	degrees	from	the	normal	[61].	

APAC	 Asia/Pacific	
AR	 anti-reflective	
ASTM	 American	Society	for	Testing	and	Materials	
AWARE	 Available	Water	Remaining	
BHJ	 bulk	heterojunction	
BIPV	 building	integrated	photovoltaic	
BOS	 Balance	of	System	
CDC	 Center	for	Disease	Control	
CED	 Cumulative	Energy	Demand	
CEM	 Clean	Energy	Ministerial	

COD	
Chemical	Oxygen	Demand	–oxygen	required	during	
decomposition	of	organic	material/oxidation	of	inorganic	material	
[62]	

COGS	 cost	of	goods	sold	
COO	 cost	of	ownership	
CTU	 Comparative	Toxic	Unit	
DC	 direct	current	
DNI	 direct	normal	irradiance	
ENSAD	 Energy-related	Severe	Accident	Database	
EPA	 US	Environmental	Protection	Agency	
EPBT	 Energy	Payback	Time	

EPR	
Extended	Producer	Responsibility	–	shifting	responsibility	of	
product	waste	to	producers	+	incentives	to	producers	to	take	
responsibility	for	products	[17]	

EPT	 Energy	Payback	Time	
EROI	 Energy	Return	on	Invested	
ESP	 electrostatic	precipitators	
EVA	 ethylene-vinyl	acetate	
FBR	 fluidized	bed	reactor	
Flexo	 flexographic	printing	
FRELP	 Full	Recovery	End	of	Life	Photovoltaic	
FTO	 fluorine	doped	tin	oxide	
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GHG	 greenhouse	gas	
GLO	 global	average	
GWP	 Global	Warming	Potential	
HCl	 hydrogen	chloride	
HCPV	 high-concentration	PV	
HF	 hydrogen	fluoride	
Hi	 Annual	in-plane	Irradiation	(kWh/m^2)	
HOMO	 Highest	occupied	molecular	orbital	
IEA	 International	Energy	Agency	

IFRI	 Institut	francais	des	relations	internationales	-	IFRI	Center	for	
Energy	

IRENA	 International	Renewable	Energy	Agency	
LCA	 Life	Cycle	Analysis/Assessment	
LCI	 Life	Cycle	Inventory	
LCOE	 Levelized	cost	of	electricity	
LHV	 lower	heating	value	
LPG	 liquefied	petroleum	gas	
LUMO	 Lowest	unoccupied	molecular	orbital	
NAICS	 North	American	Industry	Classification	System	
NEC	 National	Electric	Code	
NG	 natural	gas	
NIOSH	 National	Institute	for	Occupational	Safety	and	Health	
Nox	 nitrogen	oxide	
NPS	 New	Policies	Scenario	
O&M	 operation	and	maintenance	
OECD	 Organization	for	Economic	Cooperation	and	Development	
OPV	 organic	photovoltaic	
OSHA	 Occupational	Safety	and	Health	
P3HT	 poly(3-hexylthiphene)	

PAYG	 Pay-as-you-go:	cost	of	waste	management	when	product	enters	
waste	stream	

PAYP	 Pay-as-you-put:	cost	of	waste	management	when	product	enters	
market	

PCBM	 phenyl-C61-butyric	acid	methyl	ester	
PEDOT:PSS	 Polyethylenedioxythiophene:polystyrenesulfonate	
PEF	 product	environmental	footprint	

PEL	 Permissible	Exposure	Limit,	OSHA,	measure	of	acceptable	
workplace	chemical	levels.	Considered	a	very	minimum	level.	

PET	 polyethylene	terephthalate	
PII	 permitting,	inspection,	and	interconnection	
PK	 perovskite	
PM	 particulate	matter	
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PPV	 Poly(para-phenylene	vinylene)	
PR	 performance	ratio	
PSA	 probabilistic	safety	assessment	
PSC	 Perovskite	Solar	Cells	
PV	 photovoltaic	
PVPS	 photovoltaic	power	systems	
R2R	 roll-to-roll	
REL	 Recommended	Exposure	Limit,	NIOSH	
RER	 Europe	
RES	 Renewable	Energy	Sources	
RMP	 Risk	Management	Program	
RSP	 rotary	screen-printing	
SAM	 system	advisor	model	
SD	 slot	die	coating	
SiGCl3	 trichlorosilane	
SiH4	 silane	
SMARTS2	 Simple	Model	for	Atmospheric	Radiative	Transmission	of	Sunshine	
Sox	 sulfur	oxide	
TeO2	 tellurium	dioxide	
TGM	 toxic	gas	monitoring	

RLV	 Threshold	Limit	Values,	ACGIH,	airborne	chemical	daily	exposure	
levels	

TPE	 thermoplastic	elastomer	
TPT	 tedlar	polyester	tedlar	
UCTE	 Union	for	the	Coordination	of	Transmission	of	Electricity	
VOC	 volatile	organic	compounds	
VTD	 vapor	transport	deposition	
Yf	 Annual	Final	Yield	(kWh/kW)	
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Appendix B: ABET Senior Project Analysis 
Project Title: Comparison of Organic, Inorganic, and Hybrid Photovoltaic Systems 
Student’s Name: Khulan Orgil  Student’s Signature: Khulan Orgil 
Advisor’s Name: David Braun  Advisor’s Initials:  Date: 
1. Summary of Functional Requirements 
This project compares the costs and benefits of organic, inorganic, and hybrid photovoltaic systems. The 
cost comparison includes analysis of the environmental and economic costs of materials, production, 
installation, upkeep, disposal, and transportation of each system. The benefit comparison includes 
analysis of the efficiency, lifespan, and optimal conditions of each system. Using this data, consumers 
learn about the different types of solar photovoltaic systems. This senior project analysis analyzes the 
report itself, while the report focuses on the photovoltaic systems. 
 
2. Primary Constraints 
The project’s main challenges include defining the scope of the topics the project should cover, finding 
accurate information comparable between the broad categories of solar photovoltaic systems, and laying 
out the information so that it remains unbiased. Further requirements appear in Table I below. 
 

Table 1: Photovoltaic System Comparison Requirements and Specification. 

Marketing 
Requirements 

Engineering 
Specifications 

Justification 

1, 2, 5, 6 The project compares the photovoltaic 
system specifications, including their 
efficiencies (power out/power in), and 
estimated lifetime (in years). 

This ensures inclusion of the factors that 
appear during the use period of the life 
cycle. Power efficiencies measured by 
following IEC 61683 [63]. 

1, 4, 6, 7 The project expands on how each system 
converts light energy into electrical power. 

This provides a background to help 
consumers better understand the causes of  
differences and similarities between the 
system types. 

1-3 The project compares the each system’s total 
waste produced during their life cycle 
measured in kg of CO2 produced, kg of 
chemical/material waste, gallons of water 
used, and kWh of energy used. 

This ensures concise data presentation and 
inclusion of the environmental cost of the 
photovoltaic systems. 

1-3 When calculating total costs and benefits, the 
project considers costs and benefits accrued 
during the entire life cycle, including but not 
limited to: production, installation, upkeep, 
disposal, and transportation. 

This ensures a complete comparison for 
comparing the photovoltaic systems’ pros 
and cons. 
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7-9 The project includes sufficient interactive 
and/or visual components (including charts, 
graphs, figures), so an average consumer, 
based on the average U.S. words per minute 
reading speed, spends at most 15 minutes 
reading before an interruption by a visual. 

Presenting information graphically keeps 
consumer interest, while also keeping data 
concise and understandable. 

5 The project includes information from at 
least 2 sources for each data comparison. 

Drawing data from multiple sources 
ensures accuracy. A data range allows 
accuracy and applicability to each category 
and not a specific design. 

4 The project compares each system’s future 
expectations. 

This allows the consumer to judge each 
system’s potential alongside each system’s 
current technological specifications. 

1-3 Compares the systems’ total price. This allows consumers to understand each 
system’s economic costs and benefits. 

1-3, 6 Compares each photovoltaic system’s safety 
hazards throughout their life cycles, 
including manufacturing, use, and disposal. 

As an important factor affecting 
consumers, any safety differences must 
factor in the comparison. 

Marketing Requirements 
1. Compares organic, inorganic, and hybrid photovoltaic systems. 
2. Analyzes and presents each photovoltaic system’s life cycle, environmental impact, and economic 

impact. 
3. Compares each system’s costs and benefits. 
4. Considers each system’s future prognosis. 
5. Accurate. 
6. Applicable. 
7. Captures consumer attention and interest. 
8. Concise 
9. Understandable. 

  
 
3. Economic 
This project directly impacts the resource of paper and energy used during the project’s creation. The use 
of these resources indirectly causes pollution through the removal of trees for paper, the use of natural gas 
for power, and the emissions from the transportation of these raw materials and products. The usage of 
paper and electricity impacts the people creating the paper products and the people included in the 
generation and maintenance of electricity. By buying these products, money transfers to the people 
creating and transporting these materials. These impacts are small in comparison to the possible impacts 
the project has on people. 
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This project has the potential to change someone’s opinion. The comparison, though optimally unbiased, 
could cause both positive and negative expectations of certain types of photovoltaic systems, impacting 
the money consumers spend on a photovoltaic system type. 
 
The project’s estimated cost, including labor, energy, supplies, and food costs, totals to $4566. This total 
leaves out the cost of computers and books. The laptop and books cost around $800. No materials were 
bought specifically for this project. Any resources used specifically for this project were free using a Cal 
Poly sponsored subscription. 
 
The project aims to create a zero profit informational comparison.The project mainly benefits readers and 
the creator educationally. 
 

 
Figure 20: Gantt Chart detailing the project timeline during EE460 

 
Figure 21: Gantt Chart detailing the project timeline during EE461 
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Figure 22: Gantt Chart detailing the project timeline during EE462 

 
Figures 20-22 detail the project development timeline. The project took around a year to complete. At the 
project’s end, I uploaded the project report for availability on Cal Poly’s Digital Commons. 
 
4. If manufactured on a commercial basis: 
If available physically, the project would sell for around $5 each and cost around $2.50 each to make. 
Since  [64] estimates a small printing would sell around 300 in its lifetime, I estimate around 50 physical 
copies sold per year. So, the profit per year amounts to $125. 
If available online, the project would profit through advertisements. According to [65], each 
advertisement click creates $1. Around 100 page visits per year total $100 in profit. 
The project use costs include the price of the light or power to see the product, which would amount to 
less than 5 cents per hour since electricity costs $0.15 cents per hour. 
 
5. Environmental 
Directly, the project uses paper products and electricity. Indirectly, the project uses oil, natural gas and 
trees, used to create and transport paper and electricity. 
 
Pollution through carbon dioxide or chemicals occurs during the printer paper’s manufacturing and 
transportation. Treating the paper and cutting down wood creates chemical and carbon dioxide by-
products. Transportation causes carbon dioxide emissions through burning the gas used to power the 
vehicle, whether transported through a boat or truck. This pollution affects animals living near the 
factories, power plants, and transportation routes. Since this project uses a minimal amount of paper and 
power, these environmental harms measure minimally in comparison to the environmental benefits. 
 
Indirectly, the project increases photovoltaic power sale and use. Increasing photovoltaic power use 
decreases the demand for other power sources, decreases the pollution created through alternate power 
generation such as burning natural gas, and increases the use of resources to manufacture photovoltaic 
panels and systems. 
 
6. Manufacturability 
Manufacturing issues include meeting demand without overproducing if creating physical copies, 
ensuring availability and increasing awareness of the project. The necessity for shipping constrains the 
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use of physical copies and impacts cost and the environment. 
 
7. Sustainability 
To maintain the product’s use, electricity needs to power the computer or light used to view the product. 
The product generally uses unsustainably generated electricity, such as natural gas, unless generated 
through a renewable source, such as through solar panels or hydroelectric. 
 
To improve the product’s design by making it more sustainable, using recycled paper would reduce 
resource use, but also increase the total printing price. A library could hold the product, which would 
reduce the needed amount of printed products, but also decrease the total profit. 
 
8. Ethical 
When creating this project, I ensure no inclusion of bias or false information, ensure inclusion of any 
needed warnings, ensure clearly labeled estimates, and ensure clearly referenced sources. 
 
The IEEE Code of Ethics bases itself on technological professionalism and respect [66]. The four ethical 
implications stated above relate to the IEEE Code of Ethics’ various tenets. According to the IEEE Code 
of Ethics’ first tenet, I must put safety first and ensure I disclose unsafe factors, which relates to the 
needed warnings inclusion. According to the second tenet, I must avoid conflicts of interest, so I should 
avoid working for a photovoltaic company to reduce a chance to create bias in me before the project’s 
completion, which applies to no inclusion of bias. According to the third tenet, estimates and claims need 
realism and honesty, so any estimates need a strong basis on fact and honestly disclosed. Tenet four 
emphasizes the rejection of bribery, which applies to no inclusion of bias. Tenet five requests the 
information to include detail of technology’s potential consequences, which applies to the project’s 
inclusion of the photovoltaic system cost analysis. Tenet six emphasizes the need for experience, or 
disclosure of limitations, which relates to inclusion of any needed warnings. Tenet seven emphasizes the 
need to properly credit other information sources, which applies to ensuring clearly referenced sources. 
Eight emphasizes treating all people fairly, so I must ensure the project does not harm or benefit any 
specific group of people. Tenet nine demands no injury to anyone or their reputation, which applies to no 
inclusion of false information. Tenet ten requests professional assistance to colleagues, which I have done 
in providing feedback to others’ project plans. 
 
Using the psychological egoism ethical framework, the project follows the first paragraph’s declarations 
stated to avoid legal consequences for misinformation, intellectual property infringement, or damage due 
to a lack of disclosures. This project also seeks to keep consumers informed, possibly leading them to 
make choices that reduce negative impact on their environment or leading to more investment on 
underfunded technological research, which reduces negative impact on everyone’s health. If the project 
projects an opinion to consumers, this could lead to a technology that had potential to not receive the 
investments or awareness that it requires to improve energy production or reveal an important 
breakthrough to researchers. Improving information flows as in leverage point 5 in [67] also improves 
feedback in both the economy and technological research that improves the system humans live in. 
 
The project stays ethical under the ethical principlism framework as well. The project supports 
consumer’s autonomy, the first tenet of ethical principlism, through presenting unbiased, truthful 
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information and allowing them to form their own opinions and make their own decisions. Non-
maleficence shows by keeping the project unbiased and non-harmful to  the reputations of , therefore 
avoiding the purposeful and accidental misleading of consumers. Beneficence shows through the 
presentation of information and support of self-advancement through education. The project supports 
justice by keeping transparency of technological innovations. If, instead, the project presents false or 
biased information, it would violate all four tenets of ethical principlism. The first, because untruthful 
information could falsely lead the consumer to a decision instead of allowing them to autonomously form 
their own opinions. False information could harm a manufacturer’s or photovoltaic system type’s 
reputation, which would violate the second tenet of ethical principlism, non-maleficence. This would also 
violate the beneficence tenet through planting false information in a consumer’s mind. False information 
would also avoid justice by preventing transparency between manufacturers and consumers. 
 
In these ways the project offers ethical presentation of knowledge as long as it continues to follow the 
above tenets. 
 
9. Health and Safety 
Health and safety concerns of the project include danger to consumers during system installation, 
electrical safety from the photovoltaic panels, chemical danger from harmful components during 
manufacture, and fire safety during use of the panels. [55] describes some harmful components used 
sometimes in production of photovoltaic systems. To promote the consumer’s health and safety, the 
project includes warnings about manufacturing and installation safety. 
 
10. Social and Political 
The project impacts direct stakeholders which include Cal Poly and myself. Since Cal Poly makes the 
project report available online, a false or unethical report reflects inability and untrustworthiness on both 
myself and Cal Poly. A well created project presents myself as a strong learner and a student worthy of a 
degree and presents Cal Poly as a correctly accredited educational institution. 
 
The project impacts indirect stakeholders such as investors in photovoltaic technologies, manufacturers, 
researchers, and consumers. Depending on the data they absorb from this project, they can change their 
decision on where to spend their money and where to invest their money or time. The project can benefit 
someone invested in a photovoltaic presented favorably in the product, and harm someone invested in a 
photovoltaic presented unfavorably. This project also has the potential to harm people invested in other 
energy sources, if it convinces potential investors to invest in solar photovoltaic energy instead. For 
example, a decreased consumer base or lower demand might harm a large natural gas company or 
electricity company. 
 
Other indirect stakeholders include other people and certain countries that contain the resources needed to 
produce the different photovoltaic system’s parts. People who do not purchase solar panels would still 
benefit from globally improved environmental quality and reduced reliance on nonrenewable energies. 
Governments that control the raw resources needed to build solar photovoltaic modules both impact the 
type of photovoltaic system manufacturers decide to produce and the system manufacturers decide to 
produce affects the economy of the country that owns the materials through increased or decreased 
exports. 
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11. Development 
During this project, I learned about different types of photovoltaic systems beyond the classic inorganic 
silicon panels and how they operate and different ways of manufacturing them. See the References in 
Appendix D for a list of sources used for the project. The references used in this project expand on 
manufacturing processes, including inputs and outputs, different life cycle analyses, current technologies, 
and possible design improvements. To obtain complete accuracy, the project needs more consolidation of 
multiple types of each photovoltaic system. In the future, this report could improve through more data and 
a wider range of comparisons, for example, including other solar photovoltaic systems. 
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Appendix C: Solar Panel Manufacturing 
I. Silicon Solar Panel Manufacturing [68] 
1. Silica sand (Quartz) melted to produce metallurgical grade (MG) silicon 
2. Siemens process to purify to electronic grade silicon (EG) or solar grade (SoG) silicon. 
3a. Melted into molds to get polycrystalline blocks (to get multicrystalline wafers) 
3b. Or Chochralski process creates single crystal silicon 
5. Wire saw cuts ingots/blocks into wafers 
5a. Round wafers cut into more square pieces to reduce white space in future panel. 
6. Etching to clean wafers and remove surface damage. 
7. Doping (phosphorous n-type doping) 
8. Apply antireflective coating, then screen print silver mesh to form bus bars for the upper 
contact. Desposit metal sheet for back contact. 
9. Test cell and group similar cells together to form a panel. 
10. Weld panels together with a glass cover and an EVA backsheet and Tedlar insulation. 
11. Heat panel to connect parts and remove any trapped air. 
12. Attach aluminum frame. 
 
II. CdTe Panel Manufacturing 
1. Cd from Zn and Te from Cu electrolyte purification as slimes. 
2. After purifying, leaching with caustic soda, and vacuum distillation, obtain semiconductor 
grade Cd and Te powders. 
3. Deposit layers of these materials, then encapsulate. 
 
IV. Silicon Solar Panel Recycling (Desutsche Solar, developed in 2013), 80% reovery of 
material 
1. Heat to separate plastic components. 
2. Manually separate cells, glass, Al, and Cu. 
3. Chemical processing to obtain wafer materials from cells. 
 
V. CdTe Recycling (First Solar, first used in 2003) – 90% recovery of glass, 95% recovery of 
CdTe 
1. Breaking and removing glass. 
2. Sulphuric acid and hydrogen peroxide to leach semiconductor films into a solution, which can 
precipitate material for use in new CdTe modules. 
3. Remove glass from solution, then remove laminate from solution. 
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Appendix E: Accumulated Data 
The following tables contain the data amassed about inorganic and organic photovoltaic 
systems on cost, greenhouse gas emissions, energy demand, and payback times. The tables 
also contain some data on other energy sources for comparison. 
 

Table 2: Basic Data collected about photovoltaic systems 

Basic	Data	 efficiency	(%)	 lifetime	(years)	
monocrystalline	Si	[6]	 14	 30	
monocrystalline	Si[38]	 25	 30	
multicrystalline	Si	[24]	 14.1	 30	
multicrystalline	Si	[31]	 13.2	 25	
multicrystalline	Si	[6]	 13.2	 30	

CdTe	[24]	 11.9	 30	
CdTe	[6]	 9	 30	
OPV	[24]	 8	 15	
OPV	[31]	 5	 5	

 
 

 

Table 3: Collected Energy Return on Energy Invested Data 

EROI	 		
monocrystalline	Si[38]	 38.3	
monocrystalline	Si	[8]	 5.2-12.2	
multicrystalline	Si	[8]	 6.4-16.8	
polycrystalline	Si[38]	 37.9	

CdTe	[8]	 20.7-47.7	
CdTe	[38]	 76.1	
Oil	[38]	 3.7-10.6	
coal	[38]	 12.2-24.6	
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Table 4: Energy Payback Time Data 

EPBT	 years	
Si	[6]	 1.7-2.7	

monocrystalline	Si	[6]	 2.5-2.7	
monocrystalline	Si	[8]	 2.1-6.1	
monocrystalline	Si[38]	 0.783	
multicrystalline	Si	[31]	 2.52	
multicrystalline	Si	[6]	 1.9-2.2	
multicrystalline	Si	[8]	 1.8-4.4	
multicrystalline	Si	[24]	 1.25-1.5	
multicrystalline	Si	[1]	 1.7-3.3	
multicrystalline	Si	[1]	 0.9-2.8	

CdTe	[6]	 1.1	
CdTe	[24]	 0.67	
CdTe	[8]	 0.6-1.4	
OPV	[24]	 0.33-0.4	
OPV	[28]	 0.24-0.3	
OPV	[31]	 0.99-1.23	
EPBT	 years	
Si	[6]	 1.7-2.7	

monocrystalline	Si	[6]	 2.5-2.7	
monocrystalline	Si	[8]	 2.1-6.1	
monocrystalline	Si[38]	 0.783	
multicrystalline	Si	[31]	 2.52	
multicrystalline	Si	[6]	 1.9-2.2	
multicrystalline	Si	[8]	 1.8-4.4	
multicrystalline	Si	[24]	 1.25-1.5	
multicrystalline	Si	[1]	 1.7-3.3	
multicrystalline	Si	[1]	 0.9-2.8	

CdTe	[6]	 1.1	
CdTe	[24]	 0.67	
CdTe	[8]	 0.6-1.4	
OPV	[24]	 0.33-0.4	
OPV	[28]	 0.24-0.3	
OPV	[31]	 0.99-1.23	
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Table 5: Collected Greenhouse Gas Emissions Data 

Greenhouse	Gas	Emissions	 gCO2eq/kWh	
Si	[6]	 30-45	

monocrystalline	Si	[39]	 62-109	
improved	(higher	efficiency	and	lifetime)	

monocrystalline	Si	[39]	 50-87	

multicrystalline	Si	[24]	 28.3-49	
multicrystalline	Si	[39]	 52-73	

improved	multicrystalline	Si	[39]	 37-64	
CdTe	[6]	 24	
CdTe	[24]	 13.6-17.7	
CdTe	[39]	 22-38	

improved	CdTe	[39]	 20-36	
OPV	[24]	 5.8-8.2	

3%	efficiency	OPV	[28]	 48.18-50	
5%	efficiency	OPV	[28]	 28.91	

natural	gas	[39]	 450-670	
coal	[40]	 990-1104	

 
 

 

Table 6: Collected Data on Production Energy 

embedded	energy	 MJ/m^2	
monocrystalline	Si	[6]	 4200	
multicrystalline	Si	[6]	 3700	
multicrystalline	Si	[31]	 3240	
multicrystalline	Si	[1]	 2699-5150	
multicrystalline	Si	[24]	 2544-3482	

CdTe	[6]	 1100-1200	
CdTe	[24]	 898-1625	
OPV	[24]	 108-112	
OPV	[31]	 96.7-125	

tandem	OPV	[28]	 43.86-51.34	
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Table 7: Collected Data on the Levelized Costs of Electricity 

LCOE	 $/kWh	
Si	[37]	 0.16-0.29	
coal	[37]	 0.09-0.18	

small-scale	OPV,	7%	efficiency,	5	year	lifetime	[37]	 0.25-0.65	
large-scale	OPV,	5%	efficiency,	5	year	lifetime	[37]	 0.13	
large-scale	OPV,	15%,	15-20	year	lifetime	[37]	 0.07	

OPV	current	[24]	 0.12-0.19	
OPV	future	[24]	 0.07-0.12	

 
 
 


