
 

 

 

Design and Test of Wide Input and Output Constant 

Current LED Driver 

by 

Kean Wee 

Advisor: Professor Taufik 
 

 

 

 

 

 

 

 

ELECTRICAL ENGINEERING DEPARTMENT 

California Polytechnic State University 

San Luis Obispo 

EE462 Spring 2018 

  



2 

 

Table of Contents 
List of Figures ............................................................................................................................. 3 

List of Tables .............................................................................................................................. 4 

Abstract ........................................................................................................................................... 5 

Chapter 1: Introduction ................................................................................................................... 6 

Chapter 2: Background ................................................................................................................... 8 

Switching to DC .......................................................................................................................... 8 

Smarter Buildings ....................................................................................................................... 8 

Lumencache ................................................................................................................................ 9 

Chapter 3: Design Requirements .................................................................................................. 10 

Block Diagrams ........................................................................................................................ 10 

Technical Design Requirements ............................................................................................... 11 

Chapter 4: Design ......................................................................................................................... 13 

Converter Topology .................................................................................................................. 13 

SEPIC Component Selection .................................................................................................... 14 

Power Controller ....................................................................................................................... 14 

MOSFET Selection ................................................................................................................... 15 

Simulation Results .................................................................................................................... 16 

Chapter 5: Hardware Assembly and Test ..................................................................................... 23 

Board Layout ............................................................................................................................ 23 

Fabrication and Assembly......................................................................................................... 24 

Lab Testing ............................................................................................................................... 26 

Results ....................................................................................................................................... 27 

Chapter 6: Conclusion................................................................................................................... 38 

Works Cited .................................................................................................................................. 39 



3 

 

Appendix C: Bill of Materials....................................................................................................... 40 

Appendix D: Analysis of Senior Project Design .......................................................................... 42 

 

List of Figures 

Figure 3-1 Level 0 System Block Diagram .................................................................................. 10 

Figure 3-2 Level 1 System Block Diagram .................................................................................. 11 

Figure 4-1 Single-ended primary-inductor converter Operation Diagram [3].............................. 13 

Figure 4-2 LTSpice Simulation Circuit Diagram ......................................................................... 16 

Figure 4-3 Output Current and Voltage at 48V input and 40V output ......................................... 17 

Figure 4-4 Duty Cycle of 47% at 48V input and 40V output ....................................................... 17 

Figure 4-5 Output Current and Voltage at 20V input and 40V output ......................................... 18 

Figure 4-6 Duty cycle of 83% at 20V input and 40V output ........................................................ 19 

Figure 4-7 Output Current and Voltage with 20V input and 68V output ..................................... 20 

Figure 4-8 Duty Cycle of 82% at 20V input and 68V output ....................................................... 20 

Figure 4-9 Output Current and Voltage with 64V input and 9V Output ...................................... 21 

Figure 4-10 Duty Cycle between 18.1% and 7.1% at 64V input and 9V output .......................... 22 

Figure 5-1 Layout of 30mm x 45mm LED Driver Board ............................................................. 23 

Figure 5-2 MacroFab Support Sizing Mismatch .......................................................................... 25 

Figure 5-3 Adapter Board Manually Wired to Main Board with 30AWG Wire .......................... 25 

Figure 5-4 Lab Setup in Power Electronics Lab 104 .................................................................... 26 

Figure 5-5 80.4V Output with 55V Input and Open Load ............................................................ 27 

Figure 5-6 39.2V Output with 55V Input and 66Ω Load ............................................................. 28 

Figure 5-7 39.2V Output with 55V Input and 66Ω Load with AC coupled channel.................... 28 

Figure 5-8 Ch1: System Voltage output, Ch2: SEPIC Output Voltage before Output PMOS ..... 29 

Figure 5-9 38.8V Output with 55V Input and 66Ω Load at 80% Duty Cycle .............................. 30 

Figure 5-10 38.8V Output with 55V Input and 66Ω Load at 10% Duty Cycle ............................ 30 

Figure 5-11 38.8V Output with 55V Input and 66Ω Load at 600Hz PWM ................................. 31 

Figure 5-12 38.8V Output with 55V Input and 66Ω Load at 120Hz PWM ................................. 32 

Figure 5-13 29.6V Output with 55V Input and 50Ω Load ........................................................... 33 



4 

 

Figure 5-14 63.6V Output with 55V Input and 110Ω Load ......................................................... 33 

Figure 5-15 39.4V Output with 50V Input and 66Ω Load ........................................................... 34 

Figure 5-16 Primary Switching Node with 52.5% Duty cycle at 500KHz ................................... 35 

Figure 5-17 Primary Switching Node with 60.1% Duty cycle at 500KHz ................................... 35 

Figure 5-18 Output Voltage Dipping Due to Internal Vcc Faults ................................................ 36 

 

List of Tables 

Table 3-1 Design Requirement Specification Summary .............................................................. 12 

Table 5-1 Numerical Test Results Summarized ........................................................................... 37 

  



5 

 

Abstract 

 This senior project aims to provide design and test the performance of a DC-DC constant 

current LED driver for use in a larger DC smart building infrastructure. In this instance, a SEPIC 

topology is chosen to provide high efficiency output current at output voltages that can be above 

or below the input voltage. This is challenging since the same design must operate at similar 

efficiency for vastly different environmental conditions. As a part of a larger system, the design 

must be able to perform the given task consistently regardless of changes to the source and load 

power.  

 The design uses the LT3795 LED controller to operate power switches and inductors to 

transform the input power into usable output power for a string of LEDs. The controller is paired 

with an onboard microcontroller to provide error reporting and supplement the PWM dimming 

control features of the IC. Simulations were done to ensure the efficiency of the design remained 

above 93% within the full range of input and output voltages, along with a range of PWM 

frequencies and duty cycles.  

 After manufacturing and assembly, the board was found to be under specification regarding 

the input and output voltage ranges, as well as below the efficiency target. This was largely due to 

issues regarding the layout assembly of the finished product. 
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Chapter 1: Introduction 

 Power electronics is a subdivision of Electrical and Electronics engineering that works to 

“Control the flow of energy from an electrical source to an electrical load with high efficiency, 

high availability, high reliability, small size, light weight, and low cost” [1]. As technology in the 

home has developed, the need for efficiency and reliability has risen leading to an increase in 

power electronics usage in the home. One instance of power electronics in consumers’ daily lives 

has been personal electronics. The usage of smartphones and laptop computers has increased the 

amount of power the world uses to charge DC batteries and run DC systems. Part of power 

electronics focuses on the transformation of AC power to DC power, which is widely used in the 

personal chargers individuals use to power their electronics. In addition to this, there are many DC 

to DC converters required for power transformation inside the devices. With the complex network 

of subsystems and technologies there is a need for power controllers that can be used to service a 

wide range of loads. A single controller design that can be used in different parts of the product or 

across a family of products reduces engineering design costs. In future iterations of the product, 

sub-modules may be changed that require more power. The power controller must be flexible 

enough to be scaled up in power without requiring a re-design. 

 When interconnecting AC and DC systems, there are many options to convert one input 

power into another. These options can hold different stages in which a specific transformation is 

conducted and chained to complete the overall black box. Because of this ability to interconnect 

substantially different converters, there is high demand for a variety of power topologies, including 

topologies that have similar transfer functions but different methods of operation. These can be 

organized in many ways, but generally have simpler groupings based on their simplest form of 

operation. For example, in DC to DC conversion, three of the simplest converters are the buck, 

boost, and buck-boost converters which are the basic building blocks of more complex power 

converter designs. 

 The buck converter is a circuit topology of DC to DC converter that operates by switching 

current through an inductor into a capacitor to produce a lower output voltage than input voltage. 

By varying the duty cycle of the switch, the ratio of average output voltage to input voltage can be 

changed in real-time. This style of pseudo-digital control is very appealing and common in DC to 

DC power conversion since many control schemes can be used interchangeably. There are many 
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off-the-shelf IC’s that can be purchased to provide a buck converter, as well as application specific 

designs for multiple input or output requirements.  

 The boost topology is another type of DC to DC converter that uses a power switch to vary 

the current through an inductor. Rather than generating a lower voltage, the boost converter creates 

a higher voltage output based on the duty cycle of the switching element. This also shares a 

similarly flexible control scheme to the buck converter. Both the buck and boost converters 

prioritize the flexibility, reliability, and efficiency of power electronics, and form a basis for DC 

to DC converters that is built upon. 

 One such implementation that build upon the two topologies is the buck-boost converter, 

which uses a switching element to generate an average output voltage to be higher or lower than 

the input voltage based on the duty cycle. While the simplest form of the buck-boost converter is 

relatively low efficiency and hard to use, there are many optional changes that can improve the 

performance. Utilizing a synchronous topology that uses two power switches rather than one 

would raise efficiency and simplify interfacing restraints present in the non-synchronous topology. 

In similar style, many power electronic converters can be modified to suit specific applications 

and increase efficiency and flexibility. 
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Chapter 2: Background 

Switching to DC 

Increasingly, many consumer devices can be powered by DC (computers, LED lights, 

bathroom fans, cameras). Home solar panels generate DC power which is perfect to supply these 

devices, but existing homes have an AC electrical grid inside the house instead of DC. To get 

around this, home solar panels use an inverter to convert DC to match the house’s AC grid then 

each consumer device internally has a power rectifier to convert AC back to DC. This conversion 

back-and-forth makes room for inefficiencies and component malfunctions. A potential solution 

would be to convert the electrical grid inside the home to a DC network rather than AC. Consumers 

that wish to convert their house electrical grid from AC to DC lack a straightforward solution, they 

must retain a skilled electrician or engineer to build a parallel DC grid in their house. 

An Internet search of DC house design plans reveals that many current projects are large 

scale bids to build what are effectively demonstration buildings. Companies and national 

committees are looking to fund the construction of DC buildings as a proof of concept rather than 

a usable home living environment. Companies are also looking to run servers off DC supplies, 

since the individual server sub-blocks already require DC inputs. The current solution is to do large 

scale conversion of line power into 12V or 48V DC, then feed this to the sub-blocks [2]. This 

technology is currently oriented towards servers rather than other industrial applications. 

 

Smarter Buildings 

 The “internet of things” (IoT) has been a rising topic in consumer electronics. The 

movement involves adding sensors to home products to collect data and facilitate human-machine 

interaction. These devices operate on wireless networks and frequently pull power from the wall 

outlet rather than a battery. In a house, there are generally high and low connectivity areas due to 

a lack of wireless broadcast points to cover the area evenly. Between the variable connectivity and 

the increased activity due to an increased number of wireless devices, the 2.4GHz and 5GHz bands 

are incredibly crowded. This problem only gets worse with more and more devices, bringing up 
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the need for higher power emitters and receivers as well as decreasing the performance of IoT 

devices. To alleviate this problem, devices can elect to use wired networking schemes to give 

better latency and lower data packet loss as well as lower competition on the wireless 

communication networks.  

 

Lumencache 

 This project is a partnership with Lumencache, a company looking to “Make buildings 

smart from the start.” This project will contribute to the larger project of a full featured 

infrastructure. The nanogrid design prioritizes modularity in many ways, one of which being the 

ability to use different power supplies without changing the surrounding infrastructure. Different 

load types and load configurations in a building will call for different power solutions, and this 

project will be one of the solutions to choose from.  

The overall project goal comes in two distinct parts: power and data. On the power side, 

they are building an infrastructure to place into buildings that runs DC power wiring around to the 

loads from a central circuit box containing most of the power electronics. This means that all the 

buck, boost, and buck-boost drivers will be centralized and accessible much like a circuit breaker 

is in current building designs. Cat5 wiring will be run from the central box to the different rooms 

and subsequently loads, allowing for a universal connector interface from supply to driven load. 

The next part of the project is data. Since there is already wiring in place to the different rooms in 

a building, data communication can be put in place as well, with smart-building behavior being 

integrated alongside the power component in the circuit box.  
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Chapter 3: Design Requirements 

Block Diagrams 

Figure 3-1 shows the three input and single output requirements of this design. The LED 

driver will take in one power and one control input to produce a variable output voltage for driving 

LEDs elsewhere in the system. The 12V supply will be used to operate the supporting 

microcontroller circuitry. 

 

 

Figure 3-1 Level 0 System Block Diagram 

 

Figure 3-2 shows the system level organization of the design, with the LED controller 

receiving the input power as well as the input control signal (routed through an optional control 

card) to drive the power switches and generate the required output. The daughter card will have 

further digital communication through the RS485 digital communication standard and will be used 

to provide further monitoring on the status of the power controller. 
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Figure 3-2 Level 1 System Block Diagram 

 

Technical Design Requirements 

The input power signal is defined with a minimum voltage of 20VDC and a maximum 

voltage of 64VDC, operating at a typical 48VDC. This is defined by the power sourced to the 

controller by the power converters between the LED controller and the main source power (grid, 

solar, or battery). The maximum input current is calculated based on the maximum output power 

and the minimum input voltage resulting in a current of 2.5A. 

The output voltage and current will be dictated by the combination of LED input behavior 

as well as the dimming control in the LED controller. The output voltage is defined with a 

minimum voltage of 9VDC and a maximum of 68VDC, with a typical of 40VDC. These values 

are specified based on the arrangement of load LEDs supported by this family of controllers. With 

more LEDs in a string, the output voltage must be increased to meet the turn-on voltage 
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requirement of each LED. The maximum output current is specified at 900mA with two typical 

currents of either 600mA or 300mA, each offered as different versions of the same product.  

The control pin is a PWM signal ranging from 120Hz to 600Hz, fed into the LED controller 

to set LED brightness through output current. This control signal must be routed through the 

optional data communication card to allow for overriding in software. The optional data 

communication uses RS485 serial communication at 38400 baud rate by requirement of the 

exterior system. This is a bus communication protocol using two digital lines to communicate with 

a microcontroller on-board the optional daughter card to operate error reporting and alternative 

dimming control. 

 

Table 3-1 Design Requirement Specification Summary 

Design Requirement Specification 

Input Voltage Min: 20V 

Typical: 48V 

Max: 64V 

Input Current Max: 2.5A 

Output Voltage Min: 9V 

Typical: 40V 

Max: 68V 

Output Current Max: 900mA 

Typical: 300mA, 600mA 

Dimming Control Min: 120Hz PWM 

Max: 600Hz PWM 

Digital Communication RS485 Serial Protocol 
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Chapter 4: Design 

Converter Topology 

 In this design, the input and output voltages share similar ranges and are not always higher 

or lower voltage than each other. Due to this, a converter topology that can produce output voltages 

higher, lower, and equal to the input voltage is required. In this case, a Single-ended primary-

inductor converter (SEPIC) has been chosen. The SEPIC is a DC-DC converter that uses a single 

switch to control the flow of energy from the input to the output through a boost converter followed 

by a buck-boost converter. The benefit of this is the ability to drive an output voltage above, below, 

and equal to the input voltage as well as an output voltage with the same polarity as the input 

voltage. This is in comparison to a traditional buck-boost topology, which can drive similar output 

voltages, but has a reversed polarity on the output. The reversed polarity of the output requires 

more circuitry to either reverse the output polarity to match the input voltage or provide safety due 

to the large “negative” voltage. 

 

 

Figure 4-1 Single-ended primary-inductor converter Operation Diagram [3] 

  

Another benefit of the SEPIC topology is the inherent short-circuit protection. Due to C1 being in 

direct path of current flow, a short circuit on the output of the converter will quickly drain the 

charge stored in the capacitor and the DC current will drop to zero amps. This is especially useful 

in the context of this project since a short circuit on an LED string will result in a large voltage 

present across an extremely low resistance path producing a large surge current. 
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SEPIC Component Selection 

 The SEPIC design begins with selecting the inductors, coupling capacitor, and input/output 

capacitors. Assuming CCM (Continuous conduction mode), the duty cycle is set by 𝐷 =

𝑉𝑂𝑈𝑇+ 𝑉𝐷

𝑉𝐼𝑁+𝑉𝑂𝑈𝑇+𝑉𝐷
, where VD is the diode forward voltage [4]. In this case, the maximum duty cycle is 

set using the maximum VOUT and the minimum VIN (68V and 20V respectively). This maximum 

duty cycle is used to find the critical inductance. The peak-to-peak inductor current was set at 40% 

of the maximum input current and resulted in 816mA.  This results in an inductor value of 𝐿 =

𝑉𝐼𝑁(𝑀𝑖𝑛)

∆𝐼𝐿∗𝑓𝑆𝑊
∗ 𝐷𝑀𝑎𝑥; in this case the critical inductance was equal to 37.9µH. The peak inductor currents 

are also given at 𝐼𝐿1(𝑃𝑒𝑎𝑘) = 𝐼𝑂𝑈𝑇 ∗
𝑉𝑂𝑈𝑇+𝑉𝐷

𝑉𝐼𝑁(𝑀𝑖𝑛)
∗ (1 +

40%

2
) and 𝐼𝐿2(𝑃𝑒𝑎𝑘) = 𝐼𝑂𝑈𝑇 ∗ (1 +

40%

2
), 

resulting in peak currents of 2.47A and 0.72A. The peak current of the power MOSFET is the sum 

of these two currents and is used for MOSFET selection. 

 The coupling capacitor was chosen based on the RMS current rating. 𝐼𝐶𝑠(𝑟𝑚𝑠) = 𝐼𝑂𝑈𝑇 ∗

√
𝑉𝑂𝑈𝑇+𝑉𝐷

𝑉𝐼𝑁(𝑚𝑖𝑛)
 and is equal to 1.1A at maximum output voltage. The output capacitor must be rated for 

RMS current and sufficiently low ESR. The RMS current is the same as the RMS current of the 

coupling capacitor in a no-load situation. This means the output capacitor must be rated for the 

same 1.1A current. The ESR and capacitance is related to the output voltage ripple, which was 

selected as 0.5% of the maximum output voltage. This resulted in an ESR given by 𝐸𝑆𝑅 ≤

𝑉𝑟𝑖𝑝𝑝𝑙𝑒∗0.5

𝐼𝐿1(𝑝𝑒𝑎𝑘)+𝐼𝐿2(𝑝𝑒𝑎𝑘)
 and minimum capacitance of 𝐶𝑂𝑈𝑇 ≥

𝐼𝑂𝑈𝑇∗𝐷

𝑉𝑟𝑖𝑝𝑝𝑙𝑒∗0.5∗𝑓𝑆𝑊
. This works out to be 53mΩ 

and 5.47µF.  

Power Controller 

 The power controller selected is the LT3795 LED controller with spread spectrum 

frequency modulation [5]. This controller was selected due to the wide input and output voltage 

ranges, spread spectrum frequency modulation, and support for the SEPIC topology.  

 The control loop for the primary power MOSFET takes in input current, power switch 

current, output current, and output voltage as feedback paths. Since three of these values are 

currents, sense resistors are selected to convert the current value into voltage for direct comparison 
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within the controller. The input current sense resistor is selected based on the maximum input 

current expected, which is estimated as 2A average. With a peak-to-peak inductor current of 

800mA, the peak input current should be less than 2.4A in normal operation. The LT3795 datasheet 

calls for 𝐼𝑖𝑛 =
60𝑚𝑉

𝑅𝐼𝑁𝑆𝑁𝑆
 so RINSNS = 15mΩ. The primary switch sense resistor is set by 𝑅𝑆𝐸𝑁𝑆𝐸 ≤

𝑉𝐼𝑁∗0.07𝑉

𝑉𝐿𝐸𝐷∗𝐼𝐿𝐸𝐷
 so RSENSE = 22mΩ. The output current is set by 𝑅𝐿𝐸𝐷 =

250𝑚𝑉

𝐼𝐿𝐸𝐷
 so RLED = 416mΩ or 

833mΩ depending on which output current option is needed. The output voltage is set by a voltage 

divider from the output to detect short and open LED conditions. A resistor network is set to keep 

the feedback pin of the controller between 0.35V and 1.2V during nominal operation. With an 

output range of 9V-68V, this was accomplished with a resistor network shown in Figure 4-2. VREF 

is set by the internal reference voltage of the controller at 2V nominal. 

  

MOSFET Selection 

 The power MOSFET is a critical component in switch mode power supply design and has 

a large impact on the performance of the power supply. The LT3795 controls two MOSFETs, one 

primary switch used to drive the SEPIC and one output switch to provide dimming control for the 

output LED’s. The primary switch is an ONSEMI FDD390N15A, selected for its low RDSon as 

well as low Qgd [6]. The peak current through this switch is equal to the sum of the peak currents 

through the two inductors and was found to be 3.2A. The rms current of the switch is given by 

𝐼𝑄1(𝑟𝑚𝑠) = 𝐼𝑂𝑈𝑇√
(𝑉𝑂𝑈𝑇+𝑉𝐼𝑁(𝑚𝑖𝑛)+𝑉𝐷) ∗ (𝑉𝑂𝑈𝑇+𝑉𝐷)

𝑉𝐼𝑁(min)
2 = 2.34𝐴. The low Qgd is to lower the switching 

losses with a switching frequency of 500KHz. The VDSS of the NMOS must also be greater than 

the maximum Vin + Vout, which is 132V. The output switch is a PMOS with low Rds(on) to minimize 

conduction loss. The Vdss is based on the maximum Vout of 68V.  The switch selected is a Diodes 

Incorporated ZXMP7A17G PMOS with RDS(on)=160mΩ and VDSS=70V [7]. Due to the low 

frequency of the PWM dimming signal, the switching losses affect the total power less, reducing 

the need for a low Qgd. 
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Simulation Results 

Simulation was conducted in LTSpice since the power controller is a Linear Technology 

product. Figure 4-2 shows the circuit used for simulation, with an output load modelled with a 

diode and resistor. The diode is specified by a simple model with a forward voltage 1Vt below the 

target voltage, and the resistor is sized to give 600mA current when 1V is placed across it. This 

was to mimic the behavior of an LED string loosely without requiring as complex simulation while 

still maintaining the “turn-on” characteristic not shared by a resistive load.  

 

 

Figure 4-2 LTSpice Simulation Circuit Diagram 

 

The first simulation was conducted at full 600mA current load at typical input and output 

voltages of 48V and 40V respectively. Figure 4-3 shows the output voltage reaching a steady state 

of 40V and the output current centering on 600mA. Data recording began at 1ms to account for 

the soft start time, and the voltage started at 15V due to initial conditions set to decrease repeated 

simulation times. Figure 4-4 shows the duty cycle of approximately 47%, close to the predicted 

45.4% duty cycle given by the input and output voltages.  
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Figure 4-3 Output Current and Voltage at 48V input and 40V output 

 

 

Figure 4-4 Duty Cycle of 47% at 48V input and 40V output 

  

The second simulation was performed at the lowest input voltage of 20V and nominal 

output voltage of 40V. Figure 4-5 shows the output voltage reaching a steady state at 40V and 
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output current of 600mA. Slope 32.4KV/s. The ability for the converter to remain at the same 

output voltage and current with two different input voltages shows the versatility of the SEPIC 

topology for this problem. Figure 4-6 shows the duty cycle reaching 83%, which is above the 

calculated duty cycle of 67% for 20V input and 40V output. This is due to the current drawn by 

the load since the output voltage will not follow the same saw-tooth behavior as the no load 

condition.  

 

Figure 4-5 Output Current and Voltage at 20V input and 40V output 
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Figure 4-6 Duty cycle of 83% at 20V input and 40V output 

  

The third simulation is the most extreme ratio of input to output voltage at 20V and 68V. 

This is the minimum input voltage and maximum output voltage, which results in the highest duty 

cycle. Figure 4-7 shows the output voltage at 68V and the output current averaging 600mA. Figure 

4-8 shows a duty cycle of 82%, slightly higher than the calculated 77% duty cycle for this input 

and output voltage. With a lower output current, the duty cycle can be seen to decrease and move 

closer to the estimated value.  
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Figure 4-7 Output Current and Voltage with 20V input and 68V output 

 

Figure 4-8 Duty Cycle of 82% at 20V input and 68V output 

 The last simulation is done at the opposite end of the spectrum, with the highest input 

voltage and lowest output voltage. This is done to demonstrate the ability of the converter to span 

a wide range of duty cycles, going as low at 7.1% shown in Figure 4-10. Figure 4-9 shows the 
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output at 9V, with some oscillation due to the output current. The expected duty cycle for this 

input-output condition is 12.3%, but due to the low duty cycle the controller alternates between a 

higher and lower duty cycle. In between each clock cycle, the output would droop a different 

amount resulting in different turn-on times for the NMOS.  

 

Figure 4-9 Output Current and Voltage with 64V input and 9V Output 
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Figure 4-10 Duty Cycle between 18.1% and 7.1% at 64V input and 9V output 

  

These four simulations demonstrate the converter’s ability to provide a steady 600mA 

current through the full input-output voltage range. If the converter is unable to do this, there would 

be little reason to favor the SEPIC topology over a buck or boost topology. Additional simulations 

show similar performance with a 300mA output current and PWM dimming. 
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Chapter 5: Hardware Assembly and Test 

Board Layout 

 Due to the small size of the board (30mm x 45mm) and high density of signals near the 

microcontroller and supporting circuitry, a four-layer board was chosen to ease routing. While the 

routing was possible on two layers, there were concerns with the width of the power traces due to 

the crowding of signals around the LT3795 and Atmega328P. Using four layers allowed for wide 

power traces across the board without restraining the routing for smaller traces between other 

components.  

 

 

Figure 5-1 Layout of 30mm x 45mm LED Driver Board 

  

Figure 5-1 shows the full layout of the board, including interior traces and component 

placements. In addition to the two-dimensional size constraint of the board, there was also a height 

limit of 12mm on the top side and 5mm on the bottom side. This meant that larger components 

such as the main coupling capacitor and the inductors could not be placed on the bottom of the 
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board. This resulted in the bottom of the board being used for the two main IC’s as well as their 

required passive components. To help with ground loops, copper pours were placed on each layer 

of the board and tied to ground, as well as connected through VIA’s where space allowed. This 

meant that ground connections should be low resistance and local to all components as needed. 

 

Fabrication and Assembly 

 Component selection was heavily influenced by the size of the board and even with small 

components many footprints were situated close together. All components are surface mount 

devices excluding the header pins. Because of the small packages and tight arrangement of 

components, fabrication and assembly were done by a company rather than on campus. Macrofab 

was used as a low quantity prototyping service that allowed for PCB manufacturing and SMD 

assembly on a low number of boards, in this case two. This greatly reduced the concerns of 

soldering the LT3795 and Atmega328P packages as well as the large number of 0402 passive 

components. This also was preferable since the inductor pads were located below the package and 

could not be easily soldered with a traditional iron.  

 After the layout and BOM were sent to the manufacturer, it became apparent that the 

LT3795 controller IC had the wrong footprint, meaning it could not be soldered onto the board. 

Figure 5-2 is an image sent from MacroFab highlighting the footprint mismatch which mandated 

an alternative solution. In industry, it would be typical to do a re-spin of the PCB and put the 

assembly on hold until the fixed layout was available, but this was not an option due to MacroFab 

policy. Instead, the LT3795 IC was soldered onto an adapter board which was then wired with 30 

AWG wire to the footprint on the main board as shown in Figure 5-3. This introduced long trace 

resistances and inductances, as well as provided a perfect location for cross talk and EMI. 
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Figure 5-2 MacroFab Support Sizing Mismatch 

 

Figure 5-3 Adapter Board Manually Wired to Main Board with 30AWG Wire 
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Lab Testing 

 The lab setup for testing this DC-DC converter consisted of a GW GPR-6060D DC power 

supply for input voltage, an Agilent U3401A digital multimeter used as an ammeter, a Rigol 

DG1062Z Function generator for the control signal, and a Clarostat 240-C power resistor decade 

box for the load. For additional measurement and oscilloscope captures a GW Instek GDS-1102B 

Oscilloscope was used. The measurement setup was to use the DC power supply in series with the 

digital multimeter to supply and measure input voltage and current, while loading the output of the 

converter with variable resistances to set output voltage. Since the project was designed to supply 

a constant current, the output voltage would vary with load resistance while current remained at 

the set 600mA. The function generator supplied a 4V square wave between 120-600Hz with 

varying duty cycle to modulate the voltage and current supplied to the load. Figure 5-4 show the 

lab setup with power supply, function generator, resistive load, and oscilloscope. 

 

 

Figure 5-4 Lab Setup in Power Electronics Lab 104 
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Results 

 The first test was to measure output voltage regulation at no load. Since this converter is a 

constant current device, measuring output voltage with no load attached would equate to 

measuring the maximum output voltage allowed by the controller, specified by the resistor network 

on the feedback pin. With a 55V input voltage and no resistor attached to the output the output 

voltage was 80.4V as shown in Figure 5-5. 

 

 

Figure 5-5 80.4V Output with 55V Input and Open Load 

   

 The next measurement was taken with the resistor decade box as a load to test output 

current. Figure 5-6 shows the output voltage of 39.2V across the 66Ω load, which is the result of 

a 594mA output current. This is close to the expected 600mA output current and can be attributed 

to variability in the 430mΩ LED sense resistor. 
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Figure 5-6 39.2V Output with 55V Input and 66Ω Load 

 

 

Figure 5-7 39.2V Output with 55V Input and 66Ω Load with AC coupled channel 

  

 To check for voltage ripple, the oscilloscope input was set to AC coupling and measured a 

peak to peak ripple of 104mV. This ripple is 0.26% of the output voltage which is less than the 

0.5% target used during the design. In addition to the voltage ripple, there were larger voltage 
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spikes that coincided with the switching frequency of 500KHz. This is likely due to crosstalk 

between the traces or the long wire running from the adapter board acting as an antenna. Since this 

was not related to the ability of the converter to regulate the voltage, it was not counted as part of 

the voltage ripple. 

 The next step was measuring performance with the PWM enabled between 120Hz and 

600Hz. The function generator swung between 4V and 0V to emulate the signal generated by the 

onboard microcontroller. At the nominal frequency of 240Hz and duty cycle of 50%, the output 

voltage stayed consistent at 38.8V. 

 

 

Figure 5-8 Ch1: System Voltage output, Ch2: SEPIC Output Voltage before Output PMOS 

 

 In Figure 5-8, channel 1 shows the output voltage across the 66Ω load resistor, while 

channel 2 shows the output voltage of the SEPIC before output MOSFET. During PWM operation, 

the output MOSFET switches on and off to provide an average current lower than 600mA based 

on the PWM duty cycle. In this case, the average output current was approximately 300mA since 

the duty cycle was set to 50%. 
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Figure 5-9 38.8V Output with 55V Input and 66Ω Load at 80% Duty Cycle 

 

Figure 5-10 38.8V Output with 55V Input and 66Ω Load at 10% Duty Cycle 

 

 Increasing the duty cycle had little effect on the output voltage when the output MOSFET 

was turned on. The overall efficiency decreased slightly, partially due to the switching losses in 

the output MOSFET. Since the switching frequency is low at 240Hz, the switching loss has a small 
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effect on the system efficiency, reducing it from 87.4% to 85.9%. Figure 5-10 shows the same 

output voltage with a duty cycle of 10%, demonstrating that the converter can operate between 0% 

and 100%. 

 

 

Figure 5-11 38.8V Output with 55V Input and 66Ω Load at 600Hz PWM 

 

To continue testing the PWM control, the frequency was set to 600Hz to check the upper 

limit of the specification. Duty cycle was set to 50% to keep measurements consistent. The 

behavior in Figure 5-11 is as expected, with slightly more oscillation due to the increased switching 

frequency. This has a minimal effect on the output current of the device, especially in the specified 

LED application. 
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Figure 5-12 38.8V Output with 55V Input and 66Ω Load at 120Hz PWM 

  

 Setting the PWM frequency to 120Hz reduces the apparent oscillation on the output 

voltage, but still has little effect on the actual output. An increased frequency reduces the visible 

flickering of LEDs in operation. The efficiency comparison between these two frequencies is 

84.3% versus 85.3% because the increased switching frequency introduces more switching loss in 

the output MOSFET. 
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Figure 5-13 29.6V Output with 55V Input and 50Ω Load 

   

The output resistance was decreased to 50Ω to test lower output voltage, resulting in the 

output voltage dropping to 29.6V. This is close to the expected voltage of 30V meaning the output 

current is remaining consistent with a lower load. 

 

 

Figure 5-14 63.6V Output with 55V Input and 110Ω Load 
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Increasing the output resistance to 110Ω yields an output voltage of 63.6V, which is 

slightly off from the expected output voltage of 66V, but this can be explained by an inaccurate 

load resistance and slightly lower output current. The voltage feedback path of the converter allows 

the output voltage to drive up to 80V, as shown in the open load test, but is specified to drive up 

to 64V at 600mA in typical operation. 

 

 

Figure 5-15 39.4V Output with 50V Input and 66Ω Load 

 

 The converter is also designed to operate at different input voltages, in Figure 5-15 the 

input voltage is reduced to 50V, but the output voltage remains consistent with previous tests. The 

same output voltage is found when increasing the input voltage to 60V. Unfortunately, due to the 

extra trace lengths added to each pin of the controller IC, the logic block of the controller creates 

faults and drives the system output low at the switching frequency of the primary MOSFET. This 

means that the device in the current assembly is not able to operate with an input below 40V 

without a 500KHz flickering.  
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Figure 5-16 Primary Switching Node with 52.5% Duty cycle at 500KHz 

 

Figure 5-17 Primary Switching Node with 60.1% Duty cycle at 500KHz 

 

Figure 5-16 shows the switching node oscillating at 500KHz with a duty cycle of 52.5%. 

Since the pictured trace is switching node voltage, the duty cycle of the switch is measured by the 

time spend at 0V. This is because the first half of the topology resembles a boost converter, with 

the primary MOSFET pulling the inductor down to ground. The duty cycle is expected to be 
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approximately 50%, since the input and output voltages are similar values. When the output 

voltage is increased in Figure 5-17, the duty cycle of the switch increases as well, in this case going 

up to 60.1%, which is close to the expected duty cycle of 61.7% for an input voltage of 38.6V and 

output voltage of 62.4V. 

Unfortunately, due to the complications during the manufacturing and assembly, the 

LT3795 controller IC could not be directly soldered onto the main board and instead had to reside 

on an adapter board. This meant that each pin was no longer as local to the system as it was 

designed to be, and a finite amount of inductance, capacitance, and resistance was added to each 

trace. This resulted in issues with the board functioning in some parts of the input and output 

ranges, and inconsistent behavior of the internal logic of the controller.  

 

 

Figure 5-18 Output Voltage Dipping Due to Internal Vcc Faults 

 

 Figure 5-18 shows one of the more widespread issues where the internal Vcc pin, shown 

in channel 2, would suffer from voltage spikes induced from elsewhere in the system. This would 

cause the logic block of the controller to see a fault and turn off the output MOSFET at the 

switching frequency of the device. While a 500KHz oscillation would most likely not be visible 

on the output LED’s, the average output current would be decreased, and the system would be 

under increased stress. The output PMOSFET was selected with a 600Hz maximum switching 
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frequency and was prioritized to have low RDSon with the trade-off of higher gate capacitance. 

While the MOSFET is capable of switching at a 500KHz frequency, this generates much more 

power loss through heat, meaning efficiency is much lower and the energy wasted as heat changes 

the behavior of the device. 

 

Table 5-1 Numerical Test Results Summarized 

Parameter Specification 
Hardware 

Measurement 
Additional Comments 

Output Voltage 

Range 
9V-68V 20V-68V 

Output voltage was limited due to 

inconsistent logic block performance 

Output Voltage 

Maximum 
80V 80V  

Output Current 

Range 
0A-600mA 0A-600mA  

Input Voltage 

Range 
20V-64V 26V-64V 

Input voltage correlated heavily with logic 

block performance, so intermittent faults 

would appear within the input voltage range 

PWM Control 

120Hz-600Hz 

0%-100% 

Duty Cycle 

120Hz-600Hz 

0%-100% 

Duty Cycle 
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Chapter 6: Conclusion 

 The goal of this project was to design and test a DC-DC constant current power supply for 

LED strings in a commercial application. This involved researching converter topologies, 

designing a power supply circuit around a controller IC, and creating a board layout to fit the 

required components for assembly. This finalized controller would be part of a larger system 

infrastructure to facilitate the design and construction of DC powered smart buildings. 

 The project was directed by a core set of specifications requiring a wide input and output 

voltage range with high efficiency, which led to choosing the SEPIC topology. The LT3795 

controller was selected as an IC capable of providing the control logic while accepting the higher 

than average input and output voltages. Designing the complete circuit required selection and 

sizing of power components ranging from coupling capacitors to power inductors as well as 

feedback resistor networks and controller compensation networks. The completed design was then 

turned into a layout that was highly space constricted, only measuring 30mm x 45mm with a 12mm 

height limit. Due to the small size of the board, the components also were physically sized to fit 

the large number of passive components near their relevant subsystems.  

 Once the board was designed and assembled, testing revealed that the converter did not 

fully supply the proper output current in the input and output range, but it was still able to perform 

its intended role within a subsection of this range. The efficiency tended to be 10% - 15% lower 

than the simulated efficiency, but this can be partially explained by the suboptimal assembly 

required to work around manufacturing difficulties.  

 The next step for improving this design is to examine the feedback loops in the control 

system to make sure they are robust enough to withstand a wider range of operating conditions, as 

well as examine the performance of the board in different thermal conditions. Thermal simulation 

was not included in the design stage but would be very relevant in the final commercial application. 

In addition, the layout could be reexamined to minimize cross talk between switching signals, 

widen power traces to reduce resistive losses, and fix the footprint of the LT3795 IC to allow for 

much lower trace inductances. 
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Appendix C: Bill of Materials 

Part Part Number Count Unit Cost Cost 

C11, C12 22201C106MAT2A 4 $2.89 $11.56 

J3 61301421021 2 $1.21 $2.41 

U2 ATMEGA328P-MU 2 $2.52 $5.05 

FB1 BLM18KG601SN1D 13 $0.12 $1.59 

C10 CGB3B1X5R1A475M055AC 3 $0.31 $0.92 

Y1 ECS-160-18-30B-JEM-TR 3 $0.71 $2.12 

R1 ERJ-3EKF2003V 13 $0.12 $1.59 

R10 ERJ-3GEYJ475V 13 $0.12 $1.59 

R11 ERJ-3GEYJ683V 13 $0.12 $1.59 

R20 ERJ-3RQFR43V 13 $0.23 $3.02 

Q1 FDD390N15A 2 $1.28 $2.56 

C5, C6 GJM1555C1H100FB01D 15 $0.28 $4.20 

C7, C8 GRM155R61E104KA87D 15 $0.12 $1.83 

C9 GRM155R71E103KA01D 13 $0.12 $1.59 

C1 GRM32ER71K475KE14L 2 $1.23 $2.46 

U4 LD1117S50CTR 3 $0.51 $1.54 

U1 LT3795EFE#TRPBF 2 $10.43 $20.85 

C3, C4 MF-CAP-0402-1uF 4 $0.07 $0.29 

C2 MF-CAP-0603-1uF 2 $0.06 $0.12 

J2 MF-CON-2.54mm-01x03 2 $0.67 $1.33 

J1 MF-CON-2.54mm-2x3 2 $0.27 $0.54 

R16, R17 MF-RES-0402-100K 4 $0.09 $0.34 

R13 MF-RES-0402-10K 2 $0.12 $0.24 

R3 MF-RES-0402-1M 2 $0.12 $0.24 

R19 MF-RES-0402-4.7K 2 $0.09 $0.17 

R12 MF-RES-0402-470K 2 $0.07 $0.15 

R18, R2 MF-RES-0603-15K 4 $0.06 $0.24 

R4 MF-RES-0603-18K 2 $0.06 $0.12 

D1 PDS4150-13 2 $1.60 $3.20 

R14, R15 RU1608FR020CS 5 $0.49 $2.44 
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U3 SN65HVD3085EDGKR 2 $3.70 $7.39 

L1, L2 SRR1280-390M 4 $1.37 $5.46 

Q2 ZXMP7A17GQTA 2 $1.01 $2.02 

PCB N/A 2 $14 $28 

Labor And Assembly N/A 1 $40.66 $40.66 

   Total $159.42 
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Appendix D: Analysis of Senior Project Design 

Project Title: Design and Test of Wide Input and Output Constant Current LED Driver 

Student’s Name: Kean Wee  Student’s Signature: ____________________ 

Advisor’s Name: Taufik  Advisor’s Initials: __________ Date: ____________ 

 

Summary of Functional Requirements: 

 The goal of the project is to design a contained system that can convert 20V-64V input 

voltage into a constant current output of 600mA to an LED string with turn on voltage between 

9V-68V with PWM dimming control. 

 

Primary Constraints: 

 One of the primary limitations was the size of the board, which was required to be 30mm 

x 45mm, with a height limit of 12mm on the top side and 5mm on the bottom side. This was quite 

small for prototyping and left little room for routing and limited the size of components. The 

sensitivity of the control loop also meant that the layout was critical to the performance of the 

system and had to be tested as it would be manufactured on a large scale. 

   

Economic: 

 The development of this project would create jobs related to the manufacturing of the 

design, as well as installation of the design as part of the larger infrastructure. If the cost of the 

manufactured device can be kept down, this would be a competitive solution for building 

contractors to install in future developments. 

 

If manufactured on a commercial basis: 

 If the design is manufactured on a commercial basis, the number of products sold would 

depend on the number of buildings designed with the infrastructure in mind. Since each device 

should be able to supply for more than 50 LEDs, the number of devices sold would directly relate 

to the number of rooms being lit by the Lumencache system. The cost of manufacturing the 

prototype could be estimated to be $70 per board, but this number decreases greatly as it is scaled 
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up. The price could realistically be brought down to $20 per board and selling each unit for $40 

would yield a profit per device of $20. 

Environmental: 

 Since the goal of the DC building infrastructure is to minimize wasted energy in electric 

conversions, the environmental impact of the design would be a decrease in waste due to lighting 

buildings. Since the DC building infrastructure also supports intelligent communication built into 

each power supply, more energy can be saved through disabling or dimming lights automatically 

when users might forget or not be present. 

Manufacturability: 

 The size restriction of the design has the benefit of producing a board that can easily be 

mass manufactured. With only four layers and a small board area, there are many facilities 

available in the world to produce these designs. The parts are relatively easy to source, and many 

components can be substituted with parts of similar specifications.  

Sustainability: 

 The device specifications were built around an input interface to a wider infrastructure 

which allows for easy upgrading of the design and swapping of parts down the line. As a smaller 

part of a larger system, this project can be revised and replaced in the field as long as the input 

pinout remains the same. Since no assumptions where made on the input power or signals other 

than their voltage ranges, it should be easy to “plug and play” with newer models of this design in 

the future. If the device breaks, it can also be easily replaced since the LED string being powered 

is not directly connected to the board. 

Ethical: 

 There are not many ethical issues with this design other than the potential inability of the 

design to perform to user expectations. As long as the capabilities of the device are properly stated, 

user expectation should be in line with device performance. 

Health and Safety: 

 The PWM dimming can potentially cause user discomfort based on the frequency used. 

With the lower frequency of 120Hz, it’s possible that a humming noise could be generated, and 

users with sensitive eyes might be able to detect flickering and feel discomfort. 
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Social and Political: 

 This design is more beneficial to new developments rather than old. While DC power may 

be appealing to many, it makes the most sense to supply this kind of design and infrastructure 

where buildings are new, rather than retrofitted. 

Development: 

 The development of this project was very educational since it required high attention to 

detail from the beginning to end. The work began with research on topologies available for 

constant current supplies and carried into selection of controllers and components. The design 

stage required use of simulation tools such as LTSpice, as well as schematic and layout tools like 

EagleCAD. The layout portion of the project was especially educational since trace width for 

power traces was incredibly important, as well as creation of custom footprints according to 

datasheets, and placement of components based on locality to their related subsystems. Lab testing 

provided an opportunity for in-depth debugging, especially since the design did not initially work 

when it was brought into the lab. Communication with an exterior manufacturing company 

allowed for problem solving similar to that done within industry when last minute issues arise. 
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